Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 89 (2014)

Artikel: Riemann surfaces and totally real tori
Autor: Duval, Julien / Gayet, Damien

DOl: https://doi.org/10.5169/seals-515673

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-515673
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helv. 89 (2014), 299-312 Commentarii Mathematici Helvetici
DOI 10.4171/CMH/320 © Swiss Mathematical Society

Riemann surfaces and totally real tori

Julien Duval and Damien Gayet

Abstract. Given a totally real torus unknotted in the unit sphere S* of €2, we prove the
following alternative: either the torus is rationally convex and there exists a filling of the torus
by holomorphic discs, orits rational hull contains a holomorphic annulus or a pair of holomerphic
discs.
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Introduction

In this paper we address the following question: given a totally real torus in C2, does
there always exist a compact Riemann surface in C? with boundary in (or simply
attached to) the torus?

Recall that (closed connected) surfaces in C? are totally real if they are never
tangent to a complex line. The only orientable ones are tori. Special cases are
Lagrangian tori, those on which the standard Kihler form of C? vanishes.

Our question is motivated by geometric function theory (see [15] for background).
Given a compact set K in C2, its polynomial hull K is defined as

K = {zin C?/|P(z)| < || P| k for every polynomial P}.

The set K is polynomially convex it K = K. In this case K satisfies Runge theorem.
Note that any compact Riemann surface attached to K is contained in K. lItis therefore
tempting to explain the presence of a non trivial hull by Riemann surfaces, at least for
nice sets like orientable surfaces (they are not polynomially convex for homological
reasons). But quite often a complex tangency of a surface locally gives birth to small
holomorphic discs attached to it. Thus the very first global problem arises with totally
real orientable surfaces, namely tori.

Note that, in the definitions above, instead of polynomials we could as well work
with rational functions without poles on K. This gives rise to the notions of rational
hull and rational convexity. Again an obstruction to rational convexity is the presence
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of a compact Riemann surface C attached to K with the additional restriction that
dC bounds in K.

Here is a bit of history around our question. In 1985 Gromov [10] gave a positive
answer for Lagrangian tori, constructing holomorphic discs attached to them. In
1996 by the same method Alexander [1] exhibited for every totally real torus a proper
holomorphic disc with all its boundary except one point in the torus. Later on [2] he
gave examples of totally real tori without holomorphic discs with full boundary in
them, but still admitting holomorphic annuli attached to them.

In the present work we focus! on tori in the unit sphere S* of C2. They are
unknotted if they are isotopic to the standard torus in S>. We prove the following

Theorem. Let T be a totally real torus unknotted in S3. Then either T is rationally
convex and bounds a solid torus foliated by holomorphic discs in the unit ball B,
or its rational hull contains a holomorphic annulus or a pair of holomorphic discs
attachedto T.

The solid torus is called a filling of T which is said in this case fillable. The
standard torus is an example of the first situation, while the second is illustrated by
the following

Example (compare with [2]). Consider the conjugate Hopf fibration
7: 8P CcC? = 852CcCxR, (z,w)r Qzw,|z|> = |w|?).

Remark that the fibers of & are circles. Denote by T, the preimage by 7 of an
embedded closed curve y in §2. Then 7), is an unknotted torus in 7, totally real
if the projection of y on C is immersed. Choose this projection as a figure eight
which avoids the origin. It follows (see [2]) that every compact Riemann surface
with boundary in 7, is in a fiber of the polynomial p(z,w) = 2zw. But 7}, does
not separate p~'(a) except if @ is the double point of the figure eight. We then get
only one holomorphic annulus attached to 7. If on the other hand the figure eight
intersects itself at the origin we get instead a pair of holomorphic discs attached to 7.

The proof of the theorem relies on the technique of filling spheres by holomorphic
discs due to Bedford and Klingenberg [5] and Kruzhilin [12] (see also Eliashberg
[8]). This is where the restriction to S enters. The spheres come into the picture
as approximations of a lift of the torus in a suitable covering. More precisely take
a totally real unknotted torus 7 in S3. It divides S3 in two solid tori. In the same
manner its hull 7 separates the unit ball B in two pseudoconvex components. At least
one of them has a universal covering which unwinds the corresponding solid torus.
Push T slightly in this good component, building a sequence of tori 7,, converging

Hollowing [13] which by the way seems uncorrect (see our exanple)
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toward 7. We therefore get as alift of 7;, a periodic cylinder sitting in a pseudoconvex
boundary. Approximate it by a sphere §, containing say 2» periods of the cylinder.

We are now in position to apply the technique of filling. It provides a sequence
of balls bounded by 5,, and foliated by holomorphic discs. Single out one of these
discs passing through the equator of S, and call A, its projection downstairs. The
alternative reads as follows: either the area of A, remains bounded, or not.

In the former case (the rationally convex case) we check that the tori 7, are fillable
for large n, and that their fillings converge in some sense to a filling of 7. This relies
on Gromov compactness theorem.

In the latter (the non rationally convex case) we rather look at the limit of A, in
terms of currents. Define I/ as the limit of the normalized currents of integration on
Ay,. Then U is a positive current such that 4 U7 bounds in 7. Therefore the support
of U is contained in the rational hull of 7" Moreover a dividing process of U shows
that it can be written as an integral of currents of integration over Riemann surfaces.
Finally we apply Ahlfors theory of covering surfaces to prove that these Riemann
surfaces are holomorphic discs or annuli.

Before entering the details of the proof, we collect some background. In the
sequel a limit of a sequence often occurs up to extracting a subsequence, even if not
explicitly mentioned. Pseudoconvex domains are also sometimes confused with their
closure.

1. Background

a) Filling spheres. Recall the central result of [12] (see also [5]).

Theorem. Let Q be a bounded strictly pseudoconvex domain in C? and S a sphere
in 082. Suppose that the complex tangencies of S are elliptic or hyperbolic points.
Then § bounds a unique ball ¥ in Q foliated by holomorphic discs.

This ball X is called the filling of S. The complex tangencies of S are the points
where § istangent to a complex line. Being of elliptic or hyperbolic type (see [5], [12]
for the definition) is a generic condition. It can be achieved by a small perturbation
localized near the complex points.

The picture looks as follows. Take a spherein R> endowed with its height function,
which is Morse if the sphere is generic. Elliptic points correspond to local maxima
and minima of the height, while hyperbolic points translate in saddle points. By
Morse theory we have e — i = 2 where ¢ and / are respectively the number of
elliptic and hyperbolic points. The filling corresponds to the ball bounded by the
sphere foliated by the level sets of the height. Therefore all the holomorphic discs
of the filling are smooth up to the boundary except those touching a hyperbolic point
which have comers.
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Another way to describe the complex points of § is via its characteristic foliation.
This is the foliation generated by the characteristic line field T7¢dQ N TS where
T 0S2 is the complex part of T92. It is singular precisely at the complex points
of §. elliptic points corresponding to foci and hyperbolic to saddle points. The
characteristic foliation gives a control on the discs of the filling, in the sense that their
boundaries are always transversal to it. This comes from Hopf lemma which asserts
that a holomorphic disc contained in €2 is transversal to d€2.

Here are further properties of the filling. First every compact Riemann surface
in Q attached to § is contained in X. Next X is the envelope of holomorphy of
5. Hence X is contained in any pseudoconvex domain containing S. Finally if we
divide out the sphere .S into two half spheres by an equator, at least one of them can
be partially filled in the sense of [8]: the surface swept by the boundaries of the discs
in X contained in the half sphere reaches the equator.

In the sequel we will apply this technique of filling to a sphere in 3 where Q is
the universal covering of a pseudoconvex domain £2 which is strictly pseudoconvex
where the sphere projects down. The reader can check that all the arguments of [5],
[12] apply mutatis mutandis.

b) Geometric function theory. We will use the following facts concerning polyno-
mial convexity (see [15] for this paragraph). Let K be a compact set in S3 separating
the sphere in finitely many components, then its polynomial hull K divides B in the
same number of components. Moreover by Rossi local maximum principle these
components are pseudoconvex domains. We will also rely on the theorem by Alexan-
der describing the polynomial hull of a curve of finite length (with finitely many
components): it is a Riemann surface attached to the curve.

We move on to rational convexity. The rational hull »(K) of a compact set K
in C? is geometrically defined as the set of points z such that any algebraic curve
passing through z meets K. If K C P where P is a rational polyhedron, then the
algebraic curves can be replaced by analytic curves in P. The usual obstruction to
rational convexity is the presence of a compact Riemann surface with boundary in
K with the additional restriction that this boundary bounds in K. In our theorem
(second situation) the holomorphic annulus or the pair of holomorphic discs will
satisty this condition and therefore be part of #(7'). As for the first situation we have
the following

Lemma. A fillable totally real torus in S3 is rationally convex.

Proof. Call T the torus and © its filling. We first prove that ® isrationally convex. By
Rossi local maximum principle and the Runge property of B it is enough to construct
through any point near © in the ball B an analytic curve in B (smooth up to $%)
avoiding ®. We produce them by stability of the filling of 7 (see [4] for a similar
situation). Foliate a neighborhood of T in S? by tori, then the fillings of these tori
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foliate a neighborhood of ® in B. Therefore the corresponding holomorphic discs
fill out this neighborhood and avoid 7T if they are not in ®. At this stage (7)) C ©.

We now prove that 7(7) = T. According to the first step © is a decreasing limit
of rational polyhedrons. It is then enough to construct through any point z of ® \ T
an analytic curve in a neighborhood of © avoiding 7. Take through z a real closed
curve in ® \ 7 transversal to the holomorphic discs, parametrized by the unit circle.
Extend this parametrization as a smooth map f from a thin round annulus in such a
way that 3f vanishes to infinite order along the unit circle. By solving an adequate
d-equation perturb now £ into a holomorphic map. This map parametrizes a thin
holomorphic annulus still passing through z and intersecting ® near the initial curve,
hence avoiding T'.

Finally let us recall the analogue in terms of currents of the usual obstructions to
polynomial or rational convexity [7]. Let K a compact setin C? and U/ a positive 1,1-
current with compact support. If supp(dU) C K then supp(lU) C K. If moreover
dU = dV where V is a current supported by K, then supp(U) C r(K).

¢) Ahlfors currents. They are the local version of the currents built from an entire

curve in complex hyperbolicity. In our context a current UV is an Ahlfors current

if U = lim 2—”], where |[A,] are currents of integration over holomorphic discs
Igd

A, of area a, contained in B whose boundary sits mainly in S>. Precisely, one
has length(3A,, \ S*) = o(a,). Hence U is a positive 1,1-current with compact
support such that supp(d /') C S3. The following lemma (compare with [6]) will be
important for the non rationally convex case.

Lemma. Let U be an Ahlfors current whose support is an analytic curve in B. Then
each irreducible component of this curve is a holomorphic disc or annulus.

Proof. 1t relies on Ahlfors theory of covering surfaces [14] under the form of the
following

Isoperimetric inequality. Let £ be a compact connected Riemann surface with
boundary, of negative Euler characteristic. Then there is a constant ¢ such that for
any holomorphic disc f: D — E we have area( f(D)) < ¢ length( f(dD) \ 0F).

Here area and length are computed by means of a given metric on E, taking into
account multiplicities.

As in [6] we proceed by contradiction. Let C be a component of the analytic
curve which is neither a disc nor an annulus. Then there exists a figure eight ¢ in C
such that any component of C \ e meets dC. In particular e is polynomially convex
[15]. We may suppose moreover that e avoids the singularities of . Thickening e
slightly in C we get a disc with two holes E. Identify now a polynomially convex
neighborhood V of e to £ x d where d is a small disc. Call & the projection of V
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on £. Recall that the current U comes from a sequence of discs (A;). Shrinking d a
bit we may suppose that length(A, N(E x dd)) = o(a,). This uses the fact that U |y
does not charge V' \ £ and the coarea formula. Now, as V is polynomially convex,
A, NV consists in a union of discs §, by the maximum principle. By construction
the boundaries of §,, sit mainly in dE x d We infer that area(z (A, N V)) = o(a,)
by applying the isoperimetric inequality to the maps 7 : §,, — FE and summing up.
This contradicts the fact that {/ charges F.

Remark. Suppose we have an annulus A among the components of the analytic
curve. Then the discs A, approximating U satisly the following additional property:
they cannot avoid (for large #n) a fixed analytic curve C in B meeting A. Indeed
if not we could work out the previous argument in the complement of ', replacing
everywhere the polynomial convexity by the convexity with respect to the algebra M
of meromorphic functions in B with poles on C. We would find a M-convex figure
eight in the punctured annulus A \ C and proceed as above to reach a contradiction.

We enter now the proof of the theorem.

2. The set up

Let T be an unknotted totally real torus 7 in S?. It divides S* into two solid tori
w; (diffeomorphic to S x D?) and its polynomial hull 7 separates B into two
pseudoconvex domains £2; containing w; in their closure (81 b)).

Lemma. For one of these domains the map Hi(w;, Z) — H (2, Z) is injective.

Proof. If not, let y; be a generator of Hy(w;, Z). Note first that yy and y, are linked
in $3, and next that the linking number of two disjoint cycles in $* can be computed
as the intersection number of the chains they bound in B. Now by assumption #n; y;
bounds a chain in £2; for some integer n;. But €21 and €25 being disjoint this shows
that 7y, and ny» (hence y and y) are not linked in .§ 3 Contradiction.

Let us call simply €2 this good side and @ the corresponding solid torus. We push
slightly 7" inside w, creating a sequence of tori 7}, approximating 7.

Consider the universal covering p: Q — Q. Because m1(w) — m(2) is injec-
tive, all the components of p~!(w) are diffeomorphic to R x D?2. Fix one of them
and call it @. Then 7, lifts to a cylinder T, (diffeomorphic to R x S1) inside &. Let
7 be the automorphism of Q induced by the action of a generator of m;(w). It acts
on @ as a translation on the factor R and Tn is invariant under this action.

Construct the sphere S, approximating the cylinder T, as follows. Pick a disc D
in w (diffeomorphic to * x D?). Its boundary is a meridian of T'. Deform D slightly
in D, with boundary in 7,,. Choose a lift D, of D, in @. The curves t="(3D,,)
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bound an annulus A, in 7,. The sphere S, is obtained by smoothing the sphere
with corners ™" (5n) U A, Ut" (5n) Note that the complex points of S}, can be
made generic after a perturbation localized near the caps t*" (D). By construction
Sy projects down to the interior of @ where £2 is strictly pseudoconvex. Hence the
technics of §1 a) apply. Denote by %,, the filling of S, in Q. Now the equator ab,
divides S, into two half spheres Sf. At least one of them, say S, , has a partial
filling. This means that we may single out a disc A, of 2, touching the equator and
whose boundary is entirely contained in S, . Put A, = p(z.n).

The alternative reads as follows: either the area a, of A, remains bounded or not.
In the former case we will verily by Gromov compactness theorem that 7 is fillable.
This is the rationally convex case. In the latter we will consider the Ahlfors current
U =lim [A”] . By construction its support will be in the rational hull of 7" and, after
a detailed analys1s we will detect holomorphic annuli or discs in it. This is the non
rationally convex case.

In any case we need to control the boundary of A,,. We know by Hopf lemma that
T A, is transversal on T, to the characteristic line field. Actually we have more.
Denote by @y, the solid torus bounded by 7;, in @w. Perturb the ball B in a new strictly
convex domain B, by bumping slightly @, out, keeping T;, still in 8B,. Note that
by construction dA, C By, so A, C B, by the maximum principle. But tilting the
boundary of the domain along T, translates in rotating the characteristic line field on
T,,. We infer that T9A,, avoids a full cone field on 7;, bounded on one side by the
original characteristic line field. As this can be done uniformly in 7, we end up with
T, (0A, N T,) avoiding a cone ficld on 7. Here ¢, is a diffeomorphism between 7},
and T close to identity. We may perturb slightly the characteristic line field of 7" to
push it inside this cone field, still keeping its name. We summarize this discussion by
saying that y,, = ¢, (3A,, NT,) is uniformly transversal to the characteristic foliation
€ of T. This actually holds for any disc of ¥,,.

It follows that the length /, of v, is controlled by a,. For this construct a 1-
form B on T whose kernel is the characteristic line field and extend it to €2. Then
I, < |fyn Bl < |fAn dp| + |faAann B| by the uniform transversality and Stokes
theorem. Here < stands for an estimate up to a multiplicative constant. The first
integral on the right is controlled by @;,. The second one is bounded. Indeed note that
3A,, bounds adisc ¥, in S, . Call V, its projection downstairs. Then | fa An(Dy ,6|
Lap,ov, 1Bl + [, av, 1dBl < length(dD) + area(D) by Stokes theorem and the
closeness of D, and D. We end up with an estimate of the form /, < C(1 4 a;,).

Conversely a, is controlled by /,, in the same way. Indeed recall that a, = | A, @

where @ is the standard Kiihler form of C?. Write A for a primitive of . Then
a, = faAn A<, + faAnﬂDn A by Stokes theorem and, as before, the last integral
is bounded.
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The rationally convex case

In this case a, remains bounded, and so is /,,.

We first check that 7, is fillable. By assumption dA,, remains at bounded distance
of the equator of §,,. This means that Kn is attached to both S,, and t=1(S,,), hence
belongs to their fillings (§1 a)). In other words both A, and I(Z.n) are part of
2i,. The discs of %, interpolating between them project down to the desired filling
®, of T,,. Note that all the discs A;, of ®, have bounded area. Indeed we have
Jar 0 = [y, 0+ [r 0] < ay + area(T) by Stokes theorem.

"We want now to prove that 7 is fillable as well. We rely on Gromov compactness
theorem [10] (see also [11]). In our context it reads as follows: given a disc A},
in ®,, then the sequence (A}) converges (after extracting a subsequence) toward a
finite bunch (with multiplicities) of holomorphic discs A’ attached to 7. These discs
do not present self-intersections or mutual intersections in the interior of B. This
relies on two facts: intersections of distinct holomorphic curves persist under local
deformation, and the convergence does not show accidents inside the ball. Actually an
accident means an annulus component of A}, in a fixed small ball converging toward
a pair of two discs (its modulus blows up). But all such local components are discs
by the maximum principle. Moreover the discs A’ if simple, are embedded inside B
by a knot-theoretic argument [5]. We want to build the filling of T out of these limit
discs. The problem is to exhibit sufficiently many such discs, embedded and disjoint
in the closed ball. The difficulty takes place at their boundaries. We focus on them.

For a sequence (A)) as above call I = UJA’ the boundary of its limit. By
Hopf lemma it is a finite union of immersed curves (with multiplicities). Denote
by Sing(T") the set of multiple points of T, i.e. its geometric singularities and its
multiple components. Similarly put I" for the boundary of the limit of the original
sequence (Ay) (after the same extraction). Our first observation is that Sing(I') C T'.
Indeed locally at least two strands of A}, converge at a given point of Sing(I"): if o
is a short piece of the characteristic leaf through this point, it meets ¢, (0A ) at least
twice. Here again ¢, is a diffeomorphism between 7;, and 7' close to identity. In
other words o runs from one boundary to the other in the cylinder obtained from T by
cutting out ¢, (dA})). As ¢, (3A,) is parallel to these boundaries it always intersects
o, and so does I'. Shrinking « to the initial point concludes.

In particular at each point ¢ € I'"\ I the convergence of (A},) is good: there exists
a unique simple disc A’ through ¢ in the limit such that A}, converges toward A’ near
g. Our second observation is that this disc does not really depend on (A}). If we
consider another similar sequence (A7) converging after the same extraction, such
thatg € (I"'NT")\T, then A’ = A”. Indeed if not, A" and A” would be distinct. But
intersections of distinct holomorphic discs attached to a totally real surface and on the
same side of a strictly pseudoconvex boundary persist under local deformation. This
can be seen by reflecting the discs through the surface to get (pseudoj)holomorphic
curves in a neighborhood of ¢ and using the positivity of their intersections [16].
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Therefore A}, and A}’ would still intersect, contradicting their being part of the same
filling ®,,.

According to our previous discussion we focus on 7% = T \ ' where all the
convergences are good. Pick a countable set O dense in T*. Denote by A, , the disc
of ®, passing through ¢, 1(¢) for ¢ € Q. By extracting once more we may suppose
that all sequences (A, ,) converge in Gromov sense. Hence there exists a unique
simple disc Ay through ¢ in lim, 0 Ay g We want to extend this construction to
T,

Pick a point p in 7*. Then the component through p of lim,_, , A, (in Gromov
sense) is well defined. Indeed any component through p inlim,_, , A, appears also as
a limit of discs in @,,: consider discs of the form A, 4, for some sequence g going
to p and nj rapidly growing. Therefore by the observations above this component
is unique and does not depend on any choice. We get a distribution of holomorphic
discs A, (p € T*) whose boundaries are embedded and disjoint (if distinct) in 7.
It turns out that the same holds in the whole T'.

Lemma. The curves 3A, are embedded and disjoint (if distinct).

Proof. We proceed by contradiction. Pick an intersection point s (necessarily in T')
of two different local branches y’, ¥" of such curves. Note that ' U ¢” cuts out four
components in 7' near s, two of which avoiding the characteristic leaf through s. Call
C the union of these two components and put C* = C \ I'. Now forall pin C*
the curve dA, is canalized by y’ and y” through s. Thus we get a whole family of
holomorphic discs A, attached to T with a common point. On the other hand by the
maximum principle these discs sit in 7 and even in 87 as limits of discs in ©, C Q.
This will be the contradiction.

Let us make this precise. Recall first that we may associate to an immersed holo-
morphic disc A attached to 7" an even integer, its Maslov index p(A) (see [3] for
background). This index is related to the dimension of the manifold of the holomor-
phic discs close to A and attached to 7. If p(A) < 0 this manifold is of dimension
(: A does not have any deformation attached to 7. If u(A) > 0 it is of positive
dimension p(A) — 1. Moreover if u(A) = 2 we get a small 1-parameter family of
nearby locally disjoint discs attached to 7. In particular they cannot pass through a
common point. On the other hand if (A) > 2 the (at least) 3-parameter family of
nearby discs attached to 7 fills out a whole neighborhood of A in B. This forbids
A to be in 7. To conclude it remains to exhibit a genuine deformation among the
family A, passing through s.

What we know already is that A , is the unique component through pinlimg—, , A,
for p in C*. We would like to really have lim,_. , A, = A,. This will be at least
the case for A, big enough. For this recall that any holomorphic disc attached to T’
cannot be too small. This relies for instance on the existence of a basis of strictly
pseudoconvex neighborhoods of 7. Then according to Lelong theorem the area of
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such a disc is bounded from below by some positive constant, say 2e. Now pick p
in C* such that area(A,) > supc« area(A,) — €. As the area is preserved under the
convergence in Gromov sense, we infer that there is no other component but A, in
limg—, » Ag4. This concludes.

Atthis stage we do have a whole smooth family of disjoint embedded holomorphic
discs attached to 7 whose boundaries sweep out at least 7*. To achieve the filling it
remains to close this family up on I'. This goes along the same lines as before. The
main point is thatif pisin I' then limg—, , A, does not present singularities. If it did,
as in the first observation above, all the discs A, would pass through this singular
point, contradicting the lemma. We leave the details to the reader.

The non rationally convex case

In this case a, blows up. We want to prove that there exists a Riemann surface
(holomorphic annulus or pair of holomorphic discs) attached to 7' and part of its
rational hull. We look at the limit of A, in terms of currents. Consider I—l the
normalized current of integration on A,. We get a sequence of positive currents of
mass 1 supported in the unit ball. Up to extracting it converges toward an Ahlfors
current /. Recall that dA, = 8V}, where V,, is the projection of the disc T7n bounded
by Bﬁn in §,. Note that a, is comparable to /,, (§2) and so to the maximal number
of sheets of ¥, over T,,. Hence M converges toward a current V' supported on T

such that dV = dU. Therefore supp(U ) C r(T) (§1b)). Wehave dU = lim [””]
where y, = ¢, (3A, N Ty,) (§82). As a, blows up we may even neglect parts of
v of bounded length in this limit. To exhibit Riemann surfaces in 7(7') we further
investigate the current {/. We focus first on its boundary.

a) Describing d U. We will prove an integral formulaof the formd U = [ [y |du(y).
Here & is a compact space of Lipschitz curves in 7 and p a positive measure on it,
supported on closed curves.

This requires an extra discussion of the characteristic foliation €. By Denjoy
theorem [9] any smooth foliation on 7' can be perturbed in order to get only a finite
number of attracting or repulsive cycles (closed leaves). We may suppose that this
holds true for € as we already perturbed it (§2).

Call ¢ such a characteristic cycle. Observe that the lifts of ¢ {(¢) cannot be
closed in T If it were the case such a lift would divide S, out into two half spheres,
one of which partially fillable We would thus get a contact between this lift and the
boundary of a disc of the filling %, contradicting the uniform transversality. Hence
p~ (¢, ' (c)) consists in finitely many periodic curves invariant by a power 7 of 7.

It follows that the number of intersection points between y,, and ¢ is bounded.
Indeed each lift of ¢, ' (c) cuts at most once A, by transversality and because A,
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separates .5,. Consider now thin tubes along the cyclesin 7. They divide T in a finite
number of annuli. By uniform transversality y;, cuts the tubes in a bounded number
of short arcs. We may neglect them for the computation of 4 /. Hence the relevant
part of y, consists in a bounded number of long arcs contained in the annuli.

The crucial observation is that these arcs are embedded (up to splitting them into
two pieces). To prove this we further analyse the situation upstairs. Call B, the
ball bounded by the sphere S, in @ and 2, the pseudoconvex domain bounded by
B, UZ%,in Q. Then 9(S,) C Q, forlarge n. This is where the choice of a half
sphere enters. Hence its partial filling, as part of its envelope of holomorphy (§1 a)),
must also be contained in £2,,. To be fully correct this argument requires to push
slightly .S,, off B, in a new sphere S, C @, verify that the partial filling of 77(S}))
is contained in the corresponding pseudoconvex domain ), and deform back S, to
Sy. In particular we get that tq(ﬁ ) C 2. Hence rq(Z. ) remains always on the
same side of %, meaning that t9(dA,) crosses dA,, always in the same direction
(say entering ¥,). Look now at a given lift of ¢, 1(A) in 7, where A is one of the
aforementioned annuli. This is a strip invariant by t¢. It can be parametrized by
R x [0, 1] via a diffeomorphism sending the vertical foliation to the characteristic
one, 4 corresponding to the translation by 1. By transversality any component of
dA, inthe strip is a graph (via the diffeomorphism) with, say, ¥, above it. Thus the
component and its image by 7 intersect at most once as the latter crosses the former
always bottom up. This allows us to cut the component into two pieces, each of them
disjoint from its image by 4. Therefore these pieces project down to embedded
arcs.

According to this discussion d U is a finite sum of currents of the form lim Ig—ﬁl,
where o, 1s an embedded arc sitting in an annulus A. We are now in position to prove
the integral formula for each such limit. Via the parametrization of the corresponding
strip and thanks to the uniform transversality, ¢, splits up into a union of graphs
of functions from [0, 1] to [0, 1] which are uniformly Lipschitz. Denote by § the
compact space of graphs y of functions g: [0,1] — [0, 1] such that Lip(g) < C
(for some large C'). We have Ig_zl = [glyldpn(y) where p, is a positive measure
with finite support and bounded mass on &. Up to extracting p, converges toward
a positive measure p on ¥. We infer that lim Jg_:l = [elyldu(y). Moreover the
support of u consists in closed curves (graphs of functions g such that g(0) = g(1)).
Indeed if the graph of g is in supp(u) then it is certainly the limit of at least two
successive graphs (of say g, and h,,) of a,, (a, blows up). As g, (1) = h,(0) we get
2(0) = g(1) in the limit.

b) Describing U. We will prove now an integral formula of the form

= [ Wdv(W). Here P is the compact space of positive currents of mass 1
supported in the unit ball and v is a probability measure on it. The point is that
supp(v) consists only in normalized currents of integration on holomorphic discs or
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annuli attached to 7 (or finite sums of them). This formula comes from a division
process.

We show first that I/ can be split up into a sum of four positive currents W
of mass at most l. These currents will be proportional to Ahlfors currents limit

of pieces of A,. Precisely W = lim [8”] where 8, C A, area(§,) < “* and
length(dd, \ dA,) = o(a,). In addition We want 08, N A, connected.

For this, parametrize A, by the unit disc via a holomorphic map f,: D — B
such that the images by f;, of the four half discs cut outin D by R or i R have the same
area <. Denote by X the cross (R N D) U (iR M D). According to the next lemma,

we may pick a generic angle 6 close to 4 such that length( f, (€'?X)) = o(ay).
The rotated cross e!? X divides D out in four quarter discs d. Put§, = f,(d) and
W = lim J—l The currents W have all the desired properties. Here is the precise

statement we used.

Lemma. Let f,,: D — B be a sequence of holomorphic discs (piecewise) smooth
up to dD. Put a, = area( (D)), 1,(9) = length( £,,([0, €'%])) and suppose that a,,
blows up. Then 1,,(0) = o(ay) for alimost all O (up to extracting a subsequence).

Proof.  We have 1,(0) = [y Il f{(re'®)|ldr < 1 + [}, 1| fi(re'®)|dr for some

constant / as || £, || is uniformly bounded in the disc of radius % On the other hand,
let a,(#) be the area of the image by f; of the sector between [0, 1] and [0, 7).
Then d“” 2(0) = fo | £ (re!?)||>rdr. By Cauchy-Schwarz inequality (/,(9))* <

202 + 2ln(2) diy ((9) Integrating, we get fo (1,(0))2d0 < 4xi? 4+ 2In(2)a,, so

lim fo ( ’;n ) = 0. By Fatou’s lemma fo lim inf (#) df8 = 0, which
concludes.

Tterating this process we may write U as a sum of 4% positive currents of mass
at most 2% proportional to Ahlfors currents coming from (A,). Hence U =
[» Wdvi (W) where vy is a probability measure supported on these Ahlfors currents.
By compactness of & we may suppose that (v; ) converges toward a probability mea-
sure v on & and we get our integral formula U = [, Wdv(W). Take now a current
W in the support of v. By construction W is an Ahlfors current as a limit of Ahlfors
currents. We will see below that d W is supported on a curve y C T of finite length
(with finitely many components). Hence supp(W) C y which by Alexander theorem
(§1 b)) is a Riemann surface. By §1 c¢) we conclude that W is actually supported in
a finite union of holomorphic discs or annuli attached to 7.

Let us describe d W. By construction W = lim % where W, = lim —2== [5” k]

with 8, x C Ay, area(d, x) < 3y, length(94, x \ 0A,) = o(a,) and 85, ; N BA
connected. We use the notations of the previous paragraph. Recall that we had singled

out an annulus A outside thin tubes of the characteristic cycles in 7" and an arc oy,
of y, embedded in A. So 35, N A, gives rise to a subarc wy, x of o,. We check
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now that lim hﬁ’;—f is supported in a set converging to a curve of finite length (with
at most two components). This will conclude as 4 W is a finite sum of such limits.

Indeed w,, ; is built out of graphs in § and we have lim % = [glyldus (y) for
a positive measure (4 < i on 5. Note that we have a partiralll order on & given by
a < f if the corresponding functions satisfy @ < b. We may speak of intervals |o, ]
or |a, B|= |a, B] \ {o, B}. This order is total on the graphs appearing in «,, i (¢, is
embedded). Denote by 7, . and A,, x the lowest and the highest of these graphs By
compactness of § we may suppose that ,, x. A x converge o g, Ag, and that i, A
converge to 77, A. By construction supp(px) C |5x, Ax] and, moreover, yuyp = @ on
1%, Ar|- As the mass of ui goes to 0, it follows that p does not charge |1, A|. Hence

supp{ite) C [k, Ax]\]n, A] which goes to {n, A}. This concludes.

¢) End of the argument. At this stage we do have compact Riemann surfaces
(holomorphic discs or annuli) attached to 7" and contained in 7 (7). We want more.
We are looking for a compact Riemann surface ' (holomorphic annulus or a pair of
holomorphic discs) such that dC bounds in T. Here is how we proceed.

Choose a common orientation of the characteristic cycles. Note that the bound-
aries of our Riemann surfaces are parallel to these cycles. They also inherit a natural
orientation from the Riemann surface. We speak of a positive boundary if the two
orientations agree, or negative if not. Call positive (negative) an annulus or a disc with
only positive (negative) boundaries, and opposite an annulus or a pair of discs with
opposite boundaries. We are looking for an opposite annulus or a pair of opposite
discs among our Riemann surfaces. Suppose we do not have any.

Recall that 4 U bounds in T'. This implies that our Riemann surfaces cannot be all
positive, or all negative. We have three possibilities left: either the presence among
them of a positive annulus and a negative annulus, or of a positive annulus and a
negative disc, or the converse. By symmetry we may suppose that we have a positive
annulus A and a negative Riemann surface (annulus or disc) C~. Observe now that
two disjoint closed curves in 7' parallel to the characteristic cycles are necessarily
linked in S3. This can be checked for any pair of disjoint curves in the standard torus,
as soon as they are not meridians (i.e. do not bound a disc in the complement of the
standard torus).

Hence the boundaries of A" and C~ are linked. This implies that A% and C~
intersect inside the unit ball. But by construction A™ is contained in the support of an
Ahlfors current coming from (A,). As AT intersects C ~, before the limit A, would
have to intersect C~ (81 ¢)). This is impossible as C~ C T and Ay T s
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Abstract. In this paper we study the set G of values at algebraic points of analytic continuations
of G-functions (in the sense of Siegel). This subring of C contains values of elliptic integrals,
multiple zeta values, and values at algebraic points of generalized hypergeometric functions
p+1Fp with rational coefficients. Its group of units contains non-zero algebraic numbers, =,
I'(a/b)? and B(x, y) (witha,b € Z such thata/b ¢ Z, and x, y € Q such that B(x, y) exists
and is non-zero). We prove that for any £ € G, both Re £ and Im & can be written as (1),
where f is a G-function with rational coefficients of which the radius of convergence can be
made arbitrarily large. As an application, we prove that quotients of elements of G M R are
exactly the numbers which can be written as limits of sequences a,, / b,,, where Z;O:o anz"™ and
Z,ZO:O bpz" are G-functions with rational coefficients. This result provides a general setting
for irrationality proofs in the style of Apéry for {(3), and gives answers to questions asked by
T. Rivoal in “Approximations rationnelles des valeurs de la fonction Gamma aux rationnels : le
cas des puissances”, Acta Arith. 142 (2010), no. 4, 347-365.
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1. Introduction

The purpose of this text is to study the set of values of G-functions at algebraic num-
bers. Letus recall the following definition, which essentially goes back to Siegel [30].

Definition 1. A G-function f is a formal power series f(z) = > oo, @, 2" such that
the coefficients a, are algebraic numbers and there exists C > 0 such that:

(i) the maximum of the moduli of the conjugates of a,, is < C"+1,

ii) there exists a sequence of integers d,,, with |d,,| < C"*1, such that d,a,, is an
q £
algebraic integer for all m < n.
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(iii) f(z) satisfies a homogeneous linear differential equation with coefficients in

Q).

Throughout this paper we fix an embedding of @ into C; all algebraic numbers
and all convergent series are considered in C.

G-functions occur frequently in analysis, number theory, geometry and physics:
for example, algebraic functions over Q@(z) which are holomorphic at 0, polyloga-
rithms, Gauss’ hypergeometric function with rational parameters, are G-functions.
The exponential function is not a G-function but an £-function (that is, it satisfies the
requirements of Definition 1 if a,, is replaced with a,,/n! in the expansion of f(z)).

In Definition 1, condition (i) ensures that any non-polynomial G-function has
finite non-zero radius of convergence at z = (). Condition (iii) implies that in fact
the coefficients a,, n > 0, all belong to a same number field. Classical references on
G-functions are the books [1] and [17].

Siegel’s goal was to find conditions ensuring that £ and G-functions take irrational
or transcendental values at algebraic points: the picture is very well understood for
FE-functions but largely unknown for (;-functions. The main tool to study the nature
of values of G-functions is inexplicit Padé-type approximation (see [3], [12], [14],
[22]). In an explicit form, Padé approximation is also behind Apéry’s celebrated
proof [7] of the irrationality of {(3), and similar results in specific cases (see for
instance [9], [19]).

In this paper, we study the following set.

Definition 2. Let G denote the set of all values f(«), where f is a G-function and
a € . More precisely, all values at o of analytic continuations of f are considered,
as soon as they are finite.

This subset of C is a subring (this can be seen as a consequence of Theorem 1
below). It contains @, and also (see §2.2 for proofs) multiple zeta values, elliptic
integrals, and values at algebraic points of generalized hypergeometric functions
p+11p with rational coefficients. André proved in [1], p. 123, that the units of the
ring of G-functions are exactly the algebraic functions which are holomorphic and
don’t vanish at the origin. The description of the units of G is an interesting open
problem whose solution is not as simple as for functions, for we show in §2.2 that
the group of units of G contains not only the non-zero algebraic numbers but also 7,
the values of the Gamma function T'(a/k)? and that of Euler’s Beta function B(x, y)
(with a,b € Z such that a/b & Z, and x,y €  such that B(x, y) exists and is
non-zero). On the other hand, there is no explicit interesting number for which we

VAl differential equations considered in this text are homogeneous and consequently we will no longer
mention the term “homogeneous”.
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are able to prove that it is not in G;? it is likely that e, Euler’s constant y, I'(a/b)
(with a, b integers such that a /b & 7) or Liouville numbers do not belong to G.

A conjecture of Bombieri and Dwork predicts a strong relationship between dif-
ferential equations satisfied by G-functions and Picard—Fuchs equations satisfied by
periods of families of algebraic varieties defined over Q. See the precise formulation
given by André in [1], p. 7, who proved half of the conjecture in [1], pp. 110-111.
Christol [13] also conjectured that globally bounded G-functions are diagonals of
rational functions, which are known to satisfy Picard—Fuchs equations. This raises
the question of a connection between the set G and the set & of periods considered
by Kontsevich and Zagier [26]; all elements of & we have thought of belong also to
G. However 1 /7 is conjectured not to belong to #, so that G is presumably distinct
from #. However, a natural problem is the determination of the link between G and
P[1/7] (see the discussion at the end of § 2.2).

Our main result is the following.

Theorem 1. A complex number § belongs to G if, and only if, its real and imaginary
parts can be written as f(1), where f is a G-function with rational coefficients of
which the radius of convergence can be made arbitrarily large.

One of the consequences of this theorem is that the set of values of G-functions
3o o anz™ witha, € Q atpoints z € Q inside the disk of convergence (respectively
at points where this series is absolutely convergent, respectively convergent) is equal
to G NR.

The main tool in the proof of Theorem 1 is André-Chudnovski—Katz’s theorem
(stated as Theorem 6 in §4.1 below), which provides for any G-function f and any

¢ € QQ alocal basis (g1, ..., gy) of solutions around { of a minimal differential
equation satisfied by /. Expanding an analytic continuation of f in this basis yields
connection constants wi, ..., w, € C such that f(z) = Z;"Zl w;gi(z). Asastep

towards Theorem 1, we prove the following result which is of independent interest:
Theorem 2. The connection constants @1, .. ., W, belong to G.

We would like to emphasize that analytic continuation (and its properties en-
compassed in André—Chudnovski—Katz’s theorem) is the main tool in our approach.
As the referee pointed out to us, it would be interesting to find a connection with
other methods used in similar contexts, including Débes—Zannier’s [15] or Euler’s
for accelerating convergent series; however we did not find any. For instance, Euler’s
binomial transform Y, o(=1)"a, = 3,50 (2 1—0 (i3 (ﬁ)ak)Z_”_l is involu-
tive and therefore it cannot be used to obtain series with arbitrarily large radius of
convergence.

ZSince the set G is countable, there are complex numbers outside G but the real difficulty is to exhibit such a
number by an effective process leading to an analytic expression like a series or an integral for example.
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As an application of Theorem 1, we answer questions asked in [28], p. 351,
where the second author introduced the notion of rational G-approximations to a
real number. This corresponds to assertion (ii) in the next result, which provides a
characterization of numbers admitting rational G-approximations.

Given a subring A of C, we denote by Frac(A) the field of fractions of A, namely
the subfield of C consisting in all elements £ /&§" with §,&" € A, & #£ 0.

Theorem 3. et § € R*. The following statements are equivalent:
(1) We have & € Frac(G) N IR = Frac(G N R).

(il) There exist two sequences (an)n=0 and (by)n>o of rational numbers such that
the series Z;o:o a,z" and Z;o:() b,z" are G-functions, b, # 0 for any n large
enough and limy,— o ay /by = §.

(iii) For any R > 1 there exist two G-functions A(z) = Y 7 a,z" and B(z) =
Y0 o bnz", with rational coefficients and radius of convergence = 1, such that
A(z) — EB(z) has radius of convergence > R.

Remark. When § € G, we can take b, = 1 in (ii). However, it is not clear to us
if this is also the case for other elements £ € Frac(G), in particular because it is

doubtful that G itself is a field.

Apéry has proved [7] that {(3) € @ by constructing sequences (dy)n>o0 and

(bn)n=0o essentially as in (iii), such that b, € Z and lem(1, 2, ..., n)%a, € Z. Since
£(3) = Lis(l) (where the polylogarithms defined by Lis(z) = Zzozl nl—sz”, s > 1,

are G-functions), we have {(3) € G. Theorem 3 provides a general setting for such
irrationality proofs and one may wonder if, given areal irrational number § € Frac(G),
there exists a proof ala Apéry that § is irrational. In particular, this would be a strategy
to prove the following conjecture (see §7.2 below):

Conjecture 1. No & € Frac(G) can be a Liouville number.

Our approach does not yield (at least for now) any actual result towards this con-
jecture, because the denominators of the coefficients of the &-functions we construct
grow too fast. It would be interesting to control them in some way.

The paper is organized as follows. We introduce some notation in §2.1, and state
slight generalizations of Theorems 1 and 3, namely Theorems 4 and 5. We prove in
§2.2 that the numbers mentioned above actually belong to G. Then we start proving
Theorems 4 and 5 by gathering some lemmas in §§2.3 and 2.4. In §3, we prove that
the conclusion of Theorem 1 holds for algebraic numbers and their logarithms. In §4,
we review some classical results concerning the properties of differential equations
satisfied by G-functions (namely Theorem 6, due to André, Chudnovski and Katz).
We also prove in this section that connection constants belong to G, and the conclusion



Vol. 89 (2014) On the values of G -functions 317

of Theorem 1 holds for them (see Theorem 7). This result, along with the analytic
continuation properties of (G-functions deduced from Theorem 6, is used to prove
Theorem 4 in §5. In §6, we present the proof of Theorem 5: the main tool is the
results of Singularity Analysis due to Flajolet and Odlyzko [21], described in details
in the book [20]. Finally, we mention in §7 a few problems suggested by our results:
what can be said about the case of £-functions and about Diophantine perspectives.

Acknowledgements. We warmly thank Yves André, Daniel Bertrand, Frits Beukers,
Gilles Christol, Julien Roques and Michel Waldschmidt for their constructive remarks.
We are also indebted to the referee for his pertinent comments that helped us to
improve this work, in particular those we present in §7.1. Both authors have been
supported by the project HAMOT (ref. ANR 2010-BLAN-0115), and the second
author partially by the project Q-DIFF (ref. ANR 2010-JCJC-010501), of the Agence
Nationale de la Recherche.

2. Background of the proofs

2.1. Notation and results. In this section we introduce some notation that will
be used throughout this text. We also state Theorems 4 and 5, which are slight
generalizations of Theorems 1 and 3 respectively.

The letter K will always stand for a (finite or infinite) algebraic extension of {3,
embedded into Q@ < C.

Definition 3. Given an algebraic extension K of Q, we denote by G the set of
all values, at points in K, of multivalued analytic continuations of G-functions with
Taylor coefficients at (} in K.

Forany G-function f with coefficients in K and any w € K, we consider all values
of f(«) obtained by analytic continuation, as in the definition of G in the introduction;
obviously G = G%C'. If « is a singularity of f, then we consider also these values
if they are finite. Of course f(wz) is also a G-function with coefficients in I so that
we may restrict ourselves to values at the point 1. By Abel’s theorem, GE™ contains
all convergent series Z?Iio aya” where f(z) = Z?Z‘Lo a,z™ 18 a G-function with
coefficients in K and o € K.

Definition 4. Given an algebraic extension K of €, we denote by GY' the set of all
& € C such that, for any R > 1, there exists a G-function f with Taylor coefficients
at 0 in K and radius of convergence > R such that £ = f(1).

For any R > 1, we denote by G - the setof all § = f(1) where f is a G-
function with Taylor coefficients at 0 in K and radius of convergence > R. In this
way we have G/ = (g G} . and also Gy, C G~ forany R > 1.
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With this notation, Theorem 1 reads G%C' = G +iGg = Ga(i). Actually

we prove that GE™ is independent from KK, so that it is always equal to G = G"j'(—';'.
Concerning Gy, there is an obvious remark: if K C R then G C R. Apart from

this, GY is independent from K, and equal (up to taking real parts) to G. Our result
reads as follows.

Theorem 4. et K be an algebraic extension of Q). Then:
* Wehave G = G = Gy +1iGg.
* fKZRthenGy =G =G +iGq: if K C Rhen Gy = G NR = Gy,

In particular this result contains the fact that QNR C Gg and QcC Gg +1Gg;
this will be proved in §3.1. Another consequence of this theorem is that the set of
values of (G-functions Zg‘;o a,z" with a,, € K at points z € K inside the disk
of convergence (respectively at points where this series is absolutely convergent,
respectively convergent) is equal to G’ (so that it is equal to either G or G N R).

We also generalize Theorem 3 as follows.

Theorem 5. Let K be an algebraic extension of @, and§ € C*. Then the following
statements are equivalent:

(i) We have § € Frac(GY).

(il) There exist two sequences (an)n=>0 and (by)n=0 of elements of K such that
Y o anz™ and > 2o byz™ are G-functions, by # 0 for infinitely many n and
an — &by, = o(by).

(iii) For any R > 1 there exist two G-functions A(z) = Y .2 anz" and B(z) =
Z;io:o b, z", with coefficients a,, b, € K and radius of convergence = 1, such
that A(z) — £B(z) has radius of convergence > R and a,, b, # 0 for any n
sufficiently large.

When K = (, this is a refinement of Theorem 3 because assumption (ii) of
Theorem 3 implies assumption (ii) of Theorem 5, and (iii) of Theorem 5 implies (iii)
of Theorem 3 (see also Lemma 2 below). The point in assertion (ii) of Theorem 5 is
that b, may vanish for infinitely many #; by asking a, — £b,, = o(b,) we require
that @, = 0 as soon as », = 0 and » is sufficiently large.

2.2. Examples and connection to periods. In this section, we prove that the num-
bers mentioned in the introduction belong to G, and give some hints on the connection
with periods. This section is independent from the rest of the paper, except that we
assume here that G is a ring.
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Many examples of G-functions are provided by the generalized hypergeometric
series

X\ (@) @ @
,;, DnBin - Brin

with rational coefficients «’s and 8’s, and (x), = x(x + 1)...(x +n — 1). Special
cases are the polylogarithmic functions Lig(z) = >, % (k = 1)and arctan(z) =
pI C ”% We deduce in particular that w = 4arctan(1) and the values of
the Riemann zeta function {(k) = Lig (1) are in G for any integer k > 2. Catalan’s
constant .., (42% is also in G.

Other examples of G-functions are the multiple polylogarithms

z™M
2. =&
ry==ng>1 fly - Hs
where the &’s are positive integers. This is a consequence of the fact that for s = 1,
we have a polylogarithm from which we obtain the multiple series by a succession
of integrations and multiplications by 1/z or 1/(1 — z); this process does not leave
the set of G-functions. As a consequence, multiple zeta values {(ky,...,k5) =
i : .
Y gl o (with kq > 2) are in G.
Ty

It could seem more surprising that 1/ is also in G, a fact proved by each one of

the following identities:

1 - oo (Znn)z 1 - oo (Znn)3(42n +5)
h Z (1 —2n)24n+1" 7 = Z y12n+4

The first identity is a direct translation of the identity £(1) = 1 where E(k) =
fl 1—k22
0 1-¢2
second identity is due to Ramanujan and it also has an elliptic interpretation. Both

series are in fact values of generalized hypergeometric series, hence 1 /7 € G.
In particular, 7= and the non-zero algebraic numbers are units of G. These numbers
do not span the whole group of units, as we now proceed to prove. Euler’s Beta

function is defined by

dr is Legendre’s complete elliptic function of the second kind. The

1
B(x,y):[ 11— )Y de
0

for Re(x),Re(y) > 0. Itis well-known that B(x, y) = %, which provides the

meromorphic continuation of B to C2; we recall that # = B(%, 1),
Proposition 1. (1) For all rational numbers x,y such that B(x, y) is defined and
non-zero, the number B(x,y) is a unit of G.
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(ii) For any integers a. b > 1, we have
r(f)b = (a— 1)!511[1 B(f, j—a)
h s h b

and F(%)b is a unit of G.

Remark. a) To sum up, the group of units of G contains the algebraic numbers and
the numbers B(x, y) where x, y € () (as soon as they are defined and non-zero). We
don’t know if this provides a complete list of generators of this group.

b) Chudnovski proved in 1974 that I"(1/3), respectively I'(1/4), and 7 are alge-
braically independent over Q. Hence one needs other transcendental generators than
7 in the group of units of G.

c) This proposition is a transposition in our context of a discussion in André’s
book [6], pp. 211-212, where he shows that the numbers I'(z /5)? are periods (in the
geometric sense).

Proof. (1) We first show that B(x, y) € G for all rational numbers 0 < x,y < 1.
Clearly, B(x, y) is well defined in this case and

1 o B ~
B(x,y) :/; fx_l(l —I)y_ldl :fo Z(_l)n(y ] 1)ln+x_1dl
n=0

y—1
= RS A = ( n )
= Z(—l)”( ) f M =Y (=) ——
n=>0 o 0 n=>0 ot
Since (—1)”(y ;1) is positive, permuting the series and integral is licit. Moreover,
(;_L;) = O(1/n¥*1) so that the final series converges absolutely and is the value at
z = 1 of a G-function. This proves that B(x, y) € G in this case.
From now on, we let x, y € ) and we assume that x, y,x + y ¢ Z (otherwise
the conclusion is easier to prove). Then B(x, y) is defined and non-zero. There exist
two integers M, N such that0 < x + M,y + N < 1, and the functional equations

X+y X+y
B(x,y)zTB(x—l—l,y), B(x!y):TB(x!y_l_l)

yvield B(x,y) = Ry v (x, ¥)B(x + M,y + N) with Ry vy (x, y) € Q(x, y). Since
B(x + M,y + N)isin G by the previous case, it follows that B(x,y) € G.
Toprovethatl/B(x, y)is alsoin G, we use the reflection formula I'(x)["'(1—x) =
T (o get

sin{mrx)

1 _ sin(zwx)sin(wry) 1—x—
B(x,y)  sinz(x+ y) T

Y B —x,1-y).
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Now B(l — x,1 — y) € G by the case above; (l_x_sj;r)liilzg_x;)sm(”y) is an algebraic

number (hence in G) and 1/7 € G, so that —— € G.

B(x,y)
(ii) We have

T 5(2 22y < [ ZOTE) _ a0

b T'(a)’

from which we obtain the claimed identity. Moreover, foranyinteger j > 1, B (% , %)

is obviously defined and non-zero, hence is a unit of G by (i). Thus, this is also the
arb
case of I (3) . O

To conclude this section, we mention some remarks (due to the referee) towards
the determination of the link between G and [l /7], where & is the ring of periods
(in Kontsevich and Zagier’s sense [26]); in particular a natural question is whether
G = P|[1/x] or not.

Bombieri-Dwork’s conjecture suggests that G might be contained in F[1/x].
Indeed, this conjecture predicts that any G-function is solution of an extension of
sub-quotients of Picard—Fuchs equations. It is not clear that such an extension is
motivic, but for a Picard—Fuchs equation the G-matrix solution Y (z) is the quotient
P(z)P(0)~! of two period matrices. Since the determinant of P(0) is an algebraic
number times a power of 7 (see [2]), the inclusion G C P[1/x] would follow.

Towards the converse inclusion, it is possible to prove that if a one-parameter
Picard—Fuchs equation doesn’t have 0 as a singularity then the special values of its
solutions can be expressed in terms of (z-functions which are solutions of the same
equation.

In view of this discussion, it would be very interesting to refine Theorem 1 by
ensuring that 0 isn’t a singularity of the minmimal differential equation of the G-
function f we construct (such that f(1) is a given § € G). However our proof does
not provide this refinement directly and new ideas are necessary to do that.

2.3. General properties of the ring Gz. The set of G-functions satisfies a number

of structural properties. It is a ring and even a Q[z]-algebra; it is stable by dif-
ferentiation and the Hadamard product of two G-functions (obtained by pointwise
multiplication of the coefficients) is again a G-function. These properties will be
used throughout the text, as well as the fact that algebraic functions over Q(z) which
are holomorphic at z = 0 are G-functions: this is a consequence of Eisenstein’s the-
orem > and the fact that an algebraic function over Q(z) satisfies a linear differential
equation with coefficients in Q|z].
The following property is useful too:

3which states that for any power series thio apz" algebraic over @(z), there exists a positive integer D
such that D" ay is an algebraic integer for any #.
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Lemma 1. Consider a G-function Z:io:o a,z". Then the series

o0 o0 o0
Z T Z Re(ay)z" and Z Im(a,)z"
n=40 n=>0 n=>0

are also G-functions.

Proof. The series Yo o anz" satisfies a linear differential equation Ly = 0 with
coefficients in Q[z], hence Y o0, @,z" satisfies the linear differential equation
Ly = 0 where L is obtained from L by replacing each coefficient Zgzo ez
with Zg:o 772%. Furthermore, the moduli of the conjugates of @, and their com-
mon denominators obviously grow at most geometrically. Hence, Y .., @z" is a
G-function.

For > 72  Re(an)z" and ) .2, Im{a,)z", we write 2Re(a,) = dn + @,
2ilm{a,) = a, — a, and use the fact that the sum of two (G-functions is also a
G-function. [

The following lemma includes the easiest properties of Gy;; especially (i) will be
used very often without explicit reference.

Lemma 2. Let K be an algebraic extension of Q.
(i) GY is a ring and it contains K.
(i) If K is invariant under complex conjugation then:

* GY is invariant under complex conjugation.
* Ggp =G NR
* R NFrac(Gy) = Frac(Gy np) = Frac(Gg N R).

(iii) a(i) = 6[‘] = Gg + iGg, and more generally if K C R then ]Clg(i) =
Gy li| = Gg +iGY.

Proof. (1) The properties of G-functions ensure that the sum and product of two G-
functions with coefficients in K and radii of convergence > R > 1 are (G-functions
with coefficients in K and radii of convergence > R. Moreover algebraic constants
are G-functions with infinite radius of convergence.

(i1) Using Lemma 1 and the fact that K is invariant under complex conjugation, if
Zzo _o @nz" 18 a G-function with coefficients in K and radii of convergence > R > 1
then so is Y7, @,z": this proves that G is invariant under complex conjugation.

The inclusion G, C Gy NIRis obvious. Conversely, if§ € RNGY then forany
R > 1 wehave & = Z:’f’:o a where ZEOZD anz" 1s a G-function with coefficients
in K and radius of convergence > R. Then > >~ Re(a,)z" is also a G-function (by
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Lemma 1); it has coefficients in K N R (because Re(a,) = l(an + @;,)) and radius
of convergence > R. Therefore § = > "2 Re(ay) € Gy m-

Finally, the inclusion Frac(Gg/ N R) C R N Frac(Gy') is trivial. The converse
is trivial too if K C IR; otherwise let §,§” € Gy be such that § # 0 and §/§" € R.
Multiplying if necessary by a non-real element of K, we may assume £,& ¢ iR.
Then we have £/¢" = (§ + £)/(§' + &) € Frac(G§ NR).

(iii) Assume K C R. Since G§ is aring and i* = —1 € G§, we have G{{[i]| =
Gy + iGy . This is obviously a subset of Gy i Conversely, K (i) is invariant
under complex conjugation (because K C ) so that for any £ € G](_g( y we have
Re(§) = 1(5 I.6] e GK(I) NR = Gy by (ii). Since i € K(i) C GK(;)
have Im(£) = —i(§ — Re(£)) € GK() N IR GY, using (ii) again. Fmallyé =
Re(§) + iIm(§) € G} + iGy. O

The following lemma is a consequence of LLemma 7 proved in §3 below; of course
the proof of Lemma 7 does not use LLemma 3, hence there is no circularity.

Lemma 3. Let K be an algebraic extension of Q).

(i) We have QNR C Gy C Gy, and Gy is a (Q N R)-algebra.

(i) If K ¢ RthenQ C Gy € G, and G isa Q-algebra.

Proof. (i) By Lemma 7, we have @ N R C G@(;) N R; this is equal to G by
Lemma 2. The inclusion G C Gy is trivial since @ C K.

(ii) Since K ¢ IR, there exist o, € R such that « + i € K and § 7£ 0;
since o — i is also algebralc we have o, 8 € Q. Therefore we can write i =
1((045 + i) — o) with 4 7.0 € QNRC Gy (by (i)). Since Gy is a ring which
Contams a+if, thisyieldsi € G, so that (using Lemma 2 and the trivial inclusion
Gy C Gy) GQ(;) = Gg + Gy C G¥. Using the inclusion QcC G@( ) proved in
Lemma 7, this Concludes the proof of (11) L

To conclude this section, we state and prove the following lemma, which is very
useful for constructing elements of G . Recall that G% - is the setof all § = (1)
where f is a G-function with coefﬁc1ents in K and radius of convergence > K.

Lemma 4. et K be an algebraic extension of Q. Let { € K, and g(z) be a
G -function in the variable { — z, with coefficients in K and radius of convergence
>r >0 Theng(zo) € G}  forany R = landany zo € K suchthat |z9—{| < r/R.

Proof. Letting f(z) = g(é‘—l—z(zo—é‘)), wehave f(l) = g(zp)and f isa G-function
with coefficients in K and radius of convergence > K. L
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2.4. Miscellaneouslemmas. We gather in this section two lemmas which are neither
difficult nor specific to (z-functions, but very useful.

Lemma 5. Let A be a subring of C. Let S C N and T C Q be finite subsets. For
any (s,t) € S X T, let fs4(z) = Y - g astnz” € Al[z]] be a function holomorphic
at O, with Taylor coefficients in A. Let Q denote an open subset of C, with O in its
boundary, on which a continuous determination of the logarithm is chosen. Then
there exist c € A, 0 € N and © € (@ such that, as z — O withz € Q,

D (ogz)zt fuu(z) = e (logz) 2" (1 + o(1)). (2.1)

seS teT

Proof. LetT + N ={f+n,r € T,neN}. Foranys € Sandany € T + N, let
Cs.0 = 2 7 ds.t.0—t Wherewe letag, 9, = 0if 0 —f & N. Then the left-hand side
of (2.1) can be written, for z € Q2 sufficiently close to 0, as an absolutely converging
series D gerin 2 ses Cs.0(log z)5z% If cs,9 = Oforany (s, 8) then (2.1) holds with
¢ = 0. Otherwise we denote by t the minimal value of 0 for which there exists s € §
with c; ¢ # 0, and by o the largest s € S such that ¢; , # 0. Then (2.1) holds with
€ = Cg,r € A. O

The following result will be used in the proof of Theorem 5.

Lemma 6. Let wy, ..., w; be pairwise distinct complex numbers, with |o| = -+ =
|| = 1. Let iy, ...,k € C be such that limy_ y oo K107 + -+ + k@) = 0. Then
K==k = 0.

Proof. For any n > 0, let 6, = det M,, where

w7 w? . i

- :
n+1 n+1 n+1
Wy wy ce. Wy
Mn - .
+1—1 Jepil +1—1
wy wy wy}
Let C; , denote the i-th column of M,. Since C;, = w!C;o we have |6, =
|} ... w}80| = |6o] # O because &y is the Vandermonde determinant built on
the pairwise distinct numbers wy,...,w,. Now assume that x; # 0 for some
J- Then for computing 8, we can replace C;; with %Zizl x; C; 3 this implies
_ y ;
limy,— 4 00 6 =0, in contradiction with the fact that |§,| = || # 0. O

3. Algebraic numbers and logarithms as values of (z -functions

An important step for us is to show that algebraic numbers are values of G-functions
with coefficients in (i) (and, more precisely, that they satisfy the conclusion of
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Theorem 1). Despite quite general results in related directions, this fact does not
seem to have been proved in the literature in the full form we need. Eisenstein [31]
showed that the G-function (of hypergeometric type)
o0 5n
Z(_l)n (n ) gt
dn + 1

n=>0

is a solution of the quintic equation x> 4+ x = a, provided that |a| < 5734 (to ensure
the convergence of the series). Eisenstein’s formula can be proved using Lagrange’s
inversion formula. More generally, given a polynomial P(x) € C[x], it is known
that multivariate series can be used to find expressions of the roots of P in terms
of its coefficients p;. For example in [32], it is shown that these roots can be for-
mally expressed as A-hypergeometric series evaluated at rational powers of the p;’s.
(A-hypergeometric series are an example of multivarniate G-functions.) Itis not clear
how such a representation could be used to prove Lemma 7 below: beside the multi-
variate aspect, the convergence of the series imposes some conditions on the p;’s and
their exponents are not integers in general. Our proof is more in Eisenstein’s spirit.

Lemma 7. Let o € Q, and Q(X) € Q[X] be a non-zero polynomial of which o is a
simple root. For any u € Q(i) such that Q'(u) # 0, the series

o0
O(u)" gn—1 X—u n
Ouz) =u+ > (=1)" ( ) 2"
" 2 i e \\om -0/ /.
is a G-function with coefficients in Q(i); it satisfies the equation

Q(Pu(z)) = (1 = 2) Qu).

Forany R = 1, if u is close enough to « then the radius of convergence of o,

is > Randa = ®,(1) € %@(1’)‘

Accordingly we have  C Ga(i).

Remarks. a)The proof can be made effective, i.e., given o, Q and R, we can compute
e(a, Q, R)suchthatforanyu € Q(i) with |o—u| < e(a, O, R), wehave &, (1) = «
and the radius of convergence of ®,, is > R.

b) Using Lemma 2 (ii), we deduce that any real algebraic number is in Gg.

We also need a similar property for values of the logarithm.

Lemma 8. et o € Q*. For any determination of the logarithm, the number log(a)
belongs to Ga(i)'
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3.1. Algebraic numbers

Proof of Lemma 7. 1fdeg Q = 1then ®,(z) = u + (@ —u)z so that Lemma 7 holds
trivially. From now on we assume deg ) > 2. Then M is a non-constant
polynomial with coefficients in Q(7); its value at X = u 1s O'(u) # 0 so that
the coefficients of @, (z) are well-defined and belong to Q7). If O(x) = O then
®,(z) = u and the result is trivial, so that we may assume ((u) # ( and define the
polynomial function
00 +1)
() = 1= 5o € QN

so that z,(0) = 0 and z,,(0) = —% # (. Hence z,(7) can be locally inverted
around / = 0 and its inverse f,,(z) = Y, .; $n(u)z" is holomorphic at z = 0.

The Taylor coefficients of £, can be computed by means of the Lagrange inversion
formula [20], p. 732, which in this case gives ®,(z) = u + £,,(z). By definition of
fu(z), this implies Q(®,(z)) = (1 — z)Q(u). Therefore &, is an algebraic function
hence it is a G-function.

Now let
_ o) ¥ =i N
Pn () = 2l gyn—1 ((Q(x)—Q(u)) )|x—u

denote, for n > 1, the coefficient of z" in ®,(z). Then for any n > 1 we have
QWW[ dz
2ir Ju (Qu) — Q(2))"

where €’ is a closed path surrounding u but no other roots of the polynomial O (X) —
((u). This enables us to get an upper bound on the growth of the coefficients ¢, (u).

(3.1)

oM (u) =

Letus denote by B1(u) = u, B2(u), ..., Bz (u) the roots (repeated according to their
multiplicities) of the polynomial O (X )— O (u), withd = deg Q > 2. We takeu close
enough to o sothat B, (u), . .., B4(u) are alsoclose to the otherroots oy, . . . , oz of the

polynomial Q(X). Since « is asimple rootof Q(X), wehaveor & {az,..., 04} We
can then choose the smooth curve % in (3.1) independent from u such that the distance
from € to any one of u, 82(u), ..., Bg(u) is = & > 0 with ¢ also independent from
u, in such a way that u lies inside ¢ and B2(u), . ..., B4(u) outside €. * It follows in
particular that, forany z € %, |Q (u) — Q(z)| = pfor some p > O independent from

1. Hence max ey ‘m‘ . From the Cauchy integral in (3.1), we deduce

that ,
I%I |0 ()]
o

|pn ()| = ; (3.2)

*“We do so because we want to use a curve % that does not depend of u, whereas the poles of the integrand
move with #.
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where |%'| is the length of 4. Let R > 1. Since Q(u) — Q) = 0asu — o, we
deduce that the radius of convergence of ®,,(z) is > R provided that u is sufficiently
close to « (namely as soon as R|Q(u)| < p). Then the series &, (1) is absolutely
convergent and we have

| (1) —u| =

n=1

Therefore ®,,(1) can be made arbitrarily close to u, and accordingly arbitrarily close
to . Now for any z inside the disk of convergence of &, we have Q(®,(z)) =
(1 —2z)Q(u), sothat ®,(1)is aroot of Q(X). If it is sufficiently close to «, it has to
be «v. This completes the proof of LLemma 7. (]

B| & n
<y B ool 63
n=1

3.2. Logarithms of algebraic numbers

Proof of Lemma 8. Throughout this proof, we will always consider the determination
of log z of which the imaginary part belongs to (—, ] (but the result holds for any
determination because i w = log(—1) € Ga(l.)).

Using the formula log(e) = n log(a'/") with n sufficiently large, we may assume
that « is arbitrarily close to 1; in particular the imaginary part of log o gets arbitrarily
close to ().

Letting Q(X) denote the minimal polynomial of «, we keep the notation in the
proof of Lemma 7, and write &« = ®,(1) = u + uW,, (1) where u € Q(7) is close
enough to o, W,(1) is in Ga(i) and ¥, (0) = 0. By Equation (3.2), the radius of
convergence at z = 0 of the G-function W,,(z) can be taken arbitrarily large provided
that # € {Q(7) is close enough to @. We have

log(a) = log(a/u) + log(u) = log (1 + ‘I’u(l)) + log(u),

because all logarithms in this equality have imaginary parts arbitrarily close to 0. Let
R > 1; we shall prove, if u is close enough to 1, that both log(1 + W,,(1)) and log(u)
belong to G Q)"

a) Provided that u is close enough to «, reasoning as in Equation (3.3) we get
|W,(z)| < 1 for all z in a disk of center 0 and radius > R. Hence for such a
u, the radius of convergence of the Taylor series of log(l + W,(z)) at z = 0O is
> R > 1. To see that it is a G-function with coefficients in (i), we observe that

j—z log (14 W, (2)) = % is an algebraic function holomorphic at the origin: its

Taylor series is a G-function »"° a,z" € Q(i)[[z]]. Therefore log(1 + W, (z)) =

Yotz e Q(i)[[z]]; this is a G-function because the set of G-functions

is stable under Hadamard product and both 3"°° 4,21 and 3°°° \ ——z"+1 are

n+1
G-functions. Whence, log(l + ¥, (1)) € G%"’@(i).
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b) It remains to prove that log(u) € G% Q@) for any u € Q(7) sufficiently close
to 1. Leta, b € (Q be such thatu = @ + i b. Then we have

log(u) = %log(a2 + b%) + i arctan (f—z)

Now log(l +z) = > 72, #z” and arctan(z) = Y -, %22”"'1 are G-

functions with rational coefficients and radius of convergence = 1, and we may
assume that |a® + % — 1| < 1/R and |h/a| < 1/R. Then log(u) € GR.o (see
LLemma 4). L]

4. Analytic continuation and connection constants

4.1. Properties of differential equations of GG-functions. let K be an algebraic
extension of Q, and f(z) = Y oy anz" € K][[z]] be a G-function with coefficients
a, € K. Let L be a minimal differential equation with coefficients in K [z] of which
f(z) is a solution. We denote by £1,...,§, € C the singularities of L (throughout
this paper, we will consider only points at finite distance). Foranyi € {1,..., p},let
A; be a closed broken line from £; to the point at infinity; we assume A; NA; = ¢
forany i # j,andlet & = C\ (A U--- U Ap): this is a simply connected open
subset of €. In most cases we shall take for A; a closed half-line starting at §;.

The differential equation L.y = 0 has holomorphic solutions on &, and these
solutions make up a C-vector space of dimension equal to the order of 1; a basis of
this vector space will be referred to as a basis of solutions of L.

Let ¢ be a singularity of L. Then for any sufficiently small open disk D centered
at ¢, the intersection D N & is equal to D with a ray removed; let us choose a
determination of the logarithm of { — z, denoted by log(¢ — z), forz € D N & (in
such a way that it is holomorphic in z). If { € & is not a singularity of L, the function
log(¢ — z) will cancel out in what follows.

We shall use the following theorem (see [4], p. 719, for a discussion).

Theorem 6 (André, Chudnovski, Katz). Let K denote an algebraic extension of Q.
Consider a minimal differential equation L of order 1, with coefficients in K|z] and
admitting a solution at z = O which is a G-function in K[[z]). Let &, &u,..., &p be as
above. Then L is fuchsian with rational exponents at each of its singularities, and
for each point { € Uy, ... &y} there is a basis of solutions (g1(2), . . ., g.(2))
of L, holomorphic on &, with the following properties:

* There exists an open disk D centered at { and functions Fs; ;(z), holomorphic
at 0, such that forany j € {1,...,utandanyz € DN P:

gi(@) =Y > (log(t—2))" (¢ —2) Fyu (¢ —2)

se8; teT;
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where §; C N and T; C Q are finite subsets.
* If ¢ € K then the functions I ;(z) are G-functions with coefficients in K.

» If{is not a singularity of L then S; = T; = {0} for any j, so that g1(z), . ..,
gu(z) are holomorphic at z = (.

This theorem is usually stated in a more precise form, namely

(81(2), ... gul(2)) = (i - 2), Ll = 2),..., full —2)) - ({ — 2)

where the functions f;(z) are holomorphic at 0 and C¢ is an upper triangular matrix,
and a similar formulation holds for the singularity at infinity, where one replaces { —z
by 1/z. However this precise version won'’t be used in this paper.

Ce

4.2. Statement of the theorem on connection constants. lLet K, f, I and & be
as in §4.1. Let (gy,...,g,) denote a basis of the C-vector space of holomorphic
solutions on & of the differential equation Ly = 0; here w is the order of L. Since
f € K||z]] satisfies L/ = 0 and is holomorphic on a small open disk centered at 0,

it can be analytically continued to & and expanded in the basis (g1,...,gu):
i
) =) mg(2) (4.1)
J=il
forany z € &, where wy, ..., w, € C are called connection constants.

The following theorem®

and 5.

1s an important ingredient in the proof of Theorems 4

Theorem 7. Let K denote an algebraic extension of Q. Consider a minimal dif-

ferential equation L of order u, with coefficients in K[z]| and admitting a solu-
tion at z = O which is a G-function € K|z]|. Let &, &1, ..., & be as above,
(eKN(Z U, ... EY) and (g1, ....8u) be a basis of solutions given by Theo-
rem 6. Then the connection constants @y, . . ., Wy defined by Equation (4.1) belong

to GJ%(;‘)'

The following corollary is a consequence of Theorem 7 and Lemma 5 (applied
with A = G]‘i‘g(l.)). It is used in the proof of Theorem 5.

Corollary 1. let K, f, &, ¢ be as in Theorem 7. Then there exist ¢ € G]%V(i)’ o €N
and t € Q suchthat, as z — { withz € &,

f(z) = ¢ (log(¢ = 2))" (¢ = 2)"(1 + o(1).

5 As the proof shows, Theorem 7 holds under slightly weaker assumptions: it applies to any G-operator L
such that L = 0, and also to { = oc.
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4.3. Wronskian of fuchsian equations. Given a linear differential equation L with

coefficients in Q(z), of order 1 and with a basis of solutions Fis faseew, fus the
wronskian W = W( fy, ..., f,) is the determinant
[0 R A
W) fl.(Z) fzi(z) fu.(z)
[ E 0 e 180

The wronskian can be defined in a more intrinsic way as follows. We write 1. as
Y@ + a1 @y @) + -+ ar@y(@) = 0

where a;(z) € Q(z), j = 1,...,;u — 1. Then W(z) is a solution of the linear
equation

¥'(2) = —au—1(2)¥(2), (4.2)
hence W(z) = vy exp ( — [ayu—1(z)d 2). The value of the constant vy is determined
by the solutions f1, f2..... fu.

Lemma9. let K, f, L, %, ¢, g1, ..., gu be as in Theorem 1. Then the wronskian
W(z) = W(g1....,gu)(z) is an algebraic function over Q(z), and its zeros and
singularities lie among the poles of a;,—1(z).

Proof. Since the differential equation (4.2) is fuchsian, Equation_ (5.1.16) in [24],
p. 148, yields W(z) = v ]_[le(z — p;j)~ 7 where py,..., pyj € Q are the poles of

a,,—1(z) (which are simple because L is fuschian), ry,...,r; € Q) (because L has
rational exponents at its singularities), and v € C*. It remains to prove that v is
algebraic.

With this aim in view, we compute the determinant W(z) for z € & sufficiently
close to { by means of the expansions of gy,..., g,, and their derivatives. This yields

Wiz) =) > (logt —2)) (¢ — 2)' Fsu({ — 2)

seS reT

where S C N and T C () are finite subsets, and the F,;(z) are G-functions with
coefficients in K. Now Lemma 5 provides ¢ € K, o0 € N and 7 € ) such that, as
z— {withz € &:

W(z) = c(log(¢ —2))° (¢ = 2)"(1 + o(1)).

On the other hand we also have Hle(z —pi) =cf - 2)* (1 + o(1)) for some

e @*and7 € Q. Since the quotient is a constant, namely v, taking limits as z — ¢
yieldso = 0,7 = Tand v = ¢/¢ € Q. This concludes the proof of Lemma 9. [
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4.4. Proofof Theorem7. Let R > 1. Forany £ € (Z\{0,{})NK(i),letre > Obe
the distance of § to the border Ay U---U A, of & (with the notation of §4.1), and D¢
be the open disk centered at £ of radius 7¢/R. Since § is not a singularity of L, there
is a basis g1,£(2), ..., gu.£(z) of solutions of Ly = 0 consisting in G-functions in
the variable & — z with coefficients in K(7) (by Theorem 6); these G-functions have
radii of convergence > r¢, so that g; £(z) € G%,K(z‘) forany z € D¢ NK(/) and any
j (see Lemma 4).

Let rp > 0 be the radius of convergence of the G-function f(z), and Dy denote
the open disk centered at O with radius ry/R. Finally, forany j € {1,..., u} welet
gj¢(z) = g;(2); by assumption there exists 7; > 0 such that

gie(2) =D Y (logt —2)) (¢ — 2)' Fou j(E —2)
se§; teT;

forany z € & such that |z — {| < r¢, where §; C N and 7; C Q are finite subsets
and the Fy, ; are G-functions with coefficients in K and radii of convergence > r¢.
Then we let D¢ be the open disk centered at { with radius r; /R, so that for any
z € D NK(G)and any j we have g;:(z) € G%,K(i) by Lemmas 4, 7 and 8.

Following a smooth injective compact path from 0 to ¢ inside & U {0, {}, we
can find s — 2 points &,...,&—1 € (Z \ {0,¢}) NK(7) (with s > 3) such that
D1 N Dy # @forany k € {2,..., s}, where we let Dy = D¢ _and & = 0,
& =¢.

As in the beginning of §4.2, we have connection constants @; > € C such that

I
f@) =) w286 (4.3)
=1
for any z € &. In the same way, forany z € &, any k € {3,...,s} and any
jef{l,..., u} we have
I
Lt (2) = Z Wikt 8.8 (2) (4.4)
=1

Obviously the connection constants w; € C in Theorem 7 are obtained by mak-
ing products of the vector (w;2)1<;<; and the matrices (; x ¢)1<j o<, (for k €
{3,...,8}), because g; ¢ (z) = g;(z). Since G%,K(i) is aring and R > 1 can be any
real number, Theorem 7 follows from the fact that all constants ;> and @ ¢ in
(4.3) and (4.4) belong to G‘};’K @) We will prove it now for (4.4); the proof is similar
for (4.3).

Letk e {3,...,stand j € {l,...,u}. We differentiate u — 1 times Equa-
tion (4.4), so that we get the p equations

i
D= Y maesh @ =0 u-t.
=1
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We choose z = pp € D1 N Dy NK() outside the poles of a,_;(z) (with the
notation of §4.3). Doing so yields a system of y linear equations in the ¢ unknowns
wjke, £ = 1,..., 1, which can be solved using Cramer’s rule because the determi-
nant of the system (namely W(py), where W(z) is the wronskian of L built on the
basis of solutions g1.¢, (). . .., gu.£, (2)) does not vanish, by Lemma 9. Using again
Lemma 9, we have W(p;) € Q* and therefore W eQ C GC"(I) & GJ%(:) by
Lemma 7. Now Cramer’s rule yields the following expression for w; ; ¢:

Srecfon) 0 ge—rg.lox) g ok} Sevrg or) o 8uog (or)

1 gl o) o gD (o) gl (o) gl g o) o gLk, (o)
Wipr) :

g é_kl)(Pk) s g lgk(Pk) gf‘gk o) 8870 o) e g Skl)(pk)

Since py € Dg—1 N Dy, the entries in this determinant belong to the ring G K() (as
noticed above), so that @; ; ¢ € Gy K@) This concludes the proof of Theorem 7.

5. Proof of Theorem 4

The main part in the proof of Theorem 4 is to prove that G‘?l == C Gg ) this will

be done below. We deduce Theorem 4 from this inclusion as follows, by Lemmas 2
and 3. If K ¢ R, we have

G~ C G%C' C @m C G C G~
and Theorem 4 follows. If K C R, we have:
Gg CGg NRC G,y NR =G C Gy

so that G = Ga’. The inclusion G~ C G%';' = Ga + iGa is trivial; let us
prove that Ga + iGa C GE“. Let&1,§; € Ga, and f, g, h be G-functions with
rational coefficients and radii of convergence > 2 suchthat (1) = &, g(1) = &, and
h(l) = ¥/2. Thenk(z) = f(z)+g(2)h(z) 41 — % is a G-function with coefficients
in Q C K, and §; + i, is the value at 1 of an analytic continuation of k£ (obtained
after a small loop around z = 2). This concludes the proof that Gg~ = GG + iGg
it K C R.

The rest of the section is devoted to the proof that GEl = C G ) Leté e GZ{'; we

may assume § # (. There exists a G-function f(z) = Zn o @nz" with coefficients
an, € Q, and zo € @, such that £ is one of the values at zg of the multivalued
analytic continuation of f. Replacing f(z) with f(zgz), we may assume zy = 1.
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Let L denote the minimal differential equation satisfied by f, and &;,...,£, be the
singularities of .. To keep the notation simple (and because the general case can be
proved along the same lines), we shall assume that there is an open subset & C C (as
in§4.)suchthatl € ZULE, ..., and £ = f(1), where f denotes the analytic
continuation of the G-function ) a,z" to &. If 1 is a singularity of L then f(1) is
the (necessarily finite) limitof f(z)asz — 1,z € Z.

The coefficients a, (n > 0) belong to a number field K = Q(f) for some
primitive element 8 of degree d say. We can assume without loss of generality that
K is a Galois extension of {Q, i.e, that all Galois conjugates of g are in K. There
exist d sequences of rational numbers (2} 4)n=0. J = 0,...,d — 1, such that, for all

n>0a, = Z}t(l, u; 8/ and thus (at least formally)

o0 a—1 o0
f@) =) ap" =) 7Y ujuz. (5.1)
n=0 j=0 n=0
The power series U;(z) = Z:;OZO ujnz" are G-functions (see [17], Proposi-

tion VIIL.1.4, p. 266), so that Equation (5.1) holds as soon as |z| is sufficiently small.
Moreover UU; has rational coefficients, so that it satisfies a differential equation with
coefficients in (P[z] (see for instance [17], Proposition VIIL2.1 (iv), p. 268). We let
L; denote a minimal one, of order u;. Let Vj denote the set of singularities of L;,
and . = Fp U--- U .%4_1. Let T denote a compact broken line without multiple
points from 0 to 1 inside & U {0, 1}. Since .% is a finite set, we may assume that
I' N C {0, 1} and find a (small) simply connected open subset Q C C such that
r\{0,1ycQc Z\{lyand QN.% = @. If T and Q are chosen appropriately, it
is possible to construct %y, ..., Zy_1 as in §4.1 (with respect to Ly, ..., Lg_1) such
that @ C Zp N--- N Py_1. Since 2 is simply connected and 1 & 2, we choose a
continuous determination of log(l — z) for z € Q. Now Equation (5.1) holds in a
neighborhood of 0, and 0 lies in the closure of €2 so that, by analytic continuation,

d—1

f(z) = ZﬁjUj(z) forany z € Q. (5.2)

j=0

We shall now expand this equality around the point 1, which lies also in the closure of

2. Forany j € {0,....d —1},let(gj1.. .., g/, ) denote a basis of solutions of the
differential equation L;y = 0 provided by Theorem 6 with { = 1. Then Theorem 7
BIVeS Wi 1,..., Wiy, € Ga(i) suchthat U;(z) = @;18;1(2) ++ -+ @), &, (2)

for any z € Q. Since B/ € Ga(i) by Lemma 7, Equation (5.2) yields finite subsets
S € Nand T C Q such that, for z € Q sufficiently close to 1,

f@) =>" (log(1—2))"(1 —2)' Fei (1 —2)

seSteT
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where the functions Fj;(z) are holomorphic at 0 and have Taylor coefficients at 0
in Ga(l.). Thf;n Lemma 5 gives ¢ € Ga(i)’ o € N and r € Q such that f(z) =
¢ (log(l—z)) (1-z)*(1+o(l))asz — lwithz € Q. Sincelim;_,y f(z) =& # 0,
wehaveo =7 =0and§ =c € Ga(l.). This concludes the proof of Theorem 4.

6. Rational approximations to quotients of values of G -functions

This section is devoted to the proof of Theorem 5: in §6.1 we prove that (i) = (iii),
and in §6.2 that (ii) = (i). Since (iii) obviously implies (ii), this will conclude the
proof.

6.1. Construction of rational approximants. Assume that assertion (i) holds. Let
£1.§2 € G \ {0} be such that § = & /&. Let R > 1, and U(z) = Z;o:o W
V(z) = Y72, vaz" be G-functions with coefficients in K and radii of convergence
> R,suchthat U(1) = Y >° ju, = & and V(1) =D 00 ju, = &,

Foranyn > 0,leta, = Y ;_oug and by, = 3 ¢ vk, A(z) = > 0 jauz"
and B(z) = Y 2 bpz". Then A(z) = U(z) Y 2 2" = % and B(z) = %
are G-functions with coefficients in K and radii of convergence = 1. Moreover
limy— 400 @n = & and lim,— 4 o by, = &5 so that a,, b, # 0 for any n sufficiently
large, and

|an _gbn| = |(an —&1) — &(by, _52)| = Z x| + |&] Z lvg| = O(R_n)
k=n+1 k=n+1

because u,,v, = O(R™") asn — 400 and we may assume R > 2. Therefore
A(z) — £B(z) has radius of convergence > R, thereby concluding the proof that
(1) = (ii1).

6.2. Application of Singularity Analysis. Letus prove that (ii) = (i) in Theorem 5.

Let A(z) = Y 2 qanz™ and B(z) = > 72 b,z" be G-functions with coeffi-
cients in K, such that &, # O for infinitely many # and a, — £b, = o(b,). Since
£ # 0, wehavea, # 0forinfinitely many n: none of A(z) and B(z) is a polynomial.
Therefore these G-functions have finite positive radii of convergence, say p and p
respectively.

Let us denote by I. the minimal differential equation over K |z| satisfied by A(z),
and by ply, ..., p{, the pairwise distinct singularities of A(z) of modulus p (so that
|C1] = -+ = |{4| = 1). Then we have ¢ > 1, and all p; are singularities of L and
are algebraic numbers.

Let O € (—n/2,m/2)and Ag = {z € C,z =l or arg(z — 1) = 6y mod 27 }.
Foranyi € {l,...,q},let A; = pl; Ay = {pl;z, z € Ap}. Denoting by & = ply,
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s &g = ply, E441, -, §p the singularities of L, we may assume (by choosing 8,
properly) that Ay, ..., A, and some appropriate half-lines A, 11, ..., A, satisfy the
assumptions made at the beginning of §4.1, so that we can take Z = C \ (A U
-+ U Ap). Choosing arbitrary determinations for log(p{;) (i = 1,...,4), and also
a continuous one for logz when z € € \ Ay, we may define log(p{; — z) to be
log(pg;) + log (1 — Fzﬁ) for z € 7 sufficiently close to p¢; (because FlﬁAi = Ag).
Foranyi € {l,...,q}, Corollary 1 yields ¢; € GX ) \ {0}, 0; € N and 7; € @ such
that

A(2) = i (log(pt — )7 (ot — 2)7 (1 + o(1)

= (o))" (10 (1 - é)) (1- %)(1 +o(1))

asz — p¢; withz € Z. Replacing A(z) and B(z) with their £-th derivatives from the
beginning, where £ is a sufficiently large integer, we may assume 7; < 0 (because p{;
is a singularity of A(z)). Let 7 = min(ty.....74) < 0, and o denote the maximal
value of g; among those indices 7 suchthat 7; = 7. Let g(z) = (log(1—2))?(1—2)°
forz € C\ Ag, and d; = ¢;(p{;)* if (07, 1;) = (0,1), d; = 0 otherwise. Then
(di.....dy) # (0....,0) and, for any i € {l,....q}, we have d; € Gﬁg(i) (by

Lemma 7, because p&; € Q). Finally,

A(z) = ig(é) 2= o(g(é)) (6.1)

as z — pf; with z € &. We have checked all assumptions of Theorem VL35 (§VL3,
p- 398) of [20] (see also [21]). This result enables one to transfer this estimate (6.1)
around the singularities on the circle of convergence into an asymptotic estimate for
the coefficients of A(z), namely

(=17 (logn)”
- I'(—1) pnnr+1

n

q
(an + o), with g = Y dil7". (62)
i=1

Remark. Equation (6.2), the proof of which is based on Singularity Analysis, seems
to be interesting for itself (and not only as a step in the proof of Theorem 5).

The same arguments with B(z) provide p, 7, T, El, g Eg, 31, ..., dz such that

_ (=17 (logn)”

g
= £S5 (o). witiFy = Y AT 63)

i=1

by

Let A4y = {n € N, b, = 0} and .4 = N \ .45. By assumption .4 is infinite, and
a, = 0forany n € .4 sufficiently large. In what follows, we assume implicitly
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that .4} is infinite (otherwise the proof is the same, and even easier since everything
works as if 4y = @ and 4 = N).
By Equations (6.2) and (6.3), we have as n — +oo withn € .4,

dap . U—&F(_%) )(n-I-O(l) 15 S o—0
= OO s e (5) e 64

b, 0
Now the left-hand side tends to &€ # Qasn — +oo withn € A" If (p,0,7) #
(P, 5. 7) then |%| tends to 0 or +00 asn — 400 withn € 4. Since both y,
and y, are bounded, this implies that y, or ¥, tendsto 0 as n — +oo withn € 4.
Since y, = o(l) and 7, = o(1) as n — oo with n € .4, (using (6.2) and (6.3),

because a, = b, = 0 forn € 4 sufficiently large), we have limn_>+oqv xn = 0or

lim, 400 ¥» = 0. By Lemma 6 this implies dy = -+ =d, = 0ordy = --- =
dz = 0, which is a contradiction.

Therefore we have (p,0, 1) = (p, 7, 7) inmEquation (6.4), so that Z—Z = %Z:_Zg;
as n — +oo with n € .#. Therefore 2=8&nto) — 2n _ ¢ (ends 10 0 as n —

rn+o(l by
+oo with n € 4. Since j, is bounde(i We( (ieduce limy,— oo fn —Ejn = 0
(using the fact that y, = o(l) and ¥, = o(l) as n — oo with n € .4p). Writing
Jo = Ein = Y, K" where {wr, .., 0} = (7% L ETL L £ with
w1, - .. ,w; pairwise distinct, Lemma 6 yields x;y = --- = x; = 0. Reordering the
¢;’s and the wy’s if necessary, we may assume that d; # 0 and @y = ¢{J!. Then
K1 =d; — E(L- if there is a (necessarily unique) ¢ such that w; = 5;1, and k1 = d;
otherwise. Since k1 = ( # dj, there is such an ¢/ and it satisfies ci- # 0 and
g = dl/gi € Frac(G]‘i‘g(l.)). IfK ¢ R then GY = Gﬁg(;‘) by Theorem 4; otherwise we

have§ e RN Frac(G%) = Frac(G%mR) = Frac(Gy/) by Theorem 4 and Lemma 2.

In both cases, this concludes the proof of Theorem 5.

7. Perspectives

7.1. Other classes of arithmetic power series. It is natural to wonder if the results
presented in this paper can be adapted to other classes of arithmetic power series.
The most natural class is that of £-functions, also introduced by Siegel in [30].
The definition of these functions (see the Introduction) is formally similar to that
of G-functions, but of course the presence of n! at the denominator of the Taylor
coelficients changes drastically the properties of £-functions. An E-functionisentire
and André proved in Theorem 4.3 of [4] that any £-function is solution of a linear
differential equation with polynomial coefficients (not necessarily minimal) whose
singularities are 0 (a regular singularity with rational exponents) and infinity (an
irregular singularity in general). Like the set of G-functions, the set of £-functions
enjoys certain stability properties; for instance, it is a ring.
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Let us denote by E as the set of all values of £-functions at algebraic points. This
is the analogue of G and it is a ring; it would be interesting to prove a result on E
analogous to Theorem 1. However we do not even know what a reasonable conjecture
would be in this respect; what is clear is that the situation is really different, as the
following result shows (we are indebted to the referee for suggesting its proof to us).

Proposition 2. Let f be an E-function with coefficients in Q(i ), and a € Q be such
that (1) = aor f(l) = €% Thena € Q).

Proof. Let ¢(z) denote either o or ¢*?, with « € Q; assume there exists an E-
function f with coefficients in Q(7) such that f(1) = ¢(1). Replacing f(z) with
f(z)— Bor f(z)e P for asuitable B € Q (i), we may assume that & has zero trace
over Q(i). Now there exist Q(z)-linearly independent E-functions fi, ..., f, with
coefficients in Q(7) such that fi(1) = ¢(1) and the vector f = ‘(f1...., fu) isa
solution of the differential system y’ = Ay where A is ann x 71 matrix with entries in
Q@)(z). Modifying fi,..., fa if_necessa_ry as in the proof of Theorem 1.5 of [11],
we may assume that 1 is not a pole of an entry of A. Using Beukers’ version of Siegel-
Shidlovskii’s theorem (namely Theorem 1.3 of [11]), the relation f;(1) = ¢(1) can
be lifted to Py(2) f1(z) + -+ + Po(2) f(2) = Po(2)¢(z) with Py, ..., P, € Q|z]
such that Po(l) = Pi(l) = land Pr(1) =--- = P,(1) = 0.

If ¢(z) = wa, taking the trace over (i) yields Qq,..., 0, € Q(i)|z] such
that 01(2) f1(2) + -+ + Qn(2) fo(2) = Qo(z) with Q1(1) = 1, 0a(1) = -+ =
0,(1) = 0,and Qy(1) = 0since « has zero trace. Therefore f;(1) = 0, anda = 0.

If ¢(z) = e**, we take the norm over (Q(7) of the relation Py(z) fi(z) + --- +
Pu(z) fu(z) = Po(z)e®?. Letting d denote the degree of a finite Galois extension
of (i) which contains @ and all coefficients of Py, ..., P,, this provides (since
o has zero trace) a relation >, O, (2) fic(z) = Qo(z) where Qy € Q(i)[z]. k =
(k1.....kn) € N"issuchthatiq + -4k, = d., Jielz) = fi2)' ... ful2)*, and
Qklz) € @Q|z] is such that Oc(l) =0Tforx #(d.0,...,0)and Qqa0,...00(1) = 1.
Taking z = 1 yields f1(1)? = Qo(1) € Qi) hence ¢* € @, so thata = 0.

This concludes the proof of Proposition 2. (]

The possibility of a result analogous to Theorem 3 is also uncertain. It is easy
to describe the limits of sequences A, /B, where A,, B, € @, B, # 0 for all
large enough 7 and > 5o, A,z and 3 o2 B,z" are E-functions. This is simply
Frac(G), because the series Z;ozo ntA,z" and Z:;OZO n!B,z" are G-functions, and
conversely if Y>> a,z" is a G-function, then > 7 222" is an E-function. This
can hardly be the analogue we seek. We now observe that given an F£-function
flz) =372 Apz™, the sequence py /gy, with p, = > 1_, Ay and g, = 1, tends
to f(1),but Y00 ) puz" = % is not an E-function and } 12 2" = = isa G-
function. Hence a result analogous to Theorem 3 and involving E might be achieved
by considering simultaneously £ and G-functions. It is also possible that similar
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questions might be easier to answer in the larger class of arithmetic Gevrey series
introduced by André in [4], [5].

7.2. Possible applications to irrationality questions. The Diophantine theory of
FE-functions is well understood after the works of many authors, among which we may
cite Siegel [30] and Shidlovskii [29], and more recently André [5] and Beukers [11].
An E-function essentially takes transcendental values at all non-zero algebraic points,
and the algebraic points where it may take an algebraic value are fully controlled «
priori.

This is far from being true for a non-algebraic G-function. There are many
examples in the literature of G-functions taking algebraic values at some algebraic
points without an obvious reason, see for example [10]. After the pioneering works
of Galochkin [22] and Bombieri [12], it is known that, given a transcendental G-
function f, if @ is a non-zero algebraic number of modulus < ¢, then f(a) cannot
be an algebraic number of degree < d. Here, ¢ > 0 and d > 1 are explicit quantities
that depend on f and on the degree and height of «. A typical example is that if
a = 1/q is the inverse of an integer, then f(«) is an irrational number provided that
lg| = Q is sufficiently large in terms of f. An important issue is that the constant
¢ is usually much smaller than the radius of convergence of f: the point where the
value is taken has to be very close to 0.

On the contrary, a few results are known in which such a restriction is not nec-
essary. One of them is Wolfart’s theorem [33] on transcendence of values of Gauss’
hypergeometric function at algebraic points. Another, more related to the present
paper, is Apéry’s proof of the irrationality of (3); it involves evaluating a G-function
on the border of its disk of convergence. The starting point of his method is given by
Theorem 5: he constructs two sequences {(ay,),=o0 and (b, ),>o of rational numbers,
whose generating functions are G-functions ®, such that a,, /b, tends to £(3). To prove
irrationality, more is needed, 1.e., one also has to find a suitable common denominator
D,, of a, and b,,, and then prove that the linear form Dy a, + D, b, {(3) € Z + 7Z.£(3)
tends to 0 without being equal to 0. (In this case, D, = lem(1,2,...,7)3.) The
growth of D, is usually the main problem in attempts at proving irrationality in
Apéry’s style. Indeed, there exist many examples of values f(«) of a G-function f
at an algebraic point o having approximations in the sense of Theorem 3 (iii) (see [28]
for references), but the growth of the relevant denominators 13, prevents one to prove
irrationality when the modulus of « is too close to the radius of convergence of f.
For instance, this approach has failed so far to establish the irrationality of £(5) or of

Catalan’s constant G = ) 2 o (42%

In the following proposition, we explain in details how the growth of D, the
radii of convergence and the irrationality exponent @(§) of £ are connected. Recall
that @ (£) is the supremum of the set of real numbers p such that, for infinitely many

5This was apparently first observed by Dwork in [16]; see also [18], §1.10, for references.
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fractions p/q, |§ — p/q| < g~*. In particular £ is said to be a Liouville number if
p(§) = +oo.

Proposition 3. Let £ € G NR. Let A(z) = > 2 jazz" and B(z) = > 2 b,z"
be G-functions, with rational coefficients and radii of convergence = r > 0, such
that A(z) — £B(z) has a finite radius of convergence, whichis> R > r. Let C > 1

be such that a, and b, have a common denominator < (lEo(1)) (as n — +o0).
Then:

« IfC < Rihent ¢ Q and p(§) < 1 — 22/,

* Necessarily C = ~/ Rr.

This proposition is analogous to the other ones used to bound (&) from above
when small linear forms a,& — by, are available; the main difference here is that we
do not assume lim,,_, o, |a, & — b, |1/" to exist. We hope this proposition can be used
to make some progress towards Conjecture 1 stated in the introduction; of course the
difficult point is to construct the G-functions with a control upon the denominators
of a, and b, (so that C is not too large).

We have considered here only the case of one number &, but (z-functions also
arise in proofs of linear independence, in the same way as in Apéry’s, for instance
concerning the irrationality [8], [27] of {(s) for infinitely many odd s > 3.

Proof of Proposition 3. The second assertion follows from the first one because
() = 2forany £ € R\ Q. Letus prove the first one.

Let p, = Dya, € Z and q, = Dyb, € Z, where n is sufficiently large and
D, € Zissuchthat 1 < D, < C" (increasing C slightly if necessary). Decreasing
R slightly if necessary, we may assume that the radius of convergence of A(z)—£B(z)
is > R, so that |g,& — pu| < (C/R)" for any n sufficiently large. Since C < R
and g, & — p, # 0 for infinitely many n (because A(z) — £B(z) has a finite radius
of convergence), this implies £ ¢ €. Moreover there exists a non-trivial linear
recurrence relation Po(n)u, + Pi(m)uy+q +---+ Pr(n)u,y, = 0, with coefficients
P;(n) € Z[n], satisfied by both sequences (@, )u>0 and (b )n>o. We claim that for any

n sufficiently large, the vectors (p,. gn), (Pn+1,Gn+1)s -+ (Prtr> Gn+r) Span the Q-

vector space Q2. Using Lemma 3.2 in [23], this implies p(§) < 1 — 112222‘7;)) for any

r’ < r,because | pyl|, |gn| < (C/r")" for any » sufficiently large. To prove the claim
we argue by contradiction, and assume (permuting ( 2, ),>0 and (¢, )n=>o if necessary)
that for some A € @ we have g = Apy forany k € {n,n+ 1,...,n + r}. Then
the sequence (b; — Aa;); >, satisfies the above-mentioned recurrence relation, and its
first r 4+ 1 terms vanish. If n is sufficiently large then P,(i) # Oforanyi > n+r +1
(because we may assume P, to be non-zero), sothatg; — Ap; = b; —Aa; = Oforany
i > n. Since lim;_, 4 ¢;& — p; = 0 and p; # 0 for infinitely many #, we deduce
AE = 1, in contradiction with the fact that § & Q. L
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