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Orbifold quantum D-modules associated to weighted projective
spaces

Martin A. Guest and Hironori Sakai

Abstract. We construct in an abstract fashion (without using Gromov—Witten invariants) the
orbifold quantum cohomology of weighted projective space, starting from a certain differential
operator. We obtain the product, grading, and intersection form by making use of the associated
self-adjoint D-module and the Birkhoff factorization procedure. The method extends in principle
to the more difficult case of Fano hypersurfaces in weighted projective space, where Gromov—
Witten invariants have not yet been computed, and we illustrate this by means of an example
originally studied by A. Corti. In contrast to the case of weighted projective space itself or the
case of a Fano hypersurface in projective space, a “small cell” of the Birkhoff decomposition
plays a role in the calculation.

Mathematics Subject Classification (2010). 53D45, 14N35.

Keywords. Quantum cohomelogy, D-module, weighted projective space, Birkhoff decomposi-
tion.

1. Introduction

The weighted projective space
P(wo,...,wn) = C*"1— 40} /C*, z-(20,...,2n) = (2 %0zg,...,27 %" zy)

provides a simple test case (see [3], [2], [13]) for the recently developed theories of
orbifold cohomology and orbifold quantum cohomology. Direct geomeirical calcu-
lations are difficult, but mirror symmetry suggests an alternative and very effective
approach: Corti and Golyshev conjectured (see [6], [5]) that the structure constants
can be read off from

Tw —q = [ [(wih®)(wihd —h)... (wihd — (w; — D) — g,

i=0

where 9 = q‘f—q; this is an ordinary differential operator of order s = Y., w;.
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This generalizes the well-known quantum differential equation of projective space
CP" = P(1,...,1). Namely, the equation ((#3)"*! — g)y = 0 is a scalar form of
the system

Yo 0 q\ (Yo

1 f _ |1t

¥n 10 Yn
where the matrix is interpreted as that of quantum multiplication by the generator
p € H?C P" with respect to the standard cohomology basis 1, p, ..., p". Thus,
popi:{pﬁ}.ﬁ05i<n
g ifi =n
from which all quantum products p* o p/ can be computed.

The conjecture of Corti and Golyshev was proved in [3], by extending to orbifold
quantum cohomology a method of Givental for quantum cohomology. The method
has three steps. First, a basis of solutions of the quantum differential equation is writ-
ten down — the f-function. Then, the orbifold version of Givental’s Mirror Theorem
shows that the /-function is equal to the J-function, a certain generating function for
Gromov—Witten invariants. This is the most substantial ingredient, but specific prop-
erties of weighted projective spaces are not required. Finally, the structure constants
for the orbifold quantum product are extracted from this J-function by a method
which involves repeated differentiation.

The first goal of this paper is to give a straightforward version (alluded to in the
introduction to [3]) of the last step, using the Birkhoff factorization method of [8].
The simplifying feature is that we use the differential equation (D-module) directly,
rather than its solution (/-function).

The second goal is to study in its own right the differential operator 7,, — g, or
rather, the D-module D" /(T,, — ¢) (where D" is a certain ring of differential opera-
tors). We show how to extract from this D-module an “abstract quantum cohomology
ring” with a product operation, grading, and nondegenerate pairing. Then we observe
that this coincides with the usual orbifold quantum cohomology. It is remarkable
that such a simple differential operator contains all relevant geometrical information,
which is complicated and non-intuitive even in the case of P(wy, ..., wy,).

The third and main goal (Section 5) is to indicate how our method extends to
hypersurfaces in weighted projective spaces. This generalizes the method of [15] for
hypersurfaces in projective spaces. It presents a new feature: instead of the “big cell”
of the Birkhoff decomposition, in general a “small cell” is needed. Alternatively, this
method can be interpreted as the Gram—Schmidt orthogonalization procedure together

with a “big cell factorization”. As a nontrivial example, we apply the method to a
hypersurface of degree 3 in IP(1, 1, 1, 2), where the orbifold quantum cohomology
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has been computed geometrically by Corti. However, we are not able to give general
conditions which ensure that our method works, and we must leave this as a problem
for the interested reader.

The first author 1s very grateful to Alessio Corti for explaining the conjecture and
the basic 1deas of orbifold quantum cohomology; the idea for extracting the structure
constants of P(wy, .. ., wy,) from the differential operator was originally worked out
with him in 2006, and Alessio also explained the geometry behind the hypersurface
example in Section 5. He also thanks Hiroshi Iritani for many essential explanations
and comments on an earlier version, and Josef Dorfmeister for discussions on the
Birkhoff decomposition.

The authors apologise for the long delay in preparing the final version of this
article since its submission to the arXiv in 2008. Detailed comments and suggestions
by the referee are gratefully acknowledged.

2. Notation for orbifold cohomology

We write P(wy, ..., w,) = P(w) from now on. As far as possible we shall follow
the notation of [3] for orbifold cohomology. That paper and its references contain
more detailed information.
First, let
F={g|0<i<w—-10=<j=n}

:{fl,...,fk} WhereO:fl <f2<"'<fk <fk+1 défl_

Letuy, ..., u; be the “multiplicities” of the fractions fi,..., fx as elements of F.
We write

The positive integer u; can also be described as the cardinality of the set

S, = {j | wi fi € 2} € {0,....n}.
The orbifold cohomology of I’ (w) may be defined as a vector space by

k

o*rbi Plw) = @ H*P(Vﬁ:)’
i=1

where
Vy, = {(zg,---,2y) € crtl |zj =0if j ¢Sfi}’=” CHi.

This can be equipped with a commutative associative multiplicative operation called
the orbifold cup product. Using this product, we obtain a C-basis

1,15 p..... 1, pu""_l
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of the subspace H*P(Vy,), where p € H?P(V}) and 14, denotes the canonical
generator of H OIP’(Vfl.). Wheni = 1 we have f; = 0, u; = n + 1, and generators
1o, 1gp, ..., 1pp"; we shall just write 1, p, ..., p" in this case. The element 1 is the
identity element of the orbifold cohomology ring.

There is also a natural grading, in which

1L, p/| = |1y + |p/| = 2age 1y, + 2.

Here, agely, = (uy + - + u;—1) — fis = {(~wo fi}) + --- + {—wy f;) where
(r) = r—max{i € Z |i < r}. The orbifold cohomology has a nondegenerate
symmetric “intersection pairing” ( , ), which generalizes the Poincaré pairing for
ordinary cochomology.

We record the following properties for later use.

Lemma2l (1) i+ fi=1fi+j=k+2
Rup+---+uy =uUpyr i +---+ug for2<i <k

Proof. The involution f + 1 — f preserves FF U {1}. It maps f1 < -+ < fr+1to
l — fr41 < -+ < 1— f1, so these sequences must coincide. This proves (1), then
(2) and (3) follow immediately. [

3. The structure constants: statement of results

As mentioned in the introduction, a key role is played by the s-th order differential
operator

Tw—q = [ [ohd)(wihd — 1) .. (wihd = (w; = Dh) — ¢
i=0

=w"h* [[o@-2)...0-2) - g,
=0

where s = Y/ jw,, w? =[[_,w; ,and 3 = qj—q.

In this section we state without explanation how the structure constants of orbifold
quantum cohomology —in particular, of orbifold cohomology itself —may be extracted
from the differential operator 7,, — g. A systematic explanation will be given in the
next section.

Using the formula dg~! = ¢~ (9 — 1), we may factorize the differential operator
g~ 'T,, in the following way:

g7 Ty = g™ RN mi_1 g M RO L mag M (RO

kth factor k—1th factor 1st factor

1
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where

Ap= fiq1r— fio mi= [] w.

jESfl.

for1 <i < k. Thus we have Hf-c:l m; = w® and Zf-c:l A; = 1. We shall need the
following symmetry properties later on, which follow directly from Lemma 2.1:

Lemma3.1. (1) A; = Ajifi +j=k+ 1

Let us rewrite the factorization above as
¢ 'Tw =5 hd=hd ... +hd
where we use the following notation:

Definition 3.2. Forl <o < g,

{L Aifa =up 4 4y
Py =

m;

1 otherwise.
The result of [3] may be stated as follows:

Theorem 3.3. Denote by ¢y, ..., cs—1 the additive basis

1

Lp- 2" h gl 1y p27Y L g, Ay o T PR

of HY\ . IP(w). Then the matrix of orbifold quantum multiplication by p with respect
to this basis is given by

0 Py
F1
Fe—1 0
That is, we have poci = riyiciv1 for0 <i < s —1land pocs—1 = r5co. In

particular, p is a cyclic element of this ring.

The orbifold structure constants (giving the product structure of H*, . P(w)) are

orhi

obtained by setting ¢ = 0 in the above matrix. Although the matrix itself gives only
the products involving p, all other products can be deduced.
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4. Direct approach from the D-module

The structure constants in Theorem 3.3 were computed in [3] from the 7-function
(i.e. solution of the differential equation (73, —g)y = 0) and by establishing a mirror
theorem in the style of Givental. In this section we discuss a somewhat different
procedure: we construct “abstract orbifold quantum cohomology” from 73, —q itself.
To prove that our abstract orbifold quantum cohomology agrees with the usual orbifold
quantum cohomology, it is still necessary to appeal to the mirror theorem, so in this
sense our procedure relates only to the extraction of information from the differential
equation. However, our procedure gives a very direct way of obtaining the orbifold
degrees and orbifold Poincaré pairing as well as the structure constants.

We follow [8] and chapter 6 of [9], although the orbifold case presents some new
features. Let us consider the D”-module

M = D" /(T — q)

where D* denotes the ring of (ordinary) differential operators generated by #4, and
(T, — q) denotes the left ideal generated by T3, — g. As coefficient ring we can take
the ring of functions which are polynomial in g*'/?, where

! = lowest common multiple of wy, ..., w,,

and which are holomorphic in # in a neighbourhood of # = 0.
The D*-module M is free of rank s over the coefficient ring. With respect to the
natural basis 1, 9. ..., (#3)*~!, the matrix of the action of 3 is of the form

Q=10 +0© +pe® 4 529@ ...

More precisely, if we identify M with a space of meromorphic sections of the trivial
bundle, we may regard 1, A0, .. ., (h3)~1 as a local basis of sections, and the action
of @ on M defines a connection on the bundle, with local connection matrix €.

If we replace £ 9 by an abstract (commutative) variable p, then set # = 0, we may
construct from M a commutative ring generated by p which is subject to the relation
w® p® — ¢, and which has 1, p, ..., p*~1 as an additive C[¢*!//]-basis. That is, we
have the “abstract orbifold quantum cohomology ring”

QA = Clp, =)/ (w" p* - q).

In order to define “abstract orbifold Gromov—Witten invariants™ (structure constants)
we shall introduce a ring A, the “abstract orbifold cohomology ring”, such that 0 A
and A ® C[g="/!] are isomorphic as C[g*1?]-modules. A choice of basis will give
a specific isomorphism §: QA4 = A ® C[g*'/!|, hence a new A ® C[¢F1/7]-valued
product operation

aob =34 (S_I(a)é_l(b))
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on A. Our main task will be the construction of a basis such that the product has the
expected properties of the orbifold quantum product.

For this, the fundamental step is to transform 1,44, ..., (£3)*~! to a new basis,
with respect to which the connection matrix has the form

Q=zw

o —

where @ is independent of £. In the case of a Fano manifold, the transformation pro-
cedure is explained in detail in chapter 6 of [9]. It involves a Birkhoff factorization
L= é_L+ of amatrix-valued function L such that Q@ = L~'d L, after which one de-
fines @ = (L_)"1dL_. Thebasis 1, #9, ..., (hd)*~! is transformed to the new basis
L;l -1, L:_l R, ..., L;l - (h9)*71, where L;l - (9)" means Z;;IO(L_F);J (ho)’.
In general it is difficult to carry out such Birkhoff factorizations explicitly, or even
to know whether they exist. Here, however, L ; can be found by the method of [1],
[9]. The effectiveness of our approach comes from the fact that only the factor L 1s
needed (not the more complicated factor ._, which is equivalent to the 7-function).
In the case of weighted projective spaces themselves (though not for hypersur-
faces), the differential operator factorization given in Section 3 provides a short cut
for the computation of L. Namely, we introduce directly a new basis Py, ..., Py
by defining
1
POI 1 and Pi :—hBP,-_l
Fi
for 1 <i < s — 1. Fortuitously, with respect to this basis, the matrix of d already has
the form %d), so L4+ may be read off by regarding the above basis as L;l -1, L:_l .
A3, ... L7 - (hd)S™! Wehave Ly = Qo( + 801 + -+ + h*20_,) where

1
m_oqfll 1 ,
Qo = o 474 _ ;
— 1 .
M. q kl
mgy = 1, and where 01, ..., Qy—, are (easily computed) constant matrices.

For future reference, we explain how (a modification of) the algorithm of [1] and
Section 6.6 of [9] produces this answer. First, by definition, the factor L (g, h) =
Qolg)(I + 1 Q1(q) + h* Q2(q) + ---) satisfies the ordinary differential equation

0 (= 1 QowQp") = LiQLT' + LidL7

In the situation of [1] and [9], 1.4+ is determined uniquely by the initial condition
Ly|4=0 = I, and there is a natural homogeneity condition on L ; which reduces the
computation of L4 to a finite algebraic algorithm. The present situation is similar,
but L must be normalized in a different way.
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Let us make the Ansatz that (), is of the above diagonal form. This is natural
as diag(¢/1 1, ..., ¢/ I) arises from the Frobenius method for Solvmg the ongmal
o.d.e., and, as we shall see in Corollary 4.3 below, the coefficients —. . ..
have the effect of producing the “expected” pairing matrix

7 mo.. mkl

M1

Furthermore, let us assume that each Q; is homogeneous and polynomial in g1/
Then the differential equation again reduces to a system of algebraic equations for
(1, 0>, ... and it is easy to show that there 1s a unique solution.

We shall use the above basis Py, . .., Ps—1 to construct in turn a product operation,
a grading, and a pairing.

1. The product. Let us group the basis elements of M as follows:

(h3) for0 <i <uq—1,
(hD)im g 2 (RO forO<i <u,—1,

(R m1g™ 2 (R ... mp_1g P MY for0 < i <up — 1.

Replacing #d by p here, and introducing the notation

s = m g AT g
we obtain a corresponding basis
1, p,....p" 1
Lo, 1np, oo 1fzpu2_13
., 1pp. ..., lfkpuk_l

of O A. The vector space spanned (over C) by these basis elements will be denoted
A. By definition, the action of p on A ® C|[gT/!] is given (with respect to this
basis) by the matrix of Theorem 3.3. As 1 is a cyclic element, this action extends to
a product operation on A ® C[g*'/?], that is, it allows us to define the product of
any two elements 1, /.1 7 p'. We denote this product by 1 £ plol £ p', and regard
A® ClgT"!] as the abstract orbifold quantum cohomology ring of P (w). We obtain
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a subring A ® C[g'/!], and by putting ¢ = 0 we obtain a product operation on A,
which we regard as the abstract orbifold cohomology.

2. The grading. The differential operator T}, — g is homogeneous of weight 2s, if
we assign weights as follows: || = 2, |d| = 0, |g| = 2s. The differential operators
Py, ..., Ps_y are also homogeneous. Indeed, from the formula for Py 4.4y, 1ts
weight is

| Puy o | = 201 + oo+ 1) — 28(Ag + - + Ay)
=20+ -+ u;) — 25fi
= 2agely, .

It follows that our product operation satisfies

07 o 15 0'| = 1y 7+ 117, ')
and | | coincides with the usual orbifold quantum cohomology grading.

3. Self-adjoininess and the pairing. We shall obtain a natural identification of the
D*-module M = D" /(T,, — ¢) with a “dual” D"-module; this will give us a pairing
on M, and a nondegenerate symmetric C[g*!/?]-linear pairing on 4 ® C[g*1/7].
This pairing will turn out to be a C[g*!/!]-linear extension of a C-linear pairing on
A. We shall use the notation of Section 6.3 of [9].

First, the D®-module M* is defined to be the space of  -module homomorphisms
M — F, where F is the coefficient ring. The D*-module structure is given by

(h-7)(P) =hm(P), (3 -7)(P)=-7(@-P)+qam(P)

form € M*.

Next, we denote by M* the D*-module obtained from M* by reversing the sign
in the action of A. Thatis, M* = M* (as ¥ -modules), but with action of D" derived
in the obvious way from# O w = —An, 0 O 7 = d- 7.

Let 8, ...,8,_y be the basis of M* = M* (over F) which is dual to the basis
1,43, ..., (h3)*~ ! of M. The key technical result we need is:

Proposition 4.1. (1) §, is a cyclic element of M* (that is, D" & §, = M*).
2)(Ty —q) © 8, = 0.
(3) The map M — M*, [P] — [P © 8,] is an isomorphism of D?-modules.

It should be noted that the operator 7, — g is self-adjoint only in the special case
P(w) = CP", eventhough M = D*/(T,, — q) is always a self-adjoint D*-module.

Proof. Let Py,..., P} | be the basis of M* which is dual to Py, ..., Ps_y. For
readability we shall omit square brackets throughout this proof. Note that P* = §;
fori =0,...,n.
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We claim that

Py =8i—q whenO<a <uy=n+1l,

Py ®by = {5 Plype Whenuy 4t up <o <up+ooo + uiga,
P*=§, when o = s (we define Py below).

Assuming this, the first two formulae (fora = 0,...,s — 1) prove (1). In the third
formula P = §,, Ps means %haéha...%ha, which is q_lTw, so this gives
(2). The third statement is an immediate consequence of (1) and (2) (cf. Section 6.3
of [9]).

To prove the claim, we shall make use of

(*) hoPy = "oz+1Pa+1=

(%) hdO P; =ryP)

and the value of r, given in Definition 3.2.

The case 0 < a < uy = n+ 1. Sincerg = --- = r, = 1, from (*x%) we have
P, =mhd* o P =P,

The case iy + -+ 4+ u; <o <uy—+---+ u;1. Weshall prove this by induction on
i =0,1,...,k — 1 (regarding the previous case as { = 0).
(i) fo =uy+ ---+ u; forsomei > 1, we have
Py ® 8y = mig ™ hdPo—1 © 8, by (%), as rq = m; 'g®

= mig 2 hd © Py a1y  (inductive hypothesis)
= mlq_Aer+n_a+1Ps*+n_a by (*%).

Now,s+n—a+1l=s4+u; —(uy +--+u) =5— Uy + -+ + ug) by
Lemma?2.1) = uy + -+ 4+ Ug41—;- (This argument applies only if i > 2, but the case
i = 1is obvious.) Hence

. _ 1 App1—i 1 Ay
Fs+n—a+1 = ru1+'"+uk+1—.i - mk+1__iq L mi+1q 1

by Lemma 3.1. We obtain P, © 8, = ———P*

miyy " stn—ar

() Muy +--+u <aa<uy +---+ uj4 forsome i, then

P, ©dé, =hoPy_1 O 8, by (x),asrq = 1
=hoO % in_(e_1) (inductive hypothesis)

mi

_ *
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Herewehaves+n—a+ 1 =uy+ -+ ugpp1—; —{ with0 <! < w1 = upyq1-

(from Lemma 2.1), 0 #54n—g+1 = 1. We obtain Py, O §, = %P;;n—a again.

The case « = 5. We have

Py O 8y = mpg 2 hdP_1 © 8, by (%)

= mpg 2RI O %Pn* 41 (inductive hypothesis)
= myg~ g P, by ().

Here we have ry41 = 1y, = m%qu ,and Ay = A by Lemma 3.1, so we conclude

that P, ® 6, = 6,,. O

The natural composition M X M — M* x M — ¥, making use of the above
isomorphism M — M™*, defines a pairing. We normalize it as follows:

Definition 4.2. (P, Q) = :——(P 0 8,)(Q) (= 7-(P © 8:)(Q)).

wo... W
Corollary 4.3. We have (from the formula for Py & 8, in the proof of Proposition 4.1)

1 .
m—15n—a,ﬁ 10 <o <uy,

«Pa,Pﬁ» {m53+n—{x,ﬁ iful—|—---+u;'SOJ<M1+'“+ui+15i21-

With this normalization, the induced pairing on A agrees with the usual Poincaré
intersection pairing on the cohomology of P (w); itis known from [12] that (1, p") =
1/(wy ... wy). The induced pairing on A ® C[g*!/?] satisfies the Frobenius property
(see Section 6.5 of [9]). Hence, by the cyclic property, it agrees with the orbifold
quantum Poincaré intersection pairing.

This concludes our construction of an abstract orbifold quantum product, grading,
and pairing directly from 7}, — ¢, and our verification that they agree with the usual
ones.

Exampled4.4. P(1,2,3). Wehavewg = 1, wy =2, w; = 3ands = 1+2+3 = 6.
The differential operator is

Tw — g = hd 2hI(2AD — k) 3h3(3hd — h)(3hI — 2h) — g
=2231°°0-He-HE-2%) —qg.

This has order 6, and it is homogeneous of weight 12, where || = 2, |g| = 12.
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We have
1°2°273°3°3

souy = 3,uy = 1,usz = 1,144 = 1. It is convenient to display all relevant data in
the following diagram:

wo=1|lwg =2 w, =3
Sp=140,1,2}, fi=0 g g 2 Ay =1.m =6
Sp,=12}, =13 3 | Ar=2.mp=3
ng,:{l}a f3=% % A3_%,m3:2
Sp=12 fa=3% I |Ma=fma=3

In the central 4 x 3 block, the number of entries in the ith row is u;, and the number
of entries in the j+1th column is w;.
The factorization is

¢\ T = 3¢73 (1)1 2475 (1) 3¢5 (1) 64~ (hD)>.

The bases of M and A constructed above are:

L, hd, (hd)?, L, p, P,
6973 ()", 1.
3¢76(hd) 6g7 3 (hd)’, 1.
2475 3¢75HD 6¢73 (hd)°, 13,
The matrix of structure constants (quantum multiplication by p) with respect to this
basis is
1
(0 347
1 0
1 0
1
TN
%qﬁ 0
1
\ Yqs 0 )

These products determine all others, and we obtain the following orbifold quantum
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multiplication table:

2
A T T
2
1 1 P P 1% 1% 1%
» B YED PR 723 PR VL) PR V5
2 La31, 1g31 1.3 1g3%
P 124 % rid % i 34- P
1 1
1, 343 qsp  2p?
2 1
1% 3p q61%
2 1

Orbifold cohomology products are obtained by setting ¢ = 0 in this table. Note
that p generates the orbifold quantum cohomology, but not the orbifold cohomology.
Ages and degrees are as shown below:

agelg=0||l|=0]| |p|=2 | |p? =4
agel%zl |1%|=2
agel%zl |1%|:2
agel%zl |1%|=2
Finally, the pairing on M is given by {F;, P;)) = % ifi +j = 2, {Ps3, Ps) =

{Ps, P3)) = %, and (P4, Py)) % (with all other products zero). 0

Example 4.5. P(1,1,3). In this case we have orbifold classes with fractional de-
grees. We just state the results, as the calculations are very similar to those in the
previous example. First, the data is

wog=1|wy=1]|w, =3
Sp=10.1.2}, i=0] & 2 2 A =%m =3
Sp,=42% =13 1 |Aa=1im=3
S, =142, fs=2 2 As=1ms=3
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and we have
¢ 'Ty = 71303~ 1)@ — 2) = 3¢ 3 (hd) 3¢ (1) 3¢ (hD)*.

The orbifold quantum multiplication table is

2
1 P 2 1% 1%
2
1 1 P 2 1% 1%
2 1l.i1 1,31 11
P o 39711 3971z 34
2 2 1
P’ 5431z 543 3q7p
1
1y 3430 PP
12 1,
3 3

where 1, p, p2, 1%, 1% correspond to 1, 43, (h3)2, SQ_% (hd)3, 3q_% (h8)3q_% (hd)3.
We have

agelog=0||l|=0||p|=2]|p* =4

W
—
—

Il

agel% =

W

—_

1]

Il
W | woe

agel% =

and the pairing is given by {P;, P;)) = % ifi +j =2,{Ps, Ps) = {(Pa, P3)) = %
(with all other products zero). L]

5. Hypersurfaces in weighted projective space

Based on the toric approach to mirror symmetry, Corti and Golyshev conjectured that
the orbifold quantum cohomology of a (quasismooth) hypersurface

X4 cPw)

of degree d is governed by the differential operator

7 [ Jwid)wid—1). .. (wid—(wi—1)) — gh? (dd+1) ... (dd+(d —1))(dd+d).
i=0
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(this operator appears in Section 7.3 of [6] without the 7 factors; also in [5] for the
Calabi—Yau case s = d, where the # factors cancel out). The method of [3] gives
evidence for this conjecture in the Fano case, i.e. when s > 4. We shall always
assume that s > d, although our approach applies also when s = d (ct. Section 6.7
of [9]).

Since dg = g(d + 1), we have

gh?d?@+5)... 0+ L@+ %) =r"dl@ - ... - PE-Da.

which shows that both summands of

n
w'h [Ja@-2)...@-22) - gnlale+ 1. 0+ ShHE+ 9D
=0

can be written with a factor of #0 on the left. Cancelling this factor, we obtain
an operator of order s — 1 (in terms of D”*-modules, we quotient out by the trivial
D%-module D" /(h3)). We call' this operator Tty — 4Sd—1:

w30 - L), (0- ) —ga? Y@+ ). (0 + 4

i=1

Tw1 ..... Wn Sa—1

Here we have assumed that wy = 1. To simplify notation, we shall also assume that
Wi, ..., Wy are such that no further left-cancellations of the above type are possible.
It follows that the D*-module

M = Dk/(Twl,...,wn - qu—l)

is irreducible. In the general case, an irreducible D*-module is obtained by left-
cancelling all common factors (see [6]), and our method can be applied to that.

Observe that the case d = 1 gives Ty, .. w, — ¢. which is the operator associated
with P(wq, ..., wy,), as expected. The case wy = --- = w,, = | (hences =n + 1)
gives (hd)" — gSgz—1, which is the operator associated with a degree d hypersurface
in CP", denoted by M<, , in [15].

In this section, by extending the method of Section 4, we shall give a method to
extract an “abstract orbifold quantum product”. We emphasize that this is a method
whose success is not guaranteed. Moreover, the (genuine) quantum product is not yet
known for hypersurfaces, in general. Nevertheless, we can give a nontrivial example
(Example 5.2) where the Gromov—Witten invariants have been proposed by Corti

([4]), and our method is consistent with his results.

"We do not write Ty, here; the abbreviation Ty, always means Tywo,....wn-
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As in Section 2, we define

F={1|0<i=w -1 1=<j<n}
J
:{fls"'sfk}

and denote by u, ..., u; the multiplicities of fi,..., fx. However, 1, = n here.
We use the notation A;, m; as in Section 3. Thus, we have a factorization

q_lTw1 _____ —— r51—1 hao rsl_z ha ... %ha
and we can introduce Pp = | and P; = rlihBPf_l forl =i < §—2. The
equivalence classes of the operators Py,. .., P;_, form a basis of the D%_module
D! (T, —qS4-1)-

Asin Sectlon 4, the action of @ defines a connection on the bundle whose space
of sections is M. However, when d > 2, the connection matrix £ with respect to the
basis Py, ..., Py_5 is not of the form %a). To achieve this form (which is the starting
point for the construction of a product operation) we must construct a new basis.

It will be convenient to construct such a basis in two steps.

Step 1. The method of [15] produces a basis 160, R }33_2 with respect to which
the connection matrix has the form %(D Let us review that method here. As in
our discussion of the Birkhoff factorization method in Section 4, the new basis is
given by L;l - Py, L__,_1 <Py, JL__,_1 - Ps_p, for a certain “gauge transformation”
L+ = QoI + 7Q1 + ---). In contrast to the situation of Section 4, there is no
short cut to finding 1.4 here. However, 1.4 can be found as the unique solution of

the ordinary differential equation
0 =LyQLT' + LydLy!

whichis homogeneous and polynomialin ¢ '/?, and which satisfies the initial condition
Ly|p7i—g = I. Asin[15]itcan be proved that this reduces to a system of algebraic

equations for (Jo, O1,... which can be solved by an explicit algorithm. (In the
situation of Section 4 we would have L = [, as we are now starting from the basis
given by P; = 1 —ha-- 1 h8 The L, of Section 4 converts 1,#49,...,(h3)* 2 to

Py, . .. Ps 2, Wthh could have been described as Step ().)

Example 5.1. X3 € P(1,1,1,1,1) = C P*. In the notation of [15] this is M. As
this example is worked out in detail in Examples 3.6, 5.4, 6.24, 6.36 of [9] we shall
just summarize the results of the calculations.

First, we have the differential operator

g T — S2 = ¢ () = RO+ DO+ 3).
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With respect to the basis Py = 1, P; = 0, P, = (#d)?, P; = (hd)? the connection
matrix is
6qh?
1 27gh
27q

b
—

1

The gauge transformation Ly = Qo(/ + #Q ) can be found by solving the o.d.e.
20 = LyQLT' + LydL7" subjectto L4 |;—o = 1. This gives

1 6g 6g

1 21
Qo = | 4 ., Q1=

|

The new basis is Py = 1, Py = 49, P, = (hd)? — 6q, P; = (hd)? — 21qhd — 6hq,
and the matrix of the connection form 1is

6g 3642
S — % 1 | 15¢ i
1
with respect to this basis. U
The basis 160, - ﬁs_z allows us to construct a product operation as in Section 4.

Unfortunately, this product does not necessarily satisfy the Frobenius property. In
general, therefore, it is necessary to modify the basis further, and this will be Step 2.
As preparation for this, we begin with a brief review of the Birkhoff decomposition.

Motivation for Step 2 The Birkhoff decomposition (Theorem 8.1.2 of [14]) can be
written
AGL;—1C = | | A_GL;—1C y A+GLs—C,
yeT

where 7 denotes the set of homomorphisms from S to the diagonal matrices in
GLs;—C. If y(h) = diag(ha“°, ..., h%—2) is restricted to the set of homomorphisms
satisfying ag < --+ < a,_;, then the decomposition is a disjoint union. The “big cell”
is the piece given by y = [; it is a dense open subset of the identity component of
AGL;_1C. The “small cells” (where y # ') have finite codimension in AGL;_; C.

The term “cell” is used here because the decompeosition is equivalent to the
A_GL;_;C-orbit decomposition

AGL;_C/A;1GL; 1 C = | ) A_GL,_,C |y]

yeT
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of the Grassmannian Gr&—1 =~ AGL;_1C/AGL;_{C (see Section 8.3 of [14]).
It is analogous to the cell decomposition, or cell-bundle’ decomposition, of a finite-
dimensional generalized flag manifold given by the orbits of a parabolic subgroup.
The main point is that a “small cell” A_GL;—;C [y] is diffeomorphic to a proper
unipotent subgroup AY of A_GL;_;C (Theorem 8.6.3 of [14]). This shows that any
map L which takes values in A_GL;_1C y A;GL;_1C (and therefore admits at
least one factorization I. = L_yI 1) has a most economical factorization

L=1L¢ y LY.

The same phenomenon occurs for finite-dimensional generalized flag manifolds. The
simplest example is C P": the i -dimensional cell C* can be described as an orbit of
the %(n + 1)(n + 2)-dimensional group of upper triangular matrices in GL, 1 C,
but most economically as an orbit of a certain / -dimensional unipotent subgroup (see
Chapter 14, part I1I, of [7]).

Step 2 will amount to extracting the economical factor 1.¢ from L._y. More
precisely, by Theorem 8.6.3 of [14], we can write

L=1L_yLy=L L yLy = LEyL] L,

where L7 denotes the “superfluous factor”; this is a polynomial in A~ and satisfies
Lly = yLi where L_if_ is polynomial in #. Thus, Step lAuses theA gauge transfor-
mation L:_l to convert Py, ..., Py_; toaprovisional basis Py, ..., P;_,, then Step 2
uses a further gauge transformation ()/L_if_)_1 to convert 160, S5 ﬁs_z to the desired
basis 150, s 183_2-

Step 2. As in Proposition 4.1, it can be proved that

However the map B
M= M, [Pl [P ©8p—i]

is not in general an isomorphism of D*-modules, and it is at this point that we need
the homomorphism y. Let us assume that

(HT1) there exist integers ag < --- < as_p with the property that
WPy @ Syt .. 2Py 5 O 8y

have minus the weighted degrees of the elements A~4° 160, o hT%s2 ﬁs_z (not nec-
essarily in the same order).

“The cell decompositions here arise from Morse functions; the cell-bundle decompositions arise from Morse—
Bott functions.
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As in Definition 4.2, we can define a pairing by

(P, 0) = g5 (P © 8,-1)(0).

The normalization of Section 4 is modified by the factor ¢ here, to take account of
the degree of the hypersurface. We shall assume further that

(H2) there exists a basis with respect to which the matrix of {{, )) is a nondegenerate
symmetric matrix independent of g, #.

That is, the pairing {( , )} extends a nondegenerate symmetric C-linear pairing on

a complex vector space of dimension s — 1. Finally (from the motivation above) we

seekamap G = LYy = yL{ such that the gauge transformation G™! converts Q

to a connection form 2 = %(D where @ is independent of /2. This @ is the connection

matrix with respect to the basis 150 =Gt 160, e ﬁs_z =Gt ﬁs_z. Sucha G
necessarily satisfies
(%) 20 = G3zdG™' + GdG™!

and we shall assume that

(H3) there exists in some neighbourhood of ¢/ = 0 a solution G = L7y of the
differential equation (*), where y(h) = diag(h®°, ..., A%—2).

We discuss suitable normalizations of such solutions (initial conditions) later.

Assuming (H1)—(H3) (which we shall verify in our main example), we can attempt
to define a product operation as in Section 4. Let A be the vector space with basis
denoted by the symbols

1: p’ sy pul_l;
1r, 1pp, ..o, lfzpuz_l;
7, 1m0 oo, lfkpuk_l

We define QA to be A ® Clg*!/!], and we define a C[p, g%/ !]-module action on
O A by specifying that the matrix of multiplication by p is @. As we shall see, in
contrast to the situation of the previous section, this C[p, ¢*'/]-module action does
not in general allow us to obtain a product structure on Q 4, because the action of p
is not necessarily cyclic.

Example 5.2. X3c P(1,1,1,2). Wehave wg = wq = wp = 1, w3 = 2 and
s = 5,d = 3. The differential operator is

G T = S2 = ¢ 122000 - ) =3O + O+ 3).
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We have
F 0 0 0 1 1
= {T, T,E,E} = {O, 5},

souy = 3,u; = L. Asin Section 4 we can display the data as follows:

wy=1|w,=1|ws; =2

NS
W]
3
iy
Il
[oe]

Sp=1{1,2.3}, fi=0 B =

Sp, =13} fa=3

—
—

W
>
[ ]
I
W
3
[\®]
Il
o

The factorization of q_l 711218
-1 R — -1 3_ 1 1 3
g T1.1,2 = 2q 2(hd)2¢2(hd)” = (hd)(A0)",

1 : e ;
where r = %qi. Thus, our starting point is the basis

Py = 1. P, = hd. P = (h)2, Ps = ~(hd)°.
r

We have |r| = 2, so the degrees of these basis elements are 0, 2,4, 4. With respect

to this basis we have
6h2r
1 27hr
1 27r

r

Step 1. The gauge transformation L__,_1 is given by

1 1272 12r
I 1 300 || 4 s

1
Application of L__,_1 produces the new basis
Py=Py, P =P, P,=P,—12r2P,, P;= P;—30rP — 12hrP,.
With respect to this basis, we have

1272 —3613
1 1872

o)
Il
aH =
2
Il
S| -
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We omit the details of this calculation, which is similar to those in [15].
Step 2. We have to verify (H1)-(H3). For y we take y(h) = (1,1,1,%). The
degrees of y7 Py, y 1Py, y7 1P,y Pyare 0,2, 4, 2, and the degrees of (y~1Py)®

82, (y~! 161) 8, (y~! 162) ®82, (y~! 163) (68, are —4, -2, 0, —2, so (H1) is satisfied.
To verify (H3), we note that G~ must be of the form

Gl =yT'Z =y (Zo+3Zi + 52 22),

where Z is homogeneous with respect to a basis with degrees 0, 2, 4, 2, i.e. the entries
of the matrix function Z have the degrees shown below:

L o] [ 2] [ 4] [ 2]
(2] [ o] [ 2] [ o
[-4] [=2] [ o] [2]
(2] [ o] [ 2] [0

Equating the coefficients of each power of # in the above differential equation (%)
gives a collection of equations for the coefficients of Zy, Zy, Z> and @. With the
initial condition Z|,_g = /, the unique solution is

—2r 1

More generally, the initial condition Z|,_¢ = diag(1, 1,1, y) leads to the solution

—6r2  3ry

S| -

The new basis (E- =G71. ﬁi) produced by Step 2 is, therefore,

~—

P():l, ﬁlzha, ﬁzzﬁ—%ﬁ3—6hiﬁ1, ﬁ3:%163+3%161

The connection matrix with respect to this basis is
( 1272 \
1 1272 3L

=% ' 2
2r
¥

Q=

=H =
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Finally we verity condition (H2) by explicit calculation of {{, )} with respect to the
new basis:

3
)
s 3
ok ) = 2 =5, say).
(« i- Pi) 0<a.f<3 % ( y)
9.2
7Y
Regarding the normalization of the solution, we achieve the analogue
A 3
= 3
4 3 2
a =z *
m1 'l 2 1
1] 2

of the Ansatz for Qo(f + A0 + ---) in Section 4 if we take y = %

This allows us to define an action of p (abstract orbifold quantum multiplication
by p)on A® C|r¥1], where A is the vector space whose C-basis vectors are denoted
by L, p, p?.1 1 The matrix of the action with respect to this basis is, by definition,
the matrix @. As in Section 4, we may also introduce a grading by defining age 15, =
%|ﬁu1+~~+ui_1 |, and this gives:

agelo =0 | [1|=0]|p|=2]|p?*| =4

agel%zl |1%|=2

The action is compatible with this grading (i.e. the action of p increases degree by 2).
We also have the pairing ( , ) whose matrix is S. The Frobenius condition
(poab) = (a,pob) (for any a,b € A) is satisfied by construction (see the
discussion following Definition 6.14 of [9]); in matrix terms this is S71&'S = @.
We remark that this holds for any value of y, not just y = %
The module action reproduces the first two rows of the following table of orbifold
quantum products obtained by Corti ([4]):

1 P p? 1
1|1 P P’ 1
P p?+ 1212 + 3r1% 12r2 p rp
p? 10874 + 36r31% 1273
1y 3p% —3rly
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Furthermore, S agrees with the matrix of the orbifold Poincaré pairing from [4].

If it is assumed that the module action extends to a commutative associative ab-
stract quantum product operation which satisfies the Frobenius condition (¢ ca, b) =
(a,c o b) (for any a,b,c € A), then it follows from the first two rows of the
table that

pz o p2 = 108?‘4 + 367‘31% + xrB(r - 1%):
2 3 2

p 01%:12?' —%r (?‘—1%),
1%01%:%1924—%7’(?’—1%)

for some real scalar x. It follows that (1% o 1%, 1%) = —%r + 57 — 1%). The
condition x = ( is equivalent to

(yoly1y) =—3r

and Corti computed this as a Gromov—Witten invariant. The ambiguity involving
r—1 ! 1s unavoidable in our construction as the second row of the table already tells

us that po (r — 1 1 ) = 0. However, for any x we do obtain an abstract quantum
product operation which satisfies the Frobenius condition. U

Returning to the general theory, let us mention an alternative interpretation of our
method, which explains informally our assumptions (HI1)—(H3). The significance of
(H1) is that it is a necessary condition for the natural pairing {{ , )) to be “flat”, i.e.
for condition (H2). Having such a flat pairing is, in turn, a necessary condition for
being able to carry out the Gram—Schmidt orthonormalization procedure, which is
what (H3) accomplishes. From the Birkholl factorization point of view, our method
utilizes [.4 ratherthan ._, as we have already mentioned; more accurately, it utilizes
the transformation “P; — L__,_l - P;” in the D-module, which is essentially the Gram—
Schmidt process.

It may appear at first sight that this could be done in many inequivalent ways. How-
ever (with suitable initial conditions, as in Example 5.2), the final basis ﬁo, p—_— ﬁs_z
is unique, and this may be explained as follows. Step 2 involves a Birkhoff factor-
ization of the form “L = L_yL 7. The Frobenius property is satisfied if and only if
L_ is a twisted loop with respect to the involution defined by S, i.e. STHLL)™LS =
L._(—h) (Section 6.5 of [9]). Now, if there exists some twisted L, for example,
from any Gram—Schmidt orthonormalization, and y is twisted, then I._ must also
be twisted, as the Birkhoff decomposition is valid also for the twisted loop group.
By the uniqueness of the (normalized) Birkhoif decomposition, we always obtain
the same I._. Thus, any Gram—Schmidt orthonormalization followed by a Birkhoff
factorization produces the same ﬁo, corsueng 153_2.

Thus, the role of the loop y is to compensate for the non-flatness of the pairing
{(, Y. It does this by modifying the original D*-module M (with basis Py, . ... Ps_»)
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to a new D%-module with basis 150, - ﬁs_z, which is a submodule of M ®c[z)
C[#, #71]. This phenomenon is related to the failure of the action of p to be cyclic, in
the hypersurface case. We thank Hiroshi Iritani for emphasizing to us the significance
of this, cf. [11].
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