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Harmonie diffeomorphisms between domains in the Euclidean
2-sphere

Antonio Alarcön and Rabah Souam*

Abstract. We study the existence or non-existence of harmonic diffeomorphisms between
certain domains in the Euclidean 2-sphere. In particular, we show the existence of harmonic
diffeomorphisms from circular domains in the complex plane onto finitely punetured spheres,
with at least two punetures. This result follows from a general existence theorem for maximal
graphs in the Lorentzian produet MxRj, where M is an arbitrary tt-dimensional compact
Riemannian manifold, tt > 2. In contrast, we show that there is no harmonic diffeomorphism
from the unit complex disc onto the onee-punetured sphere and no harmonic diffeomeorphisms
from finitely punetured spheres onto circular domains in the Euclidean 2-sphere.

Mathematics Subject Classification (2010). 53C43, 53C42, 53C50.

Keywords. Harmonic diffeomorphisms, maximal graphs.

1. Introduction

In 1952, Heinz [He] proved there is no harmonic diffeomorphism from the unit
complex disk D onto the complex plane C, with the Euclidean metric. Later, Schoen
and Yau [SY] asked whether Riemannian surfaces which are related by a harmonic

diffeomorphism are quasiconformally related, and proposed to investigate whether
there is a harmonic diffeomorphism from C onto the hyperbolic plane H2. Markovic
[Ma] answered the first question in the negative, by showing an example consisting of
a pair of Riemann surfaces of infinite topological type. He also gave conditions under
which the question has a positive answer in the case of surfaces of finite topology.
Finally, Collin and Rosenberg [CR] gave an example of a harmonic diffeomorphism
from C onto H2, disproving the conjecture by Schoen and Yau [SY]. To do that, they
constructed an entire minimal graph £ over HI2 in the Riemannian produet HI2 x R,
with the conformal type of C. Then the vertical projection £ -> HI2 is a surjective
harmonic diffeomorphism. See [GR] for further generalizations.

* A. Alarcön is supported by Vicerrectorado de Politica Cientifica e Investigaciön de la Universidad de Granada,
and is partially supported by MCYT-FEDER grants MTM2007-61775 and MTM2011-22547, Junta de Andalucia
Grant P09-FQM-5088, and the grant PYR-2012-3 CEI BioTIC GENIL (CEB09-0010) of the MICINN CEI
Program.
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Let S2 and C denote the 2-dimensional Euclidean unit sphere and the Riemann

sphere, respectively. A domain in C is said to be a circular domain if every connected

component of its boundary is a circle.
In this paper we study the existence or non-existence of harmonic diffeomorphisms

between certain domains in S2. Our main result asserts:

Theorem I. (i) For any m e N, m > 2, and any subset {pi,..., pm} C S2

there exist a circular domain U C C and a harmonic diffeomorphism (f>: U ->
S2

(ii) There exists noharmonic diffeomorphism (p: Ti) ^ §2 —

(iii) For any tu E N, any subset {z\,... ,zm} C C and any pairwise disjoint
closed discs Di,, Dm in S2 there exists no harmonic diffeomorphism \jf: C —

{zu ,zmj-> S2 - UJU Dj.

Notice that Theorem I is related to Schoen andYau's questions [SY], since circular
domains are of hyperbolic conformal type whereas C with a finite set removed is

parabolic. Moreover, it is worth mentioning that Items (i) and (iii) actually follow from
much more general results (see Corollary 4.3 and Proposition 4.7). Concretely, we
show that, given a compact Riemannian surface M and a subset {p\,..., pm} C M,
m > 2, there exist an open Riemann surface 31 and a harmonic diffeomorphism
(j): 31 -> M — {pi,..., pm} such that every end of 31 is of hyperbolic conformal

type (see Theorem 1.2 of [Ma] for a good setting).
Our strategy to show the harmonic diffeomorphism of Item (i) in Theorem I

consists of constructing a maximal graph £ over S2 — {p\,..., pm} in the Lorentzian
manifold S2 x Rx, with the conformal type of a circular domain. Then, the projection
£ -> S2 — {pi,..., pm} is a surjective harmonic diffeomorphism.

In this direction, we prove the following general existence result:

Theorem II. Let M (M, (•, -)m) be a compact Riemannian manifold without
boundary ofdimension n G N, n > 2, and denote by M x Rj the product manifold

Mxl endowed with the Lorentzian metric (•, -)m —dt2. Let tu G N, tu > 2, and
let 31 {{pi, ti)}i be a subset o/MxIi such that

• pi 7^ pj, and

• |ti — tj | < distM(pi, Pj), for all {/, j} C {1,... ,m} with i j.
Then there exists exactly one entire graph £ (81) over M in M x R i such that

• 81 C £(SI), and

• £ (81) — 81 is a spacelike maximal graph over M — {pi
Moreover the space (S^ ofentire maximal graphs over M in Mxl i withprecisely

m singularities, endowed with the topology of uniform convergence, is non-empty,
and there exists an m\-sheeted covering, (S^ —(S^, where (S^ is an open subset

of{Mxl)ra
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Let us point out that our method is different from the one of Collin and Rosenberg

[CR] and strongly relies on the theory of maximal hypersurfaces in Lorentzian
manifolds. More precisely, it is based on the construction of maximal hypersurfaces
with isolated singularities in Lorentzian produets Mxlj. The study of complete
maximal surfaces, with a finite number of singularities and their moduli Spaces in
the 3-dimensional Minkowski space IL3, was developed by Fernändez, Lopez and

Souam [FLS]. Their study strongly relies on the Weierstrass representation for maximal

surfaces in L3 Our approach here relies on a different idea which consists of
dealing with the existence problem in Theorem II as a generalized Dirichlet problem.
Let us also point out that Klyachin and Miklyukov [KM] have obtained results on the
existence of Solutions, with a finite number of singularities, to the maximal hypersur-
face equation in the /i-dimensional Minkowski space Lw with prescribed boundary
conditions.

Harmonie maps from Riemann surfaces into S2 are related to other natural geo-
metric theories. For instance, the Gauss map of constant mean curvature surfaces in
R3 is harmonic for the conformal strueture induced by the immersion [Ru] (see also

[Ke]), whereas the Gauss map of positive constant Gaussian curvature is harmonic for
the conformal strueture of the second fundamental form [GM]. The latter Statement is

the key in the proof of Theorem I (ii). More precisely, we show that if the Gauss map
of a surface of positive constant curvature in R3 is a diffeomorphism onto S2 — {/?},
then the conformal strueture induced by the second fundamental form of the surface
is that of C.

On the other hand, using the harmonicity of the Gauss map of surfaces of positive
constant curvature in R3, harmonic diffeomorphisms from circular domains into
domains in S2 bounded by a finite family of convex Jordan curves and satisfying a

Neumann boundary condition have been recently shown by Gälvez, Hauswirth and

Mira [GHM]. It is an open question whether a harmonic diffeomorphism as those in
Theorem I (i) can be realized as the Gauss map of either a constant mean curvature
or a constant Gaussian curvature surface in R3.

The paper is laid out as follows. In Section 2 we State the necessary notations
and preliminaries on harmonic maps between Riemannian manifolds and maximal
graphs in Lorentzian produet Spaces. In Sections 3 and 4 we prove Theorems II and I,
respectively. Also in Section 4 we introduce some background on both Riemann
surfaces and surfaces of positive constant curvature, for a well understanding of
the proofs of items (i) and (ii) in Theorem I. Finally, in Section 5 we discuss the
relation between harmonic diffeomorphisms U -> S2 — {p\,..., pm} as those of
Theorem I (i) and conformal maximal immersions U -> S2 x Mx.
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2. Preliminaries

Let M (Af, g) and N (N, h) be smooth Riemannian manifolds. Given a

smooth map /: M -> N and a domain £2 C M with piecewise C1 boundary 3 £2,

the quantity

Ea(f) \\ W\2dVg (2.1)
2 Jq

is called the energy of / over £2. Here dVg denotes the volume element of Af, and
| • | the norm on (N, h).

A smooth map /: M -> N is said to be harmonic if it is a critical point of
the energy functional, that is, if for any relatively compact domain £2 C M and any
smooth Variation F: M x (—e, e) -> TV of / supported in £2 (i.e., F is a smooth map,
fo f and /Im-« for all t e (-,), where ft := F(-,t): M -> N
and 6 > 0), the first Variation jjEQ(ft)\t=o is zero.

If M is 2-dimensional, that is to say, a Riemannian surface, then the energy
integral (2.1) is invariant under conformal changes of the metric g, hence so is the

harmonicity of /. Therefore, the harmonicity of a map from a Riemann surface to a

Riemannian manifold is a well defined notion. On the other hand, the harmonicity of
a map is not preserved under conformal changes in the metric of the target manifold.

See the surveys [ELI], [EL2], [HW] for appropriate references.

Remark 2.1. Throughout the paper we denote by M (M, (•, -)m) a compact
tt-dimensional Riemannian manifold without boundary, tt e N, tt > 2.

We denote by M x Ii the Lorentzian product space Mxl endowed with the
Lorentzian metric

where ttm and denote the projections from Mxl onto each factor. For simplicity,
we write

*) *)m - dt2.

A smooth immersion X: S ^ M x Ij of a connected tt-dimensional manifold
£ is said to be spacelike if X induces a Riemannian metric X*((-, •)) on £.

Let £2 C M be a connected domain and let u: £2 —R be a smooth function.
Then the map

Xu: Q^MxRi, Xu{p) (p,u(p)) for all p e £2,

determines a smooth graph over £2inMxM1. The metric induced on £2 by (•, •) via
Xu is given by

<•,•)« :=(Xu)*((-,-)) (-,-)M~du2,
hence Xu is spacelike if and only if |Vw| < 1 on £2, where Wu denotes the gradient
of u in £2 and |Vw| denotes its norm, both with respect to the metric (•, -)m in £2.
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In this case the funetion u is said to be spacelike as well. If u is spacelike, then the

mean curvature H : Q -> R of Xu is given by the equation

1 / Xu \H -Div
« V1 - |Vm|2/

where Div denotes the divergence Operator on Q with respect to (•, -)m-
A smooth funetion u: Q -> R and its graph Xu : Q -> M x Ri are said to be

maximal if u is spacelike and H vanishes identically on Q.

If K C M is compact then a funetion u: K -> R is said to be smooth (resp.,
spacelike, maximal) if and only if u extends to an open domain containing K as a

smooth (resp., spacelike, maximal) funetion.
A locally Lipschitz funetion u: Q ^ R is said to be weakly spacelike if and only

if |Vw| < 1 a.e. in Q. In this case the graph Xu is said to be weakly spacelike as

well. If u is weakly spacelike then the area of Xu (Q) is given by

Ä(u) := f Vi - |Vw|2 c/Vm, (2.2)
Jq

where dVm denotes the volume dement of (•, -)m- A smooth u: Q R is a critical
point of (2.2) if and only if u is maximal.

If u : Q R is maximal then Xu : (£2, (•, -)u) (M x Ri, (•, •)) is a harmonic

map. In particular
Id: -)u)

is a harmonic diffeomorphism, and

u: (Q, {-r)u) M

is a harmonic funetion.

3. Moduli space of maximal graphs with isolated singularities.
Proof of Theorem II

Throughout this section let m e N and let 31 {(/?;, ti)}=l denote a set of points
inMxM such that p\ ^ pj if i ^ j for all i,j G {1,..., m}.

We denote by the space of continuous funetions u : M —R such that

• u(pi) t( for all i 1,..., m, and

• ü := w|M_{/?.}rn_i is maximal.

The following claim trivially follows from the maximum principle for maximal
surfaces.
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Claim 3.1. lfm 1 then *$$1% consists ofthe constant function u t\.

From now on in this section assume that m > 2. The set 31 is said to satisfy the

spacelike condition if and only if
| u -tj | < distMOz, Pj) for all i, j G {1,..., tu}, i ^ j,

where distMO, 0 means distance in (M, (•, -)m)-
From now on assume that 81 satisfies the spacelike condition.
For each (i,n) G {1,..., m} x N consider an open disk Bf in M satisfying

that 3Bf is a smooth Jordan curve, Bf D Bf 0 if i ^ j, Bf+1 C Bf, and

{Pi} ^neN^f- Dehne An M — (Jj i Bf,n G N. Let {tf}nen be a sequence
of real numbers converging to ti, i 1,..., m.

Consider the function cpn: dAn —R such that

<Pn\dBf tf, i l,...,m. (3.1)

Since 81 is hnite then 81 satisfies the spacelike condition if and only if there exists

% e (0,1) such that |ti — tj \ < % • distM(^/, Pj) for all i ^ j. It follows that there
exists no G N such that for each n > no, the function cpn is ^^^-Lipschitz for some

£%,n £ (0,1).
It is proved in [Fe], p. 202, that there exists an e^-Lipschitz extension (pn of <pn

to An. More precisely, such an extension is given by the formula:

<pn(p) inf{<pn(x) + 6a,/idistM(^,a:), x g 3A„}, for p e An. (3.2)

Notice that cpn is smooth near 3 An. A simple approximation argument then shows

that

Claim 3.2. For all n > n$, there exists a smooth spacelike function <pn : An R
such that (pn\dB? tf > i 1,..., tu.

Then by Theorem 5.1 of [Ge], there exists a maximal function un : An R such

that

Unhß'l Vn\dB» t", for all n > n0. (3.3)

Notice that the sequence {un}ne^ is uniformly bounded (the un's are maximal
and there are uniform bounds on the boundary of the An 's). Moreover | Wun \ < 1 on
An, hence Ascoli-Arzela's Theorem and a diagonal argument give that, up to passing
to a subsequence,

Claim 3.3. {un}ne^ uniformly converges on compact sets of

M - {Pi}fL1 U A»
ne N

to a weakly spacelike function ü : M — {pi}fL1 M.
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Moreover, from (3.3), the convergence of {t^}nen to t\ and the Lipschitz conti-

nuity of ü one has that

Claim 3.4. ü extends to a weakly spacelike funetion u : M -> R with u(pi) t\ for
all i 1,..., m.

By the results in [Bai], §6, ü is a maximal funetion except for a set of points

ACM- {Pi}f=l given by A := {pM — \ (p,ü(p)) y(s0)
for some 0 < ,v0< 1, where y: [0,1] M x Mi isa null geodesic such that

y((0,1)) CF(M- {Pi}=l) and 7rM(M0), y(l)}) C
Since SI satisfies the spacelike condition then A 0 and

Claim 3.5. u e

Now let us show the following

Claim 3.6. consists ofexactly one element.

Proof Consider u\, U2 G %fl%. By compactness of M there exists r\ e R, r\ > 0,
such that r\ + u\ >m2 onM and the equality holds at a non-empty subset W C M.
If r\ > 0 then, since u\, u2 G we must have W PI (M — {pi}=l) ^ 0. By the
maximum principle for maximal surfaces r\ + u\ w2 onM. This contradicts the
fact that U\,U2 e Therefore r\ 0 and so u\ > U2. In a Symmetrie way we
also have U2 > u\. Therefore u\ — U2 and we are done.

At this point notice that the first part of Theorem II in the introduetion follows
from Claims 3.5 and 3.6. Even more,

Remark 3.7. The first part of Theorem II holds with the same proof if in the sentence

• E(SI) — 31 is a spacelike maximal graph over M — {pi}i=
one changes "maximal" by "constant mean curvature".

Write $11% {u%}.
Denote by (&m the set of funetions u% such that 31 consists of m points, 81 satisfies

the spacelike condition and |Vu%\ 1 at any point in ttm(8I).
Consider a sequence {^3i„}«eNu{o} C <&m. We say that {Vln}neN 3Io if

and only if, up to a relabeling, {distMxR(Of, tf), (pf, t-*))}neN 0 for all i
1,..., m, where 81^ {(/?f, ff for all k e N U {0}, and distMxR0, •)

means distance inMxR with respect to the metric (•, -)m + dt2. Likewise we define
the convergence of a sequence of families of m points in M.

Claim 3.8. {u^^neN uniformly converges to u%0 in the C° topology in M if and

only if{^än}neN SXo-
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Proofi Assume first that {u%n}nefq uniformly converges to u%0 in the C° topology
in M. Up to passing to a subsequence, assume that {ttmOStOIwgn is convergent
and let us show that {ttmOStOIwgn ^m(SIo). Indeed, suppose for a moment that
there exist p e nm (2Xo) and an open geodesic disc B centered at p such that, up
to passing to a subsequence, ttm(3I«) n B 0 for all n e N. Reasoning as in
the paragraph preceding Claim 3.5, Bartnik's results [Bai] give that u%0 is smooth
and spacelike around p, a contradiction. Then ttm(3Io) C lim^oo ttm(3I«). Since
both sets consists of exactly m points then they agree. Since {u%n}nefq -> u%0 and

{7TM(3l«)}«eN -> ttm(SIo) then {Slw}weN SXo as weh.
For the converse assume that {Vln}neN 2Co- For each (i,n,k) e {1,..., m} x

N x N consider an open disc Bkn in M such that dBkn is a smooth Jordan curve,

W,n n 0 if «V j, BfP C P" e and

for any compact AT C M — {/?°,..., /?^} there

exists «o £ N such that K C for all n > no,

where %n {(/>?, ff),..., OSi, *£)} and := M-|J x Bkn. Let ukn\ (±kn-> R

be a maximal function satisfying uk\dBk ff. (See the discussion preceding

Claim 3.3.) By Claims 3.3, 3.4 and 3.5, the sequence

{^UeN uniformly converges in the C° topology on M to u%n. (3.5)

Taking into account (3.4), a similar argument gives that the sequence

{u{^}nen uniformly converges in the C° topology on M to u%0 (3.6)

as well, where / : N N is any map with f(ri)>n for all n e N. Fix p e
M — {p®,..., pand > 0. From (3.5), for any n e N there exists kn e N such

that
\un<e/2 for all (3.7)

where we are assuming that n and k are large enough so that p e A^. Set vn := uhn

for h := max{/:w,«}. Then (3.6) gives no £ N such that

luz - waolGO < 6/2 for all n >n$. (3.8)

Combining (3.7) and (3.8) one has that \u%n — u%0\(p) < for all n > n$. Since
also {Slw}weN Slo, we conclude that {u%n}ne^ simply converges to u%0. As M
is compact and the u%n are weakly spacelike, this convergence is uniform on M and

we are done.

Consider m different points {p\,..., pm} C M and take t\ — • • • fra_\ ^
tm e R such that 31 := {(/?;,/))};=satisfies the spacelike condition. This is

nothing but choosing t\ and tm close enough. By Claim 3.5, u% is well defined and

by the maximum principle for maximal surfaces, u% £ (&m. Hence,
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Claim 3.9. ©^ ^ &for any m > 2.

Letu e (&m. Bydefinition, amarkinw is an ordering £) {{q\, r\),..., (qm, rm))
of the points in 21, where u — u%. Then we say that (u, £>) is a marked funetion. We
denote by ©^ the space of marked funetions in (&m. We dehne the maps

»i: -» <&m,»i(w,D) w,

%2:(M x M)m, s2(w, £>) £>.

By Claim 3.6, the map s>2 is injective. Moreover,

Claim 3.10. s^C©^) is an open subset of(M x R)m.

Proofi Let (u, £>) G ©^. Write

Ö and 21 {(<?i, n),..., (<?m, rm)}.

Since u — u% then 21 satishes the spacelike condition. Reason by contradiction and

assume that there exists a sequence {£>„ ((q", rf),..., (q^, r^))}wGM converging
to £> in the metric topology of (M x R)m and Dn £ ^C©^) f°r all G N. Write
21n {(^1,^1), • • •, (q%a> rm)} anci' UP to passing to a subsequence, assume that 2lw

satishes the spacelike condition for all« G N (recallthat2ldoesso). Write un u%n,
n e N. By Claim 3.8, {un}ne^ uniformly converges to u in the C° topology on M.
If, up to passing to a subsequence, un : M -> R extends as a spacelike funetion to
a point in ttm(21w), that can be assumed to be q" without loss of generality, n e N,
then again Bartnik's results [Bai] give that u extends as a spacelike funetion to q\
as well, a contradiction. Then un e (&m (recall that %n consists of m points), hence

(un, On) G ©^ and Dn e 52^), a contradiction. This proves the claim.

We set (&m <s>2 (©"tn)* We can identify ©^, endowed with the topology in-

duced by the injection s>2 into (M x R)m, with ©"m. The permutation group crm

of order m, acts naturally on ©^ as follows: for r G crm and (w,D) G ©^
with £) {{q\, ri),..., (qm, rm)), we set r.(w,D) (u,r(D)) where r(£>)
((#t(i)> rr(i))> • • • > (^r(ra)> rr(m)))- This action is clearly free and properly discontin-
uous and the orbit space is naturally identihed to ©^ By Claim 3.8 the topology
induced by the covering map coincides with the topology of C°-uniform convergence
of graphs on M.

This completes the proof of Theorem II.

4. Existence or non-existence ofharmonic diffeomorphisms. Proof ofTheorem I

Throughout this section we assume that M (M, (•, -)m) is of dimension tt 2,

hence, a compact Riemannian surface without boundary.
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Let us recall the following Classification ofRiemann surfaces. A compact Riemann
surface (without boundary) is said to be elliptic. An open Riemann surface is said

to be hyperbolic if it carries non-constant negative subharmonic functions, and it is

said to be parabolic otherwise. A Riemann surface 31 with non-empty boundary is

said to be parabolic if bounded harmonic functions on 31 are determined by their
boundary values. Otherwise, 31 is said to be hyperbolic. (See [AS], [Pe] for a

good setting.) For instance, 3l\ {z e C | 0 < |z| < 1} is parabolic whereas

312 {z e C | ol < |z| < 1}, ol e (0,1), is hyperbolic.

Remark 4.1. An open Riemann surface 31 is parabolic if and only if 31 — D is

parabolic for any open relatively compact disc D C 31 with smooth boundary.
Indeed, if 31 is parabolic then, by [FK], §IV.3.3, the Dirichlet problem has at most

one bounded Solution on 31 — D, hence 31 — D is parabolic as well. For the converse
assume that 31 is hyperbolic. Then, by [FK], §IV.3.4, there exists a harmonic function
w on 31 — D such that 0<w <lon 31 — D and w 1 on 3Z), hence 31 — D is

hyperbolic and we are done.

Let m e N, m > 2, u u% e (5ra and set Q M — ttm(SI).
Recall that Xu: (£2, -> M x Mi is a conformal harmonic map. Let

P £ ^m(SI) and let A be an annular end of (£2, (•, •)u) corresponding to p. Then
A is conformally equivalent to an annulus A(r, 1) := {z e C \ r < |z| < 1} for
some 0 < r < 1. Identify A A(r, 1) and notice that u extends continuously to
S(r) {z e C | |z| rj with u\s(r) u(p). By [Ba2], XU(A) is tangentto either
the upper or the lower light cone at Xu(p) inMxM1( In particular p is either a

strict local minimum or a strict local maximum of u. Then, up to a shrinking of A,
we can assume that u\s(i) is constant, where S(l) {z e C | |z| 1}. Since u\a
is harmonic, bounded and non-constant then r > 0 and A has hyperbolic conformal

type. This proves that

Claim4.2. (£2,(-,-)M) is conformally an open Riemann surface with the same genus
as M and m hyperbolic ends.

In particular, one has the following

Corollary 4.3. Assume M is a compact Riemannian surface. Let m > 2 and let

{p\,..., pm} C M. Then there exist an open Riemann surface 31 and a harmonic
diffeomorphism f: 31 M — {p\,..., pm} such that every end of3l is ofhyperbolic
type.

By Koebe's uniformization theorem, any finitely connected planar domain is

conformally equivalent to a domain in C whose frontier consists of points and circles.
In this setting the corollary above gives Item (i) in Theorem I, that is, one obtains
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the following existence result for harmonic diffeomorphism between hyperbolic and

parabolic domains in S2.

Corollary 4.4. Let m e N, m > 2, and let {p\,..., pm} C S2.

Then there exist a circular domain U in C and a harmonic diffeomorphism
0; U^S2~{Pl

Let us now show Theorem I (ii).
The proof of Theorem I (ii) fundamentally relies on the theory of surfaces of

constant Gaussian curvature in Euclidean space. Before going into the details of the

proof, let us State the necessary background on this theory.
Let S be a smooth surface and let X: S -> R3 be an immersion with constant

Gauss curvature K equal to 1. For convenience we assume that S is simply connected.

Up to changing orientation if necessary, the second fundamental form llx of X is

a positive definite metric. Therefore, 11^ induces on S a conformal strueture. Denote

by S the Riemann surface with underlying differentiable strueture S and conformal
strueture induced by 11^, and let z u + iv be a conformal parameter on S. Then

X may be understood as an immersion X: S -> R3 and, following the results by
Gälvez and Martmez [GM], §2.1, the equation K — 1 implies that

Xu — N x Nv and Xv —N x Nu, (4.1)

whereAf: S -> S2 denotes the unit normal vector field of X. It follows that N: S ->
S2 is a harmonic local diffeomorphism.

Conversely, let TV: S -> S2 be a harmonic local diffeomorphism. Then the map
X: S M3 given by (4.1) is an immersion with constant Gauss curvature K 1

(see [GM] again and recall that S is assumed to be simply connected).
On the other hand, in terms of the conformal parameter z u + iv, the first,

second and third fundamental forms of X: S M3 are given by

Ix {dX, dX)R3 Qdz2 + 2p\dz\2 + Qdz2,

llx (dX,dN)R3 2p\dz\2, (4.2)

lllx (dN, dN)R3 —Qdz2 + 2p\dz\2 — Qdz2,

where (•, -)R3 denotes the Euclidean metric in R3, Qdz2 is a holomorphic quadratic
differential on S9 and p and p are smooth positive real funetions on S9 see [GHM].
Then, as Klotz pointed out in Remark 1 of [Kl], there exists an immersion Y : S R3

achieving III^ as its first fundamental form, 11^ as its second and 1^ as its third ones

(recall that S is simply connected and observe that III^ is a positive definite metric).
Since X: S R3 is of constant Gauss curvature K — 1, it trivially follows from
(4.2) that so is Y: S R3.

Now we can prove Theorem I (ii).
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Theorem 4.5. There exists no harmonic diffeomorphism f: D -> S2 — {p}, p E S2.

Proof Let S be a simply connected Riemann surface and let cp: S -> s2 - M
be a harmonic diffeomorphism. To finish it suffices to check that S is conformally
equivalent to the complex plane C.

By [GM], since cp: S -> S2 — {p} is a harmonic (local) diffeomorphism, then,

up to replacing cp by —cp if necessary, there exists an immersion X: S -> R3 with
Gauss map cp, constant curvature Kx 1 and such that the conformal structure of S

is the one induced by the second fundamental form of X, 11^.

Denote by 1^ and lllx the first and third fundamental forms of X, respectively. By
[Kl] there exists another immersion Y : S -> R3 with constant curvature Ky l,and
such that the first, second and third fundamental forms of Y are given by \y IIIx,
IIy Hx and III7 Ix, respectively, and

the conformal structure of S is the one induced by II7 II7. (4.3)

Since cp: S S2 — {p} is a diffeomorphism and Iy HI* {d(p,dcp)R3

^*(('> *)§2) (here (•, -)S2 denotes the canonical metric in S2), then cp_1: §2 — {p}
(S,Iy) is an isometry. Since obviously Y : (S, I7) M3 is an isometric immersion,
then

Y o <p~l; S2 — {p} R3 is an isometric immersion

as well. Following [Po], p. 419, Y o cp~x is the restriction to S2 — {p} C l3 of a

rigid motion of M3. (An alternate proof of the rigidity of S2 — {p} in R3 can be

given using the local structure around the singularities, of immersed surfaces with
constant Gaussian curvature in R3 having isolated singularities and finite area, see

Theorems 5 and 7 of [GHM].) In particular, Y(S) C R3 is a once-punctured round
sphere. Therefore, the conformal structure induced on S by II7 11^ is that of C.
This and (4.3) conclude the proof.

Remark 4.6. Lemaire [Le] showed that if a harmonic map cp: D —TV with finite

energy satisfies that cp |§i is constant then cp is constant as well, where N is an arbitrary
Riemannian manifold. The above theorem particularly shows that the condition on
the energy of <p can be removed if <p is a diffeomorphism and N S2.

Finally Theorem I (iii) is a very special instance of the following

Proposition 4.7. Let 31 be a parabolic open Riemann surface, let N be an oriented
Riemannian surface and let f: 31 N be a harmonic local diffeomorphism. Sup-

pose either that N has Gaussian curvature Kx > 0 or that > 0 and N has no

flat open subset.

Then f is either holomorphic or antiholomorphic.
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Proof Assume for instance that (p preserves orientation and let us check that (p is

holomorphic. Let z (resp. (p) be a local conformal parameter in 31 (resp. in N).
The metric on N writes p{cp)\d(p\2. A conformal metric on 31 writes X(z)\dz\2.
Following [SY] we consider the following partial energy densities on 3l\

m2 p(4>(z)) d(p
2

and \d(p
2 p(4>(z)) d<p

2

m dz A(z) dz
(4.4)

Denote by J{(p) the Jacobian of (p. We have J{(p) \d(p\2 — \d(p\2. By our
hypothesis J{<p) > 0, that is, \d(p\ > \d(p\.

Reason by contradiction and assume that (p is not holomorphic, that is to say,
\d(p\ is not identically zero on Ä. In this case, its zeroes are isolated [SY]. Set

31* := 3l-{\d(p\ 0}. Wehave

lo§!i"IT<0 on<^*- (4-5)

By the Bochner formula (see again Chapter 1, §7, in [SY]):

A* log {^ 2**7(0). (4.6)
\°<P I

Now note that the parabolicity of 31 implies that of 31* (see Claim 4.8 below).

Suppose Kn >0. By equations (4.5) and (4.6), log j||j is a non-constant negative
subharmonic funetion on the parabolic surface 31 *, which is a contradiction. Suppose

now that Kjq > 0. Again, by the equations (4.5) and (4.6), the funetion log is

subharmonic and hence constant. From (4.6) we get KjqJ{(p) 0. Since J{<p) > 0,
we conclude that K# 0 on the open set (p (31*), which contradicts our hypothesis.

In the case when (p reverses orientation then a parallel argument gives that (p is

antiholomorphic. This concludes the proof.

Since in the setting of Theorem I (iii) the domains C — {z\,..., zm} and S2 —

UjLi Dj are not conformally equivalents, then the result holds.
For the lack of a reference, we now prove the following well known fact needed

in the proof of Proposition 4.7.

Claim 4.8. Let 31 be an open parabolic Riemann surface and let E C 31 be a closed
subset consisting of isolated points.

Then 31* := 31 — E is an open parabolic Riemann surface.

Proof The fact that 31* is an open Riemann surface is evident. Let us show that it
is parabolic. Indeed, consider B an open relatively compact disc in 31* with smooth

boundary and denote by Jf the Riemann surface with boundary Jf := 31* — B. To
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finish it is suffices to prove that Jsf is parabolic (see Remark 4.1). Let u : Jsf -> R be a

non-constantbounded harmonic functionwithwla^ 0- Since E consists of isolated

points then u extends harmonically to JV* U E 31 — B. Since 31 — B is parabolic
(see Remark 4.1 again), d(3l — B) 3JV* and u\sjf 0, then u is identically zero
on C 31 — B. This proves that is parabolic and we are done.

This completes the proof of Theorem I.

5. Maximal graphs and harmonic diffeomorphisms between surfaces

Let Ä be a Riemann surface and let TV be a Riemannian surface. A map X
(f,h): 31 -> N x Ri is conformal if and only if

3/
dx

(£)s 3/
3y

m2 and
Bf Bf
dx '

3y

3h 3h

dx 3y
' (5.1)

where z x + ty is a local conformal parameter on 31 and | • | and denote the

norm and metric on N, respectively. If in addition X is harmonic then the above

equalities hold if and only if the Hopf differential of / : 3t N,

dz
0>/

and the one of h: 31

blW=-( 3/ 2 3/ 2

— 2f(—,
dz 1 V dx 3y \dx dy IJ

I dz2

fdh\21? 1//3A\2 (dh\2 dh dh\
7

dy,

agree.
Furthermore, a conformal harmonic immersion X is spacelike (hence, a conformal

maximal immersion) if and only if

3/
dx

> (5.2)

On the other hand, let (p: 31 N be a harmonic map and denote by its Hopf
differential. Consider (31, n) a 2-sheeted covering of 31 such that := o n
has a well defined Square root, and write (cp(z)dz)2 on a local conformal

parameter z x + ty on 31. Observe that (31, n) is possibly branched at the zeros
of

Consider now (31, II) a covering of 31 such that <p := (p oft has no real periods,
and dehne

R N x Ri, (f^,h^),
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where

f(p := 0 ° n o n and := 94 j <pdz.

Notice that (31, II) is infinitely sheeted unless (p has no real periods (recall that the

periods are additive).
Clearly, the Hopf differentials of and h^ agree, so the above discussion gives

that Xq is a conformal harmonic map. Assume in addition that 0, and so /$,is a local
harmonic diffeomorphism. From (5.1) and Cauchy-Schwarz inequality one has

9/0
>

3/z0

3x 3x

Assume the equality holds at a point p e 31. Then (5.1) gives that, at the point p,
\^Ußy\ \dh(t)/dy\ as well and |(dfy/dx, dfy/dy)| |3/</>/3x| • W^/dyl This

contradicts that is a local diffeomorphism. Therefore 13/^/3x \ > |3/j0/3x| on 31

and Xfp : 31 -> Jsf x Ri is a possibly branched conformal maximal immersion (see

(5.2)).
In this way we have showed the following

Proposition 5.1. Let 31 be a Riemann surface, let N be Riemannian surface and let
(j)\ 31 -> N be a local harmonic diffeomorphism.

Then there exist a covering (31, n) of 31 and a possibly branched conformal
maximal immersion X$ such that (j) o n: 31 -> N.

Let us now focus on the particular case when U := 31 C C is a finitely connected
circular domain, N is the sphere S2 with a finite number of points removed and

(j) extends C1 to the closure U of U. Denote by the double of U (see [St] for
details on this construction). Recall that JV* is a compact Riemann surface carrying
an antiholomorphic involution $: JV* -> JV* having the boundary of U as set of
fixed points. Let O be a smooth quadratic differential on U and holomorphic on U.
Assume that O cp(z)dz2 with cp(x) e R for all x for any local conformal parameter
z x + ty on U applying a piece of the boundary dU of U into IcC, then O

extends holomorphically to in the form $*0 O.

Let (j): U -> N be a harmonic diffeomorphism extending C1 to U. Obviously 0
is constant over any connected component of 3U. Let z x + ty be a conformal

parameter on U withy|ac/ 0. Then30/3x 0 on dU, hence the Hopf differential
of (j) can be written on dU as

(®4>)\du --
1 3 cj)

3y

2
2dz (5.3)

In particular, extends holomorphically to JV* with ^*0^ This particularly
gives that

<l>0 has finitely many zeros on U. (5.4)
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Now, as above, we can take a 2-sheeted covering (U, II) of U such that :=
<l>0 o n has a well defined Square root. Write O (cp(z)dz)2 in a local conformal

parameter z on U. From (5.3) one obtains that cp(z)dz has no real periods. Then

taking into account (5.4) and following the discussion preceding Proposition 5.1 one
has the following

Theorem 5.2. Let (p: U -> S2 — {pi,..., pm} be a Harmonie diffeomorphism
extending C1 toU, where U is afinitely connected circular domain and {pi,..., pm }
is afinite subset in S2.

Then there exista 2-sheeted covering (U, II) ofU and apossiblyfinitely branched

conformal maximal immersionX^ (/^/z^): U -> S2xRi suchthat fy (poTi.

In the proof of the above theorem, we have used that (p extends C1 to U in order
to obtain that the Hopf differential of <p extends holomorphically to the double
of U. The authors do not know whether this hypothesis can be removed from the
Statement of the theorem.
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