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Harmonic diffeomorphisms between domains in the Euclidean
2-sphere

Antonio Alarcén and Rabah Souam*

Abstract. We study the existence or non-existence of harmonic diffeomorphisms between
certain domains in the Buclidean 2-sphere. In particular, we show the existence of harmonic
diffeomorphisms from circular domains in the complex plane onto finitely punctured spheres,
with at least two punctures. This result follows from a general existence theorem for maximal
graphs in the Lorentzian product M x 1, where M is an arbitrary n-dimensional compact
Riemannian manifold, n > 2. In contrast, we show that there is no harmonic diffeomorphism
from the unit complex disc onto the once-punctured sphere and no harmonic diffeomeorphisms
from finitely punctured spheres onto circular domains in the Euclidean 2-sphere.

Mathematics Subject Classification (2010). 53C43, 53C42, 53C50.

Keywords. Harmonic diffeomorphisms, maximal graphs.

1. Introduction

In 1952, Heinz [He] proved there is no harmonic diffeomorphism from the unit
complex disk [D onto the complex plane C, with the Euclidean metric. Later, Schoen
and Yau [SY] asked whether Riemannian surfaces which are related by a harmonic
diffeomorphism are quasiconformally related, and proposed to investigate whether
there is a harmonic diffeomorphism from C onto the hyperbolic plane H?. Markovic
[Ma] answered the first question in the negative, by showing an example consisting of
a pair of Riemann surfaces of infinite topological type. He also gave conditions under
which the question has a positive answer in the case of surfaces of finite topology.
Finally, Collin and Rosenberg [CR] gave an example of a harmonic diffeomorphism
from C onto H?, disproving the conjecture by Schoen and Yau [SY]. To do that, they
constructed an entire minimal graph X over 12 in the Riemannian product 1% x R,
with the conformal type of C. Then the vertical projection ¥ — T2 is a surjective
harmonic diffeomorphism. See [GR] for further generalizations.

* A. Alarcon is supported by Vicerrectorado de Politica Cientifica e Investigacion de la Universidad de Granada,
and is partially supported by MCYT-FEDER grants MTM2007-61775 and MTM2011-22547, Tunta de Andalucia
Grant PO9-FQM-5088, and the grant PYR-2(12-3 CEI BioTIC GENIL (CEB(9-0010} of the MICINN CEI
Program.
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Let S$2 and C denote the 2-dimensional Euclidean unit sphere and the Riemann
sphere, respectively. A domain in C is said to be a circular domain if every connected
component of its boundary is a circle.

In this paper we study the existence or non-existence of harmonic diffeomorphisms
between certain domains in §2. Our main result asserts:

Theorem L (i) For any m € N, m = 2, and any subset {py,...,pm} C S§?
there exist a circular domain U C C and a harmonic diffeomorphism ¢: U —
S —{p1.... Pum}

(ii) There exists no harmonic diffeomorphism ¢ D — 82 — {pl.

(iii) For any m € N, any subset {zq,...,zm} C C and any pairwise disjoint
closed discs D1, ..., Dy in S? there exists no harmonic diffeomorphism r: C —
{Zl, i .,Zm} — §2 — U;-nzl Dj.

Notice that Theorem I is related to Schoen and Yau’s questions [S Y], since circular
domains are of hyperbolic conformal type whereas € with a finite set removed is
parabolic. Moreover, it is worth mentioning thatItems (i) and (iii) actually follow from
much more general results (see Corollary 4.3 and Proposition 4.7). Concretely, we
show that, given a compact Riemannian surface Ml and a subset { p, ..., pmt C M,
m > 2, there exist an open Riemann surface R and a harmonic diffeomorphism
$p: R — M —{p1.,..., pm} such that every end of R is of hyperbolic conformal
type (see Theorem 1.2 of [Ma] for a good setting).

Our strategy to show the harmonic diffeomorphism of Item (i) in Theorem I
consists of constructing a maximal graph X over S2—{p1, ..., pm} in the Lorentzian
manifold S§? x R, with the conformal type of a circular domain. Then, the projection
Y — 8% —{p1,..., pm} is a surjective harmonic diffeomorphism.

In this direction, we prove the following general existence result:

Theorem I1. fet M = (M, (-, )pm) be a compact Riemannian manifold without
boundary of dimension n € N, 1 > 2, and denote by Ml x R the product manifold
M x R endowed with the Lorentzian metric {-, )M — di?. Let m € N, m > 2, and
let W= {(pi.ti)}i=1....m be a subset of M x Ry such that

o pi # py, and

o |t —t;| <distm(p;, pj) forall{i, j} C{l,... ., m}withi # j.

Then there exists exactly one entire graph () over M in Ml X Ry such that
e A cC M), and

o 3X(N) — N is a spacelike maximal graph over M — {p;}i_1 . m.

]

Moreoverthe space &y, of entire maximal graphs over Ml in Ml xRy with precisely
w singularities, endowed with the topology of uniform convergence, is non-empty,
and there exists an m!-sheeted covering, & — &, where &y, is an open subset

of (M x R)™,
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Let us point out that our method is different from the one of Collin and Rosen-
berg [CR] and strongly relies on the theory of maximal hypersurfaces in Lorentzian
manifolds. More precisely, it is based on the construction of maximal hypersurfaces
with isolated singularities in Lorentzian products M x Ry. The study of complete
maximal surfaces, with a finite number of singularities and their moduli spaces in
the 3-dimensional Minkowski space .5, was developed by Fernandez, Ldpez and
Souam [FLS]. Their study strongly relies on the Weierstrass representation for max-
imal surfaces in IL® . Our approach here relies on a different idea which consists of
dealing with the existence problem in Theorem II as a generalized Dirichlet problem.
Let us also point out that Klyachin and Miklyukov [KM] have obtained results on the
existence of solutions, with a finite number of singularities, to the maximal hypersur-
face equation in the n-dimensional Minkowski space L” with prescribed boundary
conditions.

Harmenic maps from Riemann surfaces into S? are related to other natural geo-
metric theories. For instance, the Gauss map of constant mean curvature surfaces in
R3 is harmonic for the conformal structure induced by the immersion [Ru] (see also
[Ke]), whereas the Gauss map of positive constant Gaussian curvature is harmonic for
the conformal structure of the second fundamental form [GM]. The latter statement is
the key in the proof of Theorem I (ii). More precisely, we show that if the Gauss map
of a surface of positive constant curvature in R? is a diffeomorphism onto §2 — {p},

then the conformal structure induced by the second fundamental form of the surface
is that of C.

On the other hand, using the harmonicity of the Gauss map of surfaces of positive
constant curvature in R?, harmonic diffeomorphisms from circular domains into
domains in S? bounded by a finite family of convex Jordan curves and satisfying a
Neumann boundary condition have been recently shown by Galvez, Hauswirth and
Mira [GHM]. Itis an open question whether a harmonic diffeomorphism as those in
Theorem I(i) can be realized as the Gauss map of either a constant mean curvature
or a constant Gaussian curvature surface in R3.

The paper is laid out as follows. In Section 2 we state the necessary notations
and preliminaries on harmonic maps between Riemannian manifolds and maximal
graphs in Lorentzian product spaces. In Sections 3 and 4 we prove Theorems Il and I,
respectively. Also in Section 4 we introduce some background on both Riemann
surfaces and surfaces of positive constant curvature, for a well understanding of
the proofs of items (i) and (ii) in Theorem I. Finally, in Section 5 we discuss the
relation between harmonic diffeomorphisms U — S§2 — {py,..., pm} as those of
Theorem I (i) and conformal maximal immersions U — S? x R;.
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2. Preliminaries

Let M = (M,g) and N = (N, h) be smooth Riemannian manifolds. Given a
smooth map f: M — N and a domain Q@ C M with piecewise C! boundary 3%,
the quantity

1
Ea(f) = 5 [ 147 PV, 1)

is called the energy of f over Q. Here d V denotes the volume element of M, and
| - | the norm on (N, h).

A smooth map f: M — N is said to be harmonic if it is a critical point of
the energy functional, that is, if for any relatively compact domain €2 C M and any
smooth variation ¥ : M X (—e,e) — N of f supportedin Q2 (i.e., F is a smooth map,
fo= fand filMm—q = flm—g forallt € (—e¢,¢), where f; := F(-,1): M - N
and € > ), the first variation %Eg(ﬁ)hzo is zero.

If M is 2-dimensional, that is to say, a Riemannian surface, then the energy
integral (2.1) is invariant under conformal changes of the metric g, hence so is the
harmonicity of f. Therefore, the harmonicity of a map from a Riemann surface to a
Riemannian manifold is a well defined notion. On the other hand, the harmonicity of
a map is not preserved under conformal changes in the metric of the target manifold.

See the surveys [EL1], [EL2], [HW] for appropriate references.

Remark 2.1. Throughout the paper we denote by Ml = (M, {-,-)p1) a compact
n-dimensional Riemannian manifold without boundary, n € N, 1 > 2.

We denote by M x R; the Lorentzian product space M x R endowed with the

Lorentzian metric
(o) = myg (s ohm) — R (dr?),
where 7y and g denote the projections from M x R onto each factor. For simplicity,
we write
() = (- om —de>

A smooth immersion X : ¥ — M x R; of a connected n-dimensional manifold

3 is said to be spacelike if X induces a Riemannian metric X™*({-,-)) on X.

Let £2 < M be a connected domain and let #: £ — R be a smooth function.
Then the map

X" Q—->MxRy, X"(p)=(p,u(p)) foral p e Q,

determines a smooth graph over © in Ml x Ry. The metric induced on Q by (-, -} via
X* is given by

(o o= (X)) = (o — du?,
hence X* is spacelike if and only if |Vu| < 1 on 2, where Vu denotes the gradient
of u in € and |Vu| denotes its norm, both with respect to the metric (-,-)p in €.
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In this case the function # is said to be spacelike as well. If u is spacelike, then the
mean curvature f{ : Q — R of X* is given by the equation

1 vV
7= Low( 2 )

n V91— |Vul|?

where Div denotes the divergence operator on £2 with respect to (-, -)m.

A smooth function ¥: Q@ — R and its graph X*: Q — M x R are said to be
maximal if u is spacelike and H vanishes identically on £2.

If K C M is compact then a function #: K — R is said to be smooth (resp.,
spacelike, maximal) if and only if u extends to an open domain containing XK as a
smooth (resp., spacelike, maximal) function.

A locally Lipschitz function  : 2 — R is said to be weakly spacelike if and only
it |[Vu| < 1 a.e. in Q. In this case the graph X* is said to be weakly spacelike as
well. If u is weakly spacelike then the area of X*(£2) is given by

A1) :=/ V1= |Vul2 d Vi, (29
2

where d Vg denotes the volume element of (-, -)p1. A smooth u: Q — R is a critical
point of (2.2) if and only if # is maximal.

Ifu: Q2 — R is maximal then X*: (2, {-,-)y) — (M x Ry, {-,-}) is a harmonic
map. In particular

Id: (Qz (" )u) = (97 (" )M)

is a harmonic diffeomorphism, and
u: (2, )) >R

is a harmonic function.

3. Moduli space of maximal graphs with isolated singularities.
Proof of Theorem II

Throughout this section let m € N and let A = {(p;,4)}" | denote a set of points
in Ml x R such that p; # p;ifi # jforalli, j € {1,... m}.
We denote by g the space of continuous functions v : M — R such that

* u(p;) =t foralli =1,...,m, and
TR — U|M—{p, i | is maximal.

The following claim trivially follows from the maximum principle for maximal
surfaces.
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Claim 3.1. If m = | then WMty consists of the constant function u = 1.

From now on in this section assume that m > 2. The set 2 is said to satisty the
spacelike condition if and only if

|t; — ;| < distpg(p;, p;) foralli,j e {l,...,m}, i # j,

where distyg (-, -) means distance in (M, (-, -}p1)-
From now on assume that 2 satisfies the spacelike condition.
For each (i,n7) € {1,...,m} x N consider an open disk B} in M satisfying

that 9B is a smooth Jordan curve, B_f N B_f =@iti # j, Bf‘H C B/, and
{pi} = NuenB!'. Define A, = M — ;2 , B", n € N. Let {¢"},en be a sequence
of real numbers converging to #;,i = 1,..., .

Consider the function ¢, : dA;, — R such that

(pn|33in = Il-n, i = 1 enntil (3.1)

Since U is finite then U satisfies the spacelike condition if and only if there exists
egr € (0, 1) such that |4; —¢;| < ey -distm(p;. pj) foralli # j. It follows that there
exists 79 € N such that for each n > ny, the function ¢, is ey ,-Lipschitz for some
€91 € (O, 1)

It is proved in [Fe], p. 202, that there exists an eg ,-Lipschitz extension ¢, of ¢,
to Ap,. More precisely, such an extension is given by the formula:

On(p) = inf{@, (x) + ey ,distm (p. x), x € 0A,}, for p € A,,. (3.2)

Notice that ¢, is smooth near dA,,. A simple approximation argument then shows
that

Claim 3.2. For all n > ny, there exists a smooth spacelike function ¢,: A, — R
such that @n|aB§“ = i=1,...,m

Then by Theorem 5.1 of [Ge], there exists a maximal function u, : A, — R such
that
tnlogr = @nlopr = 1!, forall n > no. (3.3)

Notice that the sequence {u,}nen 1S uniformly bounded (the u,’s are maximal
and there are uniform bounds on the boundary of the A;’s). Moreover |[Vu,| < 1 on
Ay, hence Ascoli—Arzela’s Theorem and a diagonal argument give that, up to passing
to a subsequence,

Claim 3.3. {u,},en uniformly converges on compact sets of
M—{p:};jL, = U Ay
nelN

to a weakly spacelike functionii: M — {p;}> | — R.
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Moreover, from (3.3), the convergence of {17}, en to £; and the Lipschitz conti-
nuity of # one has that

Claim 3.4. i extends to a weakly spacelike functionu: M — R with u(p;) = t; for
alli = Loyt

By the results in [Bal], §6, # is a maximal function except for a set of points

A C M~ {p}, givenby A := {p € M~ {p}, | (p.ii(p)) = ¥(s0)
for some 0 < sy < 1, where y: [0,1] — M x Ry is a null geodesic such that

y((0.1)) € X*(M = {p:}1 ) and ma({y(0). y(D}) € {p:}i 4}
Since 2 satisfies the spacelike condition then A = ¢ and

Claim 3.5. u € My,
Now let us show the following
Claim 3.6. My consists of exactly one element.

Proof. Consider 11,1, € Wtg. By compactness of M there exists r; € R, 1 > 0,
such that r; 4+ 11 > u» on M and the equality holds at a non-empty subset W C M.
If 1 > O then, since uq, 4> € Wiy, we must have W N (M — {p;}" ;) # 0. By the
maximum principle for maximal surfaces r; + #; = u, on M. This contradicts the
fact that 1,1, € Mig. Therefore r1 = 0 and so 1y > u,. In a symmetric way we
also have u, > 1. Therefore #; = 1, and we are done. L]

At this point notice that the first part of Theorem II in the introduction follows
from Claims 3.5 and 3.6. Even more,

Remark 3.7. The first part of Theorem II holds with the same proof if in the sentence
e 3(A) — A is a spacelike maximal graphover M — {p; }i 1, .m

one changes “maximal” by “constant mean curvature”.

Write Wty = {usg}.

Denote by &, the set of functions g such that [ consists of m points, 9 satisfies
the spacelike condition and |Vig| = 1 at any point in spg(91).

Consider a sequence {uw, frenufoy C Gm. We say that {%,}eny — U if
and only if, up to a relabeling, {distpxr ((p].1]"). (Y, I?))}neN — Oforalli =
l,...,m, where 2; = {(pfc,llk)}izl _____ m forall &k € N U {0}, and distpixg (-, -)
means distance in Ml x R with respect to the metric {-, -}p + d£2. Likewise we define
the convergence of a sequence of families of wt points in M.

Claim 3.8. {uw, }nen uniformly converges to us, in the C? topology in M if and
only if {2y inen — Y.
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Proof. Assume first that {ig, },en uniformly converges to uy, in the C 9 topology
in M. Up to passing to a subsequence, assume that {mng(;)}zen 1S convergent
and let us show that {mp (W) }nen — 7T (o). Indeed, suppose for a moment that
there exist p € mn(Up) and an open geodesic disc B centered at p such that, up
to passing to a subsequence, mp(2,;) N B = ¥ for all n € N. Reasoning as in
the paragraph preceding Claim 3.5, Bartnik’s results [Bal] give that ugy, is smooth
and spacelike around p, a contradiction. Then mpg (o) C lim,—ao T (2L,). Since
both sets consists of exactly m points then they agree. Since {ug, fnen — Uy, and
{T[M (g[n)}nEN — ™M (g[o) then {an}nEN -7 g[0 as well.

For the converse assume that {91, },,eny — Ho. Foreach (i,n,k) € {1,... ,m} x

N x N consider an open disc Bf‘:n in Ml such that BBffn is a smooth Jordan curve,
nk ~ pk es g : phtl k k
B, NB;,=0ifi # j.B C B/, pi € B, and

i.n

for any compact K C M — {p?, — pgn} there

34
exists ny € N such that K C A? foralln > ny, B4)
where U, = {(pY.47), ..., (ph.13)} and A’;‘; = M-, Blkn Letu’:‘;: Aﬁ — R
be a maximal function satisfying u§| apk = 1. (See the discussion preceding
Claim 3.3.) By Claims 3.3, 3.4 and 3.5, the sequence

{Mﬁ}keN uniformly converges in the C° topology on M to Uy, - (3.5)

Taking into account (3.4), a similar argument gives that the sequence
{u,{tr (”)}neN uniformly converges in the C° topology on M to U, (3.6)

as well, where f: N — N is any map with f(n) = n foralln € N. Fix p €
M —{p? ..., p%}and € > 0. From (3.5), forany n € N there exists k, € N such
that

[k —ug, |(p) < €/2 forallk > k,, (3.7)
h

where we are assuming that # and k are large enough so that p € Aﬁ . Set vy, 1= u,

for h := max{k,,n}. Then (3.6) gives ny € N such that
|up — ua,|(p) <€/2 foralln = ng. (3.8)

Combining (3.7) and (3.8) one has that |ue, — uw,|(p) < € forall n > ny. Since
also {2, }peny — Uy, we conclude that {ug, },en simply converges to ug,,. As M
is compact and the uy, are weakly spacelike, this convergence is uniform on Ml and
we are done. (]

Consider m different points {p1,..., pm}t C Mand take 1y = -+ = f1—1 #
fm € R such that A := {(p;,1;)}i=1.... m satisfies the spacelike condition. This is
nothing but choosing /1 and /1y close enough. By Claim 3.5, 19 1s well defined and
by the maximum principle for maximal surfaces, 1y € &,. Hence,
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Claim 3.9. &, # 0 for any m > 2.

Letu € &y, By definition, amark inu isanordering O = ((g1,71),. ... (Gm, m))
of the points in 2[, where # = ug. Then we say that (1, O) is a marked function. We
denote by & the space of marked functions in &y,. We define the maps

s1: G — Gy, s1(u, D) = u,
50 Gr = (M xR)™, s,(u, D) = 9O.

By Claim 3.6, the map s, is injective. Moreover,
Claim 3.10. s,(&)) is an open subset of (M x R)™.
Proof. Let (u, D) € &} . Write

D= ((CIIs ') P (Qmsrm)) and U = {(CIIs Pi)ssess (Qms Tm )}

Since # = ug then ¥ satisfies the spacelike condition. Reason by contradiction and

assume that there exists a sequence {9, = ((¢7.7]), ..., (g%, 7] )) inen converging
to © in the metric topology of (Ml x R)™ and O, ¢ $(&}) forall n € N. Write
A, = {g7.77). ... (g, ri)} and, up to passing to a subsequence, assume that 91,

satisfies the spacelike condition forall 7 € N (recall that 2 does s0). Write u,, = uyy,,,
n € N. By Claim 3.8, {1, },<n uniformly converges to u in the C° topology on M.
If, up to passing to a subsequence, u, : Ml — R extends as a spacelike function to
a point in wpg (20, ), that can be assumed to be ¢f without loss of generality, n € N,
then again Bartnik’s results [Bal] give that # extends as a spacelike function to gy
as well, a contradiction. Then u, € &, (recall that 2[,, consists of m peints), hence
(Un, Op) € & and O, € 5,(&), a contradiction. This proves the claim. O

We set G = 5,(®7). We can identify &2, endowed with the topology in-
duced by the injection s, into (M x R)™, with &y,. The permutation group o
of order m, acts naturally on &} as follows: for 1 € oy and (4, D) € &
with © = ((g1,71), .- -, (Gm, ¥ m)), we set 7.(u, D) = (u, (D)) where 1(H) =
({(Grq1y. Tz(1))s - - - » (Ge(m) - Tr(m)y)). This action is clearly free and properly discontin-
uous and the orbit space is naturally identified to &,. By Claim 3.8 the topology
induced by the covering map coincides with the topology of C°-uniform convergence
of graphs on M.

This completes the proof of Theorem II.

4. Existence or non-existence of harmonic diffeomorphisms. Proof of Theorem I

Throughout this section we assume that Ml = (M., (-, -)n) is of dimension n = 2,
hence, a compact Riemannian surface without boundary.
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Letus recall the following classification of Riemann surfaces. A compact Riemann
surface (without boundary) is said to be elliptic. An open Riemann surface is said
to be hyperbolic if it carries non-constant negative subharmonic functions, and it is
said to be parabolic otherwise. A Riemann surface R with non-empty boundary is
said to be parabolic if bounded harmonic functions on R are determined by their
boundary values. Otherwise, R is said to be hyperbolic. (See [AS], [Pe] for a
good setting.) For instance, R; = {z € € | 0 < |z| < 1} is parabolic whereas
Ry=4{zeC|a<|z|] <1}, a € (0,1), is hyperbolic.

Remark 4.1. An open Riemann surface R is parabolic if and only if R — D is
parabolic for any open relatively compact disc D C R with smooth boundary.

Indeed, if R is parabolic then, by [FK], §1V.3.3, the Dirichlet problem has at most
one bounded solution on R — D, hence R — D is parabolic as well. For the converse
assume that R is hyperbolic. Then, by [FK], §IV.3.4, there exists a harmonic function
wonR—Dsuchthat0 < w < lon R — D and w = 1 on 3D, hence R — D is
hyperbolic and we are done.

Letm € N,m > 2, u = uy € &, and set @ = M — mpg ().

Recall that X*: (€2, {-,-)y) — M x R; is a conformal harmonic map. Let
p € () and let A be an annular end of (2, (-, -),) corresponding to p. Then
A is conformally equivalent to an annulus A(r, 1) == {z € C | r < |z|] = 1} for
some O < 7 < 1. Identify A = A(r, 1) and notice that u extends continuously to
S(r) =14z € C||z| = r} withu|syy = u(p). By [Ba2], X*(A) is tangent to either
the upper or the lower light cone at X*(p) in Ml x Ry. In particular p is either a
strict local minimum or a strict local maximum of #. Then, up to a shrinking of A,
we can assume that u|g(yy is constant, where S(1) = {z € C | |z| = 1}. Since u|4
is harmonic, bounded and non-constant then » > 0 and A has hyperbolic conformal
type. This proves that

Claim 4.2. (2, {-,-)y,) is conformally an open Riemann surface with the same genus
as Ml and w hyperbolic ends.

In particular, one has the following

Corollary 4.3. Assume M is a compact Riemannian surface. Let mi > 2 and let
{p1.--., pmt C M. Then there exist an open Riemann surface R and a harmonic
diffeomorphism¢: R — M —{py,..., pm} suchthat every end of R is of hyperbolic
type.

By Koebe’s uniformization theorem, any finitely connected planar domain is con-
formally equivalent to a domain in € whose frontier consists of points and circles.
In this setting the corollary above gives Item (i) in Theorem I, that is, one obtains
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the following existence result for harmonic diffeomorphism between hyperbolic and
parabolic domains in §2.

Corollary 4.4. Let i € N, m > 2, and let {p1, ..., pm} C S2.
Then there exist a circular domain U in C and a harmonic diffeomorphism

¢:U—>Sz—{p1,...,pm}.

Let us now show Theorem I (ii).

The proof of Theorem I(ii) fundamentally relies on the theory of surfaces of
constant Gaussian curvature in Euclidean space. Belore going into the details of the
proof, let us state the necessary background on this theory.

Let S be a smooth surface and let X : § — R be an immersion with constant
Gauss curvature K equal to 1. For convenience we assume that .S is simply connected.

Up to changing orientation if necessary, the second fundamental form Iy of X is
a positive definite metric. Therefore, Iy induces on § a conformal structure. Denote
by § the Riemann surface with underlying differentiable structure .S and conformal
structure induced by Iy, and let z = u + v be a conformal parameter on §. Then
X may be understood as an immersion X : § — R? and, following the results by
Galvez and Martinez [GM], §2.1, the equation K = 1 implies that

Xy, =NxNy, and X, =—N x Ny, 4.1)

where N : § — $2 denotes the unit normal vector field of X. It follows that N : § —
S? is a harmonic local diffeomorphism.

Conversely, let N : § — §2 be a harmonic local diffeomorphism. Then the map
X: 8 — R3 given by (4.1) is an immersion with constant Gauss curvature K = 1
(see [GM] again and recall that S is assumed to be simply connected).

On the other hand, in terms of the conformal parameter z = u + 1v, the first,
second and third fundamental forms of X : § — R are given by

Iy = {(dX,dX)ps = Qdz* + 2u|dz|* + Qdz?,
My = (dX,dN)gs = 2p|dz|?, (4.2)
Hly = (dN.dN)ps = —Qdz* + 2uldz|* — QdZ?,

where (-, -3 denotes the Euclidean metric in R>, (dz? is a holomorphic quadratic
differential on §, and ¢ and p are smooth positive real functions on §, see [GHM].
Then, as Klotz pointed outin Remark 1 of [K1], there exists animmersionY : § — R3
achieving Illy as its first fundamental form, Iy as its second and Ly as its third ones
(recall that § 1s simply connected and observe that Illy is a positive definite metric).
Since X: § — R? is of constant Gauss curvature K = 1, it trivially follows from
(4.2) thatsois Y : § — R3.
Now we can prove Theorem I (ii).
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Theorem 4.5. There exists no harmonic diffeomorphism ¢ : ) — S2 —{p}, p € §2.

Proof. Let § be a simply connected Riemann surface and let ¢: § — S? — {p}
be a harmonic diffeomorphism. To finish it suffices to check that § is conformally
equivalent to the complex plane C.

By [GM], since ¢: § — S2 — {p} is a harmonic (local) diffeomorphism, then,
up to replacing ¢ by —¢ if necessary, there exists an immersion X : § — R? with
Gauss map ¢, constant curvature Ky = | and such that the conformal structure of §
is the one induced by the second fundamental form of X, Ily.

Denote by Iy and Illy the first and third fundamental forms of X, respectively. By
[K1] there exists anotherimmersion Y : § — R? with constant curvature Ky = 1, and
such that the first, second and third fundamental forms of ¥ are given by Iy = Illy,
Iy = Ily and Iy = Iy, respectively, and

the conformal structure of § is the one induced by Iy = Ily. (4.3)

Since ¢: 8§ — S2 — {p} is a diffeomorphism and Iy = Iy = {(d¢,d@)ps =
@*({-,-)g2) (here (-, -)g2 denotes the canonical metric in §2), then ¢~ !: 82 — {p} —
(8,1y) is an isometry. Since obviously ¥ : (§,Iy) — R? is an isometric immersion,
then

1

Yo ': 82— {p} — R? is an isometric immersion

as well. Following [Po], p. 419, ¥ o ¢~ ! is the restriction to S — {p} C R3 of a
rigid motion of R3. (An alternate proof of the rigidity of $? — {p} in R> can be
given using the local structure around the singularities, of immersed surfaces with
constant Gaussian curvature in R? having isolated singularities and finite area, see
Theorems 5 and 7 of [GHM].) In particular, ¥(8) C IR? is a once-punctured round
sphere. Therefore, the conformal structure induced on § by Illy = llx is that of C.
This and (4.3) conclude the proof. L]

Remark 4.6. Lemaire [Le] showed that if a harmonic map ¢ : I — N with finite
energy satisfies that ¢|g1 is constant then ¢ is constant as well, where N is an arbitrary
Riemannian manifold. The above theorem particularly shows that the condition on
the energy of ¢ can be removed if ¢ is a diffeomorphism and N = S2.

Finally Theorem I (iii) is a very special instance of the following

Proposition 4.7. Let R be a parabolic open Riemann surface, let N be an oriented
Riemannian surface and let ¢ R — N be a harmonic local diffeomorphism. Sup-
pose either that N has Gaussian curvature Ky > 0 orthat Ky > 0 and N has no
flat open subset.

Then ¢ is either holomorphic or antiholomorphic.
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Proof. Assume for instance that ¢ preserves orientation and let us check that ¢ is
holomorphic. Let z (resp. ¢) be a local conformal parameter in R (resp. in N).
The metric on N writes p(¢)|d¢|?>. A conformal metric on R writes A(z)|dz|?.
Following [SY] we consider the following partial energy densities on R:

p(p(z)) |39 |? =2 Plp(2))|d¢
i) |az| M 091 = az) |9z

2
. (4.4)

0¢° =

Denote by J(¢) the Jacobian of ¢. We have J(¢) = [0¢|* — |d¢|2. By our
hypothesis J(¢) > 0, that is, |0¢| > |9¢].
Reason by contradiction and assume that ¢ is not holomorphic, that is to say,

|0¢| is not identically zero on [R. In this case, its zeroes are isolated [SY]. Set
R* := R —{|d¢| = 0}. We have

3
log M <0 onR*. (4.5)
|0
By the Bochner formula (see again Chapter 1, §7, in [SY]):
3
A log % = 2Kn J($). (4.6)

Now note that the parabolicity of R implies that of R* (see Claim 4.8 below).

Suppose Ky > 0. By equations (4.5) and (4.6), log {—% is a non-constant negative
subharmonic function on the parabolic surface R*, which is a contradiction. Suppose

now that Ky > 0. Again, by the equations (4.5) and (4.6), the function log % is
subharmonic and hence constant. From (4.6) we get Ky J(¢) = 0. Since J(¢) > 0,
we conclude that Ky = 0 on the open set ¢(R*), which contradicts our hypothesis.

In the case when ¢ reverses orientation then a parallel argument gives that ¢ is

antiholomorphic. This concludes the proof. (]

Since in the setting of Theorem I (iii) the domains C - {z1,...,Zm} and S2 —
U;-nzl D are not conformally equivalents, then the result holds.

For the lack of a reference, we now prove the following well known fact needed
in the proof of Proposition 4.7.

Claim 4.8. Let R be an open parabolic Riemann surface and let E C R be a closed
subset consisting of isolated points.
Then R* := R — E is an open parabolic Riemann surface.

Proof. The fact that R* is an open Riemann surface is evident. Let us show that it
is parabolic. Indeed, consider B an open relatively compact disc in R* with smooth
boundary and denote by N the Riemann surface with boundary & := R* — B. To
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finish it is suffices to prove that N is parabolic (see Remark 4.1). Letu: & — Rbea
non-constant bounded harmonic function with |54 = 0. Since £ consists of isolated
points then u extends harmonically to & U £ = R — B. Since R — B is parabolic
(see Remark 4.1 again), (R — B) = dN and u|s4 = 0, then u is identically zero
on N C R — B. This proves that N is parabolic and we are done. O

This completes the proof of Theorem L.

5. Maximal graphs and harmonic diffeomorphisms between surfaces

Let R be a Riemann surface and let N be a Riemannian surface. A map X =
(f.h): R — N xR, is conformal if and only if

af |? (ak)z_ 2 (ah)z
ax ax/  |dy ay
where z = x + 1y is a local conformal parameter on R and | - | and {, ) denote the

norm and metric on N, respectively. If in addition X is harmonic then the above
equalities hold if and only if the Hopf differential of f: R — N,

(5 e = (5] -1l -2 (5 e
and theoneof h: R — R,

dz ~ az ox
2 1 (dh\? oh oh dh
oo (= (- () 2
dz 4\ \dx ay dax dy
agree.

Furthermore, a conformal harmonic immersion X is spacelike (hence, a conformal
maximal immersion) if and only if
2
52
(Bx ) &2

af |?
dx

On the other hand, let L: R — N be a harmonic map and denote by @y its Hopt

differential. Consider (,R IT) a 2-sheeted covermg of R such that CI>¢ = Py01Il

has a well defined square root, and write CI>¢ = (¢(z)dz)? on a local conformal

(5.1)

(Bf 8f> _ h ok

ax oyl axay’

ayl

parameter z = x 4+ 7y on R. Observe that (R, IT) is possibly branched at the zeros
of q)¢.
Consider now (ﬁ, l:I) a covering of R such that ¢ := @ o I1 has no real perioads,
and define
Xo: R— NxRy, X4=(fp.hg)
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where

f¢::¢0ﬁ0ﬁ and hg ::E}if(ﬁdz.

Notice that (ﬁ, fl) is infinitely sheeted unless ¢ has no real periods (recall that the
periods are additive).

Clearly, the Hopf differentials of fs and iy agree, so the above discussion gives
that X4 is a conformal harmonic map. Assume in addition that ¢, and so fy, is alocal
harmonic diffeomorphism. From (5.1) and Cauchy—Schwarz inequality one has

o
ox

> | 2he
| ox

Assume the equality holds at a point p € R. Then (5.1) gives that, at the point p,

18f/37| = |9hs/0y| as well and | (8fg/x . 0f5/0)| = |3f/0x| - |3 /Dy|. This
contradicts that fy is a local diffeomorphism. Therefore |0fg/0x| > |0hy/0x| on R
and Xg: R—> NxRjyisa possibly branched conformal maximal immersion (see

(5.2)).

In this way we have showed the following

Proposition 5.1. Let R be a Riemann surface, let N be Riemannian surface and let
¢: R — N be alocal harmonic diffeomorphism.

Then there exist a covering (ﬁ, IT) of R and a possibly branched conformal
maximal immersion Xg = (f3.h¢): R — N xRy suchthat fy = poIl: R — N.

Let us now focus on the particular case when U := R C C is afinitely connected
circular domain, N is the sphere S? with a finite number of points removed and
¢ extends C! to the closure U of U. Denote by N the double of U (see [St] for
details on this construction). Recall that .V is a compact Riemann surface carrying
an antiholomorphic involution ¢: & — A having the boundary of I/ as set of
fixed points. Let ® be a smooth quadratic differential on U and holomorphic on U.
Assume that @ = ¢(z)dz? with ¢(x) € R forall x for any local conformal parameter
z = x 4+ 1y on U applying a piece of the boundary dU of U into R C C, then &
extends holomorphically to . in the form $*® = &.

Let ¢: U — N be a harmonic diffeomorphism extending C! to U. Obviously ¢
is constant over any connected component of 9U. Let z = x 4 ¢y be a conformal
parameter on {7 with y|3;7 = 0. Then d¢/3x = 0 on 31/, hence the Hopf differential
of ¢ can be written on dU as

2
dz?. (B3

1|3
D)oy = —=| 2
(Po)lov 4‘8y

In particular, ®4 extends holomorphically to N with §*®, = ®,. This particularly
gives that
@4 has finitely many zeros on U. (5.4)
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Now, as above, we can take a 2-sheeted covering ([7 . IT) of U such that §>¢ =
®4 o I1 has a well defined square root. Write ® = (¢(z)dz)? in a local conformal
parameter z on U. From (5.3) one obtains that ¢(z)dz has no real periods. Then
taking into account (5.4) and following the discussion preceding Proposition 5.1 one
has the following

Theorem 5.2. Let ¢: U — S? — {py,..., pm} be a harmonic diffeomorphism
extending C1to U, where U is afinitely connected circular domain and{py., . .., pm}
is a finite subset in S2.

Then there exist a2-sheeted covering (ﬁ, IT) of U and a possibly finitely branched
conformal maximal immersion X¢ = (f¢, he¢): U — S2xRy such that Jo = ¢oll

In the proof of the above theorem, we have used that ¢ extends C! to U in order
to obtain that the Hopf differential @4 of ¢ extends holomorphically to the double
of U. The authors do not know whether this hypothesis can be removed from the
statement of the theorem.
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