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Local-global principles for Galois cohomology

David Harbater, Julia Hartmann, and Daniel Krashen*

Abstract. This paper proves local-global principles for Galois cohomology groups over function
fields F of curves that are defined over a complete discretely valued field. We show in particular
that such principles hold for Hn (F, Z/mZ(n — 1)), for all n > 1. This is motivated by work of
Kato and others, where such principles were shown in related cases for n 3. Using our results
in combination with cohomological invariants, we obtain local-global principles for torsors and
related algebraic structures over F. Our arguments rely on ideas from patching as well as the
Bloch-Kato conjecture.

Mathematics Subject Classification (2010). Primary 11E72, 13F25, 14H25; Secondary
12G05, 20G15.
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1. Introduction

In this paper we present local-global principles for Galois cohomology, which may be

viewed as higher-dimensional generalizations of classical local-global principles for
the Brauer group. These results then lead to local-global principles for other algebraic
structures as well, via cohomological invariants.

Recall that if F is a global field, the theorem of Albert-Brauer-Hasse-Noether

says a central simple F-algebra is isomorphic to a matrix algebra if and only if this is

true over each completion Fv of F. Equivalently, the natural group homomorphism

Br(F) —>• f] Br(F„)
veQ p

is injective, where Qp is the set of places of F.
Kato suggested a higher dimensional generalization of this in [Kat86], drawing on

the Observation that the above result provides a local-global principle for the m-torsion

*The first author was supported in part by NSF grant DMS-0901164. The second author was supported by
the German Excellence Initiative via RWTH Aachen University and by the German National Science Foundation
(DFG). The third author was supported in part by NSF grant DMS-1007462.
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part of the Brauer group Br(F)[m] H2(F,Z/mZ(l)). (Here Z/mZ(ri) denotes

for m not divisible by char(,F).) He proposed that the natural domain for higher-
dimensional versions of local-global principles should be Hn(F, Z/mZ{n — 1)), for
n > 1. Cohomological invariants (such as the Rost invariant) often take values

in Hn{F,Z/mZ{n — 1)) for some n > 1; and thus such local-global principles for
cohomology could be used to obtain local-global principles for other algebraic objects.

In Theorem 0.8 (1) of [Kat86], Kato proved such a principle with n — 3 for the
function field F of a smooth proper surface X over a finite field, both with respect
to the discrete valuations on F that arise from codimension one points on X, and

alternatively with respect to the set of closed points of X (in the latter case using the
fraction Heids of the complete local rings at the points). He also proved a related
result ([Kat86], Theorem 0.8 (3)) for arithmetic surfaces, i.e. for curves over rings of
integers of number Heids. The corresponding assertions for n > 3 are vacuous in his

Situation, for cohomological dimension reasons; and the analogs for n 2 do not
hold there (e.g. if the unramified Brauer group of the surface is non-trivial).

Unlike the classical case of dimension one, in dimension two it is also meaningful
to consider local-global principles for Heids that are not global, e.g. k((x,y)) or
k((t))(x). In [COP02], Theorem 3.8, the authors Start with an irreducible surface

over a finite field of characteristic not dividing m; and they take the fraction field F
of the henselization of the local ring at a closed point. In that Situation, they prove
a local-global principle for H3(F,Z/mZ(2)) with respect to the discrete valuations

on F. Also, while not explicitly said in [Kat86], it is possible to use Theorem 5.2

of that paper to obtain a local-global principle for function Heids F of curves over a

non-archimedean local field, with respect to H3(F,Z/mZ(2)). This was relied on
in [CPS12] (Theorem 5.4) and [Hui2] (cf. also [PS98], pp. 139 and 148).

1.1. Results. In this manuscript, we show that when F is the function field of a

curve over an arbitrary complete discretely valued field K, local-global principles
hold for the cohomology groups Hn{F,Z/mZ{n — 1)) for alln > 1.

In particular we obtain the following local-global principle with respect to points
on the closed fiber X of a model X of F over the valuation ring of K (where k is the
residue field):

Theorem (3.2.3). Let n > 1 and let A be one of the following algebraic groups
over F:

(i) Z/mZ{n — 1), where m is not divisible by the characteristic ofk, or

(ii) Gm, ifchdxik) 0 and K contains aprimitive m-th root ofunityfor all m > 1.

Then the natural map

Hn(F,A)-> []
PeX

is injective, where P ranges through all the points ofthe closedfiber X.
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Here Fp denotes the fraction field of the complete local ring of X at P.
We also obtain a local-global principle with respect to discrete valuations if K is

equicharacteristic:

Theorem (3.3.6). Suppose that K is an equicharacteristic complete discretely valued

field ofcharacteristic not dividing m, and that X is a regulär projective T-curve with
function field F. Letn > 1. Then the natural map

FIn(F,Z/mZ(n —1)) -> ]~[ 1))
V ££2

is injective.

Here Qg is the set of discrete valuations on F that arise from codimension one

points on X. Also, in the above results and henceforth, the cohomology that is used
is Galois cohomology, where Hn(F,A) Hn(Gal(F), A(Fsev)) for A a smooth
commutative group scheme over F and n > 0, with H°(F,A) A(F). (For
non-commutative group schemes, we similarly have H° and H1.)

These results also yield new local-global principles for torsors under linear al-

gebraic groups by the use of cohomological invariants such as the Rost invariant
([GMS03], p. 129), following a strategy used in [CPS12] and [Hu 12]. We list some
of these applications of our local-global principles in Section 4. Note that although
we also obtained certain local-global principles for torsors for linear algebraic groups
in [HHK11], the results presented here use a different set of hypotheses on the group.
In particular, here we do not require that the group G be rational, unlike in [HHK11].

1.2. Methods and structure of the manuscript. Our approach to obtaining these

local-global principles uses the framework of patching over Heids, as in [HH10],
[HHK09], and [HHK11]. The innovation is that these principles derive from long
exact Mayer-Vietoris type sequences with respect to the "patches" that arise in this
framework. These sequences are analogous to those in [HHK11] for linear algebraic

groups that were not necessarily commutative (but where only H° and H1 were
considered for that reason).

In Section 2, we derive Mayer-Vietoris sequences and local-global principles
in an abstract context of a field together with a finite collection of overfields (Section

2.5). This allows us to isolate the necessary combinatorial, group-theoretic, and

cohomological properties of our fields and Galois modules. The combinatorial data

of the collection of fields we use is encoded in the notion of a T-field; see Section 2.1.

The key group-theoretic property of our Galois modules is "separable factorization",
introduced in Section 2.2. The cohomological properties we require are formulated
in the concept of global domination of Galois cohomology (Sections 2.3 and 2.4).
An essential ingredient in our arguments is the Bloch-Kato conjecture.
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In Section 3, we apply our results to the Situation of a function field over a complete
discretely valued field. In Section 3.1 we obtain a local-global principle with respect
to "patches." This is used in Section 3.2 to obtain a local-global principle with respect
to points on the closed über of a regulär model. Finally, in Section 3.3, we obtain

our local-global principle with respect to discrete valuations with the help of a result
of Panin [Pan03] for local rings in the context of Bloch-Ogus theory. This Step is

related to ideas used in [Kat86].
In Section 4, we combine our local-global principles with cohomological in-

variants taking values in Hn(F, Z/mZ(n — 1)), to obtain our applications to other

algebraic structures.

Acknowledgments. The authors thank Jean-Louis Colliot-Thelene, Skip Garibaldi,
Yong Hu, and Annette Maier for helpful comments on this manuscript.

2. Patching and local-global principles for cohomology

This section considers patching and local-global principles for cohomology in an
abstract algebraic setting, in which we are given a field and a finite collection of over-
fields indexed by a graph. The results here will afterwards be applied to a geometric
setting in Section 3, where we will consider curves over a complete discretely valued
field.

In the Situation here, we will obtain a new long exact sequence for Galois
cohomology with respect to the given field and its overfields, which in a key special case

can be interpreted as a Mayer-Vietoris sequence. In Theorem 2.4 of [HHK11], we
obtained such a sequence for linear algebraic groups that need not be commutative.
Due to the lack of commutativity, the assertion there was just for H° and Hx \ and

that result was then used in [HHK11] to obtain local-global principles for torsors
in a more geometric context. In the present paper, we consider commutative linear
algebraic groups, and so higher cohomology groups Hn are defined. It is for these

that we prove our long exact sequence, which we then use to obtain a local-global
principle for Galois cohomology in the key case of Hn (F, Z/mZ{n — \)) with n > 1.

This is carried out in Sections 2.5 and 3.1. (Note that the six-term cohomology
sequence in Theorem 2.4 of [HHK11] is used in our arguments here, in the proofs of
Theorems 2.1.5 and 2.2.4.)

2.1. T -Fields and patching. Our local-global principles will be obtained by an

approach that formally emulates the notion of a cover of a topological space by a

collection of open sets, in the special case that there are no nontrivial triple overlaps.
In this case, one may ask to what extent one may derive global Information from
local Information with respect to the sets in the open cover. We encode this setup
combinatorically in the form of a graph whose vertices correspond to the connected
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open sets in the cover and whose edges correspond to the connected components of the

overlaps (though we do not introduce an associated topological space or Grothendieck
topology).

In our setting the global space will correspond to a field F whose arithmetic we
would like to understand, and the open sets and overlaps correspond to field extensions
of F. This setup is formalized in the definitions below, which draw on terminology
in [HH10] and [HHK11].

2.1.1. Graphs and T -fields. By a graph T, we will always mean a finite multigraph,
with a vertex set V and an edge set 8; i.e. we will permit more than one edge to connect
a pair of vertices. But we will not permit loops at a vertex: the two endpoints of an

edge are required to be distinct vertices.

By an orientation on T we will mean a choice of labeling of the vertices of each

edge e e 8, with one chosen to be called the left vertex l(e) and the other the right
vertex r(e) of e. This choice can depend on the edge (i.e. a vertex v can be the right
vertex for one edge at v, and the left vertex for another edge at v).

Definition 2.1.1. Let T be a graph. A T -field F. consists of the following data:

(1) For each v e V, a field Fv,

(2) For each e e 8, a field Fe,

(3) An injection tev: Fv -> Fe whenever v is a vertex of the edge e.

Often we will regard iev as an inclusion, and not write it explicitly in the notation

if the meaning is clear.

A T-field F. can also be interpreted as an inverse System of fields. Namely, the
index set of the inverse System is the disjoint union VuS; and the maps consist of
inclusions of fields tev : Fv ^ Fe as above.

Conversely, consider any finite inverse System of fields whose index set can be

partitioned into two subsets Vuß, such that for each e e 8 there are exactly two
elements in v, v' e V having maps Fv ^ Fe and Fvr ^ Fe in the inverse System;
and such that there are no other maps in the inverse System. Then such an inverse

System of fields, called a factorization inverse system in [HHK11], Section 2, gives
rise to a graph T and a T-field F. as above.

Given a T-field Fm, we may consider the inverse limit Fr of the fields in Fm, with
respect to the associated inverse system, in the category of rings. Equivalently,

Fr {<a• e fl Fv \ l%av — Lwaw for each e incident to v and w}.
veV

We may also regard Fr as a subring of YleeS ^»bysendinganelementa» (av)vey
to (<ae)eeg, where ae tevav tewaw if e is incident to v and w.

Note that if F. is a T-field, then we may regard each field Fv, Fe naturally as an

FV-algebra in such a way that all the inclusions tev are FV-algebra homomorphisms.



220 D. Harbater, J. Hartmann and D. Krashen CMH

Lemma 2.1.2. IfF. is a r -field, then Fy is afield ifand only if T is connected.

Proof If T is disconnected, there are elements a. of the inverse limit Fr such that
0 for all £ e V U 8 that lie on one connected component of T, but a% 1 for all

£ on another component. Hence Fr has zero-divisors and is not a field. Conversely,
if Fr is not a field, then there is a zero-divisor am. The set of vertices and edges £

such that a% 0 forms an open subset of T, since tevav ae tewaw whenever v, w
are the vertices of an edge e. This open subset is neither empty nor all of T, since a•
is a zero divisor. Hence T is disconnected.

Notation 2.1.3. We will say for short that F. is a T/ F-field if T is a connected graph,
F is a field, and F. is a T-field with Fy F.

2.1.2. Patching problems. Given a T/F-field Fm, and a finite dimensional vector

space V over F, we obtain an inverse System Vf% V <S>f F^ of finite dimensional
vector spaces over the fields Fg (for £ e V U 8). Conversely, given such an inverse

System, we can ask whether it is induced by an F-vector space V. More precisely, let

Vect(F) be the category of finite dimensional F-vector spaces; define a vector space
patching problem Vm over Fm to be an inverse System of finite dimensional Fg -vector

spaces; and let ^^{F.) be the category of vector space patching problems over F..
There is then a base change functor Vect(F) -> ^^{F.). If it is an equivalence of
categories, we say that patching holds for finite dimensional vector spaces over the

T/F-fieldTv
We may consider analogous notions for other objects over F. In particular let A

be a group scheme over F (which we always assume to be of finite type). Let Tors(A)
denote the category of A-torsors over F\ the objects in this category are classified by
the elements in the Galois cohomology group H1 (F, A).

An object T in Tors(A) induces an A-torsor patching problem T. over T7., i.e. an
inverse System consisting of A^ -torsors 7^ for each £ e V U 8, together with isomor-
phisms fil: (Tv)pe % for v a Vertex of an edge e. These patching problems form
a category PP{F., A), whose morphisms correspond to collections of morphisms
of torsors which commute with the maps (Once we choose an orientation on the

graph T, an A-torsor patching problem can also be viewed as collection of A-torsors
Tvfor v e V, together with a choice of isomorphism (T/(e))pe (7r(<?))Fe f°r everY
edge e e 8.) As before, we obtain a base change functor Tors(A) —PP(Fm, A);
and we say that patching holds for A-torsors over the T/F-field F. if this is an

equivalence of categories. For short we say that patching holds for torsors over F.
if it holds for all linear algebraic groups A over F. (Our Convention is that a linear
algebraic group over F is a smooth closed subgroups A c GL^t? for some n.)

2.1.3. Local-global principles and simultaneous factorization. Local-global prin-
ciples are complementary to patching. Given a T/F-field F., and a group scheme A
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over F, we say that A-torsors over F satisfy a local-global principle over Fm if an
^4-torsor T is trivial if and only if each induced Tvtorsor % := T xp Fv is trivial.
In [HHK11], criteria were given for patching and for local-global principles in terms
of factorization. Before recalling them, we introduce some terminology and notation.

If F. is a T/F-field, and if T is given an orientation, then there are induced maps

nl >nr- riuev Fv rieeg Fe defined by (ni(a))e ai(e) and (jtr(a))e ar(e)
for a (av )veV G UvV Similarly, if A is a group scheme over F, there are
induced maps tt/ nr : YlveV A(FV) -> YleeS A(Fe) given by the same expressions,
for a (av)vey e YlveV A(FV). We say that a group scheme A over F satisfies
simultaneous factorization over a T/F-field Fm (or for short, is factorizable over
F.) if the map of pointed sets tt/ • tt"1 : YlveV A(FV) -> YleeS A{Fe), defined

by a i-> 7ti(a)7tr(a)~1, is surjective. In other words, if we are given a collection of
elements^ e A{Fe) for alle e 8, then there existelementsöi; e A{FV) for all v e V
such that ae ai(e)af^ for all e, with respeet to the inclusions Fpe), Fr^e) Fe.
Note that this factorization eondition does not depend on the ehoiee of orientation,
sinee if we reverse the orientation on an edge e then we may eonsider the element
a' G YleeS A{Fe) such that a'e ae1 and where the other entries of a' are the same

as for a.

2.1.4. Relations between patching, local-global principles and factorization. The

following two results are essentially in [HHK11].

Theorem 2.1.4. Let T be a connected graph, F a field, and Fm aT/F -field. Then
the following conditions are equivalent:

(i) GL„ is factorizable over Fm for all n > 1.

(ii) Patching holds for finite dimensional vector spaces over Fm.

(iii) Patching holds for torsors over Fm.

Proof It was shown in Proposition 2.2 of [HHK11] that (i) is equivalent to (ii); and

in Theorem 2.3 of [HHK11] it was shown that (ii) implies (iii). It remains to show
that (iii) implies (i).

Fix an orientation for T and let g (ge)ees £ GLn(YleeS Fe)- Wewishtoshow
that there exists h e GLn(YlveV Fv) such that g 7T/(/z)7Tr(/z)_1.

Consider the patching problem for GL„-torsors over F• that is given by trivial

torsors 7^ := Ghn^ over Fg for each £ e V U 8, together with transition
funetions GL^ (Tr^e))Fe -> (Tpe))Fe GL^ given by multiplieation by
ge e GLn{Fe), for each e e 8. By hypothesis (iii), there is a GL„-torsor T over
F that induees this patching problem. But T is trivial, sinee Hl{F,GLn) 0

by Hilbert's Theorem 90 ([KMRT98], Theorem 29.2); i.e. there is an isomorphism
GLn j? -> T. The induced isomorphismsGL^^ -> % GL,^ are given by
multiplieation by elements hv e GLn(Fv). Sinee T induees the given patching problem,
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wehave A/(e) gehr(e) £ GLn(Fe) forevery e e 8. Thereforeg 7ti(h)jtr(h) x,

with h (hv)vey e GFn([\ee8 Fe)> as desired.

Theorem 2.1.5. Let T be a connected graph, F afield, and Fm a T/F-field. Assume

that patching holds for finite dimensional vector spaces over Fm. Then a linear
algebraic group A over F is factorizable over Fm if and only if A-torsors over F
satisfy a local-global principle over Fm.

Proofi This assertion is contained in the exactness of the sequence given in Theorem

2.4 of [HHK11]; i.e. tt/ • tt"1 is surjective if and only if

H1(F,A)-*n
veV

is injective.

Note that the hypothesis of Theorem 2.1.5 does not imply that the equivalent
conditions in the conclusion of that theorem necessarily hold. (In particular, in
Example 4.4 of [HHK09] there is a non-trivial obstruction to a local-global principle,
by Corollaries 5.6 and 5.5 of [HHK11]). Thus patching need not imply factorization
over F• for all linear algebraic groups over F. But as shown in the next section

(Corollary 2.2.5), patching does imply factorization for all linear algebraic groups if
we are allowed to pass to the separable closure of F. This will be useful in obtaining
local-global principles for higher cohomology.

2.2. Separable factorization. As asserted in Theorems 2.1.4 and 2.1.5, there are

relationships between factorization conditions on the one hand, and patching and

local-global properties on the other. Below, in Theorem 2.2.4 and Corollary 2.2.5,

we prove related results of this type, concerning "separable factorization", which will
be needed later in applying the results of Section 2.5. We also prove a result (Proposition

2.2.3) that will be used in obtaining our long exact sequence in Section 2.5,
and hence our local-global principle there.

2.2.1. Separably factorizable group schemes. Let F. be a T/F-field, and write
Gal(F) for the absolute Galois group Gal(Fsep/F). Given an F-scheme A, we have

morphisms A(Fsep) -> A(FV Fsep) for each vertex v e V, and A(FV Fsep) ->
A(Fe (g)p Fsep) when v e V is a vertex of T on the edge e e 8. These are induced

by the inclusions Fsep —Fv <S>f Fsep and Fv <S>f Fsep Fe <S>f Fsep.

If A is an F-scheme, and L c. L' are field extensions of F, then the natural map
A(L) A(L') is an inclusion. (This is immediate if A is affine, and then follows
in general.) In particular, given a T/F-field F. as above, the maps A(F) A(FV)
and A(FV) A(Fe) are injective for v a vertex of an edge e in T.
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If we choose an orientation for the graph T, then as in Section 2.1.3 we may define

maps JTi,nr: n„ev MFv ®f^sep) -> FLeg MFe ^sep) by (ni(a))e a[(e)
and (jtr(a))e ar(e).

Lemma 2.2.1. Consider an affine F-scheme A, a graph T with a choice of orientation,

and a T/F-field Fm. Then

A(FseP) _ Y\veV A(FV ®F F*P)AfX Hees
JZr

is an equalizer diagram ofsets.

Proofi The hypothesis that F equals Fr is equivalent to having an exact sequence
of F-vector spaces 0 -> F -> YlveV Fv"0ee8 Fe, given by tt/ • itr

1
on the

right. Since Fsep is a flat F-module, we have an exact sequence 0 -> Fsep ->
riuev Fv ® ^sep YleeS Fe ® Fsep. This in turn teils us that in the category of
rings,

Fsep lim (Ff ® Fsep).

Write A Spec(F). By the inverse limit property above, it follows that a homomor-

phism R -> Fsep is equivalent to a homomorphism f: R ^ YlveV Fv ® Fsep such

that 7T/0 txr(p, where 777, 7Tr : YlveV Fv (8) Fsep -> n<?eg Fe (8) Fsep are the two
projections. This gives the desired equalizer diagram.

This lemma, and the notion of factorizability in the previous section, motivate the

following definition.

Definition 2.2.2. Let F. be a T/F-field, and suppose that A is a group scheme

over F. We say that A is separably factorizable (over F.) if the pointed set map
7ti • 7tf1: nLeV A(Fv <8>f Fsep) -> YleeS A(Fe <8>f Fsep) is surjective for some

(hence every) orientation on T.

Lemma 2.2.1 and Definition 2.2.2 then yield:

Proposition 2.2.3. Let Fm be a T/F-field, and let A be a group scheme over F.
Choose any orientation on T, and take the associated maps 7ti, 7tr. Then A is

separably factorizable ifand only if

0 ^4(Fsep) FUv MFv ®f Fsep)ne6g MFe Fsep) 0

is an exact sequence ofpointed Gal (F)-sets (and infact an exact sequence ofGalois
modules in the case that A is commutative).
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2.2.2. Patching and separable factorization. The following theorem and its corol-
lary complement Theorems 2.1.4 and 2.1.5.

Theorem 2.2.4. Let T be a connected graph, F afield, and Fm aT/F-field. Then
the following conditions are equivalent:

(i) GLn is factorizable over Fm, for all n > 1.

(ii) GLn is separably factorizable over F., for all n > 1.

(iii) Every linear algebraic group over F is separably factorizable over Fm.

Proof We first show that (i) implies (iii). Fix an orientation for T. Let A be a linear
algebraic group over F, and supposewe are giveng e YleeS A(Fe ®f Fsep). Wewish
to show that there exists h e YlveV A(FV ®f Fsep) such that g — 7T/(/z)7Tr(/z)_1.

Since 8 is finite, there is a finite separable field extension L/F such that g is

the image of gf e YleeS A{Fe <S>f L). Let Af Rl/fAl, the Weil restriction of
Al — A xp L from L to F (see [BLR90], Section 7.6); this is a linear algebraic

group over F. We may then view g' e YleeS A'(Fe).
Since GLn is factorizable over F. by condition (i), Theorem 2.1.4 implies that

patching holds for finite-dimensional vector spaces over F.. Thus Theorem 2.4 of
[HHK11] applies, giving us a six-term cohomology sequence for Af\ and we may
consider the image of g under the coboundary map YleeS A'{Fe) —H1(F, Af).
This image defines an ^L-torsor T' over F (yiz- the Solution to the patching problem
that consists of trivial torsors over each Fv and for which the transition functions
are given by gf). But H1(F,Af) may be identified with Hl{L,A) by Shapiro's
Lemma ([Ser97], Corollary to Proposition 1.2.5.10), since zF(Fsep) is the Galois
module induced from ^(T78615) via the inclusion Gal(L) —Ga\(F). So T' corre-
sponds to an ^4-torsor T over L. There is then a finite separable field extension E/L
over which T becomes trivial. After replacing L by E, we may assume that T and

hence Tf is trivial. Hence by the exactness of the six-term sequence in [HHK11],
Theorem 2.4, gf is the image of an dement hf e YlveV A'{FV) YlveV A(FV <S>f L)
under TT/-tt"1. The image h e YlveV A(FV ®f Fsev) ofh'is then asdesired, proving
that condition (iii) holds.

Condition (iii) trivially implies condition (ii). It remains to show that condition (ii)
implies condition (i).

If condition (ii) holds, then Proposition 2.2.3 yields a short exact sequence of
pointed Gal(,F)-sets

0^ GL„(Fsep) ^ FUv GL ®F Fsep)

FUg GL„ {Fe ®F Fsep) ^ 0.
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This in turn yields an exact sequence of pointed sets in Galois cohomology that begins

0 -* H°(F, GL„) -* Yl H°(F, (GL„)„) -* f] H°(F, (GL*)«) -* GL„).
veV ee8

But the last term vanishes by Hilbert's Theorem 90. The remaining short exact

sequence is then equivalent to the condition that GL„ is factorizable over T7., i.e.
condition (i).

Corollary 2.2.5. Let T be a connected graph, F afield, and Fm a T/F -field. Then

patching holds forfinite dimensional vector spaces over Fm ifand only ifevery linear
algebraic group over F is separably factorizable over Fm.

Proofi This is immediate from Theorem 2.1.4 and Theorem 2.2.4, which assert that
these two conditions are each equivalent to GL„ being factorizable over F• for all
n > 1.

2.3. Globally dominated field extensions and cohomology. To obtain our results,

we will want to relate the cohomologies Hn(F, Ä) and Hn(Fg, Ä) for £ a Vertex

or edge of T. One difficulty with this in general is the potential difference be-

tween the absolute Galois groups of F and Fg. To bridge this gap, we will use
the Galois module A(Fg <g>p ,Fsep), which was studied in Section 2.2.1. Its
cohomology Hn (Gal(,F), A (Fg ®p Fsep)) is meant to approximate the cohomology group
Hn{F^A).

Our strategy will be carried out using the notion of "global domination," which
we introduce and study below. The condition that a Galois module has globally
dominated cohomology will provide an important ingredient in demonstrating the
existence of Mayer-Vietoris type sequences and local-global principles for its Galois

cohomology groups. These applications are developed in Section 2.5.

2.3.1. Globally dominated extensions.

Definition 2.3.1. Fix a field F. For any field extension L/F, with separable closure
Lsep, let Lgd denote the compositum of L and Fsep taken within Lsep. If E/L is

a separable algebraic field extension, we say that E/L is globally dominated (with
respect to F) if E is contained in Lgd.

Thus a separable algebraic field extension E/L is globally dominated if and only
if E is contained in some compositum E'L c Lsep, where E'/F is a separable
algebraic field extension. Also, the subfield Lgd c Lsep can be characterized as the
maximal globally dominated field extension of L. Since the extension 7^sep/ 7^ is

Galois with group Gal(.F), it follows that the extension Lgd/L is Galois and that
Galgd(L) := Gal(Lgd/L) can be identified with a subgroup of Gal(,F).
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Lemma 2.3.2. Let L/F be a field extension, and let A be a commutative group
scheme defined over F. Then we may identify:

//"(Gal(F), A{L®FFsep)) 7/"(Galgd(L), ,4(Lgd)).

Proof We may identify the group Hn(Gal(F), A(L <g> Fsep)) as a limit of groups

Hn(Gdl(E/F),A(L®E)),

and the group Hn{GdXgd{L), A{Lgd)) as a limit of groups

Hn(Gdl(LE/L),A(LE)),

where both limits are taken over finite Galois extensions F/F, and where LE is a

compositum of L and E. Therefore the result will follow from a (compatible) set of
isomorphisms

Hn(Gal(E/F),A(L <8> E)) ^ Hn{G<A{LE/L), A{LE)).

Write L <g) E Y\T=i Ei for finite Galois field extensions Ei/L. We can also
choose LE E\. We have ^4(L <g> E) A(Ei). Let G Gal{E/F) and let

Gi be the stabilizer of E\ (as a set) with respect to the action of G on L E. Then

we may identify the G-modules ^4(L (8) E) and Ind^ A{E\). We therefore have

Hn(G,A(L ® E)) ^ Hn(G, Indg: A{E{))

^ Hn(G\, A(E\)) Hn(Ga\(LE/L), A(LE))

by Shapiro's Lemma ([Ser97], Corollary to Proposition 1.2.5.10), as desired.

2.3.2. Globally dominated cohomology. It remains to compare the cohomology
with respect to the maximal globally dominated extension and the füll Galois
cohomology. For this we make the following

Definition 2.3.3. Let A be a commutative group scheme over F and L/F a field
extension. We say that the cohomology of A over L is globally dominated (with
respect to F) if Hn(Lgd, A) 0 for every n > 0.

Proposition 2.3.4. Let A be a commutative group scheme over F and L/F a field
extension. Suppose that the cohomology ofA over L is globally dominated. Then we

may identify:

//"(Gal(F), A(L® Fsep)) Hn(Galgd(L), A(Lgd)) Hn(Gal(L), A(Lsep))

for all n > 0.
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Proof The identification of the first and second groups was given in Lemma 2.3.2,
and it remains to prove the isomorphism between the second and third groups. By
the global domination hypothesis, ZP(Gal(Lgd), ,4(Lsep)) Hn(Lgd, Ä) 0 for
all n > 0. Hence from the Hochschild-Serre spectral sequence

H p (Ga\gd (L), //^(Gal(Lgd), ^4(Lsep))) Hp+q(Gdi(L), A(Lsev))

for the tower of field extensions L c Lgd c Lsep (viz. by [HS53] Theorem III.2), the
desired isomorphism follows.

The notion of globally dominated cohomology can also be described just in terms
of finite extensions of Heids. First we prove a lemma.

Lemma 2.3.5. Suppose that a field Eq is afiltered direct limit of subfields Ei, each

ofwhich is an extension ofa field E. Let A be a commutative group scheme over E,
and let a E Hn{E, Ä)for some n > 0. Ifthe induced element ole0 Hh(Eq, Ä) is

trivial, then there is some i such that OLEf £ Hn {Ei, A) is trivial.

Proof. Since ole0 E Hn(E0, Ä) is trivial, we may find some finite Galois extension

L/Eq such that ole0 may be written as a cocycle in Zn{L/E$, A(L)) and such that
it is the coboundary of a cochain in Cn~x (.L/Eq, A{L)). Now the Galois extension

L/Eq is generated by finitely many elements of L, and the Splitting cochain is defined

by an additional finite collection of elements in A(L), each of which is defined over
some finitely generated extension of E (since A is of finite type over E). So we may
find finitely many elements a\,...,ar e E0 such that ctE(ai,...,ar) 0- since

E0 is the filtered direct limit of the fields Ei, there is an i such that a\,..., ar e Ep,
and then aEt 0 as desired.

Proposition 2.3.6. Let A be a commutative group scheme over F and L/F a field
extension. Then the cohomology of A over L is globally dominated if and only if
for every finite globally dominated field extension L'/L, every n > 0, and every
a E Hn{V ,A), there exists a finite globally dominated extension E/V such that

ole — 0.

Proof. First suppose that the cohomology of A over L is globally dominated, and let
öl E Hn{L', Ä) for some finite globally dominated field extension L'/L and some
n > 0. Then aLgd 0 by hypothesis; and so by Lemma 2.3.5 there is some finite
globally dominated extension E/V such that ole 0, as desired.

Conversely, suppose that the above condition on every a E Hn (Z/, A) holds. Let
ol E Hn(Lgd, A). Then a is in the image of some element ä E Hn{L', Ä) for some
finite extension L'/L that is contained in Lgd. Now Lf is globally dominated, so

by hypothesis there exists a finite globally dominated field extension E/Lf such that

ole 0. Thus ol äLgd (<ole)lgd 0- This shows that Hn(Lgd, Ä) is trivial, so

the cohomology is globally dominated.
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2.4. Criteria for global domination. In the case of cyclic groups, the condition
for cohomology to be globally dominated will be made more explicit here, using
the Bloch-Kato conjecture to reduce to consideration of just the first cohomology
group. That conjecture asserts the surjectivity of the norm residue homomorphism
K^(F) -> //#(F,Z/mZ(i)) of graded rings. This surjectivity was proven for
m prime in [Voell] and [Wei09], with the general case then following via [GS06],
Proposition 7.5.9. Since every dement in the Milnor K-group K^ß(F) is by definition
a sum of n-fold products of elements of the following assertion is then
immediate:

Proposition 2.4.1. Let F be afield and let m be a positive integer not divisible by
char (F). Thenfor every n > 1, every elementofHn(F,Z/mZ(n)) is asumofn-fold
cup products ofelements of H1 (F, Z/mZ(l)).

2.4.1. Global domination for cyclic groups

Proposition 2.4.2. Let L/F be a field extension, and m an integer not divisible by
the characteristic of F. Then the following are equivalent:

(i) The cohomology ofZ/mZ over L is globally dominated.

(ii) For everyfinite globally dominatedfield extension Lf/L and every positive inte¬

ger r dividing m, every Z/ rZ-Galoisfield extension ofV is globally dominated.

(iii) The multiplicative group (Lgd)x is m-divisible; i.e. ((Lgd)x)m (Lgd)x.

Proof. (i) => (ii): A Z/rZ-Galois field extension of V corresponds to an
dement a e H1(Lf,Z/rZ(l)). Let ß be the image of a in //1(Lgd,Z/rZ(l))
H1 (Lgd, Z/rZ), where the equality holds because the field Lgd LFsep contains a

primitive m-th root of unity. It suffices to show that ß 0.

In the long exact cohomology sequence associated to the short exact sequence of
constant groups § Z/rZ —> Z/mZ -> Z/(m/r)Z 0, the map

//°(Lgd, Z/mZ) -> H°(Lgd, Z/(m/r)Z)

is surjective, so the map

Hl(Lgd,Z/rZ) -> H1(Lgd,Z/mZ)

is injective. But the latter group is trivial, by hypothesis. Hence ß 0.

(ii) => (iii): Given a e (Lgd)x, we wish to show that a e ((Lgd)x)m. Let £ be

a primitive m-th root of unity in Fsep c Lgd, and let L' L(£, a) c Lgd. Thus

L'/L is finite and separable. The field E L'{allm) c Lsep is Galois over L\ with
Galois group cyclic of order r for some r dividing m. Thus the extension E/L' is

globally dominated, by (ii); i.e. E c L/gd Lgd. Hence a e ((Lgd)x)m.
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(iii) =» (i): By (iii),

Hl(Lgd,Z/mZ) Hl(Lgd,Z/mZ(\))(Lgd)x/((Lgd)x)m

is trivial.
It remains to show the triviality of Hn{Lgd,Z/mZ) Hn{Lgd, Z/mZ(n)) for

n > 1. So let a lie in this cohomology group. By Proposition 2.4.1, we may write
a ^=1 oii, with each ar, having the form

Oii OLi^x U • • • U aiin,

where aij e H1(Lgd,Z/mZ). But this H1 is trivial. Hence each of/ is trivial, and

a is trivial, as desired.

2.4.2. Global domination for commutative group schemes. Using the above re-
sult, the question of global domination for the cohomology of a finite commutative

group scheme A can be reduced to the case of cyclic groups ofprime order. We restrict
to the case that the characteristic of F does not divide the order of A (equivalently,
AfseP is a finite constant group scheme of order not divisible by char(,F)).

Corollary 2.4.3. Let L/F be afield extension, and S a collection ofprime numbers

unequal to char (F). Suppose that the cohomology of thefinite constant group scheme

Z/IZ over L is globally dominatedfor each l E S. Thenfor everyfinite commutative

group scheme A over F oforder divisible only by primes in S, the cohomology ofA

over L is globally dominated.

Proof We wish to show that Hn(Lgd, Ä) 0 for n > 0. Since A is a finite etale

group scheme defined over F, it becomes split (i.e. a finite constant group scheme)

over Fsep and hence over Lgd LFsev. In particular, the base change of A to Lgd

is a product of copies of cyclic groups Z/mZ, where each prime dividing m lies in
S. Since cohomology commutes with taking products of coefficient groups, we are
reduced to the case that A ^ Z/mZ for m as above. The result now follows from
condition (iii) of Proposition 2.4.2, since a group is m-divisible if it is ^-divisible for
each prime factor lofm.

In characteristic zero, we also obtain a result in the case of group schemes that need

not be finite. First we prove a lemma. If A is a group scheme over a field E and m > 1,

let A[m\ denote the m-torsion subgroup of A, i.e. the kernel of the map A A given
by multiplication by m. Thus there is a natural map Hn{E, A[m\) Hn{E, A).

Lemma 2.4.4. Let A be a connected commutative group scheme over a field E of
characteristic zero, and let n > 1. Then every element of Hn(E, A) is in the image

of Hn(E, A[m]) Hn(E, A) for some m > 1.
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Proofi The group Hn (E, Ä) is torsion by [Ser97], 1.2.2, Corollary 3, and so for every
a e Hn{E, Ä) there exists m > 1 such that ma 0 (writing A additively). Since

char(ii) 0 and A is connected, there is a short exact sequence 0 -> A[m\ ->
A -> A -> 0 of etale sheaves. This yields an exact sequence Hn(E,A[m]) ->
Hn(E,A) -> Hn {E, A) of groups, where the latter map is multiplication by m. Thus

a is sent to zero under this map, and hence it lies in the image of Hn {E, A [m]).

Proposition 2.4.5. Assume that char(77) 0, and let L/F be a field extension.

Suppose that the cohomology of the finite constant group scheme Z/TZ over L is

globally dominated for every prime L Then for every smooth commutative group
scheme A over F, the cohomology ofA over L is globally dominated.

Proof Let a e Hn(Lgd, A), for some n > 0. We wish to show that a 0.

The short exact sequence 0 ^ d° -> A A/A° ^Oof etale sheaves yields
an exact sequence Hn(Lgd, ^4°) —Hn{Lgd, A) Hn(Lgd, A/A°) of groups. But
Corollary 2.4.3 asserts that the cohomology of the finite commutative group scheme

^4/^4° over Lis globally dominated, since char(,F) 0; i.e. Hn(Lgd, A/A°) 0. So

a e Hn (Lgd, A) is the image of some dement a° e Hn (Lgd, A°). By Lemma 2.4.4,
a° lies in the image of Hn(Lgd, A°[m]) for some m > 1. Since A°[m\ is a finite
commutative group scheme over L, a second application of Corollary 2.4.3 yields
that Hn{Lgd, A°[m]) 0. So a° 0 and hence a 0.

2.5. Mayer-Vietoris and local-global principles. We now use the previous results

to obtain our long exact sequence, which in particular gives the abstract form of
our Mayer-Vietoris sequence, and we then prove the abstract form of a local-global
principle for Galois cohomology.

Theorem 2.5.1. Given an oriented graph T, fix a T/F -field Fm and consider a

separably factorizable smooth commutative group scheme A over F. Suppose that

for every £ e V U 8, the cohomology of A over Fg is globally dominated. Then we
have a long exact sequence ofGalois cohomology:

0 H°(F,A)FUv H\Fv,A) Uees

Hl(F, A) FUv H\Fv,A) FUg "'

Proof. By hypothesis, the cohomology of A over F% is globally dominated. By
Proposition 2.3.4, with L 7^, we may identify Hn(Ga\(F), A{F% Fsev)) ^
Hn{F^A).
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Since A is separably factorizable, by Proposition 2.2.3 we have a short exact

sequence of Gal(77)-modules

0 — ^4(Fsep) Uv.vMFV®F Fsep)*v*r\ rLeg A(Fe ®F Fsep) 0.

This induces a long exact sequence in Galois cohomology over F. Applying the above

identification to the terms of this sequence, we obtain the exact sequence asserted in
the theorem.

Corollary 2.5.2. Given a separably factorizable smooth commutative group scheme

A over F and a T/F-field Fm, the long exact sequence in Theorem 2.5.1 holds in
each of the following cases:

(i) A isfinite; andfor every £ e V U 8, and every prime l dividing the order of A,
the cohomology ofTLIlTL over F% is globally dominated.

(ii) F is a field of characteristic zero; and for every £ e V U 8, and every prime
number l, the cohomology ofTLIVL over F% is globally dominated.

Proof By Theorem 2.5.1 it suffices to show that the cohomology of A over F% is

globally dominated. In these two cases, this condition is satisfied by Corollary 2.4.3
and Proposition 2.4.5 respectively.

An important case is that of a graph T that is bipartite, i.e. for which there is

a partition V V0 U V\ such that for every edge e e 8, one vertex is in V0 and

the other is in Vi. Given a bipartite graph T together with such a partition, we will
choose the orientation on T given by taking / (e) and r(e) to be the vertices of e e 8

lying in V0 and V\ respectively.

Corollary 2.5.3 (Abstract Mayer-Vietoris). In the Situation ofTheorem 2.5.1, assume
that the graph T is bipartite, with respect to a partition V Vo U V\ of the set of
vertices. Then the long exact cohomology sequence in Theorem 2.5.1 becomes the

Mayer-Vietoris sequence

0 >- A(F) >- Ylv^Vo A(Fv) x Ylv^Vi MFv) >- YleeS MFe)

H1 (F, A) >- FUvo Hl(Fv,A)X n„eVl A) f]eeg A)

H2(F,A)

where the maps A and — are induced by the diagonal inclusion and by subtraction,
respectively.
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Theorem 2.5.4 (Abstract local-global principle). Fix a T/F-field F., andfix a positive

integer m not divisible by the characteristic of F. Suppose that the following
conditions hold:

(i) r is bipartite, with respect to a partition V To U V\ of the set ofvertices;

(ii) for every £ E V U 8, the cohomology ofZ/mZ over F% is globally dominated;

(iii) given v E To, and elements ae E Ff for all e E 8 that are incident to v, there

exists a E Ff such that ae/a E (Ff)m for all e (yvhere we identify Fv with its

image i*(Fv) c Fe).

Thenfor all n > 0, the natural local-global maps

an: Hn+l(F,Z/mZ(n))-» ]~[ Hn+1(Fv,Z/mZ(n))
veV

are injective.

Proof Given hypothesis (i), as above we choose the orientation on T such that l (e) E

V0 and r{e) e V\ for all e e 8. Consider the homomorphisms:

piJJöJ-nH'iF^Z/mZU)) ^ n H\Fe,Z/mZ(j)),
veV ee8

wherefora E YlveV (Fv,Z/mZ(j)) thee-thentries of pl,J (a), Pq'7 (a) are given
by

p'J(a)e (ai(e)))Fe - (ar(e))Fe, (a)e (ai(e))Fe.

Using hypothesis (ii), Theorem 2.5.1 allows us to identify the kernel of on with the
cokernel of

pn,n. J-J Hn(Fv,Z/mZ(n))H Hn(Fe,Z/mZ(n)).
veV ee8

Thus it suffices to show that pn,n is surjective for n > 1. This in turn will follow
from showing that pnfn is surjective, since the image of pnfn is contained in that of
pn,n (using that T is bipartite, and setting av 0 for all v E Vi).

Writing Hy Y\veV Hn(Fv,Z/mZ(n)) and Hg YleeS Hn(Fe,Z/mZ(n)),
we note that pf *: Hy H| is a homomorphism of graded rings. By hypothesis

(iii), Pq'1 is surjective, since H1(E,Z/mZ(l)) E*/{E*)m for any field E of
characteristic not dividing m. By Proposition 2.4.1, every element in Hg is a sum

of n-fold products of elements in Hg, for n > 1. But since the map pf* is a ring

homomorphism, and p^'1 is surjective, it follows that pnfn is surjective as well for all
n > 1.
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3. Curves over complete discrete valuation rings

We now apply the previous general results to the more specific Situation that we
study in this paper: function fields F over a complete discretely valued field K. In
Section 3.1 we will obtain a Mayer-Vietoris sequence and a local-global principle in
the context of finitely many overfields F% of F ("patches"). This can be compared
with Theorem 3.5 of [HHK11]. We will afterwards use that to obtain local-global
principles with respect to the points on the closed über of a model (in Section 3.2),
and with respect to the discrete valuations on F or on a regulär model of F (in
Section 3.3). These will later be used in Section 4 to obtain applications to other

algebraic structures.

3.0.1. Notation. We begin by fixing the Standing notation for this section, which
follows that of [HH10], [HHK09], and [HHK11]. Let T be a complete discrete
valuation ring with fraction field K and residue field k and uniformizer t9 and let
X be a projective, integral and normal P-curve. Let F be the function field of X.
We let X be the closed über of X, and we choose a non-empty collection of closed

points P C X, containing all the points at which distinct irreducible components
of X meet. Thus the open complement X \ P is a disjoint union of finitely many
irreducible affine k-curves U. Let XL denote the collection of these open sets U.

For a point P e P, we let Rp be the local ring p at P, and we let Rp be the

completion at its maximal ideal. Let Fp be the fraction field of Rp. For a component
U GÜ, we let Rjj be the subring of F consisting of rational functions on X that are

regulär at the points of U, i.e.

Rv {/ g F | / g 0$ Q
for all Q e U}.

We also let Ru be the Ladic completion of Ru, and we let Fu be the field of fractions
of Ru. Here Rp and Ru are Noetherian integrally closed domains (because X is

normal), and in particular Krull domains.
For a point P e P and a component U G W, we say that P and U are incident

if P is contained in the closure of U. Given P e P and U e XL that are incident,
the prime ideal sheaf I defining the reduced closure Ured of U in X induces a (not
necessarily prime) ideal I> in the complete local ring Rp. We call the height one

prime ideals of Rp containing Ip the brauches on U at P. We let P denote the
collection of branches at all points in P and on all components in XL. For a branch p
at P G P and on U e XL, the local ring of Rp at p is a discrete valuation ring Rp.
Let Rp be its p-adic (or equivalently Ladic) completion, and let Fp be the field of
fractions of Rp. Note that this is a complete discretely valued field containing Fu
and FP (see [HH10], Section 6, and [HHK09], page 241).

Associated to the curve X and our choice of points P, we define a reduction graph
T Tg p whose vertex set is the disjoint union of the sets P and XL and whose
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edge set is the set P of branches. The incidence relation on this (multi-)graph, which
makes it bipartite, is defined by saying that an edge corresponding to a branch p £ P
is incident to the vertices P £ P and U £ XL if p is a branch on U at P. We choose
the orientation on T that is associated to the partition ^UÜof the Vertex set. We

will consider the T-field F. F*i3> defined by F^i3> F% for £ e P, U, P.

3.1. Mayer-Vietoris and local-global principles with respect to patches. Using
the results of Section 2.5, we now obtain the desired Mayer-Vietoris sequence for the

T-field F. that is associated as above to the function field F and a choice of points
P on the closed über of a normal model X (see Theorem 3.1.3). In certain cases

we show that this sequence splits into short exact sequences, possibly starting with
the H2 term (Corollaries 3.1.6 and 3.1.7). Related to this, we obtain a local-global
principle for Hn(F, Z/mZ(n — 1)), in this patching context.

Theorem 3.1.1. With F and Fm as above, Fm is a T/F -field, and patching holds for
finite dimensional vector spaces over Fm. Thus every linear algebraic group over F
is separably factorizable over Fm.

Proofi According to Corollary 3.4 in [HHK11], the fields F^ for £ e P U XL U P form
a factorization inverse System with inverse limit F. That is, F. is a T/F-field. That
result also asserts that patching holds for finite dimensional vector spaces over F.. The
assertion about being separably factorizable then follows from Corollary 2.2.5.

3.1.1. Global domination and Mayer-Vietoris. The following result relies on a

form of the Weierstrass Preparation Theorem that was proven in [HHK13], and which
extended related results in [HH10] and [HHK09]. Another result that is similarly
related to Weierstrass Preparation appears at Lemma 3.1.4 below.

Theorem 3.1.2 (Global domination for patches). Ifi- £ U U P U P and ifm is a

positive integer not divisible by char(k), then the cohomology ofZ/mZ over F% is

globally dominated.

Proofi By Proposition 2.4.2, it suffices to show that (F^gd)x ((F^gd)x)m. So let

a £ (i7|d)x. Thus a £ F%Ff c F^ep for some finite separable extension F'/F. Let

X' —> X be the normalization of X in F\ so that X' is a normal projective T-curve
with function field F'. Using Lemma 6.2 of [HH10], we may identify F^ <S>f F'
with nr where ranges through the points, components or branches, respec-

tively, lying above £ on X'. We also see by this description that for each the field
F^f is the compositum of its subfields F% and F'. Applying Theorems 3.3 and 3.7 of

[HHK13] to the curve X' and the field F^, and again using [HH10], Lemma 6.2, it
follows that thereis an etale cover X" of X' such that a — bcm for some b £ F" c Fsep
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and c G F^„ F^F" c F|d; here F" is the function field of X" and £" is any point,

component or branch, respectively, on X" that lies over £' on X'. Now b G (Fsep)x,
and char(F) does not divide m, so b G ((Fsep)x)m. Thus a G ((F|d)x)m.

Theorem 3.1.3 (Mayer-Vietoris for curves). Let Abea commutative linear algebraic
group over F. Assume that either

(i) A isfinite oforder not divisible by the characteristic ofk; or

(ii) char(F) 0.

Then we have a long exact Mayer-Vietoris sequence:

0 > A{F) > YIpg^p A(Fp) x Ylu^u A(Fu) > A(FP)

H1(F,A) Wp&p Hl(FP,A)xflt/eK (Fv, A) —U^s H\F„, A)

H2(F,A)

Proof Let T be the bipartite graph Tg p as above. By Theorem 3.1.1, is separably
factorizable over F.. Now for each prime i unequal to the characteristic of k, and

each £ g the cohomology of Z/TZ over F% is globally dominated, by
Theorem 3.1.2. The conclusion now follows from Corollaries 2.5.2 and 2.5.3.

3.1.2. Local-global principles with respect to patches

Lemma 3.1.4. Let m be a positive integer that is not divisible by char(F). Let P
be a closed point of X, let p\,..., ps be the branches of X at P, and let at G F£..
Then there exists a G Fp such that ai/a G (F* )m for every i.

Proof Since is the p/-adic completion of Fp, the Approximation Theorem

([Bou72], VI.7.3, Theorem 2) implies that the elements üi can all be p/-adically
approximated arbitrarily well by an element a G Fp. The result now follows by
applying the strong form of Hensel's Lemma (see [Bou72], III.4.5, Corollary 1 to
Theorem 2) to the polynomials Ym — a{/a G RPi [Y].

Theorem 3.1.5 (Local-global principle). Let X be a normal projective curve over a

complete discrete valuation ring T with residue field k, let 3* be a non-empty finite
subset of the closed fiber X that includes the points at which distinct irreducible

components ofX meet, and let U be the set of components ofX \ «F. Suppose that



236 D. Harbater, J. Hartmann and D. Krashen CMH

m is an integer not divisible by the characteristic ofk. Thenfor each integer n > 1,

the natural map

Hn(F, Z/mZ(n - 1))

— [] Hn(Fp,Z/mZ(n— 1)) x ]~[ 1))
PetP UeU

is injective.

Proofi The graph T^ ^ is bipartite, with the set of vertices V partitioned as V0 U V\
withVo P and V\ U. So hypothesis (i) of Theorem 2.5.4 holds. Hypothesis (ii)
of that theorem, concerning global domination, also holds, by Theorem 3.1.2. Finally,
hypothesis (iii), in this case concerning the lifting of elements of the Heids F* to an

element of Fp modulo m-th powers, holds by Lemma 3.1.4. Thus Theorem 2.5.4

applies, and the conclusion follows.

In some cases we can allow arbitrary Täte twists, and as a result the Mayer-Vietoris
sequence splits into shorter exact sequences:

Corollary 3.1.6. Let m be an integer not divisible by the characteristic ofk, and

suppose that the degree [F{gLm) : F] isprime to m (e.g. ifm isprime or F contains a

primitive m-th root ofunity). Let r be any integer. Then the Mayer-Vietoris sequence
in Theorem 3.1.3 for A Z/mZ(r) splits into exact sequences

0 >- A(F) >- ]~[PflP A(Fp) X YlueU A(Fu) >-

H\F,Ä) — n PerH1(Fp,A)xnceM H\Fu,A)^ flpes 0

and

0 Hn (F> ^4) Y\peH« {Fp, A) x H« {Fv, Ä)

Hn{Fp, A)—^ o

for all n > 1.

Proof IfF contains a primitive m-th root ofunity, then A Z/mZ Z/mZ(n — 1)

over F and its extension Heids, for all n. Hence in the Mayer-Vietoris sequence in
Theorem 3.1.3 (i), the maps

iF:Hn(F,A)^ \[Hn{FP,A)x \[Hn{Fu,A)
PetP UeU

are injective for all n > 1, by Theorem 3.1.5. The result now follows in this case.
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More generally, let F' — F(pLm) and similarly for Fp and Fjj. As above, ipt is

injective. Using the naturality of ip with respect to F, we have ker(^) c ker(^/ o

resf'/f)- Further, by the injectivity of ip', ker(^/ o resf'/f) ker^esy?//^) c
ker(cor77//77 oresf'/f)- Butcorores: Hn(F,A) -> Hn(F,Ä) is multiplication by
[Ff : F] ([GS06], Proposition 3.3.7), which is injective since \A\ m and [Ff : F]
is prime to m. Thus these kernels are all trivial, and again the result follows.

In Corollary 3.1.6, the initial six terms need not split into two three-term short exact

sequences; i.e. the map on H1 (F, A) need not be injective. In fact, for A Z/mZ
with m > 1, a necessary and sufficient condition for Splitting is that the reduction
graph T is a tree ([HHK11], Corollaries 5.6 and 6.4). But in the next result, there is

Splitting at every level.

Corollary 3.1.7. Suppose that char(k) 0 and that K contains a primitive m-th
root ofunity for all m > 1. Then the Mayer-Vietoris sequence in Theorem 3.1.3 (ii)
for Gm splits into exact sequences

0 —> Hn(F,<Gm)—y n Hn (Fx f] Hn(Fu,Gm)
PetP UeU

— n Hn(Fp,Gra)^0
peS

for all n > 0.

Proof By Theorem 3.1.3 (ii), it suffices to prove the injectivity of the maps

Hn(F,<Gm)— Y\ Hn(FP,Gm)xY\ Hn(Fu,Gm)
PetP UeU

for all n > 1. The case n 1 follows from the vanishing of H1 (F, Gm) by Hilbert's
Theorem 90. It remains to show injectivity for n > 1. Since K contains all roots of
unity, for each m we may identify the Galois module Gm[m] /xm with Z/mZ and

Z/mZ(n — 1).

By Theorem 3.1.3 (ii), the desired injectivity will follow from the surjectivity of
the map

Y\ Hn-\Fp,Gra)xYl Hn~l (Fu ,G—> f[
PetP UeU peS

Leta e flpes Hn~l(Fp,Gm),andwritea withap e Hn~l(Fp,Gm).
For each p e J3, the element is the image ofsome äp e forsome

tnp > 1, by Lemma 2.4.4. Since <S is finite, we may let m be the least common multiple

of the integers mp. Thus a is the image of ä (äp) e flpes Hn~x (Fp, /xm).
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By Theorem 3.1.5 and Theorem 3.1.3 (i), the map

n FIn~l{Fp,Z/mZ(n —1)) x ]~[ 1))

PeP UeU

— n H"-1 (Fp,Z/mZ(n —1))

peB

is surjective. So by the identification /xm Z/mZ(n — 1), it follows that ä is the

image of some element ß e Hn~1(Fp, /jbm) x Ylueu Let

ß be the image of ß in Hn~l{Fp,Gm) x Ylueu Hn~1(Fjj,Gm). Since the

diagram

ß £ Wp&tp
1 (Fp, /xm) x Y\u<eU

^ (Fjj, flm) ^ (Fp,flm)3ä

ß e Tlper nn~\FP,Gm) x n^et/ Gm) ^ üpes H«~l(Fp,Gm) ^ <*

commutes, ß maps to a, as desired.

Note that Corollaries 3.1.6 and 3.1.7 also provide patching results for cohomology,
in addition to local-global principles. Namely, for n ^ 1 in Corollary 3.1.6, or any
n in Corollary 3.1.7, those assertions show the following. Given a collection of
elements e Hn{FpÄ) for all £ e 1P U U such that ap,au induce the same
element of Hn(Fp, Ä) whenever p is a branch on U at P, there exists a unique
a e Hn(F, A) that induces all the ap In the Situation of Theorem 3.1.3, where

Splitting is not asserted, a weaker patching Statement still follows: given elements

as above, there exists such an a, but it is not necessarily unique.

3.2. Local-global principles with respect to points. In this section we will inves-

tigate how to translate our results into local-global principles in terms of the points
on the closed über I of I, rather than in terms of patches. Extending our earlier
notation, if P e X is any point (not necessarily closed), we let Fp denote the fraction
field of the complete local ring Rp : p. In particular, if r] is the generic point of
an irreducible component X0 of the closed über X, then F^ is a complete discretely
valued field, and it is the same as the ??-adic completion of F.

3.2.1. The field Fff. In order to bridge the gap between the fields F\j and Fv, where

r] is the generic point of the irreducible component X0 c X containing [/, we will
consider a subfield Ff} of F^ that has many of the same properties but is much smaller.

Namely, with notation as above, let R^ be the direct limit of the rings Ry, where V
ranges over the non-empty open subsets of X0 that do not meet any other irreducible
component of X. Equivalently, we may fix one such non-empty open subset [/, and
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consider the direct limit over the non-empty open subsets V of U. Here R^ is a

subring of Rand we let Ff} be its fraction field. Thus Ff} is a subfield of Fr].

Lemma 3.2.1. Let Xq c X be an irreducible component with generic point r\, and
let U C Xq be a non-empty open subset meeting no other component. Then R^ is a
Henselian discrete valuation ring with respect to the rj-adic valuation, having residue

field k(U) k(X0). Its fraction field Ff} is thefiltered direct limit ofthefields Fy,
where V ranges over the non-empty open subsets ofU.

Proofi Each Fy is contained in Ff}, and every element of Ff} is of the form a/b with

a, b in some common Fy. So Ff} is the direct limit of the Heids Fy.
Viewing rj as a prime ideal of Ry, the Heids Fy each have a discrete valuation

with respect to rj, and these are compatible. It follows that Ff} is a discretely valued
field with respect to the ?7-adic valuation. We wish to show that the valuation ring of
Ff} is R1}, with residue field k{U). Note that the Fadic and ?7-adic metrics on Ry are

equivalent, since ^JJt) rj.

Since Ry is contained in the ?7-adic valuation ring of Fy, it follows that R^ is

contained in the valuation ring of Ff}. To verify the reverse Containment, consider

a non-zero element a e Ff} with non-negative ?7-adic valuation. Thus a e Fy for

some V; and so a a/b with a,b e Ry non-zero and vr](a) > v^fb). Since Ry
is a Krull domain, the element b e Ry has a well defined divisor, which is a finite
linear combination of prime divisors; and other than the irreducible closed fiber V of
Spec(Z?j/), each of them has a locus that meets this closed fiber at only finitely many
points. After shrinking V by deleting these points, we may assume that b is invertible
in Ry[t~1]. But also vr](a/b) > 0; and thus a/b has no poles on Spec(Ry). So the

element a a/b e Fy actually lies in Ry, and hence in R1} as desired. Thus R^ is

indeed the valuation ring of Ff}. Since the valuations on the rings Ry are compatible
and induce that of R1}, the maximal ideal rjR1} of R1} is the direct limit of the prime
ideals rjRy oftherings Ry. But Ry/rjRy k(V) k{U) for all V. So the residue
field of R* is k(U).

It remains to show that R1} is Henselian. Let S be a commutative etale algebra

over R^, together with a section er: rj Spec(iS) of tt : Spec(iS) —Spec(Z?Jp over

the point rj. To show that R^ is Henselian, we will check that o may be extended

to a section over all of Spec(Z?Jp. Now since S is a finitely generated Z^-algebra,

it is induced by an etale i?j/-algebra Sy for some V, together with a morphism
7ty : Spec(SV) —Spec (Ry) that induces 7t and has a section a® : rj Spec(SV)

over the generic point rj of the closed fiber of Spec(Z?j/). Here Oy defines a rational
section over V, and hence a section over a non-empty affine open subset of F. So after

shrinking F,we may assume that cr£ is induced bya section ay: V Spec(Sy). But



240 D. Harbater, J. Hartmann and D. Krashen CMH

the ring Ry is Ladically complete; so by a version of Hensel's Lemma (Lemma 4.5

of [HHK09]) the section oy over V extends to a section of Tiy, over all of Spec(Ry).
This in turn induces a section of tt over Spec(Rh) that extends er, thereby showing

that R^ is Henselian.

Proposition 3.2.2. Let rj be the generic point of an irreducible component of
X, and let U be a non-empty affine open subset of X$ that does not meet any other
irreducible component of X. Let A be a smooth commutative group scheme over
F. Suppose a E Hn(Fjj, A) satisfies apn — 0- Then there is a Zariski open
neighborhood V ofrj in U such that apv =0.

Proof The ring Ru is excellent, by Corollary 5 of [Val76] and regularity; hence so

is its localization (Ru)rj at rj, The henselization R^ of (Ru)rj contains Ru, and its

completion is Rand it is minimal for these properties among Henselian discrete
valuation rings. So R^ is contained in R^ and its fraction field Fis contained in

Fff. Let c e Zn(Fjj, A) represent the classa. Sinceay^ 0, there is a finite Galois

extension L/F^ such that cp^ is the coboundary of a cochain in Cn~l (L/Fn, A{L)).
This can be expressed by finitely many polynomial equations. By excellence, Artin
Approximation ([Art69], Theorem 1.10) applies to Rand it follows that cFh is the

coboundary of an dement of Cn~1(F^, Ä). Thus aFh 0 and hence aFh 0.

The conclusion now follows from Lemma 2.3.5, since F^ is the filternd direct limit
of the Heids Fy, by the second part of Lemma 3.2.1.

3.2.2. Local-global principles with respect to points. We now obtain a local-
global principle in terms of points on the closed über X.

Theorem 3.2.3. Let Abea commutative linear algebraic group over F and letn > 1.

Assume that either

(i) 4 Z/mZ(r), where m is an integer not divisible by char {k), and where either

r n — 1 or eise [F{gLm) : F] is prime to m; or

(ii) A Gm, char(k) 0, and K contains a primitive m-th root of unity for all
m > 1.

Then the natural map

Hn(F,A)-H Hn(FP,A)
PeX

is injective, where P ranges through all the points of the closed fiber.

Proof Let a E Hn (F, Ä) be an dement of the above kernel. Consider the irreducible

components X\ of X, and their generic points ru E X\ c X. Thus apv. 0 for
each i (taking P rji). By Proposition 3.2.2, we may choose a non-empty Zariski
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affine open subset Ui c X(, not meeting any other component of X, such that apjj.
is trivial. Let U be the collection of these sets Ui, and let P be the complement in
X of the union of the sets Ui. Then a is in the kernel of the map on Hn(F, Ä) in
Theorem 3.1.5, Corollary 3.1.6, or Corollary 3.1.7 respectively. Since that map is

injective, it follows that a 0.

3.3. Local-global principles with respect to discrete valuations. Using the previ-
ous results, we now investigate how to translate our results into local-global principles
involving discrete valuations on our field F, and in particular those valuations aris-

ing from codimension one points on our model X of F. Our main result here is

Theorem 3.3.6, which parallels Theorem 3.2.3 (i), and asserts the vanishing of the
obstruction III" (F, Ä) to such a local-global principle, for n > 1 and A an appropri-
ate twist of Z/mZ.

In the case n — 1, a related result appeared in [HHK11] (Corollary 8.11), but
with different hypotheses and for different groups. In fact, for a constant finite group
A, the obstruction III1 (F, Ä) is non-trivial unless the reduction graph T of a regulär
model X of F is a tree; see [HHK11], Proposition 8.4 and Corollary 6.5. (As in
[HHK11], 4 'discrete valuations" are required to have value group isomorphic to Z,
and in particular to be non-trivial.)

For the remainder of this section we make the standing assumption that X is

regulär.

Lemma 3.3.1. Let P be a point ofX and let v be a discrete valuation on Fp. Then
the restriction Vo ofvtoF is a discrete valuation on F. Moreover ifv is induced by
a codimension one point of Spec(Rp) (or equivalently, a height one prime of Rp),
then Vo is induced by a codimension one point ofX whose closure contains P.

Proof. The first assertion is given in [HHK11], Proposition 7.5. For the second

assertion, if v is induced by a height one prime of Rp, then Rp is contained in the
valuation ring of v. Hence so is the local ring Rp, which is then also contained in the
valuation ring of vo. Thus vo is induced by a codimension one point of Spec(Rp),
and so by a codimension one point of X whose closure contains P.

Given a field E, let Qp denote the set of discrete valuations on E. For v e Qp,
write Ev for the u-adic completion of E. If A is a commutative group scheme over
E, let

m"(£, Ä)ker (#"(£, A)-»]~[

Similarly, given a normal integral scheme Z with function field E, let Qz ^
Qp denote the subset consisting of the discrete valuations on E that correspond to
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codimension one points on Z. If A is as above, let

Ulnz(E,A)=ker (//"(£, A)->]~[ Hn{Ev,A)}.

Here if Z Spec(i^), we also write \RnR(E, Ä) for HInz(E, Ä).
We will be especially interested in the case that E F, the function field of a

regulär projective curve X over our complete discrete valuation ring T; and where Z
is either X or Spec (/?/>) for some closed point P e X.

In the case that Z X, with closed über X and function field F as before, there
is a related group

mn~ X(F,A) kex(yHn{F,A) ^ ]~[
PeX

Note that LH- (F, A) is contained in IHn~(F, A) by Proposition 7.4 of [HHK11],
which asserts that every field of the form Fv contains a field of the form Fp. In the
above notation, Theorem 3.2.3 asserts that IH^ x(F, A) 0 if condition (i) or (ii)
of that result is satisfied.

3.3.1. Relating local-global obstruction on a regulär model to obstructions at
closed points. A key Step in relating our patches to discrete valuations is the fol-
lowing result, which parallels Proposition 8.4 of [HHK11]. That result considered

only the case n — 1, but did not require the linear algebraic group to be commutative
(since H1 is defined even for non-commutative groups).

Here Z(0) denotes the set of closed points of X, and Y\' denotes the restricted

product, i.e. the subgroup of the product consisting of elements in which all but finitely
many entries are trivial.

Proposition 3.3.2. Let A be a linear algebraic group over F.

(a) The natural map Hn(F, A) —Hn(Fp, Ä) induces an exact sequence

O^Ul'l>x(F,A)^Ul'l(F,A)^ P['
P^X{0)

(b) If A isfinite and oforder not divisible by char (k), or z/char(/:) 0, the exact

sequence extends to

0^Uln~x(F,/[)\mn~(F,A)LUl'Lp(FP,A)^0.
0)
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(c) If n > 1 and A satisfies hypothesis (i) or (ii) of Theorem 3.2.3, then <fi is an
isomorphism.

Proof It followsfrom Lemma 3.3.1 that for each P e X(0), the image of HR(R Ä)
under Hn{F, Ä) -> Hn{Fp,A) lies in III7! (Fp, A). Thus we obtain a group ho-

RP
momorphism HR(R Ä) —rw<„, nn {Fp ,Ä). To obtain the map <fi, we wish

to show that the image is contained in the restricted product. If a e HR(R A) c
Hn (F, Ä) and rj is the generic point of an irreducible component of X, then the image
of a in Hn{Fr],A) is trivial, since rj is a codimension one point on X. By Proposition

3.2.2, a has trivial image in Hn{Fu,A) for some Zariski open neighborhood
U of rj, and hence in Hn{Fp,A) for each P e U. The union of these sets U, as rj

varies, contains all but finitely many closed points of X. So indeed the image of a
lies in the restricted product.

The composition <piis trivial by definition of HR (F, A). To complete the proof
Jl Jl

of part (a), let a e IIIng(F, Ä) be any dement in the kernel of this map. Then the

image of a in III- {Fp, Ä) c Hn{Fp, Ä) is trivial for every closed point P on
RP

the closed über X. Meanwhile, for any non-closed point rj of X (viz. the generic
point of an irreducible component of X), the image of a in Hn {Fv, Ä) is also trivial,
by the definition of III77, since rj is a codimension one point of X. Hence a lies in

IU| {F, A) c LQ^(F, A), as required.

To prove part (b), i.e. that </> is surjective, take an dement {otp)pex{0) in the above

restricted product. Thus ap 0 for all P e X(0) outside of some finite set P that

can be chosen to include the points where distinct components of X meet. Since

ap e HR {Fp, A), its image in Hn{Fp,A) is trivial for every branch p of X at
Rp

P. Let XL be the set of components of the complement of P in X, and let ajj — 0

for each U e U. The hypotheses of Theorem 3.1.3 are satisfied in our Situation,
and the exact sequence there yields that the tuple {a%)%e<puu is °f the f°rm A(a)
for some a e Hn{F, A). The image of a under Hn{F, Ä) n^ev: Hn{Fp,A) is

{otp)peX(o) e n^e^o) {Fp>A)- To complete the proof of (b), we show that

a e LQ^(F, Ä), i.e. av 0 for each v e Qg- Proposition 7.4 of [HHK11],
Fv contains Fp for some P e X. If P is a closed point, then the discrete valuation
on Fv restricts to a discrete valuation vp on Fp (which in turn restricts to v on F).
But ap e HR {Fp,Ä), so a becomes trivial over {Fp)Vp and hence over Fv. If

Rp
instead P is a point of codimension one, i.e. the generic point rj of some U e XL,

then v Vrj, and av 0 because ajj — 0 and Fjj C Fv.
Part (c) now follows from part (b) together with Theorem 3.2.3, which says that

HR X{F,A) 0.
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3.3.2. Local-global principles at closed points. We will use the following Statement

of Panin which asserts a particular case of the analog of the Gersten conjecture
in the context of the theory of Bloch and Ogus. Here k(z) denotes the residue field
at a point z, and denotes the set of points of Z having codimension i. As usual,

Z/mZ(-r) denotes Hom(Z/mZ(r),Z/mZ) for r > 0, where m is not divisible by
the characteristic of the field. Also, for m as above and for any r e Z, if A is an

m-torsion group scheme then A(r) denotes A ® Z/mZ(r).

Theorem 3.3.3 ([Pan03, Theorem C]). Suppose that R is an equicharacteristic
regulär local ring with fraction field F, and let Z Spec(i^). Then for any positive
integer m that is not divisible by the characteristic, and any m-torsion finite etale
commutative group scheme A over R, the Cousin complex

0 —> Hn(Z, A)—> Hn{F, A)—> 0 Hn~\ic(z),A(-l))
zeZ*1»

— 0 H"-2(K(Z),A(-2))—•••
ZGZ(2)

ofetale cohomology groups is exact.

Proposition 3.3.4. Under the hypotheses of Theorem 3.3.3, assume that R is com-
plete. Then Uln (F, Ä) HInz(F,A) 0 for n > 1.

Proof Let d be the Krull dimension of R. The assertion is trivial if d < 1, so we
may assume d > 2. Since HI" (F, A) c Ltl^ (F, A), it suffices to show the vanishing
of the latter group.

Leta G \Rnz(F, Ä) c Hn(F,A). Consider the exact sequence in Theorem 3.3.3.

For each z g Z^\ the ramification map Hn(F, Ä) Hh~1(k(z), A(— 1)) factors

through the map to the completion Hn (Fz, A). But the image of a in Hn (Fz, Ä) van-
ishes, since a e Ltl^T7, Ä). Hencea maps to zero in ®zeZ(i) Hh~1(k(z), A{— 1)),
and thus it is induced by a class ä e Hn (Z, A).

Let k' be the residue field of R at its maximal ideal (corresponding to the closed

point of Z). Let o\,..., öd be a regulär System of parameters in R. Write o — o\
and write R0 for the completion of the local ring of R at the prime ideal (er). Thus

R(j is a complete discrete valuation ring with uniformizer er; let F0 and /c(cr) denote
its fraction field and residue field, respectively. Here /c(cr) is the fraction field of
0K(a) := an equicharacteristic regulär complete local ring of dimension
d — 1, such that the residues 0*2,..., of 0*2,..., (Jd f°rm a regulär System of
parameters. By Theorem 3.3.3, the natural maps

Hn(Ra,A) Hn(Fa, A) and Hn(0K(a), A) Hu{k{o), A)
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are injections. The complete local rings R and 0K(a) each have residue field k', so

by Theorem III.4.9 in [Art62] we may identify

Hn(Z,A) Hn{k',Ä) Hn(0K(GhA),

via restriction to the closed point. The natural map Hn{Z, Ä) -> Hn(0K^Gp A) is

thus an isomorphism. We have the following commutative diagram:

Hn(0K(a),Ay >Hn{K(o),Ä)

i

ä Hn(Z, A)^
^ P

Y

a G Hn(F, Ä) ^ Hn(FG,A)

Since er defines a codimension one point of Z, the image of a e \Mnz{F, A) c
Hn(F, A) in Hn(FG, A) is trivial. Since ä maps to a, a diagram chase then shows

that ä is trivial and hence so is a.

In our Situation, with R — Rp arising from a regulär model X, Proposition 3.3.4
asserts:

Corollary 3.3.5. Suppose that K is an equicharacteristic complete discretely valued

field of characteristic not dividing m, and that X is regulär. Then for every P G X
and m-torsion finite etale commutative group scheme A over Rp, Uln(Fp,A)
HR (FP,A) 0.

Kp

3.3.3. Local-global principles for funetion flelds. Finally, we obtain our local-
global principles over our field F with respect to discrete valuations:

Theorem 3.3.6. Suppose that K is an equicharacteristic complete discretely valued

field ofcharacteristic not dividing m, and that X is regulär. Let n > 1. Then

Uln(F,Z/mZ(n - 1)) Uln$(F,Z/mZ(n - 1)) 0.

1f[F{gLm) : F] isprimetom then also Uln(F,Z/mZ(r)) Ul1k(F, Z/mZ(r)) 0

for all r.

Proof. In each of the two cases considered, hypothesis (i) of Theorem 3.2.3 is satis-

fied. Since n > 1, Proposition 3.3.2 (c) then applies. The theorem now follows by
Corollary 3.3.5 and the Containment Uln(F, A) c LQ^(F, A).
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Remark 3.3.7. The case n 2, concerning Brauer groups, holds even without
assuming equal characteristic ([CPS12], Theorem4.3 (ii); [HHK11], Corollary 9.13).
It would be interesting to know if the same is true for n > 2, and also ifTheorem 3.3.6
has an analog for Gm in characteristic zero as in Theorem 3.2.3 (ii). But carrying over
the above proof would require versions of Panin's result ([Pan03], Theorem C) in those
situations.

4. Applications to torsors under noncommutative groups

As an application of our results, in this section we give local-global principles for
G-torsors over F for certain connected noncommutative linear algebraic groups G,
and for related structures. Our method is to use cohomological invariants in order to
reduce to our local-global principles in Galois cohomology (viz. to Theorems 3.2.3 (i)
and 3.3.6).

We preserve the notation and terminology established at the beginning of Section 3.

In particular, we write T for the valuation ring of K, and k for the residue field. We
let X be a normal, integral projective curve over T, with closed über X and function
field F. As before, we write Q f for the set of discrete valuations on the field F, and

write Qg for the subset of Q f consisting of those discrete valuations that arise from

codimension one points on X.

4.1. Relation to prior results. The basic strategy used in this section to obtain local-
global principles for torsors was previously used in [CPS12], Theorem 5.4, to obtain
a local-global principle for G-torsors over the function field F of a smooth projective
geometrically integral curve over a p-adic field K, where G is a linear algebraic F-
group that is quasisplit, simply connected, and absolutely almost simple without an

Es factor. There they used the local-global principle of Kato for H3 together with the
fact that the fields under their consideration were of cohomological dimension three.

Our applications arise from our new local-global principles for higher cohomology
groups, and hence do not require any assumptions on cohomological dimension.

Local-global principles for G-torsors were also obtained in [HHK11] (as well as

in [HHK09], in the context of patches). But there the linear algebraic groups G were
required to be rational varieties, whereas here there is no such hypothesis. On the
other hand, here we will be looking at specific types of groups, such as Es and F4.
Another difference is that in [HHK11], in order to obtain local-global principles with
respect to discrete valuations, we needed to make additional assumptions (e.g. that k
is algebraically closed of characteristic zero, or that G is defined and reductive over
X; see [HHK11]), Corollary 8.11. Here the only assumption needed for local-global
principles with respect to discrete valuations is that K is equicharacteristic. (If we
wish to consider only those discrete valuations that arise from a given model X of
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F, then we also need to assume that X is regulär.) Thus even in the cases where the

groups considered below are rational, the results here go beyond what was shown for
those groups in [HHK11].

4.2. Injectivity vs. triviality of the kernel. The local-global principles for G-
torsors will be phrased in terms of local-global maps on H1 (F, G). Because of non-
commutativity, H1 (F, G) is just a pointed set, not a group. Thus there are two distinct
questions that can be posed about a local-global map: whether the kernel is trivial, and

whether the map is injective (the latter condition being stronger). And as in Section 3,

there are actually several local-global maps: H1(F,G) -> H1(FV,G),
H1 (F, G) -> rUttg

H\FV,G), and H1 -> {FP, G), with ker-

nels 111(7^, G), LQj^(F, G), and UI^ ^(i7, G) respectively. (As is common, here we

writeUIforlll1.) Note that ifUI^(77, G) 0 for some model X thenHI(F, G) 0;
and similarly for injectivity of the corresponding maps. So we will emphasize the

cases of I%(F, G) and IIL^ x (F, G).

4.3. Local-global principles via cohomological invariants. The approach that we
take here for obtaining our applications is to use cohomological invariants of algebraic
objects.

Recall that an invariant over F is a morphism of functors a: S -> //, where
S: (Fields/77) -> (Pointed Sets) and H: (Fields/77) —(Abelian Groups) (see

[GMS03], Part I, Section 1.1). Most often, as in [GMS03], S will have the form
Sq given by Sq(E) H1(E,G) for some linear algebraic group G over F\ this
classifies G-torsors over E, and also often classifies other types of algebraic structures

over F. In practice, H{E) will usually take values in Galois cohomology groups of
the form Hn{E,Z/mZ{n - 1)).

The simplest Situation is described in the following general result, where we retain
the Standing hypotheses stated at the beginning of Section 3, with X a normal model
of F.

Proposition 4.3.1. Let a: S H be a cohomological invariant over F, where

H{E) Hn (E, Z/mZ(r)) for some integers n, m, r with n, m positive, and where

m is not divisible by char(k). Assume either that r — n — \, or eise that the degree

F] is prime to m.

(a) Ifa(F) : S(F) —H(F) has trivial kernel, then so does the local-global map
S(F) ~> Efpex S(Fp)- Moreover, ifK is equicharacteristic and X is regulär,
then the same holdsfor S(F) —S(FV)-

(b) Ifa(F): S(F) —H(F) is injective, then so is the local-global map S(F) —

S(Fp)' V in addition K is equicharacteristic and X is regulär, then

S(F) —S(Fv) is injective as well.
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Proof Consider the commutative diagrams

S(F) — ^ H(F)
I I

ripez S(Fp) > ]~[ H(Fp)

and

S(F) — H(F)
\ \

ru%w) diÄ n„% #
The result follows by a diagram chase, using the fact that the right-hand vertical

map in the first diagram is injective by Theorem 3.2.3 (i), and that the corresponding

map in the second diagram is injective in the case that K is equicharacteristic and X
is regulär, by Theorem 3.3.6.

Recall that a linear algebraic group G over F is quasi-split if it has a Borel
subgroup defined over F. It is split if it has a Borel subgroup over F that has a

composition series whose successive quotient groups are each isomorphic to Gm or
Ga. If G is reductive, this is equivalent to G having a maximal torus that is split (i.e.
a product G£).

Corollary 4.3.2. Let G be a simply connected linear algebraic group over F.
Consider the Rost invariant Rq - //*(*, G) -> H3(*,Z/mZ(2)) of G, and as-

sume that the characteristic of k does not divide m. In each of the following
cases, Ulg X(F,G) 0. If K is equicharacteristic then LL^T7, G) 0; and

U1X(F, G) 0 ifin addition the given model X is regulär.

• G is a quasi-split group oftype or Ej.
• G is an almost simple group that is quasi-split of absolute rank at most 5.

• G is an almost simple group that is quasi-split oftype or D§.

• G is an almost simple group that is split oftype Dj.

Proof In each of these cases, the Rost invariant Rq has trivial kernel. This is by
[GarOl], Main Theorem 0.1, in the first case, and by [GarOl], Theorem 0.5, in the
other cases. So the assertion follows from Proposition 4.3.1 (a).

Corollary 4.3.3. Let m be a square-free positive integer that is not divisible by the

characteristic of k, and let A be a central simple F-algebra of degree m. Then
the local-global map H1(F, SLi(^4)) —Hl(.Fp, SLi(^4)) is injective. Ifin
addition K is equicharacteristic and X is regulär, then the map H1(F, SLi(^4)) —

H1(Fv, SLi(yl)) is injective.
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Proof By [MS82], 12.2 (see also [Ser95], 7.2), given a division algebra A of degree

m, there is a cohomological invariant a : H1(*, SLi(A)) -> //3(*,Z/mZ(2)) that
is injective if m is Square-free. So the result follows from Proposition 4.3.1 (b).

In particular, IIL^ X(F, SLi(A)) and HI(.F, SLi(A)) respectively vanish in the

above situations. Also, via the identification of H1 (F, SLi (A)) with Fx/Nrd(Ax),
the above result gives a local-global principle for elements of F* to be reduced norms
from a (central) division algebra A; cf. also [Kat86], p. 146.

Other applications can be obtained by using a combination of cohomological
invariants. This is done in the next results.

Proposition 4.3.4. Let G be a simple linear algebraic group of type E% over F.

(a) Assume char(ÄT) 0. Then the group G is split over some odd degree extension

of F ifand only if Gpp is split over some odd degree extension of Fp for every
P e X.

(b) Assume char(ÄT) ^ 2,3,5. Then the same holdsfor extensions ofdegree prime
tofive (rather than ofodd degree) over F and each Fp.

(c) Assume in addition that K is equicharacteristic and X is regulär. Then the

assertions in parts (a) and (b) hold with the fields Fp replaced by the fields Fv

for all v e Qg.

Proof. For the forward implications, observe that if G is split over a finite extension

E/F of degree d [E : F], and if FfF is any field extension, then G also splits
over the compositum E' := FF' in an algebraic closure of F', and [E' : F'] divides
d. Taking F' equal to Fp or Fv yields the forward implications. We now show the

reverse implications.

Proofof (a) and the corresponding part of (c): Let Go be a split simple algebraic

group over F of type E%. Then H1(F, Go) classifies simple algebraic groups of
type E8 over F, since G0 Aut(G0). Given a group G as in the proposition, let
[G] be the class of G in H1{F, Go), and let ro := /?g0([G]) t>e the associated Rost
invariant, say with order m. Thus ro e H3(F, Z/mZ{2)).

For each P Gl, the group G becomes split over some extension Ep /Fp of odd

degree dp. Thus the Rost invariant of G over Fp mapstozeroin //3(F/>,Z/mZ(2)),
and hence it is dp -torsion in H3 {Fp, Z/mZ (2)) by a Standard restriction-corestriction

argument. Thus it is also d'p -torsion, where d'p is the greatest common divisor of dp
and m. Let d be the least common multiple of the odd integers dp, each of which
divides m. Thus dro e H3{F,Z/mZ{2)) has trivial image in H3{Fp, Z/mZ(2))
for all P. It follows from Theorem 3.2.3 (i) that dro is trivial. Hence the order of
the Rost invariant ro over F is odd.

Let H1^, Go)o ^ H1^, Go) be the subset consisting of classes a such that

Rg0(cc) has odd order. By the above, this contains [G]. Now by Corollary 8.7
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of [Sem09], since char(,F) char(X) 0, there is a cohomological invariant

u: H1 (*, Go)o //5(*, Z/2Z) such that for any fieldextension E/F, theinvariant
u{[Ge]) vanishes if and only if G splits over a field extension of E of odd degree.

By functoriality of u, the class w([G]) maps to u([GpP]) for every P e X. But
for every P e X, GpP is split over an extension of odd degree and hence u([GpP])
is trivial in H5(Fp, Z/2Z). By Theorem 3.2.3 (i), it follows that w([G]) is trivial in
H5{F,Jj/2Jj). The conclusion of (a) now follows from the defining property of u.

The corresponding part of (c) is proved in exactly the same way, but with Fv

replacing Fp and with Theorem 3.3.6 replacing Theorem 3.2.3 (i).

Proofof (b) and the corresponding part of (c): By the main theorem in [Che94],
since char(F) ^ 2,3,5, the Rost invariant of G over a field extension E/F has trivial
image in H3(E, Z/5Z(2)) if and only if G splits over some finite extension of E
having degree prime to live. The desired assertion now follows from Proposition 4.3.1,

taking S(E) to be the subset of H1(E, G0) that consists of elements that split over
some field extension of E having degree prime to live, and with a being the restriction
to this subset of the Rost invariant modulo 5.

Proposition 4.3.5. Assume that char (K) ^ 2, 3. Then Albert algebras over F have

each of thefollowing properties ifand only ifthe respective properties hold after base

change to Fp for each P E X.

• The algebra is reduced.

• The algebra is split.

• The automorphism group of the algebra is anisotropic.

• Two reduced algebras are isomorphic.

The same holds for base change to Fv for each v E Qg, in the case that K is

equicharacteristic and X is regulär.

Proof. Albert algebras are classified by H1(F, G), where G is a split simple linear

algebraic group over F of type F4. Moreover (see [Ser95], 9.2, 9.3) there are

cohomological invariants

/3: H1(F,G)-//3(F,Z/2Z), f5: Hl{F,G) - H5(F, Z/2Z),

g3: Hl(F,G)- Z/3Z),

where H3(F, Z/3Z) H3(F,Z/3Z(2)).The properties of Albert algebras listed
in the proposition are respectively equivalent to the following conditions involving
these invariants (see [Ser95], 9.4):

• The invariant g3 vanishes on the algebra.

• The invariants f$ and g3 each vanish on the algebra.
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• The invariants f5 and g3 are each non-vanishing on the algebra.

• The two reduced algebras have the same pair of invariants fo, fs.

By the injectivity of the local-global maps on H3(F, Z/2Z), H5(F, Z/2Z), and

H3(F, Z/3Z(2)) (viz. by Theorems 3.2.3 (i) and 3.3.6 respectively), and by the

functoriality of the invariants /3, /s, g3, the assertion then follows.
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