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Galois theory of quadratic rational functions

Rafe Jones and Michelle Manes*

Abstract. For a number field X with absolute Galois group G i, we consider the action of G g
on the infinite tree of preimages of @ € K under a degree-two rational function ¢ € K(x), with
particular attention to the case when ¢ commutes with a non-trivial Mobius transformation. In
a sense this is a dynamical systems analogue to the £-adic Galois representation attached to an
elliptic curve, with particular attention to the CM case. Using a result about the discriminants
of numerators of iterates of ¢, we give a criterion for the image of the action to be as large as
possible. This criterion is in terms of the arithmetic of the forward orbits of the two critical
points of ¢. In the case where ¢ commutes with a non-trivial Mobius transformation, there is
in effect only one critical orbit, and we give a modified version of our maximality criterion. We
prove a Serre-type finite-index result in many cases of this latter setting.

Mathematics Subject Classification (2010). 37P15, 11R32.

Keywords. Galois representations, arboreal Galois representations, quadratic rational maps,
arithmetic dynamics, iteration of rational functions, ramification in iterated towers.

1. Introduction

Let K be a number field, and ¢ € K(z) a rational function of degree d > 2. Put
P =doporop,
———

n

and denote by ¢ " () the set of preimages of the point & in P! (K) under the map ¢”.
To the pair (¢, o), where o € K, we associate a tree of preimages: let V,, = ¢~ "(«),
and give the set T, = | |,. V, the structure of a tree with root o by assigning
edges according to the action of ¢. See Figure 2 for examples. Because elements of
Gal (K/K) commute with ¢, we obtain a map

p: Gal (K/K) — Aut(Ty),

where Aut(7,) denotes the group of tree automorphisms of 7. We call p the arboreal
Galois representation attached to (¢, ), and the main goal of the present work is to
study the image of p in the case where ¢ is a degree-two rational function.

*The first author’s research was partially supported by NSF grant DMS-0852826, and the second author’s by
NSF grant DMS-1102858.
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Given a prime £ and an elliptic curve £ defined over a number field K, we obtain
the f-adic Galois representation pg : Gal (K/K) — GL(7Z¢) in much the same
manner as the previous paragraph. The £-adic Tate module 7; (%) is the inverse limit
of the sets [£]7"(0), and the action of Gal (K /K) on Ty (E) gives pg. In this context
Serre [16] proved that for a given elliptic curve £ without complex multiplication
the image of pg has finite index in GL,(Z;) for all £, and pg is surjective for all
but finitely many £. In the case where £ has complex multiplication and the full
endomorphism ring is contained in the ground field K, similar statements hold (see
e.g. [16], p. 302), provided that GL,(Z;) is replaced by the largest subgroup of
GL,(Z ) that commutes with the action on the Tate module induced by the extra
endomorphisms of £. In general this is a Cartan subgroup.

In this paper we formulate a similar conjecture for quadratic rational functions
and prove it in certain cases. To do so, we develop a general theory of arboreal
representations associated to quadratic rational functions. In contrast to the situation
for pg ., there appears to be no finite quotient & of the target group such that surjectivity
of the induced representation into G implies surjectivity of p (see [6] for details).
Rather, infinitely many conditions must be checked, and by studying the ramification
of p we give a formulation of these in terms of the critical orbits of ¢ (Corollary 3.8
and Theorem 4.6).

When ¢ commutes with a non-trivial f € PGL,(K) such that f(«a) = «, the
Galois action on 7, must commute with the action of f. Define the automorphism
group of ¢ to be

Ap = {f €PGLy(K): ¢po f = fog},

and define

Apa =1 € Ag: fla) = a}.
We know that A is finite by Proposition 4.65 of [17].

Let Goo denote the image of p: Gal (K/K) — Aut(Ty), and let Coo denote the
centralizer of the action of Ay, on Aut(7y). Recall that ¢(x) € K(x) is said to
be post-critically finite if the orbit of each of the critical points of ¢ is finite. Such
maps have the property that the extension K(7,)/K is ramified above only finitely
many primes of X (see [2] and the remark following Theorem 3.2), and thus G 1s
topologically finitely generated. In this work, we focus on the general case, and we
do not consider post-critically finite maps.

Conjecture 1.1. fet ¢p € K(x) have degree d = 2 and let « € K. Suppose that ¢
is not post-critically finite. Then |Cy : Goo) 1s finite.

When Ag o 1s trivial, Conjecture 1.1 has been proven only in the case of two
families of quadratic polynomials ([8], Theorem 1.1 and first remark on p. 534),
namely

fx)=x*—kx+kkeZ and f(x)=x>+kx—1,keZ~{0.2},
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for « = 0. The key feature of these families is that the orbit of 0 is finite but not
periodic, a property they share with the family in Conjecture 1.3 below. We establish
here the first similar result for a rational function that is not conjugate to a polynomial.

1+ 3x2

Th 1.2. Let =
eorem ¢(x) e

Aut(Ty).

and o« = 0. Then for K = Q, Goo =

The function in Theorem 1.2 is polynomial-like in that it has a periodic critical
point, though here it is in a 2-cycle rather than being a fixed point. Moreover, the orbit
of 0 under ¢ is finite but not periodic. See the discussion following Corollary 3.8 for
a one-parameter family of such maps.

If f is anon-identity element of Ay o, then f(o) = «, andso f(p" (a)) = @™ ()
forall n = 1. Because f has exactly two fixed points, « is thus either in a cycle of
¢ of length at most two, or maps after one iteration onto a fixed point. In fact, under
the hypotheses of Conjecture 1.1, « is either fixed by ¢ or maps to a fixed point of

¢ (see Section 2). Figure 1 shows possible pre-image trees under the hypotheses of
Conjecture 1.1. Here,

Vi=¢ M) \{a}, Vu=¢ " (Vooy) forn>1. and Ty =| [Vi.

n>1

Note that K (¢ " (a)) = K(V},).

Vﬁ \/
\/

o o

) U

Figure 1. The first few levels of typical preimage trees when #44 o > 1 and deg¢ = 2.

In Section 3, we give a criterion for a given pair (¢, o) to satisfy [Coo * Goo] < 00
in the case d = 2. In Section 2 we show that in the case #44 o > 1, Conjecture 1.1
is equivalent to:
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Conjecture 1.3. Let ¢p(x) = k(x?> + 1)/x and a = 0, and suppose that ¢ is not
post-critically finite. Then [Coo * Goo| < 0.

The conjectures above suggest a more general question.

Question 1.4. Let ¢ € K(z) have degree d > 2 and & € K. Under what conditions
i [Coo : G finite?

The post-critically finite maps of the form ¢(x) = k(x? + 1)/x must have k
with multiplicative height at most 2, and k can only be divisible by primes of K
lying over (2) (see Proposition 5.1 for details). The structure of Cy, in the setting
of Conjecture 1.3 is described at the beginning of Section 4. In particular, C is
an infinite-index subgroup of Aut(7,) with Hausdorff dimension 1/2 (see p. 192 for
the definition); however, in contrast to Cartan subgroups of GL2(Z;), it is highly
non-abelian. Indeed, C,, has an index-two subgroup isomorphic to Aut(7).

One of our main results is the following.

Theorem 1.5. If K is a number field of odd degree over Q, then Conjecture 1.3 is
true for all k in a congruence class.

We prove that Conjecture 1.3 is true in many other circumstances (see Corol-
lary 5.11). For simplicity, we state here the result for the case K = Q.

Theorem 1.6. Conjecture 1.3 is true for K = Q provided k satisfies one of the
following conditions (we write v, for the p-adic valuation):

* va(k) =00rvs(k) =0,
k=2,3mod50ork =1,2,5 6 mod 7,
vp(2k £ 1) > 0 for some p = 3,5 mod §,

vp(2k? — k + 1) > 0 for some prime p with —k not a square mod p, or

vp(2k* + k + 1) > 0 for some prime p with k not a square mod p.

In the case where k& € Z, we use Theorem 1.6 plus other results to verify Conjec-
ture 1.3 for all £ with |k| < 10000 (see the remark following Corollary 5.11). We also
give the following sufficient conditions on k to ensure that the index in Conjecture 1.3
is one (see Theorem 5.13).

Theorem 1.7. et ¢ and o be as in Conjecture 1.3, and suppose that K = Q. There
exists an effectively computable set % of primes of 4, of natural density zero, such
that if v,(k) = 0 for all primes belonging to X then Go, = Cq.
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For more on %, see Corollary 5.14 and the remark following. We note that all odd
primes in % are congruent to 1 modulo 4, so that if & is an integer divisible only by
primes congruent to 3 modulo 4, then Theorem 1.7 applies. We note that Theorem 1.7
may be far from best possible; indeed, we have been unable to find a single k € Z
for which [G, : Cx] > 1. The fact that ¥ has zero density is a consequence of
our analysis of Cy and a result relating the structure of GG, to the density of prime
divisors of orbits of a large class of rational functions (Theorem 6.1).

In order to prove our main results, we generalize techniques from [8], [14], [18]
that treat case where ¢ 1s a polynomial. In particular, in Theorem 3.2 we obtain a
formula for the discriminant of the numerator of ¢¢", where ¢ is a rational function of
degree d > 2, a problem that has interest in its own right (see [2]). In the case d = 2,
we examine the irreducibility of the numerators of ¢", both in the general quadratic
case (Theorem 3.5) and in the case ¢(x) = k(x? + b)/x (Theorem 4.5). We also
analyze the extensions K,,/K,_1, where K; = K(¢~*(«)). We give a criterion for
[K, : Ky—1] to be as large as possible, both in the general quadratic case (Corol-
lary 3.8) and in the case where ¢(x) = k(x? + b)/x (Theorem 4.6). We use the
former criterion to prove Theorem 1.2 (see the discussion following Corollary 3.8).
The criteria for both irreducibility and maximality of the field extensions are arith-
metic, and depend on knowledge of primes dividing elements of the form ¢"(y),
where y 1s a critical point of ¢. We assemble these pieces to prove the following
result, which is the main engine behind Theorems 1.5, 1.6, and 1.7.

Theorem 1.8. Let ¢p(x) = k(x*> + 1)/x and « = 0, and suppose that ¢ is not
post-critically finite. Put

2k2 ifn = 1, k I:fn — 1,
8, = 5 ) ’ and €n = \ 8, ieni -
Sa_1+e€,_4 ifn=2, a=te=l ifn = 2.

If none of —1, &y, or =8, is a square for n = 2, then [Goo : Cxo is finite.

See Theorem 5.3 for a slightly more general statement. The sequence (3, €,) is
related to the orbit of the critical point 1 of ¢ in that ¢ (1) = §,/¢,. What makes
Theorem 1.8 possible is the fact that 0 is a pre-periodic point for ¢, which ensures that
the set of common prime ideal divisors of §; and §; is very restricted (see Lemma 5.2).
This allows one to show that except in very special circumstances there must be a
primitive prime divisor p of §,, (that is, p does not divide §; fori < n) that divides &,
to odd multiplicity. This is the key hypothesis of Theorem 4.6. The condition that 0 is
pre-periodic has also been used to study primitive prime divisors in other dynamical
sequences (see [3], [15]). A natural hope is that similar techniques might be used to
tackle Conjecture 1.1 and Question 1.4, even in the case where Ay is trivial.
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2. Preliminaries and notation

In this section we fix some notation, and we show how to reduce Conjecture 1.1 to
Conjecture 1.3 when #44 o > 1. For any g € PGL,(K), define the conjugate map

9% = gog".

Proposition 2.1. Suppose ¢ € K(z) and basepoint o € K satisfy [Coo : Goo| < 00.
Let g € PGLy(K) such that 9% € K(z). Then the finite index result also holds for
¢& with the basepoint g(a).

Proof. To simplify notation, we let ¥ = ¢¥. A computation reveals that

Ayse =g°Apacg 2)
First suppose g € PGL,(K). Then since

v g(w) = {g(B) : B € g7 (@)}, 3)

Y (g(a)) and ¢~ " («) generate the same extension of K.

Now suppose that i is a nontrivial twist of ¢», meaning g € PGL;(1.) for some
finite extension 1./ K (here we take I. minimal). From Lemma 2.6 of [10], there is
an absolute bound B depending only on ¢ so that [L : K] < B. (In fact, this bound
B can be chosen to depend only on the degree of ¢ and not on the specific map.)

By equation (3), for each n > 1 an extension of ¢~"(«) of degree at most B
contains K (" (g(«))). The finite index result follows. O

When deg ¢ = 2, Ay is either trivial, cyclic of order two, or isomorphic to S3
[12]. The third option occurs if and only if ¢ is conjugate over K to 1/z2, in which
case ¢ is post-critically finite. Hence, if we assume #A44, > 1 in Conjecture 1.1,
then necessarily #44 , = 2 and A5, = Ag. In this case we have from Lemma 1 of
[11] that ¢ is conjugate over K to

Y(z) = k(z> + 1)/z, withk e K* ~{0,—1/2}.

Let g denote the conjugacy such that ¢# has the form above. By equation (2),
we conclude that #4y, ooy = 2. Therefore Ay gy = {id, z = —z}, and since g(w)
must be fixed by elements of this set, it follows that g(a) = 0 or g{a) = oo. Hence
g(a) is either fixed by ¥ or maps to a fixed point, so « is either fixed by ¢ or maps
to a fixed point of ¢, as shown in Figure 1. These two cases are illustrated in the
specific case k = 1 in Figure 2.

When g(a) = oo, using the notation of Figure 1, we have 17 = {0}, and thus
V, = ¢~ (0). It follows that the arboreal representation is the same as the case
g(a) = 0. Thus to prove Conjecture 1.1, we need only consider pairs of the form

(), ) = (k(22 + 1)/2,0).
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_[=3=a5 =345 3+~/_
V=5 \/

AVARY \/
\/ \/

Figure 2. First few levels of the preimage trees of 0 and oo under ¢(x) = (x> + 1)/x.

Therefore to establish Conjecture 1.1, it is enough to prove Conjecture 1.3.

We return now to the general case and establish some notation. Let K be a
number field, and ¢: P! — P! a rational function defined over K. Suppose that
(X, Y]) = [P(X.,Y), Q(X,Y)] in homogeneous coordinates, with P(X,Y) and
Q(X,Y) having no common factors of positive degree. Fix particular choices of P
and @, and let

(X, Y): A > A2, (X.Y)— (P(X.Y), Q(X,Y)),
be a lift of ¢. Define P,, 0, € K[X, Y] by

PUX,Y) == (Pu(X.Y), Qu(X.Y)),
where

Pp(X.Y) = P (P(X,Y), Q(X.Y))
and

On(X.Y) = Q1 (P(X.Y), Q(X.Y)),
or equivalently

Py(X.Y) = P(Pr1(X.Y), 01 (X.T))
and

Qn(Xa Y) = Q(Pn—l (X, Y), Qn—l(Xa Y))

Note that ¢"([ X, Y]) = [P(X, YY), O, (X, Y)], though using homogeneous coordi-
nates may involve cancellation of some common constant factors.

We use lower-case letters to denote de-homogenizations, and summarize our no-
tation:



180 R. Jones and M. Manes CMH

H(X, 7)) =[PX.Y), 0(X,Y)] a rational map on P! of degree d
P(x) = p(x)/qg(x) the dehomogenization of ¢
®(X,Y)=(P(X.Y), 0(X,Y)) natural lift of ¢ to a map on A?
DX, Y) = (Pr(X.Y), 0,(X.Y)) nth iterate of @

Pay = Pulx; 1), gulx) = Onix; 1) dehomogenized versions of Py, O,
Ap ={f €PGL2(K): ¢po f = fop} the automorphism group of ¢
Aqg’a = {f € Aq; : f(OJ) = OJ}

£(R) leading coefficient of the
polynomial R

dp the degree of R

Vs ¢~ "(0), unless O is periodic; see (1)
T =iz Va preimage tree of ¢ with root 0

T, =, <i<n Va truncation of 7" to level n

Ky, = K(V,) = K(Ty)

Koo =, Kn = K(T)

G, = Gal (K,/K)

Goo = Gal (Koo/K) = lim G,

When we refer to a “separable polynomial,” we mean that the polynomial has
distinct roots. We also adopt the convention that &« = 0 and that oo does not appear
in the pre-image tree of « = 0; that is, we assume ¢” (c0) # 0. These assumptions
make the statements and proofs of our results in Section 3 much simpler, and come
at no cost. Indeed, as noted earlier in this section, the representations associated to
(¢, ) and (¢%, g(w)) are the same for g € PGL,(K). Choosing g with g{a) = 0
then reduces to the case @ = 0. We may similarly require that g(8) = oo, where
B € K is any point disjoint from the preimage tree of «.

Because o« = 0, G, is the Galois group of the de-homogenized polynomial
Pnix) = Py(x,1) € K[x]. We frequently move back and forth between P,(X,Y)
and p,(x). The de-homogenized version of the recursion for P, is

pa(x) = ()% =1 p 1 (p(x)/q(x)) = @) paci(p(X)/q(x)), ()
or equivalently
Pn(x) = g1 (B L p(pn1(X)/qn=1(x)) = Gn1(X) P(Pn_1(x)/Gu—1(x)), (5)

where in both cases d = deg P. Thesehold forall x withg(x) # Oand g,—1(x) # 0,
respectively.
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3. Discriminants, irreducibility, and Galois theory of rational functions

We begin with results concerning the discriminant of the numerator of an iterate of a
rational function. We then consider the case d = 2, prove results on the irreducibility
of such polynomials, and then apply these results to the question of under what
conditions the degree of the extension [K,, : K,—_1] is as large as possible. These
results hold without consideration of the automorphism group A4 of ¢. In Section 4
we examine the case where #4454 = 2.

Throughout, we denote the degree of a polynomial s(x) € K|[x| by d; and its
leading coefficient by £(s). We recall the resultant of two polynomials g1, g2 € K|[x]
may be defined as

Res (g1, g2) = £(g1)%> l_[ g2(a),
g1{a)=0

and is a homogeneous polynomial in the coefficients of g1 and g, that vanishes if and
only if g1 and g, have a common root in K. We will also make use of the following
basic equality:

[T 20 = (D*%26g)? g™ [ gi@. (6)

£1(8)=0 Z2(w)=0

The discriminant of the polynomial p, will prove to be a fundamental tool in
what follows. However, p;, is constructed as a de-homogenized polynomial P, and
P, is given by a double-recursion. Standard results on calculating discriminants do
not apply in this more complicated situation; we need a new tool. We begin with the
somewhat simpler case of calculating the discriminant of a single polynomial that is
the de-homogenization of a function of two other (homogeneous) polynomials. In
Theorem 3.2, we apply this result recursively to find a discriminant formula for p;,.

Lemma 3.1. Let F, P,Q € K[X, Y] be non-constant homogeneous polynomials
with deg P = deg QO = d and P and Q having no common roots in P1(K).
Let H(X,Y) = F(P(X.Y),Q(X,Y)), and let h, f. p,q € K|x] denote the de-
homogenizations of H, F, P, and Q, respectively. Let ¢ = gp' — pq’. Finally,
assume that H(1,0) #£ 0 and F(1,0) #£ 0. Then

Dise h = ££(1)*1£(g)*2¢ () t(e)** Dise 1) Res (q. NV [T hiy),
c(y)=0

where

ky=drd —2—d,—dy(df —2), ky=ds(d —dp)(ds —2),
ks=(d,—d)ds—2), and k4=dsd.
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Proof. By definition,

Disc h = ££(h)""Res (b, 1) = 2L 2 ] h(w). (7)
h{a)=0

De-homogenizing H gives h(x) = q(x)%F f (p(x)/q(x)) provided g(x) # 0, and
thus
W =drq" 7 - flp/9) +q% f b/ (p/4) . ®)

assuming ¢g(x) # 0. Since F(1,0) # 0, no root « of s can satisfy g(ow) = 0. This
implies that for each o with h(a) = 0, we have f(p(a)/q(a)) = 0, so the first
summand in (8) vanishes when x = o. We may thus rewrite the right side of (7) as

dp—2
+ e 2( T a@) "~ T[] er/o@ [] Ga-ap@. ©
h(a)=0 h(a)=0 h(a)=0
Using (6), the first productin (9) is equal to (E (q)n £ (h)~da Hq(:rr):() k(n))dF_z.
Moreover, for each root = of ¢ we have

h(r) = H(z, 1) = F (P(r.1), Q(x. 1) = F (P(r,1),0) = £(f) p(m)?r.

Hence the first product in (9) becomes

dr—
(e eecryts TT peoy)"

g(m)=0
= (£(g)“re(hy a0 ( £)% (£(q) % Res (g, p)) )72

Turning to the second product in (9), we have already noted that () = 0 implies
pla)/g(x) is aroot of f. Moreover, for each root S of f, there are with multiplicity
precisely d elements o with p(o)/g{or) = B (this is ensured by the assumption that
H(1,0) £ 0). Thus as o runs over all roots of /2, (p/g)(«) runs over all roots of f,
hitting each one d times. Hence the second product in (9) equals

d d
[T r®) = (arn @ 2pisc()) .
f(B)=0
From (6), the third product in (9) equals
e emy e T hy).
c(y)=0

Gathering the terms containing £(/2) and £( /'), and using the fact that dy = dp
(since F(1,0) # 0) and dj, = ddy (since H(1,0) # 0) completes the proof. O
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Remark. Note the conditions H(1,0) = 0 and F(1,0) = 0 correspond to our
assumption that oo is not in the pre-image tree of @ = . These assumptions greatly
ease an (already complicated) calculation, but it is certainly possible to obtain similar
formulas in the case that A(1,0) = 0 or F(1,0) = 0. In these cases F factors as a
product Fy F, with F>(1,0) # 0 and H,(1,0) # 0, where H, := F>(P, Q). One
then splits the product on the right side of (7) into the product over the roots of A,
and the product over the remaining roots of 4.

Theorem 3.2. Let ¢ = p(x)/q(x) € K(x) be a rational function of degree d = 2,
let n = 2, and define p, and q, recursively so that ¢" = pp(x)/qn(x). Let ¢ =
gp’ — pq'. Assume that ¢ (o0) # 0 and "~ (00) # 0. If p(00) # oo, then

Disc p, = +€(pa)*1£(9)*2£(c)™ (Disc pp—1)*

n—1 n—1__
(Res (g. p)?" @2 IT pa).
c(y)=0

(10)

where
ki=2d —2—d,, ko=d" Y d—-d,)(d" ' =2), and ks=d".
If p(o0) = o0, then

. . u—lyesn—1_
Disc pn = ££(p)*1£(c)*2(Disc pu_1)? Res(g. p)* @ 72 ] pay).

c(y)=0
(11)

where
ky = d* 1 —d(d*"? —2d" Y —d.(1—-d™)/(1—d) =2 and ky=d". (12)

Remark. Suppose that ¢ is post-critically finite, so the forward orbit of each y with
¢(y) = Ois finite. An induction on equation (4) shows that the set of primes dividing
pn(y) for all critical points y and all # > 1 is finite. If ¢(00) = oo, induction on
equation (11) then shows that the set of primes dividing Disc( p,,) for any # is likewise
finite.

When ¢(oc) # oo and d. = 2d — 2 (in other words, when oo is not a critical
point), the term £( p, ) does not contribute to the product in equation (10), so the set
of primes dividing Disc(py,) for any # is finite in this case as well. When ¢(00) # oo
and oo is a critical point, then from (10), we have that Disc p;, is divisible by £(p;,).
However, {(p,) = P,(1,0), and since by assumption ¢ is post-critically finite and
00 is a critical point, £, (1, 0) can take on only finitely many values as n varies.

Hence, Theorem 3.2 shows that if ¢ is post-critically finite, then there is a finite
set of primes S such that for every n > 1, Disc p, is divisible only by primes in §.
In this case, then, the field K 1s ramified over only finitely many primes of K. (For
another version of this result, see [2].)



184 R. Jones and M. Manes CMH

Proof. As ¢ (o0) # 0, and ¢"~1(o0) # 0, we have P, (1,0) £ 0and P,_(1,0) #
(}, respectively. We may thus apply Lemma 3.1 with F = P,,_; and H = P,,. Note
also that ¢"~1(o0) # 0 implies that deg p,_; = d"~'. Moreover, if we assume that
¢ (00) # oo, then dy = d. Lemma 3.1 then immediately gives formula (10).

Assuming now that ¢(oo) = oo, we have d, = d, which kills the £(g) term in
Lemma 3.1. Further, ¢(00) = oo also implies that for all k, £(pr) = £(p)(pr—1)?,
and an induction gives £(pr) = ﬁ(p)(l_dk)/(l_d). The power of £(p) in the expres-
sion in Lemma 3.1 is thus

(1 — dPWd? — 2 — dp—dgd? 2 —3)) (1l —d?Ndy — ) —3)
1—d + 1—d '

This simplifies to the value of &y given in equation (12). (]

We now consider the irreducibility of the p, in the case of quadratic rational
functions.

Lemma 3.3. Let ¢(x) € K(x) have degree 2, let t be a parameter, and let y1,y2 €
PYK) be the critical points of ¢. Then there exists C € K such that

Discy (p(x) —1g(x)) =C [] (¥ —0). (13)
$(yi)# 00

Moreover, if p(x) is separable, then C = Disc p(x)- [] (gb(yl-)_l).
¢{y; )00

Remark. This is a special case of a more general phenomenon; see [2], Proposition 1.

Proof. Note that both sides of (13) are in K[f] (the right side because the ¢ (y;) are
either rational or Galois-conjugate). We show that the roots of Disc, (p(x) — 1g(x))
in K are precisely the ¢ (y;) with ¢(y;) # oo, and this is enough to establish the
lemma.

Note first that since ¢ is quadratic, by the Riemann—Hurwitz formula we must
have y; # v, and ¢(¥1) # ¢(y2). For a given t € K, the degree-two homo-
geneous polynomial P(X,Y) — rQ(X,Y) has a single root in P!(K) if and only
if $~1(1) has a single element, which occurs precisely when f = ¢(y;). Thus
Disc (P(X,Y) — tQ(X,Y)) vanishes if and only if / = ¢(y;), and since € K we
cannot have f = oo. Finally, both P(X,Y) —rQ(X,Y) and p(x) — fg(x) have
degree 2, and thus Disc (P(X,Y) — rQ(X, Y)) is the same as Disc, (p(x) — 1g(x)).

The last statement of the proposition comes from setting / = 0 in (13) and
noting that the separability of p(x) implies Disc p(x) does not vanish, and therefore
[To0)200 (@(¥i)) cannot vanish cither. O
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Lemma 3.4. Let ¢p(x) € K(x) have degree 2, and for each i > 0, denote by K; the
splitting field of p;. Assume that p,_1 is irreducible in K|x|, let & be a root of p,—1,
andlet vy, y, € PY(K) be the critical points of . Then there exists C € K such that
Pn is irreducible in K [x] if and only if

C [ @oo-o¢K2,
$(yi)#oo

If p(x) is separable, then C has the same value as in Lemma 3.3.

Proof. Denote the roots of p,—; by oy, ..., w,, and take oy = «. Since p,—; 18
irreducible, the «; are Galois conjugates, and hence the action of Galois on the roots
of p, is either as a single orbit of 2r elements (and thus p;, is irreducible) or two orbits
of r elements. The latter case holds if and only if each orbit contains exactly one
element in each fiber ¢~ ! (w; ), or equivalently if and only if the roots of p(x)—a;g(x)
are not conjugate for any i. This holdsif and only if the p(x)—w; ¢(x) are all reducible
over K,,—1. Because the «; are all conjugate, this is equivalent to the reducibility of
p(x) — ag(x) over K,_1, which occurs precisely when Disc (p(x) —ag(x)) is a
square in K, ;. The result now follows from Lemma 3.3. O

Recall that G, 1s the Galois group of the splitting field of the polynomials p,,. To
understand when G, is as large as possible, it will be necessary to have conditions
under which the polynomials p,, are irreducible. We now give a criterion for the
irreducibility of p, assuming that p,_ is irreducible and has even degree. Note that
the criterion here is sufficient but not necessary. The result is useful in that it applies
to all degree 2 rational maps, but unfortunately the hypotheses are not satisfied in the
case of quadratic maps with a nontrivial automorphism. We will need a refinement
of this result in that case, which we provide in Theorem 4.5.

Theorem 3.5. Let ¢(x) € K(x) have degree 2. Suppose that n = 2, and that pp—
is irreducible in K[x] and has even degree. Let £(p,—1) be the leading coefficient of
Pn_t, letvi, v2 € PY(K) be the critical points of p, and without loss say ¢ (y1) # oo.
If ¢(y2) is not (resp. is) 0o, then p, is irreducible in K|x| provided

Pr—t(@ (1)) - Pu—1(P(y2)) & K2 (resp. £(pu—i) - pu—1(@(11)) & K*?). (14)

Remark. The condition that p,—; have even degree is implied by ¢"~!(c0) # 0.
Moreover, if y; # oo, then from (4) and the assumption n > 2, p,—1{¢p(y;)) =
Pn(yi) up to squares. Thus if both y; and y, are finite, then (14) becomes

Pny1) puly2) & K*? (resp. £(pn—1)pn()1) & K*Z)-

Proof. By Lemma 3.4, we must show

c [] on-o) gk,
¢ (y;)Foo
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for some root « of p,_1, and for this it is sufficient to show that the norm of the left
side as an element of K;,_1/K is not a square in K. This norm equals

F

2 r
Cdeg Pt H H (¢p(yi) — ;) (resp. C¥BPn—1 H (p(y1) —a;)),

i=1j=1 i=1

where a1, . . ., &, denote the roots of p,_1. This is the same as

2
C2 P10 (pue) 2 [ a1 @) (resp. CEBP =18 poy) ™ puct (P ()).
i=1

Since deg p,—1 is even, C%€Pn—1 ig a square. U

For the remainder of this section, we let # be fixed, and assume that ¢ (o0) # 0
and ¢""1(o0) # 0. We also assume that p, is separable, which by Theorem 3.2
is equivalent to ¢*(y) # 0,i = 1,...,n for all critical points y of ¢. Together,
these assumptions imply that there are 4" distinct roots oy, ...,agzn of p,, and
d"~1 distinct roots By, ..., Byn—1 of pp—i. Moreover, the &; are precisely the roots
of p(x) — Bjq(x), for j = 1,...,d""!. Recall that K, = K(a,...,a4n) and
Kp1=K(B1.....Ban—1).

We examine the extension K,/K,—_; in the case d = 2 and give conditions
that ensure it is as large as possible. Recall that GG, = Gal(K,,/K). The assump-
tions of the previous paragraph imply an injection G, — Aut(7}), where T;, is
the complete binary rooted tree of height ». Restriction gives a homomorphism
Aut(7T,) — Aut(7,—1), whose kernel is generated by the transpositions swapping
a single pair of vertices at level 7, both connected to a given vertex at level n — 1.
Thus the kernel is isomorphic to (Z/27)2"". Hence Gal (K, /K,—1) must inject
into this group. We now show how one can see this directly from the way that K, is
constructed from K, _1; this point of view will also be the most useful for establishing
our maximality results.

Because deg ¢ = 2. p(x) — B;q(x) € K,,_1(x) is a quadratic polynomial. Note
that K, is obtained from K,_; by adjoining the roots of p(x) — B;q(x) for j =
1,...,2"71 so we have that K,, is a 2-Kummer extension of X,_;, and indeed
letting

8; = Disc(p(x) — Bjg(x)), we have K, = n—1(\/6§ = 1,...,2”_1). (15)

It follows that Gal (Ky/Kn_1) = (Z/27)%""". Using Kummer theory (e.g. [9],
Section VI.8), [K, : K,—1] is the order of the group D generated by the classes of
the §; in K:_l/K;:EI. Now,

22}’1—1

#V

2!’[—1

#D where V' = {(el, .. ean—1) € 5 : HS? € K;,:El}.
i
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That is, V' is the group of relations among the §;. One sees easily that V' is an IF,-
vector space, and that the action of G,—1 := Gal (K,,_1/K) on the §; gives an action
of G,y on V as linear transformations. It follows that V' is an F;[G,—]-module.

The following lemma is due to M. Stoll [18]. We give the proof here for the sake
of completeness.

Lemma 3.6 (Stoll). let T be a 2-group and M # O a T5|T'|-module. Then the

submodule M of T-invariant elements is non-trivial.

Proof. Induct on #T". Suppose I' = {e, 0} = Z /27, and take m € M with m # 0.
Then either o(m) = m orm + o(m) # 0 (since M is an F,-module). In the former
case, 1 is a nontrivial element of M T, while in the latter case m + o (m) is a nontrivial
element of M T

If #T" > 2, then let N be a nontrivial normal subgroup of T" (possible since T" is
a 2-group). Then M is an F»[N]-module also, so by induction MY # 0. However,
M?¥ is an F,[T'/ N]-module, so again by induction 0 # (MN)I/N = pmT, O

We now give a condition that will guarantee the extension [K,, : K,—1] is as large
as possible. A priori, this result depends on deciding whether an element of K,,_; is

a square. However, we can actually give a condition ensuring [K}, : K;—1] = 22"7!
solely in terms of the arithmetic of K. We provide such a condition in Corollary 3.8.

Theorem 3.7. Let ¢ € K(x) have degree 2 with ¢ (00) # 0 and ¢"(o0) # 0.
Suppose that n > 2 and that pn—y is irreducible in K[x]. Let £(py—1) be the leading
coefficient of py_1, let y1,y2 € IP’I(K) be the critical points of ¢, and without loss

say ¢p(y1) # oo. If ¢(y2) is not (resp. is) oo, then [K, 1 Ky—1] = 22! if and only
if

Pu—1@ 1)) pr—1($(y2)) € K32, (resp. £(pn—1)pu—1(9(y1)) & K;2,).  (16)

Remark. AsinTheorem 3.5, if both )¢ and y, are finite, then it follows from (4) and
n > 2 that (16) may be replaced by

Py puly2) € K32y (resp. £(pp—1) pu(y1) € K321 (17)

Proof. From the discussion immediately preceding L.emma 3.6, we have

[Kn : Kno1] = 22" /#V. where V = {(e1.....epm1) € F2" 167 € K2}
J

has a natural structure of a F5|G,,—1|-module. Thus [K, : K;,—1]| < 22" if and only
if V = 0, which by Lemma 3.6 occursif and only if V' 97—1 =£ 0. However, since p,—i
is irreducible, Gy acts transitively on the §; defined in (15), implying that the only
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possible nontrivial element in VO—1is(1,1,...,1). Hence [Kn @ Kn—1] < 2" if
and only if

2!1—1

H Disc(p(x) — Bjq(x)) € K2,

=1

where as before the §; are the 2"~ distinct roots of p,—;. By Lemma 3.3, this is
equivalent to

2 2n—1 2n—1
l_[ (p(yi) — Bj) € K32, (zesp. l_[ (0(r1) — B;) € K}2)).
i=1 j=1 oy

The theorem now follows from the fact that p,_1(x) = £(pp—1) [ [(x — B;)- L

Let s = 2 if ¢p(y2) # oo and s = 1 otherwise. Then equation (17) can be
summarized as

Lpn—1)* [ | pnly) & K324
i=1

Since £(p,—1)° ]_[le P (i) is not just an element of K,,_; but also an element of
K, it cannot be a square in K,,—1 unless all the primes of K,,_; that divide it lie over
primes of K that ramify in K,,—;. Thanks to Theorem 3.2, we have a handle on the
primes that can ramify in K, and thus we can use Theorem 3.7 to give a simpler
condition ensuring that [K, : K,—1] = 227" In the corollary, we limit ourselves
for simplicity of statement to the case when oo is distinct from the critical points
and values of ¢, and does not have 0 in its forward orbit. Denote by v, the p-adic

valuation at a prime p in the ring of integers of K.

Corollary 3.8. let ¢ = p(x)/g(x) € K(x) have degree 2, let ¢ = gp’ — pq’, let
£(pn—1) be the leading coefficient of pn,—1, and suppose that ¢"(oc) # O for all
n > 1 and that ¢ has two finite critical points yy, y2 with ¢(y;) # oo for eachi.
Suppose further that there exists a prime p of K with vp(pn(v1) pn(y2)) odd and

0 = vp(£(p)) = vp€(c)) = vp(Res (g, p)) = vp(Disc p) = vp(p;(yi))  (18)
forl<i<22<j<n—1 Then[Ky: Kn_1] =2%" .

Proof. If ¢p(c0) = o0, the conditions in (18), along with (11) and induction, imply
vp(Disc(pn—1)) = 0. If ¢p(c0) # oo, then the conditions in (18) and (10) give
the same conclusion (note that oo not a critical point and ¢{oo) # O imply that
k1 = ko = 0in (10)). Hence p does not ramify in K. Therefore there is a prime L3
in the ring of integers of K;,_; with vg(p) odd, and it follows that v ( pr (V1) Pn()2))
is odd, so p,(y1) pn(y2) cannot be a square in K;_,. The corollary now follows from
Theorem 3.7 and the remark preceding it. (]
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Corollary 3.8 provides a convenient method for checking the maximality of G,
for an arbitrary quadratic ¢, at least for small #. In certain circumstances, it can
even be used to determine G, although the difficulties in disentangling possible
interactions of the two critical orbits at various primes are considerable. We illustrate
with the family of quadratic rational functions

1 +ax + (3+a)x?
1—(4+a)x —(a+ 1)x?’
The critical points of ¢, are 1 and —1/3; in addition, ¢, has the two-cycle | - —1 -
1, and ¢, sends 0 to 1. The behavior of one critical orbit is thus quite simple, and the

fact that 0 is preperiodic ensures that elements of the other critical orbit are close to
relatively prime. Define the polynomials p and g by ¢ = p/g; then

Res (g, p) = 16(a + 2)°.

Pal(x) = aeQ~{-2}

For k > 2, we have the recursion

Pr = Q’,%_l +agg—1pr—1 + 3+ a)p,%_l, (19)
Gk = qi_, — 4+ a)qp—1 pr—1 — (a + D)pi_,.

Note that the only primes £ where we might have
Pr =0 (mod ) and g =0 (mod £)

are those dividing 2(a + 2). The reason is that if £ } Res (g, p), then ¢ has good
reduction at £, and thus so do all iterates of ¢ [17], Theorem 2.18, implying that
£ } Res ( pr. qx). We remark that one can also apply Lemma 3.1 to the polynomials
Pi» Gk, and prqy to obtain an exact formula for Res ( px, gy ), which turns out to be
a power of Res (p, ¢).

Now let 1 € (@, and suppose that for some & > 1, we have pi(f) = gx(f). An
induction shows that

Pi4i(t) = (4 4+ 2a)(prqi—1())* ifiisodd, and
Pieai(t) = 4(pryi1 (1) if 7 is even.

It follows that there are positive integers 7;, s; with

Prai(6) = pe()? 272 + a)*, (20)

where r; = 5; mod 2.
Suppose that £ } 2(a + 2) satisfies £ | py (¢) for some k > 1, and take & minimal
with this property. Then since £ } g (7).

Pr41{t) = qr(1)> £ 0 (mod £) and  gry41(t) = pr41(t) (mod £).

It then follows from applying (20) with k£ + 1 in place of k that £ } py,(¢) for all
i > L
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Proof of Theorem 1.2. Consider the specialization a = 0, so

L - 3x2
1 —4x —x2

P(x) =

By the above analysis, any odd prime divides at most one term of the sequence
Pn(=1/3). Moreover, p1(1) = 4 and p,(1) = ¢2(1) = 2°, and thus it follows from
(20) that p, (1) is an even power of 2 forall n > 1.

We also note that (p,(—1/3),¢,(—1/3)) € (Z/5%)* forn > 1 gives the orbit

GO~ 2. )B4 B4 -

and thus neither of £ p,(—1/3) is a square for all # > 1. Hence for each n there is
a prime at which p,(—1/3) — and therefore p,(—1/3) p, (1) — has odd valuation. To
apply Corollary 3.8, we need to show that for each #, this prime is not 2 or 3, since
the leading coefficient of ¢ and Disc p are both —12. Note, however, that we don’t
need to consider n = 1, since clearly [K; : K| = 2.

Consider first the 3-adic behavior of p,(—1/3). We have p(—1/3) = 4/3 and
g(—1/3) = 20/9. From (19), we see that for k > 2,

—1 > v3(pr—1(—=1/3)) > v3(gr—1(—1/3)),

which implies that

v3(pr(=1/3)) = 2us(gr—1(=1/3)) = va(gx (=1/3)).

Hence v3(p,(—1/3)) isevenforall n > 2.
Turning now to the 2-adic perspective, suppose that for some k > 2,

1 = e =va(pr—1(—1/3)) = valgr-1(—1/3)),
and write
Pi—1{—1/3) = 2°u and q_1(—1/3) = 2°w, where v,(u) = va(w) = 0.
We then have
pr = 22¢(u? + 30%) mod 2267 = 22642 o 22¢+3

and similarly for g . It follows that v (pr (—1/3)) = va(gr(—1/3)) = 2e¢ 4+ 2, and
since va(p(—1/3)) = va(g(—1/3)) = 2, we thus have that v,(p, (—1/3)) is even
foralln > 1.

Finally, we must show that ¢(o0) # O forall n > 1. But ¢p(o0) = 0 mod 3,
implying that oc maps modulo 3 into the 2-cycle 1 — —1 — 1. We have thus shown
that when a = 0, Goo = Aut(T). O
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4. Discriminants, irreducibility, and Galois theory of quadratic rational
functions with an order-2 automorphism

In this section, we consider the setting of Conjecture 1.3, namely ¢ (x) = k(x2+5b)/x.
In the interest of describing exactly the arboreal Galois representation associated to
such a map, we choose not to take b = 1, since doing so implies that conjugation by
x — x/~/b is defined over K, introducing a possible additional quadratic extension.
Note that ¢" (oc) # 0 and ¢" 1(00) # 0. Let t(x) = —x, and note that ¢ acts on
the roots of p,, without fixed points, since 0 and oo are the only fixed points of ¢ and
neither maps to (0 under any iterate of ¢.

We wish to apply the same general program from Section 3 to this case. However,
Theorem 3.5 and Theorem 3.7 do not apply, since the critical points satisfy y; = —)»
and p, is always an even function. Hence p,(y1)pn(y2) = pn(y1)? is a square in
K, forall n. Indeed, we will show that [K), : K,—1] # 22" for all # > 2. As
in Section 3, we have G, — Aut(7},), and T, is the complete binary rooted tree
of height #, provided that p;, is separable. However, now the image of (; must
commute with the action of t on 7,,. We thus have G, C C,,, where C,, denotes the
centralizer in Aut(7;, ) of the element corresponding to the action of 1. Asin Section 1,
Coo = lim C, plays roughly the role of a Cartan subgroup in the theory of Galois
represenfa_tions attached to elliptic curves with complex multiplication. We begin by
describing the structure of C, in purely group-theoretic terms; then we proceed to
give discriminant, irreducibility, and Galois-maximality results for maps of the form
k(x? + b)/x.

By slight abuse of notation, we write ¢ for the action induced by ¢ on 7;,. Because
t acts on 7}, without fixed points, its action on 77 is non-trivial. Note that for any
J < n there is a natural epimorphism C,, — C; obtained by restriction. For a vertex
v € Ty, we define the height of v to be min;{v € T;}.

Proposition 4.1. [et 1 € Aut(T},) be any involution whose restriction to Aut(Ty) is
non-trivial. Let C; be the centralizer in Aut(T;) of t restricted to T;, and let Ty, be a
subtree of T, rooted at a height-one vertex of T1. Then the map

h: ker(C,, — C1) — Au(T,)

given by h(t) = t|T, is an isomorphism.

Proof. Because there are exactly two branches from the root of 7},, there are exactly
two subtrees of 7}, rooted at aheight-one vertex of 77; call them 7}, and 7%. The height-
n vertices V of T, may be decomposed into the union of the height-(n — 1) vertices

Vg € T, and Vy € Ty . Because ¢ acts non-trivially on 77 and is an automorphism of
T,,, wehave ((T,) = Ty and ((Ty) = T,.
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Clearly /4 is a homomorphism. To show £ is surjective, let ¢ € Aut(7,) and
define € Aut(7},) by

tly, =id, t|r, =0, and t|7, = 0L
One then checks that t7: = 7. Since 7 acts trivially on 71, © € ker(C, — () and
h(t) =o0.
To show that £ is injective, let T € ker A, so that t(x) = x forall x € T,. Then
since T € C, we have t(t(x)) = t(z(x)) = t(x); that is, r acts trivially on all
elements of Ty as well. Thus 7 = id. L

In the next corollary, we describe the kernel of the restriction map C,, — C,,—1.
Recall that the kernel of the restriction map Aut(7;) — Aut(7;_1) is generated by
the transpositions swapping a single pair of vertices connected to a given vertex at

level j — 1, and thus is isomorphic to (Z/27)2’ . Recall also that the Hausdor(f
dimension of a subgroup 7 of Aut(7T) is defined to be
1
i og, #11, ,
n—oo log, #Aut(7},)
where I, is the restriction of the action of / to the tree T;,. This gives a rough
measure of the size of A in Aut(7T).

Corollary 4.2. Assume the hypotheses of Proposition 4.1, and assume also that
Py is separable. Then therve is an isomorphism between ker(C,, — Cu_1) and
ker(Aut(T,—1) — Aut(T,,—3)). In particular,

#ker (Cp — Cpy) =227
and the Hausdorff dimension of C is 1/2.

Proof. Because we have assumed that p;, is separable, T, is a complete binary rooted
tree of height n — 1, and we have Aut(7,) = Aut(7,,_;). By Proposition 4.1 we then
have a commutative diagram

0 — Aut(T;,—1) Cy Cy 0
idJ Fll le idl
00— Au(7,—2) — Cy—y ¢y 0,

where the rows are exact and the maps 7 and r, are restriction. It is straightforward
to check that this gives an exact sequence

kerid — kerr; — kerr, — kerid,

which completes the proof. The statement about Hausdorff dimension follows since

#ker (Aut(T,) — Aut(T,_1)) = 22" 0
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The orbit of the critical point when b = 1 will play a special role in the sequel,
so we introduce the following notation.

Definition 4.3. Let

¢*(x) = k(x* + D) /x = p*(x)/q" (x),
and define p;; and g, by the recursion in equation (4). Finally, let &, = kp; (1).
We now turn to the discriminant of p,. Note that one consequence of the following
corollary is that Disc(p,) is a square in K; = K(+~/—b) for all n > 2, so that the

action of Gal (K, /K;) on the roots of p, is contained in the alternating group on 2"
letters.

Corollary 4.4. Let k. b € K* and ¢p(x) = k(x> + b)/x. Then foralln > 2, we
have » -
Disc(p,) = £k —Dp2™ Disc(p,—1)*pr(1)%.

Proof. Since ¢(o0) = oc, we have ¢"(00) = oo # 0 for all n. We thus may
apply (11) with the following data:

d=2, d,=2, d;=1, and ¢ =k(x*>—b), which gives d. = 2.
We can then compute the exponents given in (12):
ky =2°""2-2" and k,=2".
We also have
tpy=tey=k, Ug) =L pu=kpiy+bgiy). Gn= Pr1gn1-

Since p(x) = k(x? + b) and g(x) = x, an induction shows that p, is even for all n.
Thus pn(v/D) = pu(—+/b). A double induction on both g, and p, gives

T n—1
gn(NB) = B V2% (1) and  pu(vVB) = b7 pr(l). (21)
Finally, Res (g, p) = £(g)? p(0) = kb. The corollary now follows from substituting
the relevant values into (11) and simplifying. U

Theorem 4.5. Let k,b € K, ¢(x) = k(x2 + b)/x. Then p, is irreducible if none
of —b, —bé;, &; is a square in K for2 <i <n.

Remark. Itisnecessary to assume thatboth —b6; and §; are not squares in K. Indeed,
inthecase k = 1, b = —5, one has

—béy =25, 6, =-5, and py= (x2 —5x + 5)()(2 + 5x + 5).
In the case k = 2/3,5 = 1 one has
5, = 100/81, —hé, = —100/81, and p, = (2/27)(4x* + D(x? + 4).
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Proof. We begin by considering p; and p,. Clearly p; is irreducible if and only if
—b is not a square in K. From (4) we have

p2 = k(p? + bg?) = k(p1 — xV=b)(p1 + x~/—b).

Assuming that —b is not a square in K, we have that p, is irreducible if and only
if p1 — x+/—=b is irreducible over K(~/—b), which holds if Disc(p; — x~/—b) =
—b(1 + 4k2) is not a square in K(+/—b). A straightforward computation shows this
holds if and enly if 1 + 4k? is a square in K or —b times a square in K. Since
1 + 4k? = k7' p2(1) and neither —b8, = —bkp3(1) nor §; = kpi (1) is a square
in K, we conclude p; is irreducible.

Now induct on #. The cases n = 1, 2 have been handled, solet# > 3 and assume
that p,—q is irreducible. By Lemma 3.4, it is enough to show that for some root «

of pp—1,
C(p(Vb) — a)(¢p(—Vb) —a) € K}2,.

We do this by taking the norm of the left-hand side over K| = K(~/—8):

Niuoi/k0 (= C(p(VD) — @) (¢(VD) + @)

= [ -coh-o)eh+a). O
" 2a)=v—b

Since ¢p(—x) = —p(x), " 2(a) = ~/—b implies ¢p"2(—a) = —/—b. Thus
{:I:oa C " (@) = \/—_b} = {a L") = 0}.
Hence the right-hand side of (22) is the same as

(—C)Cerpn=02 T (p(vh) —a).
71 (a)=0
Because ¢(00) = oo, we have ¢™(o0) £ 0 for all n. Hence deg p,_1 = 277!, and
(deg pn—1)/2is even whenn > 3. Furthermore, since {u : ¢"~ () = 0} is the same

as the set of roots of p,_; and since p,—1(x) = £(pu—1) [|(x — @), the left-hand
side of (22) is not a square in Ky provided

E(pn!—l)_lpnz—l ((b(\/g)) Q/ KTZ.

Finally, the recursionin (4) applied in this case gives py, (Vh) = p2" 2 Pn—1 (D (VD).
Inductive arguments show that

Upp_y) = k"1 and  p,(VB) = b* pi(L),

n
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meaning we must show
k@RI ey ¢ KT,

But by assumption neither 8§, = kp;; (1) nor —bé, = —bkp} (1) is a square in K,
and thus §, is not a square in K. (To see this, suppose that ¢ € K with ¢ =
(a1 + ax \/—_b)z. Thenc = a% — ba% with either @1 = 0 or a» = 0, meaning either
¢ or —bc is a square in K.) This completes the main induction. (]

Recall from Corollary 4.2 that [K,, : K,—;] < 22", with equality occurring if
and only if ker(G, — G;,—1) = ker(C,, — Cp—1). Using the methods of Section 3,
we give a criterion ensuring that [K,, : K,,_1] is as large as possible.

Theorem 4.6. Let k. b € K* and define ¢p(x) = k(x> + b)/x. Assume that p,_
is irreducible and n > 3. Then we have |K,, : K,,_{] = 222 provided that there
exists a prime p of K with

vp(8y) odd, vp(6;) =0forl <j <n—1, and vplk) =vp(b) =vp(2) =0.
(23)

Remark. Because #C1 = 2 = deg py and #C; = 4 = deg p,, it follows that
K1 : K] < 2and [K; @ Ky] < 2. We have [K; : K| = 2 if and only if py
is irreducible and [Ky : K] = 4 if and only if p, is irreducible. Note that p; is
irreducible if and only if —b is not a square in K, and from the proof of Theorem 4.5
we have that p, is irreducible if and only if —b, —bH48, and §; are all not squares in K.

Proof. As in the discussion preceding Lemma 3.6, K,, is obtained from K,_; by
adjoining the square roots of Disc p(x) — Bg(x), as B varies over the roots of p,—1.
In the present case, Disc p(x) — Bg(x) = B? — 4bk?2. Since —p8 is also a root of
Pn—1, half of the square roots are redundant, and we have

Ky = K1 (VB2 —4bk2 - pa_a(B) = V—b).

In analogy with the discussion preceding Lemma 3.6, we have [K,, : Ky,—1] =
22" 14V, where

V ={(e1,...,em—2) € IFZZH_Z : H(ﬁjz _ 4bk2)ej = K:EI}’
J (24)
and B, ..., B, are the 2”2 solutions to p,_»(8) = v—b.

The action of G := Gal (Kn_l/K(«/—_b)) on the B; gives an action of G on
V' as linear transformations, thereby making ' a F;|G]-module. Lemma 3.6 now
applies to show that if #1 > 1, then V contains a G-invariant element. Since pj—1
is irreducible, Gal (K,,_;/K) acts transitively on the §;. By the definition of the
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B; in (24), any o mapping one §; to another must fix +/—& and thus must lie in G.
Hence [K, : K,—1] = 22" provided that

H(ﬁ —4bk?) & K2,

The hypotheses ensure that none of b, k, or p (1) can be zero, which by Theo-
rem 4.5 shows that p,,_ is irreducible. Because n > 3 and p,_1 1s separable (since
K is perfect), there are an even number of the ;, and we may replace [ | (B f —4bk?)

with [],(4bk? — 7). Further, the roots of p,_; consist of {£f1,..., £}, sowe
have that [K, : K,_1] = 22"~ provided that

[[ @~vb-p)¢K;2, (25)
Pa—1(8)=0

This product equals £{pp—1)~" pn_1 (¢p(~/D)), which via equation (4) is the same as
E(pn_l)_lpn(«/g) up to squares, since n > 3. Because £(p,—1) = k2"~ we have
that £(pn—1)"" pu(~/b) is a square in K,_q if and only if kp,(~/b) is a square in
Ky;—1. As in equation (21), pn(\/g) = 2n_lpi,”;(l), s0 (25) holds provided that
5y = kp2(1) € K32,

By assumption in (23), there is a prime p of K with vp(k) = vp(h) = v,(2) = 0.
We thus have

vp(Disc py) = vp(4bk2) = 0.

Also from (23), we assume v,(8;) = vp(kpj’f‘(l)) =0forl <j <n—1,andsince
vp(k) = 0, we have

vp(p; (1)) =0 forl<j=<n-L

By induction, Corollary 4.4 implies that v,(Disc p,—1) = 0. Therefore p does not
ramify in K, whence there is a prime P8 of K, with v (p) odd. We then have
vp(d,) odd, which means that §, cannot be a square in K,_1. ]

By Theorem 4.5, to show that p,, is irreducible for all # > 1, it suffices to show
that none of —b, —bhé,, or 8, is a square in K for all # > 2. By Theorem 4.6, a
relatively small amount of knowledge about the primes dividing the §, then allows
one to show G, = C,. We also note that given Proposition 2.1, the role played by &
is actually a minor one because it is simply a twist parameter.

In the next section, we prove Theorem 5.3, which implies Theorem 1.8. We
then give several sufficient conditions to show —b4, and &, are not squares in K

(Theorems 5.7-5.10), before giving a further sufficient condition on k& that ensures
that G,, = C,, (Theorem 5.13).
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5. Maximality and finite index results
In this section we apply the results of Section 4 to obtain results showing G is a

large subgroup of Cuo in many cases. The map ¢(x) = k(x* + b)/x € K(x) is
given in homogeneous coordinates by

H(X.Y]) = [k(X? +bY?),XY]|, kbek. (26)
Recall that
P (X.Y) = k(X2+bY2) ?fn:l,
k (Pn_l(X, Y)Y+ b0, (X, Y)z) ifn =2,
and
On(X.¥) = {f,fY =
-1 (X, V)0 (X, Y) itn=>2.
Thus ¢" (| X, Y]) = [Po(X,Y), 0,(X,Y)]. Recall also that
pn(x): Pn(x,l) Qn(x) = Qn(x,l)a
PHX,Y) = Pp(X.Y)|p1, 0,(X.Y) = Qn(X,Y)|p=1,
pp(x) = Pr(x. 1), 4, (x) = Qh(x, 1),
¢*(x) = k(x* + 1)/x, and 8 = kp,(1).

Many of our results in this section exclude the case where ¢ is post-critically
finite, and so we begin by showing that this case is rare.

Proposition 5.1. Let K be a number field and ¢(x) = k(x? + b)/x with k € K*.
If @ is post-critically finite, then the standard (absolute) multiplicative height of k is
at most 2. In particular, there are only finitely many post-critically finite ¢ over any

number field.

Remark. This is best possible, since £ = =£1/2 give post-critically finite maps.
Using Proposition 5.1, one easily checks that these are the only & € ¢ that give
post-critically finite maps.

Proof. Begin by noting that ¢ is conjugate to k(x2 4+ 1)/x over K, and a map is
post-critically finite if and only if all its conjugates are. Therefore we may consider
$*(x) = k(x? + 1)/x. The critical points of ¢* are &1, and their orbits are inter-
changed by the involution z = —z. So ¢” is post-critically finite if and only if the
orbit of z = 1 1s finite.

Recall that the standard (absolute) multiplicative height of k& € K is defined to be

( H max{l, |k|v}nv)1/[K:@]

veMy

El
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where Mg is the set of places of K and n, = [K, : @Q,] is the local degree of
v. Consider first an archimedean place v of K, and for simplicity denote | - |, by
| - |. Suppose |k| > 1. One checks that oo is a fixed point of K with multiplier
1/k, and hence is attracting. By Theorem 9.3.1 of [1], co must attract a critical
point monotonically (i.e. the critical point does not land on o), proving that ¢ is not
post-critically finite.

Now let v be a non-archimedean place of K. If |k| > 1, then for |x| > 1 we get

6001 = el [ = = g B > g
X x|
It follows that x cannot have a finite orbit under ¢p. Now |¢(1)| = |2k|, and this

equals |k| provided that v does not lie over 2. If v does divide 2, then we still have
|2k | > 1| provided that |k| > |1/2| = 2. Hence it ¢ is post-critically finite, we must
have |k|, < 1 foreach place v € Mg notover 2, and |k|, < 2foreach placev € Mg
over 2.

Suppose that ¢ is post-critically finite, and assume [K : Q] = d. We have

[ max{l.|kl,}™ <] ]2™ =2%.

veEMg V|2

Taking the 4™ root gives the desired height bound of 2. (]

Lemma 5.2. Suppose that for some prime p of Ok, vp(dy) > 0 and vy(8,) > 0 for
some m # n. Then vy(k) > 0.

Proof. Without loss of generality, we may assume n# < m and that # is the smallest
positive integer satisfying v,(d,) > 0. The rough idea is that ¢ maps 0 to oo, which
is a fixed point. Thus if ¢" (1) = 0 mod p, then ¢™ (1) # 0 mod p, and p cannot
divide both p, (1) and p,,(1).

We are given that vy (8,) = vp(kp; (1)) > 0. From the recursion, we see that
p.(1) is a polynomial in k with integral coefficients and no constant term; hence
vp(k) < O implies vy(p; (1)) < 0. It follows that either v,(k) > 0 and we're
done or vp(k) = 0 and vy(p; (1)) > 0. We assume the latter scenario and derive a
contradiction.

We have v, (P (1, 1)) > 0,and thus @7 ,(1,1) = P (1, ) Q;(1,1)= 0 mod p
and

P )=k (P(LD*+ 051, D) =kQ5(1,1)* mad p.

Induction gives Q7 (1, 1) = 0 mod p and
P L) =k""710X1, )2 mod p.

Now Q3(1,1) = P/ (LL1)PS(L.1)--- P} ,(1,1), so by the minimality of n we have
0r(1,1) # 0 mod p. By assumption we have k # 0 mod p. and so it follows that
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pa(l) = P2 (1,1) # 0mod p. This contradicts our supposition that vy(8,,) > 0.
LJ

Theorem 5.3. Let ¢ be defined as in (26). Suppose that none of —b, &,, and —bé,
is a square in K forn > 2, and also assume that ¢ is not post-critically finite. Then
G o has finite index in Cuo.

Remark. From the proof below, it follows that only finitely many of the numbers
8, and —bd, can be squares. However, this is not enough to ensure that p,(x) is
irreducible for all #, and failure of this irreducibility provides an obstacle to showing

[Coo @ Goo) < 00.

Proof. We first claim that for any ¢ € K*, ¢6, is a square in K for at most finitely
many #n. Note that ¢§, = ckp}(1). Let ¢*(x) = k(x? + 1)/x and apply equation
(5) to see that ckp, (1) is a square if and only if

ck - p* ((b*n_l(l)) e K*2.
Without loss of generality, we may take n > 4, and thus rewrite

Ck-p* (d)*n_l(l)) :Ck_p* (¢*20¢*n—3(1))_

It follows that ¢§,, is a square if and only if the curve ck - p*(¢*2(x)) = y? has a
K -rational point (x, ¥) with x = (¢*)"73(1). Since

PH(@*2(x0) =k (p3(0)* + @3 (0)?) /g5 (%),

this is equivalent to the curve

C:y* =c(p3(x)* + q5(x)?) (27)

having a rational point with x = (¢*)"~3(1). The right-hand side of (27) is sim-
ply ck™! p¥(x), whose discriminant, by Corollary 4.4, is divisible only by c. k, b,
p1(1). p5(1). and p;(1). None of these is zero because none of i, §», and §3 is a
square in K by hypothesis. Thus the right-hand side of (27) has distinct roots, and
hence the genus of C is 3. It follows from Faltings’ Theorem, see [5], Part E, that
C has only finitely many rational points, and thus ¢§, is a square for only finitely
many .

To prove the theorem, note that the hypotheses on —b, —bé, and §, allow us to
apply Theorem 4.5 to show that p, (x) is irreducible for all . We now wish to apply
Theorem 4.6. Let S be a finite set of places of K, including all places dividing &,
b, or 2, and all archimedean places. Expand S further, if necessary, so that the ring
Ok, s of S-integers is a principal ideal domain. Let Ug s denote the multiplicative
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group of S-units. Note that since §,, € Z[k?], there exists a,, € K with a2§, € k.
Since O s is a UFD, we may write for each n,

in
azby = up® [ [ . (28)

i=1

with i € UK,S/U;%,S, B € Ok.s,and m; € Uk s irreducible, and this decomposition
is unique. We permit the product on the right of (28) to be empty, and say j, = 0in
this case.

By Dirichlet’s Theorem for S-units ([4], p. 174), Ux s/ U 1% s 18 a finite group,
and we let X consist of a set of coset representatives. Suppose that there are infinitely
many # for which j, = 0. Because X is finite, there is a product ¢ of elements in X
with ca2$, a square in Og g for infinitely many n. This contradicts the conclusion
of the previous paragraph.

It follows that for all but finitely many 7, there must be at least one 7; in (28).
Thus setting p; = (7;) N O we have

Up, (8y) odd, and vy, (k) = vy (b) = vy, (2) = 0.

Because vy, (k) = 0, Lemma 5.2 implies that p; divides at most one §,. Theorem 4.6
then applies to complete the proof. L

In light of Theorem 5.3, we now study the quantities —b, 8,, and —b4,,. We begin
with a fundamental result on the polynomials P,(X,Y)and Q,(X,Y).

Lemma 5.4. Let S,. T, € Z[k,X,Y| be the polynomials not divisible by k that
satisfy Py = k™S, and O, = k*'™T, respectively, for some s(n), t(n) € Z. Then
we have

S Sz +bT2 | ifn is odd,
o sz,f_l + anz_l if n is even,

Tn = Sn—l Tn—l s

1
s = 3" = (1",
and

o) = {S(n) —1 ifnisodd,

s(n) if n is even.

Moreover, for any n, S, and T, are homogeneous in X and Y, and relatively prime
as polynomials in X and Y with coefficients in 7.|k].
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Proof. We proceed by induction. In this case it will be convenient for us to start with
n = 0, in which case we put ¢°([X, Y]) = [X, Y]. This gives

So=X, To=Y, and s(0)=1(0)=0.
For n = 1, we have ¢(|X, Y|) = [k(X? + bY?), XY], showing that
S1 =83 +bTf. Ty=580To. s()=1, and (1) =0,

which agree with the statements in the lemma.
Forn = 2, we have

Py(X.Y) =k (K2(X? + bY?)? + b(XY)?)
and
02(X.Y) = k(X* + bY?)XY,

so that
Sy =k*SE+bTE, T =5:T1, and s(2) =1(2) =1,

which again agree with the statements in the lemma.
Now suppose that 7 is even and that the statement of the lemma holds for n — 1,
so in particular f(n — 1) = s(n — 1) — 1. Then
P, = k(P2 +b0Q2_,) = k(k>~Ds§2 | + pi20-172 )
= k- k>0D72(k282 | 4+ bTZ ).

Since k does not divide T,,_;, it also does not divide k*S2_| + hT?2 |, showing that

s(ny =2s(n—1)—1= %(2”—1 —(=1)""') =1 (by induction)
1 . .
= E(2” +2-3) (since n — 1 is odd)
1 n n
= g( —(=D)").

We also have
Qn = Pn—lQn—l = (ks(n_l)Sn—l)(kt(n_l)Tn—l) = kZS(n—l)—l Sn—lTn—l-

Since k divides neither S,y nor 7,_, it also does not divide S,,— 7;,—1, showing
that 7, = S,—1T,—1. Thus t(n) = 2s(n — 1) — 1 = s(n).
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Now suppose that 7 is odd and that the statement of the lemma holds for n — 1,
so in particular #(n — 1) = s{n — 1). Then
Py = (PL, +bO2_) = k{(k30DS2, + p2@=DT2 )
=k k>0 (S2_ + DT ).

As in the case of n even, we have S, = k?S? | + bT2 . Thus
2
sn) =2s(n—1)+1= 3 (2" '— (D" +1 (byinduction)

1
=5 2" =2+ 3) (since n — 1 is even)

1
= (2" — (—-1)").
S (@' - (1))
We also have
Qn = t'p-1 Qn—l = (ks(n_l)Sn—l)(kl(n_l)Tn—l) = kzs(n_l)Sn—lTn—l-

As in the case of n even, it follows that T, = S,,_1T,,—1. Thus {(n) = 2s(n — 1) =
s(n) — L.

It remains to show that S, and 7}, are relatively prime as homogeneous polyno-
mials in X and Y with coefficients in Z|k]. Assume inductively the same statements
hold for S,—1 and 7;,—;. The homogeneity of S, and T, follows immediately from
the recursions in the lemma, which have already been established. Let F be an irre-
ducible non-constant homogeneous polynomial in X and Y with coefficients in Z[k].
If F divides T}, then F must divide either S,,—; or T,,—1, but cannot divide both since
Sp—1 and 7;,_; are relatively prime. From the formula for §;, in the lemma it follows
that /' cannot divide S, regardless of the parity of 7. L

For the remainder of this section we assume that 5> = 1, as in Conjecture 1.3. We
thus have ¢* = ¢, p = pn.and g, = g,. We put Lemma 5.4 to use to study the §,,.
which will allow us to apply Theorem 5.3 in the case where K is real, since 8, > 0
and thus —§,, cannot be a square. Before proceeding, we note that

§p = kP,(1,1) = K*®F18,(1, 1)

by Lemma 5.4. Since s(72) + 1 is always even, we have that §, is a square in K if and
only if S, (1, 1) is a square in K. To make this a bit more concrete, here are the first
few P,(1,1)and Q,(1, 1), with corresponding S, (1, 1) and 7, (1, 1) easy to read off.

Pi(1,1) =2k, Py(1,1) =k(4k*>+ 1), Ps(1,1) = kK3(16k* + 8k + 5),
Q1L =1 Qx(.1) =2k, Q3(1.1) = kK*(8k? +2),

Py(1, 1) = k> (256k 10 + 256k8 + 224k + 144k* + 57k* + 4), and
Q4(1, 1) = K> (128k® + 96k* + 56k + 10).
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Lemma 5.5. Suppose that b = 1 and there is a prime p of Ok with p | (5) and
|Ox /v : Z/57) odd. If k = £2 mod p, then neither of £8, is a square for any n.

Proof. From Lemma 5.4 and the fact that O x /p has characteristic 5, we have that the
sequence (S, (1, 1), T,(1,1)) modulo p is (2,1),(2,2),(3,4),(2,2),(3,4),... and
repeats in the obvious way. Because [Og/p : Z/57)] is odd, Ok /p has no quadratic
sub-extensions, and thus neither of £2 is a square in O /p. Hence +5,(1, 1) is not
a square modulo p for all n. (]

Corollary 5.6. Suppose that K is a number field of odd degree, and take b = 1.
Then there is a congruence class of k € K with [Co @ Goo| finite.

Proof. Because K has odd degree, it has no quadratic sub-extenstions, and hence —1
cannot be a square in K. Moreover, the product of the residue class degrees of ideals
of Ok dividing (5) must be odd, and thus there is some p | (5) with [Og /v : Z/5Z]
odd. By Lemma 5.5, when k& = 2 mod p, neither £§,, is a square for any n. By
Theorem 5.3, [Coo : Gool i8 finite for all £ = &2 mod p. ]

We now present several results that show §,, is not a square for all # provided that
there exist certain primes of @k and & satisfies conditions relating to these primes.
These lead into Corollary 5.11, which shows that Conjecture 1.3 is true for certain
real number fields K, including Q.

Theorem 5.7. Suppose that b = 1 and vy(k) = 0 for some prime p C Og with
#Ox /v = 2. Then 8, is not a square for all n > 2.

Proof. Note first that #0 /p = 2 implies p | (2), and let e > 1 be such that p¢||(2).
We claim that p + (P,(1, 1)) and p®|| (Q, (1, 1)) for all # = 2. We have

(Py(1,1)) = (2k) and (Q1(1, 1)) = (1), whence (P5(1. 1)) = (k(4k2 + 1)).

which is not divisible by p because v,(k) = Oand p | (2). Also, (Q2(1, 1)) = (2k),
which is exactly divisible by p¢. Since

Po(1,1) = k(P1(1, D% + Qi (1, D) and Qn(1,1) = P1(1, D Qn_1(1, 1),

the claim follows by induction.
Now suppose that §, € K? for some n > 2. Then kP, (1,1) € K2, and so

P01, 1)2 + Qa1 (1, 1)2 = z2 forsomez € K.
Rewrite this as

Qn-1(L, 1)* = (z + Pt (L, D)z = Ppi(L,1)),
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and to ease notation set
z4+ P,—1(1,1)=s and z-— P,—1(1,1) =1

This gives

Qn_1(1,)? =5t and 2P, (1,1) =s5—1¢.
From the previous paragraph, v,(Q,—1(1,1)) = e = v, (2) and v, (P,—1(1,1)) = 0,
giving

2e = vp(s) + vp(2) (29)
and
e = vp(s —1); (30)
hence
2un(s — 1) = vy(s) + vplf). (31)

If vp(s) # vp(r), then 2uy(s — 1) = 2max{vy(s). vp(1)} > vpls) + vu(2),
contradicting (31). If v,(s) = vp(f), they are both e by equation (29). So s, 1 € p©
and s, & p¢t!, so neither is the identity in p¢/p°*!. But p¢/p°t! = Ox/p (see
e.g. [4], p. 43) and thus has only two elements, implying that s — £ € p¢*!. This
contradicts (30), proving the theorem. (]

Theorem 3.8. Suppose that b = | and there is p C Og with#0Og/p = 3. Then &,
is not a square for all odd n. If vy(k) = O then 8, is not a square for alln > 1.

Proof. Note that Ok /p = Z/37. Because §;(1,1) = 2and 7T7(1,1) = 1, and the
sum of the squares of two non-zero elements of 7 /37 cannot be zero, it follows by
induction that S, (1, 1) and 7, (1, 1) are not zeroin O /p. Itthen follows immediately
from the recurrence for S, in Lemma 5.4 that S,(1,1) = 2 mod p for » odd, and
thus cannot be a square in K for n odd. If vy(k) = 0, then the same statement holds
for n even. L

Theorem 3.9. et b = 1. If one of the following holds then 8, is not a square for all
n>1:
(1) Thereisp C Og with Ok /p = Z/77 and k = 2,5 mod p.

(2) Thereisp C Og with O /p = Z/7Z, k = 1,6 mod v, and the hypotheses of
Theorem 5.8 hold.

Proof. Fork = £2 mod p, the sequence (S, (1, 1), 7,,(1, 1)) modulopis(2, 1), (3,2)
and then a repeating cycle of (6, 6),(5, 1), (5,5),(6,4), (3,3),(3.2), so Sy(1,1) is
never a square modulo p. For £ = 41 mod p, the sequence in question consists of
the length-12 repeating cycle

(2,1), (5,2), (1,3), (3.3), (4,2), (6, 1), (2,6), (5,5), (1,4), (3,4), (4,5), (6,6).
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Hence S, (1, 1) isnot a square modulo p for all even #, and combined with Theorem 5.8
this shows that 8, is not a square for all n > 1. ]

Theorem 5.10. Let b = 1. Suppose that one of the following holds:

(1) v,(2k — 1) > Oorvy(2k + 1) > O for a prime p C Og such that 2 is not a
square in Ok [p.

(2) v(2k*—k+1) > 0 foraprime p C Ok suchthat —k is not a square in Ok [p.
(3) vp(2k? + k + 1) > 0 for a prime p C Ok suchthat k is not a square in Ok [p.

Then &, is not a square for all n.

Remark. When K = @, case (1) of Theorem 5.10 applies provided that there is a
prime p with v,;(2k £ 1) > 0 and p congruent to 3 or 5 modulo 8. In particular, if
k is an integer and 2k # 0 mod 8, then one of 2k = 1 must be equivalent to 3 or
5 module 8, implying that some divisor of 2k £ 1 is equivalent to 3 or 5 modulo 8.
Hence if k is an integer not divisible by 4 then &, is not a square for all n.

Proof. 1t follows from the definitions of P,(X,Y) and Q,(X.,Y) that if ¢, =
kQn,(1,1), then

Oy = 55_1 + eﬁ_l, €n = (L/k)bp—1€4—1. (32)

Suppose first that we are in case (1). One checks that §; — 81, 63 — 82, and €3 — €;
are all divisible by both 2k — 1 and 2k + 1. Henceforp | (2k—1)orp | (2k + 1), we
have 83 = 8, = §; mod p and €3 = ¢; mod p, which by (32) and induction ensures
that §, = §; mod p for all n. But §; = 2k?, which is not a square modulo p by
assumption.

For the other cases, one checks that 2k + &k 4 1 divides §5—8,, §4—85, and €4 —¢,.
As in the previous paragraph, this implies that 8, = §; mod p for all #» > 2. Now
8, = k*(4k? +1). Suppose first that p | (2k%2 —k + 1). Then 4k? = 2k — 2 mod p,
so &, is a square modulo p if and only if 2k — 1 is. But —2k* + k = 1 mod p, so
—k(2k — 1) is a square modulo p. Hence 2k — 1 is a square modulo p if and only if
—k is.

If p | (2k2 + k + 1), then 4k? = —2k — 2 mod p, so §; is a square modulo p if
and only if —2k — 1 is. But —2k? —k = 1 mod p, so k(—2k — 1) is a square modulo
p. Hence —2k — 1 is a square modulo p if and only if & is. O

Corollary 5.11. Let K be a number field with a real embedding, and suppose b = 1
and the hypotheses of one of Theorems 5.8-5.10 hold. Then none of {£6, : n =
2,3,.. . }isasquare in K, p,(x) is irreducible for alln = 1 and G, has finite index
it e
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Proof. Because K has a real embedding, —1 is not a square in K, and by hypothesis
we have that §, is not a square for all n > 2. Moreover,

Sy = kPy(1,1) = k(P (1,12 + Qpei(1,1D2) > 0 forall .

Hence —§, cannotbe a square in X either. Thus by Theorem 4.5, p, (x) is irreducible
foralln = 1. Theorem 5.3 applies as well, proving the corollary. U

Remark. In the case K = @, Corollary 5.11 applies to most values of k. For
instance, when k is a positive integer, Theorem 5.10 alone applies to all £ < 10000
except for 55 values of k. Of these, the third part of Theorem 5.9 eliminates 21 values.
The remaining 34 values can be ruled out with additional congruences. As in
the argument of Theorem 5.9, one can compute the eventually periodic sequence of
ordered pairs (8, mod p, €, mod p) and check whether §, is a square mod p for
elements in the cycle and also in the tail, i.e., those elements before the cycle begins.
For instance, when p = 11 and k = %1 mod 11, the sequence has a tail of length
2 and a cycle of length 4. The four elements of the cycle have §, not a square, and
while the second element of the tail is a square, we need not worry about §, being a
square, since 4k2 + 1 is not a square for k a positive integer. Hence §,, is not a square
for all » when k = %1 mod 11. This eliminates 11 of the 34 remaining k values.
The 23 values of & that still remain may be handled with congruences involving
higher moduli, as given in Table 1. The second column is the modulus p of the
congruence, the third and fourth columns give the tail length and cycle length of the
sequence (6, mod p, €, mod p), and the fifth column gives the #, if any, such that é,,
is a square modulo p. When there is a prime p < 200 such that both the tail and cycle
contain no &, that are squares modulo p, we have listed that prime. Otherwise, we
have chosen p to minimize the exceptional 7, which are always at most 3. Note that
by Theorem 5.8, §; and &3 are not squares, and as noted in the previous paragraph &
cannot be a square for k a positive integer. We remark that the 8, need not be distinct
for different values of n, which explains why it is reasonable to have long cycles not
containing square §,, as in the case of k = 840, p = 197 or k = 1620, p = 37.

We now wish to apply Theorem 4.6 to show that G, = Cx for certain values
of k, which demands finding a prime ideal dividing §, to odd multiplicity but not
dividing any §,, for m # n. In light of Lemma 5.2, it is sufficient to know that
up(k) = 0 to show that p must divide (§,) for at most one n. So it p | P,(L, 1),
it is advantageous to know that p t (k). We thus study the divisibility by & of the
coefficients of P,(X,Y) and Q,(X, Y), given in the following data and lemma.

The special case k = 1 (corresponding to ¢(x) = (x?+1)/x) plays an important
role. We thus put

ayp = Py(1, D|g=1, by = 0n(1,1)|p=1.
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Table 1. Congruences used to show [Goo @ Cog] is finite for given values of k.

Galois theory of quadratic rational functions

k p | tail length | cycle length | exceptional n

444 | 61 0 4

840 | 197 1 84

1620 | 37 0 36

1764 | 83 0 60

3000 | 13 1 12

3336 | 37 2 6 1=t 2
4176 | 13 1 12

4224 | 19 0 6

4620 | 41 4 4 n=12
4704 | 43 2 6

5184 | 13 1 12

5904 | 31 3 4 n=1,2
6240 | 17 4 4 =1
6384 | 37 4 2 n=2,3
6996 | 71 2 4 n=1
7224 | 17 4 4 = L
7620 | 31 2 4 n=1
7836 | 13 1 12

7956 | 83 1 60

3004 | 31 2 4 b=l
8316 | 19 0 6

9720 | 131 3 12

9804 | 29 1 12

Note thatay =2 and b; = 1 and

forn > 2. We have for instance ¢, = 5, b> = 2, a3z = 29, and b3 = 10.

2 2
n = dy_4 Ea bn—l’

by = ap—1bp—1

207

(33)

Another important quantity is the constant term of S;,(1, 1), regarded as a poly-

nomial in k. Set

Oy = Sn(la 1)|k:O:

2y = To(1, D]—o.
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We have o7 = 2, 77 = 1, and it follows from Lemma 5.4 that forall j > 1,

j i el 2 .= 12 L= : 34

02j+1 = Oy; + T2 025 = T3j1, Tj =0j-1Tj—-1. (34)

For example, we have 0y = 1, 10 = 2,03 = 5,13 = 2,04 = 4, and 74 = 10.
The following lemma relates these quantities.

Lemma 5.12. Let a, and o, be defined as above, and let ¢ be the smallest integer
that is at least n /2. Then for eachn > 2, 0, = Hle af‘i, withe, = 1 when n is odd
and e, = 0 when n is even. In particular, 0y, is a product of powers of the a; with
i<nf24+ 1L

Proof. The third part of (34) implies that 7; = 0;_; ---o0q forall j. The second part
of (34) then gives that

02; = (02j-2++-01)°. (35)

We claim that 02j41/72;41 = @j+1/bj+1. For j = 1 we have 03/135 = 5/2 =
a, /b, so the claim holds. Now

02j4+1 U;if + 7:221' . fgj—l e Jzzj—lfzzj—l
T2j+1 O2;12j Tg’j_lazj—l
B Tzzj—l +02j-1 1+ (02j-1/12j-1)°
B T2;—-102—1 B 02j—1/72j—1 '

By inductive assumption the last expression becomes (1 + a%/b?)/(a;/b;), and

clearing denominators gives (bf + af) /(b;a;). The claim now follows from (33).
The claim, together with the fact that b; 1 = a; ---a; and 13541 = 02; - -+ 07, gives

O2j41@j--+d1 = Oj <=~ 014 41. (36)

We now prove the lemma by induction. Since o1 = 2 = a} andop, =1 = a?,

the lemma holds in these cases. Suppose now that the lemma holds for all o; with
i <n. Ilfn=2jforsome j,then c = j and (35) yields that 03, is a product of
powers of the ¢;. The maximum index occurring in the right-hand side of (35) is due
o 02,3, for which the smallest integer that is at least (2j — 3)/2 is j — 1, which
is the same as ¢ — 1. Hence o; is a product of powers of the ¢; withi < ¢ — 1, as
desired.

Itn =2j +1,thenc = j 4+ 1. On the right-hand side of (36), we have by
inductive hypothesis

aj | 02j-1, @j—1|02j—3, ... ai]o1.

Hence we may cancel the a; ---aq on the left-hand side of (36) to get that 02,41 18
a product of powers of the a;. The largest index occurring on the right-hand side of
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(36) 1s j 4+ 1, which equals ¢. Moreover, by inductive hypothesis the largest index
appearing in any of the other factors is j, showing that a; 1 ; appears to only the first
power. L

Theorem 5.13. Let b = | and assume that —1 is not a square in K and each of the
fractional Og-ideals (83),(83), ..., (8y) is not the square of a fractional Qg -ideal.
Assume also that vy(k) = 0 for all primes p dividing a, := P,(1,1)|x=1 for some
n<m/2+ 1. Then G,, = C,.

Proof. We begin by noting that if m = 1 or m = 2, then G,, = C,;, is equivalent
to pn(x) being irreducible, which is ensured by —1 and %48, not being squares in K
(see first paragraph of the proof of Theorem 4.5).

From the proof of Theorem 4.5 it follows that —1, +4§,, +4d3, ..., £, not be-
ing squares in K implies p,(x) is irreducible for all # < m. We may thus apply
Theorem 4.6, provided that for each n with 3 < n < m we can find a prime p with
vp(k) = vp(2) = 0, vp(dy) odd, and v, (8;) = O foreacht < n.

Now,

§p = kP,(1,1) = K*®F18,(1, 1)

by Lemma 5.4. Note that s(n) + 1 is always even, and thus the squarefree part of
the fractional ideal factorization of (4, ) (which is non-trivial by hypothesis) divides
Sp(1,1). Therefore there is a prime ideal ¢ C Og with q || (S,(1, 1)), so that
Vg (dy) = L.

We first show that g 4 (k). If g | (k),then 0 = S, (1, 1) = S, (1, 1)|x—o mod q.
Thus g | (05) in the notation of Lemma 5.12, and that lemma shows that g | (a,,) for
some n < m/2 + 1, contradicting our hypotheses.

Because g { (k), we may apply Lemma 5.2 to show that ¢ } (F;(1, 1)) for all
i # n. It then follows from kP;(1,1) = §; that v4(6;) = Oforalli # n. In
particular, since P;(1, 1) = 2k, we have that g 4 (2), completing the proof. O

Corollary 5.14. Suppose that K = Q. Then there is a density zero set of primes X,
consisting of 2 and primes congruent to 1 modulo 4, such that if v,(k) = 0 for all
P € 2, then Goo = Ceo.

Proof. Let % be the set of primes dividing a,, := P,(1,1)|r—¢ foratleastonen > 1.
Note that ¢; = 2, and so by assumption v2(k) = 0. Hence by Theorem 5.7 and the
fact that §; = 2k2, §, is not a square for all n > 1. Because §, > 0 for all », this
shows that the fractional ideals (§, ) are all not squares. We now apply Theorem 5.13,
showing that Gee = Cuo.

Note that for £ = 1 it is certainly the case that v,(k) = O forall p € %, and so
we have G, = Cy in this case. However, a, is the numerator of ¢ (1) in the case
where & = 1, and hence Theorem 6.2 applies to show that the natural density of X is
ZETO0.



210 R. Jones and M. Manes CMH

Finally, a simple induction on the recurrence in (33), shows that a,, and b, are
relatively prime for all #. Since a, is the sum of two relatively prime squares, no
prime divisors of @, can be congruent to 3 modulo 4. L

Remark. It is easy to see if a given prime p € 7Z belongs to ¥. Indeed, letting
¢(x) = (x2 + 1)/x, then we have ¢" (1) = a,/b,, provided that b, # 0. Because
the preimages of oo under ¢ are oo and 0, we have that b, = 0 only when a,—1 = 0;
thus to see if p | a, for some n, we need only see if 0 occurs in the sequence
(¢" (1) mod p),=1. This is easily computable, since the sequence repeats after at
most (p — 1)/2 entries. For instance, the primes in X less than 2000 are 2, 5, 29, 41,
89, 101, 109, 269, 421, 509, 521, 709, 929, 941, 1549, 1861. Some of these do not
divide a, until » is rather large. For instance, 929 divides a4, but not a, for n < 42.

Remark. As noted in the Introduction, Corollary 5.14 may be far from best possible.
Indeed, we have found no & € Z for which |G : Cso| = 2. The only k € (Y where
we can be sure this holds are those of the form a/b, where 4a? + b? is a square,
since in that case the numerator of ¢?(x) factors as two quadratic polynomials (see
the remark following Theorem 4.5), and note that kp; (1) = 4a? + b?, so the image
of the action of Gal (/Q) on the second level of the tree Ty of preimages of zero
has order two. However, the image of C, on the second level of Ty has order four,
implying that [Go : Coo] = 2.

6. Density of prime divisors in orbits

In this section we use the group-theoretic description of C,, given at the beginning of
Section 4 to show that if p, is separable and G, = C, then for any ¢ € K, the
density of the set of primes of Ok dividing some element of the orbit {¢" (a) : n =
1,2,...}1s zero.

We begin with a version of Theorem 2.1 of [8] that applies to a large class of
rational functions. By the natural upper density of a set of primes § in Og, we mean

# S: N
D(S) = timsup {E {i : N(p)(”i i}”

where N(p) = Nk g (p) is the norm of p.

(37)

Theorem 6.1. Let ¢ € K(x) be a rational function with p, separable for all n, and
suppose that ¢ (00) # 0 for all n > ny. Let a, = ¢™(ap) with ag € K. Then for
any N > no, the density of primes p of K with vp(a,) > 0 for at least onen = 1 is
bounded above by

1
——#{0 € Gn : 0 fixes at least one root of py }. (38)
#GN



Vol. 89 (2014) Galois theory of quadratic rational functions 211

Remark. It is also true that (38) furnishes an upper bound for the density of primes
p such that 0 is periodic in Ok /p Ok under iteration of ¢p. This follows from the fact
that 0 is periodic in Og /p Oy if and only if ™" (0) N Ok is non-empty foralln > 1;
ct. [7], Proposition 3.1.

Proof. We denote by I, the field Ok /pOk, which is the same as Og ,/pOx.p.
where Og , is the localization of Ok at p. Any x € K has a reduction x € Pl(Fp).
Provided that p 4 Res(p, g) (i.e. ¢ has good reduction modulo p), we may reduce
the coefficients of ¢ modulo p and obtain a morphism ¢: P1(F,) — P!(F,) such
that ¢% = ¢~ [17], Theorem 2.15.

Fix N > ng, and consider

Qny =4p:v tRes(p. qg)and qBN(y) = 0 has no solution in PI(FD)}.

If p € Qu, then we have ¢¥ T (x) = ¢V (p™(x)) £ 0 mod p forall x € K, since
otherwise ¢™(x) € P1(F,) gives a solution to ¢~ (y) = 0. Thus vp(an4+m) < 0 for
all m = 0. There are only finitely many p with vy(a,) > 0 for some n < N, and
thus we have

D(Qy)<D ({p : Uplay) < O0foralln > 1}) : (39)

Because N > ng, we have oY (00) # 0, and hence there are only finitely many
p for which ¢ (o0) = 0. But if $(y) = 0 has a solution in P! (F,,), then either
N (00) = 0 or py(x) = 0 mod p has a solution in Og. It follows that

D(Qy)=1—D({p: pny(x) = 0 mod p has a solution in Og}). (40)
We now use the Chebotarev Density Theorem to show that
D{{p: py(x) = 0 mod p has a solution in Og})

is given by the expression in (38), which along with (39) and (40) completes the
proof. Except for finitely many primes ramifying in K(py), py(x) = 0 (mod p)
having a solution in Ok is equivalent to py (x) having at least one linear factor in
F,[x]. Except for possibly finitely many p, this implies that pOy, = py --- p,, where
L /K is obtained by adjoining aroot of px and at least one of the p; has residue class
degree one [13], Theorem 4.12. This is equivalent to the disjoint cycle decomposition
of the Frobenius conjugacy class at p having a fixed point (in the natural permutation
representation of Gy acting on the roots of py). From the Chebotarev Density
Theorem it follows ([13], Proposition 7.15) that the density of p with pO;. having
such a decomposition is the expression in (38). U

Theorem 6.2. Assume the hypotheses of Theorem 6.1. Moreover, let C,, be the cen-
tralizer in Aut(T;,) of an involution 1 € Aut(T,,) acting non-trivially on Ty1. Suppose
that ¢ € K(x) satisfies G, = C, forall n > 1, and let a, = ¢"(ag) withag € K.
Then

D(p € Ok : vplay) > 0 for at least onen > 1) = 0. (41)
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Proof. For n large enough, we have from Theorem 6.1 that (41) is bounded above by

v #{o € C, : o fixes at least one top-level vertex in 7,,}. (42)
I

If o € (, satisfies 0|1, # e, then clearly o can fix no top-level vertices of T,,. On
the other hand, if |7, = e then o € ker(C;, — Cy). Therefore by Proposition 4.1,
we have that (42) is the same as

_ #{o € Aut(T;,—1) : o fixes at least one top-level vertex in 7,1 §

By~
& 2#AU(T,—q)

(43)

From Propositions 5.5, 5.6 of [7], it follows that &, = (1 — ¢,,)/2, where ¢, is given
by the evaluation at z = 0 of the nth iterate of f(z) = %22 + % This implies that
¢y — 1, and thus b, — 0; indeed, it is enough to note that f maps I = (0, 1] to
itself, (1) = 1, and f is increasing on /. Moreover, from Proposition 5.6, part ii,
in [7]wehave b,, = 1/n + O((logn)/n?). ]
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