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Moments on Riemann surfaces and hyperellipticAbelian integrals

Lubomir Gavrilov and Fedor Pakovich*

Abstract. In the present paper we solve the following different but interrelated problems:
(a) the moment problem on Riemann surfaces, (b) the vanishing problem for polynomial Abelian
integrals of dimension zero on the projective plane, (c) the vanishing problem for polynomial
hyperelliptic Abelian integrals.
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1. Introduction

Let / be a non-constant meromorphic function on a compact Riemann surface R, co

be a meromorphic one-form on R, and y C R be a curve. In the present paper we
solve the following different but interrelated problems:

(a) In Section 2 we give necessary and sufficient conditions for the "moments"

to vanish for all s. These conditions are expressed in terms of the identical
vanishing of a finite collection of algebraic functions, which can be interpreted
as Abelian integrals of dimension zero on R.

(b) In Section 3, motivated by problem (a), we describe necessary and sufficient con¬

ditions for the identical vanishing of polynomial Abelian integrals of dimension
zero on the projective plane.

(c) Finally, in Section 4 we apply the results obtained to the problem of identical
vanishing of complete hyperelliptic Abelian integrals of the form

Y

(1)

P(x, y)dx + Q(pc, y)dy, P,QeC[x,y], (2)

*This research was supported by ISF, Grant 639/09,
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where y{t) e H\(Yt, Z) is a continuous family of 1-cycles and

{(x,y) eC2 : y2 - f(x) t}, /e C[x] (3)

is a family of hyperelliptic curves.

In the particular case where / is a polynomial, co gdz is polynomial one form,
and y C CP1 isa non-closed curve, the moment vanishing problem (a), called in this
case the polynomial moment problem, has been studied by several authors in a series

of papers initiated by [2]. The main motivation for a study of the polynomial moment
problem is its relation with the center problem for the Abel differential equation

^-= p(z)y2 + q(z)y3,
dz

which in its turn is closely related to the classical center-focus problem of Poincare

(see [3] and an extensive list of references therein). A Solution of problem (a) in the

general case presented here is given in terms of zero-dimensional Abelian integrals and

is inspired by the approach of [12], [13]. Notice that the initial polynomial moment
problem admits also a more explicit Solution involving compositional properties of

/, g in the composition algebra of polynomials (see [15], [14]).
Polynomial zero-dimensional Abelian integrals on CP1, that is, algebraic func-

tions of the form

/(z) «ig(/j_1(z)) + n2g(fr\z)) H b ndg{fäl{z)), m e Z,

where / and g are polynomials and f^x{z) are branches of the algebraic function
inverse to /, were introduced recently in the paper [7] in an attempt to verify certain

conjectures concerning the 16th Hilbert problem in dimension zero. In particular, the

problem of identical vanishing of such zero-dimensional integrals for simple cycles
has been studied and solved in [7], [4]. Notice however that in this case the problem
reduces to the Unding of conditions implying that for a pair of polynomials /, g the

equality g{fi~x{z)) g(fj~l(z)), i ^ y, holds, and in such a form the problem
was studied and solved earlier (see e.g. [17], [10]). In the general case a Solution

of the problem (b) in an implicit form essentially was already done in [15] as an

ingredient of the Solution of the polynomial moment problem. However, having in
mind possible applications, we present here a detailed and füll exposition which is

self-contained up to a Single purely algebraic result of [15]. Notice that the problem
(b) also was studied in the recent paper [1] where however only a partial Solution has

been achieved.
The last problem (c) solved in this paper concerns the identical vanishing of

complete hyperelliptic Abelian integrals of the form (2). Although this problem is of
independent interest, we are once again motivated by applications to the 16th Hilbert
problem. Namely, it is well known that if a limit cycle of the perturbed plane foliation

d(y2 — f(x)) + s(P(x, y)dx + Q(x, y)dy) 0, s ~ 0, (4)
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bifurcates from the periodic orbit y(7o) O ^t0 of the non-perturbed foliation, then
the Abelian integral I(t) defined by (2) vanishes at to. This is a corollary of the

representation

Pe(t) t+ eI(t)+o(e) (5)

of the first return map Pe associated to the family of periodic orbits y(t). The Situation
in which I(t) 0 is exceptional, and this phenomenon is related to the singularities
of the algebraic set of plane integrable foliation. On the other hand, the identical
vanishing of I(t) only shows that the foliation (4) is integrable "at a first order", and

the study of the higher order terms in the expansion (5) is needed in order to solve
the associated center problem on the plane [5], [8].

The key idea to solve problem (c) is to interpret the derivatives of I(t) as moments
(1) for a certain choice of R, f and co. Then the identical vanishing of I(t) turns out
to be equivalent, according to (a), to the identical vanishing of a collection ofAbelian
integrals of dimension zero. Furthermore, these Abelian integrals essentially reduce

to the ones studied in (b).

2. Moments on Riemann surfaces and zero-dimensional Abelian integrals

2.1. Moment problem and zero-dimensional Abelian integrals. Let / be a non-
constant meromorphic function on a compact Riemann surface R,a) be a meromor-
phic one-form on R, and y C R be a rectifiable curve which avoids the poles of / and

co. Then the moments (1) are well defined. In this subsection we will give necessary
and sufficient conditions for the generating function

oo „
7(0 y,t) / 7T7' (6)

s=o Jy J 1

of the moments ms to vanish identically or more generally to be rational. Our approach
to this problem is inspired by [13], where the genus zero case, R CP1, was studied
in details. We will suppose for simplicity that the set of poles of co is contained in
the set of poles of / and that y is closed (for the general case see the remarks given
in the end of this subsection).

Consider the induced holomorphic map / : R -> CP1 and let {c\, C2,... c^} be
the set of all finite critical values of /. For a regulär generic value co £ C, consider
the "star" S C C consisting of the segments [c0,c/], i 1,2 ...k. Using the

assumption that S contains all finite critical values of /, one can show that the path

y can be continuously deformed, without changing the corresponding function J(t),
in such a way that the image /(y) will be contained in S (the explicit construction is
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given below). Therefore, moments (1) may be written in the form

k

msffsw=f f'jfdf (pi(z)zsdz, (7)
Jy Jy dj i JCQ

where each cpj is an appropriate sum of branches of the algebraic function

in some simply-connected domain U containing S \{c\,c2,.. Q;}.
Clearly,

J(t) Y Ji(t), where Jf(t) [ ^^dz. (8)ti J«> Z~f
Further, the functions (t) and therefore J(t) allow for an analytic continuation on
CP1 \ {c\, C2,... Ck}. On the other hand, by a well-known property of Cauchy type
integrals, the limits of the function J{t) when t approaches to a point t e [co,Ci\
from the "left" and "right" sides of [c0, Ci\ are related by the equality

J + (t) - J~(t)

Therefore, if the generating function J(t) vanishes identically (or just allows for a

Single-valued analytical continuation), then the algebraic functions cpi, 1 < i < k,
defined by (7) vanish identically. Of coarse, the equalities cpi 0, 1 < i < k, in
their turn imply that J 0.

The study of conditions implying the vanishing of the algebraic functions cpi is a

priori a simpler problem than the initial one. Furthermore, the functions cpi allow for
the following remarkable Interpretation as zero-dimensional Abelian integrals.

Consider the Singular fibration / : R CP1 with fibers

/_1(z) {fl-\z),fp{z),..(9)

where d is the degree of /. For z/c,,oo dehne the (reduced) zero-homology group

{«i/1"1(z) + «2/r1(z)H \-ndfp(z) : £>; 0, m e Z}.

It is a free Z-module generated by

fp{z) - fd-\z), f2-\z) - fp(z),fpt(z) - fpiz
and its dual space is denoted by //°(/_1(z), C). The map /: R CP1 in-
duces homology and co-homology bundles with the base C \ {c\,..., c^} and Ubers

7/o(/_1 (z), Z) and H°(f~1 (z), C). The continuous families of cycles

- ff\z) e H0(rl(z), Z)
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generate a basis of locally constant sections of a canonical connection on the homology
bündle (the Gauss-Manin connection). Clearly, a meromorphic function g on R
defines a meromorphic section of the co-homology bündle, and we may dehne a

zero-dimensional Abelian integral as follows (see [7]).

Definition 2.1. A zero-dimensional Abelian integral is an algebraic function

g n1g(f1~1(z))+ n2g(f1~1H b ndg(fd~1 (z)), (10)I.
J8{z)

where g is a meromorphic function on R and

8(z) nifil{z) + n2f2l(z) + ••• + e (11)

is a continuous family of 0-cycles.

Clearly, the functions cpi in (8) may be interpreted as zero-dimensional Abelian
integrals

f 00

-77, (12)
J8i(z) dj

where
d

^•(z) 52wO\//rl(z) (!3)
7 1

and riij are suitable integers (computed below).
Thus, we proved that the following Statement is true.

Theorem 2.1. The moments

ms j fso), s > 0, (14)
Jy

vanish ifand only ifthe zero-dimensional Abelian integrals

f
JSjXz) dj

<Pi(z)

vanish identically.

Of course, in order to apply Theorem 2.1 we must dehne values of the integer
numbers nij in (13). For this purpose, following [13], consider the preimage of the
star S under /

Xf r\SCR

as a graph embedded in the Riemann surface R. This graph, called a constellation,
in a sense is a "combinatorial portrait" of the corresponding covering (see [9] for
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details and different versions of this construction). By construction, the restriction
of /(z) on R \ Xf is a covering of the topological punctured disk CP1\{SUoo}
and therefore R \ Xf is a disjoint union of disks. This implies that the graph Xf
is connected and the faces of Xf are in a one-to-one correspondence with poles of
/(z). For each i, 1 < i < k, we will mark vertices of Xf which are preimages of
the point c\ by the number i (see Figure 1). Further, dehne a star of Xf as a subset

of edges of Xf consisting of edges adjacent to some non-marked vertex. If U is a

simply-connected domain such that S \ {c\, c2,..., c^} C U, then the set of stars of
Xp may be naturally identihed with the set of Single-valued branches of f~x{z) in
U as follows: to the branch 1 < j < d, corresponds the star Sj such that

fr1 (z) maps bijectively the interior of S to the interior of Sj.

Figure 1

Since R\ Xf is a disjoint union of disks each of which contains a Single pole
of /, we may deform y continuously from the interior of each of these disks to its

boundary avoiding poles of / (see Figure 2). Since by assumption the set of poles of
co is contained in the set of poles of /, this deformation does not change the function
J(z). Keeping the same notation y for this deformation we see that f(y) C S.

Furthermore, denoting by Cij a unique vertex of the star Sj marked by the number

i, it is easy to see that the number riij in formula (13) is equal to a sum of "signed"
appearances of the vertex on y. By definition, this means that an appearance is

taken with the sign plus if the center of Sj is followed by c\j, and minus if c\j is

followed by the center of Sj. For example, for the graph X/ shown in Figure 1 and
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Figure 2

the path y C Xf pictured by the fat line we have

52(z) /2_1(z) - /fx(z) + /5_1(z) - /4_1(z),

S3(z) /f !(z) - /5_1(z) + VCz) - /a-^z).
Since y is a closed loop, it follows from the above construction that riij — 0

implying that <5; in (13) are contained in H0(f~1 (z), Z). Furthermore, the following
Statement is true.

Corollary 2.1. Ifthe curve y is nothomological to zero in R withpoles off removed,
then the vanishing of moments (14) implies that there exists a non-zero cycle 8 E

Z) such that f8jj 0.

Theorem 2.1 and Corollary 2.1 remain true without the restriction that the set of
poles of 0) is contained in the set of poles of / if to change the condition J{t) 0 to
the condition that J{t) is rational. Indeed, we always may find a polynomial R such

that the set of poles of the form co R(f) co is contained in the set of poles of /.
On the other hand, it follows from the definition of the function J(t) that J(co, f,y,t)
and J(fco, /, y, t) are related by the equality

J(fa),f,y,t) J(co,f,y,t)t+ f co

Jy

which implies inductively that the function J(co, /, y, t) is rational if and only if the
function J(S, f,y,t) does.

Further, observe that the above method may be applied also in the Situation where
the curve y is not closed and/or is not connected (see [13], Section 3, for the rational
case which extends to the general case in the same way as above). Of coarse, if y is

non-closed, then the condition • ntj — 0 for <5/ (z) in (13) is not necessary true.
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2.2. Case of generic position. Let / : R -> CP1 be a holomorphic function on
a compact Riemann surface R, z0 be a fixed regulär value of /, and A be the set

of critical values of /. Recall that the monodromy group Gf of the function / is

defined as the image of the homomorphism

7Ti(C \ A,z0) -> Aut(/_1(z0)), (15)

where Aut(/-1 (z0)) is the füll permutation group. Further, a holomorphic function

/: R -> CP1 can be decomposed into a composition / p o q of holomorphic
functions q\ R -> C and p: C -> CP1, where C is another compact Riemann
surface, if and only if the group Gf has an imprimitivity System which consists of
/ deg p blocks. Notice that the set of blocks of the imprimitivity System corre-
sponding to the decomposition / p o q has the form 23; q~l{ti}, 1 < i < /,
where {t\ ,t2, • • • Ji} P~1{zo}- Finally, notice that if / p °q, where q: R -> C,

p: C ^ CP1, is an other decomposition of /, then the corresponding imprimitivity
Systems coincide if and only if there exists an isomorphism p: C C such that

p p o /x_1, q p o q.

In this case the decompositions p o q and p o ^ are called equivalent.
We say that two holomorphic functions /, g: R CP1 on a compact Riemann

surface R have a non-trivial common compositional right factor if there exists a

Riemann surface R, a holomorphic function h: R —R of degree greater than one,
and holomorphic functions /, g: R CP1 such that / f o h, g g o h. The

property of two functions /, g to have a common compositional right factor may be

expressed via the vanishing of some zero-dimensional Abelian integrals.

Proposition 2.1. Two holomorphicfunctions fg: R CP1 ona compact Riemann

surface R have a common compositional rightfactor ifand only if there exists a cycle
8(z) G H0{f-l{z),Z) of the form ft~l{z) — fj~l{z), i ^ j, such that

f g EE 0. (16)
Js(z)

In particular, equality (16) holds for all 8(z) e Ho(f~1(z), Z) if and only if there

exists a rational function g such that g g o /.
Proof It is easy to see by the analytical continuation that, for a fixed index i, the set

of indices j ^ i satisfying the equality

g(fi~l(z)) g{fj~l{z)) (17)

form a block of an imprimitivity System I with respect to the action of Gf on fibers of

/. Therefore, if (16) holds, then there exists a Riemann surface R and a meromorphic
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function h: R -> R such that / / o h and fibers of h coincide with blocks of I.
Furthermore, since any branch of f~l may be written as

/f1 hj1 o TT1

for some branches of h~1 and f~1, equalities (17) imply that the function g is constant
on fibers of h. Therefore, the function g g o h~x is well defined and satisfies the

equality g g o h.

Notice that in the case where R C P1 Proposition 2.1 is well known and follows
easily from the Lüroth theorem (see e.g. [17], [10]).

Proposition 2.1 permits to obtain the following very implicit Solution of the mo-
ment problem in the case where / is in a generic position.

Theorem 2.2. If the monodromy group Gf of f is the füll Symmetrie group of
d deg / elements, then the vanishing of moments (14) implies that either y is

homological to zero in R with poles off removed, or there exists a rational function
Q such that cd Q(f) df and f{y) is homological to zero inCF1 with poles of Q
removed.

Proof If y is not homological to zero in R with poles of / removed, then by Corol-
lary 2.1 there exist integer numbers aq, «2,..., otd n°t all equal to zero such that

I>;(J^)(/r1(z)) 0 <18)

and Y^=i ai 0- The last equality implies that the numbers aq, a2,..., ot^ are not
all equal between themselves. Let us assume that oq 7^ oq.

Since Gf is a füll Symmetrie group, it contains the transposition er (12). Acting
by g on equality (18) and subtracting we obtain the equality

(«1 -^((^(/f'c*» - (^)«r'(*») 0

implying the equality

(0/f,«) (^)(/2-,(;)). (i9)

Since the füll Symmetrie group of / is primitive, the function / is indecomposable.
Therefore, Proposition 2.1 applied to equality (19) implies that there exists a rational
function Q such that Q(f). Hence, moments (14) equal to the moments

/ Q(z)zsdz, s > 0,
Jf(y)

and the Statement follows from the classical result of the complex analysis.
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Notice that Theorem 2.2 remains true if Gf is only doubly transitive. This is a

corollary of the characterization of doubly transitive groups via the structure of their
irreducible subspaces over C, see [10], [13] where this approach is used for rational

/ and g.

3. Vanishing of zero-dimensional polynomial Abelian integrals

In this section we give necessary and sufficient conditions for zero-dimensional
Abelian integral (10) to vanish identically in the case where R is the Riemann sphere
and the functions involved are polynomials. More precisely, we solve the following
problem:

for a given polynomial P ofdegree n and a cycle S(z) e Hq(P~1 (z), Z)
describe polynomials Q such that the associated Abelian integral

m= f ß i>ß(^-1(*)) (2°)
JS(z)

vanishes identically.

In distinction with the previous section we will not assume that Hq(P 1(z), Z) is

reduced. Thus S(z) may be any expression of the form

8(z) viPp(z)+ v2Pp{z)H 1- vnP~l(z),

where Vf e Q. It is convenient to identify the cycle S(z) with the vector

8 (v1,v2,...,v„)

of Qn. Under such an identification the natural action of the monodromy group
Gp of P on Hq(P~1(z),Z) descends to an action on Qn defining a permutation
representation of the group Gp

p: Gp Gh(Qn). (21)

The understanding of irreducible components of p plays a crucial role in the
Solution of the problem above. Indeed, let be the vector space consisting of
polynomials Q such that Abelian integral (20) vanishes identically, and V$ be the

minimal p-invariant vector subspace of Qn containing the vector S. Then it is easy
to see by the analytical continuation that f8^ Q 0 if and only if f ^ Q 0 for

any y(z) e H0(P~1(z),Z) such that y e V$. This implies that in order to describe

Z$ it is enough to solve the following three problems:
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(1) First, describe all possible irreducible Gp -invariant subspaces of Qn.

(2) Second, provide a method which allows for any given S e Qn to decompose the
invariant subspace V$ into a direct sum of irreducible Gp-invariant subspaces.

(3) Third, for each irreducible Gp-invariant subspace U, describe the vector space
Zu consisting of polynomials Q such that f§^ Q 0 for all 8 e U.

A Solution of problem (1) is given in [15] in a closed form (see Theorem 3.1 of
[15]), while Solutions of problems (2) and (3) can be obtained by appropriate modifi-
cations of proofs of Proposition 4.1 and Theorem 1.1 of [15] correspondingly. Below
we recall the Classification of irreducible Gp-invariant subspaces of Qn obtained in
[15] and provide self-contained Solutions of problems (2) and (3) using the approach
of [15].

3.1. Description of irreducible Gp -invariant subspaces of Qn. In this subsection

we recall the description of Gp-invariant subspaces of Qn obtained in [15]. More
generally, we will describe G-invariant subspaces of Qn for a permutation repre-
sentation of an arbitrary permutation group G C Sn containing a cycle of length n

(the monodromy group of a polynomial of degree n always contains such a cycle
which corresponds to a loop around infinity). For more details we refer the reader to
Section 3 of [15].

Without loss of generality we may assume that the cycle of length n contained in
G coincides with the cycle (1... n). This implies in particular that any imprimitivity
System for G must coincide with residue classes modulo d for some d \ n. For each

d \ n we denote by Vd the subspace of Qn consisting of "d>-periodic" vectors that is

of vectors of the form

(vi,..., Vrf,

It is easy to see that for given d residue classes modulo d form an imprimitivity
System for G if and only if the subspace Vd is G-invariant.

Denote by Z)(G) the set of all divisors of n for which Vd is G-invariant. Notice
that D(G) is a lattice with respect to the Operations A, V, where d A d := gcd(d, d)
and d v d := lern(d,d). Indeed, for an element x e X the intersection of two
blocks containing x and corresponding to d,d e D(G) is a block which corresponds
to d V d. On the other hand, the intersection of two invariant subspaces Vd, Fj is an

invariant subspace which is equal to VdAj We say that d e D(G) covers d e D(G)
if d |d, d < d, and there exists no / e D(G) such that d < l < d and d\l,l\d.

Theorem 3.1. ([15]) Each irreducible G-invariant subspace ofQn has the form

ud:=vd n(^n-n^) (22)
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where d E D(G) and d\,... ,di is a complete set of elements of D(G) covered by
d. The subspaces Ud are mutually orthogonal and every G-invariant subspace of
Qn is a direct sum ofsome Ud as above.

3.2. Decomposition of V$ into a direct sum of irreducible subspaces. Set

wk (l,ekn,e2nksn e2ni/n, l<k<n. (23)

Clearly, the vectors Wk, 1 < k < n, form an orthonormal basis of Cn with respect
to the Standard Hermitian inner product in Cw, and for any divisor d of n the vectors

Wk for which (n/d)\k form a basis of the complexification of the subspace

Vj. Furthermore, defining ^,0! G D(G), as a subset of {1,2,consisting of
numbers r such that n/d is a divisor of r but for any element d e D(G) covered by
d the number n/d is not a divisor of r, we see that the vectors wr,r e form a

basis of Uf.

Theorem 3.2. The subspace Uj, d E D(G), is a component in the decomposition of
the subspace V$ into a sum of irreducible G-invariant subspaces ofQn, ifand only

ifthere exists a number r such that (S, wr) 7^ 0.

Proof{cf. Proposition 4.1 in [15]). Let V$ 0 Udj be a decomposition of V$ into
a sum of irreducible G-invariant subspaces. If Vg is orthogonal to C/^, then V$ is

orthogonal also to implying that (S,wr) 0 for all r E since the vectors

wr, r E form a basis of U^. Therefore, if (8, wr) 0 for some r E then

Ud coincides with some C/^..
In other direction, if Uj coincides with some U^j, then in view of the minimality

of Vs the projection of 8 onto Ud is distinct from zero implying that there exists a

number r E such that (S, wr) 0, since wr, r e form a basis of U^.

3.3. Description of spaces Zjjd. First of all observe that if P A o B is a

decomposition of a polynomial P into a composition of rational functions, then the

corresponding equivalence class of decompositions contains a decomposition where
both functions involved arepolynomials, and below we always will consider only such

decompositions. In order to keep the correspondence between imprimitivity Systems
of GP and equivalence classes of decompositions of P we modify the definition of
equivalence correspondingly. Namely, we will call decompositions P A\ o W\
and P — A2 ° W2 equivalent if there exists a polynomial v of degree one such that
A2 A\ o v, W2 v_1 o W\. Abusing of notation, usually we will mean by a

decomposition a corresponding equivalence class of decompositions.
Notice that since any imprimitivity System for a group G C Sn containing the

cycle (12.. .n) coincides with residue classes modulo d for some d \ n, any two
decompositions P P\ o W\ and P — P2 0 W2 of P such that deg P\ deg P2 are
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equivalent. Notice also that in the above notation the set D(Gp) consists of numbers
d for which there exists a decomposition P AoW with deg A d.

The structure of Z\jd or, more generally, of any Gp-invariant subspace of Qn is

closely related to the compositional properties of polynomials. For example, for any
8(z) G H${P~l{z), Q) and polynomial Q of the form Q R ° P we have

C
n

/ Q R(z)Tvi, (24)
Mz) fr[

implying that f8^ Q vanishes identically whenever S(z) is contained in the reduced

homology group, or equivalently the vector S is contained in V^~.

Further, if P A o W, deg A d, is a decomposition of P corresponding to
d G D(Gp), then for any branch P-_1 (z) of P~l (z) there exist a branch Wj~l (z) of

-i
kW 1 (z) and a branch Ak

1
(z) of A 1

(z) such that

p-l w~loAl\ (25)

Therefore, for any cycle 8(z)e H0(P~l(z),Q)and polynomial Q we have:

d

/ Ö ^(/ Ö)
Js(z) k=1 \J8k9w(z) /

o A7\ (26)

where 8k,wiz) ^ Hq{W x{z), Q), implying that the integral f8^ Q vanishes

identically whenever all the integrals fskw(z)Q^ 1 5 k 5 d, do. In particular, if
S(z) G H0(P~X (z), Q) is a cycle such that all cycles ^^(z), 1 < k < d, are in the

reduced homology group H0(W~X (z), Q), then f8^ Q vanishes identically for any
polynomial Q of the form Q B o W.

In the following we always will assume that the numeration of roots P-_1(z)
of P_1(z) satisfies the requirement that the cycle in Gp corresponding to a loop
around infinity coincides with the cycle (12 n). In particular, such a choice of
the numeration yields that without loss of generality we may assume that when k in
formula (25) remains fixed, the corresponding i runs the set of numbers equal to k
by modulo d, implying that a cycle 8k,w(z) ^ H0(W~X (z), Q) in (26) is reduced if
and only if

(ß,ek,d) 0, (27)

where ek,d, 1 < k < d, denotes a vector of Qn with coordinates vi, V2,..., vn such

that Vi 1 if i k mod d, and Vi 0 otherwise. Since vectors ek,d, 1 < k < d,
obviously form a basis of Vj, this implies that all cycles ^?pp(z), 1 < k < d, are

reduced if and only if 8 is orthogonal to Vd.

Returning to the description of the space Zud, d G D(Gp), observe that it
always contains the space Zyd in view of the inclusion Ud C Vd. Furthermore, if
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d e D{Gp) is covered by d and P Ä o W is a decomposition corresponding to
d, then, since Ud is orthogonal to Fj, the cycles 8k j^(z), 1 < k < d, are reduced

for any 8 e Ud- Therefore, for any such J, the ring C[kF] of polynomials in kF is

contained in the space Z\jd.

Theorem 3.3. Let d be an element of D(Gp). Furthermore, let d\,... ,dg be a

complete set of elements of D(Gp) covered by d and P A\ o W\, 1 < i < l, be

the corresponding decompositions. Then

zud ZVd + C[WX] + C[W2] + ••• + C[W/]- (28)

Proof(cf. Theorem 1.1 in [15]). In view of the above remarks, the right part of (28)
is contained in Z\jd. So, we only must establish the inverse inclusion.

First, observe that the numeration of branches of P~1(z) implies that at points
close enough to infinity the functions Q{Pfl{z)), 1 < i < n, may be represented
by converging Puiseux series

(X)

Q{Pr\z))ske«-»kz-$, (29)
k=—q

where q deg Q(z) and sn exp (2ni/n). Furthermore, substituting (29) to (20)
we see that the integral fs^ Q vanishes identically if and only if for any k > —q the

equality
n

ViSks^~1)k (8, 0 (30)
i 1

holds. In particular, if Q(z) e Zjjd, d e D{Gp), then the equalities

(v,Wk)sk 0, k > —q, (31)

hold for any v G Ud and therefore they hold also for any v e Ud Since Ud is

generated by the set of vectors wr, r e ^d, and this set transforms to itself under
the complex conjugation, this implies that if Q(z) e Zjjd, then for any r E the

equality Sk 0 holds for any k such that k r mod n. Furthermore, clearly the
inverse is also true. Similarly, it is easy to see that Q(z) E Zyd if and only if Sk 0

for any k such that (n/d)\k.
Assume now that Q(z) e Z\jd and consider series (29). If Sk 0 for any k such

that (n/d)\k, then Q(z) e Zyd and we are done. Thus, suppose that there exists k
such that (in/d)\k but Sk 0. It follows from the definition of Ud and the above

characterization of coefficients of (29) for Q(z) e Zjjd that in this case necessarily

(n/d)\k for some d e D(Gp) covered by d, and without loss of generality we may
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assumethat d d\. Set

t(z)= X
k>—q

k=0 mod n/d\

where Sk, k > —q, are coefficients of series (29). Clearly, we have:

(Jj-)fß) Ö (pr1 (z))+Ö i (z))+ß (^"2+1 (z))+• • •+Ö (p^-di+1 (z)) •

(33)
Since indices appearing in the right part of (33) form a block, the function i/r(z)

is invariant with respect to the subgroup of Gp which stabilizes Pf1 (z). Therefore,
by the main theorem of Galois theory, i/r(z) is contained in the field C (z)(Pf1 (z)).
Further, since z P((P1_1(z)) the equality C(z) (Pf1 (z)) C(P1_1(z)) holdsand
hence \f/(z) Pi (Pf1 (z)) for some rational function Ri. Moreover, Pi is actually
a polynomial since the right part of (33) may have a pole only at infinity. Finally,
since (33) implies by analytical continuation that

R^PrHz)) RiiPäX i(z)) Ri(P2d\+1(z)) R(P~}dl+l(z)),

reasoning now as in Proposition 2.1 we conclude that R\ is constant on fibers of W\
and Pi S\ o W\ for some polynomial S\ (cf. Lemma 4.3 in [15]).

Dehne now a polynomial T\ (z) by the equality

7Hz) Q(z)-R1(z).

Then by construction the Puiseux series of Pi(Pf1(z)) contains no non-zero
coefficients with indices which are multiple of n/d\. If Pi(z) is contained in Zyd,
then

ö(z) T\{z) + S\{W\{z))
and we are done. Otherwise arguing as above we may find polynomials P2, S2 such

that P2 S2 0 W2 and the Puiseux expansion of T2(Pi 1(z)), where

T2(z) T1(Z)-R2(Z),

contains no non-zero coefficients whose indices are multiple of n/d\ or n/d2. It is

clear that continuing this process we eventually will arrive to some Ts{z) which is

contained in Zyd and therefore to a representation

Q(z) Ts(z) + SiGFi(z)) + S2(W2(z)) + + Si(Wi(z)).

In view of Theorem 3.3, in order to complete the description of the space Zjjd we
only must describe the space Zyd. Observe hrst that the vectors 1 < j < d,
dehned above satisfy the equality

(ßj,d,wk) ekn{j~l\ehd,wk).
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Therefore, in order to check that equality (31) holds for any v e Zyd it is enough to
check that it holds for one Single vector exj£/. In other words, the space Zyd consists

of polynomials Q (z) satisfying the equality

Q(Pp(z)) + Q(Pjlx(z))+ Q(p2d+i(z))+ ••• + Q(Pn-d+i(z)) °- (34)

Furthermore, if P A o W is a decomposition corresponding to d e D{Gp), then
in view of (25) equality (34) reduces to the equality

Q(Wp{z)) + Q(W2~\z)) + Q(W3~\z))+ ••• + ^(z)) 0. (35)

The Newton formulae imply that whenever deg Q < deg W the sum in the left
hand side of (35) is a constant. Therefore, setting /x; Wfx (c),i 1,2,n/d,
for some generic c e C, we see that the intersection Zyd n TV, where TV is a vector

space of polynomials of degree less than deg W, has codimension one in TV and is

described by the relation

On the other hand, using W-adic decomposition, it is easy to see that that for Q (z) of
arbitrary degree the sum in (35) is a polynomial, and that a polynomial Q (z) satisfies

(35) if and only if all coefficients in its kF-adic decomposition satisfy it.

Finally, notice that Theorem 3.3 provides a description of the space Zy for any
Gp-invariant subspace V of Qn since by Theorem 3.1 any such a subspace has the
form V 0 Udj implying that Zy — r\Zjjd..

3.4. Corollaries. In this subsection we discuss some particular cases of the above

results which may be useful for applications. Below, we always will assume that Q
is a non-zero polynomial and 8 is a non-zero element of H0(P~1 (z), Q).

Proposition 3.1. Let P be an indecomposable polynomial. If an Abelian integral
fs(z) Q van^es identically, then either Q is a polynomial in P and the cycle S(z) is

reduced, or Q e Zyx and there exists a rational number a such that

Proofi First, observe that V$ does not coincide with whole Qn since otherwise ex>n e
V$ would imply that Q(z) 0. Therefore, by Theorem 3.1 either V$ Fi or
Vs — Un U^~. Obviously, in the first case Q e Zy1 and (36) holds, while
in the second case the cycle 8(z) is reduced. Furthermore, by Theorem 3.3 in the
second case Q is contained in Z\jn — Zyn + C[P], implying that Q e C[P], since

Zyn {0} by (35). Alternatively, one can observe that in the second case V$ contains
vectors e; — ey, 1 < i, j < n. Therefore,

Q(jll) + Qit12) + • • • + Q(l^n/d) ~ 0-

S(z) a(Pjx(z) + P2 l(z) ••• + l{z)). (36)

Q(Pp(z)) Q(Pp(z)) Q(P-\z)) (37)

and hence Q e C[P] by Proposition 2.1.
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Notice that the conclusion of Proposition 3.1 holds for any polynomial P(z) in
generic position since decomposable polynomials obviously form a proper algebraic
subset in the set of all polynomials of degree n. Notice also that in order to prove
Proposition 3.1 one can use instead of Theorem 3.1 the classical result, relating the

doubly transitivity of a group with the structure of its permutation representation
over C, combined with the Schur theorem, relating the doubly transitivity and the

primitivity for a group containing a transitive cyclic subgroup (see [10] for such an

approach).

The conclusion similar to the one in Proposition 3.1 is true for arbitrary P if to
impose some limitations on S(z).

Proposition 3.2. If an Abelian integral Q vanishes identically and for any

d G D(Gp), d 7^ 1, there exists r G ^ such that (8,wr) 7^ 0, then Q is a

polynomial in P and the cycle 8 (z) is reduced.

Proof Indeed, it follows from Theorem 3.1 and Theorem 3.2 that Vg U^~.

A finer version of Proposition 3.2 is the following Statement.

Proposition 3.3. Ifan Abelian integral Q vanishes identically and there exists

r G such that (8,wr) 7^ 0, then Q(z) may be represented in the form

Q(z) Si(Wi(z)) + S2(W2(z)) + ••• + Si(Wi(z)), (38)

where S\, S2,..., S[ are polynomials and W\, W2,... Wi are compositional right
factors of P(z) corresponding to elements d\,... ,di ofD(Gp) covered by n.

Proof It follows from Theorem 3.2 that V$ contains Un. Therefore, Z5 c Zjjn and

the Statement follows from Theorem 3.3.

Notice that it follows from (32) and the characterization of polynomials Q sa-

tisfying f8^ Q 0 via their Puiseux expansions (30) that for any polynomial Qj
Sj(W(z))91 < j < /,appearing in representation (38) the integral Qj vanishes.

However, unless V$ Un, it is not true that for any polynomial Wj /, the

corresponding cycles

&k,Wj (Z) e HoiWp (z),Q), \<k<dj, (39)

are reduced. Still, the following Statement is true.

Proposition 3.4. Ifan Abelian integral Q vanishes identically and there exist

d\, d2,.. .di G D(Gp) such that for any d G D(Gp) the inequality (8, wr) 7^ 0
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holds for some r £ 4^ if and only if d is not a divisor of one of the numbers

d\, • • • ,di, then Q(z) may be represented in theform (38), where W\, Wz,... W[

are compositional right factors of P(z) corresponding to d\,... ,dg and all cycles
(39) are reduced.

Proof Since the condition of the theorem implies by Theorem 3.2 that V§ coincides
with the orthogonal complement to the sum of Vj1, Vd2 > • • • > in Qw, the proof is

obtained by an obvious modification of the proof of Theorem 3.3.

Remark. The results similar to Propositions 3.3, 3.4 (without a Solution of the

general problem) were obtained in the recent paper [1] (Theorem 2.2) where they
also were deduced from Theorem 3.1 by the method of [15]. Notice however that
the corresponding Statements in [1] are weaker. For example, the second part of
Theorem 2.2 in [1] which is an analog of our Proposition 3.3 contains an additional

assumption which in our settings means that r e for which (8, wr) ^ 0 is coprime
with n.

3.5. Polynomial moment problem on a System of intervals with weights. Recall
that the polynomial moment problem, recently solved in [15], [14], asks to describe,
for a given polynomial P and a,b e C, all polynomials Q satisfying the System of
equations

It is easy to see using a change of variable that if Wj is a right compositional
factor of P such that Wj (a) Wj (b), then for any polynomial Sj (z) the polynomial
Qj Sj(Wj(z)) is a Solution of (40), and it is shown in [15] that any Solution Q

may be represented in the form (38), where Wj are compositional right factors of
P(z) satisfying the condition Wj (a) Wj (b). In the above notation the proof given
in [15] may be sketched as follows.

First, by the method of Section 2 it is shown that there exists a collection of cycles
Si (z), 1 < i < k, in Hq{P~1 (z), Q) such that equalities (40) hold if and only if the

hold. Then, it is shown that the minimal Gp -invariant subspace containing the cycles
Si(z)9 1 < i < k, contains a vector v such that (v, wr) ^ 0 for some r e (this
is done in [12] by means the so-called "monodromy lemma" which uses, in contrast
to Theorem 3.1, topological properties of polynomials). Further, by the method of
Section 3 it is proved that Q(z) may be represented in the form (38), where for any
polynomial Qj Sj(Wj(z)) integrals (41) vanish implying that moments (40) also

(40)

equalities

(41)
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vanish (although it is not necessary true that Wj (a) Wj (b)). Finally, since

r>b nWjib)pD pWjKP)
/ PsdQj/
Ja JWjia)

S >0,
Wj{a)

where Rj is a polynomial such that degRj < deg P, representation (38) with
Wj (a) Wj (b) is obtained by the recursive use of the above construction for indices

j with Wj{a) ^ Wj(b).
It is not hard to see that the results of the current section may be interpreted as a

Solution of the polynomial moment problem "on a System of intervals with weights".
More precisely, for any collection consisting of a polynomial P, complex numbers

ai,bi, 1 < i < /, and rational numbers c/, 1 < i < /, using approach of Section
1 (see also [15], [13] where more attention to non-closed curves is given) one can
construct a finite collection of cycles <5; (z), 1 < i < k, in (z), Q) such that
the equalities

pbi pb2 pbi
Ci PsdQ + c2 I PsdQ + • • • + c/ / PsdQ 0, s > 0, (42)

Ja\ Ja2 Jai

hold if and only if equalities (41) hold. Since the results of this section provide a

description of Q satisfying (41), they provide also a description of Solutions of (42).
As a simple illustration take P equal to Tß, where Tn denotes nt\\ Chebyshev

polynomial, Tn(coscp) cos (ncp). Notice that it follows from the definition that
for ant d\n the equality Tn — T^ o holds. In particular, D(Grn) consists of all
divisors of n. Furthermore, it is easy to see that Tn has only two finite critical values
and that the corresponding constellation is a "chain" (see e.g. [11]). For n 6 the

corresponding constellation is shown in Figure 3, where the "middle" vertices of stars

are omitted and the numeration of stars is chosen in such a way that a permutation at

1 6 2 5 3 4

-1 -V3/2 -1/2 0 1/2 V3/2 1

Figure 3

infinity coincides with the cycle (123456).

Applying the above results, it is easy to see that if we are searching for Solutions

of the moment problem

/•V3/2
/ Ts6dQ =0, s>0, (43)

«/-V3/2
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on a Single segment [— \/3/2, \/3/2], then we arrive to the vanishing problem for the

Abelian integral

/(z) Q(T^C)) - Q(T^2 (-)) + Ö(^(--)) -
where by 1 < i < 6, are denoted the branches of r6_1(z) (formally, we
should obtain a cycle for each critical value, however, since we have only two critical
values, the corresponding cycles are proportional). Clearly, the corresponding vector
(0,-1,—1,0,1,1) g Q6 is orthogonal to both V2 and V3 implying that V§ U6.

Therefore, by Theorem 3.3 any Solution of (43) has the form

Q(?) A(T3(z)) + B(T2(Z)),

where A, B e C[z].
On the other hand, the "generalized" moment problem

f~ 1/2 fl/2 n\
/ T£dQ - / T£dQ + / T£dQ =0, * > 0, (44)

J-1 J-1/2 J1/2

leads to the vanishing problem for the Abelian integral

/(z) QiT^lO) - Q(T(~2 (:)) + Q(T^(-))

- Q(T(~l (z)) + Q(T-}(-)) -
Since the corresponding vector 8 (1,-1,1,-1,1, —1) is contained in U2, the

subspace V$ coincides with U2i and Theorem 3.3 implies that any Solution of (44)
has the form

Q(z) A(T6(z))+ B(z),

where A is an arbitrary polynomial and B is a polynomial such that

+ B(T-/(-)) + B(T-j(z)) 0.

4. Vanishing of hyperelliptic Abelian integrals

Let / G C[x] beapolynomial and Tt {(x, y) e C2 : y2 — f(x) t} a family of
hyperelliptic curves. Consider the Abelian integral

7(0 f co (45)
Jyit)

where&> P(x, y)dx + Q(x, y)dy isapolynomialoneform, andy^) e Hi(Tt,Z)
is a continuous family of 1-cycles.
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The purpose of this section is to determine necessary and sufficient conditions for
the Abelian integral I to be Single valued, polynomial, or rational function. These
three conditions are in fact equivalent. Indeed, I(t) is a function of moderate growth,
with a bounded modulus in any sector, centered at a singularity. Thus I(t) is single-
valued if and only if it is a rational, in fact polynomial function.

4.1. Reduction to the moment problem. The derivatives of I can be seen as mo-
ments on a Riemann surface and this permits to apply the results of the preceding
section. Indeed, every polynomial one-form co can be written as

co k(x)ydx + dA + Bd(y2 — f(x)), A, B e C[x, y], k e C[x].

Therefore,

I(t) f k(x)ydx,1 k{x)dx
(46)

Jyit) 2 Jy(t) y

and more generally

j(k+i)(f} (1/2)(—1/2)(—3/2) ...(-£ + 1/2) [ 4^T k^°- ^Jyit) y

Thus,

/(*+D(0) mk (l/2)(—1/2)(—3/2) ...(-*: + 1/2) [ gk+lco
Jy(o)

where

co k(x)ydx, g

implying that the Abelian integral I(t) vanishes identically if and only if the moments

fy(o) 8kco> k —
vanish- Furthermore, if we replace co by gkco9 then, for k suffi-

ciently big, the set of poles of gkco will be a subset of the set of poles of g and the
results of Section 1 apply.

The zero-dimensional integrals described in Theorem 2.1 take the form

Vt(z)= f -JTJ7ffi2k-i W7Ü1

=z~(2fc~1)/2A K(x)
JSj f df JSj(z)f(2lc 1)/2/ dz Jsiiz)

where K{x) / k{x)dx is a primitive of k, and the zero-cycles <5; are constructed
from the constellation Xf f~x (*S) as explained in Section 2. The above gives
necessary and sufficient conditions for the moments m /, i > k to vanish or, equivalently,
for I(t) to be a polynomial. Thus, we have proved
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Theorem 4.1. The Abelian integral (45) is a rational function if and only if the

zero-dimensional Integrals

are identically constant.

Remark. Consider the polynomial f(x) {x2 / 2 — l)2 as in Figure 8 bellow and
the family of 1-cycles y(t), represented on the x-plane by a big loop surrounding
the four roots of f(x) + t, on the family of elliptic curves Ft. Further, consider
the complete elliptic integral I(t) fy^ xydx. A simple computation shows that

the associated zero-dimensional Abelian integral is f8^ x2, where S(z) x\(z) +
xiiz) + X3(z) + X4(z), /(xi (z)) z. On the other hand

is a complete elliptic integral of third kind, and y(t) is homologous to a small loop
around one of the two "infinite" point of the affine curve Tt. The conclusion is that

V(t) is a residue, in fact a non zero constant. The Abelian integral I{t) is therefore
linear in t. This example shows that the claim of Theorem 4.1 can not be improved.

Note that the zero-cycles <5; (z) are by no means unique, they depend on the mutual
Position of the segments [<Co, c/]. If all the zero-cycles 8; (z) are in the orbit of a given
cycle <5;0, obtained after a continuation with respect to z, then the vanishing of cpi0

implies the vanishing of all the <pi, and hence of all the moments. Finally, the orbit
of a given <5;0 may contain other cycles, more suitable for our purposes. In the next
subsection we propose an alternative construction of such a cycle, by using a residue
calculus. As we shall see, this will be more natural for the applications.

4.2. The Cauchy integral related to /. In this section we give an alternative
computation of a convenient necessary condition for the identical vanishing of the Abelian
integral I{t), defined in (45), (46). Our result will hold under the additional assump-
tion that there is a path along which the cycle y(t) vanishes. More precisely, let

y(t) C rt bea continuous family of closed continuous curves defined in a neighbor-
hood of some regulär value t0 of /. Consider a path

such that s(0) to, s(l) h, t(s) is a regulär value of / for 0 < s < 1, and

t\ is a Singular value of /. We shall say that the continuous family of closed loops

y(t) vanishes along the path (48) if it can be extended to a continuous family of
loops along this path such that y{t\) is homologous to zero on the Singular affine

[0,1] —y (C : s i—y t(s) (48)
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curve Ttl. This implies in particular that I{t\) 0 as well as that the corresponding
zero-dimensional Abelian integral vanishes at t\.

Without loss of generality we suppose that y restricted to y(to) does not vanish.

Then, for all (t, z) such that |z| and \t — t0\ are sufficiently small, the Cauchy type
integral

Jt(z) f z ~ 0 (49)
Jyit) y2-?

is well defined and analytic in t,z. The definition of Jt{z) is illustrated in Figure 4,
where a closed loop y(t) projected on the x-plane is shown, which makes one turn
around two roots of the polynomial The roots of are represented

Figure 4. The definition of the Cauchy type integral Jt (z).

by small black bullet circles, while the roots of f(x) + t — z by small empty circles.
Note that in Section 2 we supposed that z ~ oo, while in this section that z — 0, and

this is essential for what follows.
Since If(t) ^Jt (0), Jt (z) is a deformation of the Abelian integral V(t). At the

same time, for a fixed t, Jt(z) is a generating function of the moments Ik(t), k > 1,

in the sense of Section 2 and

Jt(z) J(z),
where the Riemann surface R Tt depends on the parameter t. For (x,y) e y(t)
and |z| sufficiently small the series

converges uniformly and hence

J r ^ [ k(x)y A/ "TTi T\dxJy(t) y (1 yl)

[ J 2 f k(X)j
/ dx + z / ——dx + z / ——dx + • • •

jy(t) y Jyo 3 Jyo J5
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Taking into consideration (47) we conclude

Proposition 4.1. For every regulär value t of f the equalities

(~1k2)-^kJt(0) 2I(k+l\t), =0,1,2...

hold.

The above proposition implies the following corollary.

Corollary 4.1. The Abelian integral If(t) vanishes identically, if and only if the

Cauchy type integral Jt (z) vanishes identically.

The main advantage of using Jt(z) instead of I'(t) is the possibility to extend it
analytically with respect to z. The result is a function algebraic in z.

Proposition 4.2 ([16]). For every fixed regulär value t the Cauchy type integral Jt (z)
extends to an algebraic function in z with singularities at z 0 and at the critical
values of f.

Indeed, for a fixed regulär t9 Jt(z) allows for an analytic continuation along

any path which does not contain critical values of f — t or the value z 0. In a

neighborhood of a critical value of / — t or at z 0, the Cauchy theorem implies
that, up to an addition of a holomorphic function, Jt (z) is a linear combination of
residues of ^z^dx at the roots f~l (z — t) of f(x)-\-t—z. Thus, Jt (z) is a function
of moderate growth in z with a finite number of branches, and hence is algebraic
in z.

Our next goal is to extend analytically Jt (z) in a neighborhood of (t\, 0) under
the condition that t\ is a critical value of f. To simplify the notation put t\ — 0,

/(0) 0. Consider the domain

Ds {(t,z) : \t\ < 8, |z| < 8, t 7^ z, t 0, z ^ 0}

and assume that 8 > 0 is so small that t 0 is the only critical value of / in the disc

{t : \t\ <28}. Take some (t, 0) e Ds and consider the germ of the analytic function
J — Jt (z) in a neighborhood of this point.

Proposition 4.3. The germ of J /*(z) at (t, 0) E Ds allows for an analytic
continuation along any path starting at (t, 0) and contained in Ds-

Indeed, the affine curve Tt is regulär, provided that / 0, and the differential
kyilyz dx has simple poles if and only if z ^ t,z ^ 0. Therefore the closed curve

y(t) can be deformed in a way to avoid these simple poles.
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Although the function Jt (z) might be not analytic in t near the line t — 0, it has

a finite limit there which we compute next. For this purpose, let / be a closed smooth

path connecting the point (t, 0) to (0, z), t, z ^ 0, and contained in D$ (except the

ends), see Figure 5. Suppose that the homology class of the limiting loop y(0) C T0
is zero and hence is a linear combination of vanishing cycles.

z

Theorem 4.2. Ify{0) C To is homologous to zero, then the limiting value of Jt(z)
at (0, z) along l is a zero-dimensional Abelian integral

Jq{z) 2 f K{x)
dz Js(z)

where K{x) is a primitive ofk{x), S(z) JZ nift~l{z), fj~x{z) are the roots of
the polynomial f{x) — z, and the numbers ni depend only on the homology class

represented by the loop y(0) in Hi(Tq, Z), To {(x, y) : y2 f(x), f(x) z}.

Corollary 4.2. If I(t) fy^ co 0 then fs^ K 0

Corollary 4.3. According to Proposition 4.1, if I\t) 0 for some regulär t, then
the multiplicity of this zero is the same as the multiplicity of Jt(z) with respect to z
at z 0. In the particular case where t 0 is a Morse critical point, the Abelian
integral I' is analytic att 0, and the multiplicity ofthe zero ofV at t 0 is just the

multiplicity ofthe zero ofthe analytic function Jq(z) at z 0. Thus, the multiplicity
of the one-dimensional Abelian integral at a Morse critical point equals essentially
the corresponding multiplicity ofthe one-dimensional Abelian integral.
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Proofof Theorem 4.2. We can deform the loop y{t) along the interior of the path /

in a way to avoid the poles of ^l^dx. Taking the limit t -+ 0 along / we obtain

that y(0) is homologous to a sum of closed loops around the poles of k^lyz dx, as it
is shown in Figure 6.

Therefore,

J0(z) 2nV^\yHiResf-i( ,-^-^—dx
y Ji fix) ~ z

v fifrfx)
2ns[—z f ^Js(z) 002fdz K(x).

Hz)

Computation of the reduced 0-cycle 8(z). For simplicity, suppose that y(t)
vanishes as t tends to 0 at the origin (0,0). Thus y(t) is a linear combination of
cycles vanishing at (0,0). The Standard basis of such cycles can be described as

follows. Let fr1 {t),i 1,2,..., n, be the roots of the polynomial f{x) + t which
tend to 0 as t tends to 0, ordered cyclically with respect to the monodromy action.
We denote by ytj{t) C ^ a simple closed loop which is projected to the segment

Ui~lit),The loops Yi. + i 1,2,..., n — 1, form a basis of the local

homology group of the Milnor über of y2 — f(x). We fix the orientations of these

cycles by the Convention

Vi,i + 1 ' Yi + l,i+2(0 1-

It is easy to check that then

n,i+1(0 + n+i,i+2(t) yi,1+2(0»
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where the orientation of 2(t) is appropriately chosen. Therefore the orientations
of the remaining cycles can be chosen to satisfy

Yij °Yjk +1, Yij + Yjk Yik for all k. (50)

As a by product we have also

Yl,2 + 72,3 + * * * + Yn, 1 — 0.

Obviously this fixes the orientation of all cycles yij up to simultaneous multiplication
by — 1, which have no incidence on the result claimed in Corollary 4.2. The Standard

basis of vanishing cycles of the singularity y2 + x5 is shown in Figure 7. We shall

Figure 7. The Standard basis of vanishing cycles of the singularity y2 + x5.

construct an isomorphism

Hi(Tt,Z) -*
y(t) 8(z),

having the property announced in Corollary 4.2. According to the proof of
Theorem 4.2 this should be a linear map which associates to the one-cycle y^ (t) the
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reduced 0-cycle (see also Section 2) 8fj(t) =b— fj~l{t)) and should be

therefore compatible to the relations

Yij + Yjk — Yik^ 8>ij + 8jk 8ik-

It follows that the orientation of the 0-cycles 8ij (t) can be fixed as

sv (0 ff1 (0 - ff(0 for a11' < ./'•

Note that the above isomorphism is not compatible to the monodromy action.
In conclusion, if

Y(t) ^nijYij(t)
and I(t) fy^ co 0 then fs^ K 0 where

5(z) - /y_1(z))-

4.3. Hyperelliptic Abelian integrals along ovals. Let /(x) e M[x] be an arbitrary
non-linear real polynomial. Consider a family of ovals {y(t)}t

y(t) C {(x, y) e M2 : y2 — f (x) t}, t e R,

depending continuously on the real parameter t. Each oval y(t) can be parameterized
as

y ±V/<X> +
where x\(t) < X2(t) are two real roots of /(x) + t. The purpose of this last section
is to solve, by making use of Theorem 4.1 and Theorem 4.2, the following problem:
under what conditions the Abelian integral (46),

r px2(t)
I(t) / k(x)ydx 2 / k(x)ydx,

Jy{t) Jxi(t)

is identically zero?

Theorem 4.3. The integral I(t) vanishes identically if and only if there exists a

polynomial r e R[x], such that both f and K f k are polynomials in r, and

r(xiO)) ee r(x2(?))

Proof First of all, note that if K and / have a right compositional factor identifying
xi (t) and X2(0> then the Abelian integral k{x)ydx is a pull back of an integral
along a cycle homologous to zero, and hence vanishes identically.

Suppose further that I(t) vanishes identically. It is enough to show that this

implies ^(xi (t)) K(x2(t)) since in this case by Proposition 2.1 (or by the Lüroth
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theorem) / and K will have a right compositional factor identifying x\(t) and x2(t).
If there exists a path on the complex Lplane along which the cycle y(t) vanishes,
then Theorem 4.2 applies and we conclude that K{x\(t)) K{x2{t)).

As an example, consider a real polynomial / of degree n >2 k,f= -x2k + ---.
Let x\(t) < x2{t) be the two real roots of f{x) + t which tend to 0 as t tends to zero
and {y (0} be the continuous family of ovals vanishing at the origin as t tends to zero.

Then Theorem 4.2 applies and hence the result of Theorem 4.3 follows. In the Morse
case (k 1), this has been proved by Christopher and Mardesic [4].

The condition that y(t) vanishes along a suitable path is essential, and holds for
arbitrary real polynomials of degree four or five, see for instance [6], Section 3.1,
where the case f(x) (x2 — l)2 is studied. Wedo not knowwhether this condition is

fulfilled for arbitrary polynomial / and family of ovals y(t). See Figure 8 (continuous
families of ovals). However, using Theorem 4.1 instead of Theorem 4.2 we can prove
the theorem in its füll generality.

Figure 8. The continuous families of ovals ofy2 + (x2/2—l)2 and the graph of(x2/2—l)2 — 1.

Indeed, let / be an arbitrary real polynomial of degree n > 1 and I(t) be an

identically vanishing Abelian integral as before. Let us apply Theorem 4.1. For this

purpose, let us fix a regulär real value t of /, and consider the moment problem asso-
ciated to the oval y(t) on the Riemann surface Tt. Following the method described
in Section 2 we have to consider a constellation 1/ cP1 and to deform the image
of y(t) under / + t on A/. The closed loop y(t) being an oval, its image is just a

real interval connecting 0 to a critical value of / + t. Suppose for instance that
0 > c\ > c2 > • • • > Ck are the remaining critical values of / + t contained in
[ck, 0]. We have therefore

which, without loss of generality, will be used on the place of the constellation Xf. To
each segment [c;_i, C(\ we associate a 0-cycle <5; and I(t) is a rational function if and

y(t) C {(x, y)R2: y2+ x2kH

V-kt0] — [c£, Ck—i] U ••• U [Cl,0]
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only if /5. K 0. Fortunately in general we do not need to compute all of 8\. We
note that the image of [x\ (t), x2 (0] *s a closed curve covering [cp, 0]. The pre-image
ofeachpointz e (0, c\) consistsoftwopointsx\(z) andx2(z) (rootsof f{x) + t— z)
and hence 8\(z) x\(z) — x2{z). We conclude that K{x\{t)) K{x2{t)) which
completes the proof of Theorem 4.3.

Example. The critical values of the polynomial (x2/2 — l)2 — 1 are —1 and —3/4.
The relevant constellation associated to the exterior family of ovals shown in Figure 8

is [—1, —3/4] U [—3/4,0]. To the segment [—3/4, 0] weassociatethe0-cycle<5i(z)
xi(z) — x2(z) and to the segment [-1,-3/4] the 0-cycle 82(z) xi(z) — X3(z) +
x4(z)-x2(z).
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