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Moments on Riemann surfaces and hyperelliptic Abelian integrals

Lubomir Gavrilov and Fedor Pakovich*

Abstract. In the present paper we solve the following different but interrelated problems:
(a) the moment problem on Riemann surfaces, (b) the vanishing problem for polynomial Abelian
integrals of dimension zero on the projective plane, (c) the vanishing problem for polynomial
hyperelliptic Abelian integrals.
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1. Introduction

Let f be a non-constant meromorphic function on a compact Riemann surface R, @
be a meromorphic one-form on R, and y C R be a curve. In the present paper we
solve the following different but interrelated problems:

(a) In Section 2 we give necessary and sufficient conditions for the “moments”

ms=/fsw, s =0, (1)
¥

to vanish for all s. These conditions are expressed in terms of the identical
vanishing of a finite collection of algebraic functions, which can be interpreted
as Abelian integrals of dimension zero on R.

(b) InSection 3, motivated by problem (a), we describe necessary and sufficient con-
ditions for the identical vanishing of polynomial Abelian integrals of dimension
zero on the projective plane.

(c) Finally, in Section 4 we apply the results obtained to the problem of identical
vanishing of complete hyperelliptic Abelian integrals of the form

1) = [()P(x,y)dx L Q@ dy, P.QeClny. @)
y(t

*This research was supported by ISF, Grant 639/09.
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where v(t) € H{(I';, Z) is a continuous family of 1-cycles and

I, ={(x,y) e C?*:y* — f(x) =1}, f e Clx] (3)
is a family of hyperelliptic curves.

In the particular case where f is a polynomial, @ = gdz is polynomial one form,
and y C CP!is anon-closed curve, the moment vanishing problem (a), called in this
case the polynomial moment problem, has been studied by several authors in a series
of papers initiated by [2]. The main motivation for a study of the polynomial moment
problem is its relation with the center problem for the Abel differential equation

dy
= p(2)y* +q(2)y°. p.qeClzl.

which in its turn is closely related to the classical center-focus problem of Poincaré
(see [3] and an extensive list of references therein). A solution of problem (a) in the
general case presented here is given in terms of zero-dimensional Abelian integrals and
is inspired by the approach of [12], [13]. Notice that the initial polynomial moment
problem admits also a more explicit solution involving compositional properties of
f, g in the composition algebra of polynomials (see [15], [14]).

Polynomial zero-dimensional Abelian integrals on CP!, that is, algebraic func-
tions of the form

1(z) = mg(fi (@) + nag(fi () + -+ +nag(fi'(2), mi€Z,

where f and g are polynomials and f;~'(z) are branches of the algebraic function
inverse to f, were introduced recently in the paper [7] in an attempt to verify certain
conjectures concerning the 16th Hilbert problem in dimension zero. In particular, the
problem of identical vanishing of such zero-dimensional integrals for simple cycles
has been studied and solved in [7], [4]. Notice however that in this case the problem
reduces to the finding of conditions implying that for a pair of polynomials f, g the
equality g( fi_l(z)) = g( J}‘l(z)), i # j, holds, and in such a form the problem
was studied and solved earlier (see e.g. [17], [10]). In the general case a solution
of the problem (b) in an implicit form essentially was already done in [15] as an
ingredient of the solution of the polynomial moment problem. However, having in
mind possible applications, we present here a detailed and full exposition which is
self-contained up to a single purely algebraic result of [15]. Notice that the problem
(b) also was studied in the recent paper [1] where however only a partial solution has
been achieved.

The last problem (c) solved in this paper concerns the identical vanishing of
complete hyperelliptic Abelian integrals of the form (2). Although this problem is of
independent interest, we are once again motivated by applications to the 16th Hilbert
problem. Namely, it is well known that if a limit cycle of the perturbed plane foliation

d(y* = f(x) +e(P(x,y)dx + Q(x,y)dy) =0, &~0, (4)
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bifurcates from the periodic orbit y(7y) C I', of the non-perturbed foliation, then
the Abelian integral 7(f) defined by (2) vanishes at #y. This is a corollary of the
representation

Pty =1t + cI(t) + o(e) (5)

of the first return map P, associated to the family of periodic orbits y (). The situation
in which 7(r) = 0 is exceptional, and this phenomenon is related to the singularities
of the algebraic set of plane integrable foliation. On the other hand, the identical
vanishing of /(¢) only shows that the foliation (4) is integrable “at a first order”, and
the study of the higher order terms in the expansion (5) is needed in order to solve
the associated center problem on the plane [5], [8].

The key idea to solve problem (c) is to interpret the derivatives of 7(#) as moments
(1) for a certain choice of R, f and w. Then the identical vanishing of 7(z) turns out
to be equivalent, according to (a), to the identical vanishing of a collection of Abelian
integrals of dimension zero. Furthermore, these Abelian integrals essentially reduce
to the ones studied in (b).

2. Moments on Riemann surfaces and zero-dimensional Abelian integrals

2.1. Moment problem and zero-dimensional Abelian integrals. Let f be a non-
constant meromorphic function on a compact Riemann surface R, @ be a meromor-
phic one-form on R, and y C R be arectifiable curve which avoids the poles of f and
w. Then the moments (1) are well defined. In this subsection we will give necessary
and sufficient conditions for the generating function

J(z)=J(w,f,y,z)=— o /f_; ~ o0, ©)

of the moments 71, to vanish identically or more generally to be rational. Ourapproach
to this problem is inspired by [13], where the genus zero case, R = CP', was studied
in details. We will suppose for simplicity that the set of poles of @ is contained in
the set of poles of f and that y is closed (for the general case see the remarks given
in the end of this subsection).

Consider the induced holomorphic map f: R — CP' and let {1, ca....cx} be
the set of all finite critical values of f. For a regular generic value ¢g € C, consider
the “star” § C C consisting of the segments [co,¢;|, i = 1,2...k. Using the
assumption that § contains all finite critical values of f, one can show that the path
y can be continuously deformed, without changing the corresponding function J(¢),
in such a way that the image f(y) will be contained in § (the explicit construction is
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given below). Therefore, moments (1) may be written in the form

m=£f%=ﬂf%ﬁ=§J:MWWL )

where each ¢; is an appropriate sum of branches of the algebraic function
& -1
ar 7
in some simply-connected domain U containing S \ {c1,c2,... ¢k}
Clearly,

“@i(z)
z—1

k
I() =Y Ji(o), Mmﬁm:[

i=1 co

dz. (8)

Further, the functions J;(¢) and therefore J(r) allow for an analytic continuation on
CP'\ {c1.ca,...c}. On the other hand, by a well-known property of Cauchy type
integrals, the limits of the function J(#) when ¢ approaches to a point ¢ € [co, ¢;]
from the “left” and “right” sides of [cp, ;] are related by the equality

JYO = J7@) = 22v=1¢i(1).

Therefore, if the generating function J(¢) vanishes identically (or just allows for a
single-valued analytical continuation), then the algebraic functions ¢;, 1 < i < k,
defined by (7) vanish identically. Of coarse, the equalities ¢; = 0,1 < i < k, in
their turn imply that J = 0.

The study of conditions implying the vanishing of the algebraic functions ¢; is @
priori a simpler problem than the initial one. Furthermore, the functions g; allow for
the following remarkable interpretation as zero-dimensional Abelian integrals.

Consider the singular fibration f: R — CP! with fibers

fTl@ =110 6@, .. [ @) )
where d is the degree of f. Forz # ¢;, 0o define the (reduced) zero-homology group
Ho(f 712, 2) = {m [T @ +na T @+ +na f ' (2) : Xni =0, n; € 7).
It is a free Z-module generated by
@ = 7@ 1@ = 7@, @) - 1771@)

and its dual space is denoted by H°(f~1(z),C). The map f: R — CP! in-
duces homology and co-homology bundles with the base C \ {cy, . .., ¢x } and fibers
Hy(f~(2),7Z) and H°(f~1(z), C). The continuous families of cycles

FN @) - @) € Ho(F (=), 2)
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generate abasis of locally constant sections of a canonical connection on the homology
bundle (the Gauss—Manin connection). Clearly, a meromorphic function g on R
defines a meromorphic section of the co-homology bundle, and we may define a
zero-dimensional Abelian integral as follows (see [7]).

Definition 2.1. A zero-dimensional Abelian integral is an algebraic function

[5 8= mEUTI ) F gD+ s, a0

where g 1s a meromorphic function on R and

8(z) =ni fi @) +nafy @)+ na fi ) € Ho(f @), 72) ()

is a continuous family of O-cycles.

Clearly, the functions ¢; in (8) may be interpreted as zero-dimensional Abelian

integrals
@=[ = (12)
¢ 5(2) Af
where
d
Si(z) = Y i 7@ (13)
j=1

and n;; are suitable integers (computed below).
Thus, we proved that the following statement is true.

Theorem 2.1. The moments
i =ff‘w, § >0, (14)
¥

vanish if and only if the zero-dimensional Abelian integrals

o)
(p-(z):f —, =1,2,...,k,
I §:(z) df

vanish identically. L

Of course, in order to apply Theorem 2.1 we must define values of the integer
numbers n;; in (13). For this purpose, following [13], consider the preimage of the
star § under f

Ar=fHS)CR

as a graph embedded in the Riemann surface R. This graph, called a constellation,
in a sense is a “combinatorial portrait” of the corresponding covering (see [9] for
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details and different versions of this construction). By construction, the restriction
of f(z) on R\ Ay is a covering of the topological punctured disk C PI\ {5 U oo}
and therefore R \ As is a disjoint union of disks. This implies that the graph A
is connected and the faces of Ay are in a one-to-one correspondence with poles of
f(z). Foreachi, 1 <i <k, we will mark vertices of A, which are preimages of
the point ¢; by the number 7 (see Figure 1). Further, define a star of Ay as a subset
of edges of Ay consisting of edges adjacent to some non-marked vertex. If U is a
simply-connected domain such that § \ {cy,¢2, ..., cx} C U, then the set of stars of
Ap may be naturally identified with the set of single-valued branches of f~1(z) in
[/ as follows: to the branch ff_l(z), 1 < j <d, corresponds the star §; such that

J;._l (z) maps bijectively the interior of § to the interior of §;.

41

P(2) S NG

Figure 1

Since R \ Ay is a disjoint union of disks each of which contains a single pole
of f, we may deform y continuously from the interior of each of these disks to its
boundary avoiding poles of f (see Figure 2). Since by assumption the set of poles of
@ is contained in the set of poles of £, this deformation does not change the function
J(z). Keeping the same notation y for this deformation we see that f(y) C S.
Furthermore, denoting by ¢; ; a unique vertex of the star S; marked by the number
i, it is easy to see that the number #;; in formula (13) is equal to a sum of “signed”
appearances of the vertex ¢;; on y. By definition, this means that an appearance is
taken with the sign plus if the center of §; is followed by ¢;;, and minus if ¢;; 1s
followed by the center of S;. For example, for the graph A, shown in Figure 1 and
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Figure 2

the path y C Ay pictured by the fat line we have

1(z) = f3_1(2) - fz_l(z),
@) = '@~ @+ 5@~ 7,
52)= fi' @)~ 5@+ 7@~ f7(@.
Since y is a closed loop, it follows from the above construction that »; n;; = 0

implying that §; in (13) are contained in ﬁo( f~Y(z), 7). Furthermore, the following
statement is true.

Corollary 2.1. Ifthe curve y is not homological to zero in R with poles of | removed,

then the vanishing of moments (14) implies that there exists a non-zero cycle 5 €
Ho( f~2),Z) such that f, % =0 O

Theorem 2.1 and Corollary 2.1 remain true without the restriction that the set of
poles of @ is contained in the set of poles of f if to change the condition J(¢) = O to
the condition that J(¢) is rational. Indeed, we always may find a polynomial R such
that the set of poles of the form @ = R(f) @ is contained in the set of poles of f.
On the other hand, it follows from the definition of the function J{(¢) that J{(w, f, y, )
and J( fw, f,y.t) are related by the equality

I(fo. foy.) =T £y + [ 0
¥
which implies inductively that the function J(w, f, y, ¢) is rational if and only if the
function J{(@, f,v,t) does.

Further, observe that the above method may be applied also in the situation where
the curve y is not closed and/or is not connected (see [13], Section 3, for the rational
case which extends to the general case in the same way as above). Of coarse, if y is
non-closed, then the condition Zj nj; = Ofor §;(z) in (13) is not necessary (true.



132 L. Gavrilov and F. Pakovich CMH

2.2. Case of generic position. Let f: R — CP! be a holomorphic function on
a compact Riemann surface R, zo be a fixed regular value of f, and A be the set
of critical values of f. Recall that the monodromy group Gy of the function f is
defined as the image of the homomorphism

71(C \ A, zo) — Aut(f " (zo)). (15)

where Aut( f ~1(zp)) is the full permutation group. Further, a holomorphic function
f: R — CP! can be decomposed into a composition f = p o ¢ of holomorphic
functions g: R — C and p: C — CP!, where C is another compact Riemann
surface, if and only if the group G, has an imprimitivity system which consists of
[ = deg p blocks. Notice that the set of blocks of the imprimitivity system corre-
sponding to the decomposition f = p o ¢ has the form B; = ¢~ Y4, 1 <i <1,

where {l1,62..... 4} = p~ Yz}, Finally, notice thatif f = p o g, where §: R — C,

p: C — CP1,isan other decomposition of f, then the corresponding imprimitivity
systems coincide if and only if there exists an isomorphism g : C — C such that

p=pou . g=pnoq.

In this case the decompositions p o g and p o g are called equivalent.

We say that two holomorphic functions f,g: R — CP! on a compact Riemann
surface R have a non-trivial commen compositional right factor if there exists a
Riemann surface R, a holomorphlc function2: R — R of degree greater than one,

and holomorphic functions f,g. R — CP! such that F= f oh,g =gch. The
property of two functions f, g to have a common compositional right factor may be
expressed via the vanishing of some zero-dimensional Abelian integrals.

Proposition 2.1. Two holomorphic functions f, g: R — CP! onacompact Riemann
surface R have a common compositional right factor if and only if there exists a cycle

8(z) € ﬁo(f_l(z), Z) of the form fi_l(z) — fj_l(z), i # j, such that

[ s= (16)
&(z)

In particular, equality (16) holds for all §(z) € ﬁo(f_l(z), Z) if and only if there

exists a rational function g suchthat g = go f.

Proof. ltis easy to see by the analytical continuation that, for a fixed index 7, the set
of indices j # i satisfying the equality

g1 (@) = (@) (17)

form ablock of an imprimitivity system / with respect to the action of G on fibers of
f. Therefore, if (16) holds, then there exists a Riemann surface R and a meromorphic
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function #2: R — R such that f = f o h and fibers of /1 coincide with blocks of 7.
Furthermore, since any branch of ~! may be written as

fj_l — h,J_l 5 f;{_l

for some branches of A~! and f ~1, equalities (17) imply that the function g is constant
on fibers of 4. Therefore, the function § = g o 27! is well defined and satisfies the
equality g = g o h. 0

Notice that in the case where R = CIP! Proposition 2.1 is well known and follows
easily from the Liiroth theorem (see e.g. [17], [10]).

Proposition 2.1 permits to obtain the following very implicit solution of the mo-
ment problem in the case where f isin a generic position.

Theorem 2.2. If the monodromy group Gy of f is the full symmetric group of
d = deg [ elements, then the vanishing of moments (14) implies that either y is
homological to zero in R with poles of | removed, or there exists a rational function
Q such that o = Q(f)df and f(y) is homological to zero in CP with poles of Q

removed.

Proof. 1f y is not homological to zero in R with poles of f removed, then by Corol-

lary 2.1 there exist integer numbers o1, oz, . . . , &z not all equal to zero such that
4 @
Y ()t =0 ()
; f
=1
and Zle o; = 0. The last equality implies that the numbers aq, o5, ..., g are not

all equal between themselves. Let us assume that oty # 5.
Since Gy is a full symmetric group, it contains the transposition o = (12). Acting
by ¢ on equality (18) and subtracting we obtain the equality

@ —an (7)o @ - (7)o @) = 0
implying the equality

(F7)usiten = (7)o en. (19)

Since the full symmetric group of f is primitive, the function f is indecomposable.

Therefore, Proposition 2.1 applied to equality (19) implies that there exists a rational
function @ such that % = Q(f). Hence, moments (14) equal to the moments

0(z)z°dz, s =0,
NASD)

and the statement follows from the classical result of the complex analysis. U
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Notice that Theorem 2.2 remains true if G, 1s only doubly transitive. This is a
corollary of the characterization of doubly transitive groups via the structure of their
irreducible subspaces over C, see [10], [13] where this approach is used for rational

f and g.

3. Vanishing of zero-dimensional polynomial Abelian integrals

In this section we give necessary and sulfficient conditions for zero-dimensional
Abelian integral (10) to vanish identically in the case where R is the Riemann sphere
and the functions involved are polynomials. More precisely, we solve the following
problem:
for a given polynomial P of degree n and a cycle 5(z) € Hy(P~Yz2),7)
describe polynomials Q such that the associated Abelian integral

_ _ Fp
1) = fg 0= ;vlg(ﬂ ) (20)

vanishes identically.

In distinction with the previous section we will not assume that Hy(P~1(2).2) is
reduced. Thus &(z) may be any expression of the form

8(z) = i Pr (@) + v2Py (2) + o v P (),
where v; € Q. It is convenient to identify the cycle §(z) with the vector
8 =(v1.v2,....0)

of Q". Under such an identification the natural action of the monodromy group
Gp of P on Hy(P~1(z),Z) descends to an action on Q" defining a permutation
representation of the group Gp

p: Gp — GL(Q"). @1

The understanding of irreducible components of p plays a crucial role in the
solution of the problem above. Indeed, let Zs be the vector space consisting of
polynomials ¢ such that Abelian integral (20) vanishes identically, and Vj be the
minimal p-invariant vector subspace of Q" containing the vector §. Then it is easy
to see by the analytical continuation that f; (2) Q = 0if and only if fy(z) Q = 0 for

any y(z) € ﬁo(P_l (z), Z) such that y € V3. This implies that in order to describe
Zs it is enough to solve the following three problems:
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(1) First, describe all possible irreducible G p-invariant subspaces of Q7.

(2) Second, provide a method which allows for any given 5e Q" to decompose the
invariant subspace Vs into a direct sum of irreducible Gp-invariant subspaces.

(3) Third, for each irreducible Gzp-invariant subspace U/, describe the vector space
Zy consisting of polynomials (0 such that fS(z) QO =0foraléel.

A solution of problem (1) is given in [15] in a closed form (see Theorem 3.1 of
[15]), while solutions of problems (2) and (3) can be obtained by appropriate modifi-
cations of proofs of Proposition 4.1 and Theorem 1.1 of [15] correspondingly. Below
we recall the classification of irreducible G p-invariant subspaces of ()" obtained in
[15] and provide self-contained solutions of problems (2) and (3) using the approach
of [15].

3.1. Description of irreducible G p -invariant subspaces of Q”. In this subsection
we recall the description of G p-invariant subspaces of Q" obtained in [15]. More
generally, we will describe G-invariant subspaces of (27 for a permutation repre-
sentation of an arbitrary permutation group ¢ C S, containing a cycle of length »
(the monodromy group of a polynomial of degree n always contains such a cycle
which corresponds to a loop around infinity). For more details we refer the reader to
Section 3 of [15].

Without loss of generality we may assume that the cycle of length » contained in
G coincides with the cycle (1 .. .#n). This implies in particular that any imprimitivity
system for G must coincide with residue classes modulo d for some d |n. For each
d |n we denote by Vy the subspace of Q" consisting of “d-periodic” vectors that is
of vectors of the form

(V10 s Vg UL e es Uy ooy ULye e, Ug).

It is easy to see that for given d residue classes modulo ¢ form an imprimitivity
system for G if and only if the subspace V; is G-invariant.

Denote by D(() the set of all divisors of n for which V; is G-invariant. Notice
that D(G) is a lattice with respect to the operations A, Vv, where d A d:= = ged(d, d )
andd v d : = lem(d, d ). Indeed, for an element x € X the intersection of two
blocks containing x and corresponding to d, d € D((G) is a block which corresponds
to d vV d. On the other hand, the intersection of two invariant subspaces V;, V5isan

invariant subspace whichis equal to V, - . We say thatd € D(G) covers de D(G)
ifc:?|d, d < d,and there exists no { € D(G) such thatd <[ < d andc?”, l|d.

Theorem 3.1. ([15]) Each irreducible G-invariant subspace of Q" has the form

Ug = Vg0 (V;1 [ ees th) (22)



136 L. Gavrilov and F. Pakovich CMH

where d € D(G) and dy,...,dy is a complete set of elements of D(G) covered by
d. The subspaces Uy are mutually orthogonal and every G-invariant subspace of
Q" is a direct sum of some Uy as above.

3.2. Decomposition of Vs into a direct sum of irreducible subspaces. Set

o2k (n kY.

» T’n‘,’ T’n‘, P

Wr = (1,¢ gy = 27 1 <k <n. (23)
Clearly, the vectors wy, 1 < k < n, form an orthonormal basis of C" with respect
to the standard Hermitian inner product in C”, and for any divisor d of n the vectors
wy for which (n/d) |k form a basis of the complexification Vf of the subspace
V4. Furthermore, defining Wy, d € D(G), as a subset of {1,2, ..., n} consisting of
numbers 7 such that 72/d is a divisor of r but for any element d € D(G) covered by
d the number n/d is not a divisor of r, we see that the vectors w,, r € W , form a
basis of U[f,:.

Theorem 3.2. The subspace Uy, d € D(G), is a component in the decomposition of
the subspace Vg into a sum of irreducible G-invariant subspaces of Q", if and only

if there exists a number r € Wy such that (g, wy) = 0.

Proof (cf. Proposition 4.1 in [15]). Let Vs = & Udj be a decomposition of Vs into
a sum of irreducible G-invariant subspaces. If Vj is orthogonal to Uy, then Vs is

orthogonal also to U;C implying that (g cw,) = 0 forall r € Uy, since the vectors

w,, r € Wy, form a basis of U;,C. Therefore, if (g, w,) # 0 for some r € ¥y, then
U, coincides with some Udj-

In other direction, if Uy coincides with some Udj , then in view of the minimality
of Vs the projection of § onto Uy is distinct from zero implying that there exists a

number r € ¥4 such that (g, wy) # 0, since w,, r € Wy, form a basis of Ug;:. O

3.3. Description of spaces Zy,. First of all observe thatif P = Ao B is a de-
composition of a polynomial P into a composition of rational functions, then the
corresponding equivalence class of decompositions contains a decomposition where
both functions involved are polynomials, and below we always will consider only such
decompositions. In order to keep the correspondence between imprimitivity systems
of Gp and equivalence classes of decompositions of P we modify the definition of
equivalence correspondingly. Namely, we will call decompositions P = A1 o W
and P = A, o W equivalent if there exists a polynomial v of degree one such that
Ay = Ajov, Wo = vl o Wy, Abusing of notation, usually we will mean by a
decomposition a corresponding equivalence class of decompositions.

Notice that since any imprimitivity system for a group ¢ C S, containing the
cycle (12...n) coincides with residue classes modulo d for some d |n, any two
decompositions P = Py oWjand P = P, o W, of P such that deg Py = deg P, are
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equivalent. Notice also that in the above notation the set D(( p) consists of numbers
d for which there exists a decomposition P = A o W withdeg A = 4.
The structure of Zg;, or, more generally, of any G p-invariant subspace of Q" is

closely related to the compositional properties of polynomials. For example, for any
§(z) € Hy(P~1(z), Q) and polynomial Q of the form Q = R o P we have

/5(2) 0 =R(z)) v, (24)

i=1
implying that f; (z @ vanishes identically whenever é(z) is contained in the reduced

homology group, or equivalently the vector § is contained in VIJ-.

Further, it P = Ao W, deg A = d, is a decomposition of P corresponding to
d € D(Gp), then for any branch P;"1(z) of P~1(z) there exist a branch Wj_1 (z) of
W~1(z) and a branch Agl(z) of A71(z) such that

Pl =W oA (25)

Therefore, for any cycle §(z) € Hy(P~1(z), Q) and polynomial O we have:

fs(z) = Xd: (fsk,w(z) Q) o A%, (26)

k=1
where §; w(z) € ﬁo(W_l(z), @), implying that the integral fs(z) Q vanishes iden-
tically whenever all the integrals fSk il 0.1 < k < d, do. In particular, if

8(z) € Ho(P~1(2), Q) is a cycle such that all cycles Srwiz),l <k <d,areinthe
reduced homology group Ho(W=1(z), Q), then | 5(2) () vanishes identically for any
polynomial Q of the form Q = Bo W.

In the following we always will assume that the numeration of roots Pl._l(z)
of P~1(z) satisfies the requirement that the cycle in Gp corresponding to a loop
around infinity coincides with the cycle (12 ... n). In particular, such a choice of
the numeration yields that without loss of generality we may assume that when k& in
formula (25) remains fixed, the corresponding 7 runs the set of numbers equal to k
by modulo 4, implying that a cycle 8z w(z) € ﬁo(W_l (z),Q) in (26) is reduced if
and only if

(8,€r.q) =0, (27)
where ék,d, 1 <k < d, denotes a vector of Q" with coordinates vy, va, ..., v, such
that v; = 1 if{ = kmod d, and v; = 0 otherwise. Since vectors gk,d, 1l <k <d,

obviously form a basis of ¥V, this implies that all cycles §; w(z), 1 <k < d, are

reduced if and only if § is orthogonal to V.
Returning to the description of the space Zy,, d € D(Gp), observe that it
always contains the space Zy, in view of the inclusion Uy C V. Furthermore, if
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c:lt € D(Gp) is covered by d and P = A o W is a decomposition corresponding to
d, then, since Uy is orthogonal to V35, the cycles & k,W(Z)’ 1 <k < d, are reduced

for any 6 € Uy. Therefore, for any such d, the ring (C[W] of polynomials in W is
contained in the space Zy .

Theorem 3.3. Let d be an element of D(Gp). Furthermore, let dy,...,dy be a
complete set of elements of D(Gp) coveredbyd and P = A; oW, 1 <i < £, be
the corresponding decompositions. Then

Zy, = Zy, + C[W ] + CIW] + --- + C[W]. (28)

Proof (cf. Theorem 1.1 in [15]). In view of the above remarks, the right part of (28)
is contained in Zy,. So, we only must establish the inverse inclusion.

First, observe that the numeration of branches of P~!(z) implies that at points
close enough to infinity the functions Q(Pi_l(z)), 1 < i < n, may be represented
by converging Puiseux series

QP @) = Y spelVkzw, (29)

k=—q

where ¢ = deg Q(z) and &, = exp (2wi/n). Furthermore, substituting (29) to (20)
we see that the integral [ ) Q vanishes identically if and only if for any k > —q the
equality

n
> visgel VK = (8, Wr)se = 0 (30)
=
holds. In particular, if Q(z) € Zy,, d € D(Gp), then the equalities

(3. 005 =0, k> —q. (1)

hold for any v € Uy and therefore they hold also for any ¥ € Uf. Since U;? 18
generated by the set of vectors w,, r € Wy, and this set transforms to itself under
the complex conjugation, this implies that if J(z) € Zy,, then for any r € W, the
equality sy = 0 holds for any & such that & = » mod n. Furthermore, clearly the
inverse is also true. Similarly, it is easy to see that O(z) € Zy, if and only if s = 0
for any & such that (n/d)|k.

Assume now that Q(z) € Zy, and consider series (29). If sz = 0 forany k such
that (n/d )|k, then Q(z) € Zy, and we are done. Thus, suppose that there exists &
such that (n/d)|k but sp # 0. It follows from the definition of U; and the above
characterization of coefficients of (29) for 0(z) € Zy, that in this case necessarily

(n/ d) |k for some d € D(Gp) covered by d, and without loss of generality we may
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assume that d = dy. Set

_k
y@)= ) szn, (32)
k=—q
k=0mod n/dy

where s, k > —gq, are coefficients of series (29). Clearly, we have:

()@ = QT @+ QBT @D+ QPR 1D+ 4 QP 11 D).

(33)

Since indices appearing in the right part of (33) form a block, the function ¥ (z)

is invariant with respect to the subgroup of G p which stabilizes P 1(z). Therefore,

by the main theorem of Galois theory, 1/(z) is contained in the field C (z)(P;1(z2)).

Further, since z = P((P!(z)) the equality C(z)(P; ! (z)) = C(P{'(2)) holds and

hence ¥(z) = R1(P{'(z)) for some rational function Ry. Moreover, Ry is actually

a polynomial since the right part of (33) may have a pole only at infinity. Finally,
since (33) implies by analytical continuation that

Ri(PT' () = Ri(PF () = Ri(Pyh 11 (2) = - = R(P, (),

reasoning now as in Proposition 2.1 we conclude that R is constant on fibers of W
and R; = §1 o W for some polynomial S7 (cf. Lemma 4.3 in [15]).
Define now a polynomial 77(z) by the equality

Ti(z) = Q(z) — Ri(2).

Then by construction the Puiseux series of 71(P;'(z)) contains no non-zero co-
efficients with indices which are multiple of n/d;. If T1(z) is contained in Zy_,
then

Q(z) = Th(z) + S1(W1(2))

and we are done. Otherwise arguing as above we may find polynomials R», S> such
that R, = §> o W, and the Puiseux expansion of 75 (P 1(z)), where

T3(z) = Th(z) — Ra(2),

contains no non-zero coefficients whose indices are multiple of n/dy orn/d,. Itis
clear that continuing this process we eventually will arrive to some T5(z) which is
contained in Zy, and therefore to a representation

Q(z) = Ts(2) + 51(W1(2)) + S2(W2(2)) + -+~ + S1(W(2)). D

In view of Theorem 3.3, in order to complete the description of the space Zy, we
only must describe the space Zy,. Observe first that the vectors e id. 1 = =d,
defined above satisfy the equality

(j.q. Wy) = eXUD@, 4, 0.
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Therefore, in order to check that equality (31) holds for any ¥ € Zy, itis enough to
check that it holds for one single vector €; 4. In other words, the space Zy,, consists
of polynomials (J(z) satisfying the equality

QP (2) + QP (@) + Q(Pog @) + -+ QP (2) = 0. (34)

Furthermore, if P = A o W is a decomposition corresponding to d € D(Gp), then
in view of (25) equality (34) reduces to the equality

QW' @) + QW @) + QW5 (@) + - 4+ QW 4(2) = 0. (35)

The Newton formulae imply that whenever deg Q < deg W the sum in the left
hand side of (35) is a constant. Therefore, setting u; = Wl._1 (o)l = 1.2, ... njd,
for some generic ¢ € C, we see that the intersection Zy, N Ty, where Ty is a vector
space of polynomials of degree less than deg W, has codimension one in Ty and is
described by the relation

Q1) + Qp2) +--- + Q(}Ln/d) = (.

On the other hand, using W-adic decomposition, it is easy to see that that for Q(z) of
arbitrary degree the sum in (35) is a polynomial, and that a polynomial ((z) satisfies
(35) if and only if all coefficients in its W-adic decomposition satisty it.

Finally, notice that Theorem 3.3 provides a description of the space Zy for any
G p-invariant subspace V' of Q" since by Theorem 3.1 any such a subspace has the
form V' = @ Uy, implying that Zy = ﬂZUdj.

3.4. Corollaries. In this subsection we discuss some particular cases of the above
results which may be useful for applications. Below, we always will assume that )
is a non-zero polynomial and § is a non-zero element of Ho(P~1(z), Q).

Proposition 3.1. Let P be an indecomposable polynomial. If an Abelian integral
fg(z) Q vanishes identically, then either Q is a polynomial in P and the cycle §(z) is
reduced, or O € Zy, and there exists a rational number a such that

§(z) = a(P{Y ) + Py + -+ P (=) (36)

Proof. First, observe that Vs does not coincide with whole Q" since otherwise €, ,, €
Vs would imply that O(z) = 0. Therefore, by Theorem 3.1 either Vs = Uj or
Vs = U, = Uf-. Obviously, in the first case O € Zy, and (36) holds, while
in the second case the cycle §(z) is reduced. Furthermore, by Theorem 3.3 in the
second case @ is contained in Zy;, = Zy, + C|P], implying that Q € C[P], since
Zy, = {0} by (35). Alternatively, one can observe that in the second case Vj contains
vectors ¢; —e;, 1 <1i,j = n. Therelore,

Q(PTH2) = QP (@) = -+ = Q(P1(2)) (37)
and hence 0 € C[P] by Proposition 2.1. O
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Notice that the conclusion of Proposition 3.1 holds for any polynomial P(z) in
generic position since decomposable polynomials obviously form a proper algebraic
subset in the set of all polynomials of degree n. Notice also that in order to prove
Proposition 3.1 one can use instead of Theorem 3.1 the classical result, relating the
doubly transitivity of a group with the structure of its permutation representation
over C, combined with the Schur theorem, relating the doubly transitivity and the
primitivity for a group containing a transitive cyclic subgroup (see [10] for such an
approach).

The conclusion similar to the one in Proposition 3.1 is true for arbitrary £ if to
impose some limitations on 4(z).

Proposition 3.2. If an Abelian integral f 5(2) Q vanishes identically and for any

d € D(Gp), d # 1, there exists v € Wy such that (g, wy;) # 0, then Q is a
polynomial in P and the cycle §(z) is reduced.

Proof. Indeed, it follows from Theorem 3.1 and Theorem 3.2 that Vs = U IJ‘ L

A finer version of Proposition 3.2 is the following statement.

Proposition 3.3. If an Abelian integral f 5(2) Q vanishes identically and there exists
r € U, such that (g, wy) # 0, then Q(z) may be represented in the form

0(z) = 51 (W1(2)) + S2(Wa(2)) + -+ + 51(Wi(2)), (38)

where §1,82,...,8; are polynomials and Wi, W, ... W; are compositional right
factors of P(z) corresponding to elements dy, . ..,dy of D(Gp) covered by n.

Proof. 1t follows from Theorem 3.2 that Vj contains U,. Therefore, Zs € Zy, and
the statement follows from Theorem 3.3. ]

Notice that it follows from (32) and the characterization of polynomials () sa-
tisfying [ () () = 0 via their Puiseux expansions (30) that for any polynomial Q; =
Si(W(z)),1 = j <, appearing inrepresentation (38) the integral (z) €, vanishes.
However, unless Vs = U, it is not true that for any polynomial W;, 1 < j < {, the
corresponding cycles

Sew, (2) € HaW ' (2).Q). 1=k =d, (39)
are reduced. Still, the following statement is true.

Proposition 3.4. If an Abelian integral f §(2) () vanishes identically and there exist
di,dy,...dy € D(Gp) such that for any d € D(Gp) the inequality (c_ﬁ:, wy) # 0
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holds for some v € Wy if and only if d is not a divisor of one of the numbers
di,dz, ..., d;, then Q(z) may be represented in the form (38), where Wi, W,, ... W;
are compositional right factors of P(z) corresponding to dy, . .., dy and all cycles
(39) are reduced.

Proof. Since the condition of the theorem implies by Theorem 3.2 that Vj coincides
with the orthogonal complement to the sum of Vg, Vy,. ..., Vg, in Q", the proof is
obtained by an obvious modification of the proof of Theorem 3.3. (]

Remark. The results similar to Propositions 3.3, 3.4 (without a solution of the
general problem) were obtained in the recent paper [1] (Theorem 2.2) where they
also were deduced from Theorem 3.1 by the method of [15]. Notice however that
the corresponding statements in [1] are weaker. For example, the second part of
Theorem 2.2 in [1] which is an analog of our Proposition 3.3 contains an additional
assumption which in our settings means that r € ¥, for which (g ,w,) # 0is coprime
with 7.

3.5. Polynomial moment problem on a system of intervals with weights. Recall
that the polynomial moment problem, recently solved in [15], [14], asks to describe,
for a given polynomial P and a, b € C, all polynomials Q satisfying the system of
equations

b
/ﬁpwg=o,szo. (40)

It is easy to see using a change of variable that if W; is a right compositional
factor of P such that W;(a) = W; (b), then for any polynomial S; (z) the polynomial
Q; = S§;(W;(z)) is a solution of (40), and it is shown in [15] that any solution Q
may be represented in the form (38), where W; are compositional right factors of
P(z) satisfying the condition W; (a) = W; (k). In the above notation the proof given
in [15] may be sketched as follows.

First, by the method of Section 2 itis shown that there exists a collection of cycles
6i(z), 1 <i <k,in flo(P_l (z),Q) such that equalities (40) hold if and only if the
equalities

Q=0 1=i=<k, (41)
8;(2)

hold. Then, it is shown that the minimal G p-invariant subspace containing the cycles
8i(z), 1 <1i < k, contains a vector v such that (v, w,) # 0 for some r € ¥, (this
is done in [12] by means the so-called “monodromy lemma” which uses, in contrast
to Theorem 3.1, topological properties of polynomials). Further, by the method of
Section 3 it is proved that ((z) may be represented in the form (38), where for any
polynomial Q; = §;(W;(z)) integrals (41) vanish implying that moments (40) also
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vanish (although it is not necessary true that W;(a) = W;(b)). Finally, since

b W;(b)
[ PdQ; =[ RidS;, s=0,
a W}'(a)

where R; is a polynomial such that deg R; < deg P, representation (38) with
W;{(a) = W;(b) is obtained by the recursive use of the above construction for indices
j with Wy (@) # Wy (D).

It is not hard to see that the results of the current section may be interpreted as a
solution of the polynomial moment problem “on a system of intervals with weights”.
More precisely, for any collection consisting of a polynomial P, complex numbers
aj,b;, 1 < i < [, and rational numbers ¢;, 1 < i < [, using approach of Section
1 (see also [15], [13] where more attention to non-closed curves is given) one can
construct a finite collection of cycles §;(z), 1 <i <k, in flo(Pi_l (z), Q) such that
the equalities

b1 bz bi
clf PSdQ+c2f PSdQ+---+c,f PSdQ =0, s=0, (42

1 az

hold if and only if equalities (41) hold. Since the results of this section provide a
description of  satisfying (41), they provide also a description of solutions of (42).

As a simple illustration take P equal to T, where 7;, denotes nth Chebyshev
polynomial, T;(cos¢) = cos (ng). Notice that it follows from the definition that
for ant d |n the equality 7, = T4 o T),;4 holds. In particular, D(G7,,) consists of all
divisors of . Furthermore, it is easy to see that 7, has only two finite critical values
and that the corresponding constellation is a “chain” (see e.g. [11]). For n = 6 the
corresponding constellation is shown in Figure 3, where the “middle” vertices of stars
are omitted and the numeration of stars is chosen in such a way that a permutation at

1 6 2 5 3 4

O—8—0O & O—@—0

-1 —/3/2 -1/2 0 1/2 +/3/2 1
Figure 3

infinity coincides with the cycle (123456).
Applying the above results, it is easy to see that if we are searching for solutions
of the moment problem

V3/2
TSd0 =0, s3>0, (43)
[_ L, Ted0
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on a single segment [—+/3/2, +/3/2], then we arrive to the vanishing problem for the
Abelian integral

I(z) = Q(T54(2) — Q(Tg,(2) + Q(Tg5(2) — Q(Tg 5 (2)).

where by T6T l.l (z), 1 =i = 6, are denoted the branches of 7, 1(z2) (formally, we
should obtain a cycle for each critical value, however, since we have only two critical
values, the corresponding cycles are proportional). Clearly, the corresponding vector
(0,—1,-1,0,1,1) € Q% is orthogonal to both V; and V5 implying that Vg = Us.
Therefore, by Theorem 3.3 any solution of (43) has the form

0(z) = A(T3(2)) + B(T2(2)),

where A, B € C[z].
On the other hand, the “generalized” moment problem

-1/2 1/2 1
[ ngQ—f ngQ—l—f TedQ =0, =0, (44)
-1 —-1/2 1/2

leads to the vanishing problem for the Abelian integral

1(z) = Q(T51(2)) — O(Tg,(2)) + O(T54(2))
— QT4 (2) + O(T55(2)) — O(T44(2)).

Since the corresponding vector g = (1,-1,1,—1,1,—1) is contained in U, the
subspace V; coincides with {/;, and Theorem 3.3 implies that any solution of (44)
has the form

Q(z) = AUTs(2)) + B(2),
where A is an arbitrary polynomial and B is a polynomial such that

B(T51(2)) + B(T5;(2)) + B(T; 3(z)) = 0.

4. Vanishing of hyperelliptic Abelian integrals

Let f € C[x] be a polynomial and T'; = {(x,y) € C? : y2 — f(x) = ¢} a family of
hyperelliptic curves. Consider the Abelian integral

H0=[ o (45)
r{?)

where w = P(x, y)dx+ Q(x, y)dy isapolynomial one form, and y(t) € H([';, Z)
is a continuous family of 1-cycles.
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The purpose of this section is to determine necessary and sufficient conditions for
the Abelian integral 7 to be single valued, polynomial, or rational function. These
three conditions are in fact equivalent. Indeed, 7(¢) is a function of moderate growth,
with a bounded modulus in any sector, centered at a singularity. Thus /() is single-
valued if and only if it is a rational, in fact polynomial function.

4.1. Reduction to the moment problem. The derivatives of / can be seen as mo-
ments on a Riemann surface and this permits to apply the results of the preceding
section. Indeed, every polynomial one-form @ can be written as

w = k(x)ydx +dA + Bd(y?> — f(x)), A,BeClx,y], k € C[x].

Therefore,

1(;)=f k(x)ydx, 1’@):1[ 262K (46)
y () 20w Y

and more generally

1640y = (172)(-1/2)(=3/2) .. (~k + 1/2) [ 2&?1 dx, k>0, @7)
Thus,
TED0) = mp = (1/2)(=1/2)(=3/2) .. . (=k + 1/2)/ PARRPS
r(0)
where

|

f =

implying that the Abelian integral /(¢) vanishes identically if and only if the moments
f v (0) gk @, k = 0, vanish. Furthermore, if we replace w by gk @, then, for k suffi-

w=k(x)ydx, g=

ciently big, the set of poles of g¥a will be a subset of the set of poles of g and the
results of Section 1 apply.
The zero-dimensional integrals described in Theorem 2.1 take the form

@ k(x) —@k-1)/2 4
pi(z) = f = =z —_ K(x)
&; frdf 8i(2) FEE=02 Fu( dz J5.(z)

where K(x) = [ k(x)dx is a primitive of k, and the zero-cycles §; are constructed
from the constellation Ay = f ~1(S) as explained in Section 2. The above gives nec-
essary and sufficient conditions for the moments m;, i > k to vanish or, equivalently,
for I(¢) to be a polynomial. Thus, we have proved
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Theorem 4.1. The Abelian integral (45) is a rational function if and only if the
zero-dimensional integrals

are identically constant.

Remark. Consider the polynomial f(x) = (x2/2 — 1)? as in Figure 8 bellow and
the family of 1-cycles y(#), represented on the x-plane by a big loop surrounding
the four roots of f(x) + £, on the family of elliptic curves I',. Further, consider
the complete elliptic integral /(t) = /. v X ydx. A simple computation shows that
the associated zero-dimensional Abelian integral is | 5(2) x2, where §(z) = x1(2) +
X2(z) + x3(2) + x4(2), f(x;(z)) = z. On the other hand

d
I'(t) = / xz—x
y@) <V

is a complete elliptic integral of third kind, and y(¢) is homologous to a small loop
around one of the two "infinite” point of the affine curve I';. The conclusion is that
1’(¢) is a residue, in fact a non zero constant. The Abelian integral /(#) is therefore
linear in ¢. This example shows that the claim of Theorem 4.1 can not be improved.

Note that the zero-cycles §;(z) are by no means unique, they depend on the mutual
position of the segments [co, ¢;]. If all the zero-cycles §; (z) are in the orbit of a given
cycle §;,, obtained after a continuation with respect to z, then the vanishing of ¢;,
implies the vanishing of all the @;, and hence of all the moments. Finally, the orbit
of a given §;, may contain other cycles, more suitable for our purposes. In the next
subsection we propose an alternative construction of such a cycle, by using a residue
calculus. As we shall see, this will be more natural for the applications.

4.2. The Cauchy integral related to 7. In this section we give an alternative com-
putation of a convenient necessary condition for the identical vanishing of the Abelian
integral /(¢), defined in (45), (46). Our result will hold under the additional assump-
tion that there is a path along which the cycle y (/) vanishes. More precisely, let
v(f) C T’y be a continuous family of closed continuous curves defined in a neighbor-
hood of some regular value 7y of f. Consider a path

[0,1] = C: 5= 1(5) (48)

such that s(0) = fy, s(1) = f1, £(s) is a regular value of f for0 < s < 1, and
f1 is a singular value of f. We shall say that the continuous family of closed loops
y(t) vanishes along the path (48) if it can be extended to a continuous family of
loops along this path such that y(#y) is homologous to zero on the singular affine
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curve I'; . This implies in particular that [(¢f;) = O as well as that the corresponding
zero-dimensional Abelian integral vanishes at #;.

Without loss of generality we suppose that y restricted to y(#y) does not vanish.
Then, for all (¢, z) such that |z| and |# — tp| are sufficiently small, the Cauchy type
integral

1,(2) :f kix)y dx, z~0 (49)
oy Yo — 2

is well defined and analytic in ¢, z. The definition of J;(z) is illustrated in Figure 4,
where a closed loop y(f) projected on the x-plane is shown, which makes one turn
around two roots of the polynomial f(x) + ¢. The roots of f(x) + ¢ are represented

ﬂ__,_‘_.,——P-—-“ﬁW‘—'———-—-._._‘M
— T

7 e

Vi e
/ \
( )
A . . )

\“““ " M,,,/”/}

*—..,,‘_‘___Mmm e
y(t)

Figure 4. The definition of the Cauchy type integral J;(z).

by small black bullet circles, while the roots of f(x) 4 ¢ — z by small empty circles.
Note that in Section 2 we supposed that z ~ oo, while in this section that z ~ 0, and
this is essential for what follows.

Since I'(t) = %J (0), J;(2) is a deformation of the Abelian integral 7'(¢). At the
same time, for a fixed ¢, J;(z) is a generating function of the moments / k (1), k = 1,
in the sense of Section 2 and

Ji(z) = J(2),

where the Riemann surface R = I'; depends on the parameter /. For (x, y) € y(¢)
and |z| sufficiently small the series

Z 2
k=0 Y
converges uniformly and hence

[ kG
1(z) = fm Rt

k k k
:f ﬁdx—|—z/ @dx—l—zzf (;C dx + -+ .
yi)y ¥ vo Y vo Y
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Taking into consideration (47) we conclude

Proposition 4.1. For every regular value t of | the equalities

dc
V=T (0) = 2I%TV@), k=0,1,2...
( k )dzk I( ) ()’ )
hold.
The above proposition implies the following corollary.

Corollary 4.1. The Abelian integral 1'(t) vanishes identically, if and only if the
Cauchy type integral J,(z) vanishes identically.

The main advantage of using J,(z) instead of 7'(¢) is the possibility to extend it
analytically with respect to z. The result is a function algebraic in z.

Proposition 4.2 ([ 16]). For every fixed regular value t the Cauchy type integral J;(z)
extends to an algebraic function in z with singularities at z = O and at the critical

values of f.

Indeed, for a fixed regular 7, J;(z) allows for an analytic continuation along
any path which does not contain critical values of f/ — 7 orthe value z = 0. Ina
neighborhood of a critical value of f — ¢ or at z = 0, the Cauchy theorem implies
that, up to an addition of a holomorphic function, J,(z) is a linear combination of
residues of ]jg—jﬁdx at the roots f,~!'(z—1) of f(x)+t—z. Thus, J;(z) is a function
of moderate growth in z with a finite number of branches, and hence is algebraic
in z. O

Our next goal is to extend analytically J;(z) in a neighborhood of (#1,0) under
the condition that 7y is a critical value of f. To simplify the notation put £; = 0,
f(0) = 0. Consider the domain

Ds ={(t,2): |t| <8,)z| <8, t £z, t #£0, z £ 0}

and assume that § > 0 is so small that 7 = 0 is the only critical value of f in the disc
{t 2 |f] < 28}. Take some (£,0) € Dg and consider the germ of the analytic function
J = J:(z) in a neighborhood of this point.

Proposition 4.3. The germ of J = J,(z) at (t,0) € Dy allows for an analytic
continuation along any path starting at (t,0) and contained in Dj.

Indeed, the affine curve I'; is regular, provided that 1 # 0, and the differential
I;(Zx—_);dx has simple poles if and only if z # ¢,z # 0. Therefore the closed curve

y(t) can be deformed in a way to avoid these simple poles. U
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Although the function J,(z) might be not analytic in ¢ near the line # = 0, it has
a finite limit there which we compute next. For this purpose, let/ be a closed smooth
path connecting the point (£,0) to (0,z), £,z # 0, and contained in Dy (except the
ends), see Figure 5. Suppose that the homology class of the limiting loop y(0) C Iy
is zero and hence is a linear combination of vanishing cycles.

(0.2)

(7, 0)

Figure 5. The domain Dyg.

Theorem 4.2. If y(0) C Ty is homologous to zero, then the limiting value of J;(z)
at (0, z) along | is a zero-dimensional Abelian integral

d
Jo(z) = 2n/—2— K(x)
dz §(z)
where K(x) is a primitive of k(x), 6(z) = >, n; f_l(z) f_l (z) are the roots of
the polynomial f(x) — z, and the numbers R depend only on the homology class
represented by the loop v(0) in H, (FO,Z) Iy = {(x,y):y2 = f(x). f(x) £z}

Corollary 4.2. If I(1) = fy(l)a) = O then fa(z) K=0

Corollary 4.3. According to Proposition 4.1, if I'(t) = 0 for some regular t, then
the multiplicity of this zero is the same as the multiplicity of J;(z) with respect to z
at z = 0. In the particular case where t = 0 is a Morse critical point, the Abelian
integral 1" is analytic at t = 0, and the multiplicity of the zero of 1" at t = Ois just the
multiplicity of the zero of the analytic function Jo(z) at z = 0. Thus, the multiplicity
of the one-dimensional Abelian integral at a Morse critical point equals essentially
the corresponding multiplicity of the one-dimensional Abelian integral.
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Proof of Theorem 4.2. We can deform the loop y(¢) along the interior of the path /
in a way to avoid the poles of i;(zx—_)gdx. Taking the limit + — O along / we obtain

that v(0) is homologous to a sum of closed loops around the poles of kizx—)ldx, as it
y<—z
is shown in Figure 6.

»
Figure 6. Computing the limit of y(¢) at a singular value.
Therefore,
k(x)y
Jo(z) =2~/ —1 niRes —1,,,———dx
,Z @ fx) —z
k(1
=2m+/—z Z :I:n,-M
— @)
k(x)
= 231\/—2/
s J'(x)
d
= 2w —z— K(x). U
dz 8(z)

Computation of the reduced 0-cycle §(z). For simplicity, suppose that y(¢)
vanishes as / tends to ( at the origin (0,0). Thus y(z) is a linear combination of
cycles vanishing at (0,0). The standard basis of such cycles can be described as
follows. Let fl._l (¢),i =1,2,...,n, bethe roots of the polynomial f{(x) 4+ ¢ which
tend to O as ¢ tends to 0, ordered cyclically with respect to the monodromy action.
We denote by y;; () C I'y a simple closed loop which is projected to the segment
/7). JG_I(I)]. The loops y;;+1(1),i = 1,2,...,n — 1, form a basis of the local
homology group of the Milnor fiber of 2 — f(x). We fix the orientations of these
cycles by the convention

Vii+1 - Yi+lit2(t) = 1.

It is easy to check that then

Viit1() + Vigri+2() = Viig2(0),
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where the orientation of y; ;4,(¢) is appropriately chosen. Therefore the orientations
of the remaining cycles can be chosen to satisfy

vij oVik = +L.yij + vk = vir foralli < j < k. (50)
As a by product we have also
Y2+ ves+-t a1 =0

Obviously this fixes the orientation of all cycles y;; up to simultaneous multiplication
by —1, which have no incidence on the result claimed in Corollary 4.2. The standard
basis of vanishing cycles of the singularity y2 + x° is shown in Figure 7. We shall

Va5

V34

Y51

Y23

Figure 7. The standard basis of vanishing cycles of the singularity y2 + x°.

construct an isomorphism

H(T:. 2) — Ho(f~1(2). 2),
y(t) = 8(2),

having the property announced in Corollary 4.2. According to the proof of The-
orem 4.2 this should be a linear map which associates to the one-cycle y;; (1) the
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reduced 0-cycle (see also Section 2) §;; (1) = £(f;71(t) — fj_l(l)) and should be
therefore compatible to the relations

Yii + Vix = Vik, Oij + 8k = dig.
It follows that the orientation of the O-cycles §;; (f) can be fixed as

§i;(t) = £ — £ foralli <

Note that the above isomorphism 1s not compatible to the monodromy action.
In conclusion, if

y(e) =) mijyij(t)

and I(t) = [ @ = Othen fS(z)K = 0 where

r{t)
8(z) =D ny (f7N@D) — £ @)

4.3. Hyperelliptic Abelian integrals along ovals. Let f(x) € R[x] be an arbitrary
non-linear real polynomial. Consider a family of ovals {y(£)};

y() C{x.y) eR?:y? = flx) =1}, teR,

depending continuously on the real parameter 7. Fach oval y () can be parameterized
as
y==xVfx)+1, xa(f) =x = x(),

where xq () < x,(¢) are two real roots of f(x) 4 7. The purpose of this last section
is to solve, by making use of Theorem 4.1 and Theorem 4.2, the following problem:
under what conditions the Abelian integral (46),

x2(1)

I(t):f()k(x)ydx:Zf o k{x)ydx,
Yt x1 ¢

is identically zero?

Theorem 4.3. The integral () vanishes identically if and only if there exists a
polynomial v € R[x], such that both f and K = [k are polynomials in r, and

r(x1(1)) = r(x2(2)).

Proof. First of all, note that if K and f have a right compositional factor identifying
x1(t) and x»(¢), then the Abelian integral /. vle) k(x)ydx is a pull back of an integral
along a cycle homologous to zero, and hence vanishes identically.

Suppose further that /(¢) vanishes identically. It is enough to show that this
implies K(x1(7)) = K(x,(¢)) since in this case by Proposition 2.1 (or by the Liiroth
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theorem) f and K will have a right compositional factor identifying x; (¢) and x,(¢).
If there exists a path on the complex 7-plane along which the cycle y(¢) vanishes,
then Theorem 4.2 applies and we conclude that K(x(¢)) = K(x,(f)).

As an example, consider a real polynomial f of degree n > 2k, f = —x2* 4....
Let x{(f) < x,(¢) be the two real roots of f(x) + ¢ which tend to O as ¢ tends to zero
and {y()} be the continuous family of ovals vanishing at the origin as ¢ tends to zero.

y(t) C {{x,y) ERZ:yZ-l—ka-I—---:t}

Then Theorem 4.2 applies and hence the result of Theorem 4.3 follows. In the Morse
case (k = 1), this has been proved by Christopher and Mardesic [4].

The condition that y(¢) vanishes along a suitable path is essential, and holds for
arbitrary real polynomials of degree four or five, see for instance [6], Section 3.1,
where the case f(x) = (x?2—1)? is studied. We do not know whether this condition is
tulfilled for arbitrary polynomial f and family of ovals y (7). See Figure 8 (continuous
families of ovals). However, using Theorem 4.1 instead of Theorem 4.2 we can prove
the theorem in its full generality.

- A

2

Figure 8. The continuous families of ovals of y2 + (x2/2—1)? and the graph of (x2/2—1)>—1.

Indeed, let f be an arbitrary real polynomial of degree n > 1 and I(#) be an
identically vanishing Abelian integral as before. Let us apply Theorem 4.1. For this
purpose, let us fix aregular real value ¢ of f, and consider the moment problem asso-
ciated to the oval y(¢) on the Riemann surface I';. Following the method described
in Section 2 we have to consider a constellation Ay C P! and to deform the image
of y(¢) under f + ¢ on Ay. The closed loop y(7) being an oval, its image is just a
real interval connecting 0 to a critical value ¢ of f + 7. Suppose for instance that
0 > ¢y > ¢z > -+ > ¢ are the remaining critical values of f + ¢ contained in
lcx, 0]. We have therefore

lex. 0] = [ek, cx—1] U -+ U [eq, O]

which, without loss of generality, will be used on the place of the constellation A #. To
each segment [¢;_1, ¢;] we associate a O-cycle §; and /(¢) is a rational function if and
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only if |, 5: () K = 0. Fortunately in general we do not need to compute all of §;. We
note that the image of [x1(f), x2(#)] is aclosed curve covering |[cg, 0]. The pre-image
of each point z € (0, ¢y) consists of two points x;(z) and x,(z) (roots of f(x)+1—2z)
and hence §1(z) = x1(2) — x2(z). We conclude that K(x1(¢)) = K(x(t)) which
completes the proof of Theorem 4.3. (]

Example. The critical values of the polynomial (x2/2 — 1)? — 1 are —1 and —3/4.
The relevant constellation associated to the exterior family of ovals shown in Figure 8
is[-1, —=3/4]U[-3/4,0]. To the segment [-3/4, 0] we associate the O-cycle 61(z) =
x1(z) — x2(z) and to the segment [—1, —3/4] the O-cycle §2(z) = x1(z) — x3(z) +
x4(2) — x2(2).
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