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The action homomorphism, quasimorphisms and moment maps
on the space of compatible almost complex structures

Egor Shelukhin

Abstract. We extend the definition of Weinstein’s action homomorphism to Hamiltonian ac-
tions with equivariant moment maps of (possibly infinite-dimensional) Lie groups on symplec-
tic manifolds, and show that under conditions including a uniform bound on the symplectic
areas of geodesic triangles the resulting homomorphism extends to a quasimorphism on the
universal cover of the group. We apply these principles to finite-dimensional Hermitian Lie
groups like the linear symplectic group, reinterpreting the Guichardet—Wigner quasimorphisms,
and to the infinite-dimensional groups of Hamiltonian diffeomorphisms of closed symplectic
manifolds that act on the space of compatible almost complex structures with an equivariant
moment map given by the theory of Donaldson and Fujiki. We show that the quasimorphism
on the universal cover of the Hamiltonian group obtained in the second case is symplectically
conjugation-invariant and compute its restrictions to the fundamental group via a homomor-
phism introduced by Lalonde-McDuff—Polterovich, answering a question of Polterovich; to the
subgroup of Hamiltonian biholomorphisms via the Futaki invariant; and to subgroups of diffeo-
morphisms supported in an embedded ball via the Barge—Ghys average Maslov quasimorphism,
the Calabi homomorphism and the average Hermitian scalar curvature. We show that when the
first Chern class vanishes this quasimorphism is proportional to a quasimorphism of Entov and
when the symplectic manifold is monotone, it is proportional to a quasimorphism due to Py. As
an application we show that a Sobolev distance on the universal cover of the Hamiltonian group
is unbounded, similarly to the results of Eliashberg—Ratiu.
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1. Introduction and main results

1.1. Introduction. In [6] Barge and Ghys have introduced a quasimorphism on the
fundamental groups I' of surfaces of genus g = 2 (cf. [75]). Their construction uses
in a fundamental way the discrete action of I" by isometries on the hyperbolic upper
half-plane H. Indeed, choosing a I'-invariant one-form « on H whose differential is
bounded in the way |da| < Cy|om| for a constant C, with respect to the hyperbolic
Kihler form o on T, the quasimorphism is given by integrating « over the geodesic
[{x,y - x) between a fixed base-point x and its image y - x under the action of an
element y € I'. Using these quasimorphisms Barge and Ghys have obtained results
on the second bounded cohomology H ;(F) of such groups I'. Further results on the
second bounded cohomology of discrete groups following from their actions upon
certain spaces with “negative enough” curvature — e.g. Gromov-hyperbolic groups —
were studied extensively in [40], [45], [56], [57], [70] to name a few works in such
a direction. The second bounded cohomology of finite-dimensional Lie groups was
also studied extensively. For example, in the works [55], [34] and others, the action
of simple Hermitian symmetric Lie groups G upon their symmetric space X = G/K
of non-compact type was utilized to construct bounded 2-cocycles on &. The basic
construction of such cocycles similarly uses the integration of the natural Kihler form
oy on X on simplices with geodesic boundaries.

We shall first formulate a general setting in terms of the action of a group § ona
space X for constructions related to integration on geodesic simplices to yield bounded
2-cocycles. Then we formulate a general principle, again in terms of such actions, for
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the construction of primitives to such cocycles in the (unbounded) group cohomology,
to wit — quasimorphisms — functions that satisfy the homomorphism property up to
a uniformly bounded error. For one, our construction gives a symplectic formula
for the quasimorphisms on the universal covers G of simple Hermitian symmeitric
Lie groups whose differentials equal the Guichardet—Wigner cocycles (cf. [55], [34],
[25], [85], [17]). A key notion in our construction is the use of equivariant moment
maps for the Hamiltonian action of a group ' on a space X with a symplectic form
2. Another key notion is that of the action homomorphism of A. Weinstein [92] that
generalizes to general Hamiltonian actions with equivariant moment maps. As our
construction is rather formal, or “soft” in the terminology of Gromov [54] in that it
does not require the solution of partial differential equations or the convergence of
certain series, it readily applies to the infinite-dimensional case.

Indeed there have been many constructions of equivariant moment maps for ac-
tions of infinite-dimensional Lie groups on infinite-dimensional symplectic spaces
(X, 2). Starting with the work of Atiyah and Bott [4], [3] — for the action of gauge
groups of principal bundles over Riemann surfaces on the corresponding spaces of
connections, with numerous later developments including an extension to higher di-
mensions — a general framework for the Hitchin—Kobayashi correspondence [28],
[88], [29], the works of Donaldson [32], [31], [30] and Fujiki [44] for actions of
diffeomorphism groups upon spaces of mappings (submanifolds or sections of bun-
dles), and more recent advances e.g. [47], [41] this has been an active and fruitful
area of research for over three decades, with many applications — for example to
Kihler geometry. Of these the Donaldson—Fujiki [30], [44] framework of the scalar
curvature as a moment map for the action of the Hamiltonian group on the space of
compatible almost complex structures fits the setting of our construction. We shall,
therefore, apply this framework to build new quasimorphisms on the Hamiltonian
group, or its universal cover, of an arbitrary symplectic manifold of finite volume
(and of an arbitrary closed symplectic manifold in particular). Similarly to the finite-
dimensional case, our quasimorphism provides a group-cohomological primitive for
the restriction to the Hamiltonian group of a certain 2-cocycle that was constructed
using the natural notion of geodesic simplices in spaces of almost complex struc-
tures by Reznikov [81], [80], [82] in his studies of the cohomology of the group of
symplectomorphisms.

The intriguing topic of the study of quasimorphisms on groups of (Hamiltonian)
symplectomorphisms has a long history. A very early work of Eugenio Calabi [20]
constructs a homomorphism on the group of compactly supported symplectomor-
phisms of the symplectic ball of arbitrary dimension 2n#. An early example of a
quasimorphism on a symplectomorphism group that is not a homomorphism was
constructed by Ruelle [83] on the group of compactly supported volume preserv-
ing diffeomorphisms of the two-dimensional disk, as a certain average asymptotic
rotation number. This result was generalized using the Maslov quasimorphism on
the universal cover §I)(2n ,R) of the linear symplectic group by Barge and Ghys [7]
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to the group of compactly supported symplectomorphisms of the symplectic ball of
arbitrary dimension 27. A quasimorphism on the universal cover %(M ,w) of
closed symplectic manifolds (M, @) with ¢1(TM, w) = O was rather recently con-
structed by Entov [36], generalizing the previous quasimorphism in the sense that
it equals the Barge—Ghys average Maslov quasimorphism when restricted to each
subgroup of diffeomorphisms supported in an embedded ball — we shall say that it
has the Maslov local type. In a recent work of Py [78], [79] a quasimorphism on
I-’I-;m(M, w) for closed symplectic manifolds (M, @) with ¢ (TM,®) = x|w] for
x # 0 was constructed as a rotation number using the notion of a prequantization of
an integral symplectic manifold. The local type of the Py quasimorphism is Calabi—
Maslov — it equals a certain linear combination of the Calabi homomorphism and the
Barge—Ghys average Maslov quasimorphism when evaluated on diffeomorphisms
supported in a given embedded ball. A compelling discovery of quasimorphisms of
Calabi local type was made by Entov and Polterovich in [37] — one distinctive feature
of which is that the embedded balls should be small enough — using “hard” methods
of Hamiltonian Floer homology and the algebraic properties of quantum homology.
These methods were since generalized and extended to a large class of manifolds
[72], [38], [73], [91], [89], a very recent result due to Usher [90] showing e.g. the
existence of Calabi quasimorphisms on Ham of every one-point blowup of a closed
symplectic manifold. The sequent question of constructing a “soft” quasimorphism
of Calabi local type on the Hamiltonian group of a closed symplectic manifold was
recently solved for the two-torus and for surfaces of genus g > 2 by Py [78]. The
first case builds upon the works of Ghys and Gambaudo [48], [49] in dimension
2 that describe the Calabi homomorphism and a large number of quasimorphisms,
using such methods as the action of diffeomorphism groups upon the configuration
spaces of distinct points in a surface (these works have been since developed in many
other papers — cf. [14]). The second case uses prequantizations and the notion of
the bounded Euler class (which is again related to the boundedness of the symplec-
tic area of geodesic triangles), and can be extended to compact quotients of simple
Hermitian symmetric spaces X of non-compact type by discrete groups of isometries
[79]. Another quasimorphism on Ham(M, w) for (M, w) the complex projective
space (C P", wgg) with the natural Fubini-Study Kéhler form can be derived from
the work of Givental [52] that uses methods of generating functions, which also has
the Calabi property by the work of Ben Simon [9] and can easily be shown to de-
scend to Ham(M, w) itself by results from [84]. In fact necessary and sufficient
conditions for the above quasimorphisms on a group § to descend to § are given by
the vanishing of certain homomorphisms 71 (%¥) — R. This happens automatically
for surfaces where the fundamental group of § = Ham(M, w) is finite, which is
also known to be the case for certain four-dimensional symplectic manifolds — e.g.
(CP?, wps), (CPIxCPL, wps ® wrg) [53] (cf. [67]). Remarkably, for all monotone
examples — (M, @) such that ¢1(TM, w) = «|w] for £ # 0 — the homomorphism is
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the same one [39] — the action-Maslov homomorphism of Polterovich [76] (ct. [84]).

The quasimorphism we construct has Calabi—-Maslov local type — it restricts to
the difference of suitable multiples of the Calabi homomorphism [20], [66] and of
the Barge—Ghys average Maslov quasimorphism on the subgroup of Hamiltonian
diffeomorphisms supported in a small ball. Its restriction to the fundamental group
of '§ is equal by construction to the generalized action homomorphism, involving in
this case the Hermitian scalar curvature, and is also computed via a homomorphism
earlier introduced in [63] using a Hamiltonian fiber bundle obtained by the clutching
construction. A previous work that applies the theory of the Hermitian scalar curvature
as a moment map to the study of the topology of the Hamiltonian group is [1], [2].

Furthermore, our quasimorphism agrees with the quasimorphisms of Py and Entov
whenever these quasimorphisms are defined. While, having a Maslov component in
the local type, our quasimorphism can at best be continuous in the C!-topology,
it is rather easily seen to be coarse-Lipschitz in the Sobolev 1.3-metric, using the
isoperimetric property of Kédhler manifolds with a bounded primitive of the Kahler
form. This allows us to prove that the Sobolev L3-metric is unbounded on § of every
symplectic manifold of finite volume, extending a consequence from previous works
of Eliashberg—Ratiu [35] on the ZZ-metric in the case when the symplectic manifold
is exact. Moreover, we show that on manifolds like the blowup Bl; (C P2), where the
restriction of the quasimorphism to 71§ does not vanish, the metric is not bounded
on m1% either. We conclude with some questions and discussion related to the topics
presented in the paper.

As an aside, it is curious to note that this paper touches upon two directions that
both have their origins with Eugenio Calabi — the study of canonical metrics on Kdhler
manifolds (e.g. [19], [22], [21]) and the theory of the Calabi homomorphism ([20]).

1.2. Moment maps. Assume thata Lie group§ acts § x X — X, (g. X)) — g - X,
on a symplectic manifold (X, ) in a Hamiltonian fashion. Here both the group
and the manifold can be infinite-dimensional. The action gives a homomorphism
Y — DIiff(¥), ¢ — ¢, with the property that to each element X € Lie(¥) there
corresponds an element p(X) € C*(X,R), such that

(1) the equation tg Q2 = —dp(X) holds for E € V.F.(X) — the vector field on X
corresponding to X

(2) the resulting map Lie(¥) — C*(X,R) is a homomorphism of Lie algebras
(the Lie structure on the latter is given by the Poisson bracket of the symplectic
form £2).

The second condition is equivalent to the linearity and equivariance of the map
X p(X)—forall X € Lie(¥) and ¢ € § we have

H(AdgX) = p(X)op .



74 E. Shelukhin CMH

In one direction one differentiates this equality and the other can be found in [66],
Lemma 5.16.

Note that the map X — p(X) gives us a pairing p: Lie(9) x £ — R that is
linear in the first variable, and therefore a map x +— p(—)(x): ¥ — (Lie(§))*. The
equivariance condition corresponds to the invariance of the pairing with respect to
the diagonal action of § —for all X € Lie(%), x € ¥ and ¢ € § we have

p(Adg X) (¢ - x) = p(X)(x).

We call p in any one of these three equivalent formulations a moment map for the
Hamiltonian action of § on X.

Remark 1.2.1. For infinite-dimensional Lie groups we use the approach of regular
Fréchet Lie groups (cf. [68] and references therein), while one could also use the
inverse limit (ILH or ILB) approach of Omori [71]. In any case, as we are interested
only in the soft features of the theory of Lie groups and our infinite-dimensional
example is a diffeomorphism group where all computations can be carried out as ex-
plicit differential-geometric formulae, the foundational theory of infinite-dimensional
Lie groups can for the most part be ignored. The same remark applies to infinite-
dimensional symplectic manifolds.

1.3. The action homomorphism. Assume that 7{(X) = 0. Denote by o C R
the spherical period group (€2, m2(X)) of Q. Following Weinstein [92], we define
the action homomorphism 7 (§) — R/ Pq as follows.

Suppose a class ¢ € 7;(§) is represented by a path {¢,} based at the identity
element Id. Pick a point x € X. Consider its trace ¢x = {¢, - x}1_, under the action
of the loop. Pick a disk D that spans ¢, thatis, D: D — ¥ is a smooth map from
D = {|z| < 1} C C to ¥ that satisfies D(e?™') = ¢, - x forall t € S' = R/Z.
Then the action homomorphism is defined as

1
At = [ 2= [ uxo@- v

It is independent of x € X by the first property of x and of {¢,} in the homotopy
class a € w1(%, 1d) by the second property of w. It does depend on the spanning disk
D, however the ambiguity lies in Pg. At last, the homomorphism property follows
by a short concatenation argument. Detailed proofs can be found in Section 2.

Remark 1.3.1. Note that when 7,(X) = 0, the action homomorphism takes values
in R, since Pq = 0.

Remark 1.3.2. This definition extends the original definition because given a closed
symplectic manifold (M, w), the group¥ = Ham(M, w) acts on (M, w) in aHamilto-
nian fashion with the equivariant moment map (X)) = Hy where Hy € C*(M. R)
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is the zero-mean normalized Hamiltonian function of X. On an open symplectic
manifold (M, @) the group § = Ham (M, w) of compactly supported Hamiltonian
diffeomorphisms acts in a Hamiltonian fashion with the equivariant moment map
u(X) = Hy where Hy is the compact-support normalized Hamiltonian function
of X. To ensure the existence of a contracting disk, we assume that the manifold is
simply connected in the open case. In the closed case the contracting disk always
exists by Floer theory, by the existence of the Seidel element or by a direct geometric
degeneration argument [65].

1.4. Preliminaries on quasimorphisms. A quasimorphism v on a group § is a
function v: ¥ — R that satisfies the additivity property up to a uniformly bounded
error. Thatis forall x € ¥ and y € § we have

v(xy) = v(x) + v(y) + b(x. y),

where
|b(x, y)| = Cy

for a constant C,, depending only on v (and not on x, y). In such cases the limit

lv(xk)

P
B

exists by Fekete’s lemma on subadditive sequences and is also a quasimorphism.
Moreover, it is homogenous that is

7(x*) = k T(x)
forall x € ¥ and k € Z and satisfies
V>,

where for any two functions ¢, »: §" — R we write

b (D)

o

¢

if they differ by auniformly bounded functiond : §” — R —thatis|d(xy,..., xp)| <
C4 foraconstant Cz independentof xq, .. ., x,,;. Wereferto the book [23] by Calegari
for these statements and for additional information about quasimorphisms.

We will use the following simple fact.

Lemma 1.4.1. For every quasimorphism v: § — R we have v(x) ~ —v(x~!) as
Junctions § — R.

Proof. Indeed v(x) =~ 7(x) = —v(x~ 1) ~ —v(x71). O
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Explicit constructions of quasimorphisms on Lie groups often use rotation num-

bers. For this purpose we require the notion of the variation of angle of a continuous
path §: [0,1] — S

Definition 1.4.1. We define the full variation of angle of §: [0,1] — S! as

varangle(§) = §(1) — §(0)
for any continuous lift §: [0, 1] — R of § to the universal cover R & 81,

1.5. A general principle for constructing quasimorphisms. The general principle
says that when groups act well enough on spaces of negative enough curvature, then
they have quasimorphisms and non-trivial bounded (or bounded-continuous) coho-
mology. While usually this principle is applied to proper discontinuous actions of
discrete groups, we propose a version of this principle for smooth actions of (pos-
sibly infinite-dimensional) Lie groups. Firstly, we propose a version of “negative
enough curvature” — (possibly infinite-dimensional) symplectic manifolds (%, Q)
with bounded Gromov norm of £2. We make, more specifically, the following defini-
tion.

Definition 1.5.1 (Domic—Toledo space (X, 2, K)). Assume that X has 71(X) = 0
(as before) and 75 (¥) = 0 also. Moreover assume that there is a system K of paths
[x,¥] ;= y(x,y) forallx €e X and y € X, such that forall x, y,z € X

f Q‘ < Cg,
A(x,y,z)

for a constant Cx that does not depend on x, y,z. Here A = A(x, y, z), which we
will call a geodesic triangle is any disk with boundary dA = [x, y| U |y, z] U |z, x].
We call the triple (X, 2, K) a Domic—Toledo space.

Next we propose a version for “act well enough” — by “isometries” with an equiv-
ariant moment map. More exactly, we make the following definition.

Definition 1.5.2 (Hamiltonian—Hermitian group ). We call a (possibly infinite-
dimensional) Lie group § Hamiltonian—Hermitian if it acts on a Domic—Toledo space
(X, 2, K) — preserving K and Q — with an equivariant moment map

u: X x Lie(§) — R.

We say that the action of § on (X, 2, KX) preserves K if for every two points x € X
and y € X and every g € § we have

g-lx.yl=lg-x. gy
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Remark 1.5.1. All examples of Domic—Toledo spaces known to the author are (pos-
sibly infinite-dimensional) Kdhler manifolds (X, 2, J) with | x, y] being the geodesic
segment between x € X and y € X. A first set of examples is given by Hermitian
symmetric spaces £ of non-compact type (bounded Hermitian domains) [27], [26].
The second one (trivially containing the first) is given by spaces of global sections of
bundles with fiber £ over a manifold (M, ¢) with a volume form ¢ of finite volume.

Remark 1.5.2. Examples of finite-dimensional Hamiltonian—Hermitian groups are
given by Hermitian symmetric Lie groups —like Sp(2#, R) —since they act by Hamil-
tonian biholomorphisms on the corresponding symmetric spaces of non compact type
equipped with the Bergman Kihler structure, which is Kihler-Einstein. Therefore,
the natural lift (by use of the differential) of these diffeomorphisms to the top ex-
terior power of the tangent bundle furnishes the action with an equivariant moment
map (note that the Kihler—Finstein condition implies that (—7) times the curvature of
the Chern connection on these bundles, given by the Hermitian metric, equals to the
Kihler form on one hand, and on the other hand the corresponding connection form
is surely preserved by the lifts). Details are presented in Section 1.9.

Infinite-dimensional examples are given by groups Ham(M, @) of closed sym-
plectic manifolds (M, @) since these act on the spaces g of compatible almost complex
structures, which is a Domic—Toledo space — since it is the space of global sections
of a bundle over (M, @) with fiber the Siegel upper half-space. This class of exam-
ples can be extended to arbitrary symplectic manifolds of finite volume. Details are
presented in Section 1.7.

We now construct a quasimorphism on the universal cover of a Hamiltonian—
Hermitian group § with an equivariant moment map u and Domic—Toledo space
(X, 2, .K). Given a path {g;}}zo in ¥ with go = Id, g1 = g representing a class g
in €, consider the loop {g; - x}!_, # [g - x. x] for a fixed basepoint x € X. Fill it by
any disk D = D, . Then define

1
t}[=0

1
b (@) = fD Q- [0 w(X:)(g: - ), @)

where {X,}1_, is the path in Lie(¥) corresponding to the path {g,;}!_,. In Sec-
tion 2.2 we show that this value is well-defined and gives a real-valued quasimorphism
vy . & — R on the universal cover of §.

Theorem 1. Any Hamiltonian—Hermitian group § acting with an equivariant moment
map [ on the corresponding Domic—Toledo space (X, 2, K) admits a real-valued
quasimorphism vy : § — R on its universal cover for each point x € X, given
by Equation (2). Moreover, the homogeneization v of vy does not depend on the
basepoint x. By construction, the quasimorphism v restricts to the homomorphism

A, on T (5).
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Remark 1.5.3. If we assume additionally that the loop [x, x] € K is the constant
path at x, then the quasimorphism vy also restricts to 4, on 71 (%).

Note that this theorem does not state that the homogenous quasimorphism v is
necessarily not ahomomorphism, or even not trivial. It can in principle be identically
equal to zero. However, in all the known examples it turns out to be non-trivial and
not a homomorphism.

The key feature of the proof which we defer to Section 2.2 is that the differential
of vy in group cohomology satisfies

b(g.h) = vx(@h) — vx(@) — velh) = [ Q 3)

Alx.g-x.ghx)

for g,ﬁ € § with endpoints g,2 € §. The latter is a bounded cocycle by the
properties of Domic—Toledo spaces and “isometric” actions upon them.

Remark 1.5.4. From Equation (3), given that for all x € X, [x, x] is the constant
path at x, it follows that for all ¢ € G we have

(@71 = —vx ().

Indeed the difference equals A5 2 = 0, since we can choose a degenerate
filling disk.

Furthermore, we would like to explore the invariance of the quasimorphism with
respect to larger groups extending a given action of a Hamiltonian—Hermitian group
% on a Domic-Toledo space. For this we have the following proposition, which we
prove in Section 2.2.

Proposition 1.5.1. Assume § C J is a normal subgroup, § is a Hamiltonian—
Hermitian group acting with an equivariant moment map | on the Domic—Toledo
space (X, Q2, K), and H is a (possibly infinite-dimensional) Lie group that acts
on (X,Q, K) preserving Q and K and extending the action of '§ (however not
necessarily with amoment map). Assume moreoverthat the moment map > Lie(§)x
X — R is equivariant with respect to the action of # (note that as'§ C ¥ is normal,
J acts on Lie(§) by the adjoint representation). Then vy (hgh™) = v,—1,(8) for
all ¢ € § and h € H. Consequently, by the independence of the homogeneization
upon the basepoint, we have

v(hgh™!) = v(g),

Jorall g € € andh € K. Equivalently u(ﬁgﬁ—l) = v(g), forall g € Eandh e ¥,
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1.6. The scalar curvature as a moment map. Given a compact symplectic mani-
fold (M, @) consider the space ¢ of w-compatible almost complex structures. This
space can be given the structure of an infinite-dimensional K&hler manifold (4, 2, J)
as follows. Consider the bundle § — M, the general fibre of which over x € M
is the space J (T, M, w,) = Sp(2n)/U(n) of w,-compatible complex structures on
Ty M. As J, posses a canonical Sp(2n)-invariant Kdhler form ¢ = 0y, We have a
fiberwise-Kahler form o on §. Note now that § = T'(M, §) — the space of global
sections of the bundle § — M. Now define Q(4, B) := [}, 0x(Ax. Bx)@" (x). The
complex structure J on ¢ is defined as J; A = JAfor A € Ty g. Surely Q and J
are compatible.

Note that the group ¥ = Ham(M, ) of Hamiltonian diffeomorphisms acts on ¢
by ¢ - J := ¢4 J. This action can be shown to be Hamiltonian [30], [44] with respect
to the form 2. The moment map is given as follows.

First note that the Lie algebra of § is isomorphic to the space C*(M,R)/R =
C5°(M, R). The latter space consists of smooth functions ¥ on M with integral zero:
[y Fo" = 0. Foranelement ¢ € §, the adjoint action is given in these conventions
by

AdgH = (p7)*H. (4)

To a function H € Lie(¥) = C°(M. R) there corresponds the function p ()

on ¢ given in [30], [44] by the formula

W(H)(J) = [M S(HH", )

where §(J) € C*®(M,R) is the Hermitian scalar curvature of the Hermitian met-
ric i{(J) = g(J) — iw defined as follows. Consider the Hermitian line bundle
L = AL(TM, J, h(J)). It has a natural connection V" induced from the canonical
connection V on (TM, J, h(J)) (ct. [51], Section 2.6, [61], and [87], Section 2, and
references therein) defined by the properties

VJI=0, Vh=0 T&"V =0

This connection can also be equivalently (by [51], Section 2) defined by use of d-
operators, as in [30]. The connection V" has curvature 7 p for the lift p of a real valued
closed two form p € Q2(M,R) on M by the natural projection L. — M. We define
S(J) e C®(M,R) by

S(NHo™ =np Ao L. (6)

Whenever J is integrable S(J) coincides with the scalar curvature of the Riemannian

metric g(J). In the above g(J) is the Riemannian metric corresponding to J given
by g(J)(E. 1) = w(&, Jn). Note that g(¢4J) = (¢~ 1)* g(J) and consequently the
same is true for 2(J). Hence, forall ¢ € &,

S(ped) = (¢~H*S(J). (7)
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From Equalities (4), (5) and (6) we obtain u(H)(¢p;1J) = Ty S(p; ) Ho =
I @*SHHo™ = [, S@™) Ho" = p((@™)* INT) = p(Adg H)(T).
Therefore the moment map is equivariant.

We remark that the action of & on ¢ can be extended to the action of # =
Symp(M, w) that preserves 2 and ¢. Moreover § C # is a normal subgroup and
(by the same computation as above) the moment for map w: Lie(§) x § — R for

the action of ¥ on ¢ is equivariant with respect to the action of # (which acts on
Lie(%) by the adjoint action Ady H = (v~ )*H, ¢ € ¥).

1.7. Quasimorphisms on the Hamiltonian groups of symplectic manifolds. Here
we apply the general principle for constructing quasimorphisms to the group § =
Ham(M, w) acting on (¢, 2, J) and study the resulting object to obtain the main
results of this paper. Corollary 1 and Theorem 3 are of special note.

First, it is rather easy to prove that the space (£, 2, K) for the system K of paths
consisting of the fiberwise geodesics is a Domic—Toledo space. In more detail for
every two almost complex structures Jy, J1 € § = I'(5; M) we define [Jy, J1] tobe
the fiberwise geodesic path [ Jy, J1](#) thatrestricts in each fiber §x overapointx € M
to the unique geodesic [(Jo)x, (J1)x[(f) in (Sx, 0%, jx) joining (Jo), and (Jy)..
Moreover, for any three elements Jo, Jy, J2 € § we choose A = A(Jy, J1, J2) tobe
the fiberwise geodesic convex hull of Jy, Jy, J> so thatin each fiber S, over x € M,
A restricts to a geodesic 2-simplex A, with respect to o, with vertices (Jo)x, (J1)x,

(J>)y. Then since
(Lo
A(Jo.J1.J2) M x
. BV A
A(Jo.J1.J2) M x

as (Sx,0x, jx) is a Domic—Toledo space (with geodesics for the system of paths)
with the constant Cs . And surely, g is contractible so the conditions 73 (/) = 0 and
m2(J) = 0 are satisfied.

Second, we show that ¥ = Ham(M, w) is Hamiltonian—Hermitian with its action
on (¢, Q, K). First, as explained above it acts on  preserving £ with an equiv-
ariant moment map. It is also easy to deduce from the fact that the action preserves
J that it also preserves K — though we give a direct proof. Indeed this follows im-
mediately from the fact that for every diffeomorphism f € § and forall x € M
the map Sy-1, — Sx given by Jp—1, > (f*x)Jf—1x(f*x)_1 is an isometry of the
Siegel upper half-spaces. The canonical metric p, on 8, for y € M is given by
(py)s, (Ay, By) = const - trace(Ay By) for Ay, By € Ty, 8, (Jy € §y), and surely,
trace is preserved by conjugation with a linear isomorphism.

we estimate

@ (x) < Vol(M,a")Cs,,
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Therefore by Theorem 1 the group & admits ahomogenous quasimorphism, which
we show to be non-trivial by computing its local type in Theorem 3.

Corollary 1. The universal cover g of the group of Hamiltonian diffeomorphisms
§ = Ham(M, o) of an arbitrary closed symplectic manifold (M, w) admits a non-
trivial homogenous quasimorphism ©: 5§ — R.

By construction the restriction &|,, (g) equals A, : m1(Ham(M,w)) — R. In
more detail, for an element ¢ = [{¢;}] € 71(Ham(M, @)) with mean-normalized
Hamiltonian H, € C5°(M,R), we have

o= [ o[ s [ s@o.nmee,

where J € ¢ is an arbitrary element and D is a disk in g spanning the loop
{(¢:)+J }ier/z. We now compute the homomorphism +,, in terms of a previously
known homomorphism on 7y (Ham(M, w)) [63].

Definition 1.7.1 (The homomorphism I, : 71(Ham(M, w)) — R). As usual with
topological groups, there is a bijective correspondence between 1 (Ham(M, w)) and

the isomorphism classes of bundles P i S2 gver the 2-sphere with fiber M, such
that their structure group is contained in Ham(M, ) [63]. Such bundles are called
Hamiltonian fiber bundles (or fibrations) over the 2-sphere. Over such a bundle, the
vertical tangent bundle 7y P is naturally endowed with the structure of a symplectic
vector bundle. Hence it has Chern classes, called the vertical Chern classes, of
which we shall use the first c}/ := ¢1(Tyv P). There is also a natural characteristic
class u € H2(P,R) of such bundles with the defining properties #|z,r = [@] and
fﬁber u"T1 = 0 (or in the case when the base is 2-dimensional #"*! = 0) — cf. [63],
[76] and references therein. Itis called the coupling class of the Hamiltonian fibration.
With these two characteristic classes we compose the monomial c}/ u", where n =
% dim M and integrate over P. This yields a homomorphism 7y (Ham(M, @)) — R
that we denote /., . The formula for /. (y) for aloop y in Ham(M, w) based at Id is
therefore

IC} (y) = f C}/un:
PV
where Py, is the Hamiltonian fibration corresponding to y.
Theorem 2. The two homomorphisms Ay and 1., from m((§) to the reals are equal.
Remark 1.7.1. Assume now that the almost complex structure .Jy is integrable —

that is (M, w, Jo) is a Kithler manifold. Note that the restriction :* 4, of 4, to the
71 of the finite-dimensional compact Lie subgroup K := %, of & consisting of
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Hamiltonian biholomorphisms satisfies t* 4,, = —F, for the Futaki invariant F [46]
since the filling disk I can be chosen to be trivial. The equality is understood via the
isomorphism 71 (K) ®z R = Lie(K)/|Lie(K), Lie(K)] which holds by a classical
result of Chevalley and Eilenberg [24] (a short account can be found in [13]). The
consequence of Theorem 2 that ., restricts to the (Bando—)Futaki invariant on &y,
has previously been shown in [84] using methods of equivariant characteristic classes.

As a corollary we answer a question of Polterovich (cf. [84], Discussion and
Questions, 2).

Corollary 2. We have the equality ©|, gy = I¢, on mi(Ham(M, @)).
By Proposition 1.5.1 we have that & is Symp(M, w)-invariant.

Corollary 3. The quasimorphism ©: € — R is invariant with respect to conjugation
by elements of Symp(M, w) or equivalently by elements of Symp(M, w).

Moreover we compute the local type of the quasimorphism &. To state the result
of our computation we would first like to make two definitions of the more classical
invariants in terms of which we express the answer.

Definition 1.7.2 (Calabi homomorphism on §p = Ham.(B2", wg) [20], cf. [66],
[79]). Given a Hamiltonian isotopy {qbf}}zo C Ham,(B?",wp) starting at ¢y = 1d
with endpoint ¢ = ¢; with generating path of vector fields {X,}!_,, define I, (for
each ¢ € |0, 1]) to be the function that vanishes near dB and satisfies iy, w = —dH,.
Then the Calabi homomorphism is defined as

Calp ({¢h:}1_p) :/(;lfBHza)”dl.

It is, as can be verified using the differential homotopy and the cocycle formulas, a
well-defined homomorphism §p — R. Moreover it vanishes on loops in §g hence
descending from §g to Gp itself.

Remark 1.7.2. We present a short proof that Calp vanishes on loops in §p that ditfers
slightly from the one usually found in the literature. It is well known, cf. [66], [79],
that the Calabi homomorphism can be reinterpreted as

1 1
1 _ . . n
Catn(ioittg) === [ [ ixdorar

for a primitive A of wp in B. Hence

1 1
Cala(igH-g) ===+ | [ Gxa—ty ot
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However for a loop {¢,}!_, this is proportional to

fB ([{@x}}:ol - fol Hz(ﬁbzX)dt) @™ (x)

wherein the integrand is independent of x, as it is the Hamiltonian action of the
periodic orbit {¢,;x}!_, of {¢;})_,. Consequently the integral localizes (up to a
multiplicative constant) to the value of the integrand at each point x € B that vanishes

1
‘/; }1 A —f H1(¢7zX)df =0
$rxti—o a

for x close enough to 9B.

Definition 1.7.3 (Cf. [7], the Barge—Ghys average Maslov quasimorphism on §5 =
Ham,(B?", wg)). Givena Hamiltonian isotopy {gb,}}:o C Ham,(B?", wg) starting
at o9 = Id, choosing a trivialization ® of the tangent bundle (TB, wp) = B x(V, wy)
over B as a symplectic vector bundle (here (V, wg) is a certain symplectic vector
space e.g. (Tp B, (wp)p)) for some b € B), we obtain from the family of paths of
differentials {¢;, : TxB — T4, xB}l_, (as x ranges over B) a family {A(x,?) €
Sp(V, wp)}}_, of paths of symplectic linear automorphisms of (V, wp). For each
X € B we compute the value rLin({A(x,t)}}ZO) on the path {A(x,if)}}:O of the
Maslov quasimorphism on the universal cover of the symplectic linear group. Then
the map

655 Sl 3 f tun({ACe )} (@B )" ()
B

does not depend upon homotopies of {¢,}!_, with fixed endpoints and yields a

quasimorphism zg p: ¥p — R. The Barge-Ghys average Maslov quasimorphism
g . G — R is its homogeneization

, | ,

5($) = lim —7e 5(d").

k—oo k

It does not depend on the choice of the symplectic trivialization ®. Both 7g g and
7p vanish on loops in $p and therefore descend to quasimorphisms 3 — R.

Remark 1.7.3. The vanishing of 7g_p onloops canbe shown by a similar localization
argument as for the Calabi homomorphism. Indeed for aloop {¢,}!_, in 5 the value
tLin({A(x, £)}_ ) equals the Maslov index of the loop {A(x,)}!_, which by the
homotopy invariance of the Maslov index is independent of x, and for x near B the
loop {A(x,)}]_, is trivial. Hence the integrand vanishes for all x € B, wherefrom

t0.8({¢:1}]_o) = 0.
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Theorem 3. Let ¢ = n [y, c;0"" 1/ [, " = [ S(J)o" /Nol(M, ™) be the aver-
age Hermitian scalar curvature. Then the restriction of © to the subgroup §p =
Ham (B, w|g) C § of Hamiltonian diffeomorphisms supported in an embedded ball
B in M satisfies

1
©lgy = ETB — ¢Calgp,

where 1g is the Barge—Ghys Maslov quasimorphism on §g = Ham,(B?", wyq) and
Calg is the Calabi homomorphism.

We describe the relation of the quasimorphism & to the quasimorphisms ®p, and
&g, introduced by Py [78], [79] for closed manifolds (M, w) with ¢ (TM, @) = k|w]
for & # 0 and Entov [36] for closed manifolds (M, w) with ¢;(TM, w) = 0. First
we state briefly the definitions of the quasimorphisms @p, and &g,. The detailed
definitions appear in the proofs section.

Definition 1.7.4 (A sketch of a definition of @p, [78], [79]). Endow the unit frame

1

bundle P S—> M of L = AR(TM, J, w) for a compatible complex structure J € &
with the structure oo of a prequantization of (M, —®). Note that there is a natural
map det®: £(TM, w) — P2 from the Lagrangian Grassmannian bundle £ (TM, w)
to the unitary frame bundle P2 of L%2, since £(TM), = U(TM,, wy, J,)/O(n).
Note that ay induces a structure « of prequantization of (M, —2w) on P2. Given a
path 5 = {¢:}1_, in § with ¢y = Id, choosing a point L. € £(TM, ), we have
the curve {¢;,, (L) }o<r<1 in £(TM. w) and considering qg as a path of Hamiltonian
isotopies of (M, —2w) we have the canonical lifting {gﬁ;}ogsl, $o = Id of 5 to the
identity component Q = Quant(P?, «) of the group of diffeomorphisms of P2 that
preserve «. Consequently, one considers the two curves

{detz(ﬁbz*x (L))}o<t<1

and

{Qgr (det2 (L))}o<t<1
in P2. Both these curves in P2 start at det?(1.) and cover the path {¢,(x)}g<s<1 in

M and hence differ by an angle:

det?(¢, (L)) = 2700, (dét(L)),

for a continuous function # : [0, 1] — R. Define a continuous function on £(7TM, »)
by
angle(L, @) := 9(1) — 9(0).
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Then the function angle(x, 5) = infy c¢(TM w), angle(L, 5) on M is measurable,
bounded and defines the quasimorphism

&@=—mew®wm

that does not depend upon homotopies of q_g with fixed endpoints and is thus defined as a
real-valued function on §. Its homogeneization ©p,: § — IR, defined by &p,(¢) :=
limg 00 S%(,fﬂ is a homogenous quasimorphism on £ thatis independent of the non-
canonical structure on P of a prequantization of (M, —w), of the prequantization form

o on it and of the almost complex structure J.

Definition 1.7.5 (A sketch of a definition of &g, [36]). Given a symplectic manifold
(M, @) withc (TM, @) = Oone firsttrivializes (TM, w, J) for J € J asa Hermitian
vector bundle over the complement U = M \ Z of a compact triangulated subset /7
of codim(Z) = 3, where the differential of the trivialization, appropriately defined,
is uniformly bounded. For a path ¢ = {¢:}]_, in § by relaxing Z to be a countable
union Za = Uj <z Zj depending on q_g of sets Z; of codim(Z;) > 2 one can assume
that U is invariant with respect to ¢, for all 7. Then from the path {ﬁbt*x}}:o for
x € U one obtains a continuous path {A(x,1)}!_, with A(x,0) = Id in Sp(2n, R)
and proceeds to define

angle(x, 5) = varangle({det® (A(x, I))}}:O).

One then shows that this function extended by 0 on Z is integrable on M and that
Ni@) = [ angle(x. §o" (o)
M

does not depend on homotopies of qg with fixed endpoints (by relaxing Z to be a
countable union of sets Z of codim(Z}) > 1 depending on a given homotopy), and
defines a quasimorphism

Ti: £ - R.

Its homogeneization &g, : £l R, defined by @En(q:i;) = limg a0 T—‘(ff—k) 18 a
homogenous quasimorphism on € that is independent of the non-canonical choices

of trivialization, of the set U = M \ Z and of the almost complex structure J.

We claim that the quasimorphism € — R obtained from Corollary 1 agrees with
these two quasimorphisms in the settings of their definitions.

Theorem 4. 1. On symplectic manifolds (M, w) with c1(TM, w) = x|w| for £ # 0
we have 2© = —Gp,.

2. On symplectic manifolds (M, w) with c1(TM, w) = 0 we have 2@ = Gg,.
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Remark 1.7.4. The analogues of Theorem 3 for the cases 1. and 2. above were shown
in [36], [78]. The analogue of Corollary 2 was shown in [79]. The agreement of our
results with the ones shown in these papers is as follows. For analogues of Theorem 3
note that the average scalar curvature ¢ satisfies ¢ = nk when ¢ (TM, ©) = «|w],
for every «. For the analogue of Corollary 2, use the easy Computation 1 from [84],
near the end of Section 1.2.

Remark 1.7.5. We would also like to note that the general scheme of Theorem 1 ap-
plies to the construction of quasimorphisms & — R for the group ¥ = Ham.(M, w)
of Hamiltonian diffeomorphisms with compact support of symplectic manifolds
(M, @) of finite volume (without boundary) that are not compact. Indeed, ¢ here
is also a Domic—Toledo space, since [, @" is finite, and Donaldson’s theory for the
scalar curvature as an equivariant moment map [30] applies here nearly verbatim.
The only difference is that the symplectic form £2 is not defined on all the tangent
space Ty, 4 — indeed given A, B € Ty 4 the function o(y,), (A, Bx) may well be
non-integrable with respect to @’ . However, since we compute for diffeomorphisms
with compact support, all relevant computations happen in a compact subset of M
where all functions that appear are integrable. Moreover, all functions, vector fields,
one-forms and sections of endomorphism bundles have compact support, therefore
the only non-local part in Donaldson’s proof [30] — integration by parts to show the
actual integral formulae — goes through (all the other arguments are local). At the
same time, when the symplectic volume of M is not finite, ¢ stops being a Domic—
Toledo space (at least with the natural definitions) and hence this approach does not
seem to give quasimorphisms. It would be interesting to investigate the restriction to
71(%) of the quasimorphism in the finite volume case. The local type is obtained by
nearly the same computation as the one given for the closed case and is given by the
Barge—Ghys average Maslov quasimorphism z. The # = Symp, (M, w)-invariance
holds as before.

A corollary, as obtained in [3@] for symplectic manifolds with ¢;(TM,w) = 0,
is that the commutator length of ¥ is unbounded.

Corollary 4. The diameter in the commutator length of the group g for § =
Ham(M, w) of a closed symplectic manifold (M, w) and of the perfect ([5]) group
Ker(Cal: g — R) for § = Ham (M, w) of an open finite volume symplectic mani-
fold (M, w) is infinite. In the closed case, under the additional assumption I, = 0,
the same conclusion follows for G itself.

We also note that for reasons of naturality of the constructions and normalizations
of Hamiltonians we have the following proposition.

Proposition 1.7.1 (Embedding functoriality). Given an open subset U C M of a
closed symplectic manifold (M, ®), denote by ©py the quasimorphism obtained on
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G for (M, @) and by Gy the quasimorphism obtained on Gy for (U, |y ). Then
©mlg, = &y —c-Caly,

forthe average Hermitian scalar curvature c. Similarly, if M were an open symplectic
manifold of finite volume, then

@Mlﬁu = &yp.

1.8. Application to the L %-distance on m(M , @). While itis not surprising that

our quasimorphism is bounded by a multiple of the Sobolev 1.3 norm on I-’I-aTn(M , W),
indeed &, is surely continuous in the C'-topology induced to Ham(M, ) from
Ditt (M), we present a proof for the sheer simplicity of the argument.

For a Hamiltonian isotopy 5 = {¢,}L_, of a symplectic manifold (M, @) starting
at the identity that is generated by the zero-mean-normalized Hamiltonian /7, put

1
18 = [ 1Helzgonan:
0
Then define the norm of an element ¢ € g by

Ipllk., = inf | pllx.p-
[p]=¢

Finally define the norm of ¢ € & by |¢||r,, = inf 5, _, ||q5||kp for the natural

projection 7 : £ — 9. For two elements a, b of the above groups define the distance
dpila.b) = ”a_lb l%,p-

The following facts are easy to check.

* For k = | the (p, k)-norms and distances are equivalent to (p,k — 1)-norms
and distances as defined via the vector field X; generating ¢.

* For k > | these norms and distances are non-degenerate.

We show in Section 2.9 that @y, calibrates the (2, 2)-norm as follows:

@Jo(cg) = C(n!w5JD)||(5”2,25 (8)

for a constant C'(n, w, Jo) that does not depend on $. As a corollary we obtain that
the L% distance is unbounded on §.

Corollary 5. The diameter of g is infinite with respect to the L%—diszance for every
symplectic manifold (M, @) of finite volume.



88 E. Shelukhin CMH

Remark 1.8.1. Given that A, : 715 — R vanishes, the same consequence holds
for the L35-distance on the group § itself. For closed manifolds this condition is
equivalent to the vanishing of 7., .

The unboundedness of the L3-metric on compact exact symplectic manifolds
was previously proven by Eliashberg and Ratiu [35] (their methods work even for
the larger group # = Symp(M,w) with appropriate definitions), while sharper
topological bounds for the 2-disc were obtained by Gambaudo and Lagrange [50]
(cf. [8], [15]).

1.9. Finite-dimensional examples: Guichardet—Wigner quasimorphisms. The
general principle outlined in Section 1.5 applies also to finite-dimensional Hermitian
Lie groups acting on their corresponding Hermitian symmetric spaces of non-compact
type. In this section we describe this application, in part for use in the proofs later.

Let & be a simple Hermitian symmetric Lie group. Then the adjoint form of G
belongs to those of the following list of Lie groups: SU(p.q), SOy(2,q). g # 2,
Sp(2n, R), SO*(2n), n = 2, and two real forms of the complex simple Lie groups
of types Eg and F; respectively. Let us assume that the center of G is finite, so
that 71(G) is infinite. Let K C G be the analytic subgroup corresponding to the
maximal compact Lie subalgebra [ of g. In this situation there is a corresponding
Hermitian symmetric space X = G/K, endowed with a natural complex structure
Jx and a Kihler form oy that is invariant with respect to the transitive action of the
group G (proportional to the Bergman Kéhler structure when such a space is realized
as a symmetric bounded domain in a complex affine space by the Harish-Chandra
embedding) cf. [58], [60], [69]. The works of Domic—Toledo and @rsted [27], [26]
show that when we take the system of paths K to consist of the geodesics with
respect to the invariant Kihler metric, then (X, oy, K) is a Domic—Toledo space in
our terminology.

Moreover, we note that by e.g. [69] these spaces (X, oy, jx ) are Kihler—Einstein
manifolds (that is, their Ricci forms are proportional to their Kihler forms: Ric(oy) =
Aoy, where for the Bergman metric we have A = —1). Note that Ric(oy) is equal
up to a universal constant to the curvature of the Chem connection on the line bundle
Ly = Ag T'X, with the holomorphic and Hermitian structures induced by jx and ox.

We now show that ¢ is Hamiltonian—Hermitian with its action on X . Firstly the
group G acts on X by maps preserving jy and oy (symplectic biholomorphisms) and
hence preserving the system of geodesics K. We now claim that the group G acts on
X with an equivariant moment map py : Lie(G) x X — R. Note that as the Chern
connection on TX is given canonically by (oy, jx) and the action preserves these
structures, it will also preserve the Chern connection. Consider the natural lift of the
action of G on X to an action of G on 7X by taking differentials. This induces an
actionof Gon Ly = Ag T X. Note that this action preserves the Hermitian structure
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1
on Ly, and hence it descends to the circle bundle Py — X of unit vectors in Ly

(the unitary frame bundle of the Hermitian vector bundle Iy ). The Chern connection
on Ly induces a real-valued connection one-form (cf. [84], Appendix A) ay on the
principal S!-bundle Py over X that by the Kihler—-Einstein property satisfies the
relation

dax = ox 9)

for the lift 6y of oy to Py by the natural projection Py — X, as follows from what
is noted above. Now the action of the group ¢ on Py covering the actionof G on X
preserves the one-form ay (by preservation of the Chern connection). This is enough
to give an equivariant moment map for the action of G on X. Indeed, it is constructed
as follows. A vector § € Lle(G) induces the vector field £ on X by the action of G
on X and a vector field E on Py that covers £, by the action of G on Py. We claim
that the equivariant moment map is given by

px (E)(x) = (ax)y () (10)

forany y € Py overx € X (indeed é is equivariant with respect to the natural circle

action on Py as is ax and hence (oy), (éy) does not depend on the choice of y over
x). Firstly by relation (9) and the preservation &£ X = 0 of the connection by the
infinitesimal action we have

igox = —du(§)(x).

Hence px 1s a moment map for the action of & on X. For the equivariance we
note once again that the action of G on Py preserves wy and that the vector field
é has a corresponding equivariance property. Namely forany g € Gand y € P
denoting by ¢ - y the action of G on Py and by g, the corresponding differential
Ty Py — T;., Py, we have the very general equivariance property for infinitesimal
actions corresponding to Lie group actions on spaces:

E(&-y) = &, (Adg1E(1)).

Now noting that for y € Py over x € X the point ¢ - y is over g - x, we obtain

1x (Adg€)(g - x) = (@x) 3., (AdgE(E - 1)) = (@x) gy (8w, (V) = (0x)y (E(Y))
= ux ()(x),

showing equivariance.

Hence G is Hamiltonian—Hermitian with Domic—Toledo space (X, ox, jx) and
equivariant moment map py, and therefore by Theorem 1 has a homogenous quasi-
morphism.
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Corollary 6. Theorem 1 gives a homogenous quasimorphism vg : G—>R for every
simple Hermitian symmetric Lie group G.

It remains to show that it is non-trivial. In fact we show in Section 2.3 that it is
equal to the Guichardet—Wigner [55], [34], [25], [85], [17] quasimorphism g on G
by comparing them on 71 () and arguing that a homogenous quasimorphism on G
is determined by its restriction to the fundamental group.

Proposition 1.9.1. The quasimorphisms vg and gg on G satisfy the equality
Vg = —0¢G-

We would now like to give a reformulation of the construction of v, in the finite-
dimensional case as a certain rotation number. Indeed consider once again the princi-
pal S'-bundle Py — X. Trivialize it by taking parallel transports Cyy.xy: (Px)y —
(Px)y along geodesics y(y,x) for y € X. Then given a path g = {g,;}!_, with
go = Id in G, the path of differentials (g;)+,: TxX — Tg, X gives us a path
Tyerxx) © &elpy)e : (Px)x — (Px)x which we consider as a path in U(1) = S
Then

vx(g) = varangle({Ty (g, x.x) © §1l(Pi)x F1=0)- (11)

Indeed, denoting y, := y(g, - x,x) and B, = {gy - x}},_,, we have

varangle({ Ty (g, x,x) © &11(Px)x H—o)

= varangle({Ty, o T'g, }}_o) + varangle({T's © &:|(py)x }—0)
1 1
= f oy — [ @x)g,. )z, pdt = [ i — f (e Ve - Kl = D5,
- 0 3 0

It is interesting to note that taking this reformulation as a definition for the quasi-
morphism, its independence upon homotopies with fixed endpoints follows immedi-
ately by continuity.
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2. Proofs

2.1. The action homomorphism. We prove that the number A, (a) defined in Sec-
tion 1.3 is well defined and determines a homomorphism 71(§) — R/Pq. We
refer to Sections 1.2 and 1.3 for the relevant notation and definitions. Let us first
prove that it is well defined. First of all, the value A, (a) € R/Pq obviously does
not depend on the spanning disk. Let us prove that it does not depend on the point
x € X. Take another point x” € X and choose a path §: [0, 1] — X between the two:
B(0) = x, (1) = x’. Consider the cylindric cycle C: R/Z x [0, 1] — X defined
by C(f,s) = ¢ - B(s). Note that C(t,0) = ¢, - x and that C(¢, 1) = ¢; - x’. Define
a spanning disk D' for ¢,» by D' = D Uy, C. Then the equality

[D@—folmxr)(@-x)dr =LIQ—£1M(XI)(¢r'x,)dI

that we are trying to prove reduces to

f,sz—fpsz=folu(xa«bz-x')dr—folmxa(@f-x)dr,

which is equivalent to

1 1
f Q— f W(X(C 1)) di — f WX, 0)) d.
C 0 0

This equality 1s established by direct computation of the left hand side. Indeed

1 pl 1 p1
[Q:/ [ Q(BSC(S,I),BIC(S,I))det=[ f Qo;C,E(C(¢,5))) dsdt
- 0 Jo 0 Jo

1,1 1 pl

- [ [ decontxo@cydsar = [ [ anxace.odsar
0 Jo o Jo
1

_ fo W(X)(C(L 1) = p(X(C(O, 1)) di
1

1
= [ nexocu - [ poca.opa.
0 4]

yielding the desired equality.

Let us now proceed to prove that A, ({¢:}) = [ Q— fol w(X:)(¢;x) dt remains
invariant when ¢, is deformed homotopically with fixed endpoints. Let¢;,0 <s <1
be such a homotopy. That is ¢ = Id, ¢; = Id and (s,7) — ¢; is a smooth map
[0, 1]x]0, 1] — &. Surely, itis enoughto prove that forall s the derivative aa—s |s Ay (@7)
vanishes. To this end we use the following lemma, which is a direct consequence of
the standard differential homotopy formula.
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Lemma 2.1.1. Let X7 and Y} be the elements X] = a%|tzz¢)§ (L YS =
Llo—s®? - (@5)7" of Lie(¥) (note that Y§ = 0 and Y{ = 0). Then
d a d d
a—SAd(¢f)—1 Xf = Ad(¢f)—1 gyzs and gAd(thS)—l st = Ad(¢f)—1 B_SX;
Proof. Thedifferential homotopy formula says ;—SX = a%st +[X}, Y/]. Differenti-
ating & Ad (sy-1 X we obtain Ad )1 ([Y?. X7]+ £ X;). which by the differential

homotopy formula equals Adgs)-1 %YIS . The other equality is obtained in the same
way. Both are equivalent to the original differential homotopy formula. L

Now

d

K3 8 ! SN/ 1S 8
—B—SM,.L(@)—ng pOaD@ 0 - [ 0

: d SN¢ 1S L s
— [ nxn@dn+ [ gdganxnd

1
_ 284S
_/(; "’Tf(qﬁfx)g(“f(cb?x))
1

1 P . .
— [ Mg xnan+ [ @@, @) i

1 — —
_ fo QLS (FFx). EX(Fix)
1 J 1 3
:/ }L(gAd((ﬁIS)—IYIS)(X)dI :/ gM(Ad((ﬁf)—lYIs)(X)df
0 0

= M(Ad(¢f)—1 Yix) — M(Ad(qbg)—l ¥5)(x)
= 1(¥7)(x) — w(¥3)x) = 0.

This yields the desired equality. Here D? is obtained by gluing D and C(s, ) = ¢35 x
along ¢. The vector fields E7, T are the infinitesimal actions of X} and Y'{.

At last, let us prove that 4,, defines a homomorphism 7;(%) — R/%Pq. Indeed,
take two loops ¢ = {¢;}, ¥ = {y;} based at Id. Consider their concatenation
¥ = ¥ x¢. Then y, = ¢y * ¥x. Moreover we can choose a spanning disk of
X x that factors through the topological wedge (we refer to [43] for the definition of
wedge and for related notations) of the spanning disks Dy, Dy of ¢, ¥x. Thatis

DoV, D
D:D — Xfactorsas D: D — D\, D Z@Yx 7V, ¥. Hence Aulyx) = fqu Q-
1,1 oy 1 s 1 1 —
fo fo PL(XI)(qux)'i'wa Q_fo JU’(YI)(qublx) dt = fDa’J Q_fo fo ;UJ(XI)(qux)'i'
wa Q — fol w(Y ) x)dt = A, (¢p) + Au(y). Here X, and Y, are the elements
of Lie(¥) corresponding to ¢» and . The penultimate equality follows from the fact
that ¢y = Id.
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2.2. The quasimorphism on Hamiltonian—-Hermitian groups. We now prove
Theorem 1 on the construction of quasimorphisms on Hamiltonian—Hermitian groups.

Proof. First, the independence on the disk follows trivially, since 72(X) = 0 and 2
is closed.

We proceed to show that the map is independent upon homotopies of {g,}l_,
with fixed endpoints. Let g7 be a homotopy with fixed endpoints g3 = 1d, g} = g1

of g = {g) = g}l_, to ho= {g} = h;}l_,. Note that in this situation the

concatenation ¢ = {g,}1_, #{h,}]_, is a contractible loop in  based at Id. Denote

by C the disk C = {g} - x}0<s.s<1. Choose the disks of integration as follows. When

computing for {#,}!_, choose an arbitrary disk Dy . and for {g;}]_, choose
1=

D{gz}}=o = D{hr}_}=0 U C where the gluing is over the common path {#, - x}1_,.

Then

ux@—vx@=fcsz—([Olmxzxgz-x)—[olmmm-x)) — A (g) =0

since A “ is a homomorphism on 71 (&) and ¢ is a contractible loop. Here {X,}!_,
and {Y,}!_, are the paths in Lie(§) corresponding to {g,}}_, and {h W

We now show the quasimorphism property of v,. Take two paths ¢ = {g;}o<r<1,
h= {h;Yo<r<1 representing elements g, h of §. Denote by g, i their endpoints. We
would like to compare vy (gk) with v, (€) + vy (k) Note that gh is represented by
the path g # glh where glh = {g1h,}]_,. Hence we will compare

ve(@#g1h) o v(Z) 4 ve(h).

The definition of v, involves two summands — one involving the symplectic area and
one involving the moment map. We first show that the terms involving the moment
maps are equal. And indeed

1 1
[ W(Xo)(gs - x)di + [ W(Adg, V) (g1 - hy - x)d
0 0 (12)

1 1
= [ (X (g - X)dr + [ (YD) hy - )1,
0 0

by the equivariance of the moment map.
Now we show that the terms involving symplectic area agree up to the function

f Q (13)
Alx,gx,ghx)

which is bounded by a constant Cx depending only on the Domic-Toledo space
(X,Q, K). Indeed choosing arbitrary disks of integration Dy for g and D for h,
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choose for g # glﬁthe disk Dgr’#gli_{ = (DgUg1-Dp)UA(x, g-x, gh-x) where the
gluingis over the common path [x, g-x|Ug[x, /-x], whichequals [x, g-x]U[g-x, gh-x]
by preservation of K. Hence

f Q = f Q-+ [ Q + f Q
D Dz 81Dy Alx,g-x,ghx)

grer (14)
:f <2 -|-/ Q -|-/ 2,
D Dy Alx,g-x.ghx)

by preservation of €2 by the action. This finishes the proof of the quasimorphism

property.
Now we discuss the independence of the homogeneization

oy

y 1k
— l. — x
v(g) = lim Zvz(2")

on the basepoint x. Take two basepoints x and x” and let {x; };:0, Ty = % % = X
be a path in X connecting them. Note that it is enough for us to show that vy and
vy differ by a bounded function § — R. Let us compare v,(g) and v,/ (g). Let
§:=g-x#[g-x,x],8 :=g-x"#|g-x', x'| and let D, D' be their contracting discs.
Define the disk C: [0, 1]x[0, 1] — by C(s, ) = g,-x;5. Moreover define §° be the
contracting disk of {x;} # [x/, x]. Thenby preservation of X by theaction §' = g-5°
will be the contracting disk of {g - x;}#[g - x", g - x]. Note that g - x; = C(s, 1). At
last, define an adapted contracting disk of [x, x"|U[x, g-x'|U[g-x, x'|U[g-g. g- x']
as the union O = Ag U Ay for the two geodesic triangles Ag, Ay on {x,x", g x}
andon {g - x,x’,g-x'}. Note then that & = Do U D; US°U ST UC U Q where
the gluings go along the overlapping paths, is a sphere. Therefore

O:/Q
T

Q

LDUD1u50usluCuQ

:/Q—/Q—[Q+[ sz+fs2+fsz (15)
D1 Do §0 280 0 c
:[ Q—/ sz+[sz+/sz

D1 DO Q C

- vx(q’é)—vxf(q’é)+fﬂlmxr)(gr-x)—fﬂlmxr)(gr-x%fcsz +st2

since the action of ¥ on X preserves 2. Wherefrom

[v:(8) — v (@) = |Z] + 2Ck, (16)
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for 7 = fol w(X (g, - x) — fol w(X)(g: - x") + [o Q. We now show that Z
equals zero, finishing the proof. And indeed letting {X }1_, be the path in Lie(§)
corresponding to g and E; = X, we have

fCQ = fol /: Q(0;,C(s,1),0:C(s,1))dsdt

1 1
_ f / Q(3,C, B(C(s.0)))dsdt
0 0
1 1
= [ [ deconio@cdsar
0 0
1 1
_ f / B, (X )(Cs. 1)) dsdt
0 0
1

- fo HXD(C(L 1) — p(X)(CO, ))dr

1

1
= f w(Xo) (g - %) di — [ W(X)) (g - x)dt. 0
0

0

We also prove Proposition 1.5.1 on the transformation of v, under conjugation
with respect to a suitable normal extension.

Proof. Considerapathg = {g,}]_, representing g € §. Then foranelement/ € J
the path hgh™' = {hg,h~'}!_, will represent 2gh~". By definition

o) = [

1
Q- f WA X il et
D 0

ngr—1

foradisk Djz;,—1 withboundary §, = g-x#[g-x, x|, and noting that by preservation
of X we have the relation 2-8,—1., = 8y ford,—1, = g-(h~L-x)#[g-h~ - x, h~ ! x]
so that the disk D satisfying

h-D = Dyzp—

has boundary §;-1.,, so that by preservation of {2 and by equivariance of p with
respect to # we have

1
ve(hgh™) = fD Q- [0 WX g™ - Xt = Bm1, @),

which proves the proposition. Nete that for every h € J with endpoint # we have
hgh™' = hgh™! since the paths {h,g,h;'}!_, and hgh~" are homotopic with fixed
endpoints. L
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2.3. Finite-dimensional examples and Guichardet—-Wigner quasimorphisms. In
this section we define the Guichardet—Wigner quasimorphisms and prove Proposi-
tion 1.9.1 on reconstructing these through moment maps.

We remark that as we have assumed that  has finite center, there are no ho-
mogenous quasimorphisms on G (cf. [85], [18] and [7] for the group Sp(2n, R)).
Moreover itis known that the all homogenous quasimorphisms on G are proportional
to gg (cf. [85], [18], [7]). From these two remarks it follows that it is enough to
show the equality of vg and o¢ on 71(G) = 71(K). In fact, g is defined as the
umque homogenous qua51m0rphlsm G — R such that its pullback 06|g: K> R
to K by the natural map K — G coincides with the lift #: K — R of the canonical
(up to powers) character v: K — S, constructed in either one of several ways. The
first way is as follows. The Lie algebra [ of K satisfies { = 3 + [F, ] where 3 is
the center of ¥ (Corollaries 4.25 and 1.56 in [60]). In the case when G is a simple
Hermitian symmetric Lie group, 3 is one-dimensional by [60], p. 513. Hence the
center Z of K is one-dimensional. Take the identity component Z, = S! of Z.
Then by Theorem 4.29 in [60] K = (Zy) K. for K the analytic subgroup with
Lie algebra [, f]. The group K has a finite center, therefore by taking quotients by
K we get a homomorphism v: K — Q = §! from K to the quotient Q =2 §1 of
Zo = S! by a finite subgroup.

Example 1. For G = Sp(2n,R) we have K = U(n) and K, = SU(n). Therefore
the first construction gives the homomorphism v: K — U(n)/SU(n) = S'is simply
v(k) = detc (k).

The second way to construct v: K — S is by use of the action of G on the
Hermitian symmetric space X = G/K — it is shown in [55] that v equals the de-
terminant of the linearization of the natural action of K C G at the fixed point
x = [Id] € X = G/K. Note that the two constructions of v agree up to the power
—2dimg (X)/#(Zy N K) since the determinant of a scalar matrix equals the scalar
raised to the power of the dimension of the space (cf. [58] — proof of Theorem 6.1
and [55] — proof of Théoréme 2).

Example 2. For G = Sp(2n, R) we have K = SU(n), Zy = D — the subgroup
of diagonal matrices in U(n) and #(Zy N K) = n. As in this case dimg (X) =

n(n + 1)/2, the second construction gives the homomorphism v(k) = detc(n"_l) (k).

We use the second way to define pg now. Proposition 1.9.1 1s then demonstrated
as follows.

Proof. Consider the point x = [Id] € X = G/K. Itis a fixed point under the natural
action of K C G. By the construction of v, and of the equivariant moment map

u: Lie(G)x X — R for a path k= fkl_oin K withkg = Id representinglg e Kk,
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we have

3 1 1
B fo pn ) ) = = [O (ax)y ()t

1 (' 4
. f s detc (i), dete(r)o,)
o dt

I

= —varangle({detc ((k;)+, )} _o)
= —5(k).

Hence v, equals v on K, and consequently v, equals og on 7((G) = m(K).
Therefore the homogeneization vg of vy Equals —og on w1((G) and this confers the
equality vg = —g¢g on the whole group G. L

2.4. The equality of the homomorphisms 4 and I, on ni(Ham(M, ®w)). Now
we prove Theorem 2.

Proof. First we note the following equality due to Fujiki [44]. Given the bundle Z
over § which has Z; := (M, J) for the fiber over J, denote by Tz ¢4 the vertical
bundle and take ¢;(K) to be the Chern form of the vertical canonical bundle K
relative to the Hermitian metric given by A(J) = g(J) —iw inthe fiber over J € 4,
then

Q= [ e1(K) pro”, (17)
fiber

for p: Z — M the smooth projection map.

The Hamiltonian fiber bundle over §2 corresponding to aloop y = {¢, }}:0 in%g
based at the identity can be described (cf. [76])as P, = M x D_Ug M x D4, where
D_ and D, are two copies of the disk [D and the gluing map ®: d(M x D_) =
M x 8" — M xS = 3(M x D) is given by ®: (x,1) = (¢, x,1).

Note that given a Hamiltonian loop y = {¢;}o</<1 the bundle P = P, witha
vertical compatible complex structure is obtained by amap D : ) — 4 representing
a relative homotopy class in 72(. §,) comresponding to the loop y~!' = {y; =
() 1 o<r<1 —thatis 3D : S — g is givenby {(y¥)+ Jo}._,. Note that P |p_ with
its fiberwise complex structure is equal to D*Z. We denote by H, the zero-mean-
normalized Hamiltonian for y and by G, the zero-mean-normalized Hamiltonian for
y~1. The two are related by the formula G,(x) = —H, (¢ x).

Moreover

L= [ [ Dreon.
D Jfiber
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Since the coupling class u is represented by the form T (= {won M x D, ; o +
d(yr(r)H(¢d;x)dt)) on M x D_}, we have

o= [ [ Dr®)@" +nd o) @) di ™)
D ¢/ fiher
_ f D*er(K)o" +n [ D*er(K)d (Y (r) Hy () di 0™,
D J/fher D Jfiber

By the result of Fujiki the first summand equals f, D*Q. It is therefore enough to

show that the second summand equals fol dt [, SGre - Jo)Gi(x)w™. The second
summand satisfies

" f D* ey (K)d(y(r) Hy ¢y x) di ™)
D Jfiber
. f A(D* 1 (K)y(r) Hy (¢ x)do™Y)
MxD

= n/ H (¢ x)D*cr0" 1 dt
M xS

and by Equation (6) we have

! 1
:fo /J;{[S(WI-JO)HI(qux)a)n(x)dl = —fo [AJS(WI'JD)Gz(X)wn(x)dt_

Consequently we have 7, (y) = —,(y~1) = A(y). O

2.5. The finite-dimensional case G = Sp(2n,R) and the Maslov quasimor-
phism. In this section we would like to write out the finite-dimensional example
more explicitly in the case G = Sp(2n, R) — for later use in particular. When G =
Sp(2n, R) the maximal compact subgroup is K = U(n) and the space X = G/K
has several guises. First it can be considered as the Siegel upper half-space [36]
$, ={X +iY | X,¥ € Mat(n,R), X = X',V = V' ¥ > 0} C Mat(n,C).
Here there is a natural Kéhler form ogjege = trace(Y ~1dX A Y~1dY) where the
complex structure comes from the one on Mat(n, C). This form is Kihler—Einstein

with cosmological constant A = —”2L1 [86], that is,
, n+1
RlC(O-Sif:gel) = - 2 OSiegel - (18)
From which, since proportional metrics have equal Ricci forms, we have
2
OSiegel = n_HaBergmans (19)

for the Bergman Kihler form ogergman 00 X.
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Second, the space X = (/K can be considered as the space J. of wyy-compatible
complex structures on the symplectic vector space (R2", wggq). In this model, a natural
symplectic form oy, is given by (Oyace) 7(A, B) = %trace(JAB ) for J € J. and
A, B € Tj(J.). A short computation based on the fact that all G-invariant 2-forms

on X are proportional gives

1
Otrace = EO.Sicgels (20)

under the natural isomorphisms J, = X, §, = X. N _
By Examples 1 and 2 the Maslov quasimorphism 7 ;,: G — R restricting on K
to v forv = deté on K == U(n) can be written as

2
n+1

TLin = UG,Bergman (21)

in terms of vg for ox = OBergman. Therefore by Equation (19)

TLin = UG,Sif:gcl (22)
for oy = 0giceal, and by Equation (20)

1
~TLin = VG, trace (23)

2

for oy = Oyace-

Note that by [86] 0siege1 and consequently oyr,ce has non-positive sectional curva-
ture. Moreover Oy,ce is Kihler—Einstein with cosmological constant —(n + 1).

Now consider X == J, with 0x = Oyace- By Equation (23), Lemma 1.4.1 and by

g s 1

the definition of v we have —2 71, = vg = ve(Z) = ng ox — fo 1) (g - x)dt.
Hence

1 _ 1
[ ox=sma@+ [ neoe v )
Dy 0

For later calculations we will want the moment map summand in this formula more
explicit. We write a formula for @ using the fact that it is an equivariant moment map
for the action of the semisimple Lie group Sp(2#, R) (ct. [60]) on §,. Note that an
equivariant moment map for the action of a semisimple Lie group on a symplectic
manifold is unique [66]. Hence it is enough to show the following.

Lemma 2.5.1. Consider the action of Sp(2n,R) on 8, = J. with the invariant
Kdéhlerform Oysce. Thenitis Hamiltonian withthe equivariant moment map g, : S, X
sp(2n,R) — R given by us, (J)(E) = —%trace(E J).

Proof. The symplectic form ¢ on §,, can be described as 0 (A4, B) = %trace(JAB )
using the isomorphism §,, = J,. — the space of complex structures on [R?" compatible



100 E. Shelukhin CMH

with the standard symplectic form. Let us first compute the vector field E generated
by the infinitesimal action of E. At a point J € §,, denoting &, = exp(f &) €
Sp2n,R)ywehave 5 = £|, @, J = 4|, ,®,J®;' = EJ-JE = —|J, E|.
Then for B € 773, we compute

dy(trace(EJ))(B) = trace(E B).

Finally, for B € T; 8, we have
(i50)s(B) = 07(8y, B) = —0s(|J, B], B) = —trace(J|J, E]B)
1 1
= —Ztrace(—.] BEJB + J?EB) = Ztrace(EJBJ + EB)
1
= —t EB).
5 race(Z B)

The last expression equals —d y (— %trace( EJ))(B) as we have computed, and we are
done. L

2.6. The local type of the quasimorphism on ﬁ;;im(M , @). We shall now describe
the local behaviour of the quasimorphism & — we compute its restriction to subgroups
&p C § of diffeomorphisms supported in embedded balls B in M, proving Theo-
rem 3.

Definition 2.6.1 (Embedded balls). We denote by U the set of embedded balls in M.

Given a symplectic manifold (M, w) with an almost complex structure Jy € &
with Hermitian scalar curvature S(Jo) of mean ¢ = n [, et (TM, 0)o" "1/ [}, &",
and B € U an embedded ball in M, we will show that the restriction vg = ©|g, of
the quasimorphism & to 5 = Ham,.(B, @|p) satisfies

= —zp — cCal,
VB 21‘3 C

where tp is the Barge—Ghys Maslov quasimorphism on §g = Ham,(B?", a4) and
Cal is the Calabi homomorphism.

Since the quasimorphism & is homogenous and its distance from & j, is bounded
we can make calculations with & j, allowing for an error term that vanishes under
homogenization. The proof consists of writing vg (using Section 2.5) as the sum of
%r and a remainder term. Then we use some differential geometry to show that the
remainder term equals a multiple of the Calabi homomorphism. For the differential
geometry part we would like to use the canonical connection on the Hermitian man-
ifold (M, w, Jy) that is defined by the following of its properties. It preserves @ and

Jo and its torsion has vanishing (1, 1)-component:

Vdp=0,Vo =0TV = 0. (25)
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This connection has an equivalent definition in terms of d-operators on complex vector
bundles, which is the one used in [30]. Itis sometimes called “the Chern connection™,
and sometimes “the second canonical connection of Ehresmann—Liebermann™ (cf.
[51], Section 2, [61] and [87], Section 2).

Consider B as a smooth embedding B: B?" — M from the standard ball

B2 = {(z1,...,22) | Z"_|z;* < 1} C C"

to M . For purposes of trivialization and estimates choose foreach twopointsx, y € B
a path yy , starting at x and ending at y that depends continuouslyon (x, y) € Bx B
where y, . is the constant path at x for all x € B. This can be achieved for example
by taking linear segments in B2". Then we have the following lemma.

Lemma 2.6.1. Let B_ € B be any closed ball compactly contained in B. Then the
following two statements hold by continuity and compactness of B_ x B_.

(1) Forevery one-form A € QY(B) the function B x B_ — R given by (x, y)
fyx ) A is bounded by a constant depending only on B, B_, A.

(2) Given any connection V' preserving w and any fixed symplectic trivialization
TB = V x B for a symplectic vector space (V,wy), the map B_ x B_ —
Sp(V, wv) obtained by means of the trivialization by the parallel transport
Ty, TxB — T, B with respect to V' has a compact image in Sp(V, wy ).

Take a path {qbf}}zo C Gg with ¢pg = Id. We shall now unwind the definition
of vg({¢:}!_,). Over each x € B we have the fiber $y of the bundle § — B. In
S we have the path (¢, - Jy),. Now we shall define a path ®(x); in Sp(T, M, w,)
associated to (¢;)+, such that under the action of Sp(7, M, wy) on Sy, we have
P(x)r - (Jo)x = (P - Jo)x = (qbf*qﬁr_lx)(J0)¢rlx(¢f*¢r1x)_l'

Indeed consider for each 7 € [0, 1] the path y ¢ 1x" The parallel transport along

gt b "M — T¢;1xM- Then ®(x), =

(cbf*gb,—‘x) oI’y i "M — TxM!is the required map. Indeed
X, ! X

this path preserves Jy and maps I'), _,

®(x); - (Jo)x = P(x)s (Jo)x P(x)7
= (¢)I*¢t_1x)ryx,¢r_1x (Jo)x(ryx!qbr_lx)_l(¢t*¢;1x)_1
= (@141, (J0) g1 Bragm1,) !
= (¢r - Jo)x,

by preservation of Jy. Henceforth we omit the subscript z in (Jy), whenever this is
determined by the context.

Then for all x € B we have the loop §(x) = {®(x); - Jo}!_, # [Jo. ®(x)1 - Jo].
We then for all x € B choose a disk D(x) that bounds §(x) — in fact one can
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construct D(x) as the geodesic join of {®(x), - Jo}l_, with Jp — that is D(x) =
|, [Jo. ®(x); - Jo] properly parametrized. Denote y,(x) = [Jy, P(x); - Jp]. Denote
by B (x) the path {®(x), - o}, =%

Recall from Section 1.4 that ¢ >~ & denotes the equality of the functions a, & up
to a function that is bounded by a constant that does not depend on their arguments.
Compute

1
vp (bt o) ~ [D Q- fo w(X0) (s - o)

_ [B ( fD (x)crx)wn(x)— fo 1 [M S - Jo) Hy (1) (x).

Now note that by Equation (24) and the definition of the moment map for the action
of G = Sp(2n)on X = G/K,

(26)

1
[ o = TR ) + f (@) - (Joy)dt,  (27)
D(x) 0

where the function 21(x),(-) = ps, (E(x))(-), for B(x); = % |t ®(x); 0 P(x)]L,
is the contact Hamiltonian for the canonical lifting of ®(x); to the principal S !-bundle
of unit vectors in AN TS, simply by use of the differential (cf. Equation (10)). As a
side remark it may be said, following [32], that this finite-dimensional moment map is
the main reason for the existence of the corresponding infinite-dimensional moment
map.

Consequently, integrating over B with respect to the form ", we have

1

ailog) = 5+ [ wali@)_ge" ()

1
+L[) h(x) (P(x); - Jo) dt &" (x) (28)
1
_/ f S(pe - Jo) Hi(x)o" (x).
o JM

By the definition of the Barge—Ghys Maslov quasimorphism on ¥ and Lemma 2.6.1,
the first term homogenizes to %TB. Our goal is hence to compute the sum of the
second and the third terms.

By LLemma 2.5.1 we rewrite the second term in Equation (27) as

1 1
f B (D), - Jo) = — f Srace (B0 (@), - Jo)dr (29
0 0

for B(x); = &= ®(x); 0 D(x)7".
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Now note that instead of using the parallel transport along Ya,prtx O define

®(x);: Tx B — T, B we could use the one along p,, = {qbz_,lx};,zo to define the
map ¥(x), = (¢I*¢;1x) oy, ,: TxB — TxB. Then we have

q)(x)l — lp(x)IU(x’t): (30)
for the unitary map U(x,?) = Fp_xl,: oIy . .B — T, B. Form T(x), =

%|r:1lll(x)r o W(x); ! and O(x,1) = %h:zU(x,t) o U(x,t)~!. Then by Equa-
tion (30) we have

=,
!

E(x); = ¥(x)Ox, NV + T(x), (31)
and

B(x), - Jo = O(x), Jo®(x)] " = V(x), U(x, 1) JyU(x, )" W(x), !

1 (32)
= W(x) o¥(x), = W(x); - Jo,
because U(x, 1) is Jy-linear.
Therefore, by Equation (29) and noting that
trace(W (x) O(x, NW(x)7  (¥(x), - Jo)) = trace(O(x, 1) Jo)
we have
1
| @0 o
0 (33)

1 1 1 1
— _/;, Etface(@)(x,t) -Jo)dt — fo Etrace(r(x)l(q,(x)l - Jo))dt.

Note additionally that
1 1
Etrace(G)(x, t)-Jo) = —=tracec(O(x, 1)),
i

considering ©(x, ) as a skew-Hermitian operator on the complex Hermitian space
(Ty B, Jy, wy). Moreover,

tracec (O(x,1)) = " (x,1),

where r
O"(x.1) = ——|e=U"(x,1) 0 2
T

forU"(x,t) = (1"1;;1”)_1 oI’} : Ap Ty B — AT, B, for the naturally induced

a7l x
parallel translations on the Herrtnitian complex line bundle AZ.TB, endowing TB

with the Hermitian structure (J/y, @) and the connection V.
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Therefore
1 1 1
[O HOO D) » To) = fD 3 [0 trace(T () (D), - Jo)),  (34)

where ip is the curvature two-form of the connection V" on Ag.(TM, Jo) naturally

induced from V on (T M, Jy) and D g(x) is the disk spanned by U}:o Vol Note

2
closed

that dDp(x) = pqu#yx’q,)qu. Now p|p € Q (B, IR) has by the Poincaré lemma

a primitive « € Q1(B, R). Hence by Stokes’ formula we have

f o) :/ o —f . (35)
Dp(x) Px1 Ve x

Choosing B_ € B such that supp(¢;) C B_ foralls € [0, 1], we have Vygrly =

y forall y € B\ B_, hence by Lemma 2.6.1 we have the following uniform estimate
for the second term | fy ) o| < C(B_, B), foraconstant C(B_, B,«) depending
x ,q’)l_ x

only on a, B— > |J;_, supp(¢) and on B.
Now denote ¥, = qbt_l. Denote Y, the Hamiltonian vector generating yr,. Recall
that py 1 = {¢;1x}]_, = {¥,x}]_,. Hence the first term in Equation (35) satisfies

[px,l v fol(("”f)*ina)xd:.

Hence integrating Equation (34) over B we express

1
f [ B (D) - o) di " (x)
B JO

1
f [ (Wr)*inawnd‘t
0 JB

1 1
3 [B fo trace(Y (x), (¥ (x), - Jo))dtw™ (x) + Bdd({¢:}1_,)

as

(36)

for a function Bdd({¢,}!_,) that satisfies
IBdd({¢,}}_o)| < C1(B_. B.)

for a constant C;(B_, B) depending only on o, B_ D U::o supp(¢;) and on B.
We shall now show that the first term in Equation (36) corrected by the moment

map term fol WX ) (s - Jo)dt in the definition of the quasimorphism is proportional

to the Calabi homomorphism. After that we will show that the second term vanishes.
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Let G, (for each 1 € [0,1]) be the function that vanishes near dB and satisfies
iy, = —dG;. Theniy,a 0" = na iy, w w" ! = —na dG, @™ 1. Hence

f(Wr)*iY,OJCUn = / iy co" = n[ dG, @ "}
B B B

= —n/ G, daw” ! = —n[ Gdaw” ! = —n[ G, pa" !
B B B

and by definition of the Hermitian scalar curvature we have
—- [ sy’
B

and, denoting H? (foreach s € [0, 1]) the function that vanishes near 3B and satisfies
ix, = —dH?, and noting that by the cocycle formula [74] G,(x) = —H?(¢;x),
we have

=mem%mwm.

Hence

fold:fB(%)*thawn_/OldlfMS(cbl.JO)HI(x)wn(x)
:/1dff S(ee - Jo)(H; — Hy)o",
0 M

where we extend H? by zero from B to M, and noting that H? — H, depends on ¢
only and cquals the mean [ H?w"/ f,, @™ we have

= _([M S(¢y - Jo)w”/wa”) foldt/BHf’w” = —¢-Calg({p;}l_y). (37)

Now it remains to show that fol [ race(Y(x); (¥ (x); - Jo))w" (x)d! vanishes.
First we would like to note that since the (1, 1)-component of the torsion 7 of V
vanishes, we have

T(X,JpY) =T(JpX.,Y) (38)

for all vector fields X, ¥ on M. Moreover since V preserves Jy we have
JoVe X = Vo(JpX) (39)

for all vector fields X on M, where for a vector field Z on M, we denote by V,Z
the endomorphism of TM givenby ¥V = Vy Z.

For a vector field Z on M define then the endomorphism Az of TM by Az =
Lz — Vz. Then by [62], Vol. 1, Appendix 6, page 292, we have

Ay = N7 — T(Z, (40)
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and

—trace Az = divyn(Z), (41)
where divyn(Z) € Cg°(M, R) is defined by

divprn (Z) 0" = Lzo".

Now we prove a formula relating the action of Jy on TM and the tensor Az. We
claim that for all vector fields X on M we have

trace( Ay Jo) = trace(Aj,x). (42)
Indeed
—trace(Ay Jy) = trace(V,X o Jy + T(X, Jy°)) by Equation (40)
= trace(JSoVe X + T(Jp X, ")) by Equation (38)

= trace(VeJo X + T(JpX,-)) = —traceA;,x by Equation (39).

Let us now compute YT(x), = % | W(x); o W(x)7! in terms of the connection
and of the vector field X, generating the path of diffeomorphisms {¢, }!_,. Recalling
that ¥(x); = (¢1*¢71x) o I'p, , we have

%h_ﬂl’()ﬂr — (¢t*¢;1x)(LX; - vXt)gbr_l(x)FPx,r'
Consequently,
T(0)r = (Prap—t:) (A% g1 (o) Pragrt )™ (43)
for the endomorphism Ay, of 7M. Then
trace(Y (x) (W(x); - Jo)) = trace((q‘bf*q}t_lx)(AX[)¢rl(x)(¢f*q}r_lx)_l
(1 ag=1:) s (F)x Tt (Brag1 ™)

= trace((Ax, )g= () Tpes (J0)< T, (44)

= trace(Ax, Jo) (97 (x))

= trace(Az,x, ) (g7 (X)),
by Equation (42). Hence

i
/ ftrace(T(x)I(‘I'(x); - Jo)e" (x)dt
0 /B

1
:/ ftlrace(zéljc,xf)((D;_l(Jf))wn(x)‘fi"f
0 JB

1
:/ ftrace(AJDXt)w”dl
0 JB

1
0 JB

(45)
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Therefore, assembling Equations (26), (36), (37), (45) and Definition 1.7.3 we
have

ve({i}_o) = % g ({pi}i_o) — ¢ - Calp({¢: }i_o) + Bdda({gh: }/_).

for a function Bdd, ({¢; }:0) bounded by a constant C(B_, B, «) that depends only

on B,a and B_ D U::o supp(¢;). Noting that supp(¢,*) < supp(¢,) for every
t € [0, 1], k € Z and homogenizing, we finish the proof.

2.7. The restriction to the Py quasimorphism. In this section we prove the first
point of Theorem 4 on the equality of the Py quasimorphism of Definition 1.7.4 and
the general quasimorphism from Corollary 1 when the symplectic manifold (M, w) is
monotone — that is ¢ (TM, ®) = «|w] where ¥ # 0. The computation is somewhat
similar to that of the local type — with the exception that there is no trivialization
involved really.

As in the computation of the local type, we use the parallel transport along py ;, =
{qbz_,lx};,zo to define the map W(x), = (¢7z*¢r—1x) oI'p,,: TxB — TyB. Then

Y(x) = 2| W(x), o U(x); ! will satisfy
T(x)l = (cbf*qb,_lx)(AXt)qbl_l(x)(cbf*qj;r—lx)_l

for the endomorphism Ay, of TM, for Ay, = Ly, — Vx, as in Equation (43). Then

trace(T(x)(¥(x); - Jo)) = trace(A sox, )¢, ' (X)),

as before in Equation (44). Moreover, identically to Equation (45) we have
[ trace(r (o Tl () = 0. (46)
M

We shall now rewrite © jz, ({¢; 1) via ¥,(x). Forall x € B we have the loop
8(x) = {W(x); - Jo}l_o # [Jo, (x)1 - Jo]. We then for all x € B choose a disk
D(x) that bounds §(x) — in fact one can construct D(x) as the geodesic join of
{W(x), - Jo}l_, with Jo —thatis D(x) = |, [Jo, ¥(x), - Jo| properly parametrized.
Denote y;(x) = [Jo, ¥(x), - Jo]. Denote by B;(x) the path {¥(x), - Jo}z;,fo.

Compute

1
& ((pit_y) = fD Q- fo WX )@ To)

= /B ([D(x)ax)w”(x)—fOI[MS(qbz s Jo) Hi(x)w" (x).

(47)
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Now as before by Equation (24) and the definition of the moment map for the action
of G = Sp(2n)on X = G/K

1 1
f or = TP o) - [ OG- Tyt (48)
D(x) 0

where the function 1
S0 (T) = —Etrace(T(X)zJ) (49)

is the contact Hamiltonian for the canonical lifting of W(x), to the principal S!-
bundle of unit vectors in Ag TSy, N = n(n + 1)/2 (cf. Equation (10)). Hence by
Equations (47), (48), (49) and (46) we have

1
Gttt o =3 [ wn@@itgen@ - [ [ S0 B,
M 0 JM
(50)
We shall now rewrite the Py quasimorphism S» from Definition 1.7.4 via W (x);.
Then comparing the effect of the difference in connections with the second term in
Equation (50) we shall establish the equality.
First we note that the connection V gives us a parallel transport on £(7TM, ) and
on P2, since it preserves Jo and @. Moreover, since the map det?: L(TM,w) — P?
is defined using only Jy and @ the following diagram commutes:

1"7
L(TM, 0) )1y — " E(TM, )x

det? l ldetz (51)
r
b Px.1
Ploon—1x Pz,

Inother words for Lo € £4,)-1,(TM, ) we have det* (Tgz7Lo) = Dpzr det®(Ly).
It will be more convenient to compute S, on the inverse path {yr, = ¢;! }:0. Indeed
consider the paths det®(y,, L) and v, (det?(L)) in P2 for L € £(TM,),. These

paths differ by an angle as follows
det? (Y, (L)) = ™0 (det?(L)).

Then the paths I'p det? (v, o L) = det? (I'gz7 V¢4, L) (here we use Equation (51))

and leﬁ;(detz(l,)) in (P2), also differ by the same angle. And since these are
paths in one fiber, we have

angle( L, {W;}}:O) = Varangle({eiznﬁ(r)}}zo)

= varangle({det® (T ¥is, L)}IIZD) — varangle({l"mgﬁ, (detz(L))}}:D).
(52)
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Note that the second term in Equation (52) does not depend on the choice of
L € £(TM,w)x, since both I'5 and ¥, commute with rotations of the fibers.
Therefore the function

angle(x, {{:};_o) = rezid angle(L, {¥}1_o)
satisfies
angle(x, {1, }}_p) :Le:ti(iTI}J{J " (varangle({de (Tpz7v, L)} o)) 3

— Varangle({l"mlﬁzy}}:o),

forany y € (P?),. Notefirstthat ¥, = (¢t*(¢,)—1x)_1 and therefore Iz, =
W(x)7!. Then note that

varangle({det® (T 1+, L)} ) = trin({¥(x)7 '} o)

54
= —‘ELin({qj(x)f}}:D) ( )

by the construction of the Maslov quasimorphism on the universal cover of the linear
symplectic group using its action on the Lagrangian Grassmannian [7]. Therefore

peginl, oy, arangle(idet® (P, L)) = —tia({¥()rhi—o)-  (59)

Now it remains to interpret the integral over M with respect to @” of the term
Varangle({l"mlﬁf y}!_,) in Equation (53) via the Hermitian scalar curvature. For
this purpose consider the two connection one-forms & and A on P2 — where dot = 2@
and A comes from the connection V on TM and therefore satisfies dA = 2p (for
a form 5 on M we denote by 7 its lift by the natural projection P? — M). These
connection one-forms differ by # = o — A for a one-form 6 on M. Then denoting
by ¥; the Hamiltonian vector field generating {y/;} with normalized Hamiltonian G,
(by the zero mean condition), and by ¥, the vector field generating {1,0;} we have

1 B 1
varangle(Tperdviig) = [ (yig,iode = [ i Go

We now compute as follows:

fM/OI(Wz)*iYIQ(x)dtw”(x) = fOI[M(WI)*iYIandI _ [OI[MiYIQCUndI-

(57)
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It is therefore sufficient to compute the integrand

/ iy, 0w" :n/ iy, ww" ™!
M M

= —n/ 0dG,0" 1 = —n/ doG, "1
M

M
= —2nf (0 —p)G" ! = —2n[ Gio" + an Gipw" !
M M M

:27’1/ G pw™ L,
M

by the definition of the Hermitian scalar curvature

= 2[ e g L]
M

since G;(x) = —H,; (¢, x) by the cocycle formula
=2 [ SUD (g0 ). (58)

Therefore by Equations (53), (55), (56), (58) we have from the definition of S,
(Definition 1.7.4) that

= Saivttg) =~ [ @M 0" ()42 [ ST (i (o).
(59)
Therefore by Lemma 1.4.1 we have

—Sz({(br}}:o) = Sz({Wr}}:o)

1 n n (60)
=/ TLn({W(X)r}_p)® (X)—2/ S(Jo)H (¢ x)0" (x).
M M

From Equations (50) and (60) we conclude that
2 Jo = —Sz,

which by homogenizing gives

finishing the proof.

2.8. The restriction to the Entov quasimorphism. Here we prove the second point
of Theorem 4 on the agreement of the general quasimorphism of Corollary 1 and the
quasimorphism of Entov [36] from Definition 1.7.5. First we give an alternative
definition of Entov’s quasimorphism along the lines of the definition of Py’s quasi-
morphism, which will more easily be shown to agree with the general quasimorphism.
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Definition 2.8.1 (A second definition of the quasimorphism &g,). Given a sym-
plectic manifold (M, w) with ¢;(TM,w) = 0 one first trivializes the top exterior
power AF(TM,J) = C x M of (TM,w,J) for J € g as a Hermitian line

1

bundle. The square P? of the unit frame bundle S! x M =~ P S—> Mol L =
AL(TM, J, w) —that is the unitary frame bundle P2 of L®? — admits a natural map
det?: £(TM,w) — P2 from the Lagrangian Grassmannian bundle £(7TM, @), since
E(TM)y = U(TM,, 0y, Jx)/O(n). Forapath ¢ = {¢,}1_, in € with ¢ = Id,
choosing a point L € £(TM, w), we have the curve {¢;, . (L)}o<r<1 in £(TM, w),
and consequently the curve {det*(¢, s (L)) }o<r=1 in P2, By means of the induced
trivialization P2 2 S' x M this gives a continuous curve e!277®): [0, 1] — S,
Define
angle(L, ¢) = varangle({e’2"?}]_ 1y = 9(1) — 9(0),

and then the function

angle(x.¢) = inf angle(L. ¢)

1s measurable and bounded on M and
Ri@) = [ angle(z. §)o" (1)
M

does not depend on homotopies of q_g with fixed endpoints, defining a quasimorphism
Ry € >R

T et = . Ky .
Its homogeneization ®g,: G — R, defined by ©g,(¢) = limp_ o Mlku is a
homogenous quasimorphism on G that is independent of the non-canonical choices
of trivialization, and of the almost complex structure J.

Proposition 2.8.1. Definitions 1.7.5 and 2.8.1 for the Entov quasimorphism are
equivalent.

Proof (Sketch). Following Appendix C in [84] one notes that the trivialization of
(TM,w,J)overU = M \ Z can be chosen to agree with the restriction from M to
U of a given trivialization of A7 (T'M, J). Then given a path 5 one immediately has
>~ equality of the two angle(x, q_g) functions on U 5 = M\ Z 3 by the construction
of the Maslov quasimorphism on the universal cover of the linear symplectic group
using its action on the Lagrangian Grassmannian [7] and the commutativity of the
diagram

E:2
E(TM, 0)|lg —= (AL(TM, T )82 —=tC|y

I - |

clf:2
LOCH, wgy)|ly —— (\" PCM®2|y =——="C|y,
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where ?C is the trivial complex line bundle C x M over M, and all vector bundles
are complex and Hermitian. (]

Now we turn to showing the equality & = &g,. The proof is very similar to the
one for the first point of Theorem 4 and is even somewhat easier. Therefore we mostly
outline the main steps and leave out details that are identical to those in Section 2.7.

First we recall Equation (50)

1 s 1 ) 1 n ' . n
Sttt =5 [ wal¥ile @ [ [ S mHixe .

We also recall the commutation relation of Equation (51):

1"_
L(TM, ),y 1x ——> L(TM, w)y

det? l l det2

2 Pxt
P(‘?—"r)_lx Pi‘

That is for Ly € £4,)-1,(TM, ) we have detz(prltLo) = '3 det®(Lyg).
It will be more convenient to compute Ry on the inverse path {y, = ¢;'}]_,.
Indeed the path det? (v, s, L)in P 2 gives by the trivialization a smooth angle function

¢270) . [0, 1] — S'. The path I8 (P?)g-1x — (P?)x also gives by the
trivialization a smooth angle function ¢*27¢®1): [0, 1] — S'. Noting the relation
Tprrdet® (Y, L) = det?>(Tpz71,, L) (by Equation (51)), we have

Px.t

angle(L, {1,#;}}20) = varangle({eiznﬁ(l)}}zo)
= varangle({det®(Tpr7V1,, L)}i—o) (61)

- Varangle({eizn‘”(x”)}}:0).

Consequently, the function angle(x, {,}!_,) = inf; ¢ £(TM @), angle(L, (vl )
satisfies

angle(x. {1 }_o) )
= L ogdlf, | (arangle({de (Tprvris, L)} 1)) — varangle({e 27000 ).

Note first that ¥, = (qbr*(qbr)qx)_l and therefore Tg 7y, = W(x);!. Then
note that

varangle({det®(Tpr¥rs, L)}—o) = tun({W(x)7 "} —0) = —trn({W(x):}1—o)
(63)
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by the construction of the Maslov quasimorphism on the universal cover of the linear
symplectic group using its action on the Lagrangian Grassmannian [7]. Therefore

s (% ’w)x(varangle({detz(rmwr*XL)}}:O)) ~ —r (W) 3 ). (64)

It remains now to interpret the integral over M with respect to " of the term
varangle({e! 27?1 }1_,) inEquation (62) viathe Hermitian scalar curvature. For this
purpose note that the trivialization P2 2= S1x M is equivalent to a flat connection o on
P? without holonomy. Consider now the two connection one-forms & and A on P2 —
where in particular do = 0 and A comes from the connection V on 7M and therefore
satisfies d A = 2p (for aform  on M we denote by 7 its lift by the natural projection
P2 — M). These connection one-forms differ by § = o — A for a one-form 6 on M.
Then denoting by Y, the Hamiltonian vector field generating {1, } with Hamiltonian
G normalized by the zero mean condition, and by 171 the horizontal vector field that
projects onto Y; generating the path {1,@;} of a-preserving diffeomorphism of P2 (in
other words 1/, = Id x ¥, in the trivialization P2 =~ S x M) we have

1 1
vasangle(le 00O _) = [ (0ip Gndi = [ o di. 3)
0 ! 0

We now compute as follows:

1 1 1
f [ (wz)*iyﬁ(x)dtw”(x)=f /(W;)*iytea)ndIZ[ [ iy, 0w"dr. (66)
M JO 0 M 0 JM

It is therefore sufficient to compute the integrand

/ iy, O™ = n[ Qiy[a)a)”_l = —n[ 0d G, 1 = —n[ d0G, ™!
M M M M

— 271/ 0G0 = 2n/ Gipow™ ! = 2n/ Gepw™ Y,
M M M

by the definition of the Hermitian scalar curvature

= 2/ G, S(Jo)a",
M

since G;(x) = —H, (¢, x) by the cocycle formula
-2 [M S (o) Hy ($e2)0" (x). (67)

Therefore by Equations (62), (64), (65), (67) we have from the definition of Ry
that

Ri({¥e}i—o) = —f rLin({‘I’(X)z}}_o)w”(X)Jer S(Jo)Hy (¢ x)" (x). (68)
M

M
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Therefore by Lemma 1.4.1 we have

Ri(§ped o) = —Ri({yi}_o)

1 n n (69)
_ [ (P00} p)a" (x) — 2 [ S(To) Hy (i )" (x).
M M

From Equations (50) and (69) we conclude that
26 Jo s Rl,

which by homogenizing gives

26 = &gy

finishing the proof.

2.9. Calibrating the L% norm. Here we derive Equation (8).

Note that the second summand of & j, (¢) = [p. Q- fol S(Jo)H (¢ x)w™ (x)dt
3
satisfies

1
f S(Jo) Hy (cbIX)w”(X)dt‘
° 1 (70)

= ”S(JO)”L'?(M,w”)‘/ | H:l|Lem,omydt
0

where | < p,g <ocand 1/p + 1/g = 1 and is therefore bounded by Cp||¢;}||k,p
forevery k > 0and 1 < p < oo.

Let us turn to the first summand (5, Q. First note that since on the Siegel upper
b

half-space §,, the natural invariant Kdhler form o, hasa primitive A, thatisbounded
by a constant C(n) with respect to the metric induced by (o7, . js, ) and vanishes on
geodesics starting at 7 Id, the infinite-dimensional space ({, €2, J ) also has a primitive
A for Q that is bounded with respect to the metric induced by (€2, J') by the constant
C(n,w) = C(n)Vol(M, »")'/? and vanishes on geodesics starting at Jo. That is

IA(T)| < C(n)Vol(M, ™) /2Q(T, IT)/2,

for a vector T € Ty g. In that case fD(g = fr;'lo A= fol Ag, 7o ((Pr)+ Lx, Jo)d!
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and consequently

1
\ f sz\scm,w) [0 Q200 (@)L, Tor (1 - To) (@) L, o)) 2
&

< C'(n, ) fo 1 ( fM trace(¢0)s (Ly, JO)Z)w”)mdr

1 1/2 (71)
= C’(n,a))/ (/ trace((Ly, JO)Z)a)”) dt
0 M
1
< C”(n,w,Jo)f (/ (X.|? + |VXI|2)a)”)1/2dt
0 M
=CO0n. 0, 1y)|d]2,2-
Therefore by (71) and (70) we have for all gS € & the estimate
Cr($) < Cn, @, Jo)|ll2.2- (72)

3. Discussion

(1) It was shown by Donaldson in [31], [32] that § acts in a Hamiltonian way on
additional spaces (e.g. spaces of submanifolds/cycles). These may yield more homo-
morphisms 771 (Ham) — R by the action-homomorphism construction for equivariant
moment maps, and perhaps new quasimorphisms on . Moreover, Futaki shows in
[47] that the space g;,; C & of integrable almost complex structures can be endowed
with additional symplectic structures that give different moment maps for the action
of §, from which the Bando—Futaki invariants F,, are obtained when restricting to
the subgroup §j,. It would be interesting to extend the methods of Futaki to all €,
taking care of the Nijenhuis tensor, and to check two things. First it is most likely that
the corresponding action-homomorphisms on 771 (§) will coincide with the invariants
I, (cf. [64]) obtained by integrating the k-th vertical Chern class times W t1=k in
Definition 1.7.1. Second, it would be interesting to extend the perturbation of Futaki
to incorporate such invariants as /. ., corresponding to symmetric polynomials that
are not elementary.

(2) Itis interesting to note that the Entov quasimorphism (Definitions 1.7.5,2.8.1)
is defined on the extension J = Symp(M, w) of the group ¥ = Ham(M, w), while
the moment map picture is currently stated for the action of ¥ on ¢ only. It is
therefore interesting to check whether in the case ¢1(7TM, @) = 0 the moment map
for the action of & on ¢ extends to a moment map for the action of # on ¥ —along the
lines of [32] for example. It would also be interesting to investigate the possibility of
extending the moment map this way without conditions on ¢y (7M., w) to provide an
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extension when it is possible and to investigate the obstructions to extending when
the extension is not possible. This may well be related to the Flux homomorphism.

(3) It is interesting to investigate the restriction 4, of @ to 71§ for symplectic
manifolds (M, @) of finite volume that are not closed. Does this restriction have an
interpretation like /., in terms of characteristic numbers of the associated Hamiltonian
vector bundle? It would also be interesting to say something new about the Entov
quasimorphism in the new interpretation. Can it be computed for example for the new
symplectic manifolds constructed by Fine and Panov ([42] and references therein)?

(4) It would be interesting to compare the general principle for generating quasi-
morphisms introduced in this paper with other general constructions of quasimor-
phisms. While the relation to the Burger—lozzi—Wienhard construction of the rotation
number from [17] is at least intuitively relatively simple to trace, the relation to the
works of Ben Simon and Hartnick [11], [10], [12] (cf. Calegari [23]) is somewhat
more mysterious, since there seems to be no straightforward analogue of the Shilov
boundary for the space ({, 2, J ) of compatible almost complex structures on (M, w).
Hence it is an interesting question to exhibit a specific explicit invariant partial order
or poset that gives the quasimorphism & on I:I-;m(M ,W).

(5) From a general philosophical point of view the action of ¥ = Ham(M, »)
on g with Donaldson’s equivariant moment map allows one to consider § in its
C -topology as a generalized Hermitian Lie group with a generalized Hermitian
symmetric space of non-compact type. In a way it behaves similarly to Sp(2n, R),
which would be a “Hermitian” feature of §. In comparison, the group ¥ with the
Hofer metric and related invariants is known to exhibit certain “hyperbolic features”
(cI. [75]) — shared with Gromov-hyperbolic finitely generated groups. This approach
can be used to study the representations into ¥ of fundamental groups of compact
Kihler manifolds, e.g. Riemann surfaces of genus at least 2. It is easy to construct
the analogue of the Toledo invariant for representations of surface groups (using
the bounded 2-cocycle of Reznikov [80], [81], [82] that equals the differential of
& j, which corresponds to the “bounded Kihler class™) that satisfies a corresponding
Milnor—-Wood type inequality (this can for example be proven using the quasimor-
phism &j,). One could then check which values of the Toledo invariant can be
attained — note that this value will be /., on a certain loop y, associated with the rep-
resentation p, and hence for Kdhler—Einstein manifolds is conjectured to vanish [84]
— this holds for example on (C P”, wgs) [37], [39]. These methods could possibly be
used to obtain restrictions on Hamiltonian actions of such groups, which would be
complementary to those established by Polterovich (cf. [75]), since surface groups
are undistorted. In particular the notion of maximal representations (following works
of Burger—lozzi—Wienhard and others cf. [16] for a survey) could be defined and their
properties studied. The above-mentioned works of Ben Simon and Hartnick could
again be of some use.
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Note also that while certain embeddings of right-angled Artin groups (and hence
of most surface groups) into § of any symplectic manifold were constructed by
Kapovich in [59] these representations will have zero Toledo invariant. Indeed these
constructions either factor through the subgroup &g of diffeomorphisms supported in
a ball, where the restriction of the quasimorphism to ¢ is trivial (cf. definition 1.7.3
of the Barge—Ghys average Maslov quasimorphism) or take values in '§ of a surface
of genus g, where the restriction /., vanishes since 71 (%) is trivial (or torsion for the
sphere). The surface can also have boundary — the Toledo invariant will still vanish, by
the embedding functoriality (Proposition 1.7.1). However, it is quite an easy fact that
since I-’I-;m(M , @) forclosed M is perfect by a theorem of Banyaga [5], every element
v € miHam is of the form y = y,, for some representation p: 71(Zg) — Ham (one
can take g to be the commutator length of y € Ham). Hence for M = Bl, (CP),
say, there is a nonzero Toledo invariant representation, the corresponding class in
71 represented by a toric loop. It would therefore be interesting to write this class
explicitly as a product of commutators in Ham.

(6) Another interesting computation to make is that of @ on Hamiltonian paths
generated by a time-independent (autonomous) Hamiltonian. This would give a
quasi-state-type functional (cf. e.g. [38], [77]) on C*°(M, R) corresponding to the
quasimorphism @. This functional would retain the properties of linearity on Poisson-
commutative subspaces and Symp(M, w)-invariance, however it would not be mono-
tone (since this would imply continuity in the L°°-norm) or vanish on functions with
supports displaceable by Hamiltonian isotopies. In particular, it would be curious to
find a formula for the value of this quasi-state on Morse functions on the manifold
in terms of local data around the critical points, similarly to what was computed by
Py in his thesis [79] for the case of the two-sphere S2. Here Equation (50) could
be very useful. One could also ask whether there are similar localization formulas
for actions of other groups, e.g. R¥ with tame fixed manifolds. For one, in the case
when (M, w) is toric the restriction /., of @ to 71(%) has been computed on loops
coming from the torus action (cf. [84] and references therein).
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