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Finiteness of 3-manifolds associated with non-zero degree
mappings

Michel Boileau, J. Hyam Rubinstein and Shicheng Wang*

Abstract. We prove a finiteness result for the d-patterned guts decomposition of all 3-manifolds
obtained by splitting a given orientable, irreducible and d-irreducible 3-manifold along a closed
incompressible surface. Then using the Thurston norm, we deduce that the JSJ-pieces of all
3-manifolds dominated by a given compact 3-manifold belong, up to homeomorphism, to a
finite collection of compact 3-manifolds. We show also that any closed orientable 3-manifold
dominates only finitely many integral homology spheres and any compact orientable 3-manifold
dominates only finitely many exteriors of knots in § 2,
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1. Introduction

Maps between 3-manifolds have been studied for a long time, and have become an es-
pecially active subject after Thurston’s revolutionary work on 3-manifold theory. The
existence of non-zero degree proper maps between compact orientable 3-manifolds
is a fundamental and difficult question in this area. We say that a compact, orientable
3-manifold M dominates a compact orientable 3-manifold N if there is a non-zero
degree proper map f: M — N. When the degree of f is one, we say that M
l-dominates N .

The following simple and natural question was raised in the 1980s (and formally
appeared in the 1990s, see ([Ki], Problem 3.100 (Y.Rong), and also [W2].

Question 1. Does a closed orientable 3-manifold 1-dominate at most finitely many
closed, irreducible and orientable 3-manifolds?

* Acknowledgements We thank a lot the referee for his careful reading of our paper, for providing many fine
suggestions, and in particular for pointing out the incompleteness of our induction argument in Section 5. We
thanks also Y. Liu and H. Sun for their comments on our drafts. The first and the last authors would like to
acknowledge support by MOST of China, and Institut Universitaire de France; and the last two authors would
like to acknowledge support by the Australian Research Council.
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If we allow any degree, 3-manifolds supporting one of the geometries S, f’m,
Nil can dominate infinitely many 3-manifolds. Thus any closed orientable 3-manifold
which dominates such closed 3-manifolds indeed dominates infinitely many 3-mani-
folds. At the moment these are the only known examples, so the following general-
ization of Question 1 makes sense:

Question 2. Let M be a closed orientable 3-manifold. Does M dominate at most
Sfinitely many closed, irreducible, orientable 3-manifolds N not supporting the geo-

metries of S°, }m, Nil ?

Many related partial answers to Questions 1 and 2 have already appeared in the
literature, see for example [Rol], [Ro2], [Ro3], [BW], [HWZI1], [HWZ2], [RW],
[Sol], [So2], [Se3], [Re], [WZ], [De], [Del], [Gu], [BCG], [BBW].

Finiteness of closed irreducible targets implies finiteness of possibly non prime
closed targets: the number of prime factors in the target is bounded by the number
of closed, disjoint, non parallel, essential surfaces in the domain; furthermore a
connected sum of finitely many closed 3-manifolds I-dominates each of its prime
summands, which are either irreducible or homeomorphic to S1 x §2.

Since a non-zero degree proper map between two compact orientable 3-manifolds
induces a non-zero degree map between their doubles, finiteness of closed targets
implies finiteness of the targets in the setting of compact orientable 3-manifolds (see
Remark 4.7 at the end of Section 4).

First we introduce some standard terminology in 3-manifold topology, see [Ja].

In this paper, all surfaces and 3-manifolds are compact and orientable. Also we
will work in the piecewise linear category, so all spaces and maps will be PL. Suppose
S (resp. P) is a properly embedded surface (resp. an embedded 3-manifold) in a 3-
manifold M. Weuse M \ § (resp. M \ P) to denote the resulting manifold obtained
by splitting M along S (resp. removing int#, the interior of P). Note that we allow
the possibility that S is not connected, so that it has finitely many components.

A 3-manifold M is

* prime if it is not the connected sum of two 3-manifolds neither of which is § 3

* irreducible 1I every embedded sphere in M bounds a ball in M. A prime
orientable 3-manifold which is not irreducible is homeomorphic to §2 x §1;

» J-irreducible if for every properly embedded disc D in M, thereisaball B C M
and adisc D' C dM, such that 0D = 3D’ and 9B = D U D',

* atoroidal if every 7 & 7, subgroup in 7y M is conjugate into 7;0M and in
addition w1 M is not virtually abelian. An irreducible orientable 3-manifold
such that every Z @ Z subgroup of w1 M is conjugate into 71dM is either
atoroidal, 72 x (0, 1), or the twisted I-bundle over the Klein bottle.

The JSJ-decomposition ([JS], [Joh]) of a compact orientable irreducible 3-mani-
fold M is the canonical splitting of M along a finite (possibly empty) collection J of
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disjoint and non-parallel, nor boundary-parallel, incompressible, embedded tori into
maximal Seifert fibered or atoroidal compact submanifolds. We call the components
of M \ T the JS§J-pieces of M.

Thurston’s geometrization conjecture stated that the atoroidal JSJ-pieces support a
hyperbolic or a spherical metric on their interiors. W. Thurston proved his conjecture
for any Haken 3-manifold (i.e. a compact, orientable, irreducible and d-irreducible 3-
manifold which contains a properly embedded essential surface; for details see [Thl],
[Th2]). The full conjecture has been settled recently by G. Perelman [Per] (see [KL],
[MT], [CZ], [BBBMP]), hence every compact orientable, irreducible 3-manifold is
geometrizable in the sense that it satisfies Thurston’s geometrization conjecture.

The fact that the targets are geometrizable 3-manifolds is crucial when considering
Questions 1 and 2. A consequence is that a positive answer to Question 2 implies a
positive answer to Question 1. Furthermore, since the results of [Sol] (see also [Re],
[Gu], [BCG]) and [WZ] show that a closed orientable 3-manifold dominates only
finitely many 3-manifolds supporting either a hyperbolic structure with finite volume
or a Seifert geometry 112 x E!, Question 2 reduces to the following:

Question 3. Let M be a closed orientable 3-manifold. Does M dominate at most
Sfinitely many, closed, orientable, irreducible 3-manifolds N with non-trivial JSJ-
decomposition’?

There are some partial results for Question 3 in the case of sequences of degree 1
maps (see [Rol], [So2]), or when the domain and the target have the same simplicial
volume (see [So3], [De]). Question 3 is solved in [De] when M is a graph manifold.

A general approach to Question 3 can be divided into two steps:

(1) Finiteness of JSJ-pieces: show that there is a finite set HS (M) of complete
hyperbolic 3-manifolds with finite volume and of Seifert manifolds such that
each JSJ-piece of a 3-manifold N dominated by M belongs to J#S(M).

(2) Finiteness of gluing: For a given finite set #§ (M) of complete hyperbolic 3-
manifolds with finite volume and of Seifert manifolds, there are only finitely
many ways of gluing elements in J8 (M) to get closed 3-manifolds dominated
by M.

Notice that with our terminology, a manifold supporting a Sol geometry has a non-
trivial JSJ-decomposition with only one piece homeomorphic to a product 72 x /
or two pieces homeomorphic to the twisted I-bundle over the Klein bottle. For such
manifolds in the target, the finiteness of JSJ-pieces is trivially true, while the finiteness
of gluing is much more subtle (see [WZ] for 1-domination and [BBW] if we allow
arbitrary non-zero degree).

T. Soma proved the finiteness of hyperbolic JSJ-pieces in [So2]. One of the main
results of this paper is to complete the proof of the first step by proving the finiteness
of the Seifert fibered JSJ-pieces:
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Theorem 1.1 (Finiteness of JSJ-pieces). Let M be a closed, orientable, 3-manifold.
Then there is a finite set HS(M) of complete hyperbolic 3-manifolds with finite
volume and of Seifert fibered 3-manifolds, such that the JSJ-pieces of any closed,
orientable, irreducible 3-manifold N dominated by M belong to JS (M), provided

that N does not support the geometries of S°, l:m, Nil

The finiteness of the Seifert fibered JSJ-pieces follows from a finiteness result for
the Thurston norm of all compact 3-manifolds Ms = M \ §, where § runs over all
incompressible, orientable surfaces (not necessary connected) in M, see Section 3.1.
This latter result is derived from the finiteness of “patterned guts” of all the manifolds
Mg = M\ S, where S runs over all incompressible, orientable surfaces in M , which
we prove in Section 2.

We also prove the finiteness of gluing when the targets are irreducible, integral
homology 3-spheres. Together with Theorem 1.1 (Theorem 4.1) this gives a positive
answer to Question 3 when the targets are integral homology spheres.

Theorem 1.2. Any closed orientable 3-manifold dominates only finitely many integral
homology 3-spheres.

Without any restriction on the possible degrees of the maps or on the geometry of
the target, this is the best result one can expect, since any closed orientable 3-manifold
dominates all 3-dimensional lens spaces, which are rational homology spheres.

Since a degree-one map induces an epimorphism at the level of homology groups,
Theorem 1.2 gives a positive answer to Question 1 when the domain is an integral
homology sphere:

Corollary 1.3. An integral homology 3-sphere 1-dominates at most finitely many
closed 3-manifolds.

The argument for integral homology spheres can be modified to prove the follow-
ing corollary.

Corollary 1.4. Any compact orientable 3-manifold dominates at most finitely many
knot complements in S3.

This corollary is related to a question of J. Simon on epimorphisms between knot
groups (see [Ki], Problem 1.12 (J. Simon), and Section 6).

The paper is organized as follow: The finiteness of patterned guts is discussed
in Section 2; the finiteness of Thurston norm and Gromov volume is discussed in
Section 3; the finiteness of JSJ-pieces is proved in Section 4. The last Sections 5
and 6, are devoted to finite domination results when the targets are integral homology
3-spheres or knot complements in $3.

We end the introduction by the following
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Remark 1.5. We could define the notion of domination between 3-manifolds which
are not necessarily orientable in terms of geometric degree [Ep]. But, then there are
examples of non-orientable (hyperbolic) 3-manifolds which 1-dominate infinitely
many orientable (hyperbolic) 3-manifolds (see [Ro3], [BW]). In Section 3 of [BW],
by lifting the maps in those examples to the orientable double cover of the do-
main, maps between orientable hyperbolic 3-manifolds are produced whose degree is
1 + (—1) = O rather than 2, as wrongly claimed there. This error has been pointed
out by T. Soma and many others.

2. Finiteness of patterned guts

In the Jaco—Shalen—Johannson decomposition of a compact orientable 3-manifold
along essential tori and annuli, the guts consist of the pieces which are not 7-bundles
over surfaces with negative Euler characteristic. Finiteness of guts is a basic principle,
which originated from H. Kneser’s work, see for example [A], [Ga2], [JR] for some
recent applications of guts in 3-manifold theory. We first introduce the notion of
patterned guts needed for our study of non-zero degree maps.

Suppose X is a d-irreducible and irreducible, compact, orientable 3-manifold.
According to Jaco—Shalen—Johannson theory ([Ja], [JS], [Joh]), there is a unique, up
to proper isotopy, characteristic 3-submanifold ¥ C X which is an union of Seifert
spaces and /-bundles.

This characteristic submanifold has a unique decomposition, up to proper isotopy:

T =(S\ IBy) U IBg,

where /By is formed by the components of the Seifert pairs which are 7-bundles over

surfaces I, where F has negative Euler characteristic y(F) if aFF # §. We make

the following convention in this paper: if a component of X is a Seifert manifold and

also an /-bundle over a surface, we will always consider it as an / -bundle.
Therefore we have a decomposition

X = (X \ IBy) Ua, 1By = Gx Uy, IBg,

where Ay is the collection of frontier annuli of /By in X. We call Gy = X \ By the
guts of X, and the decomposition above the Gi-decomposition for X. The embeddings
of Gx, Ax and /By are unique up Lo proper isotopy in X.

Suppose S is a closed, incompressible surface in an irreducible 3-manifold M.
Then Ms = M \ § is d-irreducible and irreducible. For such a surface §, we write
the G 1 decomposition of Mg as

Mg = Gs Uy, 1B5.
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Definition 2.1. Suppose X is an orientable, irreducible and d-irreducible 3-manifold.
A 9d-pattern for X is a finite collection of disjoint annuli A C dX, and given A we
say that X is d-patterned.

Example 2.2. For each component G of Gg, G N Ag isa d-pattern for Gg. We often
call the pair (G, G N Ag) a patterned guts component for the surface S.

The main result of this section is the following finiteness result for patterned guts:

Theorem 2.3 (Patterned guts finiteness). Let M be a closed, orientable, irreducible
3-manifold. Then there is a finite set (M) of connected, compact, orientable, 0-
patterned 3-manifolds such that for each closed, incompressible (not necessarily
connected) surface S C M, all patterned guts components of (Gs, Gs N As) belong
to G(M).

Proof. The proof of Theorem 2.3 consists of three steps.

Step 1. Construct a first “approximation” to the GI-decomposition by applying
a refined Kneser argument.

Fix a triangulation K of M. Suppose that K has / tetrahedra. For simplicity, we
also assume that K has only one vertex v (see [JR] for example). Let S, be the normal
sphere which is the boundary of a small regular neighborhood B, of v. Suppose that
§ is a closed orientable incompressible surface in M. First deform § to be a normal
surface in (M, K). We can assume that S NS, = @. Let S, = S U S,,.

Each tetrahedron 7" has seven normal disc types, four triangular types and three
quadrilateral types, see Figure 1. Since §, contains §, and S, is embedded, for each
tetrahedron 7" of K, T N S, contains all four triangular normal disc types but at most
one quadrilateral normal disc type.

Let M, = M\ By, K, = KNM,,and T, = T N M, for each tetrahedron
T in K. Then K, is a truncated triangulation of M,, and each 7y is a truncated
tetrahedron. Now we consider § C M, = |K,|.

If § N 7, contains a quadrilateral normal disc, then T \ § contains two non-
product regions, which are truncated prisms: they are truncated from 7" by using this
quadrilateral normal disc and four non-parallel triangular normal discs S N 7', see
Figure 2. The boundary of each such a truncated prism component has seven faces:

(1) two triangular normal discs which liein § U Sy;

(2) one quadrilateral normal disc which lies in §;

(3) two hexagonal faces which lie in the boundary of 7T';
(4) two quadrilateral faces which lie in the boundary of 7.

It S N T, contains no quadrilateral normal disc, then 7, \ S contains just one
non-product region, which is a truncated tetrahedron: itis truncated from T by using
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Truncated prism

four non-parallel normal discs of triangular type. The boundary of such a truncated
tetrahedron component has eight faces:

(5) four normal discs of triangular type which liein § U Sy;
(6) four hexagonal faces which lie in the boundary of 7'.

Note that each remaining component of 7, § is a product region, whose boundary
is formed by two normal discs of the same triangular (resp. quadrilateral) type and
three (resp. four) vertical quadrilateral faces which lie in 97, see Figure 3. Moreover
in K4 \ S, each hexagonal face given in (3) or (6) is identified with a hexagonal face
given in (3) or (6), and each quadrilateral face given in (4) is either identified with a
quadrilateral face given in (4), or with a vertical quadrilateral face of a product region.

Let O be a quadrilateral face given in (4). If in K, \ S, @ is identified with a
vertical quadrilateral face of a productregion, we call Q a frontier quadrilateral face.
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Product regions

Figure 3

Otherwise we call O a non-frontier quadrilateral face.

Now we glue together the truncated prism components and the truncated tetra-
hedron components of K, \ § along their hexagonal faces and their non-frontier
quadrilateral faces to get pieces Py, ..., Py. Let G} be the union of those pieces P;,
I = Llivewle

Note that IM,5 = S; U S, U S, where S; and S, are two copies of §, and

(i) E)Gé = (M,5 N Gé) U (union of frontier quadrilaterals).

Now wehave M, \S = GLU((M,\ S)\G}). The components of (M, \ $)\ G
are obtained by gluing the product regions along their vertical quadrilateral faces,
hence they are 7-bundles, whose union is denoted by 75 ; The set I5 } is a product
or a twisted 7-bundle over a compact surface S’, denoted by N(S5'). Let N(9S")
denote the /-bundle structure restricted to 45”. Then

(i) dIBL = (IM,s NIIBLYU N(3S).
Clearly
(iil) IMss = (IMys N G3) U (3Mys NIIBS).

Combining the formulas (i), (ii) and (iii), it follows that the annuli N (3S”) in (ii)
are identified with the union of frontier quadrilaterals in (i). In conclusion, all those
frontier quadrilaterals form the intersection 15 51; N Gé, which is a union of finitely
many properly embedded annuli in M, \ S, denoted by Ag. We call A}g the frontier
annuli of Gé (of IB ;). Now we get our first “approximation” (f-decomposition

M\ S = Gg Uat IB}.

Foreach S C M, Gé is constructed from n < f truncated tetrahedra and m <
2¢ truncated prisms by gluing their hexagonal faces and non-frontier quadrilateral
faces in pairs. It follows that there is a bound for the combinatorial (therefore the
topological) types of the components of G;. A very crude bound is 5%, obtained by
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noting that there are 5 choices for each tetrahedron consisting of the empty set, the
truncated tetrahedron or one of the 3 possible truncated prisms (note if we have any
quadrilateral type we always get two truncated prisms in our guts). Moreover once
G4 is formed, the position of the frontier annuli A C G is fixed. Hence we reach
the following conclusion:

Conclusion 2.4. There is a finite set §!(M) of compact, orientable, connected,
d-patterned 3-manifolds such that for each closed, incompressible surface S C M,
all patterned components of (G L, G} N A}g) belong to §1(M).

Step 2. Construct a second “approximation” to the Gl-decomposition by absorb-
tion of “tiny” patterned 3-manifolds from G}; UA}; IB};.
Suppose that a component A; (ora pair of components 4; and 4;) of A}g separates

a component P from M, \ S such that one of the following patterned 3-manifolds
occurs:

() (P, A;) = (D2 x I,0D2 x I),0r (D2 x I)\ By, dD2 x I);

i) (P, A;) = (D2 x S, 1 x SV or (P, 4;) = (D? x S1)\ B, I x S1), for
some interval 7 C 3D?;

(iii) (P, A; UA;) = (Ax I, 0AxT)or ((AxI)\ B,, 0Ax I) for some annulus A.

We call any patterned 3-manifold of one of the types above tiny.

Note that a tiny patterned 3-manifold P may contain other tiny patterned 3-
manifolds. Therefore £ may contain (finitely) many components of A}g. But since
A}s* has finitely many components, there are only finitely many tiny patterned P .

Let £ be atiny patterned 3-manifold. We eliminate P by gluing it to its neighbor-
ing component(s) along A; (and A;) and then delete from A}g all components of A}g
in P. Inthis manner, we also eliminate all tiny patterned 3-manifolds contained in P.
In such an absorbtion process, we get a new decomposition Gé(l) UA};(l) IB};(l):
all components in Gé and /B é which are contained in P or are adjacent to P become
a new component of Gé(l) Uz Bé(l), all the remaining components in Gé and I'B ;
are preserved, and A}g(l) is obtained by removing from A}g all components of A}s*
in P. The new component in the new decomposition which contains P is considered
as a “pseudo” /-bundle (respectively a “pseudo” guts) component if and only if the
neighboring components of £ are /-bundles (respectively guts components).

Now consider the tiny patterned 3-manifolds of the decomposition G} (LU, L)

I B;(l) defined as above (which indeed is a sub-collection of the tiny patterned 3-
manifolds of Gé Uy L IB é). If there are some, we can continue this absorbtion process

to get a new decomposition Gé (2) U AL@) 1B } (2). Repeating this process we get
a sequence of decompositions G (n) U AL () IB{(n). Since A} has only finitely

many components and the number of components of Ag(n) 1s strictly decreasing,
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this absorbtion process must stop for some . Then we get our second “approximate”
G I-decomposition without tiny patterned 3-manifolds, which is denoted by

M\ S = Gg Uz IB:.
Now we claim the following:
Claim 2.5. Each annulus in A% is incompressible and 0-incompressible in My \ S.

Proof. Suppose some annulus A; C A% is compressible in M, \ §. Since M, \ §
is d-irreducible, each component of 34; bounds a disk in d(M, \ §). Since M \ S
is irreducible, A; must separate from M, \ S either a component homeomorphic to
D2x1I orto(D2x1)\ B,. This contradicts the fact that no A; meets the condition (i).

Suppose that some annulus 4; C A% is 3-compressible in M, \ S. Since M, \ S
is irreducible and d-irreducible, it is not difficult to verity that A; must separate from
M\ § acomponent P homeomorphic to a solid torus or a punctured solid torus and
which meets the condition (i1). This again gives a contradiction. L

Since A% isincompressible and d-incompressible in M, \ S, A% does not meet S,
and we can plug the ball B, back into M, \ S to get anew “pseudo” G I -decomposition
for M\ §, still denoted by

M\ S = G; Usz 1B;.

Let m be the number of pattern annuli in §1(M). Let (M) be the set of
patterned 3-manifolds consisting of m copies of a patterned 3-manifold of each type
(1), (i) and (iii), and of one 3-ball. Then the patterned 3-manifolds obtained from
§1(M) and P (M) by identifying some of their pattern annuli in pairs, and possibly
plugging in the 3-ball, is a finite set §2(M) of patterned 3-manifolds. Since G§ is
obtained from a subset of G}; C §1(M) and a subset of # (M) by identifying some
of their pattern annuli in pairs, and possibly plugging in the 3-ball, it follows that, up
to homeomorphism, the components of G belong to §2(M). Hence we reach the
following conclusion:

Conclusion 2.6. (1) There is a finite set §2(M) of compact, orientable, connected,
d-patterned 3-manifolds such that for each closed, incompressible surface § C M,
all patterned components of (G3, G N A%) belong to §%(M);

(2) Each component of /B3 is an 7-bundle over a surface F such that y(F) < 0
if 8F # @. Moreover A% is incompressible and d-incompressible.

Step 3. Comparing the decomposition Gé UAng IB§ with the Gl-decomposition.
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We recall that Mg = G Uyg 1B is the GI-decomposition. By the embedded
version of the enclosing property of the JSJ-decomposition and Conclusion 2.6, I B
is a sub-I-bundle of /B up to a proper isotopy of M \ §. Hence

G§ = Ms \ IB3 = Gs Uag (IB5 \ IB3).

Suppose A% has ms components. Let 7* be the once punctured torus and define
the patterned 3-manifold (P, A) = (T*x I, 3T* xI). Let M 3* be obtained from G
and mg copies of (P, A) by identifying each frontier annulus of G§ with a frontier
annulus of P. Then MZ* is boundary irreducible and is uniquely determined by G3.
In particular there are finitely many topological types of M&* for all incompressible
surfaces S C M by Conclusion 2.6 (1).

Let MZ* = G{ U 4z IB *~ be the GI-decomposition, which is unique up to
isotopy. Hence there are finitely many topological types of G¢ for all incompressible
surfaces § C M. Itis not difficult to see that (Gg, AS) = (Gg, Ag) for each
incompressible surface § C M. Hence Theorem 2.3 is proved. 0

Definition 2.7. Let M be a closed orentable irreducible 3-manifold. Define:

M = {Mg, M s, where § runs over all incompressible surfaces in M,
and Mg runs over all double coverings of Mg }.

Since each compact 3-manifold has only finitely many double coverings, the main
results in Sections 2 and 3 and their proofs imply the following corollary:

Corollary 2.8. Let M be a closed, irreducible 3-manifold. Then there is a finite set
(M) of connected compact d-patterned 3-manifolds such that for any X € M, each
component of the patterned guts (Gy, Ay) belongs to §(M).

3. Thurston norm and Gromov volume

3.1. Finiteness of the Thurston norm. We first give a brief description of the
Thurston norm on the second relative homology group H>(X, Y ;7Z) of a compact,
orientable 3-manifold X, where ¥ C 90X is a subsurface.

Thurston [Th3] introduced a pseudo norm on H,(X, Y'; Z) using the fact that any
homology class z € H>(X,Y;7Z) can be represented by a properly embedded ori-
ented surface (F, dF) — (X, Y). Set y_(F) = max{0, —y(F)} if F is connected,
otherwise let y_(F) = Y_ y_(F;), where F; are the components of F. Then for an
integral class z € H,(X,Y; Z), the Thurston norm ||z|| of z is defined as

|zl = inf{)(_(F) : F is an embedded closed orientable surface
representing the homology class z in H(X, Y ; Z) }
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Thurston then shows that || || extends to a convex pseudo-norm on H,( X, Y'; R) which
is linear on rays through the origin. The Thurston norm turned out to be very useful
in the study of the topology of 3—dimensional manifolds.

In [Gal] (see also [Pe]) Gabai shows that to define the Thurston norm, one can
replace “embedded surfaces” by “singular surfaces” and still get the same norm.

Definition 3.1. Let X be a compact, orientable 3-manifold and ¥ C 9X be a sub-
surface. For a finite set of elements ¢ = {ay,...,ar} of Hy(X,Y;Z), we define

TN(a) = max{|a;|, i =1,...,k}.
Then we define

TN(X.Y)=min{TN(x) | « runs over all finite sets of elements of
H,(X,Y;Z) which generate H,(X,Y;Q)}

to be the Thurston norm of the pair (X, Y').

Lemma 3.2, Let p: (X,Y) — (X.,Y) be a proper non-zero degree map. Then
TN(X,Y)>TN(X,Y).

Proof. Suppose ¢ = {ay,...,ar} C Hz(ff, f’;Z) generates Hz(f, 17; Q). Let
(S;.08;) C (f , Iﬂ;) be a proper surface which presents a; and realizes its Thurston
Norm.

Clearly p(a) = {p(a1),....plax)} C H»(X,Y;Z). Since non-zero degree
maps induce surjections on rational homology, p(a) = {p(a1), ..., pax)} generates
Hy(X,Y:;Q). Now each p(S;) is a singular surface representing p(a;). By Gabai’s
result [Gal], it follows that || p(a)|| = ||e||, and therefore Lemma 3.2 is derived.

L

Recall for each closed incompressible surface S C M, we have the G/-decom-
position Mg = Gg Ugg IBE.

Lemma 3.3. There is a double cover ﬂs = 65 U/ﬂfs IB’-TE of Mg = Gg Uy 1B

such that each component of 1@? is a product of an orientable surface with the
interval.

Proof. An elementary fact is that each compact non-orientable surface /' is doubly
covered by an orientable surface F such that the restriction on each component of
dF is an homeomorphism. It follows that each twisted I-bundle B over compact
non-orientable surface I is doubly covered by a product 7-bundle B = F x I such
that the restriction on each component of 8 F x I is a homeomorphism.

For each twisted /-bundle component B of (IBy, As), pick a double covering
given in the first paragraph, and for each remaining component of (/B , Ag) and
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each component of (Gg, Ag), pick two identical patterned copies of it. Obviously
we can glue them together to get a double cover p: ]\ZS — Mg. Let (~?S, A.S and
I‘B’T? be the pre-images of Gg, As and 1By, then one can verify from the definitions
that ﬂg = és U e fg? is the GG7-decomposition of ]\ZS and verifies the desired
property. L

Now we are going to prove the main result of this section.

Theorem 3.4 (Finiteness of the Thurston norm). Let M be an irreducible, closed,
orientable 3-manifold. Then TN(Mgs, 0Ms) takes at most finitely many values, when
S runs over all closed, incompressible surfaces embedded in M.

Proof. By Lemmas 3.2, we need only to prove Theorem 3.4 for double coverings
(Ms,dMs) provided by Lemma 3.3, for all incompressible surfaces S C M. For
simplicity we still use Ms = Gg Uy 1B (o denote MS = GS UA IB . Then
by Corollary 2.8 there are only finitely many topological types of patterned guts
(Gs, Ag) for all incompressible surfaces S C M. Hence the number of components
of Ag is uniformly bounded. Again by Lemma 3.3, each component of 7B is a
product of an orientable surface with the interval.

We first modify the decomposition so that the gluing annuli between the two parts
become separating. For each component N(I) of /By we choose a curve in the
interior of the base surface I, which co-bounds a planar subsurface Q together with
all the boundary components of F. Since the number of boundary components of F
is bounded by the number of components of Ag, | ¥(Q)|is uniformly bounded above,
for all incompressible surfaces § C M. Then we consider the new decomposition
M= GgU 1B "s, where G is obtained by gluing to G the handlebodies N(Q)
along the components of Ag, and /B’y is the sub-7-bundle of /B corresponding
to the subsurfaces F — int(Q). The gluing annuli A’; are the separating annuli of
N(dQ)— As, using our previous convention that N () and N(d(Q) are the / -bundle
restricted to O and 9Q respectively.

For a given patterned guts (Gs, Ag), there are only finitely many positive integer

solutions {mq, ..., mg} suchthatmy +-- -+ my = m where m is the number of com-
ponents of Ag, and for any such solution {m,. .., m}, there are only finitely many
ways to distribute 7 elements into k groups of cardinality m1, . .., my respectively.

Hence by the construction and Theorem 2.3, there are only finitely many topological
types of d-patterned 3-manifolds (G, A) for all incompressible surfaces S in M.
Then the finiteness for the values of TN(Ms, dMs) is a direct consequence of the
following lemma. (]

Lemma 3.5. Let § C M be a closed incompressible surface, then TN(Mg, dMg) <
TN(G, 0G \ intA).
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Proof. We consider the following natural homomorphisms induced by the inclusion
maps:
¢: Hy(G, 0G5\ intA; Z) — Hy(Ms, d0Ms; Z);
Vv Hy(IB', 8IB' \ intA'g; Z) — Hy(Ms,dMs; 7).
By applying the relative Mayer—Vietoris sequence (see [Do], page 52) to the pairs
(G, 0G5 \intAs) and (JB'g, 31 B \ intAY), one gets the exact sequence
v — Hy(A', 04 7))
— Hy(G%, 3G \ intA; Z) & Hy(IB'5, 0IB'§ \ intd’s; Z)
— H(Ms,0Ms: 7)) — H (A, 34°¢: 7)
— H(G§,0Gs \intAg; Z) @ Hi(IB'¢, 3B ¢ \ intA; Z) — -+ .
We first show the injectivity of the homomorphism
Hy (A, 045 2) — Hi(Gg, 0G5 \ intA; Z) & H(IB', 91B'§ \ intd; Z).
To do this we need only to show the injectivity of each homomorphism
H(A,0A;7) — Hy(IB";,0IB", \ int4;7Z),

where A is a component of A, and /B’ is the component of /B’ containing A.

Note H1(A, 04;7Z) = Z is generated by any arc in A connecting the two com-
ponents of d4, and [B”y, = F x [0,1], where F is an orientable surface with
dF x [0,1] = A. Let F* be a proper oriented surface of 3F x [0, 1]. Then it is
a direct geometric observation that the number of times that dF* crosses A from
dF x {0} to dF x {1} and from 9F x {1} to 9F x {0} must be the same. This shows
the required injectivity.

Then by the exact sequence we have that

Ov: Hy(Mg,0Mg:7) — H{(AG,04°¢; Z)
is null, and thus we get an epimorphism:
b+ Ha(G§,dG\intds; Z)YB HL(IB', I B G\intA'; Z) — Ha(Ms, IMs; 7).

Itis clear that H,(IB'g. d/B'§ \ intA'; Z) has abasis y = {cy1..... ¢yt which
is formed by a set of vertical annuli, whose Thurston norm vanishes. Hence for any
generating set

B=1{b,....by}
of H(G§, 0Gy \ intA; 7),

o ={¢01),....¢Mbu), Ylcr), ... ¥(cm)}

is a generating set of H,(Mys, dMg; 7). It follows that TN(Mg, dMs) < TN(x) <
T'N(p), since by the definition of Thurston norm ||¢(5;)|| < ||b; || and 0 < ||@(c;)||
lc;l = 0,fori = 1,...,nand j = 1,...,m. Therefore TN(Ms, IMs)
TN(G§, 0G§ \ intAY).

LA 1A
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3.2. Finiteness of absolute Gromov volume. This section will not be used in the
rest of the paper, but it provides a finiteness result for the absolute Gromov volumes
of the compact manifolds Mg, analogous to the one for their Thurston norms.

First we recall the basic definitions about Gromov’s simplicial volume (see [Gr]).

Definition 3.6. Let X be a compact orientable 3-manifold with boundary. Define the
relative Gromov volume | X, 0X | by

n

|X,3X| = inf {Zm

i=1

class in H3(X,9X:R), whereo;: A3 — X isa
singular simplexand A; e R, i =1,...,n.

37 | Aio; is a cycle representing a fundamental }

A fundamental class in H3(X, 0X; R) is the image of any of the 2% fundamental
classes in H5(X, X ; Z) under the coefficient homomorphism, where & is the number
of connected components of X.

For a manifold with non-empty boundary, there is another way of defining a
simplicial volume, that we call the absolute Gromov volume.

Definition 3.7. Let X be a compact orientable 3-manifold with boundary and let
D(X) be the double of X, obtained by identifying two copies of X along their
boundary via the identity map. The absolute Gromov volume of X, denoted by | X |,
is defined to be half of the Gromov volume of the closed manifold D(X).

By the definitions of these two volumes, one has: |X| < | X, dX|. Moreover by
[So5] and [Ku] they are equal if and only if 90X = @ or y(dX) = 0.

For example, let (X, A) be a patterned 3-manifold and let D4 (X ) be the compact
3-manifold obtained by doubling X along the portion X \ A of its boundary. Since
aD4(X) is a collection of tori, one has |D4(X)| = |D4(X), dD4(X)|.

The following finiteness result holds for the absolute Gromov volume, while it is
false for the relative Gromov volume.

Proposition 3.8 (Finiteness of Gromov volume). Let M be an irreducible, compact,
orientable 3-manifold. Then the absolute Gromov volume |M \ S| takes only finitely
many values for all incompressible surfaces S C M.

Proof. For an incompressible surface § C M, we consider the G/ -decomposition
Ms = Gs Usg 1B . By Conclusion 2.6 (2) in the proof of Theorem 2.3, 8D(As)
is a collection of incompressible tori in D(Mg). Since the relative Gromov volume
is additive under gluing along incompressible tori (see [So5]), we have:
|D(Ms)| = |Da(Gs). 3D4(Gs)| + |D4(IB5), D4(IB3)|.

Moreover the relative Gromov volume of D4 (/B) vanishes, because D4(/B55)
ishomeomorphictoan § !_bundle (see [Gr], [Th1], Chapter 6) and the relative Gromov
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volume of D4(Gg) equals its absolute Gromov volume. Therefore we get |Mg| =
31D 4(Gs)l.

Now Theorem 2.3 shows that there are only finitely many possible topological
type for D4(Gg) when S runs over all incompressible surfaces S in M, and hence
Proposition 3.8 follows. (]

Example 3.9. We give an example of a closed orientable 3-manifold M such that the
relative Gromov volume |Ms, 9Ms| is unbounded when § runs over all incompress-
ible surfaces S in M. Let X be a knot exterior in S® which contains incompressible
Seifert surfaces of arbitrarily high genus (such examples exist and can even be hy-
perbolic, see [Gust]). Then the closed manifold M = D(X) contains non-separating
incompressible closed surfaces S, with y_(5,) tending to infinity with », formed by
doubling the Seifert surfaces. When M is splitopen along such a surface, by definition
of the relative Gromov volume, one has: |Ms,, dMs, | = 2x_(IMs,) = 4x—(Sn).
Hence |M5, , M5, | tends to infinity with 7.

4. Local domination

In this section we prove the finiteness of the JSJ-pieces for manifolds which are
dominated by a given compact, orientable 3-manifold. We recall the statement that
we are going to prove:

Theorem 4.1 (Finiteness of JSJ-pieces). Let M be a closed, orientable, 3-manifold.
Then there is a finite set HS(M) of complete hyperbolic 3-manifolds with finite
volume and of Seifert fibered 3-manifolds, such that the JSJ-pieces of any closed,
orientable, irreducible 3-manifold N dominated by M belong to HS(M ), provided

that N is not supporting the geometries of S3, PSL,(IR), Nil.

By [BW], Proposition 3.3, we can find an irreducible (even hyperbolic) closed,
orientable 3-manifold which 1-dominates M. Hence in the remainder of the proof,
we may assume that M 1is irreducible.

Let M be a closed orientable irreducible 3-manifold. By Haken’s finiteness the-
orem, there is a maximum number 2{M ) of pairwise disjoint, non-parallel, closed,
connected, incompressible surfaces embedded in M. The following elementary fact
(see [W1] for example) will be used in this section and the next ones.

Lemma 4.2, Let M and N be two closed, irreducible and orientable 3-manifolds.
If M dominates N, then h(M) = h(N).

Let I'(N) be the dual graph associated with the JSJ-decomposition of N. This
graph has one vertex for each Seifert piece or piece with a hyperbolic metric of finite
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volume and one edge for each incompressible torus boundary component of either
type of piece. If M dominates N, then 2{M ) gives an upper bound for the number
of edges of I'(N), by Lemma 4.2. Hence the number of JSJ-pieces of N, which is
the number of vertices of I'(NV ), is bounded above by #(M) 4+ 1. Therefore to prove
Theorem 4.1, we need only show that the JSJ-pieces of all 3-manifolds & dominated
by a closed, orientable 3-manifold M admit only finitely many topological types.

Recall the definition: M = {Mg, Mg, where § runs over all incompressible sur-
faces in M, and M s runs over all double coverings of Mg }.

By the proof of Theorem 3.4, we have:

Corollary 4.3. Sup{TN(X,0X) | X € M} < L(M) for some constant L(M) > 0
depending only on M. [

Proposition 4.4. For a given integer 1. > 0, there is a finite set S(L) of com-
pact Seifert 3-manifolds such that if a Seifert manifold N with non-empty bound-
ary and orientable base is dominated by a compact orientable 3-manifold P with

TN(P,0P) < L, then N belongsto S(L).

Proof. Each homology class y of H>(N, 3N ; Z) can be represented by an orientable
incompressible and d-incompressible surface. Since N is an irreducible Seifert man-
ifold, each incompressible surface is properly isotopic to either a vertical torus or
annulus (foliated by Seifert circles), or a horizontal surface (transverse to all Seifert
circles) (cf. [Ja], Chapter VI). Since dN # @, N always admits horizontal surfaces.

Let O be the orbifold base of N and / be a regular fiber of N. Suppose also
that ¢, h and N are compatibly oriented. Let F be a horizontal surface of N and
p: F — O the branched covering, induced by the restriction to F of the projection
of N onto its base. Since ¢ is oriented, so is F. Note that the Euler characteristic
x(O) is computed for an orbifold, so that each exceptional fiber of multiplicity »
gives a term % — 1. Then we have y(F) = |d| x y(O) < 0, where d = deg(p) # 0
is equal to the algebraic intersection number [F] - [#] of F and #. Up to reversing
the orientation of £, one can always assume that d = [F]- [#] > 0. Note that
the geometric intersection number |F M /t| of I and / (i.e. the minimal number of
intersection points between I” and 2 up to ambient isotopy) is precisely the absolute
value of the algebraic intersection number [F] - [#].

Suppose further that F has minimal genus among all horizontal surfaces in V.
If y(F) = 0, F is a disc or an annulus, and thus & can be homeomorphic only to
a solid torus, an S'-bundle over the annulus or a twisted S!-bundle over a Mabius
band. Assuming that these three Seifert manifolds belong to S(L), we can suppose
furthermore that y(F) < 0.

Let || || & (resp. || || »)be the Thurston normon Hy (N, dN ; Z) (resp. Ho (P, 3P ; 7).
Note that H, (N, dN; Z) is torsion free and therefore it is precisely the integer lattice
of H2(N,IN:R). Let V = {y € H2(N,IN;Z);|¥||lxy = 0}. By the discussion
above, V is the sublattice of H, (N, ON ; Z) generated by the vertical tori and annuli.
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Lemma 4.5. H,(N,IN:Z) = {[F]) & V.

Proof. Pick any homology class y € Hy(N,dN;7Z). If |y||lxy = O,theny € V.
Suppose || ¥|l¥4 # 0. Let S be an orientable, incompressible and d-incompressible
surface representing y = [S] with—x(S) = ||y||x - Since x(S) = —||y||x < 0, after
a proper isotopy we may assume that § is horizontal and that [S].[2] = |S NA2| > 0
(otherwise we replace y by —y). Let £ > 1 be the integral part of [S].[2]/[F].[A]-
Then (£ + L)([F].[7]) = [S].]h] = £(F].[h]), thatis |F N A| = [F]-[h] > [S—£F]-
[h] = 0.

If the homology class [§ — £ F| does not belong to V, then it can be represented
by a horizontal surface S’ such that

IS — €F]llv = =x(S) = =S — £F] - [A) x(O) > —[F] - [A]x(O) = [[F]|I~-

This would contradict the minimality of the genus of /' among all horizontal

surfaces in N. Therefore [S —£F| e Vandy = [£F| 4+ [S —£F]. O

By hypothesis, there is a compact, orientable 3-manifold P with TN(P, dP) <
L and a non-zero degree map f: P — N. Let further &« = {zy,...,z,} be a
basis of H(P,dP;7Z) realizing TN(P): max{|z|p;i = 1,....,m} < L. For
i = 1,...,m, let §; be a properly embedded surface in P representing z; with
—x(81) = ||zi|p.

Fori =1,...,m,wesety, = [f(S;)] = £;[F] + v; € Hy(N,IN; Z), where
v; € V. By the triangle inequality and the fact that |v; ||y = 0, we get

[ ITF N = €:0F v = llyi = villv = yillv + lvillv = lyillv.

By [Gal] (see also [Pe]) the Thurston norm || y; || & can be calculated using singular
surfaces, therefore || y; |v < —x(S;) = ||zi ||p = L. Combining the two inequalities,
we have £;||[F]||ly < Ltfori =1,...,m.

Since f: P — N has non-zero degree, f.(H,(P,dP;Z)) has finite index in
H>(N,dN:;7) and thus it cannot lie in V. Therefore there is some index i €
{1,...,m} with |[£;] = 1. It follows that ||[F]||xy =< L, hence the horizontal sur-
face F can have only finitely many topological types, up to homeomorphism.

Cutting the Seifert manifold N along the horizontal surface F, we obtain a pro-
duct F x I, since the base ¢ and the surface F' are orientable. Therefore N can
be presented as a surface bundle over §! with fiber F and orientation preserving
monodromy g: F — F. Since N 1is Seifert fibered, g must be a periodic map [Ja].
Chapter VI. However, up to conjugacy, a given compact surface admits only finitely
many periodic homeomorphisms. Since any two conjugate monodromy maps define
homeomorphic 3-manifolds, there are only finitely many possible homeomorphism
types of Seifert manifolds N for a given compact surface £. Since F has only finitely
many topological types, the proof of Proposition 4.4 is complete. L
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Proof of Theorem 4.1. We assume first that N is not a Seifert manifold. By Soma’s
results ([Sol], [So2]), we know that Theorem 4.1 holds for hyperbolic JSJ-pieces.
Since N is not Seifert fibered, we may assume that N has a non-empty JSJ-family of
tori J~ and we have only to consider the Seifert fibered JSJ-pieces.

Let f: M — N be a map of non-zero degree. After a homotopy of f we
may assume that £ ~1(7) is a non-empty collection of disjoint non-parallel closed
incompressible surfaces in M. Let .M ¢ be the union of all components of M\ f —1(7)
and of all their double coverings. By definition we have My C M.

Let N; C N be a Seifert fibered JSJ-piece. Then N; is dominated by at least one
component M; of M \ f~1(7). Then the finiteness of such JSJ-pieces N; with an
orientable base follows immediately from Corollary 4.3 and Proposition 4.4.

If N; has a non-orientable base orbifold, let N; be the unique double cover of N;
which is Seifert fibered with an orientable base. Then a standard argument shows
that a double cover M ; of M; dominates Ni. Thus we get the finiteness of such 3-
manifolds N; as above from Corollary 4.3 and Proposition 4.4. Since any involution
on such Seifert manifolds &; is conjugate to a fiber preserving one by [MS], there
are only finitely many conjugacy classes of involutions on each N;. This implies the
finiteness of the Seifert JSJ-pieces N;.

The finiteness of Seifert manifolds N supporting a product geometry H? x R
follows also from Corollary 2.8 and Proposition 4.4 as above, and thus Theorem 4.1
is proved (see also [WZ]). ]

Using a standard doubling construction, Theorem 4.1 can be extended to the
following case where the 3-manifold targets have toric boundary.

Corollary 4.6. et M be a compact, orientable, 3-manifold. Then there is a finite
set HS(M) of complete hyperbolic 3-manifolds with finite volume and of Seifert
[fibered 3-manifolds, such that the JSJ-pieces of any compact, orientable, irreducible,
3-manifold N with non-empty toric boundary, dominated by M belong to HS(M).

Proof. It N has non-empty boundary, so does M. Let D(N) be the double of N,
obtained by gluing two copies of N along their boundaries via the identity map. Then
the double D(M ) of M dominates D(N ). Since the boundary of N is a collection of
tori, the JSJ-pieces of D(N ) are either exactly those of N and consist of two copies
of hyperbolic and Seifert pieces in the JSJ-decomposition of D(N), or there are new
Seifert fibered pieces obtained by doubling some Seifert fibered pieces of N along
some of their boundary tori. In any case, the finiteness of the JSJ-pieces of D(N)
implies the finiteness of the JSJ-pieces of N. 0

Remark 4.7. A similar double construction argument shows that finiteness of closed
targets implies finiteness of the targets in the setting of compact orientable 3-manifolds.
First finiteness of irreducible and d-irreducible compact targets implies finiteness of
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compact targets. Since the double D(M ) of an irreducible and d-irreducible compact
3-manifold M is Haken, there are, up to conjugacy, only finitely many involutions
with 2-dimensional fixed point set on D (M) by [To] and the proof of the geometriza-
tion conjecture for Haken manifolds. Therefore only finitely many irreducible and
d-irreducible compact 3-manifolds have homeomorphic doubles.

5. Integral homology spheres

The main result of this section gives a positive answer to Question 3 when the targets
are integral homology spheres. It implies a positive answer to Question 2 when the
targets are integral homology spheres and to Question 1 when the domain is an integral
homology sphere.

Theorem 1.2. Any closed orientable 3-manifold dominates at most finitely many
integral homology spheres.

Let us fix M as a closed orientable 3-manifold. As in the previous section, we
may assume for the remainder of the proof that M is irreducible.

First we reduce the proof to the case where the target homology sphere N is
irreducible. As in the previous section, the preimage of a collection of separating
essential spheres associated with the prime decomposition of N can be assumed to
be incompressible, disjoint and non-parallel surfaces in M. Hence there are at most
h(M) + 1 prime factors. Moreover by pinching all the prime factors except one to
a point, it follows that each prime factor is dominated by M. Hence we have only
to show the finiteness of the set D(M ) of homeomorphism classes of irreducible,
integral homology 3-spheres N which are dominated by M .

A slope on a torus T is an isotopy class of essential simple closed curves. The
set of slopes on T corresponds bijectively with %-classes of primitive elements of
m(T;Z).

Given a slope o on a torus boundary component 7" of a 3-manifold Y, the w-Dehn
filling of Y with slope « is the 3-manifold ¥ («) := (S' x D?) Uy ¥ where f is any
homeomorphism 9(§' x D?) — T such that f({*} x 3D?) represents o. It is well
known that ¥(«) is independent of the choice of f.

First let us recall some definition and primary facts about Seifert manifolds.

Let Fg , be an oriented n-punctured surface of genus g with boundary components
€1,...,cp withn > 0. Then N' = Fp , X S is oriented if S is oriented. Let A;
be the oriented S! fiber on the torus ¢; x A; (call such pairs {(c;, h;)} a section-fiber
coordinate system). Let 0 < s < n, we attach s solid tori V; to the boundary tori
of N’ such that the meridian of V; is identified with the slope r; = ¢ h?"' where

a; > 0,(a;,b;) = Lfori = 1,...,s. We denote by E\if(g,r’t—S‘b—1 --,%) the

9 al F A
resulting manifold which has the Seifert fibered structure extended from the circle
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bundle structure of N'. Each orientable Seifert fibered space with orientable base F,
with n — s boundary components and s exceptional fibers is obtained in such a way.

Lemma 5.1. Suppose N is a Seifert manifold given as above.
(1) Suppose N is an mteger homology 3-sphere. Then N is closed and g = 0,

[furthermore (Hle af)(Zl a_;)

(2) Supposen > s and N(pLS+1, ..., Mp) is an integer homology 3-sphere, where
ni =A(a;,bj), j =s+1,...,n, then g = O and moreover

(i) ifeach a;j > 0 for j € {s + 1,...,n}, then the Seifert fibration of N extends
over N(pts+1,..., Uy) and (]_[?:1 ai)(Z’f 2—i) =
(ii) if some aj = O for some j € {s +1,...,n}, then b; l_[?:l,i#j a; = 1.

Proof. The proof of the lemma is an application of linear algebra. (1) is well known,
see [HWZ1], 3.1, for example. (2) (i) mainly follows from (1).

For (2) (ii),if a; = O for some j € {s + 1,...,n}, then b; must be 1. For some
i # j,a; = 0implies that N(ps41, ..., 4pn) has positive first Betti number, and
a; > 1 implies that H1(N(tts+1,---, n), Z) contain a torsion element of order a;.
Soa; = Lfori # j. O

In the following we denote N(0, n — s; 2‘ - ) by N(n —s; 21 e %}), and
N(0, o,a ,...,an)byN(al,...,gf .

Lemma 5.2. Only finitely many Seifert fibered integral homology 3-spheres belong
to D(M).

Proof. A Seifert fibered integral homology 3-sphere must support the geometry of
either §3 or m

For Seifert manifolds supporting the geometry S3, there are only two integral
homology 3-spheres: the 3-sphere S7 and the Poincaré dodecahedral space.

Now suppose that N supports the geometry of PSL,(R). Since N is an integral
homology sphere, By [Sc] , N = (%, e, b—”) which satisfy:

b;
is non-zero.

* The rational Euler number ¢ = — Z; 15

* The Euler characteristic of the orbifold base Bis y(B) = 2=/ (1—=) < 0.

Llo,-| = 1 by Lemma 5.1.

Thus e = - and b; (Hﬁél aj) = 1 modulo g; fori = 1,...,n. More-

z 14
over the integers a;, y I = 1,...,n are pairwise relatively prime. Therefore the un-
ordered set {ay, ..., an} of integers determines the Seifert fibered homology sphere

N, up to orientation. So we need only to show that if N is dominated by M, then n
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and the integers @¢;,i = 1, ..., n, take only finitely many values. In fact to do so, it
is sufficient to get a uniform upper bound on []/_, a;, depending only on M.
We use the Seifert volume SV introduced by Brooks and Goldman [BG]. It has
the following interesting properties:
(1) SV(M) = dSV(N) it f: M — N is amap of degree d # 0, for orientable
3-manifolds M and N.

(2) SV(N) = ‘Xe (('i?f if N is a PSL, (R )-manifold with base orbifold B.

It is easy to see that the maximum of the Euler characteristic of the base B of N
is obtained for the sphere with three cone points with orders {2, 3, 7}. Hence:

3) x(B) =—4.
Then by (1), (2) and (3) we have

sva) = asvvy = d |EEL| - ‘ LT
= a;l.
- e(N) |~ 1422 1 2 :
Therefore []7_ a; < 422SV(M) and the proof of Lemma 5.2 is complete. O

The dual graph I' (¥ ) to the JSJ-decomposition of an irreducible homology sphere
N is a tree. By Lemma 4.2, the number of edges of ['(N ) is < h(M), the Haken
number of M.

By the local domination theorem (Theorem 4.1) and Lemma 5.2, the geometric
JSJ-pieces of the closed orientable 3-manifolds in (M ) belong toa finite set HS (M )
of compact 3-manifolds with interiors admitting complete hyperbolic metrics with
finite volume and of Seifert 3-manifolds.

For a given graph I, let D(M, ') C D (M ) be the set of homeomorphism classes
of closed orientable integer homology 3-spheres N such that:

(1) N isdominated by M.
(2) The JSJ-graph I'(N) is abstractly isomorphic to I,

(3) Each vertex manifold has a fixed topological type. Each torus boundary com-
ponent of the vertex manifold is assigned to an edge on the vertex.

The local domination theorem and Lemma 4.2 reduce Theorem 1.2 to the follow-
ing:

Proposition 5.3. The set D(M,T) is finite.

Before starting the proof of this proposition, we need to introduce some notions,
definitions and constructions which will be useful.
For each integral solid torus V', the kernel of the induced homomorphism

H(dV;Z) — H((V; Z)
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is infinite cyclic, generated by an essential simple loop which bounds a properly
embedded surface Fy in V. Such a surface Fy is called a Seifert surface for the
integral homology solid torus V. Then the slope Ay € H (dV; Z) of aFy does not
depend of the Seifert surface and is uniquely determined by the topological type of V.
We call Ay the longitudinal slope of V on dV .

The pinch construction. Let ¥ be a compact, orientable 3-manifold with 7 C aY
a torus boundary component. Let Z be an integral homology solid torus, ¢: 3Z —
T C 3Y agluing map and ¥’ = Z Uy Y. By pinching a Seifert surface Fz onto
a disk D2, one can define a proper degree-one map pz: Z — S! x D? such that
pgl ({x} x dD?) = Az for some point x € S'. Then one gets a degree-one map
fz:Y" — Y(u), which is the identity on ¥ and where Y () is obtained by Dehn
filling the component T of Y with the filling slope ¢, (Az) = pu.

Let e be an edge of T" with vertices x and y. Foreach N € D(M,T) the edge
e corresponds to an incompressible torus 7, C N, and its two vertices to two JSJ-
pieces X and Y of N, adjacent to the torus 7,. Denote the component of 9X (resp.
dY') corresponding to 7, by d,X (resp. d.Y). The embedded torus 7, splits N into
two integral homology solid tori.

We call a slope on 9. X longitudinal if it is equal to the longitudinal slope Ay
of an integral homology solid torus V' bounded by 7, in some N € D(M,I") and
containing X . (See Figure 4.)

s N

wy = ¢ YAw) ww = d(Ay)

£l

j — — S —
TN TN

vV w

Figure 4

Let N € D(M,I"). The incompressible torus 7, splits N into two compact
3-manifolds IV and W which are both integral homology solid tori with boundary 7 :
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N =V Ur, W. The fact that N = V Ug W 1s an integral homology sphere forces
the following:

Lemma 5.4. The gluing map ¢: dV — oW induces a map ¢, on the first homology
group, such that ¢, (Av) -Aw = £l and $7 (Aw) - Ay = £1. L

Definition 5.5. (1) We call a gluing map ¢p: 3. X — 9.Y allowable, if there are two
integral homology solid tori V' and W such that (X,d,X) C (V,dV), (Y.d,.Y) C
(W, 0W),and N =V Uy W € D(M,T).

(2) An allowable gluing map ¢: d. X — 9.V is determined, up to isotopy, by
the two pairs of slopes {Ay, uv} € H1(0.X;:Z) x H1(0.X;7Z) and {Aw, puw} €
H(0,Y;7)x H(3,Y;7Z), such that:

(i) Ay and Ay are the longitudinal slopes of the integral homology solid tori I and
W which define the gluing map ¢ to be allowable.

(i) wy = ¢7 (Aw) and uw = ¢« (Ay). They are called longitudinal-images or
£-images for short.

By Lemma 5.4, the pair {Av, uy} defines a basis of H(0,X;Z) and the pair
{Aw, uw} abasis of Hy(9,Y;7Z). The pairs of slopes {Ay, py} and {Aw, uw} are
called gluing patterns for the tori 9, X and 9, Y (see Figure 4).

(3) Let Y avertex manifold of T" with £ boundary components 9,Y,i = 1,... k.
A gluing pattern for 8Y is a system of pairs of slopes {(Ay, (1), . ... (Ag, i)} €
(Hi(W Y Z)x Hi(01Y; Z))x---x (H1(3;Y; 7Z) x H{(0; Y ; Z)) for which there are
a collection Z1, .. ., Zj of integral homology solid tori and gluing maps ¢; : 0Z; —
d;Y,i = 1,...,k such that (see the top picture of Figure 5:

@) N =Y UgU" | Zi belongs to D(M.T), with ¢ = " ;0 UF 02, —»
3Y .

(ii) A; = Aw;, where W; is the integral homology solid torus N \ int(Z; ).
(ifi) pi = palhz,), fori =1, k.

Hence, each gluing map ¢; : 0Z; — 0;Y is allowable and each pair of slopes (A;, ¢;)
is a gluing pattern for the component d;Y .
The slopes {it1,. .., iy} are called a system of £-images for dY'.

(4) Two systems of slopes on dY are A-equivalent if there is a homeomorphism
7: (Y,3Y) — (Y, dY) which is a product of Dehn twists along properly embedded
essential annuli in ¥ and sends one setto the other. Inthe same way two gluing patterns
for 8Y are A-equivalent, if there is such a homeomorphism of (¥, 9Y) sending one
to the other.

Remark 5.6. Let Y be a compact irreducible orientable 3-manifold with boundary
an union of incompressible tori, and let Aut(}') be the mapping class group of Y. By
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[Joh] the subgroup A(Y) C Aut(Y) generated by Dehn twists along essential tori
and proper annuli in V¥ is of finite index in Aut(Y). Therefore the finiteness, up to
homeomorphisms of Y, of systems of slopes on 9} (or gluing patterns for 9Y) is
equivalent to the finiteness of their A-equivalence classes, since Dehn twists along
essential tori in ¥ do not affect the slopes on 9Y".

Wi (pti) Yt - fliy s )
Figure 5
Now Proposition 5.3 follows from the following result:

Proposition 5.7. When N runs over all elements in D(M, T), for each vertex mani-

fold Y of I there are at most finitely many A-equivalence classes of gliing patterns
for dY, depending only on M.

The first step of the proof of Proposition 5.7 is given by the following



58 M. Boileau, J. H. Rubinstein and S. Wang CMH

Proposition 5.8. When N runs over all elements in D(M, T'), for each vertex man-
ifold Y of T, there are at most finitely many A-equivalence classes of £-images

(ft1, ..., 1r) on Y, depending only on M.

Proof. LetY be a vertex manifold of I'. By definition, for each system of £-images
(i1, ..., x) on dY  there is a collection Z1, . .., Zj of integral homology solid tori
and gluing maps ¢, : 3Z; — &;Y, i = 1,...,k such that:

(1) N =Y Uy ", Z; belongs to D(M,T), with¢ = 5, ¢z UF_,0Z; —
3Y .

(2) wi =du(Az)i =1,... k.

Let W; be the integral homology solid torus N \ int(Z;), then Y is a JSJ-piece of
W, fori =1,... k.

We distinguish two cases according to whether Y is hyperbolic or Seifert fibered.
By definition of A-equivalence, we prove the finiteness of the systems of £-images in
the hyperbolic case and the finiteness of the systems of £-images, up to Dehn-twists
along properly embedded essential annuli, in the Seifert fibered case.

a) Y is hyperbolic. For eachboundary componentd; Y ,i € {l,..., k}, Thurston’s
hyperbolic Dehn filling theorem [Th1] shows that the manifold Y (u;) admits a com-
plete hyperbolic metric, except for a finite set of slopes u; € I1;(9;Y; Z), depending
only on Y. So we may assume that ¥ () is hyperbolic.

Therefore Y (j1;) is irreducible with incompressible boundary tori, and it is a hy-
perbolic piece in the JSJ-decomposition of the homology sphere W, (u;). So W (i)
is an irreducible homology sphere which is 1-dominated by N (see the top-left-down
picture of Figure 5), and thus dominated by M. Since Y{(j;) is a geometric piece of
a manifold dominated by M, Y(u;) can take only finitely many topological types,
depending only on M by Theorem 4.1. Hence the hyperbolic volume of Y (i, ) takes
finitely many values, depending only on M. Then Thurston’s hyperbolic Dehn filling
theorem shows that y; belongs to a finite set of slopes in /71(9; Y ; Z), depending only
on Yand M. Hence for each i € {l,..., k} there are only finitely many possible
£-images p; € H1(d;Y; Z), depending only on M.

b) Y is Seifert fibered. Then the Seifert {ibration is unique, up to isotopy.

Suppose ¥ = S(g,n — s;%,...,%), where n — s = k, and each a; > 1,
i=1,...,8 Let(c;,h;,) € H(9;Y;7Z)x Hi(9;Y;7) be a basis of H(9;Y;7),
where /; represents the fiber of the circle fibration induced on 9;Y by the Seifert
fibration of ¥ and ¢; a section of this induced circle fibration. We set u; =
(as4ici + bstihi)in Hy(9;Y; Z). There is a degree one map from N to the manifold
Y(iq,- .., px) obtained by pinching each homology solid torus Z; to a solid torus,
hence Y(u1, ..., py) is a Seifert fibered integral homology 3-sphere. It follows that
g=0,thatis ¥ = S(n — s; 2—1, - %). Moreover n > 3 since it is a JSJ-piece of
N . We further divide the discussion into two cases:
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Case (i): a; # Oforeachi € {s 4+ 1,...,s 4+ k}. Then by Lemma 5.1 (1) the
Seifert fibration of ¥ extends over the integer homology 3-sphere Y (1, ..., ) and

(fla)(52) -1 2

Like in case a), foreachi € {s + 1,...,s + k}, W;(p;) is an integer homology
3-sphere dominated by M. Moreover if ag4; > 2, the core of the filling solid torus
becomes a singular fiber of ¥ (j;) with index a4 ;, and thus ¥(u;) is a Seifert JSJ-
piece of W;(u;). In this case, Y (u;) can take only finitely many topological types,
depending only on M. Therefore a,4; < C(M) for some integer C(M ) depending
only on M.

I {(ai.b1),....(ai. b;).....(a;,bj).....(an, by)} is a solution of equation (*),
then for any integer k, {(ay1,b1), ..., (a;, b; +ka;), ..., (a;.b; —ka;), ..., (ay, by)}
is also a solution of the equation (*). Those two solutions represent two systems of
£-images on dY related by & full Dehn twist (with sign) along an essential vertical
annulus in ¥ connecting 9;Y and 9;Y, so they are in the same A-equivalence class.

We say that two solutions of (*) are in the same A-equivalence class, if one solution
is obtained from another by finitely many Dehn twists along essential vertical annuli,
like above. It is an elementary fact that there are only finitely many A-equivalence
classes of solutions for the equation (x) if each a; is bounded by a constant C(M ).
Hence there are only finitely many A-equivalence classes of systems of £-images on
dY, depending only on M.

Case (ii): a; = Oforsome j € {s +1,...,n}. Thenby Lemma 5.1(2),

b; 1_[ a; = 1. (%)

i=1.i#j

This implies that ;t; = (0, I)and u; = (1, ;) fori # j. By performing b;-full Dehn
twists along a vertical annulus connecting ;Y and 9; Y foreachi # j, we can trans-
form the system of £-images {(1.b1).....(1,5;-1).(0, 1), (L.bj41).....(1.by)} 1o
{(1,0),...,(1,0),(0,1),(1,0),...,(1,0)}. That is, for a fixed j, the system of £-
images on dY isunique, up to A-equivalence. Since j picks only finitely many value,
there are finitely many systems of £-images on dY, up to A-equivalence. (]

The next step of the proof of Proposition 5.7 is given by the following claim:

Claim 5.9. A gluing pattern {(A1, (1), ..., (Ag, tg)} for Y is uniquely determined
by the system of £-images ({11, ..., ug) on dY.

Proof. Fix a system of £-images (i1, ..., px) on dY. Recall that for this system
of slopes (ptq, ..., g ), there is an homology sphere N € M(I") such that N =
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Yy U Uf-czl Z;, and the image by gluing of each longitudinal slope Az, is p;. As
before, let W; = N \ Z;.

Then for each fixed i € {l,...,k}, we can define a degree one map p: W, —
Y(t1,..., i, ..., ptx) which is the identity on the boundary dW; = 9; Y by pinching
each Z; to asolid torus U; whose meridian is matched with p;, j € {1,... .k, j # i}
(see the top-right-down picture of Figure 5). Then the Seifert surface Fw, is pinched
to a Seifert surface F, of the integral homology solid torus Y (pq, ..., i, ..., fi)
bounded by A;. Since Y{(p;, ..., fii, ..., px) is afixed integral homology solid torus,
the longitudinal slope A; € H1(9;Y; Z) is unique. This proves the claim. 0

To finish the proof of Proposition 5.7, we distinguish two cases as usual:

Y is hyperbolic. 1f Y is hyperbolic, as we have seen in the proof of Propo-
sition 5.8, there are only finitely many systems of {-images ({1,..., %) on dY.
So by Claim 5.9 there are only finitely many possible choices of gluing patterns

A1 p1), -, (Ak, pg)} for 87

Y is Seifert fibered. Let (u}.....p;) = t(f1...., i) be deduced from the
system of £-images (L1, ..., itx) by ahomeomorphism z: ¥ — ¥ which is a com-
positions of Dehn twists along vertical annuli. Then, by the uniqueness in Claim
5.9, the system of {-images (i}, ..., u; ) determines the system (A},...,4) =
(A1, ..., Ag) of longitudinal slopes on dY. Hence an A-equivalent class of systems
of {-images on dY determine a unique A-equivalent class of gluing pattern for dY .
Then by Proposition 5.8, there are only finitely many equivalent classes of gluing
pattern for d¥ .

This finishes the proof of Proposition 5.7. (]

The following corollary of Propesition 5.7 implies Proposition 5.3.
For each N € D(M,T'), a submanifold L. C N is called canonical if it is a
component of N \ 7, where 7 is a subfamily (may be empty) of JSJ-tori of N.

Corollary 5.10. When N runs over all elements in D(M,T), the canonical sub-
manifolds of N take at most finitely many typological types, depending only on M.

Proof. The proof will be by induction on the number v(1.) of JSJ-pieces of acanonical
submanifold L.

Corollary 5.10 is valid for v(L) = 1 since S /(M) is finite. We suppose that it
is valid for v(1) < m and we are going to verify it for v(l.) = m.

Fix a connected subtree Ty of T with m vertices and let D(M, T',) be the set
of canonical submanifolds with dual JSJ-tree I'x. Choose a vertex y € 'y with
corresponding vertex manifold Y.

For each canonical submanifold . € D(M,T), we have L\ ¥ = le £,
where P; is a canonical submanifolds and v( P;) < m, hence P; can take only finitely
many topological types by the induction hypothesis. So we may fix the topology of
Piforeachi =1,...,p.
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We may suppose 0Y = {0,Y,...,dx Y} and 9y P; is the component of 9P; iden-
tified with 9; Y via a gluing map ¢; (reordering the components of Y if needed). So
we canrewrite L = ¥ Uggy, . {Fi}

Fix a gluing pattern (Ap,, ptp;) C dgP; foreachi = 1,..., p. Then each gluing
map ¢; is determined by the images (¢; (Ap; ), ¢; (11p;)) on 9; Y. By definition (A; =
$i(ip;). thi = @i(Ap;)) is a gluing pattern on 9; Y. Hence {(4;, ;). i = 1...., p}
forms a subset of a gluing pattern {(A;, u;), 1 = 1,...,k} for dY. Any subset
(AL, uy), 1 =1,..., pyofaA-equivalent gluing pattern {(A;, u}), i = 1,... k}for
dY provides a canonical submanifold 1" € D(M, T'y) which is homeomorphic to L.
By Proposition 5.7, there are only finitely many A-equivalent classes of gluing patterns
for 3Y, depending only on M. Hence a canonical submanifold L in D(M, ') can
take at most finitely many topological types, depending only on M. ([

6. Knot exteriors in §3

By Theorem 1.2 and an obvious twisted double construction, one gets the following
straightforward corollary:

Corollary 6.1. Each compact orientable 3-manifold with a torus boundary 1-domi-
nates at most finitely many integral homology solid tori.

A less direct and may be more interesting result is the following

Theorem 6.2. A compact orientable 3-manifold M dominates at most finitely many
exteriors of knots in S°.

Proof. We call the exterior E(k) = S%\ N(k) of a knot £ in S° a knot space,
where N (k) is a tubular neighborhood of k in S3. The dual graph T'(k) to the JSJ-
decomposition of E(k) is a rooted tree, where the root corresponds to the unique
vertex manifold containing 3£ (k).

Let K (M ) denote the set of homeomorphism classes of knot spaces £ (k) domi-
nated by M. By Lemma4.2, there are only finitely many ' (k) for all £ (k) dominated
by M. By the local domination theorem (Corollary 4.6) the JSJ-pieces of the knot
spaces in K (M) belong to a finite set HS (M).

Foragiven graphT', let X(M,I") C K (M) be the set of homeomorphism classes
of knot space E(k), such that:

(1) E(k)is dominated by M.
(2) The JSJ-graph I'(k) is abstractly isomorphic to I'.

(3) Each vertex manifold has a fixed topological type. Each torus boundary com-
ponent of the vertex manifold has assigned to an edge on the vertex.
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Like in the case of integral homology spheres, the proof of Theorem 6.2 is reduced
to the following result. (]

Proposition 6.3. The set X (M, 1) is finite.

Proof. To apply the arguments in Section 5 to the present case, we will consider
S? = E(k) U N(k) rather than just consider E (k). Precisely dE (k) and the JSJ-tori
of E(k) provide an extended JSJ-splitting of S3 = E(k)U N (k) with one more torus
dFE (k) and one additional piece the solid torus N(k). The dual graph T'* (k) of this
extended decomposition is a tree obtained by adding one leaf on the root.

Now for each JSJ-piece Y, different from N(k), of this extended JSJ-decompo-
sition of §* = E(k) U N(k), we can define A-equivalent classes of gluing patterns
for 8Y \ 0F (k) like in Section 5. Similarly the proof of Proposition 6.3 is reduced to
the following result. ([

Proposition 6.4. When N runs over all elements in KX (M, ), for each vertex mani-
fold Y of T there are at most finitely many A-equivalent classes of gluing patterns
for dY \ 0E(k), depending only on M.

And Proposition 6.4 is reduced to the following

Proposition 6.5. When N runs over all elements in K (M, ), for each vertex mani-
foldY of T there are at most finitely many A-equivalent classes of systems of £-images
on 0Y, depending only on M.

Remark 6.6. When JE (k) C 9Y, in order to show the finiteness of A-equivalent
classes of gluing patterns on dY \ dFE(k), we need the finiteness of A-equivalent
classes of systems of £-images on 97, including 9E (k).

Proof of Proposition 6.5. Let Y be the given vertex manifold with &£ 4+ 1 boundary
components 3;Y,i =0,1,...,k. Now S3\Y = Uf-czo Z;, where Z is a solid torus
containing N (k) and bounded by Yy, and Z; is a non-trivial knot space, bounded
by dY; fori = 1,..., k. Recall that for a system of £-images (po, tt1,-.., k) ON
(doY,01Y....,0¢Y), po is the image of the boundary Az, of a meridian disc of Zy
and p; C 9;Y is the image of the longitudinal slope Az, ,i = 1,... k.

It is known that both the JSJ-pieces in knot spaces and their gluing are rather
restrictive (see for example [Ja], IX.22, or [BS]), Chapter 2. A Seifert JSJ-piece of a
knot space 1s either a torus knot space, a cable space or a composite space.

We may assume that & > 1, otherwise Y is a hyperbolic or a torus knot space and
by [GL] the meridian @ is unique. Below we distinguish three cases for the proof:

(i) Y is hyperbolic. Since the boundary tori Y \ d¢Y of the compact 3-manifold
Y (o) is compressible, by Theorem 2.0.1 of [CGLS] the {-image po on doY can be-
long to at most three distinct slopes. The argument for the finiteness of the remaining
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£-images p;, i = 1,...,k, is then the same as the corresponding part of the proof of
Proposition 5.8.

(ii) Y is a cable space. Say Y is a (g, p)-cable space with p > 2. Then ¥V
is a Seifert fiber space over annulus with a singular fiber of index p. Then Y =
doY U 81Y and we choose a basis on H;(dYy; Z) and H(3Y,; Z) represented by a
section of the circle fibrations induced on doY and d;Y by the Seifert fibration of ¥
and the fiber of these induced circle fibrations.

The fact that ¥(ug) is a solid torus forces pgo to meet the fiber exactly once,
that is po = (1,qo) in H1(9Yy; Z). Moreover ¥ (u1) must be a torus knot space
E(Ty45p,p), which falls into SH(M ). Hence it has only finitely many topological
types. Therefore 11 = (sp + ¢,q1) and s takes only finitely many values. Then
there are only finitely many A-equivalent classes of systems of £-images on 3} as in
the corresponding part of the proof of Proposition 5.8.

(iii) ¥ is a composite space. It means that Y 1s homeomorphic to a product
S1 x Dy where Dy is a disk with k holes. This corresponds to the case where the
core kg of the solid torus Zj is not a prime knot. In this case the £-image pg C dgY
is isotopic to afiber 7 = S! x {x}, whose slope is determined by the topological type
of Y. Then the A-equivalence class of attaching patterns is unique as we shown in
the corresponding part of the proof of Proposition 5.8.

This finishes the proof of Proposition 6.5. (]

We call a homomorphism ¢ : 71 (M) — 71(V) between 3-manifold groups non-
degenerate, if ¢ can be realized by a proper map f: M — N of non-zero degree.
The image of 71 (M) by such a non-degenerate homomorphism has finite index in
T (N )

Now we can translate Theorem 6.2 into the following

Corollary 6.7. The fundamental group of a compact, orientable 3-manifold admits
a non-degenerate homomorphism to only finitely many distinct knot groups.

Corollary 6.7 is related to Simon’s conjecture.

Conjecture 6.8 ([Ki], Problem 1.12 (J. Simon)). A knot group m1(S> \ K) surjects
onto at most finitely many distinct knot groups.

This conjecture raised in 1970s has received recently a lot of attention (see for ex-
ample [BBRW], [RW], [Si], [SW], [So4]). I. Agol and Y. Liu had confirmed Simon’s
conjecture in the summer of 2010 [AL] by proving that a finitely generated group
G with the first Betti number 81(G) = 1 surjects onto finitely many knot groups.
Our result holds with domain the fundamental group of any compact orientable 3-
manifold and for non-surjective homomorphisms, but under the restrictive condition
that the homomorphism is non-degenerate.
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We give now a criterion for a homomorphism between knot groups to be non-
degenerate:

Lemma 6.9. A homomorphism ¢ : w((E(k)) — m(E(K")) is non-degenerate iff it
sends the preferred longitude of k to a non-trivial peripheral element of w1 (3E (k).

Proof. On the boundary tori 3£ (k) and dE(k'), let {m, £} and {m’, £’} be meridian-
preferred longitude pairs.

If ¢ can be realized by a proper map f: E(k) — E(K') of non-zero degree,
then the restriction of ¢: w1 (dE(k)) — m1(3E (k")) is injective, and thus ¢(£) is a
non-trivial element in 771 (dE(k')).

Conversely, assume ¢(£) is a non-trivial element in 71 (dE (k")). It will be null-
homologous in 1 (E(k')), hence ¢p(£) = € with n € 7 \ {0}. Then ¢(m) belongs
to the centralizer of €7 in the knot group w1 (E(k’)). By [JS], Chapter VI, and
the description of Seifert pieces in a knot complement, the centralizer of £ is the
peripheral subgroup 71 (3E(k’)), so ¢(m) is a peripheral element which normally
generates a finite index subgroup of the knot group 71 (£ (k")), and so generates a finite
index subgroup of its first homology group. Hence ¢ () must be equal to pm’ + g€’
for some integers p # 0, g € Z. This shows that ¢(m1(3dE(k))) C m1(dE(k")) and
that ¢ is injective on w1 (dFE(k)).

Then, since knot exteriors are K (7, 1)-spaces, a standard argument in algebraic
topology and 3-manifold theory shows that the homomorphism ¢; can be realized by
a non-zero degree propermap f: E(k) — E(k'). O

Remark 6.10. In [GR], [HKMS] many examples of degenerate epimorphisms be-
tween knot groups are given. There are epimorphisms between knot groups which do
not send a meridian to a meridian: Suppose a knotk C S3 whose group w1 (E(k)) is
normally generated by a non-peripheral element p, see L.emma 6.11. By [Gon] there
exists a knot &/ C S? and an epimorphism from = E((k’)) onto 7{(E(k)) which
sends a meridian of k” to p. The fact that knot groups are residually finite [He], hence
hopfian, and Property P for knots in $3 [KM] imply that the knots k and k&’ must be
distinct. This construction has been pointed out to us by Cameron Gordon and Alan
Reid.

Lemma 6.11. Ler k be a (1, 1)-knot in S which is not a 2-bridge knot. Then
m1(E(k)) is normally generated by a non-peripheral element.

Proof. Recall thata (1, 1)-knotin S is a knot which admits a 1-bridge presentation
on a standard unknotted torus, therefore (1, 1)-knot is a tunnel number one knot and
by construction the fundamental group 71 (£ (k)) is generated by two elements a, m
with m a meridian. Let [a] = p[m] € H{(E(k);Z), then 7 (E(k)) is normally
generated by the element b = am1=2)_ By [BZ] this element cannot be peripheral
since 1 (£ (k)) is generated by b and mn, and the fact that k isnota 2-bridge knot. [
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