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Finiteness of 3-manifolds associated with non-zero degree
mappings

Michel Boileau, J. Hyam Rubinstein and Shicheng Wang*

Abstract. We prove a finiteness result for the 9-patterned guts decomposition of all 3-manifolds
obtained by Splitting a given orientable, irreducible and 9-irreducible 3-manifold along a closed
incompressible surface. Then using the Thurston norm, we deduce that the JSJ-pieces of all
3-manifolds dominated by a given compact 3-manifold belong, up to homeomorphism, to a

finite collection of compact 3-manifolds. We show also that any closed orientable 3-manifold
dominates only finitely many integral homology spheres and any compact orientable 3-manifold
dominates only finitely many exteriors of knots in S3.

Mathematics Subject Classification (2010). 57M05, 57M25, 57M45.

Keywords. Degree one mappings, 3-manifolds, JSJ-decompositions, Thurston norm, Gromov
volume, patterned guts.

1. Introduction

Maps between 3-manifolds have been studied for a long time, and have become an es-

pecially active subject after Thurston's revolutionary work on 3-manifold theory. The
existence of non-zero degree proper maps between compact orientable 3-manifolds
is a fundamental and difficult question in this area. We say that a compact, orientable
3-manifold M dominates a compact orientable 3-manifold N if there is a non-zero
degree proper map /: M -> N. When the degree of / is one, we say that M
1-dominates N.

The following simple and natural question was raised in the 1980s (and formally
appeared in the 1990s, see ([Ki], Problem 3.100 (Y.Rong), and also [W2].

Question 1. Does a closed orientable 3-manifold l-dominate at most finitely many
closed, irreducible and orientable 3-manifolds

*Acknowledgements We thank a lot the referee for his careful reading of our paper, for providing many fine
suggestions, and in particular for pointing out the incompleteness of our induction argument in Section 5. We
thanks also Y. Liu and H. Sun for their comments on our drafts. The first and the last authors would like to
acknowledge support by MOST of China, and Institut Universitaire de France; and the last two authors would
like to acknowledge support by the Australian Research Council.



34 M. Boileau, J. H. Rubinstein and S. Wang CMH

Ifwe allow any degree, 3-manifolds supporting one of the geometries S 3, PSL2 (M),
Nil can dominate infinitely many 3-manifolds. Thus any closed orientable 3-manifold
which dominates such closed 3-manifolds indeed dominates infinitely many 3-manifolds.

At the moment these are the only known examples, so the following general-
ization of Question 1 makes sense:

Question 2. Let M be a closed orientable 3-manifold. Does M dominate at most
finitely many closed, irreducible, orientable 3-manifolds N not supporting the

geometries of S3, PSLl(i), Nil?

Many related partial answers to Questions 1 and 2 have already appeared in the

literature, see for example [Rol], [Ro2], [Ro3], [BW], [HWZ1], [HWZ2], [RW],
[Sol], [So2], [So3], [Re], [WZ], [De], [Del], [Gu], [BCG], [BBW].

Finiteness of closed irreducible targets implies finiteness of possibly non prime
closed targets: the number of prime factors in the target is bounded by the number
of closed, disjoint, non parallel, essential surfaces in the domain; furthermore a

connected sum of finitely many closed 3-manifolds 1-dominates each of its prime
summands, which are either irreducible or homeomorphic to S1 x S2.

Since a non-zero degree proper map between two compact orientable 3-manifolds
induces a non-zero degree map between their doubles, finiteness of closed targets
implies finiteness of the targets in the setting of compact orientable 3-manifolds (see

Remark 4.7 at the end of Section 4).
First we introduce some Standard terminology in 3-manifold topology, see [Ja].
In this paper, all surfaces and 3-manifolds are compact and orientable. Also we

will work in the piecewise linear category, so all Spaces and maps will be PL. Suppose
S (resp. P) is a properly embedded surface (resp. an embedded 3-manifold) in a 3-

manifold M. We use M\S (resp. M\P) to denote the resulting manifold obtained

by Splitting M along S (resp. removing intP, the interior of P). Note that we allow
the possibility that S is not connected, so that it has finitely many components.

A 3-manifold M is

• prime if it is not the connected sum of two 3-manifolds neither of which is S3;

• irreducible if every embedded sphere in M bounds a ball in M. A prime
orientable 3-manifold which is not irreducible is homeomorphic to S2 x S1;

• d-irreducible if for every properly embedded disc D in M, there is a ball B C M
and a disc D' C 3M, such that 3D — dDf and dB D U D'\

• atoroidal if every Z 0 Z subgroup in jt\M is conjugate into ttiSM and in
addition tx\M is not virtually abelian. An irreducible orientable 3-manifold
such that every Z 0 Z subgroup of tx\M is conjugate into 7t\dM is either
atoroidal, T2 x (0,1), or the twisted I-bundle over the Klein bottle.

The JSJ-decomposition ([JS], [Joh]) of a compact orientable irreducible 3-manifold

M is the canonical Splitting of M along a finite (possibly empty) collection T of
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disjoint and non-parallel, nor boundary-parallel, incompressible, embedded tori into
maximal Seifert fibered or atoroidal compact submanifolds. We call the components
of M \ T the JSJ-pieces of M.

Thurston's geometrization conjecture stated that the atoroidal JSJ-pieces support a

hyperbolic or a spherical metric on their interiors. W. Thurston proved his conjecture
for any Haken 3-manifold (i.e. a compact, orientable, irreducible and 3-irreducible 3-

manifold which contains a properly embedded essential surface; for details see [Thl],
[Th2]). The füll conjecture has been settled recently by G. Perelman [Per] (see [KL],
[MT], [CZ], [BBBMP]), hence every compact orientable, irreducible 3-manifold is

geometrizable in the sense that it satisfies Thurston's geometrization conjecture.
The fact that the targets are geometrizable 3-manifolds is crucial when considering

Questions 1 and 2. A consequence is that a positive answer to Question 2 implies a

positive answer to Question 1. Furthermore, since the results of [Sol] (see also [Re],
[Gu], [BCG]) and [WZ] show that a closed orientable 3-manifold dominates only
finitely many 3-manifolds supporting either a hyperbolic structure with finite volume

or a Seifert geometry M2 x E1, Question 2 reduces to the following:

Question 3. Let M be a closed orientable 3-manifold. Does M dominate at most

finitely many, closed, orientable, irreducible 3-manifolds N with non-trivial JSJ-

decomposition

There are some partial results for Question 3 in the case of sequences of degree 1

maps (see [Rol], [So2]), or when the domain and the target have the same simplicial
volume (see [So3], [De]). Question 3 is solved in [De] when M is a graph manifold.

A general approach to Question 3 can be divided into two steps:

(1) Finiteness of JSJ-pieces: show that there is a finite set MS{M) of complete
hyperbolic 3-manifolds with finite volume and of Seifert manifolds such that
each JSJ-piece of a 3-manifold N dominated by M belongs to MS (M).

(2) Finiteness ofgluing: For a given finite set MS(M) of complete hyperbolic 3-

manifolds with finite volume and of Seifert manifolds, there are only finitely
many ways of gluing elements in MS (M) to get closed 3-manifolds dominated

by M.

Notice that with our terminology, a manifold supporting a Sol geometry has a

nontrivial JSJ-decomposition with only one piece homeomorphic to a product T2 x I
or two pieces homeomorphic to the twisted I-bundle over the Klein bottle. For such

manifolds in the target, the finiteness ofJSJ-pieces is trivially true, while the finiteness
of gluing is much more subtle (see [WZ] for 1-domination and [BBW] if we allow
arbitrary non-zero degree).

T. Sorna proved the finiteness of hyperbolic JSJ-pieces in [So2]. One of the main
results of this paper is to complete the proof of the first Step by proving the finiteness
of the Seifert fibered JSJ-pieces:
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Theorem 1.1 (Finiteness of JSJ-pieces). Let M be a closed, orientable, 3-manifold.
Then there is a finite set MS (M) of complete hyperbolic 3-manifolds with finite
volume and of Seifert fibered 3-manifolds, such that the JSJ-pieces of any closed,

orientable, irreducible 3-manifold N dominated by M belong to MS (M), provided
that N does not support the geometries of S3, PSL2(R), Nil.

The finiteness of the Seifert fibered JSJ-pieces follows from a finiteness result for
the Thurston norm of all compact 3-manifolds Ms M \ S, where S runs over all
incompressible, orientable surfaces (not necessary connected) in Af, see Section 3.1.

This latter result is derived from the finiteness of "patterned guts" of all the manifolds

Ms M\S, where S runs over all incompressible, orientable surfaces in Af, which
we prove in Section 2.

We also prove the finiteness of gluing when the targets are irreducible, integral
homology 3-spheres. Together with Theorem 1.1 (Theorem 4.1) this gives a positive
answer to Question 3 when the targets are integral homology spheres.

Theorem 1.2. Any closed orientable 3-manifold dominates onlyfinitely many integral
homology 3-spheres.

Without any restriction on the possible degrees of the maps or on the geometry of
the target, this is the best result one can expect, since any closed orientable 3-manifold
dominates all 3-dimensional lens Spaces, which are rational homology spheres.

Since a degree-one map induces an epimorphism at the level of homology groups,
Theorem 1.2 gives a positive answer to Question 1 when the domain is an integral
homology sphere:

Corollary 1.3. An integral homology 3-sphere l-dominates at most finitely many
closed 3-manifolds.

The argument for integral homology spheres can be modified to prove the follow-
ing corollary.

Corollary 1.4. Any compact orientable 3-manifold dominates at mostfinitely many
knot complements in S3.

This corollary is related to a question of J. Simon on epimorphisms between knot

groups (see [Ki], Problem 1.12 (J. Simon), and Section 6).
The paper is organized as follow: The finiteness of patterned guts is discussed

in Section 2; the finiteness of Thurston norm and Gromov volume is discussed in
Section 3; the finiteness of JSJ-pieces is proved in Section 4. The last Sections 5

and 6, are devoted to finite domination results when the targets are integral homology
3-spheres or knot complements in S3.

We end the introduction by the following
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Remark 1.5. We could define the notion of domination between 3-manifolds which
are not necessarily orientable in terms of geometric degree [Ep]. But, then there are

examples of non-orientable (hyperbolic) 3-manifolds which 1-dominate infinitely
many orientable (hyperbolic) 3-manifolds (see [Ro3], [BW]). In Section 3 of [BW],
by lifting the maps in those examples to the orientable double cover of the do-

main, maps between orientable hyperbolic 3-manifolds are produced whose degree is
1 + (—1) 0 rather than 2, as wrongly claimed there. This error has been pointed
out by T. Sorna and many others.

2. Finiteness of patterned guts

In the Jaco-Shalen-Johannson decomposition of a compact orientable 3-manifold
along essential tori and annuli, the guts consist of the pieces which are not 7-bundles

over surfaces with negative Euler characteristic. Finiteness of guts is a basic principle,
which originated from H. Kneser's work, see for example [A], [Ga2], [JR] for some
recent applications of guts in 3-manifold theory. We first introduce the notion of
patterned guts needed for our study of non-zero degree maps.

Suppose X is a 3-irreducible and irreducible, compact, orientable 3-manifold.
According to Jaco-Shalen-Johannson theory ([Ja], [JS], [Joh]), there is a unique, up
to proper isotopy, characteristic 3-submanifold E C X which is an union of Seifert

spaces and 7-bundles.
This characteristic submanifold has a unique decomposition, up to proper isotopy:

S (S \ IBx) u IBx,

where IB% is formed by the components of the Seifert pairs which are 7-bundles over
surfaces F, where F has negative Euler characteristic /(F) if 3F ^ 0. We make
the following Convention in this paper: if a component of X is a Seifert manifold and
also an 7-bündle over a surface, we will always consider it as an 7-bündle.

Therefore we have a decomposition

X (X \ IBx) Gax 7Bx Gx ^Ax IBx >

where Ax is the collection of frontier annuli of IBX in X. We call Gx X \ IBX the

guts of X, and the decomposition above the Gl-decomposition for X. The embeddings
of Gx, Ax and IBX are unique up to proper isotopy in X.

Suppose S is a closed, incompressible surface in an irreducible 3-manifold M.
Then Ms M \ S is 3-irreducible and irreducible. For such a surface S, we write
the Gl decomposition of Ms as

Ms Gs Uas IBs
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Definition 2.1. Suppose X is an orientable, irreducible and 3-irreducible 3-manifold.
A 3-pattern for X is a finite collection of disjoint annuli d C 31, and given A we
say that X is 3-patterned.

Example 2.2. For each component G of Gs, G D As is a 3-pattern for G^. We often
call the pair (G, G D As) a patterned guts component for the surface S.

The main result of this section is the following finiteness result for patterned guts:

Theorem 2.3 (Patterned guts finiteness). Let M be a closed, orientable, irreducible
3-manifold. Then there is a finite seti/(M) of connected, compact, orientable, 3-

patterned 3-manifolds such that for each closed, incompressible (not necessarily
connected) surface S C M, allpatterned guts components of(Gs, Gs H As) belong

to$(M).

Proof The proof of Theorem 2.3 consists of three steps.

Step 1. Construct a first "Approximation " to the Gl-decomposition by applying
a refined Kneser argument.

Fix a triangulation K of M. Suppose that K has t tetrahedra. For simplicity, we
also assume that K has only one Vertex v (see [JR] for example). Let Sv be the normal
sphere which is the boundary of a small regulär neighborhood Bv ofv. Suppose that
S is a closed orientable incompressible surface in M. First deform S to be a normal
surface in (Af, K). We can assume that S D Sv 0. Let S* S U Sv.

Each tetrahedron T has seven normal disc types, four triangulär types and three

quadrilateral types, see Figure 1. Since S* contains Sv and S* is embedded, for each

tetrahedron T of K, T D S* contains all four triangulär normal disc types but at most
one quadrilateral normal disc type.

Let M* M \ Bv, K* K D Af*, and T* T D M* for each tetrahedron
T in K. Then K* is a truncated triangulation of Af*, and each T7* is a truncated
tetrahedron. Now we consider S C M* |^*|.

If S fl T7* contains a quadrilateral normal disc, then T*\ S contains two non-
product regions, which are truncated prisms: they are truncated from T by using this

quadrilateral normal disc and four non-parallel triangulär normal discs S H T, see

Figure 2. The boundary of each such a truncated prism component has seven faces:

(1) two triangulär normal discs which lie in S U Sv;

(2) one quadrilateral normal disc which lies in S;

(3) two hexagonal faces which lie in the boundary of T;

(4) two quadrilateral faces which lie in the boundary of T.

If S fl T* contains no quadrilateral normal disc, then T* \ S contains just one

non-product region, which is a truncated tetrahedron: it is truncated from T by using
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four non-parallel normal discs of triangulär type. The boundary of such a truncated
tetrahedron component has eight faces:

(5) four normal discs of triangulär type which lie in S U Sv\

(6) four hexagonal faces which lie in the boundary of T.

Note that each remaining component of T* \ S is a product region, whose boundary
is formed by two normal discs of the same triangulär (resp. quadrilateral) type and

three (resp. four) vertical quadrilateral faces which lie in dT, see Figure 3. Moreover
in K*\S, each hexagonal face given in (3) or (6) is identified with a hexagonal face

given in (3) or (6), and each quadrilateral face given in (4) is either identified with a

quadrilateral face given in (4), or with a vertical quadrilateral face of a product region.
Let Q be a quadrilateral face given in (4). If in K*\ S, Q is identified with a

vertical quadrilateral face of a product region, we call Q difrontier quadrilateralface.
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Product regions

Figure 3

Otherwise we call Q a non-frontier quadrilateralface.
Now we glue together the truncated prism components and the truncated tetra-

hedron components of K*\ S along their hexagonal faces and their non-frontier
quadrilateral faces to get pieces P\,..., 7\. Let be the union of those pieces P(,
i 1,..., k.

Note that dM*s S\ U S2 U Sv, where S\ and S2 are two copies of S, and

(i) dGl (dM*s nGj)U (union of frontier quadrilaterals).

Now wehaveM*\S G^U((Af*\S)\G^). The components of (M*\S)\Gg
are obtained by gluing the product regions along their vertical quadrilateral faces,
hence they are 7-bundles, whose union is denoted by IBls. The set IBls is a product
or a twisted 7-bundle over a compact surface S\ denoted by N(S'). Let N(dS')
denote the 7-bundle structure restricted to dS'. Then

(ii) dIB\ (dM*s n dIB\) U N(dSf).

Clearly

(iii) 3 M*s(dM*s n U (3M*s n 3

Combining the formulas (i), (ii) and (iii), it follows that the annuli N(dS') in (ii)
are identified with the union of frontier quadrilaterals in (i). In conclusion, all those

frontier quadrilaterals form the intersection IB$ D G^, which is a union of finitely
many properly embedded annuli in M* \ S, denoted by We call ^ the frontier
annuli of G$ (of IB^). Now we get our first "approximation" G7-decomposition

M*\S Gl U4 IBl
For each S C M, G^ is constructed from n < t truncated tetrahedra and m <

2t truncated prisms by gluing their hexagonal faces and non-frontier quadrilateral
faces in pairs. It follows that there is a bound for the combinatorial (therefore the

topological) types of the components of G\. A very crude bound is 5*, obtained by
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noting that there are 5 choices for each tetrahedron consisting of the empty set, the

truncated tetrahedron or one of the 3 possible truncated prisms (note if we have any
quadrilateral type we always get two truncated prisms in our guts). Moreover once

is formed, the position of the frontier annuli ^4^ C is fixed. Hence we reach

the following conclusion:

Conclusion 2.4. There is a finite set of compact, orientable, connected,
3-patterned 3-manifolds such that for each closed, incompressible surface S C Af,
all patterned components of (G^, G^ D Axs) belong to i/l(M).

Step 2. Construct a second "approximation" to the Gl-decomposition by absorb-
tion of "tiny" patterned 3-manifolds from G$

Suppose that a component At (or a pair of components At and Aj)ofAls separates

a component P from M* \ S such that one of the following patterned 3-manifolds
occurs:

(i) (p, A%) (Z)2 x /, dD2 x /), or ((Z)2 xZ)\ Bv,dD2 x Z);

(ii) (P,At) (D2xS1,ZxS1)or fP,At) ((Z)2 x S1) \ Bv, I x S1), for
some interval Z C dD2;

(iii) (P, At U Aj) (AxfdAx I) or ((^4 xI)\Bv,dAxI) for some annulus A.

We call any patterned 3-manifold of one of the types above tiny.
Note that a tiny patterned 3-manifold P may contain other tiny patterned 3-

manifolds. Therefore P may contain (finitely) many components of ^4^. But since

^ has finitely many components, there are only finitely many tiny patterned P.
Let P be a tiny patterned 3-manifold. We eliminate P by gluing it to its neighbor-

ing component(s) along Ax (and Aj) and then delete from ^ all components of ^
in P. In this manner, we also eliminate all tiny patterned 3-manifolds contained in P.
In such an absorbtion process, we get a new decomposition G^(l) u^(i) ^l(l):
all components in G$ and IBls which are contained in P or are adjacent to P become

a new component of G^(l) U ZP^(l), all the remaining components in G$ and IBls
are preserved, and ^(1) is obtained by removing from ^ all components of ^
in P. The new component in the new decomposition which contains P is considered

as a "pseudo" Z-bündle (respectively a "pseudo" guts) component if and only if the

neighboring components of P are Z-bundles (respectively guts components).
Now consider the tiny patterned 3-manifolds of the decomposition G^(l) u^(i)

IB${1) defined as above (which indeed is a sub-collection of the tiny patterned 3-

manifolds of Z,ß^). If there are some, we can continue this absorbtion process

to get a new decomposition G^(2) GÄi ^ IB^(2). Repeating this process we get

a sequence of decompositions G\{n) GÄi ^ IB^(n). Since ^ has only finitely

many components and the number of components of Als(n) is strictly decreasing,
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this absorbtion process must stop for some n. Then we get our second "approximate"
Gl-decomposition without tiny patterned 3-manifolds, which is denoted by

M*\S G2s U4 IB2s.

Now we claim the following:

Claim 2.5. Each annulus in A2S is incompressible and d-incompressible in M* \ S.

Proof Suppose some annulus Ax C A2S is compressible in M* \ S. Since M* \ S

is 3-irreducible, each component of dAx bounds a disk in 3(M* \ S). Since M\S
is irreducible, Ax must separate from M* \ S either a component homeomorphic to
D2 x I or to (Z)2 x I) \ Bv. This contradicts the fact that no Ax meets the condition (i).

Suppose that some annulus Ax C A2S is 3-compressible in M* \ S. Since M* \ S

is irreducible and 3-irreducible, it is not difficult to verify that Ax must separate from
M* \ S a component P homeomorphic to a solid torus or a punctured solid torus and

which meets the condition (ii). This again gives a contradiction.

Since A2S is incompressible and 3-incompressible in M* \ S, A2S does not meet Sv,
and we can plug the ball Bv back into M* \ S to get a new "pseudo" Gl -decomposition
for M \ S, still denoted by

M\S Gj UÄ2 IBj.

Let m be the number of pattern annuli in Let P(M) be the set of
patterned 3-manifolds consisting of m copies of a patterned 3-manifold of each type
(i), (ii) and (iii), and of one 3-ball. Then the patterned 3-manifolds obtained from

and P(M) by identifying some of their pattern annuli in pairs, and possibly
plugging in the 3-ball, is a finite set i?2{M) of patterned 3-manifolds. Since G| is

obtained from a subset of G$ C and a subset of P(M) by identifying some
of their pattern annuli in pairs, and possibly plugging in the 3-ball, it follows that, up
to homeomorphism, the components of G| belong to ^2(M). Hence we reach the

following conclusion:

Conclusion 2.6. (1) There is a finite set i?2{M) of compact, orientable, connected,
3-patterned 3-manifolds such that for each closed, incompressible surface S C Af,
all patterned components of (G^, G^ D Abelong to ^2(M);

(2) Each component of IB$ is an /-bündle over a surface F such that /(E7) < 0

if dF 0. Moreover A2S is incompressible and 3-incompressible.

Step 3. Comparing the decomposition G^ UÄ2 IB$ with the Gl-decomposition.
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We recall that Ms Gs IB$ is the Gl-decomposition. By the embedded
version of the enclosing property of the JSJ-decomposition and Conclusion 2.6, IB$
is a sub-I-bundle of IB$ up to a proper isotopy of M \ S. Hence

Gj Ms\ IB2S Gs UAs (IB~S \
Suppose A2S has ms components. Let F* be the once punctured torus and dehne

thepatterned 3-manifold (P, A) (F* x /, 3F* x /). Let Äff* be obtained from Gf
and ms copies of (F, Ä) by identifying each frontier annulus of Gf with a frontier
annulus of P. Then Äff* is boundary irreducible and is uniquely determined by Gf.
In particular there are hnitely many topological types of Äff* for all incompressible
surfaces S C M by Conclusion 2.6 (1).

Let Äff* Gf U^* 7F*~ be the G7-decomposition, which is unique up to

isotopy. Hence there are hnitely many topological types of Gf for all incompressible
surfaces S c M. It is not difhcult to see that (Gf, Af) (Gs,As) for each

incompressible surface S C M. Hence Theorem 2.3 is proved.

Definition 2.7. Let M be a closed orientable irreducible 3-manifold. Dehne:

M {Ms, Ms, where S runs over all incompressible surfaces in Af,
and Ms runs over all double coverings of Af^}.

Since each compact 3-manifold has only hnitely many double coverings, the main
results in Sections 2 and 3 and their proofs imply the following corollary:

Corollary 2.8. Let M be a closed, irreducible 3-manifold. Then there is afinite set
H (Af) ofconnected compact d-patterned 3-manifolds such thatfor any X e M, each

component ofthe patterned guts (Gx, Ax) belongs to i/(M).

3. Thurston norm and Gromov volume

3.1. Finiteness of the Thurston norm. We hrst give a brief description of the
Thurston norm on the second relative homology group H2(X, Y; Z) of a compact,
orientable 3-manifold X, where Y C dX is a subsurface.

Thurston [Th3] introduced a pseudo norm on H2{X, Y; Z) using the fact that any
homology class z e H2{X, Y; Z) can be represented by a properly embedded ori-
ented surface (F, 3F) (X, Y). Set /-(F) max{0, —/(F)} if F is connected,
otherwise let /-(F) /_(F;), where F; are the components of F. Then for an

integral class z e H2{X, Y; Z), the Thurston norm ||z|| of z is dehned as

||z|| inf{/_(F) : F is an embedded closed orientable surface

representing the homology class z in H2{X, Y;Z) }.
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Thurston then shows that || || extends to a convex pseudo-norm on H2 (X, 7; R) which
is linear on rays through the origin. The Thurston norm turned out to be very useful
in the study of the topology of 3-dimensional manifolds.

In [Gal] (see also [Pe]) Gabai shows that to dehne the Thurston norm, one can

replace "embedded surfaces" by "singular surfaces" and still get the same norm.

Definition 3.1. Let Ibea compact, orientable 3-manifold and Y c 31 be a sub-

surface. For a hnite set of elements a {a\,..., a^} of H2{X, 7; Z), we dehne

TN{a) max{||<2; ||, i 1,... ,k}.

Then we dehne

TN{X, Y) min{7W(a) | a runs over all hnite sets of elements of
H2{X, Y; Z) which generate H2{X, 7; Q)}

to be the Thurston norm of the pair (X, 7).

Lemma 3.2. Let p\ (X, 7) -> (X, 7) be a proper non-zero degree map. Then

TN{X, 7) > 7W(X, 7).

Proof Suppose a C H2(X, 7; Z) generates H2(X, 7; Q). Let
(iS/, 3S/) C (X, 7) be a proper surface which presents ai and realizes its Thurston
Norm.

Clearly p(a) {p(ai),..., p(ak)} C H2(X,Y;Z). Since non-zero degree

mapsinducesurjectionsonrationalhomology, p(a) p(ak)} generates
H2(X, 7; Q). Now each /?(£;) is a singular surface representing p(üi). By Gabai's
result [Gal], it follows that ||/?(cif)|| < ||cif||, and therefore Lemma 3.2 is derived.

Recall for each closed incompressible surface S c M, we have the Gl-decom-
position Ms Gs IBs-

Lemma 3.3. There is a double cover Ms Gs IB$ of Ms Gs IB$
such that each component of IB$ is a product of an orientable surface with the

interval.

Proof An elementary fact is that each compact non-orientable surface F is doubly
covered by an orientable surface F such that the restriction on each component of
dF is an homeomorphism. It follows that each twisted /-bündle B over compact
non-orientable surface F is doubly covered by a product /-bündle B F x / such

that the restriction on each component of dF x / is a homeomorphism.
For each twisted /-bündle component B of (IBAs), pick a double covering

given in the first paragraph, and for each remaining component of (IBAs) and
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each component of (Gs, As), pick two identical patterned copies of it. Obviously
we can glue them together to get a double cover p: Ms -> Ms. Let Gs, As and

IB$ be the pre-images of Gs, As and IB$, then one can verify from the definitions

that Ms Gs UIBs Gl-decomposition of Ms and verifies the desired

property.

Now we are going to prove the main result of this section.

Theorem 3.4 (Finiteness of the Thurston norm). Let M be an irreducible, closed,
orientable 3-manifold. Then TN(Ms, dMs) takes at mostfinitely many values, when
S runs over all closed, incompressible surfaces embedded in M.

Proofi By Lemmas 3.2, we need only to prove Theorem 3.4 for double coverings
(Ms, dMs) provided by Lemma 3.3, for all incompressible surfaces S C M. For

simplicity we still use Ms Gs IB$ to denote Ms Gs IB$. Then

by Corollary 2.8 there are only finitely many topological types of patterned guts
(Gs, As) for all incompressible surfaces S C M. Hence the number of components
of As is uniformly bounded. Again by Lemma 3.3, each component of IBf is a

product of an orientable surface with the interval.
We first modify the decomposition so that the gluing annuli between the two parts

become separating. For each component N(F) of IB$ we choose a curve in the
interior of the base surface F, which co-bounds a planar subsurface Q together with
all the boundary components of F. Since the number of boundary components of F
is bounded by the number of components of As, \x(Q) I is uniformly bounded above,
for all incompressible surfaces S C M. Then we consider the new decomposition
M G's UÄ' IB'£, where G's is obtained by gluing to Gs the handlebodies N(Q)
along the components of As, and IBf^ is the sub-/-bundle of IB$ corresponding
to the subsurfaces F — int(<2). The gluing annuli A's are the separating annuli of
N(dQ) — As, using our previous Convention that N(Q) and N(dQ) are the /-bündle
restricted to Q and 3 Q respectively.

For a given patterned guts (Gs, As), there are only finitely many positive integer
Solutions {m\,..., m^} such that m\ H b — m where m is the number of
components of As, and for any such Solution {m\,..., m^}, there are only finitely many
ways to distribute m elements into k groups of cardinality m\,..., respectively.
Hence by the construction and Theorem 2.3, there are only finitely many topological
types of 3-patterned 3-manifolds (Gfs,Afs) for all incompressible surfaces S in M.
Then the finiteness for the values of TN(Ms, dMs) is a direct consequence of the

following lemma.

Lemma 3.5. Let S C M be a closed incompressible surface, then TN(Ms, dMs) <
TN(G's,dG's\mtA's).
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Proofi We consider the following natural homomorphisms induced by the inclusion

maps:

(p: H2(Gfs,dGfs\intAfs;Z) -> H2(Ms,dMs; Z);

f: H2(IB'^9dIB'^\intA's\'L) -> H2(Ms,dMs\ Z).

By applying the relative Mayer-Vietoris sequence (see [Do], page 52) to the pairs
(G's, 9G's \ intA's) and (IB'$, dIB'$ \ int^), one gets the exact sequence

>H2{A'SMS\E)
— H2(Gfs,dGfs \ intA's\ Z) ® H2(IBf~s, dIB'~s \ int^; Z)

— H2(Ms,dMs\ Z) — Hx(A'S9dA's\Z)

— Hx (G's ,9G's \ intA's; Z) © i ,dIB^\ intA's; Z) — • • •

We first show the injectivity of the homomorphism

Hx(A's,dA's;Z) -> Hi(G'S9dG's\intA's;Z) © Hi(IB's> dIB'~s \ intA's\ Z).

To do this we need only to show the injectivity of each homomorphism

Hi(A, dA; Z) -> HX(IB'A, dIB'~A \ inlA; Z),

where A is a component of and IB'A is the component of IB'^ containing A.
Note Hx(A,dA;Z) Z is generated by any arc in A connecting the two com-

ponents of 9^4, and IBfA F x [0,1], where F is an orientable surface with
dF x [0,1] A. Let T7* be a proper oriented surface of dF x [0,1]. Then it is

a direct geometric Observation that the number of times that 9T7* crosses A from
dF x {0} to dF x {1} and from dF x {1} to dF x {0} must be the same. This shows

the required injectivity.
Then by the exact sequence we have that

9*: H2(Ms,dMs;Z) -> Hx(A/s,dA/s;Z)

is null, and thus we get an epimorphism:

<b+f: H2(G's,dG's\mtA/s;Z)@H2(IB's,dIB's\mtA/s;Z)^H2(Ms,dMs;Z).
It is clear that H2(IB'dlB'^ \ int^; Z) has a basis y {cx,..., cm} which

is formed by a set of vertical annuli, whose Thurston norm vanishes. Hence for any
generating set

ß {bx,...,bn}
of H2(G's,dG's\intA's',Z)9

ol {<p(bx)9... 9<p(bn),ty(c\)9... 9ty(cm)}

is a generating set of H2(Ms, dMsl Z). It follows that TN(Ms, 9Ms) < 7W(a) <
TN(ß)9 sinceby the definitionof Thurston norm ||0 (&;) || < ||Z?/|| andO < ||0(c7)|| <
|| Cj || 0, for i 1,..., n and j 1,..., m. Therefore TN (Ms, dMs) <
TN(G's,dG's\intA's).
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3.2. Finiteness of absolute Gromov volume. This section will not be used in the

rest of the paper, but it provides a finiteness result for the absolute Gromov volumes
of the compact manifolds Ms, analogous to the one for their Thurston norms.

First we recall the basic definitions about Gromov's simplicial volume (see [Gr]).

Definition 3.6. Let X be a compact orientable 3-manifold with boundary. Define the
relative Gromov volume \X, dX\ by

In
Y^=i ^i°i is a cycle representing a fundamental \\^iIclass in H3(.X, dX-R), wherea,-: A3 ^ X is a

i=i singular simplex and A; e R, i 1,..., n.

A fundamental class in H3(X, dX; R) is the image of any of the 2k fundamental
classes in //3 (X, dX; Z) under the coefficient homomorphism, where k is the number
of connected components of X.

For a manifold with non-empty boundary, there is another way of defining a

simplicial volume, that we call the absolute Gromov volume.

Definition 3.7. Let X be a compact orientable 3-manifold with boundary and let

D{X) be the double of X, obtained by identifying two copies of X along their
boundary via the identity map. The absolute Gromov volume of X, denoted by \X\,
is defined to be half of the Gromov volume of the closed manifold D(X).

By the definitions of these two volumes, one has: \X\ < \X,dX\. Moreover by
[So5] and [Ku] they are equal if and only if dX 0 or x(dX) > 0.

For example, let (X, Ä) be a patterned 3-manifold and let Da{X) be the compact
3-manifold obtained by doubling X along the portion dX \ A of its boundary. Since

3Da(X) is a collection of tori, one has \Da(X)\ \Da(X), 3Z)^(A)|.
The following finiteness result holds for the absolute Gromov volume, while it is

false for the relative Gromov volume.

Proposition 3.8 (Finiteness of Gromov volume). Let M be an irreducible, compact,
orientable 3-manifold. Then the absolute Gromov volume \M \ S \ takes onlyfinitely
many values for all incompressible surfaces S C M.

Proof For an incompressible surface S C Af, we consider the G7-decomposition
Ms Gs IB$. By Conclusion 2.6 (2) in the proof of Theorem 2.3, dD(As)
is a collection of incompressible tori in D(Ms). Since the relative Gromov volume
is additive under gluing along incompressible tori (see [So5]), we have:

\D{MS)\ \Da(Gs), dDA(Gs)|+ \DA(IBJ), dDA(IBj)\.
Moreover the relative Gromov volume of Da(IB^) vanishes, because Da(IB^)

is homeomorphic to an S1 -bündle (see [Gr], [Th 1 ], Chapter 6) and the relative Gromov
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volume of Da{Gs) equals its absolute Gromov volume. Therefore we get \Mg\
i\DA(Gs)\.

Now Theorem 2.3 shows that there are only finitely many possible topological
type for Da(Gs) when S runs over all incompressible surfaces S in Af, and hence

Proposition 3.8 follows.

Example 3.9. We give an example of a closed orientable 3-manifold M such that the
relative Gromov volume | Ms, dM$ | is unbounded when S runs over all incompressible

surfaces S in M. Let X be a knot exterior in S3 which contains incompressible
Seifert surfaces of arbitrarily high genus (such examples exist and can even be hy-
perbolic, see [Gust]). Then the closed manifold M D(X) contains non-separating
incompressible closed surfaces Sn, with /_(Sn) tending to infinity with n, formed by
doubling the Seifert surfaces. When M is split open along such a surface, by definition
of the relative Gromov volume, one has: | Msn, dMsn | > 2 X-(dMSn)4X-(Sn).
Hence | Msn, dMsn | tends to infinity with n.

4. Local domination

In this section we prove the finiteness of the JSJ-pieces for manifolds which are
dominated by a given compact, orientable 3-manifold. We recall the Statement that

we are going to prove:

Theorem 4.1 (Finiteness of JSJ-pieces). Let M be a closed, orientable, 3-manifold.
Then there is a finite set MS (M) of complete hyperbolic 3-manifolds with finite
volume and of Seifert fibered 3-manifolds, such that the JSJ-pieces of any closed,

orientable, irreducible 3-manifold N dominated by M belong to MS (M), provided
that N is not supporting the geometries of S3, PSL2(M), Nil.

By [BW], Proposition 3.3, we can find an irreducible (even hyperbolic) closed,
orientable 3-manifold which 1-dominates M. Hence in the remainder of the proof,
we may assume that M is irreducible.

Let M be a closed orientable irreducible 3-manifold. By Haken's finiteness the-

orem, there is a maximum number h(M) of pairwise disjoint, non-parallel, closed,
connected, incompressible surfaces embedded in M. The following elementary fact
(see [Wl] for example) will be used in this section and the next ones.

Lemma 4.2. Let M and N be two closed, irreducible and orientable 3-manifolds.

IfM dominates N, then h(M) > h(N).

Let T(N) be the dual graph associated with the JSJ-decomposition of N. This

graph has one Vertex for each Seifert piece or piece with a hyperbolic metric of finite
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volume and one edge for each incompressible torus boundary component of either

type of piece. If M dominates N, then h(M) gives an upper bound for the number
of edges of T(V), by Lemma 4.2. Hence the number of JSJ-pieces of N, which is

the number of vertices of T(N), is bounded above by h(M) + 1. Therefore to prove
Theorem 4.1, we need only show that the JSJ-pieces of all 3-manifolds N dominated

by a closed, orientable 3-manifold M admit only finitely many topological types.
Recallthedefinition: M {Ms, Ms, where S runs over all incompressible sur-

faces in Af, and Ms runs over all double coverings of Ms}.
By the proof of Theorem 3.4, we have:

Corollary 4.3. Sup{7W(X, dX) \ X e M} < L{M) for some constant L{M) > 0

depending only on M.

Proposition 4.4. For a given integer L > 0, there is a finite set S (L) of compact

Seifert 3-manifolds such that if a Seifert manifold N with non-empty boundary

and orientable base is dominated by a compact orientable 3-manifold P with
TN(P, dP) < L, then N belongs toS(L).

Proof Each homology class y of H2{N, dN; Z) can be represented by an orientable

incompressible and 3-incompressible surface. Since N is an irreducible Seifert
manifold, each incompressible surface is properly isotopic to either a vertical torus or
annulus (foliated by Seifert circles), or a horizontal surface (transverse to all Seifert
circles) (cf. [Ja], Chapter VI). Since 3iV/0,iV always admits horizontal surfaces.

Let 0 be the orbifold base of N and h be a regulär über of N. Suppose also

that 0, h and N are compatibly oriented. Let F be a horizontal surface of N and

p\ F -> 0 the branched covering, induced by the restriction to F of the projection
of N onto its base. Since 0 is oriented, so is F. Note that the Euler characteristic

/(0) is computed for an orbifold, so that each exceptional über of multiplicity n

gives a term ^ — 1. Then we have /(Z7) |d | x /(0) < 0, where d deg(/?) ^ 0

is equal to the algebraic intersection number [Z7] • [h\ of F and h. Up to reversing
the orientation of Z7, one can always assume that d [F] - [h] > 0. Note that
the geometric intersection number | F D h | of F and h (i.e. the minimal number of
intersection points between F and h up to ambient isotopy) is precisely the absolute
value of the algebraic intersection number [T7] • [h],

Suppose further that F has minimal genus among all horizontal surfaces in N.
If /(J7) > 0, F is a disc or an annulus, and thus N can be homeomorphic only to
a solid torus, an S1 -bündle over the annulus or a twisted S1 -bündle over a Möbius
band. Assuming that these three Seifert manifolds belong to S (L), we can suppose
furthermore that /(Z7) < 0.

Let || || (resp. || 11 p )be the Thürston norm on H2(N, dN;Z) (resp.F[2(P, dP;Z)).
Note that H2(N, dN; Z) is torsion free and therefore it is precisely the integer lattice
of H2(N,dN;R). Let V {y G H2(N,dN;Z);\\y\\N 0}. By the discussion
above, V is the sublattice of H2{N, dN; Z) generated by the vertical tori and annuli.
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Lemma 4.5. H2(N, 97V; Z) ([F]} 0 V.

Proof Pick any homology class y e H2(N,dN;Z). If \\y\\N 0, then y e V.
Suppose || y || Ar ^ 0. Let S be an orientable, incompressible and 9-incompressible
surface representingy [S] with—x(S) ||y||#. Since/(S) — \\y\\N < 0, after
a proper isotopy we may assume that S is horizontal and that [S].[A] \S PI h\ > 0

(otherwise we replace y by —y). Let i > 1 be the integral part of [S].[h]/[F].[h].
Then (l + 1)([F].[A]) > [S].[h\ > l([F].[h\), thatis\F nh\ [F]-[h\ > [S-IF]•
[h] > 0.

If the homology class [S — IF] does not belong to V, then it can be represented
by a horizontal surface S' such that

\\[s - tF)\\n-X(S') -([5 " IF] [h])x(0) > —[F] • 9) \\[F]\\N.

This would contradict the minimality of the genus of F among all horizontal
surfaces in N. Therefore [S — IF] e V and y [IF] + [S — IF].

By hypothesis, there is a compact, orientable 3-manifold P with TN{P, dP) <
L and a non-zero degree map / : P N. Let further a {zi,... ,zm} be a

basis of H2(P, dP; Z) realizing TN(P): max{||z; ||/>; i 1 < L. For
i 1,..., m, let Si be a properly embedded surface in P representing z\ with
-X(Si) II Zi\\p-

For i 1,..., m, we set y/ [/(Si)] Ii [F7] + Vi e H2(N, dN; Z), where

Vi e V. By the triangle inequality and the fact that || Vi ||n =0, we get

K/III[^]||AA IK/tF7]!!^ II yt - ^/||tv < lly/IU + II^IITV II y/ II
•

By [Gal] (see also [Pe]) the Thürston norm ||y, || canbecalculatedusing singular
surfaces, therefore ||y, ||N < —x(Si) \\zi\\p < L. Combiningthetwoinequalities,
we have Ii || [^] || 5 L for i 1,..., m.

Since f.P^N has non-zero degree, f^(H2(P,dP;Z)) has finite index in

H2(N,dN;Z) and thus it cannot lie in V. Therefore there is some index i e

{1,... ,m} with \ii\ > 1. It follows that < L, hence the horizontal
surface F can have only finitely many topological types, up to homeomorphism.

Cutting the Seifert manifold N along the horizontal surface F, we obtain a pro-
duct F x /, since the base 0 and the surface F are orientable. Therefore N can
be presented as a surface bündle over S1 with über F and orientation preserving
monodromy g: F F. Since N is Seifert fibered, g must be a periodic map [Ja].

Chapter VI. However, up to conjugacy, a given compact surface admits only finitely
many periodic homeomorphisms. Since any two conjugate monodromy maps define

homeomorphic 3-manifolds, there are only finitely many possible homeomorphism
types of Seifert manifolds N for a given compact surface F. Since F has only finitely
many topological types, the proof of Proposition 4.4 is complete.
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Proofof Theorem 4.1. We assume first that N is not a Seifert manifold. By Soma's
results ([Sol], [So2]), we know that Theorem 4.1 holds for hyperbolic JSJ-pieces.
Since N is not Seifert fibered, we may assume that N has a non-empty JSJ-family of
tori T and we have only to consider the Seifert fibered JSJ-pieces.

Let /: M -> N be a map of non-zero degree. After a homotopy of / we

may assume that is a non-empty collection of disjoint non-parallel closed

incompressible surfaces in M. Let Mf be the union of all components ofM \f ~1 (T)
and of all their double coverings. By definition we have Mf C M.

Let Ni C #bea Seifert fibered JSJ-piece. Then Nf is dominated by at least one

component M; of M \ f~l(T). Then the finiteness of such JSJ-pieces Nf with an

orientable base follows immediately from Corollary 4.3 and Proposition 4.4.

If N( has a non-orientable base orbifold, let N( be the unique double cover of N(
which is Seifert fibered with an orientable base. Then a Standard argument shows

that a double cover M; of M; dominates Ni. Thus we get the finiteness of such 3-

manifolds N( as above from Corollary 4.3 and Proposition 4.4. Since any involution
on such Seifert manifolds N( is conjugate to a über preserving one by [MS], there

are only finitely many conjugacy classes of involutions on each Nf. This implies the
finiteness of the Seifert JSJ-pieces A;.

The finiteness of Seifert manifolds N supporting a product geometry tfxl
follows also from Corollary 2.8 and Proposition 4.4 as above, and thus Theorem 4.1

is proved (see also [WZ]).

Using a Standard doubling construction, Theorem 4.1 can be extended to the

following case where the 3-manifold targets have toric boundary.

Corollary 4.6. Let M be a compact, orientable, 3-manifold. Then there is afinite
set MS (M) of complete hyperbolic 3-manifolds with finite volume and of Seifert
fibered 3-manifolds, such that the JSJ-pieces ofany compact, orientable, irreducible,
3-manifold N with non-empty toric boundary, dominated by M belong to MS (Af).

Proof If N has non-empty boundary, so does M. Let D(N) be the double of A,
obtained by gluing two copies of N along their boundaries via the identity map. Then
the double D(M) of M dominates D(N). Since the boundary of N is a collection of
tori, the JSJ-pieces of D(N) are either exactly those of N and consist of two copies
of hyperbolic and Seifert pieces in the JSJ-decomposition of D(N), or there are new
Seifert fibered pieces obtained by doubling some Seifert fibered pieces of N along
some of their boundary tori. In any case, the finiteness of the JSJ-pieces of D(N)
implies the finiteness of the JSJ-pieces of N.

Remark 4.7. A similar double construction argument shows that finiteness of closed

targets implies finiteness of the targets in the setting ofcompact orientable 3-manifolds.
First finiteness of irreducible and 3-irreducible compact targets implies finiteness of



52 M. Boileau, J. H. Rubinstein and S. Wang CMH

compact targets. Since the double D{M) of an irreducible and 3-irreducible compact
3-manifold M is Haken, there are, up to conjugacy, only finitely many involutions
with 2-dimensional fixed point set on D(M) by [To] and the proof of the geometriza-
tion conjecture for Haken manifolds. Therefore only finitely many irreducible and

3-irreducible compact 3-manifolds have homeomorphic doubles.

5. Integral homology spheres

The main result of this section gives a positive answer to Question 3 when the targets
are integral homology spheres. It implies a positive answer to Question 2 when the

targets are integral homology spheres and to Question 1 when the domain is an integral
homology sphere.

Theorem 1.2. Any closed orientable 3-manifold dominates at most finitely many
integral homology spheres.

Let us fix M as a closed orientable 3-manifold. As in the previous section, we
may assume for the remainder of the proof that M is irreducible.

First we reduce the proof to the case where the target homology sphere N is

irreducible. As in the previous section, the preimage of a collection of separating
essential spheres associated with the prime decomposition of N can be assumed to
be incompressible, disjoint and non-parallel surfaces in M. Hence there are at most

h(M) + 1 prime factors. Moreover by pinching all the prime factors except one to
a point, it follows that each prime factor is dominated by M. Hence we have only
to show the finiteness of the set <£)(M) of homeomorphism classes of irreducible,
integral homology 3-spheres N which are dominated by M.

A slope on a torus T is an isotopy class of essential simple closed curves. The
set of slopes on T corresponds bijectively with =b-classes of primitive elements of
HX(T\Z).

Given a slope a on a torus boundary component T of a 3-manifold 7, the a-Dehn

filling of Y with slope a is the 3-manifold Y(a) := (S1 x D2) Uf Y where / is any
homeomorphism 3 (S1 x D2) -> T suchthat /({*} x 3D2) represents a. It is well
known that Y(a) is independent of the choice of /.

First let us recall some definition and primary facts about Seifert manifolds.
Let Fgfn be an oriented w-punctured surface of genus g with boundary components

ci,... ,cn with n > 0. Then N' — Fg^n x S1 is oriented if S1 is oriented. Let hi
be the oriented S1 über on the torus c; x hi (call such pairs {(c;, hi)} a section-fiber
coordinate System). Let 0 < s < n, we attach s solid tori V\ to the boundary tori

CL' b'of N' such that the meridian of V\ is identified with the slope r\ — c{ lhfi where

ai > 0, (at ,bi) 1 for i 1,..., s. We denote by N(g, n — s; the

resulting manifold which has the Seifert fibered structure extended from the circle
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bündle structure of Nf. Each orientable Seifert fibered space with orientable base Fg
with n — s boundary components and s exceptional fibers is obtained in such a way.

Lemma 5.1. Suppose N is a Seifert manifold given as above.

(1) Suppose N is an integer homology 3-sphere. Then N is closed and g 0,

furthermore (n"=iö0(Ei J~)L

(2) Suppose n > s and A(/Xy+i,..., pbn) is an integer homology 3-sphere, where

ptj (ai,bj), j s + 1,..., n, then g 0 and moreover

(i) if each aj > 0 for j E {s + 1,... ,n}, then the Seifertfibration of N extends

over N(jis+i,. fin) and (]"["= 1 jr) 1>'

(ii) ifsome aj 0 for some j E {s + 1,..., n}, then bj Y\1=l,i^j ai - 1-

Proof The proof of the lemma is an application of linear algebra. (1) is well known,
see [HWZ1], 3.1, for example. (2) (i) mainly follows from (1).

For (2) (ii), if aj 0 for some j E {s + 1,..., n}, then bj must be 1. For some
i j, ai 0 implies that N{gis+\,..., pbn) has positive first Betti number, and

üi > 1 implies that Hi {N{gLs+\,..., ßn), Z) contain a torsion element of order ai.
So ai 1 for i 7^ j.

In the following we denote N{0, n — s; by N(n — s\ p-), and

N{0,0; by N&, ...,^).^ ü\ ün üs '

Lemma 5.2. Only finitely many Seifert fibered integral homology 3-spheres belong
to£>(M).

Proof A Seifert fibered integral homology 3-sphere must support the geometry of
either S3 or PSL2(R).

For Seifert manifolds supporting the geometry S3, there are only two integral
homology 3-spheres: the 3-sphere S3 and the Poincare dodecahedral space.

Now suppose that N Supports the geometry of PSL2(R). Since N is an integral
homology sphere, By [Sc] N (^j-,..., ^-) which satisfy:

• The rational Euler number e — — Y^=i ^ *s non-zero.

• The Euler characteristic of the orbifold base Bis/(i?) 2—Ya i (l — i~) < 0.

• \e \\U ai | 1 by Lemma 5.1.

Thus e yi1^1
a-

anc* ^ (nj+i aj) =1=1 modulo ai for i 1,..., n. Moreover

the integers a/, i 1,..., n are pairwise relatively prime. Therefore the un-
ordered set {a\,..., an} of integers determines the Seifert fibered homology sphere

N, up to orientation. So we need only to show that if N is dominated by Af, then n
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and the integers a^i — 1,... ,n, take only finitely many values. In fact to do so, it
is sufficient to get a uniform upper bound on n?=i ai > depending only on M.

We use the Seifert volume SV introduced by Brooks and Goldman [BG]. It has

the following interesting properties:

(1) SV(Af) > dSV(N) if /: M -> N is a map of degree J / 0, for orientable
3-manifolds M and N.

(2) SV(A0

It is easy to see that the maximum of the Euler characteristic of the base B of N
is obtained for the sphere with three cone points with Orders {2,3,7}. Hence:

(3) X(B) <

Then by (1), (2) and (3) we have

X(B)2

if N is a PSL2(M)-manifold with base orbifold B.

SV(Af) > dSV(N) d >
1

n

3* n«422
i ie(N)

Therefore Y\1=i ai - 422SV(M) and the proof of Lemma 5.2 is complete.

The dual graph T (N) to the JSJ-decomposition of an irreducible homology sphere
N is a tree. By Lemma 4.2, the number of edges of T(N) is < h(M), the Haken
number of M.

By the local domination theorem (Theorem 4.1) and Lemma 5.2, the geometric
JSJ-pieces of the closed orientable 3-manifolds in <£) (Af) belong to a finite set MS (M)
of compact 3-manifolds with interiors admitting complete hyperbolic metrics with
finite volume and of Seifert 3-manifolds.

Lor a given graph T, let <£) (M, T) C <£)(M) be the set of homeomorphism classes

of closed orientable integer homology 3-spheres N such that:

(1) N is dominated by M.
(2) The JSJ-graph T(N) is abstractly isomorphic to T.

(3) Each vertex manifold has a fixed topological type. Each torus boundary com-
ponent of the vertex manifold is assigned to an edge on the vertex.

The local domination theorem and Lemma 4.2 reduce Theorem 1.2 to the following:

Proposition 5.3. The set £)(M, T) is finite.

Before starting the proof of this proposition, we need to introduce some notions,
definitions and constructions which will be useful.

Lor each integral solid torus V, the kernel of the induced homomorphism

Hx(dV;Z) HX(V\T)
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is infinite cyclic, generated by an essential simple loop which bounds a properly
embedded surface Fy in F. Such a surface Fy is called a Seifert surface for the

integral homology solid torus V. Then the slope Xy e H\ (3L; Z) of dFy does not
depend of the Seifert surface and is uniquely determined by the topological type of V.
We call Xy the longitudinal slope of L on dV.

The pinch construction. Let 7 be a compact, orientable 3-manifold with T C dY
a torus boundary component. Let Z be an integral homology solid torus, 3Z ->
T C dY a gluing map and Y' — Z 7. By pinching a Seifert surface Fz onto
a disk Z)2, one can define a proper degree-one map pz : Z -> S1 x D2 such that

x 3Z)2) Xz for some point x e S1. Then one gets a degree-one map
fz • Yf —> 7(/x), which is the identity on Y and where 7(/x) is obtained by Dehn

filling the component T of 37 with the filling slope 0*(Az) p.
Let e be an edge of T with vertices x and y. For each N e Z)(M, T) the edge

e corresponds to an incompressible torus Te C N, and its two vertices to two JSJ-

pieces X and 7 of N, adjacent to the torus Te. Denote the component of dX (resp.

37) corresponding to Te by deX (resp. 3eY). The embedded torus Te splits N into
two integral homology solid tori.

We call a slope on deX longitudinal if it is equal to the longitudinal slope Xy
of an integral homology solid torus V bounded by Te in some N e <Z)(M, T) and

containing X. (See Figure 4.)

fiy <p l{Xw) Pw fi^v)

V W

Figure 4

Let N e <£)(M, T). The incompressible torus Te splits N into two compact
3-manifolds V and W which are both integral homology solid tori with boundary Te:
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N V ÖTe W. The fact that TV V W is an integral homology sphere forces
the following:

Lemma 5.4. The gluing map (j)\ dV -> dW induces a map (j)+ on the first homology

group, such that c/)+(Xy) • Xw ±1 and(j)~l{Xw)'Xy ±1.

Definition 5.5. (1) We call a gluing map (/>: deX deY allowable, if there are two
integral homology solid tori V and W such that (X, deX) C (V, dV), (Y, 3eY) C
(W, dW), and N V 0$ W e Ä)(M, T).

(2) An allowable gluing map (/>: deX -> deY is determined, up to isotopy, by
the two pairs of slopes {Xy,piy} e Hx{deX',Z) x Hx(ßeX;Z) and {Xw,piw} e

Hx{deY;Z) x Hx{deY;Z), such that:

(i) Xy and Xjy are the longitudinal slopes of the integral homology solid tori V and

W which dehne the gluing map 0 to be allowable.

(ii) pty <p~1(Xw) and ptw 0*(Aj/)- They are called longitudinal-images or
£-images for short.

By Lemma 5.4, the pair {Xy, pty} defines a basis of Hx(ßeX\Z) and the pair
{Xw, ßw} a basis of H\{deY; Z). The pairs of slopes {Xy, pty} and {Xjy, ßw} are
called gluingpatterns for the tori deX and 3eY (see Figure 4).

(3) Let Y a Vertex manifold of T with k boundary components 3/ Y, i 1,..., k.
A gluing pattern for 37 is a System of pairs of slopes {{X\, pi\),..., (A^, pik)} e

(Hi (317; Z) x Hi (317; Z)) x • • • x (ffx (3* 7; Z) x Hx {dk Y; Z)) for which there are
a collection Zx,..., of integral homology solid tori and gluing maps <pi: 3Z; —

3iY,i 1,..., k such that (see the top picture of Figure 5:

(i) N Y U0 U?=i Z; belongs to D(M, T), with <j) (jf=1 4>< Uf=i ^
dY.

(ii) Xi Xwj where Wi is the integral homology solid torus N \ int(Z/).

(iii) p,i 0*(AZ/), for / 1,..., k.

Hence, each gluing map <pi: 3Z; 3/ 7 is allowable and each pair of slopes (A;, /x/)
is a gluing pattern for the component 3/7.

The slopes {piX,..., /x^} are called a System of f-images for 37.

(4) Two Systems of slopes on 37 are A-equivalent if there is a homeomorphism

r: (7, 37) —(7, 37) which is a product of Dehn twists along properly embedded
essential annuli in 7 and sends one set to the other. In the same way two gluing patterns
for 37 are A-equivalent, if there is such a homeomorphism of (7, 37) sending one
to the other.

Remark 5.6. Let 7 be a compact irreducible orientable 3-manifold with boundary
an union of incompressible tori, and let Aut(7) be the mapping class group of 7. By
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[Joh] the subgroup A(Y) C Aut(7) generated by Dehn twists along essential tori
and proper annuli in Y is of finite index in Aut(7). Therefore the finiteness, up to
homeomorphisms of 7, of Systems of slopes on 37 (or gluing patterns for 37) is

equivalent to the finiteness of their A-equivalence classes, since Dehn twists along
essential tori in 7 do not affect the slopes on 37.

WM
Figure 5

Now Proposition 5.3 follows from the following result:

Proposition 5.7. When N runs over all elements in £)(M, T),for each Vertex mani-

fold Y of r there are at mostfinitely many A-equivalence classes ofgluing patterns
for 37, depending only on M.

The first Step of the proof of Proposition 5.7 is given by the following
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Proposition 5.8. When N runs over all elements in £)(M, T), for each Vertex man-
ifold Y of r, there are at most finitely many A-equivalence classes of l-images
(/Xi,..., ßk) on 37, depending only on M.

Proof. Let Y be a Vertex manifold of T. By definition, for each System of £-images

(/xi,..., ßk) on 37, there is a collection Z\,..., of integral homology solid tori
and gluing maps fit: 3Z/ —>-3/ 7, i — 1,..., k such that:

(\) N Y U0 Uf=i Z« belongs to £>(M,T), with 0 (jf=i <h : U*=i 3Z«

97.

(2) /X; 0*(AZ/), i

Let U/ be the integral homology solid torus TV \ int(Z/), then 7 is a JSJ-piece of
W(, for i 1,... ,k.

We distinguish two cases according to whether 7 is hyperbolic or Seifert fibered.

By definition of ^4-equivalence, we prove the finiteness of the Systems of £-images in
the hyperbolic case and the finiteness of the Systems of £-images, up to Dehn-twists
along properly embedded essential annuli, in the Seifert fibered case.

a) 7 is hyperbolic. For each boundary component 3/ 7, i e {1 Thurston's
hyperbolic Dehn filling theorem [Thl] shows that the manifold 7(/x/) admits a com-
plete hyperbolic metric, except for a finite set of slopes /x/ e H\ (3/ 7; Z), depending
only on 7. So we may assume that 7(/x/) is hyperbolic.

Therefore 7(/x/) is irreducible with incompressible boundary tori, and it is a

hyperbolic piece in the JSJ-decomposition of the homology sphere W\ (/x/). So W\ (/x;)
is an irreducible homology sphere which is 1-dominated by TV (see the top-left-down
picture of Figure 5), and thus dominated by M. Since 7(/x;) is a geometric piece of
a manifold dominated by Af, 7(/x;) can take only finitely many topological types,
depending only on M by Theorem 4.1. Hence the hyperbolic volume of 7(/x;) takes

finitely many values, depending only on M. Then Thurston's hyperbolic Dehn filling
theorem shows that /x; belongs to a finite set of slopes in H\ (3/ 7; Z), depending only
on 7and M. Hence for each i e {1,..., k} there are only finitely many possible
£-images /x; e H\ (3/ 7; Z), depending only on M.

b) 7 is Seifert fibered. Then the Seifert fibration is unique, up to isotopy.
Suppose 7 S(g, n — s; where n — s k, and each > 1,

i Let (ci9hi,) e Hi(ßiY; Z) x ^(3/7; Z) be a basis of ffi(3,-7;Z),
where hi represents the über of the circle fibration induced on 3/7 by the Seifert
fibration of 7 and c/ a section of this induced circle fibration. We set /x/
(as+i Ci + bs+i hi) in H\ (3/ 7; Z). There is a degree one map from TV to the manifold
7(/xi,..., /x*:) obtained by pinching each homology solid torus Z/ to a solid torus,
hence 7(/xi,..., /x*:) is a Seifert fibered integral homology 3-sphere. It follows that

g 0, that is 7 S(n — s; ^). Moreover n > 3 since it is a JSJ-piece of
N. We further divide the discussion into two cases:
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Case (i): ai ^ 0 for each i e {s + 1,..., s + k). Then by Lemma 5.1 (1) the
Seifert fibration of 7 extends over the integer homology 3-sphere 7(/xi,..., /x^) and

(fW(E^H- w
i l 1

1

Like in case a), for each i e {s + 1,..., s + k}9 Wt (/x;) is an integer homology
3-sphere dominated by M. Moreover if as+i > 2, the core of the Alling solid torus
becomes a Singular über of 7(/x;) with index as+i, and thus 7(/x;) is a Seifert JSJ-

piece of W/(/x/). In this case, 7(/x;) can take only finitely many topological types,
depending only on M. Therefore as+i < C{M) for some integer C(Af) depending
only on M.

If {(a\, b\),..., (aj,bj),..., (ian,bn)} is a Solution of equation (*),
then for any integer/:, {(a\, b\),..., (ßi,bi +kai),..., (aj,bj —kaj),..., («an,bn)}
is also a Solution of the equation (*). Those two Solutions represent two Systems of
£-images on 37 related by k füll Dehn twist (with sign) along an essential vertical
annulus in 7 connecting 3/ 7 and 3j 7, so they are in the same ^4-equivalence class.

We say that two Solutions of (*) are in the same ^4-equivalence class, if one Solution
is obtained from another by finitely many Dehn twists along essential vertical annuli,
like above. It is an elementary fact that there are only finitely many ^4-equivalence
classes of Solutions for the equation (*) if each a; is bounded by a constant C(M).
Hence there are only finitely many ^4-equivalence classes of Systems of £-images on
37, depending only on M.

Case (ii): aj 0 for some j e {s + 1,..., n}. Then by Lemma 5.1 (2),

n

bj J~~J Q>i — 1. (**)

Thisimpliesthat/x7- (0, l)and/x; (l,Z?/)fori ^ j. Byperforming^-füllDehn
twists along a vertical annulus connecting 3/ 7 and 3j Y for each i ^ y, we can trans-
form the System of £-images {(1, b\),..., (0,1), (1, &/+i),..., (1 ,bn)} to

{(1,0),..., (1,0), (0,1), (1,0),..., (1,0)}. That is, for a fixed j, the System of l-
images on 37 is unique, up to ^4-equivalence. Since j picks only finitely many value,
there are finitely many Systems of £-images on 37, up to ^4-equivalence.

The next Step of the proof of Proposition 5.7 is given by the following claim:

Claim 5.9. A gluingpattern {(Ai, /xi),..., (A&, /x^)}/or 37 is uniquely determined
by the system of l-images (/xi,..., /x^) on 37.

Proof Fix a system of £-images (/xi,..., /x^) on 37. Recall that for this system
of slopes (/xi,..., fik), there is an homology sphere N e M(T) such that N
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7 U Uf=i Zi» and the image by gluing of each longitudinal slope Xzt is /x;. As

before, let Wf N\Zt.
Then for each fixed i e {1,..., A}, we can dehne a degree one map p: Wi ->

Y{fi\,..., fii,..., /Xfc) which is the identity on the boundary dW( 3/ 7 by pinching
eachZj toasolidtorus Uj whosemeridianismatchedwith/xy-, j e {1,,k, j ^ i}
(see the top-right-down picture of Figure 5). Then the Seifert surface Fwt is pinched
to a Seifert surface F* of the integral homology solid torus 7(/xi,..., /x;,..., /x*:)
bounded by A;. Since 7(/x/,..., /x;,..., /x*:) is a hxed integral homology solid torus,
the longitudinal slope A; e H\ (3/ 7; Z) is unique. This proves the claim.

To hnish the proof of Proposition 5.7, we distinguish two cases as usual:

7 is hyperbolic. If 7 is hyperbolic, as we have seen in the proof of Proposition

5.8, there are only hnitely many Systems of £-images (/xi,..., /x*:) on 37.
So by Claim 5.9 there are only hnitely many possible choices of gluing patterns

Y isSeifertfibered. Let (n\,, \x'k)r(/i| jif) be deduced from the

System of £-images (/x\,..., /x&) by a homeomorphism r \Y—>Y which is a com-
positions of Dehn twists along vertical annuli. Then, by the uniqueness in Claim
5.9, the system of £-images (/1\,..., fifk) determines the System (A^,...,X'k)
r(Ai,..., Xk) of longitudinal slopes on 37. Hence an A-equivalent class of Systems
of £-images on 37 determine a unique A-equivalent class of gluing pattern for 37.
Then by Proposition 5.8, there are only hnitely many equivalent classes of gluing
pattern for 37.

This hnishes the proof of Proposition 5.7.

The following corollary of Proposition 5.7 implies Proposition 5.3.

For each N e £)(M, T), a submanifold L c N is called canonical if it is a

component of N \ T, where T is a subfamily (may be empty) of JSJ-tori of N.

Corollary 5.10. When N runs over all elements in £)(M, T), the canonical sub-

manifolds ofN take at mostfinitely many typological types, depending only on M.

Proof The proofwill be by induction on the number v (L) ofJSJ-pieces of a canonical
submanifold L.

Corollary 5.10 is valid for v(L) 1 since §M{M) is hnite. We suppose that it
is valid for v(L) < m and we are going to verify it for v(L) m.

Fix a connected subtree T* of T with m vertices and let D(M, T*) be the set

of canonical submanifolds with dual JSJ-tree T*. Choose a Vertex y e T* with
corresponding vertex manifold 7.

For each canonical submanifold L e D(M, T*), we have L\Y Uf=i
where P, is a canonical submanifolds and v(Pi) < m, hence P; can take only hnitely
many topological types by the induction hypothesis. So we may hx the topology of
Pi for each i 1,..., p.
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We may suppose 37 {3i 7,..., 3^7} and 30P/ is the component of 3Pj iden-
tified with 3/ 7 via a gluing map 0/ (reordering the components of 37 if needed). So

we can rewrite L 7 U{0/}/=1 p {P/}.
Fix a gluing pattern (Xpf, ßpf C 3oP/ for each i 1,..., p. Then each gluing

map 4>i is determined by the images (0/ (Xpt),(pi {fipj) on 3/7. By definition (A/

(f>i(jip.),fii 4>i(Xpi)) is a gluing pattern on 3/7. Hence {(A/, /x/), i 1,..., /?}
forms a subset of a gluing pattern {(A/, /x/), i 1,..., £} for 37. Any subset

{(A-,/x-), i 1,... ,/?}ofaA-equivalentghiingpattern{(A-,/x-), i l,...,£}for
37 provides a canonical submanifold V e D(M, T*) which is homeomorphic to L.
By Proposition 5.7, there are only finitely many A-equivalent classes of gluing patterns
for 37, depending only on M. Hence a canonical submanifold L in D(M, T*) can
take at most finitely many topological types, depending only on M.

6. Knot exteriors in §3

By Theorem 1.2 and an obvious twisted double construction, one gets the following
straightforward corollary:

Corollary 6.1. Each compact orientable 3-manifold with a torus boundary l-domi-
nates at mostfinitely many integral homology solid tori.

A less direct and may be more interesting result is the following

Theorem 6.2. A compact orientable 3-manifold M dominates at mostfinitely many
exteriors ofknots in S3.

Proofi We call the exterior E(k) S3 \ N(k) of a knot k in S3 a knot space,
where N(k) is a tubulär neighborhood of k in S3. The dual graph T(k) to the JSJ-

decomposition of E (k) is a rooted tree, where the root corresponds to the unique
vertex manifold containing dE(k).

Let K (M) denote the set of homeomorphism classes of knot Spaces E (k) domi-
nated by M. By Lemma 4.2, there are only finitely many T (k) for all E (k) dominated

by M. By the local domination theorem (Corollary 4.6) the JSJ-pieces of the knot

spaces in K (M) belong to a finite set MS (M).
For a given graph T, let X (Af, T) C X (M) be the set of homeomorphism classes

of knot space E{k), such that:

(1) E{k) is dominated by M.

(2) The JSJ-graph T(k) is abstractly isomorphic to T.

(3) Each vertex manifold has a fixed topological type. Each torus boundary com¬

ponent of the vertex manifold has assigned to an edge on the vertex.
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Like in the case of integral homology spheres, the proof of Theorem 6.2 is reduced

to the following result.

Proposition 6.3. The set JC(M, T) isfinite.

Proof. To apply the arguments in Section 5 to the present case, we will consider
S3 E{k) U N(k) rather than just consider E{k). Precisely dE(k) and the JSJ-tori
of E(k) provide an extended JSJ-splitting of S3 E(k) U N(k) with one more torus

dE{k) and one additional piece the solid torus N{k). The dual graph T*(k) of this
extended decomposition is a tree obtained by adding one leaf on the root.

Now for each JSJ-piece 7, different from N(k), of this extended JSJ-decompo-
sition of S3 E(k) U N(k), we can dehne A-equivalent classes of gluing patterns
for 37 \ 3E(k) like in Section 5. Similarly the proof of Proposition 6.3 is reduced to
the following result.

Proposition 6.4. When N runs over all elements in K (M, T), for each Vertex mani-

fold Y of T there are at most finitely many A-equivalent classes ofgluing patterns
for 37 \ dE(k), depending only on M.

And Proposition 6.4 is reduced to the following

Proposition 6.5. When N runs over all elements in K (M, T), for each Vertex mani-

fold Y ofT there are at mostfinitely many A-equivalent classes ofSystems of l-images
on dY, depending only on M.

Remark 6.6. When dE(k) C 37, in order to show the hniteness of A-equivalent
classes of gluing patterns on 37 \ dE(k), we need the hniteness of A-equivalent
classes of Systems of £-images on 37, including dE{k).

ProofofProposition 6.5. Let 7 be the given vertex manifold with k + 1 boundary

components 3/ 7, i =0,1 Now S3 \ Y Uf=o ^, where Z0 is a solid torus

containing N(k) and bounded by 370, and Z/ is a non-trivial knot space, bounded

by 37/ for i — 1,..., k. Recall that for a System of £-images (/xo, /xi,..., /x^) on
(307, 3i 7,..., 3*7), /x0 is the image of the boundary Xz0 of a meridian disc of Z0
and /x/ C 3/ 7 is the image of the longitudinal slope Xzt 1

It is known that both the JSJ-pieces in knot Spaces and their gluing are rather
restrictive (see for example [Ja], IX.22, or [BS]), Chapter 2. A Seifert JSJ-piece of a

knot space is either a torus knot space, a cable space or a composite space.
We may assume that k > 1, otherwise 7 is a hyperbolic or a torus knot space and

by [GL] the meridian /xo is unique. Below we distinguish three cases for the proof:
(i) 7 is hyperbolic. Since the boundary tori 37 \ 307 of the compact 3-manifold

7(/xo) is compressible, by Theorem 2.0.1 of [CGLS] the l-image /xo on 307 can be-

long to at most three distinct slopes. The argument for the hniteness of the remaining
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£-images /x;, i 1 is then the same as the corresponding part of the proof of
Proposition 5.8.

(ii) 7 is a cable space. Say Y is a (q, /?)-cable space with p > 2. Then 7
is a Seifert über space over annulus with a Singular über of index p. Then 37
3o7 U d\ Y and we choose a basis on H\ (370; Z) and //i (37i; Z) represented by a

section of the circle fibrations induced on 307 and 3i 7 by the Seifert fibration of 7
and the über of these induced circle fibrations.

The fact that 7(/xo) is a solid torus forces /xo to meet the über exactly once,
that is /xo (l,#o) in £/i(37o;Z). Moreover 7(/xi) must be a torus knot space
E(Tq-\-Sp p), which falls into SH(M). Hence it has only finitely many topological
types. Therefore /x\ (sp + q,q\) and s takes only finitely many values. Then
there are only finitely many A-equivalent classes of Systems of £-images on 37 as in
the corresponding part of the proof of Proposition 5.8.

(iii) 7 is a composite space. It means that 7 is homeomorphic to a product
S1 x Dk where Dk is a disk with k holes. This corresponds to the case where the

core ko of the solid torus Z0 is not a prime knot. In this case the £-image /xo C 3o7
is isotopic to a über h S1 x {}, whose slope is determined by the topological type
of 7. Then the A-equivalence class of attaching patterns is unique as we shown in
the corresponding part of the proof of Proposition 5.8.

This finishes the proof of Proposition 6.5.

We call a homomorphism fi: 7t\(M) -> n\ (N) between 3-manifold groups non-
degenerate, if fi can be realized by a proper map / : M N of non-zero degree.
The image of tt\ (M) by such a non-degenerate homomorphism has finite index in
7tl(N).

Now we can translate Theorem 6.2 into the following

Corollary 6.7. The fundamental group of a compact, orientable 3-manifold admits

a non-degenerate homomorphism to only finitely many distinct knot groups.

Corollary 6.7 is related to Simon's conjecture.

Conjecture 6.8 ([Ki], Problem 1.12 (J. Simon)). A knot group 7Ti(aS3 \ K) surjects
onto at mostfinitely many distinct knot groups.

This conjecture raised in 1970s has received recently a lot of attention (see for ex-
ample [BBRW], [RW], [Si], [SW], [So4]). I. Agol and Y. Liu had confirmed Simon's

conjecture in the summer of 2010 [AL] by proving that a finitely generated group
G with the first Betti number ß\{G) 1 surjects onto finitely many knot groups.
Our result holds with domain the fundamental group of any compact orientable 3-

manifold and for non-surjective homomorphisms, but under the restrictive condition
that the homomorphism is non-degenerate.
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We give now a criterion for a homomorphism between knot groups to be non-
degenerate:

Lemma 6.9. A homomorphism (/>: n\(E(k)) -> n\(E(k')) is non-degenerate iffit
sends the preferred longitude ofk to a non-trivial peripheral element ofjti (3E(kf)).

Proofi On the boundary tori dE(k) and dE(kf), let {m,£} and {mr, l'} be meridian-
preferred longitude pairs.

If (j) can be realized by a proper map /: E{k) -> E (kf) of non-zero degree,
then the restriction of (/>: n\{dE{k)) -> n\{dE{k')) is injective, and thus cp(l) is a

non-trivial element in 7t\ (3E{k')).
Conversely, assume 4>{l) is a non-trivial element in it\{dE{k')). It will be null-

homologous in H\{E{kf)), hence (/>(£) l'n with n e Z\ {0}. Then 0(m) belongs
to the centralizer of £fn in the knot group iti{E{k')). By [JS], Chapter VI, and

the description of Seifert pieces in a knot complement, the centralizer of l,n is the

peripheral subgroup it\{dE{k')), so 4>{m) is a peripheral element which normally
generates a finite index subgroup of the knot group tt \ {E (kf)), and so generates a finite
index subgroup of its first homology group. Hence cp(m) must be equal to pm' + ql'
for some integers p ^ 0,q e Z. This shows that 4>{n\{dE{k))) C Jt\{dE{k')) and

that (j) is injective on tt\ (3E{k)).
Then, since knot exteriors are K(jt, l)-spaces, a Standard argument in algebraic

topology and 3-manifold theory shows that the homomorphism 0/ can be realized by
a non-zero degree proper map f:E(k) —> E(kf).

Remark 6.10. In [GR], [HKMS] many examples of degenerate epimorphisms
between knot groups are given. There are epimorphisms between knot groups which do

not send a meridian to a meridian: Suppose a knot k C S3 whose group tt\ (E(k)) is

normally generated by a non-peripheral element /x, see Lemma 6.11. By [Gon] there
exists a knot k' c S3 and an epimorphism from n\E{{k')) onto n\{E{k)) which
sends a meridian of k' to /x. The fact that knot groups are residually finite [He], hence

hopfian, and Property P for knots in S3 [KM] imply that the knots k and k' must be

distinct. This construction has been pointed out to us by Cameron Gordon and Alan
Reid.

Lemma 6.11. Let k be a (1,1 )-knot in S3 which is not a 2-bridge knot. Then

TC\ (E(k)) is normally generated by a non-peripheral element.

Proof. Recall that a (1, l)-knot in S3 is a knot which admits a 1-bridge presentation
on a Standard unknotted torus, therefore (1, l)-knot is a tunnel number one knot and

by construction the fundamental group tt\ (E(k)) is generated by two elements a,m
with m a meridian. Let [a\ p[m\ e H\{E{k)\ Z), then n\{E{k)) is normally
generated by the element b am^~p\ By [BZ] this element cannot be peripheral
since tt\ {E (k)) is generated by b and m, and the fact that k is not a 2-bridge knot.
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