
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 88 (2013)

Artikel: Injective modules and amenable groups

Autor: Racher, Gerhard

DOI: https://doi.org/10.5169/seals-515663

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-515663
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Comment. Math. Helv. 88 (2013), 1023-1031
DOI 10.4171/CMH/310

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Injective modules and amenable groups

Gerhard Racher

Abstract. We show that a locally compact group is amenable if and only if it admits a (non-zero)
injective Banach module that is reflexive as a Banach Space.
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1. Introduction

Let A be a Banach algebra. By a left A-module we shall always mean a Banach left A-
module satisfying ||ax|| < ||a|| ||x|| whenever ögA and x e X, and a morphism of
left A-modules will be a bounded linear map commuting with the respective actions.

X is called injective, cf. [H], III.l.14, p. 136, if for any morphism t of left A-modules
admitting a bounded linear left inverse, and any morphism Ao from 7o into X,
there is a morphism A from 7 into X satisfying Ao A o ^

Let the essential part, Xg, of a left A-module X be defined as the closed linear hull
of the set of products öx, agA,xgX. Xis called non-zero if X^ 7^ 0, essential if
Xg X, and reflexive if X is reflexive as a Banach space. In case X is reflexive and

A has a bounded two-sided approximate unit (of norm < c), there is an A-module
morphism (of norm < c) projecting X onto X^. The Banach space dual, X*, of
X becomes a right A-module under the action defined by (x,x*a) (ax, x*), for
x* e V*, a e ,4, and x e V.

Choosing a left invariant Haar measure on the locally compact group G we obtain
the Banach algebra L* (G). It is well known that every essential left L* (G)-module
is a left G-module such that, for any x e X, the mapping 5 i-> sx is continuous
from G into X and ||sx|| ||x||, s E G, the respective actions being related by the

ot idy„.
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formula öx / a(s)sx c/s, for a £ L*(G) and x £ Y. This same formula defines

on any such left G-module an essential left L* (G)-action.
Letting G act by left translation on L^(G), 1 < p < oo, F^(G) becomes an

essential reflexive left L^(G)-module. H. G. Dales, M. Daws, H. L. Pham and
P. Ramsden recently showed the following theorem, [DDPR], Theorem 9.6.

Theorem ([DDPR]). Gfca ZocaZZy compact grcmp, ancZ 1 < p < oo. 7/YZzc Zc/r

L*(G)-mocZwZc L^(G) Zs Zp/cc/fvc, ^Zzcn G Zs amcmzWc.

Employing F. J. Yeadon's method, [Y], for establishing the existence of a trace in
a finite von Neumann algebra, we show

Proposition. Lc£ G Z?c a ZocaZZy compact grcmp. Tjf G acZmZfa a ncm-zcro Zp/cc/fvc
ßamzcZz Zc/Z L* (G)-mocZwZc £Zza£ Zx rc/ZcxZvc ax a ßanacZz xpacc, ^Zzcn G Zx amcnafeZc.

Combining this with known results we obtain the following characterization of
compact and amenable groups, in good correspondence with Helemskii's philosophy,
cf. e.g. [H], p. 262.

Corollary. Lc£ Gfea ZocaZZy compact grcmp.

a) //"G acZmZfa a ncm-zcroprojcc/fvc Zc/Z L * (G)-mocZwZc ^Zzct Zx rc^ZcxZvc ax a ßanacZz

xpacc, ^Zzcn G Zs compact; zX ccmvcrscZy, G Zs compact ^Zzcn cvcry csscn/faZ Zc/Z

L* (G)-mocZwZc Zx pra/cc/fvc.

b) //"G acZmZfa a mm-zcra/Za£ Zc/Z L * (G)-mocZwZc £Zza£ Zs rc/ZcxZvc ax a ßanacZz xpacc,
^Zzcn G Zs amcnafeZc; zX ccmvcrscZy, G Zs amczzafeZc ^Zzczz cvcry Zc/Z L* (G)-mocZzzZc

Zs ^/Zat

These results are equally valid for uniformly bounded, left or right Banach L * (G)-
modules. For the notion of the injective tensor product, (g), of Banach spaces we refer
to the monograph of J. Cigler, V. Fosert and P. Michor, [CFM]. The proof of the

Proposition Starts immediately after this introduction.

2. The auxiliary module C^"(G) ® Y

The G-action on C^(G) § Y and the morphism £ below were already considered by
P. Ramsden, [Ra], Chapter 5, p. 21; cf. also Chapter 9 of [DDPR].

2.1. Fet G be a locally compact group, and Y be an essential Banach left L* (G)-
module, with sx, s £ G, x £ Y, denoting the corresponding G-action. We let G act

on the Banach space, C^(G), of uniformly continuous bounded functions on G by
left translation (L^^)(z) </9(s~*Z), s £ G, </9 £ C^(G), so that the injective tensor
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product C^(G) § X becomes a continuous isometric Banach left G-module under
the action s(</9 (g) x) (g) sx, ägG,^xg C^(G) <g) X.

The morphism X -> C^"(G) § X is defined by £x Ig ® * £ Af,

Ig the function constant one on G, and for any s G G the bounded linear map
£: C^(G) (g) X —X, 7(</9 (g) x) ^(^)x, </9 g C^(G), x g X, is left inverse to l

In case the essential left L^(G)-module X is injective, setting To Af,

7 _ c^"(G) § x, and Ao idx in the diagram on p. 1023 yields a morphism
A of L* (G)-modules left inverse to £,

X -U C*"(G) 0X -2* X.

Since A commutes also with the G-actions, the map A enjoys the following properties:

(i) A is linear and bounded;

(ii) A(L,<p (g) sx) sA(</9 (g) x);

(iii) A(1g 0 x) 1,

whenever s g G, </9 g C^(G), and x g X.

2.2. Remark Instead of C^(G) we could also take L°°(G), Corollary 3.7 below
equally applying to it. By using the module C^(G) § X, suggested by the referee,
however, we shall obtain: //"an arfezYrary topoZög/caZ growp G adra/fa a
reZßft'veZy /rcjecftVe Zta?2<zcÄ Z^/Z G-modnZ^ X z7z<:/f Zs rc^ZexZve <xs a Zta?2<zcÄ .sp<:/c£,

G Zs araenafeZ*?. For the relevant notions we refer to N. Monod's Lecture Notes, [M],
Definition 4.1.2, p. 32, and the definition preceding 5.1.4, p. 46.

3. Weakly compact Operators on C(X) <g> X

The formulation of the main lemma, (3.5) below, is due to the referee.

3.1. Let X be a compact Hausdorff space, and X be a Banach space. It is well
known that the dual space of the injective tensor product C(X) (g) X C(X, X) is

isometrically isomorphic to the Banach space, 7(C(X), X*), of integral Operators u

from C(X) into X*, and that this again is isometrically isomorphic to the Banach

space, Z?vrc<2(7?(X), X*), of regulär countably additive vector measures m ofbounded
Variation on the Borel a-algebra, i?(X), of X with values in X*,

(C(£) 0 X)* /(C(X),X*) 6vrca(ß(A:),X*),

the correspondence between u and m being given by m(x4) i;(c^), x4 G i?(X),
where£>: C(X)** -> X* denotes the uniqueweak*-weak* continuous extension of u
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and c,4 the characteristic function of A. The Variation, |m|, of m G Z?vrca(i?(X), X*),
defined as

HOT) sup ^ ||m(^)|| (4 e ß(/Q),

the supremum being taken over all finite Borel partitions (A;) of A, is a regulär
finite positive Borel measure on X. Defining the norm of m G Z?vrca(i?(X), X*)
by ||m|| |m|(X), we have ||m|| Z(c), the integral norm of r G Z(C(X),X*)
eorresponding tom. - The theorems involved in this discussion are due to I. Singer,
[S]; cf. also VI.3.Theorem 3, p. 162, and VI.3.Theorem 12, p. 169, in [DU], and, in
particular, Satz 1 in Losert's Thesis, [L], p. 7.

We shall need the following two lemmas.

3.2 Lemma ([Gro], Theoreme 2). compact XawscZc/jffspacc. A Z?cmmZccZ

swZ?sc£ C o/C(X)* Zs rcZctZvcZy wca£Zy compact z/ancZ cmZy z//or cvcry scgz/cncc
(A„) a/paZrwZsc cZZsjaZn^ opcn swfocfa o/X wc Zzavc

lim /x(^„) 0

zmz/ormZy/or /x Zn C.

3.3 Lemma. Lc£ X Z?c a compact XawscZa/jffspacc, ancZ X Z?c a ßanacZz spacc. 7/*Z) Zs

a rcZa/fvcZy wca£Zy campcxt swZ?sc£ a/ (C(X) § X)*, ^Zzcn ^Zzc sc/, |Z)|, a/varZctZcms

o/Zfa corrcspcmcZZng vcctor mcaswrcs Zs rcZa/fvcZy wca£Zy compact Zn C(X)*.

Proo/ Let Dbea relatively weakly compact subset of (C(X) § X)*. Using the
identification in (3.1), we may assume Z) to be relatively weakly compact in
Z?vrca(i?(X), X*); being a closed subspace of the Banach space Z?vca(i?(X), X*)
of all countably additive measures of bounded Variation, it is relatively weakly com-
pact also there. Theorem 1 .ii) in [B], p. 288, yields a finite positive measure v on i?(X)
such that the set |Z)| {|m| : m G Z)} is v-equicontinuous. For any sequence (A„)
of disjoint Borel subsets of X, lim v(A„) 0 therefore implies lim |m|(A„) 0

uniformly for minD. The elements of the set | Z) | being all regulär, its relative weak

compactness in C(X)* results now, for instance, from (3.2).

3.4. Let X and 7 be Banach Spaces, and a: C(X) 8X ^ 7a bounded linear

map with adjoint a* : 7* -> (C(X) § X)* Z(C(X), X*). Any pair of elements

(x, j*) in I x y* defines an element of C(AT)* by

Wjj*(<^) (a(</9 (8) x), y*), </9 G C(X), x G X, y* G 7*.

Denoting by (a*y*)~: i?(X) -> X* the vector measure eorresponding to

a*y* : C(X) -> X*, we deduce from

«jco-.foO <?®x,w*;y*} (x,w*y>)K <P e C(^),
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for all x elj'e r*.

3.5 Lemma. X Z?c a compac/^awscZo/jffspacc, X and F Z?c ßanacZz spaccs, and
wfea wca£Zy compact Zmcar map/rom C(X) § X mto F. TTzcn ^Zzc

{Wjc,;y* : ||X|| < 1, ||/"|| < 1}

zs rcZct/vcZy wca£Zy compact m C(X)*.

Proo/ Let (A„) be a sequence of pairwise disjoint open subsets of X, and e > 0.

As w*: F* -> (C(X) 0 X)* is equally weakly compact, the image, m*(OF*), of
the unit ball of F* is relatively weakly compact in (C(X) (g)I)*, and so is the set,

|w*(OF*)|, of variations of its corresponding vector measures in C(X)*, by (3.3).
Lemma (3.2) furnishes an index «o such that

|(w*j*n (74„) < e (||j*|| < 1, « >«o),

implying, for all x e X and y* e F* of norm < 1,

i<*,(wvro4»)>i
< l|x|| ||(M*j*)~(y4„)||

<i(«*/ri(4,)
< £ (« > «o),

thus proving the assertion, again by (3.2).

3.6. Each of the following conditions on X and F assures the weak compactness
of any bounded linear map from C(X) § X into F:

(a) X is arbitrary and F reflexive;

(b) X* has the Radon-Nikodym property and F is weakly sequentially complete,
Cf. [G];

(c) X is a C*-algebra and F is weakly sequentially complete, cf. [ADG], Theo-

rem 4.2, p. 449.

3.7 Corollary. Lc£ G Z?c a ZocaZZy compact grcmp, X a rc/Zcv/vc ßanacZz spacc, amZ

a a Z?cmmZccZ Zmcar map/rom C^"(G) (8) X mfo X. TTzcn ^Zzc

: ||x|| < 1, ||x*|| < 1}

zs rcZctzvcZy wca£Zy compact z>z C^"(G)*.
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Proo/ C^"(G) being a commutative C*-algebra with unit, there exist a compact
Hausdorff space X and an isomorphism from C*"(G) onto C(X) so that (3.5) applies.

3.8 Remark (by the referee). In case X is reflexive (and therefore X and X* enjoy
the Radon-Nikodym property), one can deduce (3.5) directly from the vector-valued
version of Grothendieck's criterion (3.2), as stated in the middle of p. 117 in [DU].

4. Proof of the Proposition

Let G be a locally compact group and X a non-zero injective left L^(G)-module,
reflexive as a Banach space. Since L*(G) possesses bounded approximate units,
the essential part of X - being L^(G)-module complemented in X - is equally
injective, and reflexive, so that we may assume X from the outset to be essential
itself. Let then A: C^"(G) § X Xbea map satisfying (2.1) (i), (ii), (iii). For

any fixed pair (x,x*) g X x X*, (x,x*) 1, the element in C^"(G)*,
(</?) ® x), x*), (£> £ C^"(G), enjoys the following two properties:

(iv) Ajc,**(1g) 1'

(v) {L*A;c,x* : ^ g G} is relatively weakly compact in C^(G)*.

(iv) follows immediately from (2.1 .iii); to see (v), we use (2.1 .ii) to compute, with
</9 G C^"(G) ands g G,

A(L^</9 (8) x),X*)
(A(L^</9 (8) ss~*x),x*)

(SA((/9 (8) s~*x), x*)
(A(</9 (8) s"*x), x*s)

(s e G, <p e C*"(G)).

Since ||s~*x|| ||x|| and ||x*s|| ||x*||, s G G, the assertion now follows from
(3.7).

It ensues that the closed convex hull, C, of {L* : s g G} is a weakly compact
convex subset of C^"(G)*. Being invariant under the group of linear isometries L*,
s G G, Ryll-Nardzewski's fixed point theorem yields an element Af of C satisfying
L*M Af, ^ G G, and, in virtue of (iv), M(1g) 1. Decomposing Af into its

selfadjoint parts and these into their positive ones, we obtain, possibly after rescaling,
a positive linear functional on C^"(G), left invariant and taking the value one at the

constant function Ig, thus establishing the amenability of G; cf. [Gr], Theorem2.2.1,
p. 26.
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5. Proof of the Corollary

For the definition of projective and flat Banach modules over a Banach algebra we
refer to [H], III.l.14, p. 136, and [H], VII. 1.2, p. 239, respectively. Rather than

reproducing them here, we note only that every projective module is flat, and that a

module V is flat if and only if its dual module, V*, is injective, cf. [H], VII. 1.14,

p. 243.

5.1. Proof of Corollary a. Let V be a non-zero projective left L* (G)-module that
is reflexive as a Banach space. Since X^ is module-complemented in V, X^ is also

projective, and reflexive, so that G is compact, by [Rl], 1.4, p. 316. (It is shown
there that a locally compact group is already compact, if it admits a non-zero essential

projective left L * (G)-module V whose dual Banach space, V*, is weakly sequentially
complete or norm separable.) The second Statement is also proved there, [Rl], 1.2,

p. 316.

The second part of Corollary b is equally well known. In [H], VII.2.29, p. 257, it
is deduced from the vanishing of the Tor functor over an amenable algebra, or can be

seen, more directly, from B. E. Johnson's original definition, [J], p. 60, as follows.

5.2 Lemma ([H]). d Z?£ an oraenofeZe üonocZz oZgefero. TTzen oZZ üonocZz (Ze//,

r/gZu, or Z?Z-) raodwZ^ over d ore 7Zo£

Proo/ We shall show only that the dual right module, V*, of a left d-module V is

injective. Replacing V with V* in the diagram defining injectivity on p. 1023, and

taking * and Ao as morphisms of right d-modules, we consider Ao o£ as dement of the
Banach space, L(7, Af*), of bounded linear maps from 7 into Af*. Turning it into an

d-bimoduleby (oD)(y) 7(yo) and(77z)(y) (Dy)o,foro g L(7, X*),
y G 7, we obtain a bounded linear map Z): d -> L(7, X*), Do o(Ao o) — (Ao o

£)o, o G d, whose values vanish on the closed submodule ^7o of 7, thus defining
a new map, Do: d -> L(7/77o,X*), by the formula (Doo)(7ry) (Do)(y),
o G d, y G 7, tt denoting the canonical morphism from 7 onto 7/7 7o. Endowing
the projective tensor product 7/77o (8) X with d-actions o(jry (8) x) jry (8) ox
and (jry (8) x)o jryo (8) x, the Banach space L(7/77o,X*) (7/77o (8) X)*,
cf. [CLM], II. 1.7, p. 54, becomes a dual d-bimodule and Do a derivation so that,

by the amenability of d, Doo öS — So, o G d, for some S G L(7/77o,X*).
Comparing with the definition of Do yields

o(Ao o £ — s O 7r) (Ao o £ — s O TT)O (o G d),

such that A Aoof- Sott isa morphism extending Ao along *. Hence X* is

injective and X flat.
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5.3. Proof of Corollary b. Let X be a non-zero flat left L* (G)-module, reflexive
as a Banach space. Then X* is a non-zero injective right L* (G)-module and equally
reflexive, implying the amenability of G by the Proposition. If, conversely, the group
G is amenable, then the Banach algebra L* (G) is amenable, [J], Theorem 2.5, p. 32,

so that every left L* (G)-module is flat by the lemma above.

6. An open problem

Let be a von Neumann algebra admitting a non-zero injective normal Banach left
module, reflexive as a Banach space. Does this entail the injectivity of Cf. [R2],
in particular Corollary 2.6, p. 2533.
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