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Injective modules and amenable groups

Gerhard Racher

Abstract. We show that a locally compact group is amenable if and only if it admits a (non-zero)
injective Banach module that is reflexive as a Banach space.
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1. Introduction

Let A be a Banach algebra. By aleft A-module we shall always mean a Banach left A-
module satisfying ||ax| < ||| ||x|| whenever @ € A and x € X, and a morphism of
left A-modules will be a bounded linear map commuting with the respective actions.
X is called injective, cf. [H], I11.1.14, p. 136, if for any morphism ¢ of left A-modules
admitting a bounded linear left inverse, £, and any morphism Ag from Yy into X,
there is a morphism A from Y into X satisfying Ag = A o,

Yo Y Yo,  £or=idy,.

Let the essential part, X,, of a left A-module X be defined as the closed linear hull
of the set of products ax, a € A, x € X. X is called non-zero if X, # 0, essential if
X. = X, and reflexive if X is reflexive as a Banach space. In case X is reflexive and
A has a bounded two-sided approximate unit (of norm < ¢), there is an A-module
morphism (of norm < ¢) projecting X onto X,. The Banach space dual, X*, of
X becomes a right A-module under the action defined by {x, x*a) = {ax, x*}, for
x*e X*,ae A,andx € X.

Choosing a left invariant Haar measure on the locally compact group G we obtain
the Banach algebra 1.1(G). It is well known that every essential left 1.1 (G)-module
is a left G-module such that, for any x € X, the mapping s + sx is continuous
from G into X and |sx| = ||x|, s € G, the respective actions being related by the
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formula ax = {a(s)sx ds, fora € L1(G) and x € X. This same formula defines
on any such left G-module an essential left 7.1(G)-action.

Letting G act by left translation on L?(G), 1 < p < oo, LP(G) becomes an
essential reflexive left L'(G)-module. H. G. Dales, M. Daws, H. L. Pham and
P. Ramsden recently showed the following theorem, [DDPR], Theorem 9.6.

Theorem ([DDPRY]). Let G be alocally compact group, and 1 < p < oo. If the left
LYG)-module LP(G) is injective, then G is amenable. O

Employing F. J. Yeadon’s method, [Y ], for establishing the existence of a trace in
a finite von Neumann algebra, we show

Proposition. et G be a locally compact group. If G admits a non-zero injective
Banach left LY(G)-module that is reflexive as a Banach space, then G is amenable.

Combining this with known results we obtain the following characterization of
compact and amenable groups, in good correspondence with Helemskii’s philosophy,
cf. e.g. [H], p. 262.

Corollary. Let G be a locally compact group.

a) If G admits anon-zero projective left L' (G )-module that is reflexive as a Banach
space, then G is compact, if, conversely, G is compact then every essential left
LY(G)-module is projective.

b) IfG admits anon-zero flat left L' (G)-module that is reflexive as a Banach space,
then G is amenable; if, conversely, G is amenable then every left L'(G)-module

is flat.

These results are equally valid for uniformly bounded, left or right Banach L'(G)-
modules. For the notion of the injective tensor product, @, of Banach spaces we refer
to the monograph of J. Cigler, V. Losert and P. Michor, [CLM]. The proof of the
Proposition starts immediately after this introduction.

2. The auxiliary module C**(G) ® X

The G-action on C*(G) ® X and the morphism ¢ below were already considered by
P. Ramsden, [Ra], Chapter 5, p. 21; cf. also Chapter 9 of [DDPR].

2.1. Let G be a locally compact group, and X be an essential Banach left L1(G)-
module, with sx, s € GG, x € X, denoting the corresponding G-action. We let G act
on the Banach space, C*(G), of uniformly continuous bounded functions on G by
left translation (L) (1) = (s~ 1), s € G, ¢ € C*(G), so that the injective tensor
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product C*(G) & X becomes a continuous isometric Banach left G-module under
the action s(¢ ® x) = Lo @ sx,5 € G, ® x € C*"(G) @ X.

The morphism ¢: X — C™(G) & X is defined by tx = 1g ® x, x € X,
1 the function constant one on (, and for any s € ( the bounded linear map
£:CG)RX — X, (g ®x) = g(s)x, ¢ € CH(G), x € X, is left inverse to &

In case the essential left L!(G)-module X is injective, setting ¥, = X,
Y = C™(G)® X, and Ay = idy in the diagram on p. 1023 yields a morphism
A of L1(G)-modules left inverse to ¢,

X -5 e $x 5 X

Since A commutes also with the G-actions, the map A enjoys the following properties:
(i) A is linear and bounded;

(i) A(Lsg ® sx) = sA(p ® X);

(iii) A(lg ® x) =1,

whenever s € G, ¢ € C*™(G),and x € X.

2.2. Remark Instead of C*(G) we could also take L>°(G), Corollary 3.7 below
equally applying to it. By using the module C*(G) ® X, suggested by the referee,
however, we shall obtain: If an arbitrary topological group G admits a non-zero
relatively injective Banach left G-module X that is reflexive as a Banach space, then

(¢ is amenable. For the relevant notions we refer to N. Monod’s Lecture Notes, [M],
Definition 4.1.2, p. 32, and the definition preceding 5.1.4, p. 46.

3. Weakly compact operators on C(K) ® X

The formulation of the main lemma, (3.5) below, is due to the referee.

3.1. Let K be a compact Hausdorlf space, and X be a Banach space. It is well
known that the dual space of the injective tensor product C(K) ® X = C(K, X) is
isometrically isomorphic to the Banach space, 7(C(K), X™*), of integral operators v
from C(K) into X*, and that this again is isometrically isomorphic to the Banach
space, bvrca(B(K), X*), of regular countably additive vector measures rn of bounded
variation on the Borel g-algebra, B(K), of K with values in X'*,

(C(K)® X)* = I(C(K), X*) = bvrea(B(K), X*),

the correspondence between v and m being given by m(A) = v(ca), A € B(K),
where v: C(K)*" — X7 denotes the unique weak™-weak™ continuous extension of v
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and ¢4 the characteristic function of A. The variation, |m|, of m € bvrca(B(K), X*),
defined as

m|(A) = sup Y m(A)| (4 € B(K)).

the supremum being taken over all finite Borel partitions (A;) of A, is a regular
finite positive Borel measure on K. Defining the norm of m € bvrca(B(K), X ™)
by ||m| = |m|(K), we have |m| = I(v), the integral norm of v € I{C(K), X™*)
corresponding to m. — The theorems involved in this discussion are due to I. Singer,
[S]; cf. also VI.3. Theorem 3, p. 162, and VL.3.Theorem 12, p. 169, in [DU], and, in
particular, Satz 1 in Losert’s Thesis, [L], p. 7.

We shall need the following two lemmas.

3.2 Lemma (|Gro], Théoreme 2). lLet K be a compact Hausdorff space. A bounded
subset C of C(K)” is relatively weakly compact if and only if for every sequence
(An) of pairwise disjoint open subsets of K we have

lim pu(A,) = 0
1
uniformly for i in C. ([

3.3 Lemma. Let K be a compact Hausdorff space, and X be a Banach space. If D is
a relatively weakly compact subset of (C(K) & X)*, then the set, | D|, of variations
of its corresponding vector measures is relatively weakly compact in C(K)*.

Proof. Let D be a relatively weakly compact subset of (C(K) ® X)*. Using the
identification in (3.1), we may assume D to be relatively weakly compact in
bvrca( B(K), X*); being a closed subspace of the Banach space bvea(B(K), X*)
of all countably additive measures of bounded variation, it 1s relatively weakly com-
pactalso there. Theorem 1.ii)in [B], p. 288, yields a finite positive measure v on B(K)
such that the set |D| = {|m| : m € D} is v-equicontinuous. For any sequence (A)
of disjoint Borel subsets of K, lim v(A4;) = 0 therefore implies lim |m|(A;) = 0
uniformly for m in D. The elements of the set | 2| being all regular, its relative weak
compactness in C(K)* results now, for instance, from (3.2). [

3.4. Let X and Y be Banach spaces, and u: C(K) ® X — Y a bounded linear
map with adjoint #* : ¥Y* — (C(K) ® X)* = I(C(K), X*). Any pair of elements
(x,y*)in X x Y* defines an element u#, y+ of C(K)* by

urye (@) = (u(lp ®x).y"), ¢eCK), xeX, y*el™

Denoting by (u*y*)~: B(K) — X* the vector measure corresponding to
u*y*: C(K) — X*, we deduce from

ux (@) = (@ ®@x,u"y") = (x,u*y*(p)), ¢ € C(K),
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that
uz,ye(A) = (x, (" y*)7(4), A4e B(K),

forallx e X, y* e Y*.

3.5 Lemma. et K be a compact Hausdorff space, X and Y be Banach spaces, and
u be a weakly compact linear map from C(K) R X into Y. Then the set

ey Ixl =L Iy =1}

is relatively weakly compact in C(K)*.

Proof. Let (A,) be a sequence of pairwise disjoint open subsets of K, and £ > 0.
Asu*: Y* - (C(K) ® X)* is equally weakly compact, the image, u*(OY*), of
the unit ball of ¥'* is relatively weakly compact in (C(K) ® X)*, and so is the set,
|[u*(OY*)|, of variations of its corresponding vector measures in C(K)*, by (3.3).
Lemma (3.2) furnishes an index ng such that

[y [(An) =& (V' =1, n = no),

implying, forall x € X and y* € Y* of norm < 1,

|5,y (Ap)| = [{x, (U™ y*) 7 (4p)]
< Jx @™ y™) ™ (An) ||
< [(u"y*) ™[ (4n)
<& (n=ny),

thus proving the assertion, again by (3.2). (]

3.6. FEach of the following conditions on X and Y assures the weak compactness
of any bounded linear map from C(K) @ X into ¥:

(a) X is arbitrary and Y reflexive;

(b) X* has the Radon—Nikodym property and Y is weakly sequentially complete,
ct. [G];

(c) X is a C*-algebra and Y is weakly sequentially complete, cf. [ADG], Theo-
rem 4.2, p. 449.

3.7 Corollary. Let G be a locally compact group, X a reflexive Banach space, and
u a bounded linear map from C*(G) & X into X. Then the set

{x s 2 Xl = 1, [Ix7) = 13

is relatively weakly compact in C™(G)*.
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Proof. C™(G) being a commutative C *-algebra with unit, there exist a compact
Hausdorff space K and an isomorphism from C%(G) onto C(K) so that (3.5) applies.
L

3.8 Remark (by the referee). In case X is reflexive (and therefore X and X* enjoy
the Radon—Nikodym property), one can deduce (3.5) directly from the vector-valued
version of Grothendieck’s criterion (3.2), as stated in the middle of p. 117 in [DU].

4. Proof of the Proposition

Let G be a locally compact group and X a non-zero injective left L!(G)-module,
reflexive as a Banach space. Since L'(G) possesses bounded approximate units,
the essential part of X — being L'(G)-module complemented in X — is equally
injective, and reflexive, so that we may assume X from the outset to be essential
itself. Letthen A: C™(G) ® X — X be a map satisfying (2.1) (1), (i1), (iii). For
any fixed pair (x,x*) € X x X7, {x,x*) = 1, the element A, x+ in C(G)*,
Axxr (@) = (Ae ® x), x*), ¢ € C™(G), enjoys the following two properties:

(iv) Axx+(lg) =1;
(v) {L}Ax x+ 1 s € G} isrelatively weakly compact in Cr(G)*.
(iv) follows immediately from (2.1.i11); to see (v), we use (2.1.11) to compute, with
@ € C™(G)ands € G,
J]L’:)‘x.x’*‘ (@) = Ax x+(Lsp)
= {AM(Lsp @ x), x7)
= (A(Lsgp ® 55~ 'x), x¥)
= (sAlg ® s 'x),x7)
= (Mo ®s7'x), x*s)
= A1y 045(®) (s € G, ¢ € C™G)).

Since ||sT!x|| = |x|| and ||x*s|| = ||[x*|. s € G, the assertion now follows from
(3.7).

Itensues that the closed convex hull, C, of {L} A« x+ : s € G}isaweakly compact
convex subset of C(G)*. Being invariant under the group of linear isometries L7,
s € G, Ryll-Nardzewski’s fixed point theorem yields an element M of C satisfying
LiM = M,s € G, and, in virtue of (iv), M(lg) = 1. Decomposing M into its
selfadjoint parts and these into their positive ones, we obtain, possibly after rescaling,
a positive linear functional on C®(G), left invariant and taking the value one at the
constant function 1, thus establishing the amenability of G; cf. [Gr], Theorem 2.2.1,
p- 26. (]
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5. Proof of the Corollary

For the definition of projective and flat Banach modules over a Banach algebra we
refer to [H], IIL.1.14, p. 136, and [H], VIL.1.2, p. 239, respectively. Rather than
reproducing them here, we note only that every projective module is flat, and that a
module X is flat if and only if its dual module, X*, is injective, cf. [H], VIL.1.14,
p. 243.

5.1. Proof of Corollary a. Let X be a non-zero projective left L.1(G)-module that
is reflexive as a Banach space. Since X, is module-complemented in X, X, is also
projective, and reflexive, so that G 1s compact, by [R1], 1.4, p. 316. (It is shown
there that a locally compact group is already compact, if it admits a non-zero essential
projective left L' (G)-module X whose dual Banach space, X *, is weakly sequentially
complete or norm separable.) The second statement is also proved there, [R1], 1.2,
p. 316. O

The second part of Corollary b is equally well known. In [H], VIL2.29, p. 257, it
is deduced from the vanishing of the Tor functor over an amenable algebra, or can be
seen, more directly, from B. E. Johnson’s original definition, [J], p. 60, as follows.

5.2 Lemma ([H]). Let A be an amenable Banach algebra. Then all Banach (left,

right, or bi-) modules over A are flat.

Proof. We shall show only that the dual right module, X*, of a left A-module X is
injective. Replacing X with X* in the diagram defining injectivity on p. 1023, and
taking ¢ and Ao as morphisms of right A-modules, we consider Ag o £ as element of the
Banach space, L(Y, X*), of bounded linear maps from ¥ into X *. Turning it into an
A-bimodule by (¢ T)(y) = T(va)and (Ta)(y) = (Ty)a,fora € A, T € L(Y, X*),
y € Y, we obtain a bounded linearmap D: A — L(Y, X™*), Da = a(Agof)— (Ao
£)a, a € A, whose values vanish on the closed submodule (¥, of ¥, thus defining
anew map, Dg: A — L(Y /Yy, X*), by the formula (Doa)(zy) = (Da)(y),
a € A, y € ¥, m denoting the canonical morphism from ¥ onto Y /t¥y. Endowing
the projective tensor product ¥/t¥y ® X with A-actions a(7y ® x) = 7y ® ax
and (ry ® x)a = wya ® x, the Banach space L(Y/tYy, X*) = (Y/1Yo ® X)*,
cf. [CLM], II.1.7, p. 54, becomes a dual A-bimodule and Dy a derivation so that,
by the amenability of A, Doa = a8 — Sa, a € A, forsome § € L(Y/iYy, X7*).
Comparing with the definition of D¢ yields

a(Apof—Son)=(Agct—Scomla (aeA),

such that A = Ag o £ — S o m is a morphism extending Aq along ;. Hence X* is
injective and X flat. L
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5.3. Proof of Corollary b. Let X be a non-zero flat left L1(G)-module, reflexive
as a Banach space. Then X* is a non-zero injective right L.1(G)-module and equally
reflexive, implying the amenability of (¢ by the Proposition. If, conversely, the group
G 1s amenable, then the Banach algebra L (G) is amenable, [J], Theorem 2.5, p. 32,
so that every left L1(G)-module is flat by the lemma above. O

6. An open problem

Let .M be a von Neumann algebra admitting a non-zero injective normal Banach left
module, reflexive as a Banach space. Does this entail the injectivity of M? Cf. [R2],
in particular Corollary 2.6, p. 2533.
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