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Acyclicité géométrique de B,

Fabrizio Andreatta and Olivier Brinon

Résumé. Dans cet article, on prouve que I’anneau de périodes cristallines B qui définit la no-
tion de représentation cristalline dans le cas relatif est géométriquement acyclique. On démontre
en fait une version relative de cette acyclicité.

Classification mathématique par sujets (2010). 11515, 11825, 14F30.

Mots-clefs. Ramification et théorie des extensions, cohomologie galoisienne, cohomologie
p-adique, cohomologie cristalline.

Soit K un corps de valuation discréte complet de caractéristique O, a corps résiduel
k parfait de caractéristique p. On note Qg I’anneau des entiers de K, on fixe une
cléture algébrique K de K et on pose §x = Gal(K/K).

Soit X un schéma propre et lisse sur Spec(@g). Notons X sa fibre spéciale,
Xk sa fibre générique et X sa fibre générique géomélrique. Soient Aqis(Ok) et
Buis(Ox) := Auis(Og)[i~!] les anneaux de périodes cristallines de Ok définis par
Fontaine dans [12] ; ils sont munis d’une filtration décroissante séparée et exhaustive,
d’une action de §g et d’un endomorphisme de Frobenius. Fontaine a conjecturé dans
[10], et Faltings a prouvé dans [8], 'existence d’un isomorphisme de Bs(Ox)-
modules

Hn (XKs Z ) ®Zp Bcris(ch) =H cris (Xk/ W(k)) ®W(k) Bcns((oK) (Ceris)

pour tout 7 € N, fonctoriel en X et compatible aux filtrations, aux actions de &g
et aux Frobenius. Dans [3] une nouvelle preuve est donnée, plus proche du point
de vue initial de Fontaine et Messing dans [13]. Supposons X défini sur W(k). On
remplace le site syntomique-étale de loc. cit. par un nouveau site X, introduit par
Faltings dans [9] (voir [5] pour une discussion sur la définition correcte du site). Soit
Xla complétion formelle de X le long de X. Alors les objets de X sont les couples
(U W), o0 U — X est p-adiquement formellement étale et W — Ug =% est un

recouvrement fini étale, au-dessus de K, de la fibre rigide analytique {/"8 de U. Soit

v: X" = % le foncteur U > (U U ng) ot X est le site étale de X . On peut prouver
qu’il induit un morphisme de sites. L un des points clef de [3] est la construction
d’un faisceau « continu » Aris de Acis(Ox) @wk) v*(@}?a)—modules sur X, muni
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d’une filtration, d’une action de g, d’un opérateur de Frobenius (localement sur X )
et d’une connexion intégrable

V: Acis — Acris ®U*((9)?ét) v* (Ql &t )

X7/ wk)
tels que
(1) le complexe de de Rham
Acris = Acris ®U*((9A§t) v* (Qlét ) — Aciis ®v*((9,\ét) v* (Qiét ) e
% W) b YW

défini par V est exact;
(2) pourtout j € N, le faisceau RY v, (Acris Rpr(@ o) v (Q“iet )) est tué par
X X /W)

une puissance de ¢ si g > 1, et coincide avec Q“i 5 ®w k) Beris(Ox) quand
/W)
on inverse / pour g = (;
(3) siAY. désigne le noyau de V, alors H” (36 Ams) ® Acis(O ) Beris (O ) coincide

Cris

avec Hgt(XK,Z ) ®2, Beris(Ok).

Grace a (1) et (3), on peut calculer H’? (X 7 Lp) @z, Beris (Ok ) comme la cohomolo-

®
~8t

gie du complexe Acris Rur(@_H V" (Q ) apres inversion de 7. Remarquons que
X

X /wW(k)
Ho(%, ) = HO( v* (_ )) En utilisant la suite spectrale associée et (2), la cohomo-
logie de Agis ®y+@ )V (Q:et ) coincide avec la cohomologie du complexe
&) X7/ wik)
Q:’t @) Bcri (9
PO LIC s(Ok)

et C
sur X , qui coincide avec

crls (Xk/ W(k)) ®W(k) Bcrls (OK)

On prouve que toutes ces identifications préservent les filtrations, les actions de (Galois
et des Frobenius. Cela démontre Ce;.

La preuve de (1) est formelle. La preuve de (3) s’appuie sur des résultats de
Faltings (¢f. [9]) et un théoréme de type GAGA ; contrairement au site syntomique-
étale, celui de Faltings est adapté a la comparaison avec lacohomologie étale. Le point
délicat est la comparaison avec la cohomologie cristalline i.e. la preuve de (2). C’est
une conséquence du présent tlravail1 En effet, dans [3] on prouve le fait suivant. Soit
U = Spt(Ry) un ouvert étale de X assez petit. Soit Ey une cloture algébrique de
Frac(Ry7) contenant K. Notons Ry laréunion des sous- Ry-algebres de Ey qui sont

"Pendant 1a rédaction de ce travail, le premier auteur a bénéficié de 1'hospitalité de 1'Institut Galilée 4 1'Uni-
versité Paris 13.
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finies étales sur Ry [p~!] et notons Gg,, le groupe de Galois de Ry [p~!] sur Ry K.

Alors la fibre de R? v, (A;) enun point x € X% estla limite, sur tous les voisinages
U de x comme ci-dessus, des groupes de cohomologie continue HY (G Ry » Acris(Ro) )
Ici, Acis( Ry ) est ’anneau construit a partir de Ry dans la section 1. Tl est muni de la
topologie p-adique et d’une action continue de G g, . Ainsi, si on pose Bi(Ry7) =
Acis (Ry)[t 1], il suffit, pour prouver (2), de montrer que H? (GRU . BcriS(RU)) =0
pour ¢ = 1 et HO(GRU , Bcris(RU)) = Ry @)W(k) Buis(Ok). En fait, pour prouver
I’analogue relatif de [3], on a besoin d’analogues relatifs de (2), on présente donc ici
une généralisation de ces résultats : c’est I’objet du théoréme principal de ce travail
(théoréme 5).

Remarquons que B ( Ry ) est « plus gros » que I’anneau obtenu en appliquant
la construction de Fontaine & Ry au lieu de o K, construction qui donne un anneau
qui n’est pas géométriquement acyclique en général. Historiquement, Hyodo a été
le premier & remarquer que la définition « naive » des anneaux de Fontaine ne se
comporte pas bien dans le cas relatif, et qu’on a besoin d’une construction plus
générale. En fait, Hyodo a observé que le module de Tate d'une variété abélienne
sur un corps de valuation discréte complet, de caractéristique mixte (0, p), a corps
résiduel imparfait, n’est pas de Hodge—Tate au sens « naif » en général. Dans [16],
il propose une définition correcte de la notion de représentation de Hodge—Tate dans
le cas relatif. Il construit pour cela un anneau By « plus gros » que I’anneau obtenu
en faisant la construction habituelle. Une des particularités de cet anneau Byy est
que, contrairement a I’anneau « naif » , il est g€éométriquement acyclique (¢f. [16],
Proposition 1.2). Les anneaux de périodes B, et Bgr ont déja été construits dans des
situations relatives. La construction habituelle a été considérée par Faltings, tandis
que le pendant de la construction de Hyodo I’a €ét€ par Wintenberger, Tsuzuki et
dans [7].

Remarquons que, dans un travail non publié, Tsuji a aussi démontré des résultats
d’acyclicité géoméirique de Beys. Apres I'acheévement du présent article, Rémi Lodh
nous ainformé qu’il a lui aussi obtenu des résultats similaires dans satheése de doctorat,
achevée en 2007 sous la direction de Faltings.

Les auteurs remercient le rapporteur pour les diverses erreurs qu’il a relevées dans
une premiere version de ce travail, ainsi que pour les améliorations qu’il a suggérées.

1. Notations et rappels

Onnote v la valuation de K normalisée par v(p) = 1. Elle s’étend de fagon unique
enune valuation de K, gu’on note encore v. Pour tout # € N, on choisit ™ e K une
racine p"-iéme de 1'unité, de sorte que (8(”+1))p = ™ Soit Koo = |, ey K]
I’extension cyclotomique de K. C’est une extension galoisienne de K, dont le groupe
de Galois s’1dentifie, via le caractere cyclotomique y, a un sous-groupe ouvert de Z ;.
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Soient §,d € N et soit S© = g {Zlil, ...,Zg':l} le séparé complété de
Ok [Zlil, . thl] pour la topologie p-adique. On suppose que S (resp. R) s’ob-
tient A partir de S© (resp. de S {Tlil, R dil}) en it€rant un nombre fini de fois
les opérations suivantes :

(ét) complétion p-adique d’une extension étale ;

(loc) complétion p-adique d’une localisation ;

(comp) complétion par rapport a un idéal contenant p.

On suppose en outre que

Ok [ZF',....ZF' | =S et Ox[zF.....ZF7\ TF.. . TF'] - R

sont a fibres géométriquement régulieres ou que R estde dimension de Krull inférieure
a2,etquek - S ®op k etk — R ®p, k sont géométriquement intdgres.” Dans
ces conditions, le théoréme de pureté de Faltings s’applique. On suppose en outre
que K est algébriquement clos dans R[p~!].

Remarquons que S et R sont noethériens, p-adiquement séparés et complets,
integres et réguliers. Soit £ (resp. F) une cléture algébrique de Frac(R) (resp. la
cléture algébrique de Frac(S) dans E). On note R (resp. S) la réunion des sous- R-
algebres finies R’ (resp. sous-S-algebres finies S') de E (resp. F) telles que R'[p™!]
est une extension étale de R[p~!] (resp. S’[p~1] est une extension étale de S[p~1]).
Ona§ C R.

Pourn € Neti € {l,...,d} (resp. i € {l,...,8}), on choisit Tl.(n) € R
(respectivement /£ I.(n) e S) une racine p"-ieme de T; (respectivement de Z;), de
sorte que (T(n+1))p = T(n) (respectivement (ZI.(HH))J” = Zl.(n)). Pour n € Ny,
on note R, le normalisé de R[g(”) Z(n) chn), Tl(n), e T;n)] dans R et Roo =
UneN>0 Ry,. En particulier, on a Ry C R.

Enfin, on suppose que Spec(R/pR) — Spec(S/pS) est surjectif et générique-
ment géométriquement irréductible. On va prouver les premieres propriétés des an-
neaux $ et R dans la proposition suivante. Les auteurs remercient le rapporteur pour
avoir trouvé des erreurs dans une version précédente et avoir suggéré les corrections
nécessaires.

Proposition 1. (1) Le morphisme Spec(R/pR) — Spec(S/ pS) est fidélement plat
et géométriquement régulier. En particulier, si Frac(S ®g, k) désigne une cloture
algébrique de Frac(S @, k), 'anneau R @5 Frac(S ®p, k) est intégre.

(2) Soit Ok, 'anneau des entiers de K[e™)]. Alors

S ®oxiz1..25) OKa[Z17 an]zSn

“Note ajoutée sur épreuves. La premitre hypothése est inutile pour pouvoir appliquer le théoréme de pureté
de Faltings, cf. théoréme 7.9 de P. Scholze, Perfectoid spaces, Inst. Hautes Etudes Sci. Publ. Math. 116 (2012},
p. 245-313.
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et

(3) L’anneau R @5 S (resp. R, ® s, S) est intégre et normal, et application

(R/pR) ®s/ps (S/pS) = R/pR
(resp. (R, /pRy) s,/ p5,, (S/pS) — R/pR) est injective (pourtout n € N..q).

Démonstration. (1) Par hypothése, le morphisme Spec(R/pR) — Spec(S/pS) est
surjectif et plat, puisque R est une S-algebre plate. En particulier, il est fidelement
plat.

Le Frobenius définit un morphisme fini sur

§O/ps® = Ok/pOR)[ 2T, ... ZF"].

Rappelons qu’il existe une suite d’anneaux SO c g c...c §M = gop e+
estobtenu a partirde S @) en utilisantune des opérations (ét), (loc), (comp). En utilisant
le lemme 46, on en déduit par induction sur/ > 1 que dans chaque cas, lalinéarisation

du Frobenius ¢ ®1 : S(i)/pS(i)®§(I:—1)/ps(i—1)S(i_l)/pS(i_l) — SO/ pSD estun

isomorphisme de S¢—1 / pSU—D_algsbres et que le Frobenius définit un morphisme

fini sur § @/ pS® Tenrésulte que p@1: S/pS ®§'(0)/p5'(0) S©/pS©® 5 §/p§

estun isomorphisme de S© / p S @_algdbres : le Frobenius définit un morphisme fini
sur S/pS.Soit R® := § {Tlil, = o g Taitl}. Par définition, R/ pR est obtenu a partir
de R© / pR(O) en itérant les opérations (ét), (loc), (comp) un nombre fini de fois.
On montre comme ci-dessus que ¢ @ 1: R/pR ®;03(0)/pR(0) R®/pR® 5 R/pR
est un isomorphisme de R©@ /pR® _algdbres. On déduit de [14], Théoréme 21.2.7,
que R/pR est formellement étale sur R(Y/pR(©®, et donc formellement lisse sur

S/ pS. On conclut (¢f. [14], Corollaire 19.6.5) que le morphisme Spec(R/pR) —
Spec(S/pS) est géométriquement régulier.

(2) Soit m,, I'idéal maximal de Ok, et k, = Ok, /m, son corps résiduel. Soient
1 1 1

1
S = S®x(21,zs1OKn[Z1 + . ZE |etR] := R®poy Su[Ty" ..... TS |.
Il suffit de prouver que S, et R/, sont intégres et réguliers. Comme S, (resp. R},)
est fini et plat comme S-module (resp. comme R-module), les anneaux S) et R,
sont noethériens, p-adiquement séparés et complets, sans p-torsion. En particulier,
il suffit de prouver que S, Ry, kn et R), @y, k, sont intégres et réguliers. Par

1 1
définition, S;, Rk, ky (resp. R, R0k, k) est obtenu a partir de &y, [ZI?r e, Zé,?r]
1 n
(resp. S, ®p Ky Kn [TlP T 7 " ]) en itérant les opérations (ét), (loc) et (comp).

En particulier, S, ®¢ i knet R, ®e e ky sont réguliers : il suffit de prouver qu’ils
sont inteégres.
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L
7

Onas$; ®og, kn = (S QRO kn) Rk[Z 1,7 5] k[le . ] On déduit de
la preuve de (1) que le morphisme
L 1
(S Qog kn) Qizy.za kK[Z1 ... Z] | = S @0k kn.

qui est la z-iéme itération du Frobenius sur S @, k5 et qui envoie Z l-p_n sur /;, est
un isomorphisme. Comme k — § Rp, k est géométriquement intégre, il en résulte
que S ®@, kn.etdonc S) Q¢ Kn ky, est integre. On en déduit aussi que

1 S
7T

1 1
L o 2 o
...,ZS,Tl ..... Td]k[zl !"'528 5T1 5"'5Td ]-

® E E

Ry, R0, kn = (R®(9K k”)®k[zl

En utilisant la preuve de (1), on prouve de la méme facon qu’il y a un isomorphisme

R, ®p e kn = R®p, ku quiinduit laz-iéme itération du Frobenius sur R @@ . ky,
. 1
et envoie Z7 " sur Z;, et Tj‘” " sur T;. Comme k — R ®gp, k est géométriquement

intégre, R @@, kn, et donc R}, @ &, Kn,estintégre.
(3) On déduit de la preuve de (2) que S, /1, S, = (§/mS) ®x k, (envoyant

ZI

ij sur 7;). L’application Spec(R;,/pR,) — Spec(Sn/pS,) est donc elle aussi
surjective et génériquement géométriquement irréductible. Il suffit donc de prouver
la proposition dans le cas “n = 0. Soit S’ une sous-S-algébre intégre, normale de
S, telle que S[p~'] < S’[p1] est finie étale. Comme S est une union des telles
S-algebres, il suffit de prouver que I'anneau R’ := R ®s S’ est intégre, normal et
que I’application R’/ pR’ — R/pR estinjective. La deuxiéme assertion résultant de

la premiére, il suffit de voir que R’ est intégre et normal.

sur Z;) et que Ry, /m, R, = (R/moR) ®; k, comme §,-algeébres (envoyant

Y

=)

Normalité de R'. On va appliquer le critére de normalité de Serre [15], Théo-
réme 5.8.6. Comme S’ est sans p-torsion et ’extension § € R plate, I'anneau R’ est
sans p-torsion : I’application R — R’[p~!] estinjective. Comme S[p~!] € S'[p7!]
est finie étale, il en est de méme de R[p~!] € R'[p~!]. L’anneau R étant normal,
R'[p~!] ’est aussi. En particulier, R’ est réduit i.e. R’ est régulier en codimension
0. Comme R’[p~!] est noethérien et normal, on peut I’écrire comme un produit fini
R[p™ = ]_[;:1 D; avec D; normal, intégre, fini et étale sur R[p~']. Comme
R’ est sans p-torsion, les idéaux premiers de codimension 0 de R’ sont les noyaux
Ker(R" — Dj), pour j € {1,...,s}. Pour chaque j € {l,... s}, soit R} I'image
de R’ dans D;. Chaque R} est un anneau noethérien intégre, fini sur K. On dé-
duit des théorémes de going-up et going-down que chaque idéal premier de R} de
codimension 1 est au-dessus d’un idéal premier de R de codimension 1. Les mor-
phismes finis et injectifs R — R’ — ;:1 R} induisent des applications surjectives
]_[;:1 Spec (RJ’,) — Spec (R’) — Spec(R). D’aprés ce qui précede, le composé en-
voie les idéaux premiers de codimension 1 sur les idéaux premiers de codimension 1.
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Comme la hauteur croit par morphisme fini injectif ([19], Exercice 9.8), les idéaux
premiers de codimension 1 de R’ s’envoient surjectivement sur les idéaux premiers
de codimension 1 de R.

Soit g un idéal premier de R de codimension 1. Montrons que R’ ® g R, est
normal, ce qui impliquera que R’ est régulier en codimension 1. C’est clair si p ¢ q,
parce que R'[p~!] est normal. Si p € q, alors ¢ = @wR (ot @ est une uniformisante
de K). Notons {p; }1<j<m (resp. p) les idéaux premiers de codimension 1 de §' (resp.
S) au-dessus de p. Puisque S’ est normal, on a une suite exacte

08— STp7'| = [ | (Frac(s)/5},) .

i—=1

Comme S — R est plat, on en déduit une suite exacte

0— R ®rR, = S8|p7'|®@s Ry — H (Frac(S’)/S];l.) ®s Rg-
i=1

Notons que Frac(S") ®s Rq est une localisation de R’[p~!] qui est régulier : il est
donc régulier et a fortiori normal. En particulier, pour prouver que R’ @ R, est
normal, il suffit de prouver qu’il est intégralement clos dans Frac(S’) ® s R,. On
déduit de la suite exacte qu’il suffit de prouver que S, @5 Ry est local et régulier de
dimension 1 pourtouti € {1,...,m}. L’extension R; € S’ ®@5 R, est finie et plate,
et on a montré que les idéaux maximaux de S’ ® s R, sont les idéaux au-dessus de
qRq = WRy. Mais §" @s Ry = 85" ®s Sp @s, Rq : ces idéaux sont au-dessus des
idéaux p; S'®s Sp pouri € {1, ..., m}. Comme Spec(R,/wR,) — Spec(Sy/@Syp)
est géométriquement inteégre (car Spec(R/pR) — Spec(S/pS) est génériquement
géométriquement irréductible par hypothese, et génériquement géométriquement ré-
gulier d’aprés (1)), les idéaux p; S’ ® s Rq sont déja premiers. Les idéaux maximaux
de " ®s R, sont donc les idéaux p; S’ ®s Rq. En particulier, S | ®s Ry estun
anneau local sans p-torsion d’idéal maximal p; S ®S Ry . Comme S ’ . estun anneau
de valuation, p; S, , et donc a fortiori p; S, ®S R sont des 1deaux pr1nc1paux En
particulier, S, - ®S R est un anneau reguher de dlmensmn 1.

On en déduit que R’ est régulier en codimension < 1 et donc satisfait la condition
(R1) du critére de normalité de Serre.

Reste & montrer que R’ satisfait la condition (S3). On sait déja que R est régu-
lier, donc Cohen—Macaulay. Puisque S est une R-algebre plate, on déduit de [15],
Corollaire 6.3.5, que les fibres du morphisme Spec(R) — Spec(.S) sont de Cohen—
Macaulay. Puisque S’ est un S-module fini, les fibres du morphisme Spec(R’) —
Spec(S’) sont aussi de Cohen—Macaulay [15], Proposition 6.7.1, et donc satisfont la
condition (S;) pour tout #. L’anneau S étant normal, il satisfait la condition (S>).
Comme le morphisme Spec(R) — Spec(S) est plat, on déduit de [15], Proposi-
tion 6.4.1, que R’ satisfait aussi la condition (S5).
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Intégralité de R’. On sait déja que R’ est noethérien et normal. C’est donc un
produit d’anneaux intégres et normaux. Comme R’ est séparé et complet pour la
topologie p-adique, il suffit de montrer que X = Spec(R’/pR’) est connexe. On
note ¥y, ..., ¥; les composantes iréductibles de ¥ : elles sont définies par les idéaux
premiers minimaux y; de 8'/pS’.

Soient v; I'idéal premier de §/p.S défini par y;, et z; (resp. w;) l'idéal pre-
mier de §' image inverse de y; (resp. v;). Comme § et S’ sont plats sur Ok,
on a dim((S/pS)Uj) = dim(Sw,) — 1 et dim((S’/pS’)yj) — dim(S;j) — 1.
Comme § et S’ sont intégres, normaux et S’ est fini comme S-module, on dé-
duit des théoremes de going-up et going-down que dim(S ;J) = dim(Sy, ) et donc
0= dim((S/pS)Uj) = dim((S’/pS’)yj). Si m est I’idéal maximal de Ok, alors
m$ définit I’'unique idéal premier minimal de § au-dessus de p. On en déduit que
I’image de chaque y; est I'idéal 0 de § /mS. Comme Spec(R/pR) — Spec(S/pS)
est surjectif et génériquement géométriquement irréductible, on conclut qu’on a un
et un seul point x; € X au-dessus de y;. Soit X; = {x_l} Alors X; est la seule
composante irréductible de X au-dessus de ¥;. L’anneau §' étant intégre, normal et
complet pour la topologie p-adique, ¥ est connexe. Pour prouver que X est connexe,
il suffit donc de prouver que si ¥; NY; # &, alors X; N X; # . Soitw € ¥; NY;.
Comme I’application Spec(R/pR) — Spec(S/pS) est surjective, il existe z € X
au-dessus de w. Comme Spec(R/pR) — Spec(S/pS)estplatetw € ¥; = {yi
(resp. w € {yj}) on en déduit que z € {x;} = X; (resp. z € {xj} = Xj), donc que
z € X; N X;, ce qu’on voulait. (]

_ En particulier, on déduit de la proposition 1 (3) que R ®s S —> RS et R, ®s,
S = R, S (pourn € N.g), sont des sous-anneaux normaux de R[p~']. Posons

Grys = Gal(R[p~'1/S - R[p™"].
Hpgys = Gal(R[p~']/S - Roolp™"]),
Trys = Gal(S - Roo[p~]/S - R[p71]).

D’apres la proposition 1 (2) et (3),ona

.....

.....

L’extension RS C R, S est alors de degré p”d et donc fR/S o 69;11 Zp Vi, 00 y;

est défini par :
@ eMTM i =i
T, sij #i
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(remarquons que dans le cas ot § = 0,7i.e. S = Og,ona S[p~1] = K, de sorte que
Gr/s = Grg est le groupe fondamental géoméirique de Spec(R[p~1])).

On a donc la situation suivante :
R[p71]
Gr/s P
FR/S ) HR/S
—T T

Slp ' 1—=8-R[p7'|—= S5 - Reo[p']

! |

Sl 1 ——R[p7'| ——— Reo[p7]

Les anneaux de périodes cristallines. (Cf. [7], 6.) Dans tout ce qui suit, si A estun
anneau, I € A un idéal a puissances divisées et n € N, on notera x"] la n-ieme
puissance divisée de x € 1.

Posons R = l(ln R/ pR, les morphismes de transition étant donnés par le Frobe-

nius (cet anneau est noté ﬁ+ dans [1] et dans [2]). C’est un anneau de caractéristique p
muni d’une actionde G g, 5. Comme d’habitude (cf. [12], 1.2.2), il s’identifie (comme
ensemble) a

{(x(”))neN € EN, (Vn € N) (x(""'l))p = x(”)}

oll R est le séparé complété de R pour la topologie p-adique. En particulier, on
dispose dans R des éléments suivants :

o (8(0),8(1),___)

T, = (Tl.(o),Tl.(l),...) pouri € {l,...,d}

(on définit de la méme maniére des éléments Z ;€ Rpourj e {l,.... 8}). Choisis-
sons aussi p = (p, p!/?,...) un systéme compatible de racines p”-itmes de p.
Rappelons que le Frobenius absolu est surjectif sur R/pR (cf [7], Proposi-
tion 2.0.1), de sorte que le Frobenius absolu ¢ est bijectif sur R et sur I’anneau
des vecteurs de Witt W (R). En particulier, si o € Z[p~"], on pose £ = ¢ ™" (e?"%)
(avec n € N tel que p"a € Z), et [¢]* = [¢¥] dans W(.R).
On pose

o0
0: WR) > R, (ag.ar...)— Y pla”.
n=>0

C’est un morphisme d’anneaux surjectif dont le noyau est I’idéal engendré par § =
| 2] — p (¢f [7], Proposition 5.1.2). On note alors AZiS(R) le séparé complété, pour
la topologie p-adique, de I’enveloppe a puissances divisées de W(R) relativement

a I’idéal engendré par Ker(€) (compatibles aux puissances divisées canoniques sur
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I’idéal engendré par p). C’est une W (k)-algeébre munie d’un opérateur de Frobenius
@ (induit par le Frobenius sur W({R)) et d’une action de Gg,s. Par ailleurs, on a
f = log(le]) = 25, (~1)"~1(n = DI([s] — DI € AY, (Ox) € AV, (R).

cris cris

Soit = une uniformisante de K. On pose S((,O) = W(k) {Zlil,...,Z;:l}
et RYY = S¢V{TF!, . TF!}. Remarquons que S§” @wa) Ox = S© et
Rgo)@SéO)S ~ RO,

Lemme 2. [l existe une S((,O)—algébre So munie d’un relevement os,: So — So du
Frobenius, une R(()O)—algébre Romunie d’unrelévement og,: Ry — Ro du Frobenius,

un morphisme de Séo)—algébres So — Ro, compatible avec les Frobenius et des
isomorphismes So @wky Ok = S (en tant que SO _gigebres) et Ry Rwie) Ok = R
(en tant que So Qwk) Ok-algebres). En outre, Sy (resp. Ro) s’obtient a partir de

Séo) (resp. R((,o)) en itérant un nombre fini de fois les opérations (ét), (loc) et (comp).

Démonstration. Rappelons que S est le dernier terme d’une suite finie §@ < §M ¢
.. € §® = § d’anneaux ont SETD est obtenu 2 partir de §¢ en utilisant une des
opérations (ét), (loc), (comp) (rappelées plus haut) pour touti € {0,...,n — 1}. On
va donc construire, par récurrence sur #, des extensions Séo) C Sél) c .- C Sél)
munies de relevements compatibles de Frobenius et des isomorphismes compatibles
S éi) Rwi) Ok = S @, Pouri = 0,onchoisitn’ importe quel relévement de Frobenius
(on peut prendre par exemple le morphisme défini par le Frobenius sur W(k) et
I’élévation ala puissance p surles variables Z1, .. ., Zs). Supposons § (()i) construit. Si
SO ¢ §E+D est défini par (¢1), (loc) ou (comp), alors S/ pSY = §O/ws® ¢
SEHD /75 §EF1) egt défini par une extension étale, une localisation ou par complétion
par rapport 4 un idéal 7¢) respectivement. Dans le cas (ét) ou (loc), il existe une et

une seule extension S(()i) - SéH_l) qui est séparée et compleéte pour la topologie p-

adique, sans p-torsion et qui releve Séi) /p S((,i) C SUHD 1775+ Elle est obtenue

par une opération de type (€t) ou (loc). Le Frobenius sur S(()i) s’étend de facon unique

a SéH_l). Comme S((,iH) Rwky Ok estune S ()_algebre séparée et compléte pour la
topologie p-adique, sans p-torsion, qui releve S¢+1D /mSE+D ] existe un unique
isomorphisme S(EH'I) Rwiy Ok = SU+D en tant que S@-algebres. Dans le cas
(comp), soit 1) Séi) I'image inverse de 1@ et SéiH) le séparé complété de Séi)
par rapport 4 I'idéal 1), Comme le Frobenius respecte 1), son relévement a Séi)
respecte 1 )| et le Frobenius sur Séi) s’étend & S((,Hl). Notons que S((,Hl) Rw) Ok
est le séparé complété de S par rapport a I'idéal de S engendré par 1@ et .
Cet idéal reléve T : cette complétion coincide avec SU+1) par construction.

On construit Ry et og, a partir de Sq {Tlil, e TQEH} et de o5, de la méme
maniére, en utilisant le fait que R est obtenu a partir de § {Tlil, - Tj:l} en itérant
les opérations (ét), (loc), (comp). [



Vol. 88 (2013) Acyeclicité géométrique de Beyig 975

Dans ce qui suit, on fixe Sy € Ry et un relevement o : Ry — Ry du Frobenius
comme dans le lemme 2. N
L’homomorphisme & s’étend par Ry-linéarité en 8: Ry @z W(R) — R. On
note alors Ais(Rp) le séparé complété, pour la topologie p-adique, de 1’enveloppe
a puissances divisées de Ry ®z W(R) relativement a I’idéal engendré par Ker(0)
(compatibles aux puissances divisées canoniques sur I'idéal engendré par p). C’est
une Rp-algebre munie d’un opérateur de Frobenius o-lin€aire ¢ (induit par 0 ® ¢
sur Ry ®z W(R)) et d’une action de G g/s. Par abus, on la notera souvent A (R)
(et parfois méme Ay si le contexte s’y préte) bien que ’anneau Ais(Ro) dépende
du choix de Ry.
Dans A.is(R), on dispose des éléments w; = Z; — [Z,] pour j € {1,...,8} et
u; =T; — [ﬁ] pouri € {1,...,d}. Parmi les propriétés de AgiS(R) et de Ais(R)
qui vont nous servir, citons :
* Auis(R) = Azis(R){(wl, ey WEL UL, ud)} est le s€paré complété, pour
la topologie p-adique, de I’anneau des polyndmes a puissances divisées en
wy,...,Wws,U1,...,uz acoefficients dans AgiS(R) ([7], Proposition 6.1.8);

e les anneaux AY. (R) et Aq(R) n’ont pas de p-torsion ([7], Propositions 6.1.4

& 6.1.10), m dest—torsion ([7], Corollaire 6.2.2).

On pose alors BcvriS(R) = Azis(R)[I_l] et Buis(R) = A (R)[t™!], qu’on munit
de la topologie de la limite inductive. Bien siir, on a des constructions analogues avec
S (en utilisant Sp), et on a une application naturelle Aqis(So) — Acris(Ro)-

Sir € N, on note Fil” A (R) la r-iéme puissance divisée de 1'idéal Ker(4).
C’est I’adhérence dans A ;,(R) de I'idéal engendré par les produits

g[no]u[lm] ) __ugld]wgnd+1] o wgndw]

Nd+5+1 tel que |L‘1| Z P On munlt BCI’iS(‘R) de la

(T FI T Agi(R)

pour n = (no,...,M4+4) €
filtration { Fil” Beris(R)}, ., définie par Fil” Beyg(R) = lim
(muni de la topologie de la limite inductive) pour tout r € Z.

Dans tout ce qui suit, les anneaux As(R) et AcvriS(R) sont munis de la topolo-

gie p-adique. En particulier, les groupes de cohomologie galoisienne auxquels on
va s’intéresser sont des groupes de cohomologie continue (calculés au moyen des
cochaines continues).

Définition 3. Pour ¢ € IN, on pose

H? (GR/Sa Bcris(R)) = ll_II>1 HY (GR/S: " Acris(R))
n
et

HY(Ggys. Fil" Bais(R)) = lim H?(Grys,t ™" Fil't" Agis(R)).

nz|r|
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Remarque 4. A priori, il n’y a pas de topologie sur B;(R) telle que la définition
qui précéde coincide avec la cohomologie continue de Gg/s a valeurs dans Beis(R)
et Fil” Bgis( R). Notons a ce sujet que f Agi{R) € Aqi(R) n’est ni ouvert, ni fermé
pour la topologie p-adique.

Le but de cet article est de prouver les résultats suivants :

Théoréme 5. (1) Sig € N.g, on a H/(Gr/s,Buis(R)) = 0;
(2)ona HO(GR/S,BcriS(R)) = (R()@SO Acris(S)) [5_1]-

Théoréme 6. Soitr € 7.
(1) Siq € N>0) ona Hq(GR/S!Filr BCFIS(R)) — 0;
(2) onaH%(GR/s,Fil’ Bais(R)) = lim 17" (Ro®s, FiI't" Aqis(S)).

=|r|

Onétudie pour celales groupes HY (G g5, Acis(R)) pourg € N.Comme Gg/s =
G Ry/Se €L Acris(R) ne dépend que de Ry et Sg, on peut supposer que R = Ry et
§ = Sy, ce qu’on fait par la suite.

Le théoreme 5 est la conjonction des corollaires 24 et 31, et le théoréeme 6 la
conjonction de la proposition 34 et du corollaire 42.

2. Descente presque étale

Dans ce qui suit, si A est une ¢ g__-algébre, on notera mAHI’idéal de A engendré
par la famille {£) — 1}n€N. Remarquons que m3 = my. SoitEg, 1= l(ﬁln Or/Of
(ot les morphismes de transition sont donnés par le Frobenius). On note I I’idéal
de W (Ep, ) engendré par (¢~ ([e] — 1))nEN>0 et par {[x], x € Eog,, x©@ e
maf}. Rappelons (¢f. [7], Lemme 6.3.1), que pour tout 7 € N.g,ona I C 1% +

K

in(ﬁ@K)'

Posons (cf. [4], §2.6) A},¢ = W (Eg/s) avee Eg/g = lim 5§ Roo/pS Roc

(ot les morphismes de transition sont donnés par le Frobenius). Puisque_g Re €
R est normal d’aprés la propesition 1, I’application SRoc/pSRoc — R/pR est

injective. En particulier, A; /s €st un sous-anneau de W(R)Hr/s Comme on a un

isomorphism_e S Qs Ry = SRy (proposition 1), et comme le Frobenius absolu est
surjectif sur S/ p S (¢f. [ 7], Proposition 2.0.1) et sur R/ pRoo (cf- [1], Corollary 3.7),
il en est de méme sur §Roo/p§Roo. En particulier, ¢ (K;/S) = SRoo. Puisque SR

est normal, on déduit comme dans [7], Proposition 5.1.2, que Ker(#) N K"Rf /s est
engendré par I'élément £ = [p] — p.
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Soit AY, (R/S) (resp. Aqis(R/S))le separe complete pourla topologle p-adique,

Cris
de I’enveloppe a puissances d1V1seeS de A% R/S (resp. Ro ®w(k)A R/ ) relativement au

noyau du morphisme & : AR/S — SROo (resp. : Ry ®WUC)AR/S —> SROO).

Lemme 7. Les groupes

HE (HR/Sa Wn (CR))’ HY (HR/S= CI‘lS(‘R)/p Acrls(R))
et

Hq(HR/Ss Acris(R)/pn Acris(R))

sont tués par I pourtoutn € N.g et tout g € N .
Les applications

W, (Ex/s) = Wa(R)TRsS,
CI']S(R/S)/p ACI']S(R/S) % ( CI']S(R)/p ACFIS(R))HR/S

et
Acris(R/S)/pn Acris(R/S) - (Acris(R)/pn Acris(R))HR/S

sont infectives de conoyau tué par I.

Enfin,
crls(R/S)/p Acrls(R/S) = Wn (E;/S)<g)

(I’anneau W,, (ER/S) ® )[T] W, (E;/S)(T) des polynémes a puissances

Wn (E_Ig/s
divisées en &, ou Wy, (E;/S)[T] — W, (E;/S) est le morphisme de W, (E;/S)'
algébres envoyant T sur £) et

Auis(R/S)/ p" Aciis(R/S) = ms(R/S)/p ACHS(R/S)(wl,...,wS,ul, g Why

(I’anneau des polynémes & puissances divisées en wy, ..., Ws, U1,. .., Uy, OU W;j =

Zj — [ZJ] etu; ;= 1; — [7’:1])
Démonstration. On a des applications

an: W (Eg/s)(6) = AT (R/S)/ p" AL (R/S)

et

bu: AY A(R/S)/p" AT (R/S)(w, ..., ws, uy,... ug)
—> Acrls(-R/S)/pn Acris(-R/S)-

Pour prouver la demiere assertion du lemme il suffit de prouver que ce sont des
isomorphismes.



978 F. Andreatta and O. Brinon CMH

D’apres le théoréeme de puret€ de Faltings (R a bonne réduction, ¢f. [9], Section 2,
Theorem 4), le groupe HY (H s, R) est presque nul (i.e. tué par me =) pour tout
g € Nso. Il en est a fortiori de méme du groupe H?(Hpg/s, R/pR). Pour tout
m € N, on dispose de I’isomorphisme

R/pP"R = R/pR,

("':xm:"':xlaxo) '_>xm

(cf. 7], Proposition 5.1.2). Cet isomorphisme envoie I'image de {x e R, x© ¢
m@E}, i.e. I'image de I (dont 'image modulo p coincide avec celle de {x €
R, x© ¢ m@E}), sur I'image de me . Le groupe H? (Hg, R/ pP" R) est donc
tué par {x e R, x® ¢ m@_}.

¢ Montrons |’assertion sIer HY(Hp/s. W, (R)). Commencons par traiter le cas
n = 1. Latopologie p-adique sur R n’est autre que la topologie induite par la topo-
logie produit sur (R/pR)N (o chaque facteur est muni de la topologie discréte), de
sorte que R est séparé et complet pour la topologie p-adique. D’aprés [20], Propo-
sition 2.2, pour tout ¢ € N..q, on a la suite exacte

1q: g—1 =~ p'rt
0—R l(%lH (HR/S,CR/p rR)

— Hq(HR/S,eR) == l(iilHq(HR/S,ﬂ/ﬁpmﬁ) — 0

m

(R/pP" R est muni de la topologie discrate).
D’apres ce qui précéde, H? (Hgys, R/ pP" R) esttué par I pour tout m € N, de
sorte que l(in HY(Hpg/s. R/ﬁpmﬂ) aussi. De méme, le groupe
H

R'limH"! (Hgys. R/ 57" R)

"

est tué par I si g > 1. Cest encore le cas lorsque ¢ = 1. Pour toutm € N, on a
H(Hg/s, R/ pP" R) = (R/pR)H /5 ctles morphismes de transition sont donnés
par le Frobenius. On a la suite exacte

0 — SRoo/pSRoo — (R/pRYHR/S — H'(Hg/s, R).
Comme le systéme projectif (s Reo/p S RootneN ., a la propriété de Mittag-Leffler,
on conclut que R? l<£1 SRoo/pSRs = 0. Comme en outre H' (Hg/s, R) est té
n
par mp, cela implique que R! l(glm HO(Hgys, R/ pP" R) est tud par I, ce qu’on
voulait. On déduit aussi que le conoyau de I’application injective S Roo/ pS Roo —

(R/pR)Hr/s estté par I. En prenant la limite projective relativement au Frobenius,
on en déduit I’assertion sur les invariants sous Hp/g.
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Sin € N.q,onalasuite exacte 0 — W,_{1(R) - W,(R) - R — Oetune
section continue d’ensembles topologiques R — W, (R) donnée par le Teichmitiller.
On a donc la suite exacte

= HY(Hp;s. Wy—1(R)) — HI(H ;5. Wa(R)) - HI (Hp 5, R) — -+
pour tout ¢ € N. Par récurrence, on en déduit que H? (Hg, 5. W, (R)) est tué par I?

et donc par I pour g > O vuque I € I? + p" W(R). Pour ¢ = 0, on conclut que

o ~+ G .
Iapplication W,, (Ep / s) = W, (R)Hr/S est injective de conoyau tué par 1.
¢ Montrons 1’ assertion sur

H? (HR/S’ Acns(‘R)/p Acns(R)) et HY (HR/Sa Acris(R)/pn Acris (R))

Pour alléger les notations, on va noter Azls et Acrls au lieu de ACHS(R) et Aqis(R).
La encore, commencons par traiter le cas # = 1. Comme on a un isomorphisme

Gry/ S—équivariant

CI'IS /p ACI‘IS — (J{/ﬁp,ﬂ)[ﬁo, 515 e 5?15 i ]/(Srf)HEN

de sorte que I'action de H g est triviale sur 8y, . . .. (cf [7], Corollaire 6.1.3),
on en déduit que pour tout ¢ € N.g, le groupe Hq (H R/S ACrlS /pAY;:) est tué par
{x e R, xO ¢ m';} c’est-a-dire par I. L’application

K

cris

sl el - - - 3
Er/s/PER/s = SRoo/pSRew — R/pR = R/pR

i = = o ; =F
est injective parce que SRoo © R est normal. En particulier, puisque Eg,5 © R

et R sont sans p-torsion, I’application fi; /s/ jipfl; ;s — R/pPR est injective.
L’application

~+ =+ =+
Egs(§) = (Eg/s/PPEgys)80. 81, . 8n. - 1/ (8] Inen
= (R/ PP RS0, 81, -, 8n, - |/ (BF )nen

est donc injective Cela implique que ay est injective, donc un isomorphisme et que
’application Ams(R/S)/p AY (R/S) — H° (Hpys, Azls /p Ams) est injective, de
conoyau tué par I.

Comme Azls est sans p-torsion ([7], Proposition 6.1.4), pour toutn € N.q,ona
la suite exacte

cris

0= Al /P AL = Al /P Al = Al /P" T Al — 0

Cris Cris Cris Cris Cris Cris
et donc la suite exacte

Hq(HR/S AC[‘IS /p AC[‘IS) % Hq (HR/S, CrlS /p ACT]S)
— H(Hpys. Al /P AL — -+

Ccris
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SiHY(Hpg/s, Ams/p” LAY ) est tué par I pour ¢ € N, alors

Cris

HY(Hp/s, Avis /0" ALy

Cris

est tué par I2 et donc par I vu que Icr+pt Azls Une récurrence immédiate im-

plique donc que H? (HR/S, ms i g Ams) esttué par I pourtoutn € N ~geltoutyg €
N. g, quel'application ACHS(R/S)/p” Ang(R/S) — HD(HR/S, ois /2" Agls) est
injective, de conoyau tué par I, et que I’application a, est injective, donc un isomor-
phisme.

D’apres Proposition 6.1.5 dans [7] on a

CI‘iS/pnAC['iS cr]g/p Acrls(wla"'5w55u15"'!ud)

C[‘ls/p Crls[wl""’wa ul?" ud][zj():"' ij""’ﬂ,o!"'?ﬂ,m!"']
(Wl —pZj0. 27— PZjm+1: 4 — PTio. T, — PTimt1)men..q
1<j<é
1<i<d

En particulier, c’estun ACrlS /p" ACrls -module libre. Comme I’actionde Hg /5 est trivi-
alesurwy,...,wg, uy, ..., ug,onendéduitque HY(Hp 5, Aciis / p" Aciis) esttué par
I pourg > Oetqu’il contient ms(R/S)/p ACHS(R/S)(wl, e WL UL, .., Ug)
pour g = 0, le quotient étant tué par I. En particulier, I’application &, est injective.
D’apres la proposition 47, la structure de Rg-algebre sur

cns/P Ams(wl, e WEL UL, . U )
définie dans [7], Proposition 6.1.5, se factorise a travers
crls(R/S)/p Acrls(R/S)<w1a cee, WE, UL, ., ud)-

On en déduit, d’aprés la propriété universelle de I’ enveloppe a puissances divisées
Acis(R/S)/ p" Aciis(R/S) de Ry @wxy AR/S/p AR/S relativement a Ker(6), que
’inclusion

crlS(R/S)/p ACHS(R/S)(wl, e We UL, Ug) € Ais(R/S)/ p" Acis(R/S)

admet un inverse a gauche, et donc qu’elle est bijective. U
Proposition 8. Pourtout g € N, les groupes
HY(Hr/s, Adis(R)) et HI(Hrys, Acis(R))
sont tués par 1%, en particulier, on a
HY(Hpys. Bgi(R)) = HY (Hp/s. Beis(R)) = 0.

On a des inclusions AY. (R/S) C ( Cns(R))HR/S et Agis(R/S) =

Cris
Acris(R)HER!S dont les conoyaux sont tués par 1.

nis(R/S) €

CI"IS
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Démonstration. Ladeuxiéme assertion résulte dulemme 7. Traitonsle cas de A (R),
celui de AY. (R) étant analogue (et plus simple). Comme lors de la preuve précédente,

cris
on va noter AY. et A, au lieu de Azis(R) et A (R) pour alléger les notations.

cris
D’apres [20], Proposition 2.2, pour tout g € N o, on a la suite exacte

00— Rl l(iEIHq_l(HR/Sa Acris /Pn Acris)

n
— Hq(HR/Sa Acris) — l}ElHq(HR/Sa Acis /pn Acris) — 0

n

(Acris / P" Agis est muni de la topologie discréte). D aprés le lemme 7, pour tout
g € N.p, le groupe l(ln H4 (HR/S, Agis /p" Acris) est tué par I.

I
De méme, si ¢ > 1, le groupe R! 1<£n H?Y(Hpg/s. Acis / P" Acris ) est tué par 1.
n
Montrons que c’est aussi le cas lorsque ¢ = 1. D’apres le lemme 7 on a une suite

exacte

00— AcriS(R/S)/pn Acris(R/S) — HD(HR/S, Acris /Pn Acris) - Mn — 0
ou M, estun W, (E; / s )-module tug par I. On a donc la suite exacte

Rl Lgl Acris(R/S)/pn Acris(R/S) - Rl @HO(HR/S: Acris /Pn Acris)
n n
— R'lim M,, = 0,
572
H
ot R! Linn M, est € par I. Comme (Acis(R/S)/p" Acis(R/S))nen., ala pro-
priété de Mittag-Leffler, on a R! l(in Auis(R/S)/ p" Auis(R/S) = 0, de sorte que
H
R! l(gln HO (HR/S, Aette D" Acris) =~ R! Lgln M,, esttué par I. ]

3. Descente dela tour R S[p~1]1/RS[p~1]
Posons ﬁ; = HO(JfR,E+) = R7F ob Hr = Gal(R[p~"]/Reo[p™"]).

Lemme 9. Pour tout n € N, Uimage du Frobenius sur R,41/pRnt+1 est égale a
R,/ pR,.

Démonstration. Comme on a supposé R défini sur O = W(k), on déduit de
1 1

3] k[e®,zF" ..., 27" ]

.....

la proposition 1(2) que S,/pS, = (5/pS) @[z,
1 1
et R,/pR, = (R/pR) ®s[T,,...T.1] Sn [Tl‘”n e pon]. En particulier, I'image
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du Frobenius sur Sy41/pSn+1 (resp. Ry41/pR,41) est contenue dans S,/ pS;,
(resp. R,/ pR,). On déduit de la preuve de la proposition 1(2) que I'image du Fro-
benius sur R, 41/ pR,41 estexactement R, /pR,. 0

On définit alors le sous-anneau E"Rf de ]ﬂi; par E; = l{inn R,/ pR,, ot les mor-
phismes de transition sont donnés parrestriction du Frobenius de R/pRAR,/pR, C
R/pR pour n € N. Rappelons (¢f. [2], Proposition 442 & Remarque 4.43, ¢f. Ap-
pendice) qu’on dispose d’un sous-anneau A; de ;&; =W (E;), stable sous [’action
de ¢ etde T'r /5, et caractérisé par les propri€tés suivantes :

(1) [¢] € AL et [T;] € A} pourtouti € {1,....d};

(2) AR/pA% = Eg;

3) A+ est complet pour la topologie faible.

Posons (cf. [4]. §2.6) A% ¢ = W (Exys) avec B g = lim §Reo/pSRoo (o
les morphismes de transition sont donnés par le Frobenius).

Notons A"‘ R/S (resp EY R/ ) I'adhérence dans A R/S (resp. dans E R/ 5 ) ducomposé

A"RSA;: (resp. E"Rf ES) pour la topologie faible.

Lemme 10. L’ anneau A;/S est le séparé complété de A+ ®, + ;&i' pourlatopologie

définie par les idéaux (p™, ([e] — 1)") .Ona AR/S/pA & E;/S’ qui est

R/S =
le séparé complété de E"Rf Qg+ E}_ pour la topologie (¢ — 1)-adique.
s

mpeN-~p’

(i) ¢: A;/S — A;/S est libre de rang pd, de base ([ﬁ]m1 "'[Td]ad)05a1'<p'

(i) Pourtoutn € N, ZeA;/S—module(p (A+ [Tl]p” i .,[Td]pL”] C

- R/S) R/S[
A’;‘ est libre de base
~ %1 ~ %d
(P [T ),

—_— o ~
(ii) L'anneau | ),y A R/S [[TI]P_”, s [Td]P_"] est dense dans A;/S pour la to-
pologie faible.

En particulier, si on pose E,, = p”(Z[p_l] N [0, 1[)d, onda

AL s/ 0"AY s = @D (0" (AL )/ 0" 0" (AR )T ®

aEEn

(o1t la barre désigne le complété pour la topologie faible).
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Démonstration. Comme 1’anneau S R, est normal (proposition 1), la projection de

E;/S sur le n-ieéme facteur S Roo/ pS R identifie
~+ n ~+
Eg,s/(e7 —1)Eg/s
a §Roo/(8(1) — 1)§Roo. En particulier, on a
~4 n ~4 = =
Ef ®,+Es/(e” — 1) Ef @, Eg = R, @5, §/(e" ~ )Ry ®5, 5

d’apres le lemme 9. Notons que R, ®s5,, §/ (8(1) — 1)Rn ®s, S est un sous-anneau

de S Roo/ (8(1) — 1)§ Roo par normalité de R, ®s, S (proposition 1). On en déduit
que le composé

ot 7 Aot n ~ n ~+
Ej @3 Es /(67" —1)Ep @1 B —> B o /(67 — 1) Eg g — Bpys /(67 —DEgyq

est injectif et donc que le premier morphisme, étant surjectif, est un isomorphisme.
Comme p estun élf%mept régulier de A; /s»onen déduit par récurrence que pour tout
n,m € N.g, 'application

AR @y AL/ (P (6] - ))AR ®,2 AT — A%/ (P™. ([e] - D")AT 5

est injective, ce qui prouve la premiere assertion.
Le reste du lemme se prouve modulo p. Il résulte alors de la preuve de [4],
Lemma 2.7 (2). ]

Notons AY (resp. A,) I’image de @”(A;) AY. (S) (resp. ¢" (A;) Acis(S)) dans

cris

(AY(R)/ p" Adi(R)HR/S (resp. (Acis(R)/ p" Acsis(R))HR/S), pourn € No.

cris cris

Lemme 11. Pouri € {l,....d}, on a [g]pn = 1 dans Ay et I’élement y; agit
trivialement sur A,,.

Demonstration. Comme

oo
[l =1 =exp(p") = 1=} p"11 € p" Acus(Ok)

r=1

I’action de y; sur ¢" ([ﬁ]) est triviale modulo p™ Aqs. Il en est donc de méme
de I’action sur I'image de (p”(A;(O)) dans Agys / p* Acris- Notons fn(o) (resp. fn)le
composé de ¢" avec I’application naturelle A;(O) — Acis / P" Acis (resp. A; —
Acis / P" Agis). On a alors fn(o) = y; 0 n(o). Soient p: A"Rf — R/ pR le composé
A; — E;_—> 1_3 / pR (projection sur le premier facteur) el pn IE composé de p avec
R/pR C R/ pR etla puissance n-ieéme du Frobenius sur R/ pR.
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Comme [¢]?" = 1 mod p" Agis, le morphisme fn(o) (respectivement f,) se fac-
torise par f,,fo) 4 A;(O)/(p”, [e] = 1) = Acris / P Acris (respectivement 7, : A"Rf/(p”,
le] = 1) = Agis / P" Adis)- De méme, le morphisme p,, se factorise par py, : A; /(p",
le] —1) — R/pR. On ale diagramme commutatif

AR/(P" el = 1) X R/pR

I

A;(O)/(pna [e] = 1) E(T- Aciis / P" Aciis -

Montrons que le morphisme A;(o)/(p”, ] — 1) — A;/(p”, le] — 1) est relative-

+
R(O)

E"Rj /(g—1) E"Rj est relativement parfait et que A;(O)/(p”, le] — 1) — A;/(p”, le] —
1) est plat. Le premier point résulte des isomorphismes E;(O) [e — )P E;(O) i
(R®),/p(RO); et E; /(e — DPEL ~ Ri/pRy (¢f lemme 9), et du fait que
R©/pR©® 5 R/pR est relativement parfait (lemme 46), par changement de base
(proposition 1). En vertu du critere local de platitude, le deuxieme point résulte de
la platitude de E;(O) /(g — 1)E;(0) — E; /(g — 1)EE (car (p,le] — 1) est une
suite réguliere dans A;(O) et A"Rf), qu’on déduit de celle de R®/pR® — R/pR
de la méme fagon qu’on prouve que E;(O) [e—1) E;(o) — E; J(e—1) E"Rf est
relativement parfait.

Comme la puissance p”-ieme de chaque élément du noyau du morphisme
Auis / P" Acis — R/pR est nulle, la proposition 47 implique qu’il existe un et
un seul morphisme de A;(O)—algébres AE J(p". le] — 1) = Acis / p" Aciis compatible

ment parfait. D’apres le lemme 45, il suffit de montrer que E;(O) /le—1DE —

avec f,,fo) et dont le composé avec Ais /" Aais — R/ p R coincide avec I"applica-
tion p,. En particulier, puisque p, = y; © p, et f,§°) = y; o f,SO), on en déduit que
I, = Vi © 1, de sorte que y; agit trivialement sur I'image de (p”(A"Rf) Agis(S) dans
Acris /Pn Acris- U

Posons

A, = @ A,[T]* et X, = @ A4,[TT~
aeE, NN aely
(3i) a; N

Ce sont des sous-Ai(S)-modules de (AcriS(R)/p” AcriS(R))HR/S stables sous 1’ ac-
tionde y; pourtouti € {1,...,d}.

Proposition 12. [’ application

An(”ls---sud) EBXn(ula---aud) — Acris(R/S)/pn Acris(R/S)
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est un isomorphisme.

Démonstration. 1’aprés ladescriptionde AY, (R/S)/p" AY. (R/S) dule lemme 7,
ona

crls(R/S)/p Acrls(R/S) crls(S)/p Acrls(S) ®K:§f/p”;&§+ K;/S/pnA;/S

Ondéduitdulemme 10que AY, /S/(p” [e]—1) estun AT, /S/(p” [¢] —1)-module libre

de base {[T]*} a4 pour tout 1 € N o. Comme ¢ est un isomorphisme

ozE(Z[p—l]ﬂ[D 1[)
surAR/S,onendedmtqueA /S/(p” [¢]?" —1)estung”(A R/S)/(p” [€]7" — 1)-

module libre de base {[ ] tacE, . Comme [e]”" = 1 mod p" Ayi(S) (voir la
preuve du lemme 11), on conclut que

Ads(R/8)/p" ASi(R/S) = €D (AGW(8)/ 0" AGe(S) @55 0" (A% s))[TTE

acky

En particulier, en regardant la composante correspondant a & = 0, on en déduit que
Lapplication Agi(5)/p" Asi(S) @zt ¢" (ARys) — AT (R/S)/p" AT (R/S)
est injective. Par définition et injectivité de

crls(R/S)/p ACI’]S(R/S) —2 Acrls(R)/p Acrls(R)’

son image est AY . D’apres le lemme 7 on a

Auis(R/S)/ p" Auis(R/S) = ms(R/S)/p ACHS(R/S)(wl,...,wS,ul, sy Dgleh

et, en prenant lecas R = S,ona

Acris(S)/pn Acris(S) CrlS(S)/p Acns(S)<w1 PECCRC wc‘i)-
En particulier, ona A, = AY (wy....,ws), ce qui prouve la proposition. (|

Dans une premiere version de ce travail, on avait prouvé que le noyau etle conoyau
du morphisme précédent sont tués par I. Les auteurs remercient le rapporteur pour
avoir suggéré la proposition adoptée ici. Dans ce qui suit, nous allons prouver que

HY (fR/S,Xn(ul, e, ud)) est tué par (1 — [8]%)2 sig € N (proposition 16),
HY (fR/S,An(ul, ..., ug)) esttué par (1 — [€])9 sig > O (proposition 21).

Contréle de la cohomologie de X, {#1,...,ug)

Lemme 13. Soient o, &' € N, alors | —[¢]® divise 1 —[¢]* dans A"@'K si et seulement
si vpla) < vp(a).
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Démonstration. Posons g = 14 [e]7 +---+[¢] 7 € W{[[e]? —1]. Si (1—[¢]*) |
(1 —[¢]*), on a1ty | ua. Comme I'image de u par le morphisme Wﬂ[s]% —1] —
W; [8]% — 1 vaut o, onaw | o’ dans W, et donc v,{w) < v,(a'). La réciproque est
évidente. O

Rappelons (cf. [12], 5.1.1) que 1 — [¢] = (1 — [8]%)5 oué e Egﬁ est un géné-
rateur de Ker(#).

Lemme 14. Pouri € {l,...,d}et N e N, on a

N—-1

i = D) € (1 =167) 3~ Acis@rul™.

m=0
Démonstration. On a
yiw) = (L @1-18[[)) =T @1 -1 e|[T;] = u; + (1 - [D[T}]-
Pour N € N, on adonc

yi @™ = (u; + (1 = DT

=3 (a=leD[7 )"l

=uf" 4 Z (1= [e] 7" [T =]
m=1
et donc

(i — D™ e (1 - [g]7) ZACHS(@K)M[ I 0

Lemme 15. Soit X un sous-A (O )-module de X,, stable sous Uaction de y;.

(1) Lorsque Coker (y, —1:X — X) est tué par 1 — [e]é, il en est de méme de
Coker (y; — 11 X (u;) — X {u;)).

(2) Lorsque Ker (yl- —1: X - X) est tué par 1 — [8]%, il en est de méme de
Ker (y; — 1: X (u;) — X {u;)).

N
m=0

Démonstration. (1) Soith = > bmu[m] € X{u;). Supposons N > 0. Comme
Coker (y;i —1: X — X) esttué par 1 —[S]P, il existeay € X telque (y; — ) (ay) =

(1- [8]%)19]\[. On a alors

i = D{awu™) = yian) i = D) + 03— D@y
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et donc
(1= [e])b — (1 — D(anu™)
— —yilam) i = D™ + (1= []7) meu['"]

N—

(1-[e] Z ul™  (cf lemme 14).

Une récurrence immédiate montre donc que (1 — [8]%))( {4;) € Im(y; — 1).

@) Soith = YN bpu™ € X(u;). Ona

m=0
N
i = DB =Y i)y — D) + i = D@u™). )
m=0

D’apres le lemme 14, le coelficient de MEN] dans (*) vaut (y; — 1)(bn) : il est donc
nulsi (y; — 1)(b) = 0. Comme Ker (y; — 1: X — X) esttuépar 1 — [8]%, on a donc
(1— [8]%)191\[ = 0. Comme

N-1

i = D) € (1= [67) Y7 Aui(@rul™

m=0

d’apres le lemme 14, il en résulte que y;(by)(yi — 1)(u [N]) 0, et donc que

(vi — )(F') = Oavech’ = N 1 o bm u[ ™ Une récurrence immédiate montre donc
que (1—[8]%)19;” =Op0urt0utm €{0,...,N} O
Proposition 16. Si ¢ € N, le module Hq(f‘R/S,Xn(ul,...,ud)) est tué par
(1-[e]7)>
Démonstration. Pouri € {1,...,d}, posons
xO= @ 4[]
{X_EEn
1,01 €EN
o; €N

C’est un sous A,-module de X,, stable par y; eton a

X, =XPopx?g...0x9.
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Sig € E,esttel que arq,...,0;_1 € Neto; ¢ N,ona (y; — 1)([T]Q) =
([8]“5—1)[5':]&. Commea; € N,onaw; € (Z[p~1|N[0, p"[)\N donc v,(e;) < —1,

et 1 —[£]% divise 1 — [S]é dans Kgﬁ (lemme 13). Ainsi

(1 - 1e])[T]* € (s — D(XD)

: ol e L . .
i.e. Coker (y; — 1: X;,” — X’} est tué par 1 — [¢]7. Par ailleurs, si

X = Z XQ[T]QEXS),
acky
ozl,...,a_,;_leN
o; €N
ona
v fnate B8 4
-D@ = > (&% - x[T]"
a€E,
[/ N F | eN
a; €N
si (yi — 1)(x) = 0,ona(l —[e]%)xy = 0 eta fortiori (1 — [:;"]%)xg =0
pour tout ¢ € £, tel que ay,..., 051 € N et o; ¢ N. Cela signifie donc que
Ker (y; — 1: x{ - X,(f)) est tué par 1 — [e]é.
D’apres le lemme 15, les modules

Coker (y; — 1 X@u;) — X9 ()

ct
Ker (y; — 1t Xg)(ui) — Xg)(ui))

1
sont eux aussi tués 1 — [¢]7. Comme y; agit trivialement Sur 4y, ..., 4;—1, Uj41,
... Uz, 1l en est de méme de

Coker (y; —1: X¥ x®
oer(yl s X, .. ug) = X5 (ul,...,ud))

et

Ker (y,- —1: X,(f)(ul, ce,Ug) = Xg)(ul, . ..,ud)).
La suite spectrale de Hochschild—Serre pour la suite exacte
0= Zyy; — f‘R/S — f‘R/S/Zp y; — O
appliquée a X,(f)(ul, ... Ug) 8 écrit

Hr(f‘R/S/ZP yi,Hs(Zp )/I',Xr(j)<u1, . .,ud))) = Hr+3(f'R/S,Xg)(u1, .- .,Md)).

Comme HS(ZP y,-,X,(f)(ul, ...,ud)) est nul pour s > 1 et tu€ par 1 — [8]% pour
s € 10,1}, I'aboutissement H* 5 (fR/S,Xg)(ul, - ,ud)) est tué par (1 — [8]%)2.

(]
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Contréle de la cohomologie de A, {#u,...,uy)
Lemme 17. On a([e] — NP7 € p Ayis(Ok).

Démonstration. Ona (X — 1)? = XP — 1 mod pZ[X] et donc (X — 1)~ =
1+ X +--+ X771 mod pZ[X]. En particulier, on a

(e = )" = 1+ [e]? +---+ [e] 7 mod p Acis(Ox).

On a donc

([e] - P!

(1 i [8]% 4+t [E]Ple)P—l ([5]% B 1)p—l

—1N P
(1 le]P 4+ [s]"p—) mod p Acis(Og)
=0 mod pAgui(Ok)

=i -~
vu que 1 + [g]% + o+ [g] € Ker (6: Auis(Ok) — Of) a des puissances
divisées. U

Lemme 18. Pour j € N=j, ona
(1— [NV = (1 = [e)B;

avec fB; € Ker ((9: Agis(Og) — @I?)

Démonstration. Si p t j,onap; = 2(1 —[ehV"1 e Ker (0 Acis(Ox) — Gz).
Sij = pm,ona

(L=[eh?™ _ mip™ (L= [h@D™ (1 - [e])”

1 — [#] =
On a vp('&!;;i) = m;s_(fq) +m— W (ot s(m) = s(pm) désigne la somme
des chiffres de I’écriture de m et de pm en base p), et donc v, (’(ﬁ—ﬂ) = 0: I'élé-
ment % est une unité p-adique. En outre, on a (1_[82# = (%)m €
Ker (9: Auis(Og) — O IE) (¢f. lemme 17). On conclut griace a une récurrence sur
m > 1. L]

Soienti € {1,...,d}et . une sous-A,,-algébre de (Acris(R)/p” Acris(R))HR/S
fixe sous y;. Pourm > —p", notons " e sous-.o7 -module de Agis(R)/ P" Acis(R)

[r24cx]
. " ul
engendré par {U‘gm)}max((),—m)sa<p” ot v = e bowr 0 < a < p". Remar-
(m+p")
quons que U;’;’f) = ﬂ[ﬁ]#, de sorte que {vg”)} = " engendre la sous-.o7-algebre
<a<p

m+a=>0
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M[[ﬁ]](ul) de (Aais(R)/ p" Acris(R))®/S engendrée par [ﬁ] et {ul[m]}meN. Re-
marquons qu’en général, cette derniere n’est pas isomorphe a 1’anneau des poly-
ndémes a puissances divisées en u; a coefficients dans .o/ [[f’:,]] (car on peut avoir
Ker([g] — 1: Ay — Ap)u; € o7). Ona

[T us) = > v =) a™

me>—ph m>—ph
max{—m,0} <o <p’

et donc la situation suivante :

of m—2p") of tn—p™) o (1)

N

ol le point de coordonnées (N, «) représente le sous-o/-module de & [[i]](u i)

engendré par vV,

Soit 0 <a < ptelquem + o > 0.0na

[r+o]
[e]%(yi — 1) (“;H_a)
[7;]

(i + (1= D[ 7] [ ]au;mwl
= — — |& =

(7] "

) [m+a]

N I[m+oﬂ] ul[m+a—1] . ul[m+a_2]
:(1_[8] ) [,ﬁ]oz +(1—[5])W+(1—[5]) W+
: 1
o (L= [eplre 2 (1 [l
7] 7]

(I) Si max{0, —m} < a < p", onadonc
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[£1° (v — DWE™)
= (1 [1")od + (0 — Dol + (4 — [N, + oo+ (1 — [ ™
€ im)
+ [""I]P f1— [g])[oe-i-l] (m P ") 4ot [T] (1— [g])[a+p”]vgm—p )

egrtm—p™)
F[RP A [Dt P  Gm2?  [TP [e2  p

eg(m—2p")

(ID) Sia = p*,ona [g]pn = 1 (lemme 11) et donc
(i — DS

=(- [3])1)5311)_1 +(1— [8])[2]1)53)_2 e - [ = [g])[p”]vgm)

€ o (m)
+ [ﬁ]l’ {f — [g])[P”+l] (m P )_|_ ot [""I_]P (1— [8])[2P”]U(()m—P )
€ofim—p'?)
i~ 2 i 2 n - 7
+ B A= )PP o 4o 4 [B]7 A= [P Tog" 27 4

egim—2p")

Rappelons (lemme 18), que si j € Nxp, ona (1 — [¢pU] = (1 - [e])B; avec
B;i € Ker (0: Acis(Ok) — @E) Posons D = min{p", p" + m} et

(1 B2 Bs -+ Bp— Bp-1 PBp )

ap 1 B2 - . Pp-2 Pp-
0 a 1 . . Bp-2
M,Sm)= eMD(IAcris((gK))
1 B2 B3
: - ap—2 1 B
\0 0 ap_1 1 )
ollonapos€ a; = % € Agis(Ok) pour j € {l,....p" — 1}.

Lemme 19. L’image de la matrice M,gm) dans Mp (Acris(OK)/p” Acris((%{)) est
inversible.

Démonstration. Montrons que son déterminant est inversible. Comme les éléments
de

Ker (9 Acris((oK)/pn Acris((oK) - @E/pn(of)
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ont des puissances divisées, ils sont nilpotents : il suffit de voir que le déterminant de
I’'image de M,S’”) dans Mp (O g/ p" O ) est inversible. Mais cette image est unipo-
tente (I'image des §; est nulle). L

Proposition 20. e conoyau de v; — 1 sur d[[ﬁ]] (u; ) est tué par 1 — |g].

Démonstration. On a N
ATy = > ™.

m>—ph

Montrons par récurrence sur m > —p” que (1 —[¢]).a? ™ < (y; — 1)(%[[?}]](14,))
Pourm = —p" + 1,ona &/ = Lszfvé;f!;"'l) et

i — 1)([;];;1) = [Tz] [8]

Supposons m > —p" + L. Par hypothe¢se de récurrence, pour r € N.g, les
éléments de (1 — [¢]) 2 ™ ~"P") sont dans I’image de y; — L sur M[[ ]] {1;) : comme
(1— [8])[J le (1 — |e]) Auis(Ok) (¢f lemme 18), les identités (I) et (II) impliquent
les congruences modulo Y (1 — [])? ™=7P") suivantes :

= (1= [ehuia?, 0.

r€N>0

(i — D(e]*v§™)

= (1= [&*)o™ + (1 = )™, + (1 = D), + -
o (1 — [8])[“ pn+D]U;r;11D
= (1~ [‘9])(%”—@”(”1) + U(m) + ﬁzv(m) + o vt By p”+DU( )D)
pour max{l,—m} <o < p”,

(i — Dwe?)
= (- [8])Uf,’f)1 + (L= [P, + o+ (= [P
= (1= [N (I, + B2vin), + -+ Bpvld ).

Onadonc MV, = (y; — W) oit M™ est la matrice introduite plus haut

VI = (1= el (= Do, (L= [l 1)
et W( ™) est un vecteur A coefficients dans & [[T ]] ). Comme I’image de la ma-

trice M,g ™) est inversible dans Mp ( Aqis(Or)/ p" ACHS(OK)) (lemme 19), le vec-
teur V(m) est & coefficients dans (y; — 1)(%[[?]]](%)), et done (1 — [¢])™ C
(v = D([[Ti]]4us)). O
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Proposition 21. Sig > 0, le module HY (f‘R/S,An (t1.....uq)) est tuépar (1—[e])?.

Démonstration. Pouri € {1,...,d}, posons
T D DF
42?} = (An(ul,...,ui_l,ui+1,...,ud)) p¥i®®Lpya
= (A;‘i (ul,...,u,-_l,u,-+1,...,ud))Zp yi_H@“‘@Zpyd.
C’est une sous-A,-algébre de A, (i1, .. ., uy) surlaquelle y; agit trivialement.
) & ~ o =i
Soit AV = A [[Ti]]i<j=a S A . OnaA, = P2, AV[T]% don
J#i
Zp Vit BBL
(A (ulz"-:ud)) pVi+1DBLpya
ZpyVit19BZp y
= n 1,---> i—1- J.:+1,"', d il a i
( (u u U ug)) " 20 )
B Z e-bZ
Vil o
= @ AW (ur, .. ui—g Uigr, .. ug)) O T
et donc

—~

(An (g, .. .,ud))Zp Vi1®®Lpva _ %[[ l]]<ul)
pour touti € {1,...,d}. En particulier, sii > 1, ona
(A[[Ti]] ()" = e[ [Tima]]{utim1)-

Montrons que si g > 0, alors Hq(Zp VDB B Ly yi, [[ﬁ]](ui)) est tué par
(1 —[e])" parrécurrence suri € {1,...,d}. Pouri = 1, le module

H'(Zp 11, A [[Ti ) = Coker (11 — 12 A [[Tif]wr) = A[1T2 )

est tué par 1 — [¢] (proposition 20), et HY( Z,, y1, < [[Tl]](ul)) =0sig > 1.
Supposons i > 1. La suite spectrale de Hochschild—Serre pour la suite exacte

O=Zpyi = Zpy1 B DZLpyi > ZLp1 - B ZLpyi-1 —0
surgf,[[ﬁ]](ul) sécrit
Hr(Zp Md--DZ, %‘—1,H5(Zp yi,%[[ﬁ”(ui)))
— HF+S(ZP Y1 P --- EBZP yhm[[ﬁ]](ul))

Mais H*( Z,, y;, % [[T; ] {u; ) est nul si s > 1, tué par (1 — [¢]) si s = 1 (proposi-
tion2()),etvaut( [[f]] ) = &4 [[I’]_l]] (uj—1)sis = 0.Donc,sir+s > 0,
le module H’“(ZP 1B Zp Vi1, HS(ZP Vi M[[ﬁ]](u,))) estnul sis > 1,est
tué par 1 — [g] sis = 1, et vaut H’"(Zp DB Z, yi_l,%_l[[ﬁ_l]](ui_l)),
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qui est tué par (1 — [¢])*~! par hypothése de récurrence sis = 0 (car alors 7 > 0). 11
en résulte que I"aboutissement H S (Z, y1 @ - - & Zp yi, o [[T1]]{u:)) est tué par
(1 - [e])'.

Finalement, comme A, (11, ...,U4y) = @y [[f’:d]](ud), le module

HY (Trys. An{tt1, ... 1q))
est tué par (1 — [¢])4. O

Proposition 22. Si ¢ > 0, le module H! (T'r/s, Acis(RYTR/S [ p™ Acis(RYHR/S) est
tué par (1 — [e)? VL I est nul siq > d.

Démonstration. Pour alléger les notations, on écrira A au lieu de Ay (R). D aprés
les propositions 16 et 21, les modules

Hq(fR/S:Xn<u1::ud)) et Hq(fR/S:An(ul’aud>)

sont tués par (1—[e] » ) %et (1—[e])¥ respectivement, donc par (1—[¢])?+1. Il en résulte
que le module HY (fR/S, (Acris / P" AcriS)HR/S) est tué par (1 — [.'3])“""1 I vuquele
conoyau de U'injection A, {uy,...,ug) & Xy {11, ..., ug) = (Acis /P" Acris)HR/S
est tué par I en vertu de la proposition 12 et du lemme 7.

Comme A est sans p-torsion ([7], Propositions 6.1.4 & 6.1.8), on a la suite
exacte

0 — Acris P_) Acris - Acris /Pn Acris — 0

et done la suite exacte

00— AHR/S /pn AHR/S - (Acris /pn Acris)HR/S — Hl (HR/S’ Acris)'

cris cris

D’apres la proposition 8, le module H'(Hp /8 Acris) esttué par T 2 Comme I? =

nAv :
mod p" A, on a une suite exacte

0= At /0" At = (Actis /D" Aceis) RIS = My >0 ()

cris cris

ou M, est un module tué par I. Pour ¢ > (}, on a donc la suite exacte

HI™1 (Frys, Mn) — HY(Frys, ALE'S [ p" ALK/S )

cris cris

— HY (fR/Sa (Acris /Pn Acris) HR/S)-

Comme HY (f‘R/S, (Acris /D" Acris)HR/S) est tué par (1 — [])?+1 1 d’aprés ce qui
précede, et comme HI! (FR /5 Mn) est tué par I, le module

B (Frys. ALE/S /p AES)

cris cris
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est bien tué par (1 — [8])d+112 =(1- [8])d+ll'.

La derniere assertion résulte du fait que I'g;s >~ Zg est de dimension cohomo-
logique égale a d (sa cohomologie a valeurs dans un module discret se calcule au
moyen d’un complexe de Koszul). L

Lemme 23. (1) Pour tout r.,n € N.y, le module H’”(GR/S, Acis(R)/ p™ Acris(-R))
est tué par (1 — [e])?+1 1.

(2) Pour tout n € N., le module R l(inn HO(GR/S, Agis(R)/ p" Acris(R)) est
tué par (1 — [e])? 1L

Démonstration. (1) Pour alléger les notations, on écrit A s au lieu de Agi(R). La
suite spectrale de Hochschild—Serre s’écrit

H' (fR/S’ H* (HR/S: Actis /Pn Aciis )) — H' e (GR/S: Aciis /pn Aciis )

(le module Acys / p™ Acis est muni de la topologie discrete). D’apres le lemme 7,
le module H?® (H R/S» Acris / P" Acris) est tué par I lorsque s > 0. En particulier, le
noyau et le conoyau du morphisme

H (Trys. H(Hr/s. Acis / P" Aiis ) = H (Gr/s. Acis / P" Acris )

sont tués par I. D’aprés les propositions 12, 16 et 21 et le lemme 7, le module
H” (f‘R/S, H°(Hpg)s, Acis / P" Acis ) est wé par (1 — [e])4*1 T lorsque # > 0. En
particulier, H" (Ggr/s. Acris / P" Acris ) est lui aussi tué par (1 — [g])4+1 1.

(2) Soit (B,,, d,; )nen un systéme projectif de groupes abéliens. D’aprés [17], 1.4,
le groupe R! l(lnn B, est le conoyau de I’application

l_[ B, — 1_[ By, (bn)nEN = (bn —dy (bn‘i'l))neN

(son noyau est l(gl By). En particulier, si les B, sont des S-modules tués par
n

¢ € S, alors R 1<£n By, est tué par ¢. Considérons les systémes projectifs B, =
13
(Acis(R)/P" Acris(R)) %S et
. m, Gr/s n Gr/s
Bn = m Im ((Acris(R)/p Acris(R)) — (Acris(R)/p Acris(R)) )
m=n

Par construction, on a une application injective B, — B,. Soit C,, = B, /B, le
systéme projectif quotient. Comme As( R) est sans p-torsion, on a la suite exacte

(Acris(R)/pm Acris(R))GR/S — (Acris(R)/pn Acris(R))GR/S
= Hl (GR/Sa Acris(R)/pm_n Acris(R))-
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Comme le module HI(GR/S,AcriS(R)/pm_” Acris(R)) est tué par (1 — [¢))4+1T
d’apreés (1), l'idéal (1 — [8])d+1I(AcriS(R)/p” AcriS(R))GR/S est contenu dans
I’'image de (AcriS(R)/pm Acris(R))GR/S. Comme c’est vrai pour tout m > n, il

est dans 'image de 5, de sorte que C, est tué par (1 — [e+1T.
Comme R’ l(ln = 0 pouri > 2, on a la suite exacte

0— limB' —limB, — limC, - R'limB’ — R'limB, — R'limC,, — 0.
i % = % %

Mais par construction, le systeéme projectif (B, ),en est de Mittag-Leffler : on a

1y ro_ - 1y < 1oL T P anrs :
R l(gln B, = 0. Par ailleurs, R l(gln C, est tué par (1 — [g])*T I d’aprés ce qui

précéde. Il en résulte que R! l(inn B, estlui aussi té par (1 — [£])¢T1 I, ce qui permet
de conclure. O

Corollaire 24. Sig > 0, le module H (G5, Acis(R)) est tué par (1—[¢])>@+D 12,
En particulier, on a H? (GR/S, Bcris(-R)) =0.

Démonstration. D’apres [20], Proposition 2.2, on a la suite exacte

00— Rl ljilHq_l(GR/Ss Acris /pn ACFiS)
n

— HY (GR/S: Acris) - @Hq (GR/S: Acis / P" Acris) — 0.

n

D’aprés le lemme 23, les modules

l}il H? (GR/S’ Acis /Pn Aciis ) et Rl Lﬁl Hq_l (GR/S: Actis /Pn Acris )

R n

sont tués par (1—[))4+1 1 pour g > 1. Le module H (GR/S,AcriS ) est donc tué par
(1 —[e)?@+D 12 pour g > 1. O

4. Calcul des invariants
Rappelons qu’on a supposé que § = Sg et R = Ry. Il existe des suites
W(k){zitl,---,zgtl} = S(O) C S(l) (C e T S(Ns) =i,
S{Tlil,...,Tdil} = RO cRM c...c RWrR) R

ot pour j € {I,..., Ns} (resp. j € {1,.... Ng}), 'extension SO /SU=D (resp.
RY)JRU=D) est de 1'un des types suivants :
(ét) complétion p-adique d’une extension étale ;
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(loc) complétion p-adique d’une localisation ;
(comp) complétion par rapport a un idéal contenant p.

Lemme 25. [e morphisme
0 EE — R/pR., (x9,x1,..)+— X1,
induit des isomorphismes ﬁ%/ﬁPEE =~ R/pR et
EL /(- )P EL - (R/pR[«D, 20,z T, ., TV,

Démonstration. On sait que 6 est surjectif de noyau principal engendré par p?, ce
qui prouve la premiére assertion. D’aprés le lemme 9 1’application # induit un iso-
morphisme E"Rf (8 —1)2-1 E; — R/ pR1. On conclut en utilisant I’isomorphisme

Ri/pRy = (R/pR)[¢®W, 7" .z 7D 7] de la proposition 1(2).
O

Comme § = §p et R = Ry, anneau
Acis(R) = AT (R (wy, ..., ws,ur,. .. uq)}

est une R-algebre (cf [6], Proposition 6.1.8). De méme, A ;5(S) est une S-algebre.
Pour tout n € N ¢, on dispose donc d’un unique morphisme

fn: R®s AS,H(“la sy ud) —> Acris(R)/pn Acris(R)

(o0t As » = Auis(8)/ P" Acis(S)) qui envoie 7; sur [ﬁ] + u; et qui est compatible
af.

Proposition 26. [.’homomorphisme [, se factorise en

R ®S AS,n(ul,---,ud) LAE ®A}_ AS,n(ul,---,ud)
f\n\ ‘L

Acis(R)/ P" Aciis(R).
En outre, ]Fn est un isomorphisme et les morphismes f, et
A% @4t Asn = Acis(R)/P" Acris(R)
sont injectifs.

Lemme 27. La proposition 26 est vraie pour n = 1.
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Démonstration. Pour alléger les notations, on pose w = (wy,...,ws) et U =
(u1,....uq).-Ona

s
(R/PR) ®s/ps (Es/pPEs)[w. 1. 8m. Zjm, Wim)

b op P P .
(wj ’u; a'S ij’ j,m)lfjfﬁ
1=<i<d
meN

R®@s As1{uy,....ug) =

el

o~
(Eg/ppEg)[w . Bms Zjan> Wim]
AT ®,+ Asi{ur, ... ug) =E} @+ : —-
R ) » » R
A3 Bs (i ul, 80, Z2 . Whi<j<s
1<i<d
melN

Rappelons que Acis(R)/ p Acis(R) est une R/pPR = ER/pPER algébre. On
déduit de # un morphisme 1: R/ pR — Auis(R)/ p Awis(R), et un isomorphisme

(R/pR)[ﬂ U, 8m, Z‘.m: I/Vz,m] g
dR: (S.p 7 pj Acris(R)/p Acris(R)
(w ij’ i,m)15j55
1<i<d
meN

via ¢ (¢f. preuve du lemme 7). Soit Op: Acis(R)/p Acis(R) — R/pR 'applica-
tion naturelle : la composition avec ag envoie w;, Ui, Zjm, Tim et 8, sur 0, et
induit le Frobenius sur R/pR. Comme Ker(fg) est un idéal i puissances divi-
sées, on a x? = p!x[Pl = 0 pour tout x € Ker(fg) : la proposition 47 implique
que I'application R/pR — Acis(R)/p Acis(R) composée avec ag!' est la seule
application de k-algébres qui envoic Z; sur 0(Z;) + w; pour j € {1,...,8} et
T; sur 9( i) +u; pouri € {1,....d} et telle que le composé avec ’application
Or o ag est U'inclusion naturelle R / pR C R/pR. En particulier, elle se factorise
a travers (R/pR)[w, u]/(w? 7 U u?)1<j<s. La proposition 47 implique que I'image

1<i<d

de S/ pS est contenue dans (S/pg)[_]/(wp)1<1<5 On a t(T(l)) = [T] et donc
fi(T) = [ | +u = t(T(l)) + u;. Reste a vérifier que f7 induit un isomorphisme

fit (R/pR) ®s/ps (B / pPES)w. ul/(wf . u l)i<;<g

1<i<d

)
(R1S/pR1S) [w. ul/wf ui)1<j<s

1<i<d
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(I’€galité (x) résulte du lemme 25 et du fait que
~+ o~ - ~ = — —
Ef @+ (Es/p Es) = B} g /5P Bgyg — B/ PPEg = R/pR

est injective avec image Ry S/pR;S, ¢f. démonstration du lemme 10).
Montrons par récurrence sur j € {0,...,Ng} que l'application fl(J ) (définie
comme f; mais avec RY) au lieu de R) est bien définie et est un isomorphisme.

Comme E;(o) = E}' {Tlil, e Tfl}, le morphisme f; induit I’application

S/pS Oky g
S/pS)TE ... TE | @syps 2wt (Ri”S/pRY”S)w. u]

szuf)lsjsé’ (wfsuf)lsjsﬁ
1<i<d 1<i<d
= T+
et, comme RgO)S_’ = E[Tl(l), e Tél)], c¢’est un isomorphisme. Le morphisme fl(o)
est donc bien défini, et ¢’est un isomorphisme tel que o) © ¥ gy © fl(o) = Id ®6Hs.
Soit j € {1,..., N}. Supposons que f; induit un isomorphisme
~+ o=t
- - E{/pPEg)lw.u)
R(J—l)/pR(J—l) D5/ S ( S
( ) /p wfa”f)lsjsﬁ

1<i<d
i —1{p+ PRt

(wf,ufu)lgjgﬁ
1<i<d

tel que Opi—1) o U p—1 © j:l(j_l) = Id ®#s. On a alors le diagramme commutatif

~t =t
() (i) (Eg/PPEg )[w.u] 1d®0 o\ o
(RV)/pRYY) @555 @7 i) < s 2 RWS/pRUIT
1<i<d
| | 5t rE ] S
RU-D/pRG-D) Eg/pPEs ), OR()) 2R
( /p ) DS/ ps (w}yv”;?p)lsjgé’ N R R
1<i<d
fl(f—l)lN
%
! (Egu—n/s [BPEY 1)) )lwa] ! (E;(n/s 1BPEL ) s )]
@? ) < <5 - (o ;)1 < j<s '
1<i<d 1<i<d
1
Les noyaux de Id ®60s et de Oy © a ey sont engendrés par p?, par wy, ..., wg et

paruy,...,uy avecm € N : ils sont donc nilpotents.
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e Supposons I’extension R(f)/R(f_l) de type (ét). Comme Ker (G)R(j) o OéR(j))
est nilpotent et puisque le morphisme RU™D /pRU—D 5 RU /pRUD est étale, il
existe une unique application fl(j ) comme en pointillé sur le diagramme qui le rend
commutatif. Par unicité, elle est induite par /1. Montrons que c’est un isomorphisme.
En vertu de D’égalité (x), I’extension ¢~ (E;U 1)/S) C _I(E;(J,)/S) est étale.
Comme Ker (Id ®(95) est nilpotent, cela permet de construire un morphisme

-1 + ~p gt
. ! (B /27 B s )] — (R pRD)®s ps (s /5P )w. u]
(wj, I)1<J<c‘)‘ wfau )1<J<5
1<i<d 1=<i<d

inverse de j:l(j ; par unicité.

e Supposons I’extension RU)/RU=D de type (loc). L’anneau RY)/pRU) est
le localisé de RU=1/pRU=D par rapport 4 une partic multiplicative 3 j- Comme
Ker (QR(,;) o OéR(j)) et Ker(Id ®95) sont nilpotents, les anneaux

(ES/pPES)[_ i

wJ:u )1<J<8
1=<i<d

(R(j)/pR(j)) ®5/ps

et
_( R(J)/S/p ER(J)/S)[—_]

(wj » ul )1<J<8
1<i=<d

sont les localisés de

<E§/ﬁpl’i§>m ]

J U5 )1<J<8
1<i<d

(R(j—l)/pR(j—l)) ®S/pS

et de il -
(E-iR_(J 1) Es/p? E;U —1) ES*)[Q]

(wj ’ ul )1<J<8
1<i=<d

par rapport i (Id ®95)_1(Zj) et (QRU’—U o OJR(j—n)_l(Zj) respectivement. Cela
implique que I’isomorphisme fl(j ~1 se localise en un isomorphisme j:l(j ) comme
désiré.

e Supposons I’extension RV /RU—D de type (comp). L’anneau RV / pRU) est
le complété de RY=D/pRU=D par rapport 2 un idéal I ;. On raisonne de la méme
maniere que dans le cas (loc), en utilisant le fait que Ker (9 RGO URG )) et Ker (Id ®
(3 /PPEL)w.u]

1<i<d

0s) sont nilpotents, de sorte que les anneaux (R(f )/ pRU ") ®s/ps
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-1 + =7y -+
L (ER(J')/S/‘D ERU)/S)[E’EI
FZ
(wj i )< j<s
1<i<d

cclk 5 et —1{p+ M
(E5/PPES)[w.ul b (ER(j—l)/S /PP ER(j—l)/S)@’il
CHEC ST DY (Wi ui)1<j<8

1<i<d 1<i<d
et (Opu-1 © op( —0)~ ' ;) respectivement. Cela implique que I'isomorphisme

fl(j_l) induit un isomorphisme fl(j)

et

sont les complétés de (R(j_l)/pR(j_l)) Ds/pS

etde par rapport a (Id ®0s) "1 (I;)

sur les complétés, comme désiré. 0

Démonstration de la proposition 26. Comme As_,/pAsn, = As,1 et p est un élé-
ment régulier dans A ;;(R), les applications

AE ®A}' AS,n (ul, —e e ud) = Acris(R)/pn Acris(R)
et

AE ®A}' Asn = Ais(R)/p" Acis(R)

étant injectives pour # = 1 d’aprés le lemme 27, elles sont injectives pour tout 7. 11
sulfit donc de construire f; etde prouver que ¢’est unisomorphisme. On utilise les no-
tations de la démonstration précédente. Montrons par récurrence sur j € {0,..., Ng}
que f, induit un morphisme

Ji(j)I R(j) XRs AS,n<u1,...sud) %A;U) ®A:§’_ AS.n(uls---sud)

relevant I’isomorphisme fl(j ).

L application &, : A"Rj(j) ®A§ As {uy, ... ug)— A"Rj(j) ®A:§" Agpluy, ... ug),
définie par x p”_lx, composée avec I’inclusion dans Agis{R)/ p" Agis(R), se
factorise a travers 1’inclusion A;m ®A§ Aga{ur, ..., ug) C Acis(R)/ p Auis(R)
composée avec I'application Agyis(R)/p Acis(R) — Agis(R)/ p" Agis(R), définie
par x = p"~lx, qui est injective puisque A (R) est sans p-torsion. En particulier,
I’application £, est injective : comme fn(j Y estun isomorphisme pour n = 1, c’est
un isomorphisme pour tout 7.

Comme f,(T;) = [ﬁ] + u;,ona fn(R(O)) C A;(O) ®A§ Agulug,...,ugq):le
morphisme f,;(o) est bien défini. Comme on [’a dit plus haut, c¢’est un isomorphisme.

Soit j € {1,..., Ng}. Supposons que f, induit un isomorphisme

ﬂ(j—l): RU-D ®s Aspluy, ... ug) = A;(j_l) ®A:.;" Agpluy, ..., ug)
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relevant fl(“’ ~U Onaalorsle diagramme commutatif suivant.

R ®s As g, ..., gy — R ®A§r As {ur, . . ug)—s Acris(R)/ P Acris(R)

R -1 ®E AG W s ,ud)-"'--..__fn(j)

FUD |~
.

A;u—n ®,¢ Asnlur...., Ug) = A;(J) ®, ¢ Asnlur. ..., U ) Aciis(R)/ P Acris(R)

Comme p est nilpotent dans
RW) ®Rs Aspl{ur, ..., ug)
et dans
A;m ®A§ Asaluy, ... ug),
on montre I’existence et I'unicité du morphisme j:,;(j ) (en pointillé sur le diagramme)

de fagon identique a celle de la preuve du lemme 27. De méme, on montre I'unicité de

I’application f, : RN @ As plity, ..., ug) = Agis(R)/ p" Auis(R) rendant le dia-
gramme commutatif, ce qui implique que I’application fn(J ) construite est compatible

a f. O
Corollaire 28. On a un morphisme injectif
An{ur,... . ug) = R®s Asplur, ... uy)
induit par j;_l, de conoyau tué par I.
Démonstration. Rappelons que A, est 'image de ¢" (A;) Agis(S) dans
(Acis(R)/ p" Acris(R) /5.

'C?mn.lfe A;/S = gt (A;/S)[[Tl], - [Td]] (lemme 10 (ii)), on a un morphisme
injecti

A= @ AT = [T ]

aeE,NNY
—> (A; ®A:§'_ Acris(S))/pn (A; ®A:§" Acris (S))
dont le conoyau est tué par I (c¢f. proposition 12 et lemme 7), et donc le morphisme
injectif
F—1

Anlur,... ug) — A% ®A§ Asn(t, ... ug) —— R ®@s Asnlur, ... .ug)

de conoyau tué par I. O
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Lemme 29. Posons
KO =Ker(yi —1: R®@s Asu(ut.... . ug) — R®s Asalun, ... 1q)).

Alors
KD = (R@s Asnlir, ... uticttig1. o ug)) & KY

OL\t .’Kurgl) est un R ®S AS’n(ul, s ’ui_lauf+lg “aa ’ud)_module Zuépar' 1 — [8].

Démonstration. On a

viu)) = T; = [el[Ti] = T — [el(Ti —ui) = (L= [N T3 + [e]us

et donc
(i = (™) = ((1 = [eDTs + [e]aer)™ — 2l

= ([¢]" — 1)1,[1[_’”] 4 Z(l _ [8])[j]Tij [S]m_jul[.m_j]

i=1
m ; &
= (1=l (pmu™ + Tilel™ "™ 4 3 BT [em~ 1)
ji=2
ol iy = — [8] 1 etf; = I_E[]E[i’ — € Ker(8) pour j > 2 (cf lemme 18).
Pour N € N, posons XD = R @y As (U1, ... Uiq, U1, -+, Ug) et

8,,(;3\; = EB«*;V 0 JC,gi)u l[j 1 L’application y; — 1 induit un endomorphisme Jf,gi)—liné—
[N]
u

aire de Sn - dont la matrice dans la base (1, Ui, U [2], S ) est donnée par (1 —

[8])G( v avec

0 T Ty T o e TN TRy
0 w1 Tilel TPPalel o o TN ?Byoalsl TV 'By-ile]
: pa T TN 2By alel?
G . . . . . .
T2B,[e]V 3 T3 B3]V 3
pn—  Tife]N 72 T2 Bale]V 2
- A=

Soit Gg\, la matrice obtenue en supprimant la premiere colonne et la derniere ligne.
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OnaG,EI)N = U(I) -I-N(l) u

(Ti 0 0 \
pr Tile] :
~i _ | 0 w2 Tile?
nN | . . .
: pn—z Ti[e]V 2 0
\() 0 N1 Tl-[E,‘]N_1)

est inversible et Nn(lj)\, a tous ses coefficients nilpotents (comme 8; € Ker(f) pour
Jj = 2,ilades pu1ss'ances divisées : il est donc nilpotent modulo p”). C’est encore le
cas de lamatrice U, (1) 1N @ v quiestdonc nilpotente. La matrice G(I) =U, (I) (I +

L (I) 1N (1) ) est donc inversible. Cela implique que

N
Ker (y; — 1: 8’%\, 8,5’3\,) c X9 g @Ker (1—le]: X — Jfrgi))ul["’]
j=1

le lemme en résulte (car K,gi) = JCS) & (@;’il Jféi)ul[j])y"). O
Proposition 30. Pour tout n € Ny, le conoyau de Uinclusion

R ®s AS,n - HO(GR/Ss Acris(R)/pn Acris(-R))
est tué par (1 — [g])? 1.

Démonstration. 1D’apres le corollaire 28, on dispose d’une application injective

d
HO(fR/S,An(Ml, ...,ud)) — ﬂ K,Ei)

(dont le conoyau est tué par 1), et d’apres le lemme 29, le conoyau de I application

d
R@s Asn — [ | KP
i=1

est tué par 1 — [¢]. Par ailleurs, le module HO(fR/S, Xn(Uy, ... ug)) est tué par

(1 — |&] %)2 (proposition 16). Comme le conoyau de |’inclusion

H
Aplur, ... ug) & Xplur, ..., ug) = (Acris(R)/pn Acris(R)) k7S

est tué par I (proposition 12 et lemme 7), il en résulte bien que le conoyau de

Pinclusion R ®s Asn S HY(Tr/s. Acis(R)/ " Acis(R)) est wé par (1 — [¢])2 1.
[l
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En passant a la limite projective, on en déduit I’énoncé suivant :

Corollaire 31. e conovau de l'inclusion R&g Auis(S) C HO(GR/S, Acris(R)) est
tué par (1—[e|)? I. En particulier, on a HO(GR/S, Bcris(R)) = (R R Acris(S))[),‘_l].

5. Cohomologie de la filtration de B

Pour n € N.y, les homomorphismes surjectifs Ags /p" Acis — R / p”ﬁ ad-
mettent des sections ensemblistes p, telles que p, = p,+1 mod p”. On obtient une

section ensembliste de I’homomorphisme surjectif A.is — R qui est continue pour
la topologie p-adique. Il en résulte que la suite exacte

0 = Fil" (Agis /P" Acris) = Fil' ™ (Acis /7" Aciis) = &' (Agis /7" Aris) = 0
donne lieu a la suite exacte longue de cohomologie

coo > HT Y (GRys. 2" (Aciis / P Actis)) = HY(Grys . Fil” (Acris /P" Acris))
— HY (GR/Sa Fﬂr_l (Acris /pn Acris)) —
(1)

pour tout n € N, o U{oo}.

Proposition 32. Sig > Oetr € N, lemodule HY (GR/S,Filr (Acris(R)/p” Acris(R)))
est tué par (1 — [e)?H'H" I sin € N et par (1 — [])>@ D 12 5in = oo,

Démonstration. On procéde par récurrence sur 7, le cas r = 0 n’étant autre que le
lemme 23 (1) et le corollaire 24.

Soitr > 0. Ondispose de la suite exacte longue (1). Comme gr™ ™! (Acris / " Acris)
est wé par 1 — [¢] et HY(Grys, Fil' ™ (Asis /P Aciis)) par (1 — [e])4F1+7-1]
(respectivement (1 — [¢])2@FD+7=1 12y en vertu de ’hypothése de récurrence, le
module H? (GR/S,Fﬂ” (AcriS /p" Acris)) est bien tué par (1 — [8])d+1+rI (respecti-

vement (1 — [¢])2d+D+r 72y, O

Rappelons que pour tout # € 7, on a Fil” By = li_n;n}‘r‘ TP EIT T A, ot
qu'on pose HY(Ggys. Fil" Byis(R)) = li_r}nn>|r‘ HY(Grys.t " Fil'T" Ay ) pour
tout g € N. -

Lemme 33. Soient r € Zoetn,c € N avecn > |r|. Si x € t 7" Fil' ™ Agi(R),
alors 'image de x dans t 77" Fil " T"t" A . (R) est divisible par p¢ sim > pc. En
particulier, HY (GR/S,Filr Bcris(R)) est un Q,-espace vectoriel pour tout g € N.



1006 F. Andreatta and O. Brinon CMH

. . L] 4 .
Démonstration. Ecrivons x = 7 avec x’ € Fil’ A . Comme t™ = m!t"] ona

(] o/ 5 G g S : )
£ = m!lznTﬁl, qui est divisible par p¢ dans " Fil"t"T" A . sim > pe. O

Proposition 34. Sir € Z et g € N, ona H? (GR/S,Fil” Bcris) = 0.

Démonstration. Comme HY (G r/s Fil" Begs ) estun p-espace vectoriel d’apres le
lemme 33, il s’agit de montrer que sin > |r| et x € HY (GR/S, R Agie ), il
existe m € N tel que I'image de x dans HY (GR/S, T = Acris) est tuée
par une puissance de p. Quitte a remplacer » par » + n, on peut supposer 7 = 0
et r € N. Il suffit de montrer qu’il existe m € N (qui dépend de r et de g) tel que
I’image de I'application

Ay - HY (GR/Ss Fil” Acris) — H? (GR/Ss (" Fﬂr+m Acris)

(induite par I'inclusion Fil” Ay, C 77 Fil" T A;s) est tuée par une puissance de
p- En composant a,, avec |’application

b HU(GRrys, i Fil'T™ Agis ) — HY(Grys, 1" Fil” Agis ),
on obtient I’ application
HY (Grys, Fil" Agis ) = HY (Grys, 1™ Fil” Agis ).

D’aprés la proposition 32, cette dernicre est nulle si m > 2(d + 1) + r + 2 : il suffit
donc de montrer que le noyau de b,, estde p-torsion. Cela résulte du lemme 36. [

Posons £ = F[f};lj =1+[VP+.. . + [s]%l. Alors £ est un générateur de

o~

Ker (6: W(R) = R) (¢ [12],5.1.2).
Sin = (ng,ny,...,nq+8) € NAd+I+1 on pose

[ng+s]

EM] — ugnl] ..-ugtd] et EM] = wgnd_H] ---w5

Sir e N, alors gr” A est un R-module libre, de base {g[n(’]gmﬂm}ﬂeNd+8+1.
ln|=r
Lemme 35. Pourtout g € N, application
Hq(fR/S, @ §R§[”O]EMEM]) — Y9 (f*R/S, @ §R®g[no]£m1£m1)
ln|=r n|=r

est injective et son conoyau est de p-torsion.
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Démonstration. Posons D, = EBMZF ﬁg[”‘)]gmwm et pour @ € (Z[p~'I N
[0, 1))4, posons TE = (Z’"l(”))pnw1 ---(Ttgn))pnad (pour tout n € N tel que p"u €
N%y . T2D, est alors un sous-S R-modile de (gr" Acris )HR/ 5. 1l est stable sous
I’action de fR/S, parce que y;(u;) = u; — [T]]([e] —1) = u; — T,-g(e(l) -1
mod Fil? Acs, et ¥ (Tﬁ) =% T%pourtouti € {l,...,d} (o0 &% = (8(”))‘0”“"’).

Commengons par montrer que s’il existe 7 € {1,...,d} tel que a; # 0, alors la
cohomologie de T&D, / p" T2LD, est tuée par (8(1) — 1)2 pourtout/ € N.g.D’apres

la suite spectrale de Hochschild—Serre, cela résulte du fait que la cohomologie du
complexe

i—1
.= TeD,/phTeD, L= T2D, /p"TED, — ...

est tude par eV — 1. Comme y; (T) = % T<, il s"agit donc de voir que le noyau et
le conoyau de I’application

e%y; —1: D, /p"D, — D, /p" D,

sont tuds par % — 1 (comme o; # 0, ona &% = 1, donce® —1|&® — 1)
Filtrons D, /p" D, = EBW:, (ER/pth)E[”D]gMQM] par le degré en u; :

Fil/ D,/p"D, = (P (SR/p"SR)groly ],
n|=r
np=j

Sin e N9Hi+1 ogt tel que |n| = r,ona

(Sa,: Vi — 1) (g[no]ﬂmwM)

= g §lnol (y; — | T;](le] - 1))[an( I1 E[nj])ym _ Elnoly ][]
1=j=d
J#
= (% — 1)§[RO]EM]EM] mod (8(1) —1) Fil"'~' D,/ p" D,

s i ; i— =K 2 k
car (; = [T ](lel = 1) = "+ X007 (= T (@ = 1)) €= v que
[T:](e]-1) = 7}&'(8(1)—1) mod Fil® As. Comme £% —1 | 8(1)—1,celaimplique
que e*y; — 1 = (e% — 1) f;, 00 f; estunisomorphisme de D,/ p" D, (parce que sa

matrice dans la base {é' [0] u [1] w [1] } neNd+8+1 |y, €St unipotente donc inversible).

Posons X = @a_E(Z[p_l]ﬂ[D,l[)d, a£(0....,0) SRT2 C §Reo. D aprés ce qui pré-
céde, HY (fR/S, X ®sp D,,/phDr) est tué par (8(1) — 1)2 pour tout i € N, et tout
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g € N. D’apres [20], Proposition 2.2, pour ¢ > 0, on a la suite exacte

1q: g—1(T _ h
0—R L%IH (Trys. X @5 Di/p"Dy)
(T Y : q(7 _ h
— H (FR/S,X ®§E Dr) —>1<£[1H (FR/S,X QSR Dr/p DF) — 0
h

ou X désigne le complété p-adique de X. Il en résulte que HY (fR/S X ®§ D,,) est

tu€ par (8(1) — 1)4 pour tout g € N ... Par ailleurs, I’application

HO(fR/S,)? ®§} Dr) — l};_nHo(f‘R/SsX QFR Di‘/phDF)

étant injective, H° (fR/S,)? ®§:§ Dr) est tué par (8(1) — 1)2. Ainsi, I’application
Hq(fR/S, Dr) — Hq(fR/S, (ER EB)?) ®§} Dr)

est injective de conoyau tué par (¢(V — 1)4 pour tout g € N.
D’apres la proposition 1, I"application Roo &5, § — RooS estun isomorphisme
et Ry Q5. 5 = @a_E(Z[p_l]ﬂ[O,l[)d R @5 ST%. On en déduit que I’application

naturelle SR @ X — § Ry estun isomorphisme, de sorte que
HY(Tg;s. (SR ® %) ®= Dy) = H?(Fr/s. 5 Roo ®= D)
ce qui acheve la preuve. (]
Lemme 36. Le novau de I’ application
HY(Grys, Fil't! Agis ) = HY(Grys. Fil” Acis )
est de p-torsion pourtout v € N et g € N .

Démonstration. Grace alasuite exacte longue de cohomologie (1), il suffitde voir que
le conoyau de HY! (GR/S, Fil” A ) — H7! (GR/S, gr’ Acs ) est de p-torsion.

On a gr' Acis = @, cpya+s+1 Eg[”O]gmyw : d’apres le théoreme de pureté de
_lal=r

Faltings (¢f. [9], §2, Theorem 4), le noyau et le conoyau de 1’application
Hq_l (fR/Ss (gfr Acris )HR/S) - Hq_l (GR/Ss gfr Agis )
sont tu€s par p : il suffit donc de voir que le conoyau de

Hq_l (fR/Sa (Fﬂr Acris )HR/S) —= Hq_l (f‘R/Ss (grr Acris )HR/S)
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est de p-torsion, et donc a fortiori que le conoyau du composé

HI~! (Fg/s, Fil" Acis(R/S)) — HO (Fr/s. (Fil” Agis ) 7%/5)

v

H7! (fR/S ’ (gfr Acris )HR/S)

est de p-torsion.
Posons

M =P SR(eW — 1)"0 ol ] ]

C (g Acris)HR/S = @ EHR/Sg[”O]E[ﬂ]EM]_

|n|=r

C’est un sous-module stable sous I'action de T'g /s- D’apres le théoreme de pu-

r—

reté de Faltings, le conoyau de I’application SRo, C RFR/S est de p-torsion :
d’apres le lemme 35, il suffit de montrer que I’image de Hq_l(l"R/S, M,,) dans

H7! (fR/S, (gr’” Aciis )HR/S) est contenue dans celle de A.
Pouri € {1,...,d}, posons

10g([ ) Z( 1" — 1)*(

Onaalors v; = =7,

Comme / = (8(1) — 1)5 mod Fil® A, on a un isomorphisme topologique

-3|Ea

) [m]

u; mod Fil® Auis et y;(v;) = v; + £ (vu que f = log(|e])).

M, ~ @ ERI[HO]EM]E[H] — SR ®z, MO

¥
n|=r
ou M? = D=+ Zo ¢roly Bl ] est un sous-7,-module stable sous Iaction de

fR/S. [ action de f‘R /s €tant triviale sur SR, on a des isomorphismes de SR-
modules :

HI (B gy, M,) ~ HI"Y(K*(M,. 7)) ~ SR ®z, HI™ (K* (M, 7))

(o K*(—, y) désigne le complexe de Koszul associé a 1’application y = (Y1 —
Lo ya—1).

Notons M (resp. M O) le sous-R @5 Acis(S)-module (resp. le sous-Z ,-module)
de Fil" A.is(R/S) engendré par { [”0]_L]QL]}H‘:F Comme y;(v;) = v; + ¢,
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les sous-modules M, et M,P sont stables sous D’action de fR /5, et I'application
Fil" Agis{R/S) — ( er’ Agis )HR/ * induit une application M » — M, et un isomor-
phisme M ,9 — MrO L’actionde T r/s étant triviale sur R ® 5 Agis(S), on en déduit
le diagramme commutatif suivant :

HI (K *(M,.y)) HI=H(K*(M;.y))

| 5

(R ®s Acis(S)) Rz, Hq_l(K'(ﬂst)) ——~ 3SR ®z, HITHK (M), y)).

Comme ﬂ,? ~ M,? et R ®s Aqis(S) — SR est surjective, 1’application (R Ry

Acris(S)) Rz, Hq_l(K'(]lZfro,l/)) — SR Rz, Hq_l(K'(Mf’,l/)) est surjective, ce
qui implique que I’application

HY™(K*(#,.y)) - BTN (K* (M} y))
’est aussi : le diagramme suivant permet alors de conclure.

Hqil(K.(ﬂrsl/)) Hq_l(K.(Mr,l/));qul(fR/S,Mr)

HY ™} (K* (Fil” Auis(R/S). 7)) — NI (K* (& A ) %5 7))

~ ~

= A A ~
HY Y (Trys Fil” Auis(R/S)) — HI ! (Cr/s. (& Acis) HR/S)
O
Les auteurs remercient le rapporteur pour avoir trouvé un erreur dans la preuve
du lemme 36 et avoir suggéré une correction.
Reste & calculer les invariants de Fil” Begs sous Gr,s. Rappelons qu’on a posé
g = [Te]%' C’est un générateur de Ker (9: W(R) — E). Dans tout ce qui suit,
Ay désigne I'anneau A i (R), les autres qui interviennent étant notés A ;(Og)
et Agis(S). On note y Iapplication x — x#/p sur ker(Acris(S) — E)_ Posons
—1n2-l =
n= ([S]T) € Acris((gK)[p 1]'

Lemme 37. Il existe A € gW(ﬂ(@K)) tel quen = (p— 1)!5[1’] ~+ A. En particulier,

n € Ker (Acris((%{) — @K)- En outre, on a y*(n) € p7" 1 Aais(Or) pour tout
reNettourk €{0,....r}.
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Démonstration. Comme (X — 1) = X — 1 mod pZ[X], il existe A € Z[X] tel
que(X -1 =X -1+ pA(X).Ona A(1) = 0,de sorte qu’il existe B € Z| X | tel
que A(X) = (X — )B(X), etdonc (X — 1)?~1 = Xp 1 + pB(X). En appliquant

cette égalité a [¢]1/7 il vient ([s]l/p — 1)p_1 —E+ pB ([8]1/P). Il en résulte que
(el - D7~ = E77' (17 =)™ = £ (E + pB(e]'/7)
= plE + pEr~ B (e]'7)

de sorte que A = ép_lB([g]l/p).
11 reste 2 montrer que pour tout k € {0,....7}, ona y* () € p™" 1 Auis(OK).
Mais on a

p?" . (pF = Diylet -1
p1+p+...+pk—1 =P p1+p+...+pk—1

PyEm = p
k_ Y g k_ 1 p?
et up((p* — 1)) = v, (p*FN) —k = J[;—_11—,’c,d ouvp(%) —r—k>0,

de sorte que p”y* (1) € 7 Auis(OK), et on a fini.
Rappelons que

C["lS /p ACFIS —_ (ﬂ/gpﬁ)[(sm’ w]a j His ul ] 7—.'! m] melN / 519 wfaul 3 ijma Tlpm)
1<j<é
1=<i<d
ol §p désigne I'image de gp/p = {p— 1)!§[p]. En particulier, I’'image 1o de @%
dans Agis/ p Acis Verifie g = §p + A, ol A est I’élément dont I’ existence est assurée
par le lemme 37. Notons 1, 'image de y"(n) dans A¢is(Ok )/ p Acis(Ok ). Comme
Tm = Y™ ((p — DIEP) + 1) et L € EW(R(Uk)), ona

€ (‘R/EP‘R) [Sk]OSkSm/(Sff)OSkSm et nﬁ =0.

11 existe donc un morphisme R /€7 R-lindaire

mi (RIEPR)Weloctcom /W) octam = (RIED) Bkt / (58 ok om

défini par Wy, — 1. Comme y* ((p — 1)!§[p]) = yk (n — )L) = Zﬁio an n[pk_”])u[”]
AvEC.ay © ,R/%‘PCR etl[n] & (‘R/Ep)[ ]0<z<k 1/( )0<z<k 1 (car0 =n = pk)
une récurrence immédiate montre que &; est dans I'image de o, pour0 < k < m.En
particulier o, est surjectif. Etant un morphisme surjectif de R /£? R-modules libres
de rang pm‘H, o, est un isomorphisme. Il en est donc de méme de limy, o, Comme
onadeplusw; = Z; — [Z] etu; =T, — [ﬁ], on a I’isomorphisme

crls/pAcns—(fﬂ/gpfﬂ)[nmsszzjmauu’rzm] mEN / ﬁ‘ma Js I’me’Tlpm)_

1<x<d

(2)
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Rappelons qu’on a noté y I’application définie par
y(x) =x*/p
sur Ker (01 Agis — ﬁ)
Lemme 38. Pourr € N, ona p" Agis " Agis = Y 1o P’ V(1) Adis:

Démonstration. On procede par récurrence, le cas r = 0 étant évident. Soient r €
N.getx € p" Agis N1 Agis- Par hypothése de récurrence, on peut écrire

r—1

x =Y p Y mx

k=0

avec Xy € Agispourk € {0,...,r—1}. Posons x" = ZE;ID yk(n)xk. Par hypothése,
onax’ € pAggs- Notozls Xi 'image de x; dans Agyis / p Acris c0na Zi_lo neip = O
Posons A = (R/EPR)[np. wj, Zjm. i, Tim] meN /(1 w uf. Z7, . Th,)

=r

jme

1<j<§
] ' 1<i<d
de sorte que d’apres I'isomorphisme (2), ona

Acris /P Acris o= A[nm]OSmsr—l/(nnpf;)

c’est un A-module libre de base ( Hm o 1 ) 13 En décomposant chaque

a<{o,...,
Xy dans cette base et en relevant les facteurs dans Ay, On peut supposer, quitte a

modifier les x4, que Xx € Alng. ..., ml/(nd. ..., nf) pour tout k <r — 2.

On va montrer que x, € nﬁ 4 Acris / P Acis par induction sur #n. Comme 19Xg €
Alnol/(n8) etnoko = — Y 3 e % appartient a I'idéal engendré par {nz }r—1x>o.
on a nécessairement 19Xy = 0. Soit n € {1,...,r — 1} tel que pour tout £ < n,
onax; € nf_l Acris / P Acris, de sorte que X = 0. On a alors Zz_ln NeXp =

0. Mais m,%, € Alno. ..., ??n]/(??g, s e g nn) Comme n,%X, = Zk =n+1 Mk Xk

appartient a I'idéal engendré par {1 };—1>=>n, 00 a nécessairement 1,X, = 0, de

sorte que X, € nn_l Actis / P Acris- On adone x; € (y (n)f~ 1 Acris + P Acris, 4’00

PR xe € pTTHR ()P Aciis + 275 (1) Acis 0N conclut en observant que
’" YyEm? = pTyF (). O

Rappelons que d’apres la proposition 26, on a ’inclusion R®s Agis(S) € Agis.
Lemme 39. On a (R®S Acris(S)) N nAcris = U(R@)S Acris(S)) (dans Acris)-

Démonstration. Supposons que

(R®S Acris(S)) N nAcrls = n(R®S ACI’IS(S)) i pnAcns (3)
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(R®s Aciis(5))/P(R®s Acxis(S)) = R @5 (Acris(S)/ P Acris(S))  Acris / P Acris
(cf- lemme 27) si bien que (R@S AcriS(S)) N pAygis = p(R@S AcriS(S)). En parti-

culier, on a
(R®S Acris(S)) N prnAcris - pr ((R@)S Acris(S)) Ny Acris)
- Pr (W(R@)S Acris(S)) + P Acris)
- PFU(R@A@S Acris(S)) + pr-HnAcris -
Comme R®s Ais(S) est complet pour la topologie p-adique et Ay, est séparé pour
la topologie p-adique, on conclut que (R Rs Agis(S )) N7 Agis = n(R Rs Agis(S ))
Montrons tout d’abord que pour tout ¥ € N, on a

(R®S Acris(S)) N7 Acis © n(R®S ACI’IS(S)) + P Acris, (4)
ce qu’on va faire par récurrence sur r, le cas r = 0 étant évident. Soit ¥ € N tel que
(R®S Acris(S)) N nAcrls = n(-R@S Acrls(S)) + B Acrls On a

(R@)S Acris(S)) N nAcris
c W(R@)S Acris(S)) as ((-R®S Acris(S)) N pr Acris Mn Acris)
¥
g U(R@)S Acris(S)) + ((R@)S Acris(S)) N Pr( Z Yk(ﬁ) Acris))
k=0

en vertu du lemme 38.
Comme on 1’a vu plus haut, on a (R@S Acris(S)) () s = p(R@S Acris(S)),
de sorte que

(R@)S Acris(S)) M 17 Acris

< N(RDs Awis(5)) + 7' | (RS Acris(5)) N (Zy (1) s )|

I suffit donc de montrer que

(-R®S Acns(S) ( Z v (7]‘) Acrls) = W(Ré)S Acris(S)) =+ P Acris .

Posons

A(S) = (Rs/EP)[w). Zjm1<j<s | (w?. Z2,,).

melN

A(R) = (eﬂR/g‘D)[ Jm]1<1<5/(w ijm)

meN
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Ona Acris(S)/p Acris(S) = A(S)[nm]mEN/(ngi)

Montrons que la structure de S-algébre de A i(S)/ p Ais(S) se factorise a tra-
vers un morphisme § — A(S). Comme Z; = w; + ZJ- dans Acs(S)/ p Acris(S),
le morphisme k[Zlil, - Zg:l] — Auis(S)/ p Auis(S) se factorise a travers A(S).
Par ailleurs, le noyau du morphisme 8: A.i(S)/p Acis(S) — S/pS est & puis-
sances divisées : on a x# = 0 pour tout x € Ker(#). Comme I'anncau S/pS
s’obtient a partir de S©/pS© = k[ZE!, ... ZE!] par une suite finic d’exten-
sions étales, de localisations et de complétions, la proposition 47 (2) implique que
la structure de S-algeébre de A.;i5(S)/ p Aciis(S) se factorise a travers le sous-anneau
A(S) C Acris(S)/p Acris(S)-

Comme A(R) est une A(S)-algebre, c’est lui aussi une S-algébre. Par ailleurs,
d’apres (2), on a

Acris /P Acris = A(R)[ul , Ti,ma nm]lSiSd/(ufa 7—;{-;”5 nﬁt)
meN
Comme 7, = u; + T} € A(R)[Mh]lghgd/(uf) pouri € {1,...,d} et R/pR est
obtenu a partir de (§/pS )[Tlil, s T;‘zl] par une suite finie d’extensions étales,

de localisations et de complétions, la proposition 47 (2) implique que le morphisme

naturel R/ pR — Acis(R)/p Acris(R) se factorise & travers A(R)[1;]1<i <a/(u?).
Soit x € (R®S Acris(S)) M (22:0 )’k(??) Acris)- On note X son image dans
Acris /P Acris- Onax € 22:0 Nk Acris /P Acris- Comme Acris /P Acris est une
A(R)[u,-, nm]lsisd/(up n )-algebre libre et comme X appartient a I'image de
meN

i’

R ®s A(S)[1mlmen/(n) , onaen fait

X € Z I]k(A(R)[uia nm]15i5d/(”f= Wﬁ))
—o melN

et donc

ze Z (R ®s AS)[mlmen/ (72,
k—0
vu que

(R Ks A(S))[nm]meN/(nﬁ) et A(R)[uia nm]lsisd/(ufs ﬁﬁ)

meN

sont libres sur R ®s A(S) et sur A(R)[ui]1<ij<q/(uf) respectivement, de base

.....

P Auis € P NR® s Acis(S) 4+ p Agis en vertu du lemme 37.

Pour finir, montrons comment déduire la formule (3) de la formule (4). Pour tout
k € Z>_q, posons §; = Hfzo(yf(n))p_l. On a 58 = p*T1y*+1(y). On pose
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A= A(R) [u,-, T,-,m] {<i<d /(uf', Tl.pm). On a les isomorphismes
" “meN, k '
Aeiis /P Aprls A[ﬁ‘m]meN/(ﬁ‘%)meNa
R ®s Acis(S)/ P Acris(S) = (R ®@s A(S)) [m]men/ (N5 meN .

Pour k£ > —1, notons My (resp. Ni) le sous-A-module de Ags /p Acris (resp. le
sous-R @5 A(S)-module de R @5 (Acis(S)/ p Awis(S)) engendré par

oo
{ 1_[ e, o€ 0,...,p=13 (v €0, kY oy = p—1, dgqq1 < p—l}.
m=0

On a alors Nk - Mka et Acris /p Acris (resp. R XS (Acris(S)/p Acris(S))) est la
somme directe des My (resp. des Ny ). Si z € Agis, notons z sa réduction modulo
p. Soit z € (R@S AcriS(S)) M A © on peut écrire z = 75z’ avec z/ € Aggs.
Choisissons N € Ntelquez’ e @kN:_l My D aprés (4), il existe y € R®s Agris(S)
etw € pN"'2 Agris N7 Agris tels que z = ny + w. D’aprés le lemme 38, on peut écrire

N+2 N+2
w=pN*? Z Yi(me; =1 Z NS
i=0 i=0

avecd; € Agispouri € {0,... N +2},desortequez’ = y+Zf\LJ62 pNt*s

et donc Z/ = ¥ + Sy41@n42. Comme Z/ € @kN:_l Mp, 7 € Pre_ | Ny et
SN+10N+2 € Dy v My, on a nécessairement

i—1%;,

SN+165N+2 € @ Nk - R Xs (Acris(S)/p Acris(S))
k>N

ie. SN410N+2 € R®s Awis(S) + P Agis, de sorte que

N+1

2=y +8np1on42) + pn Y PV TS € n(R®s Acris(S)) + P11 Acris -
=0
O

Corollaire 40. On a
(-R@)S Acris(S)) N ([8] - 1)p—1 Acris = ([8] - 1)p—1 (R@)S Acris(S))'

Démonstration. Si x € (R@S Acris(S)) N (] — P71 Ay, alors x € py Agics
de sorte que x € p(R@S Auis(S)). En appliquant le lemme 39 & x/p, il vient
2/ p € n(R®s Aws(S)), et donc x € ([e] — P~ (R&s Aess(S)). O

Pour r € N, notons ¢, I’injection R®g Fil” Ag(S) — HO(GR/S,Fil’ Acis )
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Proposition 41. ¢, est un isomorphisme pour tout r € N.

Démonstration. D’apres le corollaire 31, Coker(ig) est tué par ([g] — 1)? et donc par
([e] — 1)3(P_1) 181X € HO(GR/S,A,:riS), alors

([e] — D3P Vx € (R&s Awis(S)) N ([e] — 3PV A,

D’apres le corollaire 40, on en déduit que x € R®g Aqis(S) i.e. que Coker(rg) est
nul.
Pour tout » € N, on a le diagramme

0— R®S Fﬂr—i_l Acris(S) — R®S Fil” Acris(S) — R®S grr AcriS(S) —0
lr+1 tr

s+l AGR/S _  mer AGRS ¢ AGR/S
0 Fil Acris Fil Acris gr Acris

dont les lignes sont exactes. D’apres le lemme du serpent, on a donc une injection
Coker(t;+1) € Coker(t,), de sorte que Coker(t,) = {0} par récurrence. L

Corollaire 42. Pourtoutv € Z, on a

HO (GR/Ss Fil Bcris) = ligl I_HR@)S Fﬂr—i_n Acris(S)-

nzlr|
Démonstration. D’apres la proposition 41, on a
H?(GRrys, Fil” Acis ) = R®s Fil™ Acig(S)
pour tout m € N, de sorte que

H(GRrys.Fil" Beis ) = lim 1"H(Grys, FiI' T Agis )
nz|r|
= lim T R@g FI' T AL (S). O

nz|r|
6. Appendice I : une construction de A;

Comme suggéré par le rapporteur, on donne une construction, alternative a celle
de [2], Proposition 4.42 & Remarque 4.43, du sous-anncau A}, de ;&; =W (E;),

dans le cas oi O = W(k), qui est stable sous I'action de ¢ et de I'g/s et qui a les
propriétés suivantes :
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() [¢] € A% et[ﬁ-] € A} pourtouti € {l,....d};

(2) AL/pAt ~EL;

(3) A; est complet pour la topologie faible.
Cela permet de donner une définition explicite de cet anneau.

Les raisonnements utilisés étant déja apparus plusieurs fois dans ce travail, on
donne simplement les idées principales.

Posons A"@'K = Ok|[z]] ot k estle corps ré€siduel de Ok et w = [¢] — 1. L’anneau

A"O'K est un sous-anneau de X; , complet pour la topologie faible, stable sous I’action
de ¢ etde fR/S. En outre, il reléve E"O'K = k[x]) (cf [11],3.2).

SoitAg (resp. AE) le séparé complété de A"O'K Re S (resp. A"@'K ®o, R)pourla
topologie ( p, m)-adique. On va construire des applications injectives (s : A}' — K}'
etig: A"Rf — K;, qui induisent des isomorphismes topologiques avec les anneaux
Ag et AE construit dans [2]. On notera tg et 1z leurs réductions modulo p.

Rappelons que S© = O {ZF', ..., ZF'} et EL, est I'anncau des séries
convergentes pour la topologie 7 -adique :

e s o 1
EggK{zfﬂ,...,ng} ot Z;=(Z;.Z7,...).

En particulier, A;(D) = A"@'K ~{Z 1&:1’ S Zg':l} (complété pour la topologie (p, 7)-
adique). Soit g : A‘S"(O) — A;(Qj le morphisme de AgK -algebres qui envoie Z; sur
le représentant de Teichmiiller [Z,-] pour i € {1...,6}. Il induit un isomorphisme

A;'(O) i pA;(O) —» E;(O). L’application ¢ g0 est injective modulo (p, ) donc injec-
; . - . w ol oy o - +

tive, et son image s 1denF1ﬁe aAg- Qn vérifie aisément que I'image de A ¢, par
tg¢o) est stable sous ’action du Frobenius.

On rappelle qu’on a une suite finie S©@ € S c ... € §0Y = § d’anneaux ot
ST+ gt obtenu a partir de § @) en utilisant une des opérations (ét), (loc), (comp)
pour touti € {0,...,n — 1}. D’apres le lemme 9, 1’application

Esir: BEy /7 EY, — SO/pSO. (xo.x1...) b X0,
est un isomorphisme, fonctoriel en S

Supposons qu’on a construit tg¢) avec les propriét€s cherchées. Dans chacun
des cas (ét), (loc) et (comp), on montre qu’il existe une unique application 7 g¢+1)
(resp. LS(__i+1)) de A;'(i)/pﬁg(i)—algébres ({esp. de A;'(i)—algébres) qu% induit £gei+1)
moduloe 7 (resp. modulo (p, 7)). Comme I g+1) (resp. tgi+1)) est injective modulo
7 (resp. modulo (p, 7)), elle est injective. Par construction, I'image de t g« +1) vérifie
les propriétés (1), (2) et (3) : elle est topologiquement isomorphe élA;'(_,; +1,- On montre
par induction sur 7 que dans chacun des cas (ét), (loc) et (comp), il existe un et un

seul opérateur ¢ sur A—Si_(i +1) qui induit le Frobenius modulo p et est compatible avec

+

le Frobenius sur AT §)

¢ (défini par le Frobenius sur A ¢;)). En outre, on vérifie par



1018 F. Andreatta and O. Brinon CMH

induction que @ © tgi+1) = tgG+1) © ¢, parce que c’est vrai modulo p et pour (g¢)
par hypothese de récurrence.

Rappelons que R s’obtient & partir de R® = §{TF! .. TF!'} en itérant un
nombre fini de fois les opérations (ét), (loc) et (comp). En partlcuher AT RO =
A¥ {Tﬂ:1 Til} et A (0)/PAR(0) = ER(O) Soit ¢ peoy : A;(m — AR(O) le mor-

phisme de A"' algebres qui envoie 7; sur [T ] pour 1 < j < 4. L application est
injective modulo (p. ), donc injective, et son image s’identifie a A+(0) On vérifie
que I'image de AT g Dar tpw est stable sous 'action de ¢ et de T'r /s- En rai-
sonnant comme précédemment, on voit qu’il existe une unique application (g de
A;(O)—algébres qui induit £z modulo ( p, ), injective, et dont ’image est isomorphe
a A+ Comme dans le cas de Ag, on vérifie que l’image de A est stable par le

Frobenius. On prouve de la méme facon que I'action de Tr /s sur A (définie par

RO
’action sur AR(O)) s"étend aA; et que pour tout y € FR/S, onayctig =ILRoY.

7. Appendice I1

Les auteurs remercient le rapporteur pour leur avoir suggéré d’inclure la proposi-
tion 47, qui est utilisée a plusieurs reprises dans le texte.

Définition 43 ([18], Definition 1.1). Un homomorphisme de IF ,-algébres f: A — B
est dit relativement parfait lorsque I’homomorphisme

B®ipA— B, x®y+xff(y),

est un isomorphisme (ol ¢ est le Frobenius absolu de A).

Les morphismes relativement parfaits entre I ,-algebres sont stables par com-
position et changement de base. D’apres [14], Oy Théoréeme 21.2.7, un morphisme
relativement parfait de IF ,-algebres est formellement étale.

Définition 44 ([18], Definition 1.2). Soit n € N.y. Un morphisme de Z / p" Z-
algebres f: A — B est dit relativement parfait s’il est formellement €tale (pour
la topologie discrete) et si 'homomorphisme F, @ f: F, ®z4 — F, @z 5 est
relativement parfait.

Lemme 45 ([18], Lemma 1.6). Soient n € N.g et f: A — B un morphisme de
Z [ p" Z-algébres tel que Fp @ f soit plat. Alors [ est relativement parfait si et
seulement s’il est plat et F , @ [ est relativement parfait.

Lemme 46. Soient § une Z,-algébre plate, séparée et complete pour la topolo-
gie p-adique, et f: S{Tlil, e Taitl} — R un homomorphisme de Zp-algébres
satisfaisant les conditions suivantes :
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(1) R est séparé et complet pour la topologie p-adique et noethérien ;

(2) f estplat;

(3) Fp, @ f est relativement parfait ;

(4) le Frobenius absolu de R/ pR est fini.
Soit R" une R-algébre de type (é1), (loc) ou (comp). Alors le composé de f et de
R — R’ vérifie lui aussi les conditions (1)—(4).

Démonstration. (1) Montrons que R’ est séparé et complet pour la topologie p-adique
dans le cas (comp) (les autres cas étant triviaux). Soient / un idéal de R contenant
pR et R’ la complétion [-adique de R. Comme R est noethérien, on a

R/p"R = R @ (R/p"R) = lim(R/ p" R)/I"(R/p" R)

pour tout m € N.g. Comme R est noethérien, R/I" est séparé et complet pour la
topologie p-adique, de sorte que

: ’ mpl oo 13 : m n m s g : n m n
im R'/p™ R = imlim(R/ p™ R)/I"(R/p™ R) = Um lim(R/I")/p™ (R/1")

m m n m n
~ 1 0 7 m Y A~ 13 no__ !
= timlim(R/1")/ p" (R ") = lim R/ 1" = K

(2) est évident.

(3) 1 suffit de montrer que R/pR — R'/pR’ est relativement parfait. Dans le
cas (ét), 'extension R/ pR — R’/ pR’ est étale donc relativement parfaite. Dans le
cas (loc), si R’ est la complétion p-adique de la localisation de R par rapport a une
partie multiplicative ¥, alors R’/ pR’ = Z71(R/pR) ol T désigne I'image de ¥
dans R/ pR.1application x @ y — x”y estunisomorphisme Z~1(R/pR) ®R/pR.o
(R/pR) = (Ep)_l(R/pR) = YR/ pR), de sorte que R/pR — R'/pR’ est
relativement parfait. Dans le cas (comp),ona R’ = l(inn R/I" o0l C Restunidéal

contenant pR : comme R est noethérien, R’/ pR’ est la complétion I = I(R/pR)-
adique de R/ pR. Comme ¢: R/pR — R/pRestfini, (R'/pR") ®r/pr.o (R/pR)
estle complété ¢(/ ) (R/ pR)-adique de R/ pR :1’idéal I étant de type fini, il coincide
avec le complété T-adique de R/ pR.

(4) Comme R/pR — R’/ pR’ est relativement parfait, la finitude de R’/ pR" —
R'/pR’ résulte de cellede ¢ : R/pR — R/pR. O

Proposition 47. Soient n € N.g et g: A — B un morphisme relativement parfait
de 7. [ p" Z-algébres (d’aprés le lemme 46, c’est le cas lorsque A est une 7. [ p" -
algebre plate et noethérienne, le Frobenius absolu de F, ® A est fini, et B est un
anneau obtenu a partir de A en itérant un nombre fini de fois les opérations (é1), (loc)
et (comp)). Soit 0: C — C un homomorphisme surjectif. Supposons qu’il existe
N € N.g tel que xV = 0 pour tout x € Ker(0) (notons que cela n’implique pas
que Ker(8) est nilpotent, & moins qu’il soit de type fini).
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(1) Pour tout diagramme commutatif

|~

QT‘QI

g

il existe un unique morphisme f: B — Ctelque o f =T et fog =h.

(2) Soit f: B — C un homomorphisme et Cy un sous-anneau de C. Si

(fog)d) c Coer (8o fUC) S (Cy), alors f(B) < Co.

Démonstration. (1) C’est [18], Lemma 1.9.
(2) Posons Cy = A(Cyp). Le diagramme commutatif

se factorise en

1k }

A Co©

4

D’aprés (1), il existe un unique homomorphisme 4: B — Cj tel que le diagramme

D:-%UU
N Q%—QI

soit commutatif. Les deux homomorphismes f,toh: B — C rendent le diagramme

oy
i —— Oy
QT‘QI

/T

commutatif. D’aprés (1), ona f = toh, de sorte que f(B) C Cp. O



Vol. 88 (2013) Acyclicité géométrique de Beis 1021

Références

[1]

(2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

F Andreatta, Generalized ring of norms and generalized (¢, I')-modules. Ann. Sci. Ecole
Norm. Sup. (4) 39 (2000), 599-647. Zbl 1123.13007 MR 2290139

I Andreatta and O. Brinon, Surconvergence des représentations p-adiques : le cas relatif.
In Représentations p-adiques de groupes p-adiques [ : représentations galoisiennes et
(¢, I')-modules, Astérisque 319, Soc. Math. France, Paris 2008, 39-116. Zbl 1168.11018
MR 2493216

F Andreatta and A. Iovita, Comparison isomorphisms for smooth formal schemes. J. Inst.
Math. Jussieu 12 (2013), no. 1, 77-151. Zbl 06124086 MR 3001736

F. Andreatta and A. Iovita, Global applications of relative (¢, I')-modules 1. In Représenta-
tions p-adiques de groupes p-adiques I : représentations galoisiennes et (@, " )-modules,

Astérisque 319, Soc. Math. France, Paris 2008, 339-419. Zbl 1163.11051 MR 2493222

F. Andreatta and A. lovita, Erratum to the article “Global applications to relative (¢, [')-
modules, I". Astérisque 330 (2010), 543-554. Zbl 1202.11038 MR 2642412

O. Brinon. Représentations cristallines dans le cas d’un corps residuel imparfait. Ann. Inst.
Fourier (Grenoble) 56 (2000), 919-999. Zbl 1168.11051 MR 2266883

Q. Brinon, Représentations p-adiques cristallines et de de Rham dans le cas relatif. Mém.

Soc. Math. France (N.S.) 112, Soc. Math. France, Paris 2008. Zbl 1170.14016 MR 2484979

G. Faltings, Crystalline cohomology and p-adic Galois representations. In Algebraic ana-
lysis, geomtery and number theory, ed. by. I. L. Igusa, Jolm Hopkins University Press,
Baltimore, MD, 1989, 25-80. Zbl 0805.14008 MR 1463696

G. Faltings, Almost étale extensions. In Coehomologies p-adiques et applications arith-
métiques. 11, Astérisque 279, Soc. Math. Irance, Paris 2002, 185-270. Zbl 1027.14011
MR 1922831

J.-M. Fontaine, Sur certains types de représentations p-adiques du groupe de Galois d’un
corps local ; construction d’un anneau de Barsotti-Tate. Ann. of Math 115 (1982), 529-577.
Zbl 0544.14016 MR 0657238

J.-M. Fontaine, Représentations p-adiques des corps locaux. 1. In Grothendieck Fest-
schrift, Vol. II, Progr. Math. 87, Birkhduser, Boston, Mass., 1990, 249-309. Zbl 00743.11066
MR 1106901

J.-M. Fontaine, Le corps des périodes p-adiques. In Périodes p-adigues (Bures-sur-
Yvette, 1988), Astérisque 223, Soc. Math. France, Paris 1994, 59-111. Zbl 0940.14012
MR- 1203971

J.-M. Fontaine and W. Messing, p-adic periods and p-adic étale cohomology. In Current
trends in arithmetical algebraic geametry (Arcata, Calif., 1985), Contemp. Math. 67, Amer.
Math. Soc., Providence, RI, 1987, 179-207. Zbl 0632.14016 MR 0902593

A. Grothendieck, Eléments de géométrie algébrique (rédigés avec la collaboration de Jean
Dieudonné) : IV. Etude locale des schémas et des morphismes de schémas, Premiére partie.
Inst. Hautes Etudes Sci. Publ. Math. 20 (1964), 5-259. Zbl 0136.15901 MR 0173675

A. Grothendieck, Eléments de géométrie algébrique (rédigés avec la collaboration de Jean

Dieudonné) : IV. Etude locale des schémas et des morphismes de schémas, Seconde partie.
Inst. Hautes Etudes Sci. Publ. Math. 24 (1965), 5-231. Zbl 0135.39701 MR 0199181

O. Hyodo, On variation of Hodge-Tate structures. Meath. Ann. 284 (1989), 7-22.
Zbl 0645.14002 MR 0995378



1022 F. Andreatta and O. Brinon CMH

[17]1 U. Jamnsen, Continuous étale cohomology. Math. Ann. 280 (1988), 207-245.
7Zbl 0649.14011 MR 0929536

[18] K. Kato, The explicit reciprocity law and the cohomology of Fontaine-Messing. Bull. Soc.
Math. France 119 (1991), 397-441. Zbl 0752.14015 MR 1136845

[19] H.Matsumura, Commutative ring theory. Second edition, Cambridge Stud. Adv. Math. 8,
Cambridge University Press, Cambridge 1986. Zbl 0603.13001 MR 0879273

[20] I. Tate, Relations between K> and Galois cohomology. Invent. Math. 36 (1976), 257-274.
Zbl 0359.12011 MR 0429837

Received November 27, 2007; revised April 4, 2011

Fabrizio Andreatta, Dipartimento di Matematica “Federigo Enriques”, Via Saldini 50,
20133 Milano, Italie

E-mail: fabrizio.andreatta @unimi.it

Olivier Brinon, Institut de Mathématiques de Bordeaux, Université Bordeaux 1, 351 cours
de la Libération, 33405 Talence, France

E-mail: olivier.brinon@math.u-bordeauxl.fr



	Acyclicité géométrique de Beris

