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Acyclicite geometrique de Bcris

Fabrizio Andreatta and Olivier Brinon

Resume. Dans cet article, on prouve que l'anneau de periodes cristallines Bcris qui definit la no-
tion de representation cristalline dans le cas relatif est geometriquement acyclique. On demontre
en fait une version relative de cette acyclicite.

Classification mathematique par sujets (2010). 1 IS 15, 11S25, 14F30.

Mots-clefs. Ramification et theorie des extensions, cohomologie galoisienne, cohomologie
/7-adique, cohomologie cristalline.

Soit X un corps de valuation discrete complet de caracteristique 0, ä corps residuel

parfait de caracteristique /?. On note 0^ l'anneau des entiers de X, on fixe une
clöture algebrique X de X et on pose ^ Gal(X/X).

Soit X un Schema propre et lisse sur Spec(0^). Notons X^ sa fibre speciale,

X^ sa fibre generique et X^ sa fibre generique geometrique. Soient Acris(0x:) et

Bcns(öxr) •= Acris(0^)[^"^] les anneaux de periodes cristallines de 0^ definis par
Fontaine dans [12]; ils sont munis d'une filtration decroissante separee et exhaustive,
d'une action de ^ et d'un endomorphisme de Frobenius. Fontaine a conjecture dans

[10], et Faltings a prouve dans [8], l'existence d'un isomorphisme de Bcris(0a:)-
modules

H? (X^, Zp ®z„ Beris(Ö^) HX (X,/ W(/0) ®w(i) Beris(Ö^) (Ceris)

pour tout « G N, fonctoriel en X et compatible aux filtrations, aux actions de ^
et aux Frobenius. Dans [3] une nouvelle preuve est donnee, plus proche du point
de vue initial de Fontaine et Messing dans [13]. Supposons X defini sur W(X). On

remplace le site syntomique-etale de Zoe. czY. par un nouveau site X, introduit par
Faltings dans [9] (voir [5] pour une discussion sur la definition correcte du site). Soit
X la completion formelle de X le long de X^. Alors les objets de X sont les couples
(Z7, 1F), oü f/ —> X est /7-adiquement formellement etale et 1F -> C/^ est unx
recouvrement fini etale, au-dessus de X, de la fibre rigide analytique C/^ de Z7. Soit

^ Ct / J*j Q \ ^ 0t ^
t;: X ^ X le foneteur Z7 i-> (Z7, [/ *j oü X est le site etale deX. On peut prouver
qu'il induit un morphisme de sites. L'un des points clef de [3] est la construction
d'un faisceau « continu » Acris de Acris(0x:) ®w(ä;) v*(0^ä)-modules sur X, muni
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d'une filtration, d'une action de d'un Operateur de Frobenius (localement sur X)
et d'une connexion integrable

^cris ^ ^cris ^ (^-et
jr® ^ X /wGty

tels que

(1) le complexe de de Rham

Acris ^-cris ^ (^-et ^ ^cris ^ (^-et
je® ^

JT / W(&) je®' ^ * /W(fr)'

defini par V est exact;

(2) pour tout / g N, le faisceau p* (Acris o est tue par

une puissance de f si g > 1, et coincide avec £2^ ®wa) Bcris(öx:) quand
£ /w(fc)

on inverse i pour g 0;

(3) si designe le noyau de V, alors H? (£, A^-J <8>A„iJ0A-) BcrisCÖ*:) coincide

avec B„is (#*:)•

Gräce ä (1) et (3), on peut calculer Fl? (A^, Z^) (g)^ Bcris(öxr) comme la cohomolo-

gie du complexe Acns ® v * ((9 -) ^ * (^ *
-t apres inversion de £. Remarquons que

je® X /w(fc)
yy Ct

H® (36, _) FI® (A p* (_)). En utilisant la suite spectrale associee et (2), la cohomo-

logie de Acris coincide avec la cohomologie du complexe
*® X /W(yfc)

^2^et ®W(fc) Bcris(®^r)
X / w(&)

^et
sur A qui coincide avec

Bcris (©*).

On prouve que toutes ces identifications preservent les filtrations, les actions de Galois
et des Frobenius. Cela demontre Ccris-

La preuve de (1) est formelle. La preuve de (3) s'appuie sur des resultats de

Faltings (c/ [9]) et un theoreme de type GAGA; contrairement au site syntomique-
etale, celui de Faltings est adapte ä la comparaison avec la cohomologie etale. Le point
delicat est la comparaison avec la cohomologie cristalline /.<?. la preuve de (2). C'est
une consequence du present travail*. En effet, dans [3] on prouve le fait suivant. Soit
C/ Spf(Rc/) un ouvert etale de A assez petit. Soit une clöture algebrique de

Frac(Rc/) contenant A. Notons R^/ la reunion des sous-Rc/-algebres de RA qui sont

* Pendant la redaction de ce travail, le premier auteur a beneficie de l'hospitalite de 1'Institut Galilee ä l'Uni-
versite Paris 13.
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finies etales sur [/? *] et notons G/^ le groupe de Galois de A^/[/? *] sur A^/AT.
g|;

Alorslafibrede R^ u* (Agns) enunpointi Gl estlalimite, surtousles voisinages
G de x comme ci-dessus, des groupes de cohomologie continue (G/^, Agns (A^/)).
Ici, Agns(Rc/) est l'anneau construit ä partir de A^/ dans la section 1. II est muni de la

topologie /7-adique et d'une action continue de G/?^. Ainsi, si on pose Bgns(Rc/) :

Agns(Rc/)[^ L ü suffit, pour prouver (2), de montrer que (G/^, Bens

pour g > 1 et H°(G^,Bcris(^[/)) ß[/<§>w0fc) B„is(ÖA:)- En lait, pour prouver
l'analogue relatif de [3], on a besoin d'analogues relatifs de (2), on presente donc ici
une generalisation de ces resultats : c'est l'objet du theoreme principal de ce travail
(theoreme 5).

Remarquons que Bgns(Rc/) est « plus gros » que l'anneau obtenu en appliquant
la construction de Fontaine ä A^/ au lieu de 0^, construction qui donne un anneau

qui pas geometriquement acyclique en general. Historiquement, Hyodo a ete
le premier ä remarquer que la definition « nai've » des anneaux de Fontaine ne se

comporte pas bien dans le cas relatif, et qu'on a besoin d'une construction plus
generale. En fait, Hyodo a observe que le module de Täte d'une variete abelienne

sur un corps de valuation discrete complet, de caracteristique mixte (0, p), ä corps
residuel /rapaz/azY, n'est pas de Hodge-Tate au sens « nai'f » en general. Dans [16],
il propose une definition correcte de la notion de representation de Hodge-Tate dans

le cas relatif. II construit pour cela un anneau Bht « plus gros » que l'anneau obtenu

en faisant la construction habituelle. Une des particularites de cet anneau Bht est

que, contrairement ä l'anneau « nai'f » il est geometriquement acyclique (c/ [16],
Proposition 1.2). Les anneaux de periodes Bens et B^r ont dejä ete construits dans des

situations relatives. La construction habituelle a ete consideree par Faltings, tandis

que le pendant de la construction de Hyodo l'a ete par Wintenberger, Tsuzuki et
dans [7].

Remarquons que, dans un travail non publie, Tsuji a aussi demontre des resultats

d'acyclicite geometrique de Bens. Apres l'achevement du present article, Remi Lodh
nous a informe qu' il a lui aussi obtenu des resultats similaires dans sa these de doctorat,
achevee en 2007 sous la direction de Faltings.

Les auteurs remercient le rapporteur pour les diverses erreurs qu'il a relevees dans

une premiere version de ce travail, ainsi que pour les ameliorations qu'il a suggerees.

1. Notations et rappels

On note u la valuation de AT normalisee par u (p) 1. Elle s'etend de faqon unique
en une valuation de AT, qu'on note encore v. Pour tout /iGN,on choisit e AT une
racine p^-ieme de l'unite, de sorte que Soit AT^ U«eN
l'extension cyclotomique de AT. C'est une extension galoisienne de AT, dont le groupe
de Galois s'identifie, via le caractere cyclotomique /, ä un sous-groupe ouvert de Z*.
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Soient <5, <Z g N et soit S^) 0jv {Z^O..., Z^} le separe complete de

0^ • • • > pour la topologie /7-adique. On suppose que S (resp. F) s'ob-

tient ä partir de S^ (resp. de S {F^\ Fj^}) en iterant un nombre fini de fois
les Operations suivantes :

(et) completion /7-adique d'une extension etale;
(loc) completion /7-adique d'une localisation;
(comp) completion par rapport ä un ideal contenant /?.

On suppose en outre que

et 0K[z±\...,z±\r±\...,:r±i]^tf
sont ä fibres geometriquement regulieres ou que F est de dimension de Krull inferieure
ä 2, et que F -> S (g)#^ F et F ^ F <8)0^ F sont geometriquement integres.^ Dans

ces conditions, le theoreme de purete de Faltings s'applique. On suppose en outre

que F est algebriquement clos dans F [/?"*].
Remarquons que S et F sont noetheriens, /7-adiquement separes et complets,

integres et reguliers. Soit 7? (resp. F) une clöture algebrique de Frac(F) (resp. la
clöture algebrique de Frac(S) dans F). On note F (resp. S) la reunion des sous-F-
algebres finies F' (resp. sous-S-algebres finies SO de F (resp. F) telles que F'[/?~*]
est une extension etale de F [/?"*] (resp. S'[/?~*] est une extension etale de S [/?"*])•
On a S c F.

Pour h g N et Z G {1,..., <Z} (resp. Z g {1,..., 5}), on choisit f/^ g F

(respectivement Z^ g S) une racine /?"-ieme de 7} (respectivement de Z/), de

sorte que (7^+^)^ (respectivement (Z^~^)^ Z^). Pour /i G N>o,

on note le normalise de /?[£<">, z{"\..., zj"\ rj*>] dans £ et tfoo

U»sn>o Particulier, on a i?oo ^ Ä.

Enfin, on suppose que Spec(F//?F) -> Spec(S//?S) est surjectif et generique-
ment geometriquement irreductible. On va prouver les premieres proprietes des an-

neaux S et F dans la proposition suivante. Les auteurs remercient le rapporteur pour
avoir trouve des erreurs dans une version precedente et avoir suggere les corrections
necessaires.

Proposition 1. (1) Fe raorp/i/srae Spec(F//?F) -> Spec(S//?S) es/^<ZeZeraen£pZotf

regwZZei: Fn pnrFcwZZer, sZ Frac(S (8)#^ £) designe wne cZo/^wre

ßZgeferZ^we Je Frac(S (8)#^ £), F (8)5 Frac(S <8)0^ F) Zntegre.

(2) SöZt 0jv„ Z'<znne<zw des en/zers rZe F[e^]. ^Zors

5 ®e*[z„...,z,] [Zf, • •, Zf ] ^ 5„

^Note ajoutee sur epreuves. La premiere hypothese est inutile pour pouvoir appliquer le theoreme de purete
de Faltings, cf. theoreme 7.9 de P. Scholze, Perfectoid Spaces, Inst. Hautes Etudes Sei. Puhl. Math. 116 (2012),
p. 245-313.
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(3) Z/amzeaw R (8)5- aS (rasp. (8>s„ AS) ^ ^ norraaZ, ££ Z'appZ/ca/fon

(/?//?/?) ®s//>s (5/^5) -> Ä//7Ä

(r^p. (i?w/(£//?£) 7?//?7?) esZ/njecrfve (powr G N>o).

Demönstraftön. (1) Par hypothese, le morphisme Spee(R//?/?) -> Spee(S//?S) est

surjectif et plat, puisque R est une S-algebre plate. En particulier, il est fidelement
plat.

Le Frobenius definit un morphisme fini sur

S<®)/pS<°> (0*/p<9jO[zf\...,Z±q

Rappeions qu'ilexiste une suite d'anneauxS^ c c ••• c aS oÜaS^+^
est obtenu ä partir de S^ en utilisant une des Operations (et), (loc), (comp). En utilisant
le lemme 46, on en deduit par induction sur Z > 1 que dans chaque cas, la linearisation
du Frobenius ^ (8) 1: S^V/^^®s(/-i)/^s(/-i) estun

isomorphisme de aS^~^//?S^~^^-algebres et que le Frobenius definit un morphisme
fini sur S^VII enresulteque ^ (8) 1: S//?S ®£(o)/^£(o) -> S//?S

est un isomorphisme de S^//?S^-algebres : le Frobenius definit un morphisme fini
sur aS//?aS. Soit 7?^ := S{7^*, 7j^}. Par definition, 7?//?i? est obtenu ä partir
de /?R^) 0^ iterant les Operations (et), (loc), (comp) un nombre fini de fois.
On montre comme ci-dessus que </9 (8) 1: 7?//?Z? ®i?(o)/^(o) 7?^//?7?^ -> 7?//?7?

est un isomorphisme de i?^//?R^-algebres. On deduit de [14], Theoreme 21.2.7,

que R//?R est formellement etale sur i?^//?R^), ^ donc formellement lisse sur
aS//7aS. On conclut (c/ [14], Corollaire 19.6.5) que le morphisme Spee(R//?R) ->
Spee^//7aS) est geometriquement regulier.

(2) Soit l'ideal maximal de 0^ et 0jv„/tu„ son eorps residuel. Soient

^ := 5[ZfV Zf ] et ä; := Ä®*<o) 5„[7^,..., rf].
II suffit de prouver que et 7^ sont integres et reguliers. Comme (resp. 7^)
est fini et plat comme AS-module (resp. comme R-module), les anneaux et

sont noetheriens, /7-adiquement separes et eomplets, sans /7-torsion. En particulier,
il suffit de prouver que et R^ sont integres et reguliers. Par

1 1

definition, ^ (resp. R^ est obtenu ä partir de [Zf" ]
1 1

(resp. aS; (8)0^ £„[7^" 7^" ]) en iterant les Operations (et), (loc) et (comp).
En particulier, ^ et R^ sont reguliers : il suffit de prouver qu'ils
sont integres.



970 F. Andreatta and O. Brinon CMH

1 1

On a ^ (5 <g>0^ £«) Z/" ]. On deduit de

la preuve de (1) que le morphisme

i i
(S <g>0j^ fc„) ®ifc[Zi,...,z«] £[Zf",..., Z/" ] -> 5 ®o^.

1

qui est la /z-ieme iteration du Frobenius sur S (g)#^ et qui envoie sur Z;, est

un isomorphisme. Comme /: -> (g)#^ /: est geometriquement integre, il en resulte

que iS (g)#^ et donc est integre. On en deduit aussi que

Zf, 7/\..., r/].
En utilisant la preuve de (1), on prouve de la meme faqon qu'il y a un isomorphisme

^ fi^i induit la /z-ieme iteration du Frobenius sur Z? (g)#^
i i

et envoie sur Z;, et 7^" sur 7). Comme /: -> Z? (g)#^ /: est geometriquement
integre, Z? (g)#^ et donc Z?^ est integre.

(3) On deduit de la preuve de (2) que (S/moS) <g)£ (envoyant
i

Z^" sur Z/) et que Z^/m^Z^ ^ (Z?/moZ?) /:„ comme 5^-algebres (envoyant
i

7V*" sur 7)). L'application Spec(Z^//?Z^) —> Spec^//?^) est donc eile aussi

surjective et generiquement geometriquement irreductible. II suffit donc de prouver
la proposition dans le cas '7z 0". Soit une sous-S-algebre integre, normale de

iS, teile que £[/?"*] c £"[/?"*] est finie etale. Comme S est une union des telles

iS-algebres, il suffit de prouver que l'anneau Z?' := Z? (8)5 5" est integre, normal et

que l'application Z?'//?Z?' -> Z?//?Z? est injective. La deuxieme assertion resultant de

la premiere, il suffit de voir que Z?' est integre et normal.

AforraaZzYe <Ze Z?'. On va appliquer le critere de normalite de Serre [15], Theo-

reme 5.8.6. Comme S" est sans /7-torsion et l'extension 5 c Z^ plate, l'anneau Z?' est

sans /7-torsion : l'application Z?' -> Z?'[/?~*] est injective. Comme c £"[/?"*]
est finie etale, il en est de meme de Z?[/?~*] c Z?'[/?~*]. L'anneau Z? etant normal,

l'est aussi. En particulier, Z?' est reduit z.e. Z?' est regulier en codimension
0. Comme Z?'[/?"*] est noetherien et normal, on peut l'ecrire comme un produit fini
£'[/>"*] n}= 1 0/ avec Z)y normal, integre, fini et etale sur Z?[p *]. Comme
Z?' est sans /7-torsion, les ideaux premiers de codimension 0 de Z?' sont les noyaux
Ker(Z?' -> Z)y), pour 7 G {1,..., s}. Pour chaque 7 G {1,..., s}, soit Z?y l'image
de Z?' dans D7. Chaque Z?y est un anneau noetherien integre, fini sur ZL On de-

duit des theoremes de going-up et going-down que chaque ideal premier de Z?y de

codimension 1 est au-dessus d'un ideal premier de Z? de codimension 1. Les mor-
phismesfinisetinjectifs Z? Z?' ^7 1 ^7 induisent des applications surjectives

Uy_i Spec (Z?y) -> Spec (Z?') -> Spec(Z^). D' apres ce qui precede, le compose en-
voie les ideaux premiers de codimension 1 sur les ideaux premiers de codimension 1.
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Comme la hauteur croit par morphisme fini injectif ([19], Exercice 9.8), les ideaux

Premiers de codimension 1 de R' s'envoient surjectivement sur les ideaux premiers
de codimension 1 de ZC

Soit q un ideal premier de R de codimension 1. Montrons que R' (g)/? Z^ est

normal, ce qui impliquera que R' est regulier en codimension 1. C'est clair si /? ^ q,
parce que Z?'[/?"*] est normal. Si /? e q, alors q tztR (oü tu est une uniformisante
de AT). Notons {p/}i</<m (resp. p) les ideaux premiers de codimension 1 de (resp.
S) au-dessus de /?. Puisque est normal, on a une suite exacte

m

0 —> 5' -> n (Frac(5')/5;,.) •

/ 1

Comme S -> R est plat, on en deduit une suite exacte

m

Ä, -* ff (Frac(-S")/^.) V
/'=1

Notons que Frac(S') <g)s Z?g est une localisation de Z?'[/?~*] qui est regulier : il est

donc regulier et a/orrion normal. En particulier, pour prouver que Z?' (g)^ Z?^ est

normal, il suffit de prouver qu'il est integralement clos dans Frac(S') <g)s Z?g. On
deduit de la suite exacte qu'il suffit de prouver que Sp. Rg est local et regulier de

dimension 1 pour tout / G {1,..., m}. L'extension Z^ c 5" <g)s Rg est finie et plate,
et on a montre que les ideaux maximaux de Z^ sont les ideaux au-dessus de

qZ?g ruZ^g. Mais Z^ 5" Sp (g)^ Z^ : ces ideaux sont au-dessus des

ideauxp/iS^(g)5-iSp pour/ G {1,..., m}.CommeSpec(Z^g/rö"Z^q;) -> Spec(Sp/iD"Sp)
est geometriquement integre (car Spec(R//?R) -> Spec(*Sy/?£) est generiquement
geometriquement irreductible par hypothese, et generiquement geometriquement re-
gulier d'apres (1)), les ideaux p; 5" Z^ sont dejä premiers. Les ideaux maximaux
de <g)£ Z^ sont donc les ideaux p;*S" <g)s Z^. En particulier, Rg est un
anneau local sans /7-torsion d'ideal maximal p; Sp <g)s Z^. Comme Sp est un anneau
de valuation, p/Sp., et donc a/örriori P/^p- sont des ideaux principaux. En

particulier, Sp <g)s Z^ est un anneau regulier de dimension 1.

On en deduit que R' est regulier en codimension < 1 et donc satisfait la condition
(Z?i) du critere de normalite de Serre.

Reste ä montrer que R' satisfait la condition ($2). On sait dejä que R est regu-
lier, donc Cohen-Macaulay. Puisque est une R-algebre plate, on deduit de [15],
Corollaire 6.3.5, que les fibres du morphisme Spec(R) -> Spec(S') sont de Cohen-
Macaulay. Puisque 5" est un S-module fini, les fibres du morphisme Spec(R') ->
Spec(*S") sont aussi de Cohen-Macaulay [15], Proposition 6.7.1, et donc satisfont la
condition pour tout L'anneau 5" etant normal, il satisfait la condition (S2).
Comme le morphisme Spec(R) -> Spec(*S) est plat, on deduit de [15], Proposi-
tion 6.4.1, que R' satisfait aussi la condition ($2).
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/n^graZ/^ On sait dejä que est noetherien et normal. C'est donc un
produit d'anneaux integres et normaux. Comme est separe et complet pour la

topologie /7-adique, il suffit de montrer que X Spec(/?7/?/?') est connexe. On

note Fi,..., Fy les composantes irreductibles de F : elles sont definies par les ideaux

Premiers minimaux jy de S7
Soient i>y 1'ideal premier de defini par jy, et zy (resp. u;y) 1'ideal pre-

mier de image inverse de jy (resp. i>y). Comme et sont plats sur 0^,
on a dim((*S7/?*S%y) dim(iS^) — 1 et dim((iS7^^0jy) dim(X^) — 1.

Comme et sont integres, normaux et est fini comme S-module, on de-

duit des theoremes de going-up et going-down que dim^.) dim(iSTy) et donc

0 dim((iS/= dim((S7Si m est l'ideal maximal de 0/^, alors

mS definit l'unique ideal premier minimal de au-dessus de /?. On en deduit que
1'image dechaque jy est l'ideal 0 de iS/mS. Comme Spec(/?//?/?) -> Spec(iS//7iS)
est surjectif et generiquement geometriquement irreductible, on conclut qu'on a un
et un seul point x; g X au-dessus de jy. Soit X/ := {x;}. Alors X/ est la seule

composante irreductible de X au-dessus de F;. L'anneau S" etant integre, normal et

complet pour la topologie /7-adique, F est connexe. Pour prouver que X est connexe,
il suffit donc de prouver que si F; H Fy 7^ 0, alors X/ D Xy 7^ 0. Soit u; G F; D Fy.
Comme l'application Spec(/?//?/?) -> Spec(iS//?£) est surjective, il existe z g X
au-dessus de u;. Comme Spec(/?//?/?) -> Spec(iS//?S) est plat et u; G F; {jy}
(resp. u; G {jy}), on en deduit que z g {x/} X/ (resp. z G {xy} Xy), donc que
z G Xj fl Xy, ce qu'on voulait.

En particulier, on deduit de la proposition 1 (3) que (8)5- et
iS (pour G N>o), sont des sous-anneaux normaux de Posons

GÄ/S =Gal(Ä[p-i]/S-Ä[p-i]),
Gal(Ä[p"i]/5 • Äoob"^]).

Fä/s Gal(5 • • *[/>"'])•

D'apres la proposition 1 (2) et (3), on a

s S (* ®s[ri,...,r«/] < • • • > ]) 5
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(remarquons que dans le cas oü 5 0, /.£. 0^, on a de sorte que
G/?/s G/? est le groupe fondamental de Spec(R[/?~*])).

On a donc la Situation suivante :

5 • /?

^oo[P *]

Les anneaux de periodes cristallines. (Cf. [7], 6.) Dans tout ce qui suit, si A est un

anneau, / c A un ideal ä puissances divisees et n G N>o, on notera x^ la n-ieme
puissance divisee de x G /.

Posons lnni^/y?R, les morphismes de transition etant donnes par le Frobe-

nius (cet anneau est note E dans [1] et dans [2]). C'est un anneau de caracteristique /?

muni d'une action de G/?/s. Comme d'habitude (c/ [12], 1.2.2), il s'identifie (comme
ensemble) ä

oü R est le separe complete de R pour la topologie y?-adique. En particulier, on
dispose dans des elements suivants :

e=
~ ^ ^(0)^ ^ ^ ^ ^

(on definit de la meme maniere des elements Zy G pour y G {1,..., 5}). Choisis-
sons aussi y? (y?, un Systeme compatible de racines y?"-iemes de y?.

Rappeions que le Frobenius absolu est surjectif sur R/y?R (c/ [7], Proposi-
tion 2.0.1), de sorte que le Frobenius absolu </9 est bijectif sur et sur 1'anneau

des vecteurs de Witt W(7ft). En particulier, si a G Z[y?~*], on pose e"
(avec w G N tel que y?"ar G Z), et [e"] dans W(7R).

On pose
^ (X)

0: W(7ft) -> R, (<3Q,<3I, i-> y?"^).
ft=0

C'est un morphisme d'anneaux surjectif dont le noyau est l'ideal engendre par £

Lp] ~~ P (c/ [7], Proposition 5.1.2). On note alors A^(R) le separe complete, pour
la topologie y?-adique, de l'enveloppe ä puissances divisees de W(7ft) relativement
ä l'ideal engendre par Ker(0) (compatibles aux puissances divisees canoniques sur



974 F. Andreatta and O. Bnnon CMH

l'ideal engendre par p). C'est une W(£)-algebre munie d'un Operateur de Frobenius
</9 (induit par le Frobenius sur W(ZF)) et d'une action de G/?/s. Par ailleurs, on a

log([e]) " IM*] " 1)^ e A^(0*) c
Soit ru une uniformisante de AT. On pose — W(£)

et F^ := aSq^ {F^\..., F^*}. Remarquons que Sq^ ®w(ä;) et

Lemme 2. 7Z exw/e zme SQ^-<zZge&re So mwn/e <Fmz rcZcvcmcn^ cr^ : So -> So rZw

FrcZ/cmws, zme FQ^-c7gcZ?rc Fo wiMn/g <Fmz rcZcvcmcn^ cr/^ : Fo FrcZ/cmws,

wn morp/z/.smc tZc SQ^-ßZgcZmcs So —>> Fo, ccmpctf/Z/Zc avcc Zcs FrcZ/cmws c£ tZcs

FcmC^/Z/AmCY SO ®W(fc) S (cn #We S ^-ßZgcZmCs) C^ Fo ®W(fc) F
(cn tan* gwc So ®w(fc) 0/v-ßZgcZ?rcs). Fn cw/rc, So (rcsp. Fo) FcZ?/7cn£ o par/Zr tZc

S<^ (rcsp. Fq^) cn zYeranf zm ncmZmcy/m <Zc/cF Zcs cpcra/Fms (c£), (Zoe) c£ (comp).

Demons/Po/Fm. Rappeions que S est ledernierterme d'une suite finieS^ c S^ c
•••csW S d'anneaux oü S^ + ^ est obtenu ä partir de S^ en utilisant une des

Operations (et), (loe), (comp) (rappelees plus haut) pour tout / g {0,...,// — 1}. On

va donc construire, par recurrence sur /, des extensions S^ c Sq^ c • •• c Sq
^

munies de relevements compatibles de Frobenius et des isomorphismes compatibles
Sq^ ®w(fc) S^.Pour/ 0, onchoisitn'importequelrelevement de Frobenius

(on peut prendre par exemple le morphisme defini par le Frobenius sur W(£) et

l'elevation älapuissancep surles variables Zi,..., Z5). Supposons Sq^ construit. Si

5Ö) c S^+^ est defini par (et), (loe) ou (comp), alors Sq VpS^ —

^ 0 +1) / txtaS G h- 1) est defini par une extension etale, une localisation ou par completion
par rapport ä un ideal 7^ respectivement. Dans le cas (et) ou (loe), il existe une et

une seule extension Sq^ c Sq*~^ qui est separee et complete pour la topologie p-
adique, sans p-torsion et qui releve Sq VpS^ c Elle est obtenue

par une Operation de type (et) ou (loe). Le Frobenius sur Sq^ s'etend de faqon unique
ä Sq Comme Sq*~^ ®w(ä;) est une S^-algebre separee et complete pour la

topologie p-adique, sans p-torsion, qui releve + ü existe un unique

isomorphisme Sq*~^ ®w(fc) S^ + *) en tant que S^-algebres. Dans le cas

(comp), soit 7^ c Sq
^

l'image inverse de 7^ et Sq le separe complete de Sq
^

par rapport ä l'ideal 7^. Comme le Frobenius respecte 7^, son relevement ä Sq^

respecte 7^, et le Frobenius sur Sq
^ s'etend ä Sq Notons que Sq Öjv

est le separe complete de S^ par rapport ä l'ideal de S^ engendre par 7^^ et ru.
Cet ideal releve 7^ : cette completion coincide avec 5^ + ^ par construction.

On construit Fo et o"/?q ä partir de aSo et de cr^ de la meme

maniere, en utilisant le fait que F est obtenu ä partir de aS {7^*,..., Fj^^} en iterant
les Operations (et), (loe), (comp).
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Dans ce qui suit, on fixe So c i?o et un relevement er: i?o ^ du Frobenius

comme dans le lemme 2. _
L'homomorphisme 0 s'etend par i^o-linearite en 0: Z?o ®z W(^?) -> /?. On

note alors AcrisC^o) le separe complete, pour la topologie /7-adique, de l'enveloppe
ä puissances divisees de i?o ®z W(^?) relativement ä 1'ideal engendre par Ker(0)
(compatibles aux puissances divisees canoniques sur 1'ideal engendre par /?). C'est
une i^o-algebre munie d'un Operateur de Frobenius a-lineaire </9 (induit par er (g) </9

sur ®z W(<??)) et d'une action de G^/5. Par abus, on la notera souvent Acris(^)
(et parfois meme Acris si le contexte s'y prete) bien que l'anneau Acris(^o) depende
du choix de

Dans Acris(^), on dispose des elements u;y Zy — [Zy] pour y g {1,..., 5} et

w, 7/ — [7/] pour i G {1,..., e/}. Parmi les proprietes de A^(i?) et de Acris(7?)

qui vont nous servir, citons :

• Acris(7?) A^g(/?){(u;i,..., W5, wi,..., wy)} est le separe complete, pour
la topologie /7-adique, de l'anneau des polynömes ä puissances divisees en

uq,..., uq, wi,..., wy ä coefficients dans A^(i?) ([7], Proposition 6.1.8);
• les anneaux A^(i?) et Acris (7?) n'ont pas de /7-torsion ([7], Propositions 6.1.4

& 6.1.10), ni de ^-torsion ([7], Corollaire 6.2.2).

Onpose alors A^(/?)[*~*] etBcns(^) Acris(#)[?~*], qu'on munit
de la topologie de la limite inductive. Bien sür, on a des constructions analogues avec
S (en utilisant So), et on a une application naturelle Acris (So) -> Acris (^o)-

Si r G N, on note FiF* Acris(^) la r-ieme puissance divisee de 1'ideal Ker(0).
C'est l'adherence dans Acris(7?) de 1'ideal engendre par les produits

pour («0, • • •,^y+s) £ que |^| > ^ Qn munit Bcris (7?) de la
filtration {Fir Bo-isC#)},.^ definie par FiF Bcris(^) FiF+" Acns(^)

(muni de la topologie de la limite inductive) pour tout r G Z.

Dans tout ce qui suit, les anneaux Acris (7?) et A^(i?) sont munis de la topolo-
gie /7-adique. En particulier, les groupes de cohomologie galoisienne auxquels on
va s'interesser sont des groupes de cohomologie continue (calcules au moyen des

cochaines continues).

Definition 3. Pour <7 g N, on pose

H*(G*/s,Bcris(Ä)) := lmH*(G*/s,r" Acris(*))

et

(G/j/5 Fir Bcris (7?)) ljm H*(G*/s, Fif+" AcrisW).
«>|r|
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Remarque 4. A pnon, il n'y a pas de topologie sur Bcns(^) teile que la definition
qui precede coincide avec la cohomologie continue de G/?/s ä valeurs dans Bcris(^)
et FiF Bcris(^). Notons ä ce sujet que £ Acris(^) ^ Acris(^) n'est ni ouvert, ni ferme

pour la topologie #>-adique.

Le but de cet article est de prouver les resultats suivants :

Theoreme 5. (l)S/g G N>o, on a FF(G/?/s, Bcris(7?)) 0;

(2) on a H»(Gä/s, BcrisW) (*o®s<> Aorist)) [r^].

Theoreme 6. SozY r g Z.

(1) 5/ N><>, onaH«(GÄ/s,FU'"Bcris(Ä)) 0;

(2) on aHÖ(G^/5,Fir Bens W) lim (^0®5o FiK+" Acri»(S)).
>77> |r |

OnetudiepourcelalesgroupesH^(G^/^,Acns(^))pour# g N.CommeG^/^
G^o/sb ^ Acns(^) ne depend que de Ro et 5o, on peut supposer que 7? Ro et
5 5o, ce qu'on fait par la suite.

Le theoreme 5 est la conjonction des corollaires 24 et 31, et le theoreme 6 la

conjonction de la proposition 34 et du corollaire 42.

2. Descente presque etale

Dans ce qui suit, si A est une 0/^-algebre, on notera 1'ideal de A engendre

par la famille ~ 1 }^eN * Remarquons que nrj Soit : lim 0^/0^
(oü les morphismes de transition sont donnes par le Frobenius). On note J 1'ideal
de W (E©*) engendre par (<?""([£] - 1))„<=n>o {M' * *= *=

Rappeions (c/ [7], Lemme 6.3.1), que pour tout /z G N>o, on a J c +

p"W(EoJ.
Posons (c/ [4], §2.6) W (E^) avec E^/s Hm^ S^oo/^S^oo

(oü les morphismes de transition sont donnes par le Frobenius). Puisque *SRoo ^
R est normal d'apres la proposition 1, l'application 5Roo/j^^^oo est

injective. En particulier, A+^ est un sous-anneau de W(^?)^/^. Comme on a un

isomorphisme 5 (8)5 Roo £^00 (proposition 1), et comme le Frobenius absolu est

surjectif sur 5/(c/ [7], Proposition 2.0.1) et sur Roo/T^oo (#/• [1]» Corollary 3.7),

il en est de meme sur 5Roo/En particulier, 0 (A+^) 5Roo- Puisque 5Roo

est normal, on deduit comme dans [7], Proposition 5.1.2, que Ker(0) D A+^ est

engendre par l'element £ [p] — /?.
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Soit A^(i?/iS) (resp. Acns(^/£)) le separe complete, pour latopologie /7-adique,
de l'enveloppe ä puissances divisees de (resp. i?o®w(A:)A^^) relativement au

noyau du morphisme ^ (resp. $. /^q^w(A:)A^^ ^ *S/^qq).

Lemme 7. Les

Acris (*)//>" Acns (*))

son* par Jpowr rgN>o d # G N>o-

W„(EJ/s)^W„(^)^,
A^(*/S)//>» A£,(Ä/S) - (A^(Ä)//>" A^(*))"*'*

Acns(«/5)//7" Aens(Ä/5) -> (Acn»(Ä)//>" AensW)^
soft/" Zftjecft'ves <7<? tae /?<zr J.

Eq/m,

Al(Ä/5)/p" A^(Ä/S) S W„ (EJ/s){£>

(Z'<znne<zw (E+ 0 /-+ (E^/^)(T) des poZynora^ ß

d/v/sees £, ow (E^)[r] —> (Ej^) ^ Ze (E^^)-
ßZg^res £m;6>y<2ft£ r swr £) ef

Acns(Ä/5)//7« Ac„»(Ä/S) A^(Ä/S)//>" A^(tf/S)(u;i, u;«, Ml, Mrf)

(Z'ßmz^ßw despoZynora^ßpwZ^ß/zc^ d/v/sees^iri,...,^,wi,...,wj, OMW;j :

Zy — [^y] 7) — [7)]).

Demönsfraftön. On a des applications

a„ : W„ (Ej/s)(t) -* A^(/?/5)/p" A7„„(Ä/S)

et

: A^(Ä/S)/p" A^(Ä/5)(u)i,..., w«,«i,..., m^)

Acns Acns (Ä/S).

Pour prouver la derniere assertion du lemme il suffit de prouver que ce sont des

isomorphismes.
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D'apres le theoreme de purete deFaltings (R abonne reduction, c/ [9], Section 2,

Theorem 4), le groupe FP(//r/ss R) est presque nul (/.<?. tue par m#-) pour tout

g G N>o- II en est a /örft'ori de meme du groupe FF(ZCr/s> R//?R). Pour tout
m G N, on dispose de l'isomorphisme

R//?R,

,...,xi, Xo) i ^ x^

(c/ [7], Proposition 5.1.2). Cet isomorphisme envoie l'image de {x G R, x^ G

/e. l'image de J (dont l'image modulo /? coincide avec celle de {x G
A^

R, x^ G mg_}), sur l'image de tttö-. Le groupe TP(Z/r, R/j5^"R) est donc
A^

tue par {x G R, x^ G mg_}.
• Montrons l'assertion sur FF (Z/r/s, W^(R)). Commenqons par traiter le cas

1. La topologie /Ladique sur R n'est autre que la topologie induite par la topo-
logie produit sur (R//?R)^ (oü chaque facteur est muni de la topologie discrete), de

sorte que R est separe et complet pour la topologie /Ladique. D'apres [20], Propo-
sition 2.2, pour tout g G N>o, on a la suite exacte

0 -> R* limH«-i(//Ä/s,^/^'"^)
m

-> H«(^/s,^) -* -> 0

m

(R/R est muni de la topologie discrete).
D'apres ce qui precede, TP (//r/s, R/j5^R) est tue par Jpour tout m G N,de

sorte que hm FF (//r/s R/R) aussi. De meme, le groupe

Ri lim (7/r/5 #)
m

est tue par J si g > 1. C'est encore le cas lorsque g 1. Pour tout m G N, on a

FI® (Z/r/s, R//?^R) — (/?//?R)^/^,etlesmorphismesdetransitionsontdonnes
par le Frobenius. On a la suite exacte

0 -> 5Aoo/^5Aoo -> -> hH^ä/S, Ä).

Comme le Systeme projectif {SRoo//?£Roo}«eN>o a ^ propriete de Mittag-Leffler,
on conclut que R* hm SRoo//?SRoo 0- Comme en outre Fl*(//r/s, R) est tue

par nt0-, cela implique que R* hm Fl® (//r/s, R//5^R) est tue par J, ce qu'on

voulait. On deduit aussi que le conoyau de l'application injective SRoo//?SRoo
(R//?R)^/s est tue par J. En prenant la limite projective relativement au Frobenius,
on en deduit l'assertion sur les invariants sous //r/s-
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Si g N>i, on a la suite exaete 0 -> W„_i(7ft) -> -> -> 0 et une
section continue d'ensembles topologiques -> W„ (Tft) donnee par le Teichmüller.
On a donc la suite exaete

• • • -> H«(//Ä/s (//*/S, W„ (#)) -> —> • • •

pour tout # g N. Par recurrence, on en deduit que TP (//r/s, W„ (</?)) est tue par
et donc par J pour g > 0 vu que J c W (</?). Pour g 0, on conclut que

l'application (E^^) -> est injective de conoyau tue par J.

• Montrons l'assertion sur

H«(f7*/S, A^(tf)/p" A^(/?)) et Acris(*)//>" A^is(*))•

Pour alleger les notations, on va noter et Acns au lieu de A^(/?) et Acns(/0-
La encore, commenqons par traiter le cas « 1. Comme on a un isomorphisme
G^/^-equivariant

de sorte que l'action de ///?/s est triviale sur <5o,..., (c/ [7], Corollaire 6.1.3),
on en deduit que pour tout g g N>o, le groupe TP(///?/s, A^ //? A^) est tue par
{x G x^ G mg_}, c'est-ä-dire par J. L'application

~ ^^oo//>S/?oo /?//?/? <^/

est injective parce que *S/?oo ^ /? est normal. En particulier, puisque E^/^ c
et sont sans /Ltorsion, l'application E^^/j5^E^^ -> est injective.
L'application

Er/S(£) (E^/5-/^^E^^)[5O, .]/(^)„GN

-* W*)[«„, «1 .]/(^)»N
est donc injective. Cela implique que öq est injective, donc un isomorphisme et que
l'application A4(A/S)/p A^JK/S) -> (//«/«• A4 /p A4) est injective, de

conoyau tue par J.
Comme A^ est sans /7-torsion ([7], Proposition 6.1.4), pour tout« G N>i, on a

la suite exaete

0 -* A4 /p A4 -* A^ /p" A4 -* A4 /p"-» A,

et donc la suite exaete

H« (//«/.v, A4s /P A4) ^ H«(//«/,-, A,4 /p» A^J
^H^(//«/5,A4/p"-iA4)^....
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Si H^(Z7r/,s, est tue par J pour g e N>o, alors

A^)
est tue par 1^ et donc par J vu que J c A^. Une recurrence immediate im-
plique donc que FP(//^A^) est tue par J pour toutn g N >o et tout g g

N>o, que l'application A^,(/?/S)//>" A^(Ä/5) -> A^ //?" A^) est

injective, de conoyau tue par J, et que l'application est injective, donc un isomor-
phisme.

D'apres Proposition 6.1.5 dans [7] on a

Acris />" A„is A^ //?" A^(u>i, W«, M i, Mrf)

^ A„is /j?" A^[wi, Wg, Ml, Mrf][Zy,o, Z^,. 7},o, 7^, ]
(wj - pZ/,o, wf - /?7i,o, 7^ - /?7}^+i)^6N>0

1</<J

En particulier, c' est un A^ /A^-module libre. Comme 1' action de est trivi-
ale sur wi,..., u;^, w i,..., w</, on en deduit que FP (//r/s, A^s /Acris) est tue par
J pour g > 0 et qu'il contient A^(/?/S)/A^(/?/S)(u;i,..., wi,..., w</)

pour g 0, le quotient etant tue par J. En particulier, l'application Z^ est injective.
D'apres la proposition 47, la structure de /?o-algebre sur

Ajns //>" A£>i,..., u;«, MI, Mrf)

definie dans [7], Proposition 6.1.5, se factorise ä travers

Ajris(^/^)/P" A^(/?/5)(U;i, u;«, Mi,... ,M«/).

On en deduit, d'apres la propriete universelle de l'enveloppe ä puissances divisees

Acris(Ä/*S)/Acris(/?/£) de ®w(fc) ^j^/5/relativement ä Ker(0), que
l'inclusion

A^(tf/S)//?" A^(ä/5)(u;i, u;«, Mi,..., Mrf) c Acris(Ä/5)/p" A^*/V>
admet un inverse ä gauche, et donc qu'elle est bijective.

Proposition8. Ponrton/^g g N>o,

H«(^/s,A^(/?)) et H«(^/s,A^sW)
son£ /r/es par en pnr/ZcnZZe?; on n

H«(^/s,B^(/?)) H«(tf*/s,Bcris(*)) 0.

On n des ZncZns/onsA^(/?/S) c (A^(/?))^*^ et Acris (/?/£) A^(/?/S) c
Acrisdont Zes conoyonv sont tnes pnr J.
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La deuxieme assertion resulte du lemme 7. Traitons le cas de A^is (R),
celui de A^ CR) etant analogue (et plus simple). Comme lors de la preuve precedente,
on va noter A^ et Acris au lieu de A^(R) et Acris CR) pour alleger les notations.

D'apres [20], Proposition 2.2, pour tout g G N>o, on a la suite exaete

0 -> Rl BmH«-' (^Ä/S, Acris /p" Acris

> Acris Acris /p" Acris 0

(Acris /r" Acris est muni de la topologie discrete). D'apres le lemme 7, pour tout
g e N>o, le groupe Hm H'' (/7«/s, Acris /p" Acris) est tue par I.

De meme, si # > 1, le groupe R* lim (#r/s, Acris /r" Acris) est tue par J.

Montrons que c'est aussi le cas lorsque # 1. D'apres le lemme 7 on a une suite

exaete

0 > Acris (P/S)/p" Acris(*/£)- > Acris /P" Acris m„ -> 0

oü est un (E^^)-module tue par J. On a donc la suite exaete

Ri Hm Acris(*/S)/p" Acris(P/5) -* R* HmH®(^/s > Acris /P" Acris

—R^ lim —> 0,

oü R* Hm est tue par J. Comme (Acris(R/S)/r" Acris(R/S))«eN>o ^ ^ P-
priete de Mittag-Leffler, on a R* lim Acris(^/aS)/Acris(R/S) 0, de sorte que

<—«
R* Hm (//r/s, Acris /r" Acris) R* Hm est tue par J.

3. Descente de la tour RooS[r~*]/R^[R~*]

PosonsEj oü Gal(P[p-']/Roo[p~M)-

Lemme 9. Rowr tz G N, Z7m<zge Erobernws swr R^+i/rR«+i est a

R«/RRji*

Comme on a suppose R defini sur 0^ W(£), on deduit de

la proposition 1 (2) que ^ (5//>S) £[^"\ Zf" Z/" ]

et P„/pP„ ^ (Ä/pÄ) ®5[ri,...,rrf] S„[P/" P/" ]. En particulier, l'image
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du Frobenius sur aS^+i//?£«+i (resp. R«+i//?^«+i) est contenue dans

(resp. /?R«). On deduit de la preuve de la proposition 1 (2) que l'image du Fro-
benius sur R«+i/est exactement

On definit alors le sous-anneau de par E^ := Hm oü les mor-

phismes de transition sont donnes par restriction du Frobenius de R //? R ä R„ //?R„ C

R//?R pour n G N. Rappeions (c/ [2], Proposition 4.42 & Remarque 4.43, c/ Ap-

pendice) qu'on dispose d'un sous-anneau AJ de W (E^), stable sous l'action
de </9 et de et caracterise par les proprietes suivantes :

(1) [e] G A^ et [7/] G A^ pour tout Z G {1,..., <Z} ;

(2) A+/pA+ ~ E+ ;

(3) AJ est complet pour la topologie faible.

Posons (c/ [4], §2.6) A+^ W (E^^) avec E^^ lim SRoo/(oü
les morphismes de transition sont donnes par le Frobenius).

Notons A]j^£ (resp. E+^) l'adherence dans A+^ (resp. dans E^^) du compose

A^A± (resp. E^ E^) pour la topologie faible.

Lemme 10. Z/onneon Ze sepore cora/?Z^£ rfe AJ A± ponr Zo topoZogZe

de/ZnZepor Zes ZrZ^rzwx (/?"*, ([£] — 1)")^ „eN>o' ^ ^ ^
Ze sepore cora/?Z^£ <Ze E^ (g^+E^ ponr Zo fopoZogZe (e — l)-o<ZZgn£.

(i) <p: A+^ -> A+^ es* Zi'&re Je rang Je &ase ([7i]"i • • •

(ii) Ronrton^n G N, Z^ A^^-m6>rZwZ^^9~"(A^^) A)^[[Ti] [7^] ] c
A^" ZZZ?re <Ze Z?os£

~ Q' i ~ aj

(iii) Z/onn^on U«eN ' • • •' IT<z]^" ] ^ tZons A^^ ponr Zo to-
poZogZe/oZWe.

Enpor/ZcnZZe?; sZ onpose E„ r"(Z[r~*] D [0,1[)^, on o

^Ä/s/^"^Ä/S ~ /?/,$)//>"<£>" (A^/s))[r]

(on Zo feorre rZesZgne Ze compZ^ ponr Zo topoZogZe/oZWe).
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Deraon^ra/Yon. Comme l'anneau *SZ?oo est normal (proposition 1), la projection de

sur le n-ieme facteur *Si?oo/identifie

Ej/s/K - l)Ej/s

ä aSZ^oo/— l)5/?oo. En particulier, on a

E+ ®E+E|/(e*" - l)Ej ®e+eJ S/(e<" - l)/?„ ®s„ 5

d'apres le lemme 9. Notons que (8>s„ S/(e^ — l)i?w (8>s„ S est un sous-anneau

de *Si^oo/— l)*S^oo par normalite de (8>s„ *S (proposition 1). On en deduit
que le compose

Ej ®e+E|/(^" -1) E+ ®^+E± -+ E+^ /(^" -1) E+^ - Ej/s/(^" - l)Ej^
est injectif et donc que le premier morphisme, etant surjectif, est un isomorphisme.
Comme p est un element regulier de Ajj^, on en deduit par recurrence que pour tout

n,m G N>o, l'application

Aj ®a+ ([®] - - Ä+/,/(r, ([e] - 1)")Ä+/,

est injective, ce qui prouve la premiere assertion.

Le reste du lemme se prouve modulo p. II resulte alors de la preuve de [4],
Lemma 2.7 (2).

Notons Aj (resp. A„) l'image de <p"(A^) A^(S) (resp. <p"(A^) Acris(S)) dans

(A^u(Ä)/p" A^(Ä))^/s (resp. (Acris(Ä)/p" Acris(XD^^), pour« e N>o-

Lemme 11. Ponr Z G {1,... <7}, on o [e]^" 1 Jons ^ ZVZeraen^ y;
fnv/ßZemen/" snr

D^mon.strafZon. Comme

(X)

[e]*" - 1 exp(p"f) - 1 X) ^ p" Aorist)
r 1

l'action de y; sur ([?}]) est triviale modulo p" Acris. H en est donc de meme

de l'action sur l'image de ^(A^o>) dans Acris /p" Acris. Notons (resp. /„) le

compose de avec l'application naturelle A*^) Acris /p" Acris (resp. A^ ->

Acris /Acris). On a alors y; o /^\ Soient p: A^ -> /?/pi? le compose
AJ -> EJ -> /?/pi? (projection sur le premier facteur) et p„ le compose de p avec

/?/pi? C /?/pi? et la puissance n-ieme du Lrobenius sur /?/p/C
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Comme 1 mod A^-is, le morphisme (respectivement /„) se fac-

torise par /„^: /(/?", [g] - 1) -> Acris />" A„-is (respectivement /„ : A+/(/?",
[e] — 1) -> Acris /Acris). De meine, le morphisme se factorise par : AJ/(/?",
[e] — 1) -> On a le diagramme commutatif

Aj/0",[e] - 1) —

^J?(0) / M ~~
-(o)

^ Acris /Acris •

Az

Montrons que le morphisme A+<o)/(/>", M - 1) -> A+/(/7", [g] - 1) est relative-

ment parfait. D'apres le lemme 45, il suffit de montrer que E^) /(^ — 1) E^o>

E+/(g-l)E+ est relativement parfait et que A^o> / (/?", [e] — 1) -> A^ / (/?", [e] —

1) est plat. Le premier point resulte des isomorphismes E^ /(e — l^E^ ~
et E^ /(e — 1)^E^ ~ (c/ lemme 9), et du fait que

/?(o)/-> /?/est relativement parfait (lemme 46), par changement de base

(proposition 1). En vertu du critere local de platitude, le deuxieme point resulte de

la platitude de E^ /(e — l)E^o> E^ /(e — 1)E^ (car (/?, [e] — 1) est une

suite reguliere dans A^o> et A^), qu'on deduit de celle de i?^/-> /?/
de la meme faqon qu'on prouve que E^o> /(^ — 1) E^o> -> E^ /(e — 1) E^ est

relativement parfait.
Comme la puissance p^-ieme de chaque element du noyau du morphisme

Acris //?" Acris -> /?//?/? est nulle, la proposition 47 implique qu'il existe un et

un seul morphisme de A+^-algebres AJ / (/?", [e] — 1) -> Acris /Acris compatible

avec et dont le compose avec Acris /Acris -> coincide avec l'applica-
tion En particulier, puisque y; o et y; o on en deduit que
Äi 7/ ° de sorte que y, agit trivialement sur l'image de </9^(A^) Acris(£) dans

Acris /Acris« d

Posons

A„= 0 A„[ff et X„= 0 A„[ff.
ae£„nN^

(3i)a/£N

Ce sont des sous-Acris(S)-modules de (AcrisC^)/Acris(^))^^ stables sous l'ac-
tion de y; pour tout / G {1,..., d}.

Proposition 12. L'appZ/ca/fon

A« (Wi, W^/) 0 X„ (wi, W^/) ^ Acris(^/*^)/Acris(^/*5)
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wn /soraorpferae.

Deraons/ra/rAn. D'apres la description de (i?/S)//?" A^(/?/£) du le lemme 7,

on a

A^(*/S)Ap" A^(*/S) - A^(S)//,» A*,(S) ®x+,„„x_+ Ä+^/p"Ä+^.

On deduit du lemme 10 que A+^ / (/?",[e] — 1) est un A+^ / (/?", [e] — l)-module libre

de base {Trl~j ^ pour tout w G N>n. Comme <z> est un isomorphisme^ 'ae(z[p-i]n[o,i[)
sur A+^, onen deduit que A+^/(/?", [e]^" — 1) estun ^(A^^)/(/?^, [e]^" — 1)-

module libre de base {[r]~}«e£„. Comme [e]^" 1 mod /?" Acris(S) (voir la

preuve du lemme 11), on conclut que

Al(tf/S)/p"A^(tf/,S)- ® (A^,(5)/p"A^(5)®x±^(A+^))[f]-.
«e£„ ^

En particulier, en regardant la composante correspondant ä a 0, on en deduit que
l'application A^(S)/p" A^(S) <8>j+ <p"(A+^) -* A^(/?/5)/p" A^j(Ä/5)
est injective. Par definition et injectivite de

A^(Ä/S)//>» A^(Ä/5) A^(*)//>" A*,(Ä),

son image est Aj. D'apres le lemme 7 on a

Acris(*/S)/p" Acris(Ä/S) A^,(Ä/5)/p" A^(Ä/5)(u;i,..., u;«, m,..., w*)

et, en prenant le cas i? S, on a

Acris(-S')//'" Acris(S) A^(S)/p" A^(5)(w;i,..., u>a).

En particulier, onad„ Aj(uq,..., u;^), ce qui prouve la proposition.

Dans une premiere version de ce travail, on avait prouve que le noyau et le conoyau
du morphisme precedent sont tues par J. Les auteurs remercient le rapporteur pour
avoir suggere la proposition adoptee ici. Dans ce qui suit, nous allons prouver que

1/^
1 2

X,j(wi,..., w</)) est tue par (l — [e]^) si g G N (proposition 16),

H^(r^/5, A„(wi,..., w</)) est tue par (1 — [e])^ si g > 0 (proposition 21).

Contröle de la cohomologie de X„ (wi,...,

Lemme 13. Sozenf a, a' G N, aZors 1 — [e]" d/v/se 1 — [e]"' Jans A^ 5/ ef seM/emenf

si Vp(a) < i^(a')-
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Demons/ra/ron. Posons 1 + [s]F H b £ VF|[£]F ~~ !]• Si (1 — [e]") |

(1 — [e]"'), onaii« | Comme l'image de w« par le morphisme — 1] ->
VF; [s]F i-^ 1 yaut«,onaaf | ck' dans VF, et donc v^(cif) < £p(cF). Lareciproqueest
evidente.

Rappeions (c/ [12], 5.1.1) que 1 — [e] (l — [e]^)£ oü f G A^_ est un gene-

rateur de Ker(0).

Lemme 14. PowrZ G {l,...,J}^iV G N, ona

(Kj - 1)(«H e (1 - [#) X AerisCö^w^l
ra=0

Demönstfrariön. On a

yi(w«) Ki'F' ® 1 - 1 ® [r;]) 7i <8» 1 - 1 <8» [e][7}] «i + (1 - [s])[7/].

Pour ZV G N, on a donc

k<("F') ("i + (i - M)[^])^

E «i - wiifi])''"'»!*'"'"'
ra=0

A
+ x<* -

ra= 1

et donc

(Kl - ^ (1 - XI Acris(ö/f)MF- ^
ra=0

Lemme 15. SoZ* A wn ^6>w^-Acris(öjv)-^öJwZ^ rfe staWe sows Z'ac/Zon rZe y/.

(1) Lorsgwe Coker (y; — 1: A -> A) ^ par 1 — [e]^, ZZ en est rZe raerae rZe

Coker (y,- - 1: X(w,-) -» X (w,-)).

(2) Lorsgwe Ker (y; — 1: A -> A) ^ par 1 — [e]^, ZZ en rZe raerae rZe

Ker (y,- — 1: X(w,} -* X(w,)).

Demons/ra/Zon. (1) Soit & ^ A(w/). Supposons ZV > 0. Comme

Coker (y, — 1: A -> A) est tue par 1 — [e] ^, il existe G A telque (y; — 1)(öa)
On a alors

(y,- - 1)(öjvmF^) y/(ajv)(y/ - l)(wj^) + (tt ~
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et donc

(1 - [e]p)Z> - (y; -
-yi(«iv)(yi - + (1 - [e]^) XI

ra=0
7V-1

e (1 - X lemme 14).

ra=0

Une recurrence immediate montre donc que (l — [e]^)X(w/) c Im(y; — 1).

(2) Soit Ä ELo e *<«,•>. On a

TV

(y« -1)(0 X (y»'(M(y« - + (y* - i)(6m)4"A (*)
ra=0

D'apres le lemme 14, le coefficient de dans (*) vaut (y; — 1)(Z>#) ' il est donc

nul si (y; — 1) (Z?) 0. Comme Ker (y, — 1: X -> X) est tue par 1 — [e] ^, on a donc

(l — 0. Comme

(y; - ^ (1 - X AcrisCÖ*)"!"^
ra=0

d'apres le lemme 14, il en resulte que y/(^)(yi — l)(w[^) 0, et donc que

(y/ — 1)(Z>') 0 avec Z/ Une recurrence immediate montre donc

que (l — 0 pour tout m e {0,..., Af}.

Proposition 16. 5/ # G N, Ze raodwZe H^(r^/5,X^(wi,... est twe par
(i-[«]*)*•

Demönstrat/ön. Pour Z e {1,..., d}, posons

Xf ® ^p-
«i-_i eN

c^N

C'est un sous A^-module de stable par y; et on a

— y(1) m Y® m m Y^)— ^2? VC7
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Si a G est tel que aq,... ,a;_i G N et ar/ ^ N, on a (y; — D([rf)
([e]^'—l)[r]~.Commear/ <^N,onaa; G (Z[/? *]D[0,/?"[)\N donc 1^(0?/) < —1,

et 1 — [e]"' divise 1 — [ep dans A^_ (lemme 13). Ainsi
AT

(l-[e]i)[ff G(K, -1)(X«)

/.e. Coker (y; — 1: -> X^) est tue par 1 — [e]^. Par ailleurs, si

x= X
«i eN

on a

(y» - nco XI ~
aeis„

si (y; — l)(x) 0, on a (l — 0 et a /om'on (l — 0

pour tout a G tel que aq,... ,a;_i G N et a/ ^ N. Cela signifie donc que

Ker (y/ — 1: -> X^) est tue par 1 — [e] F.
D'apres le lemme 15, les modules

Coker(y,-l:X«(w,-)^X«(w,))
et

Ker(y,-l:X«(w,)^X«(w,))

sont eux aussi tues 1 — [ep. Comme y; agit trivialement sur wi,..., w/-i, w/ + i,
w</, il en est de meme de

Coker (y,- - 1: x£>(wi,..., w*) -> X«(m,...,«*»
et

Ker (y,- -1: Xj^(wi, m^) X^(mi,

La suite spectrale de Hochschild-Serre pour la suite exacte

0 -> Zp y, -> Fr/r -> Fr/s/Zp y, -> 0

appliquee ä (wi,..., w^) s'ecrit

H' (Fr/r/ Z, y,-, H' Z, y,-, X£> <wi,..., w«,>)) IT+' (Fr/r X« (m i }).

Comme FL (y;, X^ (wi,..., w^)) est nul pour s > 1 et tue par 1 — [e] F pour

^ G {0,1}, l'aboutissement FF+^(rR/s,X^(wi,..., w</)) est tue par (l —
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Contröle de la cohomologie de («i,...,
Lemme 17. On n ([e] — 1)^~* g /7 Acris(ö^).

Demons/ra/ron. On a (I - 1)^ X^ — 1 mod /7Z[X] et donc (X — 1)^~*
1 + X + • • • + X^~* mod /7 Z[X]. En particulier, on a

([«fi - 1 + H 1- mod ^Acris(ÖA:).

On a donc

1 / i /?—1\/>—i / i \/>—i
([e] - 1)'"' (l + [e]* + ••• + [e]~) ([*]* - l)

ee (l + [e]i H h [e]^")^ mod p Acris(Öir)

0 mod pAcris(ö^)

X /?— 1

vu que 1 + [e]/> + ••• + [e] ^ G Ker(0: Acris(ö^) -> ö^) a des puissances
divisees.

Lemme 18. Ponr y g N >2, on <2

(1 - [6])^ (1 - [e])j8;

avec ßy G Ker (0: A„is(Ö/i:) Öp).

Demons/ra/ron. Si /7 | y, on a /3y 4(1 — [e])^'"^ G Ker (0: Acris(ößr) ->
Si y /?m, on a

(1 - [e]) [/] _
(1 - [e])^"" _ mlp"« (1 - [e])^-»"« (1 - [e])"

(/7m)! (/7m)! /7 m!

> j. m — /»»-.K«^ ^ ^(0?m)!) ~ ^ ;Am) + m — ^ ^s(m) (oü s(m) 5(/?m) designe la somme

des chiffres de l'ecriture de m et de /7m en base /?), et donc ^(^£yy) 0 • Tele-

m'w • x i- -a—i n-iyh(^~Dment est une unite /7-adique. En outre, on a *—Eü_ (-— G

Ker (0: Acris(ö^) -> (c/ lemme 17). On conclut gräce ä une recurrence sur

m > 1.

Soient i G {1,..., d} et une sous-A„-algebre de (Acns(^)/AcrisCR))^*^
fixe sous y/. Pour m > —/7", notons le sous-<£/-module de Acris (i?)//?" Acris (i?)

engendre par K'" .L,x(<>,-,»)<« <p< P°ur 0 < a < p". Remar-

quonsqueir« „ de sorte que {i^ } m>-p" engendre la sous-<£/-algebre
0<a</>"
ra+a>0
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.c/[[f,]](;o) de (A„is(R)//>" Acris(ß))^*^ engendree par [7}] et {wj }meN- Re-

marquons qu'en general, cette derniere n'est pas isomorphe ä l'anneau des poly-
nömes ä puissances divisees en w, ä coefficients dans (car on peut avoir
Ker([e] — 1: -> E On a

^p]](«/)= E E ^ra>—ra>—max{—ra,0}<a</>"

et donc la Situation suivante :

oü le point de coordonnees (Af,a) represente le sous-<£/-module de £/[[7/]](w/)
engendre par

Soit 0 < of < tel que m + a > 0. On a

/^[ra+a] ^
[e]"(y.- - 1)

fr]" y

\ [m+a]
(„. + (i _ [e])[7}]) [«+«]

[e]« '

[7i]" ' ' [7}]"
[ra+a] [m+a-1] [m+a-2]

+ (i _ [£])[-+-]—1
[7/] [^']

(I) Si max{0, —m} < of < on a donc
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[efO, - 1)(^)
(1 - [g]><»> + (1 - [g])iß + (1 - [g])^-2 + ••• + (!-

991

e^(w)
Ja+I]„(m-P") i i+ fr-ra-' + ••• + [r,y (i -M)

l2p"n r„n[a+p" + l]„('"-2/'")+ [7<]^ (1 - [e])l' vcr'+ [a+2p"],,(m-2p") + '

^(^-2/2")

(II) Si a /?", on a [e]^" 1 (lemme 11) et donc

Ol - OO^n')

(1 ~ [g])tffl.i + (1 - [e])^^2 + ••• + (!-
e^(w)

+ [ii]'"(i - + ••• + [öf o -

+ [f<f(1 - + + (1 _ [e])^"]^^") +...
g^(m-2/7»)

Rappeions (lemme 18), que si y e N>2, on a (1 - [g])^ (1 - [g])£/ avec

Posons Z) min{/7^, /?" + m} et

^D-2 >ÖZ>-1 £/> \
ßö-2 AD-1

Aö-2

A •^cns.(©*) —> <

(1 ^2 ^3

öi l 182

0 «2 1

e Mß (Acns(ö/i:))

1 ^2 /0

^D-2 1 ^2
0 1

oü on a pose a,- e AcrisCÖ*) pour ; e {1,1}.
Lemme 19. L7raag£ de Za raa/Wce dans M^> (Acris(ö^)/z>" Acris(ö^)) est
znversi&Ze.

Demönsfradön. Montrons que son determinant est inversible. Comme les elements
de

Ker (0: Acris(Ö*)/p" A^slM -* <%//>"%)
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ont des puissances divisees, ils sont nilpotents : il suffit de voir que le determinant de

l'image de dans est inversible. Mais cette image est unipo-
tente (l'image des est nulle).

Proposition 20. Le conoyon Je y; — 1 swr est /^wepor 1 — [e].

Demon^/^raJon. On a

^p]]<".->= E
ra>—

Montrons par recurrence sur m > — que (1 — [e])^^ c (y^ — l)(^[[7}]](w/)).
Pour m —/?" + 1, on a ^et
Supposons m > —/?" + 1. Par hypothese de recurrence, pour r e N>o, les

elements de (1 — sont dans l'image de y; — 1 sur ^[[7}]] (w/) : comme
(1 — [e])^ G (1 — [e]) Acris(ö^) (c/ lemme 18), les identites (I) et (II) impliquent
les congruences modulo ^<eN>o(1 ~~ ^ suivantes :

(y/ - l)([e]"v^)

- (i - [*]>« + (1 - + (i - +...

n — [«])(v-a4"'' + ^a-l + + ••• + ßa-p»+.E>t$?L>)

pour max{l, —m} < a < /?", et

(y/ -1)(^)
(1 " [e])t#h + (1 - + ••• + (!-
<1 - [£])(»^1, + Ä#!, + -. +

On a donc (y; — 1)(IP^) oü est la matrice introduite plus haut

e" «i - M)#!,. o - <i - [*])#!*,)

et est un vecteur ä coefficients dans £/[[7/]](w/). Comme l'image de la ma-

trice est inversible dans (Acris(öxr)/Acris(öxr)) (lemme 19), le vec-

teur est ä coefficients dans (y; — l)(^[[7/]](w/)), et donc (1 — [e])^"^ c
(y/-i)(^[[7/]](«i)).
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Proposition21. S/g > 0, A„(wi,..., w</)) (1 — [e])^.

Demönstrat/ön. Pour i G {1,..., d}, posons

/a / \\7/7<i
/av,-/ \ y/ + i®-®Z^

C'est une sous-A„-algebre de (wi,..., wj) sur laquelle y; agit trivialement.

Soit A<? A„[[f;]]i<y<rf c A?. On a A„ ®£l"i A<?[7}]", d'oü

(A„(wi, M,- + 1,
^' + 1®'"®^ ^ (y

/>" —1

©/ i CO / \\^P y/+i®"°®^£> y<i ~io?

Cf=0

et donc

(A„ (M 1, Wrf®-"®^ ^ [[ff]] (Mi

pour tout i G {1,..., J}. En particulier, si i > 1, on a

(^P]](W/>)''' ^_i[[ff_i]](Mi_i).

Montrons que si # > 0, alors PP (Z^ yi 0 • • • 0 Z^ y;, ^ [[7/]] (w/)) est tue par
(1 — [e])' par recurrence sur i G {1,..., d}. Pour i 1, le module

HqZ^yi,M[[fi]](Mi)) Coker(yi-l: M[[fi]](«i) ^M[[fi]](«i))
est tue par 1 - [g] (proposition 20), et H''(yi, ,c/|

Supposons / > 1. La suite spectrale de Hochschild-Serre pour la suite exaete

0 —> Z, y/ —> Z, yi 0 • • • 0 Z, y; —> Z^ yi 0 • • • 0 Z^ y/-i —>* 0

sur ^[[7)]](m,-) s'ecrit

H (Z^, yi 0 • • • 0 Z^, y/—i, H (Z^, y/, ^ [[7/]](w/)))

If+' Z, yi © • • • © Z, y,-, .s*$ [[7>]] («,•)).

Mais PP (Z^ y,, ^ [[7/]] (w/)) est nul si s > 1, tue par (1 — [e]) si s 1 (proposi-

tion20),etvaut (^[[7/]](w/))^ ^_i[[7}_i]](w/_i) sis O.Donc,sir+s > 0,

le module PP (Z^ yi 0 • • • 0 Z^ y/_i, PP (Z^ y,, ^ [[7}]] (w/))) est nul si s > 1, est

tue par 1 - [e] si s 1, et vaut H^Z^ yi © ••• © Z^ y,-_i,^-i[[7/_i]](m/_i)),
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qui est tue par (1 — [e])'par hypothese de recurrence si s 0 (car alors r > 0). II
en resulte que l'aboutissement yi 0 • • • 0 Z^ y;, ^ [[7/]] (w /)) est tue par

(l-M)'.
Finalement, comme A„(wi,..., w</) ^ [[7^]] (w</), le module

(Fr/s, A„(«i,..., m^))

est tue par (1 — [e])^.

Proposition 22. 5/g > 0, Ze raodwZe Acris(7?)^*^/Acns(7?)^/^) est

par (1 — J. 7Z est nwZ 5/ <7 > <7.

Pour alleger les notations, on ecrira Acris au lieu de Acris(7?). D'apres
les propositions 16 et 21, les modules

H^(Fr/s,X„(«i, ...,Mj)) et H^(Fr/s, A„(mi,

sont tues par (l — [e] ^^ et (1 — [e])^ respectivement, donc par (1 — [e])^+*. II en resulte

que le module (Acris /Acns)^*^) est tue par (1 — [e])^+* J, vu que le

conoyau de l'injection A„ («i,..., m^) © X„ («i,..., m^) -> (Acris />" Ao-is)^*^
est tue par J en vertu de la proposition 12 et du lemme 7.

Comme Acris est sans /7-torsion ([7], Propositions 6.1.4 & 6.1.8), on a la suite

exacte

0 > Acris ^ Acris ^ Acris / Acris ^ 0

et donc la suite exacte

0 -* A^f * /p" A*f* -* (Aeris //>* Acris)^^ - (^R/s, Acris).

D'apres la proposition 8, le module H* (T7r/s Acris) est tue par 1^. Comme J
mod A^ on a une suite exacte

0 "> A^f^ //>"A -> (Aeris //>" Aeris)^^ ^ 0 (**)

oü est un module tue par J. Pour # > 0, on a donc la suite exacte

H®-'(Fr/s,^„) - H«(fR/s, A^f* //?" A^f*
"* H*(Fr/s, (Aeris //>" Acris)^).

Comme (Acris /Acns)^*^) est tue par (1 — [e])^* J d'apres ce qui

precede, et comme FP~* (r^/s, eA^) est tue par J, le module

H«(f«s,A^r/p"A^r)
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est bien tue par (l — (l —

La derniere assertion resulte du fait que ~ est de dimension cohomo-

logique egale ä d (sa cohomologie ä valeurs dans un module discret se calcule au

moyen d'un complexe de Koszul).

Lemme 23. (1) Powr r,« e N>o, Ze PL(G/?/s, Acris(^)/Acris(^))
est fwepar (1 — [e])^* J.

(2) Powr G N>o, Ze R* lim H^(G^/^, Acris(^)/AchsC^)) ^
par (1 — J.

(1) Pour alleger les notations, on ecrit Acris au lieu de Acris(^). La
suite spectrale de Hochschild-Serre s' ecrit

ff (fR/5 ff (//r/5 Acris /p" Acris =A ff+* (Gr/5 A^is /p" A„is

(le module Acris /Acris est muni de la topologie discrete). D'apres le lemme 7,
le module PP (#r/s, Acris /Acris) est tue par J lorsque s > 0. En particulier, le

noyau et le conoyau du morphisme

ff (Fr/5, H®(//r/5 > Acris /p" Acris)) ff (Gr/5 > Acris /p" Acris

sont tues par J. D'apres les propositions 12, 16 et 21 et le lemme 7, le module

ff (Fr/5, H" (//r/5, Acris/p" Acris)) est tue par (1 - [£])<*+* I lorsque r > 0. En

particulier, PL (G^/5, Acris /Acris) est lui aussi tue par (1 — J.

(2) Soit (i?„, un Systeme projectif de groupes abeliens. D'apres [17], 1.4,

le groupe R* Hm est le conoyau de l'application

(^w)weN ^ (Z>w <^(Z^ + i))^^
// //

(son noyau est lim i?„). En particulier, si les sont des S-modules tues par
<—//

c G S, alors R* Hm est tue par c. Considerons les systemes projectifs

(AcrisW/p" Acris(Ä))®^ et

p; := p| Im((Acris(Ä)/p"'Acris(/?))^ -* (Acris(P)/p" A^W)®^).
m>/z

Par construction, on a une application injective 5^ ^ Soit 2?w/2^ le

Systeme projectif quotient. Comme Acris CR) est sans /7-torsion, on a la suite exaete

(AcrisW/p^AcrisW)^ "* (Acris(Ä)/p" Acrfs(Ä))^^

-> Hl (Gr/5, A„is(P)/P'"-" A„is(/?)).
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Comme le module H*(G/?/s, Acris(^)//?~" Acns(^)) est tue par (1 — [e])^ + *J
d'apres (1), l'ideal (1 — [e])^* J( AcnsCR)//?" Aeris est contenu dans

l'image de (AchsC^)//?"* AchsCR))^*^- Comme c'est vrai pour tout m > n, il
est dans l'image de 2?^, de sorte que est tue par (1 — J.

Comme R* Hm 0 pour Z > 2, on a la suite exacte

0 —> lim 2?^ —> lim 2?„ —> lim —> R* lim 2?^ —> R* lim 2?„ —> R* lim —> 0.

« « « « « «

Mais par construction, le Systeme projectif (2^)«eN est de Mittag-Leffler : on a
R* Hm 2?^ 0. Par ailleurs, R* Hm est tue par (1 — [£])^+* J d'apres ce qui

precede. II en resulte que R* Hm 2?„ est lui aussi tue par (1 — J, ce qui permet
<—«

de conclure.

Corollaire 24. Sz# > 0, Ze raorZn/e HP (G/?/s, Acris(2?)) est taepar (1 — [£])^+^I^.
2?npor/rcnZZ^?; on o HP(G/?/s, Bcris(^)) 0-

Demonsfraft'on. D'apres [20], Proposition 2.2, on a la suite exacte

0 -> R* Hm H*"* (Gä/s Aeris //>" A„is)

Aeris Aeris //>" Aeris 0-

D'apres le lemme 23, les modules

Inn H«(G/J/S, Aeris /p" Aeris) et RUmiH«-' (G«/s, A^s //>" A^rfs

sont tues par (1 — [£])^~*~* Jpour g > 1. Le module HP (G/?/s, A^-is) est donc tue par
(1 - [e])2W+i>j2 pourg > 1.

4. Calcul des invariants

Rappeions qu'on a suppose que *S So et R Rq. H existe des suites

W(l){Z±\...,Z^} 5^ c S^> C c S<*s) 5,

R<®> c c c R

oü pour 7 g {1,..., A^} (resp. 7 G {1,..., ZV/?}), l'extension (resp.
est de l'un des types suivants :

(et) completion /7-adique d'une extension etale;
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(loc) completion p-adique d'une localisation;
(comp) completion par rapport ä un ideal contenant p.

Lemme 25. morp/z/sm^

0: -> E/pE, (xo,xi,...) i-^ xi,

/ndw/tdes /soraorp/zEra^ E^/p^Ej^ E/pE ^
E+ /(e - 1)^-1 E+ -> (*//>*) [e, z?\..., z<'\ 7f\..., 7^].

Deraon^ra/Zon. On sait que 0 est surjectif de noyau principal engendre par p^, ce

qui prouve la premiere assertion. D'apres le lemme 9 l'application 0 induit un iso-

morphisme EJ /(e — 1)^~* EJ -> Ei/pEi. On conclut en utilisant 1'isomorphisme

Äi/pÄi (Ä/pÄ)[e^>, zj*\..., zg\ rg\ 7^] de la proposition 1 (2).

Comme 5 Sq et E Eo, l'anneau

Acris(ß) A^(/?){(u>i,...,u>i,wi,...,Wd)}

est une E-algebre (c/ [6], Proposition 6.1.8). De meme, Acris(^) est une S-algebre.
Pour tout n G N>o, on dispose donc d'un unique morphisme

/„: Ä <g»s As,-> ^cris (/?)//>" Aeris(Ä)

(oü Acris(^)/p" Acris(^)) qui envoie 7} sur [7/] + w/ et qui est compatible
ä 0.

Proposition 26. ZZ/zoraoraorpferae /„ seyaefonse en

^ 05 As,n(Ml,...,Mrf) As,n(Ml,...,Mrf)

Acris (ä)/P» Acris (/?).

En öwtre, est nn Zsoraorp/z/srae ££ Zes moTpfemes' /„ ££

Acris(^)/p Acris (*)

.so/P

Lemme 27. Ln propos/YZon 26 est vraze poz/r n 1.
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Pour alleger les notations, on pose u; (uq,..., u;^) et w

(wi,..., w</). On a

d /o, /i / \ (^//^) (Es//?^E£) [u;, 2i, (5^, Zy,m»

(lü/.wf
1</<J
meN

et

+ / ^ + (E^/^^E^r)[w;, W, <5^, Zy^, W/,m]
A^J ®A+ ^4s,l (Ml..... Mrf) ^E+ „/> ^ 7/. TX^ X — •

1</<J
meN

Rappeions que Acris(^)//? Acris(^) est une E^/^^E^-algebre. On
deduit de 0 un morphisme t: R//?R -> Acns(^)//? AchsC^)» et un isomorphisme

(7?//?7?)[u;, w, <5^, Zy^, ~ /p\/ a /m//>?/> V-P \
^ Acris(^)//^ Acris(^)

meN

via t (c/ preuve du lemme 7). Soit 0/?: Acris(^)//? Acns(^) 7?//? 7? l'applica-
tion naturelle : la composition avec envoie wy, w/, Z/^, 7}^ et <5^ sur 0, et
induit le Frobenius sur R//?7L Comme Ker(0/?) est un ideal ä puissances divi-
sees, onax^ /?!x^ 0 pour tout x g Ker(0/?) : la proposition 47 implique
que 1'application R//?R -> Acris(7?)//> Acris(^) composee avec est la seule

application de /:-algebres qui envoie Zy sur 0(Zy) + wy pour 7 g {1,..., 5} et

7} sur 0(7/) + w, pour i g {1,..., <7} et teile que le compose avec 1'application
0/? o est l'inclusion naturelle R//?R C R//?7L En particulier, eile se factorise

La proposition 47 ir
1</<J

de S//?S est contenue dans (S/7?S0[]LI/(w/)i<7<5- On a t(T^) [7}] et donc

/i(7/) [7/] + w/ t(T^) + w/. Reste ä verifier que /1 induit un isomorphisme

ä travers (7? //? 7?) [u;, w] / (u;J, <)!</<«• La proposition 47 implique que l'image
!</<</

/i: (/?//?/?) (E|/^E|)[w,M]/(uij',Mf)i<y<5
!</<</

' '(EÄ/s/^E+^)[u),Mj/(w/,Mf)i<y<3
1</<J

(*)

(Äl5/pÄiS) [l£,M]/(tü/,Mf)l<y<i
!</<</
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(l'egalite (*) resulte du lemme 25 et du fait que

E (Es/^%) - E+ /^E+ -> Ejj/p'Ejj - Ä/pÄ

est injective avec image Z?iS//?Z?iS, c/ demonstration du lemme 10).

Montrons par recurrence sur y g {0,..., Afo} que 1'application (definie

comme /i mais avec 7? (7) au lieu de 7?) est bien definie et est un isomorphisme.
Comme E^ EJ {7^=\ • •, 7j^}, le morphisme /i induit 1'application

0S//>5)[u!,M] (^%/^%)[U;,M]
(u>f,wf)l</<«

l<z<d l<z<d

7/ ^ r/" + M,-

et, comme i?^S 7^], c'est un isomorphisme. Le morphisme

est donc bien defini, et c'est un isomorphisme tel que 0^(0) o of^(o) o Id
Soit y G {1,..., ZV}. Supposons que /i induit un isomorphisme

(eJ/^EJ) [«;,«]

/g-i) <

>

(wf,wf)l</<<S

"VE+ ,Jj>'E+
/JO'-D/S )[w,M]

tel que 0^o-i> o a^o-n o (7-1) Id

(uy,wf)i<7<Ä
1</<J

On a alors le diagramme commutatif

(E^/^E^)[w,M]

!</«/

Id<g>0s

1</<J

/l(7)

(7-1)/i

^(7-i)/5

t?(7) °^/?(7)

/£" E+
jg(7~P/5 )[w,MJ i-l f F +

"r(7)/S /P"E j?(7)/5 w]

K."f)i<y<«
1</<J l<z<d

Les noyaux de Id et de 0^(7) o o^oo sont engendres par /? ^ par u;i,..., u;^ et

par wi,..., avec m g N : ils sont donc nilpotents.
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• Supposons l'extension de type (et). Comme Ker o a^o))
est nilpotent et puisque le morphisme -> est etale, il
existe une unique application comme en pointille sur le diagramme qui le rend
commutatif. Par unicite, eile est induite par /i. Montrons que c'est un isomorphisme.
En vertu de l'egalite (*), l'extension c *~*(E^)^) est etale.

Comme Ker (id ®0s) est nilpotent, cela permet de construire un morphisme

1<Z<J 1<Z<J

inverse de par unicite.

• Supposons l'extension de type (loc). L'anneau
le localise de /?^~*)/par rapport ä une partie multiplicative Comme
Ker (ö^o) o of^o)) et Ker(ld ®0,s) sont nilpotents, les anneaux

(wf,<)l<,<<S

(wJ,uf)l<y<S
l<z<d

sont les localises de

l<z<d

et de

ri(E+ Es/p>E+ >Es)[w]

(wf,Mf)i<y<5

par rapport ä (ld<g)0s) *(E,) et (ö^o-d ° ^ro-d) *(^/) respectivement. Cela

implique que l'isomorphisme se localise en un isomorphisme comme
desire.

• Supposons l'extension de type (comp). L'anneau est

le complete de par rapport ä un ideal 7y. On raisonne de la meme
maniere que dans le cas (loc), en utilisant le fait que Ker (0^o) o ar^O)) et Ker(ld (8)

05) sont nilpotents, de sorte que les anneaux (8)5/^5

l<z<d
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et
—^ ^

sont les completes de ®s//?s

1</<J
^

*^~(»*«*) parrapport ä (Id <g>0s)~*(/,•)
(Wy )l<y<5 (Wy ,W; )l<y<5

1</<J 1</<J
et (0^(y-D o a^o-i))~*(/y) respectivement. Cela implique que l'isomorphisme

induit un isomorphisme //^ sur les completes, comme desire.

Demons/ra/ron Za proposZ/ron 26. Comme A^//?As^ A^i et /? est un ele-

ment regulier dans Acris(^), les applications

®A+ ^S,n(wi, •••,"</) ^ Acris (*)//>» Acris (*)

et

A^ A,S,« Acris(^)//? Acris (*)

etant injectives pour « 1 d'apres le lemme 27, elles sont injectives pour tout II
suffit donc de construire /„ et de prouver que c'est un isomorphisme. On utilise les no-
tations de la demonstration precedente. Montrons par recurrence sur y g {0,..., Ar}
que /„ induit un morphisme

<8>s -> ®^+

relevant l'isomorphisme //^.
L'application §„ : A+ ^ <g>^+ As,i(wi,. •. ,w«/) -> A+^ ®^+ As,„(wi,... ,w«*),

definie par x i-> /?"~*x, composee avec l'inclusion dans Acris CR)/Acris(R), se

factorise ä travers l'inclusion A+^ <g)^+ A^i (wi,..., w^/) C Acris(R)//? Acris(R)

composee avec l'application Acris(R)//? Acris(R) -> Acris(R)/R" Acris(R), definie

par x i-> y?"~*x, qui est injective puisque Acris(R) est sans /7-torsion. En particulier,

l'application est injective : comme est un isomorphisme pour « 1, c'est
un isomorphisme pour tout

Comme /„(7}) [7}] + w,-, on a /„(/?^) c A+«„ <g>^+ As,„(wi,... ,w«/) : le

morphisme est bien defini. Comme on l'a dit plus haut, c'est un isomorphisme.

Soit y G {1,..., Ar}. Supposons que /„ induit un isomorphisme

^ ds,„{«i MJ) A^._„ Mrf)
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relevant On a alors le diagramme commutatif suivant.

A5,i<Mi,...,Mrf)<^-Acns(Ä)//'AcrisW

^<Z 1) (g)£ Wj) //p Z/7

^(7-1)7 /7

^J(y-l) (wi, Mj) -> A^(y) (wi, Acris(^)/Z" Acris(R)

Comme /? est nilpotent dans

et dans

7?^ 0^ ;4s,„(wi,...,w,/)

^äO) ®A+ •••'"</)'

on montre l'existence et l'unicite du morphisme (en pointille sur le diagramme)
de faqon identique ä celle de la preuve du lemme 27. De meme, on montre l'unicite de

l'application /„ : (8)5 (wi,..., wj) —> Acris(^)/Acns(^) rendant le dia-

gramme commutatif, ce qui implique que l'application construite est compatible
ä /«.

Corollaire 28. On <2 nn raorp/zArae

A„(mi, ,Mrf) -> /? (8)5

zndwzY pnr /„~\ rfe conaynn /ne pnr J.

Demönsfraftön. Rappeions que est l'image de </9^(A^) Acris(^) dans

(Acris(Ä)//>"Acris(Ä))"*'*.

Comme A+^ ^(A^^)[[7i],..., [7^]] (lemme 10 (ii)), on a un morphisme
injectif

A„= ® A„[ff A„[[fi],...,[7^]]
ae£„nN^

(^/? ^cris(^))//^ ^cris(^))

dont le conoyau est tue par J (c/ proposition 12 et lemme 7), et donc le morphisme
injectif

A„(«i, ,w<*) ->

de conoyau tue par J.

a +
n + AjS^(2ir,...,2ij)

/»-
» 7? As,„(«i,... ,«</)
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Lemme 29. Posons

Ker (y; -1: Ä®s 4s,„(wi,... ,w<*) -» Ä Os 4s,„(wi, • • •, "</))•

AZors

(A <8>S 4,S,„(Wl,.. •

ow PT^ est wn P (8)5 A5^(wi, w/-i, w/ + i, • • • w</)-modwZe ^par 1 — [e].

D^raons/r<2/7<m On a

y/(Mi) 7} - [£][f,] 7} - [s](7} - M;) (1 - [e])Ti- + [e]w;

et donc

(y* - 1)(m^) ((1 - [e])7} + [e]w,-) -^
m

([£]"• - 1)mH + y](l - [£])[>]7/[£]"•"'wf"~^
7 1

m

(1 - N)(/XmW^ + 7) + J]^r/[£]'"-^['"-^)
7=2

oü /A^ -^pr et )Sy nipr" *= Ker(0) pour y > 2 (c/ lemme 18)._ —1

tv ~ ©j=o L'application y; — 1 induit un endomorphisme JC^-line

aire de dont la matrice dans la base (l, w,, w[^,..., w[^) est donnee par (1 -
[e])G,?!v avec

Pour AZ G N>o, posons P ®s As,h(wi, w/_i, w/+i, •• • w</) et
sAA AOJP (0

7) 7)2^2

0 TU 7}[£] r^2[s]

rW -71,7

/Z2 7f[®]=

-TV-1 ßiV-1 \
-TV-2 jSjv-2[e] T^-^iv-iN

7?02[e]"-*

MiV-2
TV-2

Vo

7i[c]

/XA7-1
0

7^3 [e]""*
7-2/12 [e]""*

7i [£]"->
MiV

la matrice obtenue en supprimant la premiere colonne et la derniere ligne.



1004 F. Andreatta and O. Brinon CMH

OnaG^ t/„« + oü

^7/ o

/i i G [e]

0 /^2
17.

(0
71 JV

0 \

/iJV-2
^

0 /iiv-i
0

7i[e]""i

est inversible et a tous ses coefficients nilpotents (comme /3y g Ker(0) pour
7 > 2, il a des puissances divisees : il est donc nilpotent modulo /?"). C'est encore le

cas de la matrice 9^i ^onc nilpotente. La matrice C/^ (Xv +
^onc inversible. Cela implique que

Ker (y, - 1: c JC« © ® Ker (l - [e]:
7 1

le lemme en resulte (car 0 ®tLi e7C^w^)^).

Proposition 30. Powr w G N>o, Ze conoyaw rfe Z'/ncZws/on

^ <05 -45,n H°(G^/s > Acris (*)//>" Acris (*))

^ par (1 — [e])^ J.

m

Deraans/Pa/fon. D'apres le corollaire 28, on dispose d'une application injective

n
/ 1

(dont le conoyau est tue par J), et d'apres le lemme 29, le conoyau de 1'application

ä -4s,„ -> n
/=i

est tue par 1 — [e]. Par ailleurs, le module w^/)) est tue par
1 2

(l — [e]^) (proposition 16). Comme le conoyau de l'inclusion

A„(wi,...,w</) -> (Aris(Ä)// Acri,(fi))^
est tue par J (proposition 12 et lemme 7), il en resulte bien que le conoyau de

l'inclusion /? 0s As,« c H°(ftf/s, Acris(X)/p" Acris(^)) est tue par (1 - [e])^I.
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En passant ä la limite projective, on en deduit l'enonce suivant:

Corollaire 31. Le conoyon de Z'ZncZnsZon R(g)s Acris(£) c BE(G/?/s, Acris(^)) est

taepor (1 — [e])^ J. LnpordcnZZe?; on öH^(G^, Bcris(^)) (^®s Acris (£))!/"*]•

5. Cohomologie de la flltration de Bcris

Pour n £ N>o, les homomorphismes surjectifs Acris /p" Acris —R/p"R ad-

mettent des sections ensemblistes telles que p„+i mod pE On obtient une

section ensembliste de rhomomorphisme surjectif Acris -> ^ qui est continue pour
la topologie p-adique. II en resulte que la suite exaete

0 Fil' (Acris /p" Acris) " Fif-l (Acris /f" Acris) gr'"' (A^s /p" Acris) " 0

donne lieu ä la suite exaete longue de cohomologie

> Ff* (GR/5,gF"~* (Acris /p" Acris)) -> H^(Gr/5, Fif (Acris /p" Acris))

-> H« (Gä/s Fif* (Acris /p" Acris)) - • • •

(1)

pour tout n £ N>o U{oo}.

Proposition 32. SZg > Oe/r e (Gr/5,Fif (AcrisW/p" ^(Ä)))
e^/r/epor (1 — [£])^+i~^ J si n £ N e^por (1 — [£])^+i)+r j2 n oo.

L)eraon^ra/Lm On procede par recurrence sur r, le cas r 0 n'etant autre que le
lemme 23 (1) et le corollaire 24.

Soit r > 0. On dispose de la suite exaete longue (1). Comme gE~* (Acris /p" Acris)

est tue par 1 - [s] et H« (Gr/s, Fif* (Acris/p" Acris)) par (1 - [e]V+*+''~*I
(respectivement (1 — [£])^+i)+r-i j2^ en vertu de l'hypothese de recurrence, le
module H^(G/?/s,FiE (Acris /p" Acris)) estbientue par (1 — [£])'*+*+'* J (respecti-

vement (1 — [£])^+^~^I^).

Rappeions que pour tout r £ Z, on a FiE Bcris lim FiE~*~" Acris, et
—>7i>|r |

qu'on pose H«'(Gr/s,Fif Bcris(^)) H^(Gr/5, t~" Fif" A^is) pour

tout g £ N.

Lemme 33. SoZen^ r £ Z e£n,c £ N ovec n > |r|. SZ x £ FiE~*~" AcnsCR),
oZons Z'Zraoge de x dons pqr+«+m est dZvZsi&Zepor p^ sZ m > pc. Ln
pordcnZZe?; H^(G/?/s, FiE Bcris(^)) ^ wn (Q^-espoce vectorZeZponr g £ N.
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Ecrivons x ^ avec x' G FiF+" Acris. Comme Z =m!(^,ona
* ^+m > fiui est divisible par /F dans pip+w+m ^ ^
Proposition 34. 5/ r g Z <?z g g N>o, özz a FF (G/?/s, FiF Bcris) 0.

DeratfnsZraZ/özz. Comme FF (G/?/s, FiF Bcris) est un Q^-espace vectoriel d'apres le

lemme 33, il s'agit de montrer que si /i > |r | et x G FF(G/?/s, Z~" FiF~*~" Acris), d
existe m G N tel que l'image de x dans FF(G/?/s, pip+w+m ^ ^
par une puissance de /?. Quitte ä remplacer r par r + zz, on peut supposer zz 0

et r G N. II suffit de montrer qu'il existe zzz G N (qui depend de r et de #) tel que
l'image de l'application

a„, : H* (Gj?/s, Fif A„is) -* H* (G*/s,r Fif+

(induite par l'inclusion FiF Acris ^ Z~ FiF*"* Acris) est tuee par une puissance de

/?. En composant avec l'application

6m : H*(G*/s,r FifAcris) - H*(Gä,s, r* Fif A<),

on obtient l'application

Ff (G*/s, Fif A„is) -* Ff (Gj?/s,r Fif Acris )•

D'apres la proposition 32, cette derniere est nulle si zzz > 2(tZ + 1) + r + 2 : il suffit
donc de montrer que le noyau de Zz^ est de /z-torsion. Cela resulte du lemme 36.

Posons f 1 + + • • • + [e]^~. Alors f est un generateur de

Ker (0: W(^) -» f) (c/ [12], 5.1.2).

Si zz (zzo, zzi,..., zz</+«Q G on pose

et

Si r G N, alors gF Acris est un ZGmodule libre, de base {£
|w|=r

Lemme 35. Przz/r Zrzz/Z g G N, Z'ap/zZ/caZ/rzzz

H«(Fä/S, 0 H«(FÄ/S, 0
|w|=r |w|=r

esZ zzyect/ve £Z srzzz crzzzayazz esZ rfe /z-Zrzrs/rzzz.
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^o]^[w]||;I>i] et pour a g (Z[p *] fl
[0,1[)^, posons T- (7^)^ (pour tout /i G N tel que G

N^) : T-Dr est alors un sous-SZ^-module de (gr** Acns)^*^- H est stable sous

l'action de f/j/s, parce que p,(w,) w, - [f,]([g] - 1) m, - r,f(e^ - 1)

mod Fil^ Acns, et y^ (7-) e"' 7- pour tout i G {1,..., <Z} (oü £**' (e^)^

Commenqons par montrer que s'il existe i G {1,..., <Z} tel que 7^ 0, alors la

cohomologiede T-Z)^//7^r-Z)^ est tuee par (£^ — l)^ pour tout /z G N>o-D'apres
la suite spectrale de Hochschild-Serre, cela resulte du fait que la cohomologie du

complexe

>

est tuee par £^ — 1. Comme y^ (7-) £<*' 7-, il s'agit donc de voir que le noyau et
le conoyau de l'application

e"' y, - 1: z>r//z>r "* 7),//Z),

sont tues par £<*' — 1 (comme 7Y 0, on a e"* 7^ 1, donc £"* — 1 | £^ — 1).

Filtrons D^/= 0|„|=r (^i?/par le degre en :

FiF Z>,//?*Z), ®
|w|=r

Si « G est tel que |«| r, on a

(e"'y,

e"'p°](w, - [f,]([e] - 1))^( ff w^)u>M - f[»o]„la]u,l>i]

i<y<d
7 7^

S (e"> - l)f["o]y[«]^[«] mod (e<*> - l)Fil"'~* £>,•//

car (u, -[f, ]([«]-1))^ wj"^ + XfclTo' (~ ~ i))"'vuque
[Ti]([e] —1) —l) mod Fil^ Acns-Comme £**' —1 | £^ — 1, celaimplique

que £<*' y^ — 1 (£<*' — l)/z, oü /i est un isomorphisme de Z)^./(parce que sa

matrice dans la base {f^w^u;^}^^+a+i est unipotente donc inversible).

Posons X ®„g(z[p-i]n[o,iD", «#(o, ,o) ^7?T- C Stfoo- D'apres ce qui pre-

cede, H^(r^/5, X (g)^ D,./est tue par (£^ — l)^ pour tout /z g N >0 et tout
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g G N. D'apres [20], Proposition 2.2, pour g > 0, on a la suite exacte

0 -» R* 0^ ör//ör)

-> H«(Fr/5,£ 0^ £»,) -* X 0^ -> 0
O /\ ^

/*

oüA designe le complete /7-adique de A.II en resulte que H^(r^/^,A Dr) est
/S

tue par (e^ — l) pour tout g G N>o- Par ailleurs, l'application

H°(Fr/5,X 0^ £V) -* ümH»(fi/sJ®sj A-//A-)
o /\ ^

/*

etant injective, H®(Tr/s, A D,.) est tue par (e^ — l)^. Ainsi, l'application
/S 7?

(Fr/5, Dr) (FR/5 (5Ä © X) 0^ £>,)
O XV

est injective de conoyau tue par (e^ — l)* pour tout g G N.
D'apres la proposition 1, l'application Z?oo ®Soo ^ est un isomorphisme

et /?oo <8>5oo ^ — ©ff6(Z[p-']n[o.i[)<' # 0>s On en deduit que l'application
naturelle 0 A -> *Si?oo est un isomorphisme, de sorte que

H*(F*/s, (SÄ ©X) 0^ Z),) ~ H«(FÄ/S, 0^ Z),)
O A O XV

ce qui acheve la preuve.

Lemme 36. Le noyon Je Z 'oppZ/coJon

(Gr/5 Fir+1 Aeris) -> (Gr/s Fif A^s)

est Je ponr r G N e/"# G N>o-

Deraon^raJon. Gräce ä la suite exacte longue de cohomologie (1), il suffit de voir que
le conoyau de FP~* (G^/s, FiP Acris) -> (Gr/s, gr** Acris) est de /7-torsion.

On a gJ* Acris : d'apres le theoreme de purete de

|w|=r
Faltings (e/ [9], §2, Theorem 4), le noyau et le conoyau de l'application

H*"*(Fr/5> (gr' Acris )"*'*) -> H«-^(GÄ/s,gr'' A„is)

sont tues par /? : il suffit donc de voir que le conoyau de

H*-* (Fr/5 (Fif Acris )"*'*) - H*"* (Fr/5 (gr'" Acris )"*'*)
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est de /7-torsion, et donc a/om'on que le conoyau du compose

H^-i(f«/5,Fir Acris(*/S)) (Fir Acris)^)

est de /7-torsion.
Posons

M,. 0 - i)"°f[»o]„l«]u,[s]
|w|=r

c (gr'A_)^ ®
lal=r

C'est un sous-module stable sous l'action de D'apres le theoreme de pu-

rete de Faltings, le conoyau de l'application *SZ?oo ^ est de /7-torsion :

d'apres le lemme 35, il suffit de montrer que l'image de M^) dans

(f«/,s'. (gr'' Acris est contenue dans celle de A.

Pour i g {1,..., <Z}, posons

», log (|!) fA-D""'«»'" D'(|!"
On a alors mod Fil^ A^s et y/(t>/) v/ + £ (vu que £ log([e])).
Comme £ — l)£ mod Fil^ A^is, on a un isomorphisme topologique

Mr ~ ® M®

lal=r

oü Af® ^ sous-Z^-module stable sous l'action de

Pr/s. L'action de etant triviale sur SZ?, on a des isomorphismes de SZ?-

modules :

H*-i(rÄ/s,Mr) ~ ~ y))

(oü Z^*(—,y) designe le complexe de Koszul associe ä l'application y := (yi —

l,...,yrf-l)).
Notons M,. (resp. Af®) le sous-Z? (8)5 Acris(S)-module (resp. le sous-Z^-module)

de FiF* Acris(Z?/S) engendre par Comme y/(u/) v, + f,
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les sous-modules et Af® sont stables sous l'action de r^/s, et l'application
FiL Acris(^/^) -> (gr^ Acris induit une application -> et un isomor-

phisme Af® -> Af®. L'action de etant triviale sur R (8>s Acris (S), on en deduit
le diagramme commutatif suivant:

H«-i(Ä:'(Mr,y)) vH»-'(r(Jl/„y))

(Ä <8>s Acris(5)) <0z„ H«-'(r(Mf,y)) »-ffi 0^ H«~^(Ä:*(M®,y)).

Comme Af® ~ Af® et R (8)5- Acris(S) -> SR est surjective, l'application (R (8)5

Acris(S')) ®z„ y)) -* Iä ®z„ est surjective, ce

qui implique que l'application

l'est aussi: le diagramme suivant permet alors de conclure.

H*"' (f*/s, M,)

H«"i (fn/s, Fir A^OR/S)) -V H«"i (Fä/s, (gr'' )"*'*)

Les auteurs remercient le rapporteur pour avoir trouve un erreur dans la preuve
du lemme 36 et avoir suggere une correction.

Reste ä calculer les invariants de FiF Bcris sous G^/5. Rappeions qu'on a pose

£ — [e|i/^-i • Cest un generateur de Ker (0: W(<R) -> R). Dans tout ce qui suit,

Acris designe 1 anneau Acris (R)» les autres qui interviennent etant notes Acris

et Acris(S). On note y l'application x i-> x^//? sur ker (Acris(S) -> S). Posons

^ (ktilfli e Aeris(0^)b"l].

Lemme 37. // exAte A G £ W(<R(0jv)) teZ (r — 1)!£^ + A. RnRorAcnZA?;

?7 G Ker (Acris(Öjv) -> 0/v)- ^ on/re, on <2 y^(?7) G r"^ Acris(0/v) Rowr
r GNd A G {0,..., r}.



Vol. 88 (2013) Acyclicite geometrique de Bens 1011

Comme (X — 1)^ — 1 mod /? Z[X], il existe d G Z[I] tel

que (X — 1)^ — 1 + /?A(X). On a A(l) 0, de sorte qu'il existe i? G Z[X] tel

que A(X) (X - l)ß(X), et donc (X - 1)*-* + />5(AQ. En appliquant

cette egalite ä il vient ([e]*^ — l)^
* f + H en resulte que

([e] - 1)^ - 1)""' p-qf + pß([£]^))
p!fw + pf*-ifi([e]^)

de sorte que A

II reste ä montrer que pour tout A G {0,..., r}, on a 7^(77) £ /?~^77 Acris(ö^)-
Mais on a

r r »Z (/-1)!^-11
— r)' 77

1+/H b/A"! nl+/>H b/A"!

ett^(0?*-l)!) (/»*"!) — A: ^rf -/c, d'oü tfr (^^1+^-1) r-£ > 0,

de sorte que 7/7^(77) G 77 Acris(ö^), et on a fini.

Rappeions que

Acris//> Acrfs - [#m "7 Z/.,n, M,, T,y,„] „,gN / wf, «f, 7^,)
l<z<d

([g]-D />-i
oü<5o designe l'image de £^//? (/? — l)!£^.Enparticulier, l'image 770 de

dans Acris//? Acns verifie 770 <5o + A, oü A est l'element dont l'existence est assuree

par le lemme 37. Notons 77^ l'image de 7^(77) dans Acris(ö^)//? Acris(öxr)- Comme
>7m y"»((p-l)!f^ +A)etA e|w(^((9jf)),ona

(*/f'*)Mo<t<„/WW<„, et <=0.
II existe donc un morphisme ^?/^^?-lineaire

«„: - wf") /«)„<*<„,

definiparR^ i-> 77^. Comme 7^((/7 — l)lf= 7^(77 — A)

avec a„ et A^ (*/!*) [*,•],,<,-^-t/ft' )o</<*-t ^ 0 < /> < /),
une recurrence immediate montre que <5^ est dans l'image de pour 0 < A < m. En

particulier est surjectif. Etant un morphisme surjectif de ^?/^^?-modules libres
de rang est un isomorphisme. II en est donc de meme de lim^ Comme

on a de plus w/ Zy — [Zy] et w, 7} — [7/], on a l'isomorphisme

Acris//> Acris - W/ Z,>,, M;, 7},^] meN / (??£, wj\wf, Zj^, 7^).
1<7<5
1</<J

(2)
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Rappeions qu'on a note y l'application definie par

y(x) X^/>

sur Ker (0: Acris -> ^)-

Lemme 38. Powr r G N, o/i ö / A^is H?? A^-is XX=o /^y^C??) Acris-

On procede par recurrence, le cas r 0 etant evident. Soient r G

N>oeti G / Acris n?? Acris- Par hypothese de recurrence, on peut ecrire

r—1

&=o

avec x^ G Acris pour/: G {0,..., r — 1}. Posons x' XX=o y^07)*£- Par hypothese,

onax' G /? Acris- Notonsx^ l'imagedex^ dans Acris /Acris' ona XX=o %*£ 0-

Posons A „,sn /(^ wf, wf, Zf 7/
/*>r ^ ""

1<7<5
1</<J

de sorte que d'apres 1'isomorphisme (2), on a

Acris //> Acris — A [^m]o<m<r—1 /Om)

c'est un A-module libre de base ([]^!o )«e{o /?-iy * ^ decomposant chaque

xa; dans cette base et en relevant les facteurs dans Acris, on peut supposer, quitte ä

modifier les x&, que x^ G A[y/o, • • •, %]/(t?o ' • • • > *7fc) P^ur *out £ < r — 2.

On va montrer que x„ G Acris /Acris par induction sur n. Comme ?7o*o £

AM/07o)etJ7oXo -D/t=\ appartient ä l'idealengendrepar {%},—i>yfc>o>

on a necessairement ?7o*o 0- Soit n G {1,..., r — 1} tel que pour tout /: < n,
on a Xfc e A„is /p Acns, de sorte que j^x^ 0. On a alors j^x^
O.Mais ??„x„ e Afoo,??n]/0?£, •••> 1»)- Comme ??„x„ -E!t=H+i%Äfc
appartient ä l'ideal engendre par {%}r-i>A:>w» on a necessairement ?7„x„ 0, de

sorte que x„ e ?/£"' A„is //? Achs- On a donc x^ e Acris + /? A„is, d'oü
iy^(^)xa: g //~Uy^0?)F Acris +/^y^(??) Acris ' on conclut en observant que

^,r —l(y£(^))/? _

Rappeions que d'apres la proposition 26, on a l'inclusion R(g>s Acris(S) c Acris-

Lemme 39. On n Acris(^)) O ^ Acris — Acris(^)) Acris)-

Demons/rn/ron. Supposons que

Acris(^)) O ?7 Acris Acris(^)) H~ Acris • (3)
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On a

Acris Acris (5)) ~ ®s (Acris (5)//? Acris (S))C Acris //> Acris

(c/ lemme 27) si bien que (i?(g)s Acris(S)) H /? Acris Acris(S))- En parti-
culier, on a

Acris (S))nA Acris Acris (5)) n Acris)

Acris (5)) + p?? Acris)

c p'??(#<§) £ AcrisC^)) + P*"*"'?? Acris-

Comme /?(§)£ Acris (5) est complet pour la topologie /7-adique et Acris est separe pour
la topologie /7-adique, on conclut que (/?(§)£ Acris(S)) H 77 Acris Acris(S))-

Montrons tout d'abord que pour tout r e N, on a

Acris(^)) n Acris 77 Acris(^)) H~ Acris? (4)

ce qu'on va faire par recurrence sur r, le cas r 0 etant evident. Soit r e N tel que
Acris(^)) n Acris Acris(^)) H~ Acris- On 3-

Acris (5))nr?Acris

C Acris (^)) H~ Acris (^)) O Acris ^7 Acris)

r
c l|(fi®sAcris(S)) + ((/?®s Acris(5)) n /(52Acris))

/:=0

en vertu du lemme 38.

Comme on l'a vu plus haut, on a (/?(§)£ Acris(^)) H /? Acris Acris(5)),
de sorte que

Acris (S))n»7Acris

r
c AcrisW) + p'[(#®S Acris(5)) D 52 ^0) Acris)]-

fc=0

II suffit donc de montrer que

r
Acris (*^)) C ^ ^ ] 7 (7) Acris ^ Acris (*5)) H~ Acris •

/:=0

Posons

AOS) (^s/P)K.Z;,„]i<y<,/(«;/, z;„).
meN

A(Ä) (^/P)K-,Z,>]i<,•<,/(«;/. Z/„).
meN
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On a Acris(£)/Acris(^) —

Montrons que la structure de S-algebre de Acris (S)/Acns(^) se factorise ä tra-
vers un morphisme -> A(S). Comme Zy uy + Zy dans Acris (S)/Acris (S),
le morphisme £[Z^*,..., Z^*] -> Acris(S)//? Acris(S) se factorise ä travers A(S).
Par ailleurs, le noyau du morphisme 0 : Acris(S)/Acris (S) -> est ä puis-
sances divisees : on a x^ 0 pour tout x G Ker(0). Comme l'anneau S//?S
s'obtient ä partir de S^//?SO) £[Zj^,..., Z^*] par une suite finie d'exten-
sions etales, de localisations et de completions, la proposition 47 (2) implique que
la structure de S-algebre de Acris(^)//? Acris(^) se factorise ä travers le sous-anneau

A(S)C Acns (5)/p Acns (5).
Comme A(7?) est une A(S)-algebre, c'est lui aussi une S-algebre. Par ailleurs,

d' apres (2), on a

Acris //? Acris — A(7?)[w/ 7y^, ?7ra] l<z<<i/(^f > ^/fra' ^ra)*
raeN

Comme 7/ w/ + 7} G A(7?)[w/j]i</j<^/(w^) pour / g {l,...,ö?}et7?//?7? est

obtenu ä partir de (S/, 7j^] par une suite finie d'extensions etales,
de localisations et de completions, la proposition 47 (2) implique que le morphisme
naturel 7?//?7? -> Acris(7?)/Acris(7?) se factorise ä travers A(7?)[w/]i</<^/(wf).

Soit x G (/?(§)£ Acris(^)) H (Efc=o Acns )• On note x son image dans

Acris /7* Acns« On a x G ^ ^^ris /^ Acris« Comme Acns /Acns est une
A(7?)[w/, y?m]i</<£//(wf, ?7m)-algebre libre et comme x appartient ä l'image de

raeN
05 AOS^mlmeN/Olm) on a en fait

r

jfc=0

et donc
r

* e ^ A(5))[^]mN/Om)
fc=0

vu que

(/? 05 A(S))[^]„6n/(C) et A(Ä)[Mi,^]i</<d/(Mf,^)
raeN

sont libres sur 7? (8)5 A(S) et sur A(7?)[w/]i</<^/(wf) respectivement, de base

(rim=o II en resulte que x e y*(»0(Ä®5 Acns(S)) +
7? Acris ^ /?~^7?(g)s Acris(^) + /? Acris en vertu du lemme 37.

Pour finir, montrons comment deduire la formule (3) de la formule (4). Pour tout
Ä; G Z>_i, posons <5^ nf=o(/*(7))^ ^ On a ^ On pose
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A := A(7?)[rq-, 7/^] i</<j /(wf, 7^). On a les isomorphismes
raeN, /*

Acris //> Acris —

7^ 0£ ^cns(*5)//? Acns(*5) — (7? 0£ A(*S))[^7m]meN/(^)meN •

Pour ä; > —1, notons (resp. TV^) le sous-A-module de Acris//? A^s (resp. le
sous-7? (8)5- A(S)-module de 7? (8)5- (Acris(£)/7? Acris(£)) engendre par

(X)

{ ]~[ « e {0,...,/>-l}^\ (Vm e {0,..., A:}) am />-l, a^+i <
ra=0

On a alors Gl Af/^, et Acris/7? Acris (resp. 7^ (8)»S (Acris ('S*)/Acris (£))) ost la

somme directe des (resp. des TV^). Si z G Acris, notons z sa reduetion modulo

/?. Soit z G (7?0s Acris(5)) f! 77 Acris ' on peut ecrire z 77z' avec z' g Acris-

Choisissons TV G N telquez' g M^.D'apres(4),ilexiste j g 7?0s Acris (S)
et u; G /?^~^ Acris n?7 Acris tels que z 773; + u;. D'apres le lemme 38, on peut ecrire

A+2 7V+2

U) ^+2 y'0)a,- 23
/ =0 / =0

avecaf/ G Acris pour/ G {0,..., TV+2}, de sorte que z' y +
et donc z' j + ^+iäjv+2- Comme z' e ®£L_i A/*, j e ®£i_i A* et

<$#+iä/v+2 £ ®A:>aa on a necessairement

<l/V + lä/V+2 © A^yt C Ä (Acris (S)/> Acris (5))
fc>iV

i.e. 5iv+iajv+2 e Acris(S) + /> A„is, de sorte que

A + l
Z 7?(j + ^At+ltttV+2) + 23 ^ Acris(S)) + /"? Acris •

/ =0

Corollaire 40. On <2

(Ä®s Acris(5)) n ([e] - 1)'"* Acris ([©] " 1)'"*(ä®s Acris(5)).

Si X G (7?0s AcrisOS)) PI ([fi] — 1)^~* A^-is, alors X G /7?7 Acris,

de sorte que x G /?(7?0s Acris(£))- En appliquant le lemme 39 ä x//?, il vient

x/> e Acris(S)), et donc x e ([g] - l)^~*(/?®s Acris(5)).

Pour r G N, notons l'injection 7?0s FiP Acris(S) -> H®(G/?/s, FiP Acris).
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Proposition 41. ^ wn /soraorp/z/srae powr r G N.

D'apres le corollaire 31, Coker(to) est tue par ([e] — 1)^ et donc par
([g] - i)3(/>-i) : six e H"(G/e/s, Ams), alors

([£] - Acris(5)) n ([fi] - 1)3(^-0 Acris •

D'apres le corollaire 40, on en deduit que x G Acris(S) z.e. que Coker(to) est

nul.
Pour tout r G N, on a le diagramme

0 —0s Fif+1 Aeris(5) —* Ä0S FiT Acns(5) —0s gr' Acris(5) —* 0
p p p
P+ l £r

0 Fif+i A®f* Fir Af-f^ gr' A^f*
dont les lignes sont exactes. D'apres le lemme du serpent, on a donc une injection
Coker(^+i) ^ Coker(^), de sorte que Coker(^) {0} par recurrence.

Corollaire 42. Powr r g Z, on <2

HOpÄ/sXiFBcris) lim r"Ä0s Fir+" A^P).
«>|r|

Demons/ra/ron. D'apres la proposition 41, on a

H®(Gä/s, Fir Acris) Ä0S Fir AcrisP)

pour tout m G N, de sorte que

H^GÄ/s.FifBcris) lim f-"H°(G«/s,Fif+" A„is)
«>|r|

lim r"Ä®sFir+" AcrisP).
«>|r|

6. Appendice I: une construction de A*

Comme suggere par le rapporteur, on donne une construction, alternative ä celle

de [2], Proposition 4.42 & Remarque 4.43, du sous-anneau A^ de A^ W (E^),
dans le cas oü 0^ W(£), qui est stable sous l'action de </9 et de et qui a les

proprietes suivantes :
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(1) [e] G et [7/] G pour tout i G {1,..., d} ;

(2) A+/MJ - E+;
(3) AJ est complet pour la topologie faible.

Cela permet de donner une definition explicite de cet anneau.
Les raisonnements utilises etant dejä apparus plusieurs fois dans ce travail, on

donne simplement les idees principales.
Posons A^ ©^[[tt]] oü ä; est le corps residuel de 0^ et tt [e] — 1. L' anneau

A^ est un sous-anneau de A^, complet pour la topologie faible, stable sous l'action

de </9 et de r^/5. En outre, il releve £[[if]] (c/ [11], 3.2).

Soit AJ (resp. AJ) le separe complete de A^ (g)#^ S (resp. A^ (g)#^ R) pour la

topologie (/?, jr)-adique. On va construire des applications injectives £5 : AJ -> AJ
et ^ : A^ -> A^, qui induisent des isomorphismes topologiques avec les anneaux

Aj et Aj construit dans [2]. On notera 7$ et ij? leurs reductions modulo /?.

Rappeions que 0jv {Z^*,..., Z^} et E^ est l'anneau des series

convergentes pour la topologie if-adique :

E+^{Z±1,...,Z±1} oü Z, (Zj.ZjV..).

En particulier, A^ • • •» (complete pour la topologie (/?, tt)-
adique). Soit £5(0): A^ ^5(0) morphisme de A^-algebres qui envoie Z; sur

le representant de Teichmüller [Z/] pour i g {1..., 5}. II induit un isomorphisme

^5(0)/^5(0) E+o).L'application^(o) est injective modulo doncinjec-
tive, et son image s'identifie ä A^. On verifie aisement que l'image de A^ par
£5(0) est stable sous l'action du Frobenius.

On rappelle qu'on a une suite finie c c c S d'anneaux oü
5O + 1) est obtenu ä partir de en utilisant une des Operations (et), (loc), (comp)
pour tout i G {0,..., /1 — 1}. D'apres le lemme 9, l'application

§s«>: E+,.,/ÄE+,.> (JCO.JCI.-..) 1^*0.

est un isomorphisme, fonctoriel en

Supposons qu'on a construit ^(/> avec les proprietes cherchees. Dans chacun
des cas (et), (loc) et (comp), on montre qu'il existe une unique application
(resp. i^a+o) de A^,,//?A+,,-algebres (resp. de A+(,>-algebres) qui induit f^a+o
modulo tt (resp. modulo (/?, tt)). Comme £50+1) (resp. ^u+d) est injective modulo
jf (resp. modulo (/?, tt)), eile est injective. Par construction, l'image de ^u+i) verifie
les proprietes (1), (2) et (3): eile est topologiquement isomorphe ä A On montre

par induction sur i que dans chacun des cas (et), (loc) et (comp), il existe un et un
seul Operateur </9 sur A qui induit le Frobenius modulo /? et est compatible avec

le Frobenius sur A^> (defini par le Frobenius sur A^). En outre, on verifie par
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induction que ^o^(/+d ^(/+d o parce que c'est vrai modulo /? et pour
par hypothese de recurrence.

Rappeions que R s'obtient ä partir de 7?^ S {7^\..., 7j^} en iterant un
nombre fini de fois les Operations (et), (loc) et (comp). En particulier, A^o>
A+ {7\±\..., r±i} et A+(0)/Mj(0) Ej(0)- Soit tjj(0,: A+-> Ä+ le mor-

phisme de Aj-algebres qui envoie 7) sur [7)] pour 1 < y < tZ. L'application est

injective modulo (/?, tt), donc injective, et son image s'identifie ä A^. On verifie

que l'image de A^o> est stable sous l'action de </9 et de En rai-
sonnant comme precedemment, on voit qu'il existe une unique application t/? de

A^-algebres qui induit £/? modulo (/?, tt), injective, et dont l'image est isomorphe
ä A^. Comme dans le cas de Aj, on verifie que l'image de A^ est stable par le

Frobenius. On prouve de la meme faqon que l'action de sur A*^) (definie par

l'action sur A^o>) s'etend ä A^ et que pour tout y G T^/s, onayo^ ^oy.

7. Appendice II

Les auteurs remercient le rapporteur pour leur avoir suggere d'inclure la proposi-
tion 47, qui est utilisee ä plusieurs reprises dans le texte.

Definition43 ([18], Definition 1.1). UnhomomorphismedeF^-algebres /: A -> i?

est dit reZa/Zvera^ paz/azY lorsque l'homomorphisme

5 <8U,#> A ->• ß, x <g> J x^/(j>),

est un isomorphisme (oü </9 est le Frobenius absolu de A).

Les morphismes relativement parfaits entre F^-algebres sont stables par com-
Position et changement de base. D'apres [14], Oiy Theoreme 21.2.7, un morphisme
relativement parfait de F^-algebres est formellement etale.

Definition 44 ([18], Definition 1.2). Soit « G N>o. Un morphisme de Z //?" Z-
algebres /: A -> i? est dit reZa/Zvera^ /?<zt/<zZ/- s'il est formellement etale (pour
la topologie discrete) et si l'homomorphisme F^ 0/: F^ ®zA -> F^ est

relativement parfait.

Lemme 45 ([18], Lemma 1.6). SoZent« G N>o et /: A -> i? wn raorpZzZsrae rZe

Z //?" Z-aZgeferas' teZ gwe F^ 0/ soZ^ pZßt AZors / reZa/Zvera^ p<2//aZ£ sZ ££

sewZera^ s 'ZZ pZotf ^ F^ (8)/ reZa/Zvera^ paz/aZt

Lemme 46. SoZent F wne Z^-aZgefere pZate, separee ££ corapZ^te powr Za fopoZo-
gZe /?-<2<ZZgw£, ^ 7j^*} R wn ZzomomorpZzZ^m^ rZe Z^-aZgeferas'
sa/Zs/aZsan£ Zes cornZZ/Zons swZvantes :
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(1) Z? est separe et compZet ponr Za topoZogZe p-aJZgne et noet/zerZen;

(2) / estpZat;
(3) 0/ est reZatZvementpar/JZt;
(4) Ze /roJemns aJsoZn Je Z? /pZ? est/m.

FoZt Z?' nne Z?-aZgeZ?re Je /ype (et), (Zoe) on (comp). AZors Ze compose Je / et Je
Z? -> Z?' verZ/Ze ZnZ anssZ Zes conJZtZons (l)-(4).

DemonstratZon. (1) Montrons que Z?' est separe et eomplet pour la topologie p-adique
dans le cas (comp) (les autres cas etant triviaux). Soient / un ideal de Z? contenant
pZ? et Z?' la completion /-adique de Z?. Comme Z? est noetherien, on a

/?'//>"•/?' ~ /?' 0« (*//>"**) - /?)//"(/?//>"*/?)

pour tout m g N>o- Comme Z? est noetherien, Z?//" est separe et eomplet pour la

topologie p-adique, de sorte que

lim/?'//>'"/?' ~ lim lim(/?/p'"/?)//" (Ä/p'"/?) ~ lim lim(tf//")//"(#/7")
m m « m «

~ limlim(tf//")//"(fl/7") ~ lim/?//" /?'.

« m «

(2) est evident.

(3) II suffit de montrer que Z? /pZ? -> Z?'/pZ?' est relativement parfait. Dans le
cas (et), l'extension Z?/pZ? -> Z?'/pZ?' est etale donc relativement parfaite. Dans le
cas (loc), si Z?' est la completion p-adique de la localisation de Z? par rapport ä une
partie multiplicative £, alors Z?'/pZ?' pZ?) oü S designe l'image de S
dans Z?/pZ?. L'applicationx (8) y i-> x^y est un isomorphisme pZ?)®/?/^/?,^

(/?//>/?) (E*)"* (/?//>/?) £-i(/?//>/0, de sorte que /?//>/?- /?'//>/?' est
relativement parfait. Dans le cas (comp), on a Z?' lim Z?/7" oü / C Z? est un ideal

<—w _
contenant pZ? : comme Z? est noetherien, Z?'/pZ?' est la completion / /(Z?/pZ?)-
adique de Z?/pZ?. Comme </9: Z?/pZ? -> Z?/pZ? est fini, (Z?'/pZ?') (Z?/pZ?)
est le complete <p(7) (Z?/pZ?)-adique de Z?/pZ? : 1'ideal / etant de type fini, il coincide
avec le complete /-adique de Z?/pZ?.

(4) Comme Z?/pZ? -> Z?'/pZ?' est relativement parfait, la finitude de Z?'/pZ?' ->
Z?7pZ?' resulte de celle de ^: Z?/pZ? -> Z?/pZ?.

Proposition 47. Sozentn G N>o A -> Z? nn morp/z/sme re/at/vementpar/a/t
JeZ/p" Z-aZgeZmes (J'apres Ze Zemme 46, c'est Ze cas Zorsgne A est nne Z /p" Z-
aZgeZme pZate et noet/zenenne, Ze TroJen/ns aJsoZn Je (8)A est/m, et Z? est nn
annean oJtenn a part/r Je A en Zterant nn nomZ?re/m Je/0/5 Zes operaJons (et), (Zoe)

et (comp)). 5o/t 0: C C nn ZzomomorpZz/^me ^nrject// Fnppo^on^ 7Z ex/^te
ZV G N>o teZ ^ne x^ 0 ponr tont x G Ker(0) (notom? ^ne ceZo n/'mpZZ^ne po5
gne Ker(0) e^t nZZpotent, J moZm? ^rn'ZZ 5oZt Je type/nZ).
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(1) Powr rA'agrararae commMtoft/

/ c

c

z7 wn wmgwe raorpA/srae /: i? ^ C teZ gwe 0o/ /^/o^ /i.

(2) SozY /: i? -> C MW AoraoraorpA/srae ££ Co wn sows-amzeaw rfe C. 5/

(/ ° g)04) C Co ef (0 o /)(C) c 0(Co), fl/ori /(ß) c Co-

Demons/ra/fon. (1) C'est [18], Lemma 1.9.

(2) Posons Co 0(Co). Le diagramme commutatif

se factorise en

D'apres (1), il existe un unique homomorphisme A: i? -> Co tel que le diagramme

ß Co

^ öT^ O)

soit commutatif. Les deux homomorphismes /, t o A: 5 -> C rendent le diagramme

0O/ _ß * C

/°£ c

commutatif. D'apres (1), on a / t o A, de sorte que /(2?) C Co.
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