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Entropy on Riemann surfaces and the Jacobians of finite Covers
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Abstract. This paper charactenzes those pseudo-Anosov mappings whose entropy can be

detected homologically by taking a limit over finite Covers The proof is via complex-analytic
methods The same methods show the natural map Atg -> ]~[ > which sends a Riemann
surface to the Jacobians of all of lts finite Covers, is a contraction in most directions
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1. Introduction

Let /: aS —> iS bea pseudo-Anosov mappmgona surface ofgenusgwith/i punctures.
It is well-known that the topological entropy Zz(/) is bounded below in terms of the

spectral radius of /* : //*(£, C) —//*(£> C); we have

loggen </*(/).

If we lift / to a map /: S -> S on a finite eover of S, then lts entropy stays the same
but the spectral radius of the action on homology can mcrease. We say the entropy
of / can be detected ZicracZcg/crdZy if

Ä(/) sup log p(/* : #*(£)- #*(£)),

where the supremum is taken over all finite Covers to which / lifts.
In this paper we will show:

Theorem 1.1. 77ie enteo/ry c/<2 pxcwdc-Ancxcv raapp/ng / can Z?e detected Zicmc-

Zog/crdZy z/ßftd onZy i/fZie /nvßn'ßnf/cZ/ßdcnx o/ / Zirzve nc edd-erder smgidßr/des
m die dztenor o/*S.

The proof is via complex analysis. Hodge theory provides a natural embeddmg
Afg -> «Ag from the moduli space of Riemann surfaces mto the moduli space of
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Abelian varieties, sending X to its Jacobian. Any characteristic covering map from a

surface of genus /z to a surface of genus g, branched over zz points, provides a similar

map
^ ^ A/j. (1*1)

It is known that the hyperbolic metric on a Riemann surface X can be reconstructed

using the metrics induced from the Jacobians of its finite Covers ([Kaz]; see the

Appendix). Similarly, it is natural to ask if the Teichmüller metric on «Mg,« can be
recovered from the Kobayashi metric on A/*, by taking the limit over all characteristic
Covers Cg^. We will show such a construction is impossible.

Theorem 1.2. TTze zza/rzraZ map Afg^ -> ]~[^ ^
A^ Zs zzctf an Zsozzze/ry /or £/ze

KoZzayas/zZ zzze/rZc, z/zz/evs- dim Afg^ 1.

It is an open problem to determine if the Kobayashi and Caratheodory metrics

on moduli space coincide when dim Afg^ > 1 (see e.g. [FM], Problem 5.1). An
equivalent problem is to determine if Teichmüller space embeds holomorphically
and isometrically into a (possibly infinite) product of bounded Symmetrie domains.
Theorem 1.2 provides some support for a negative answer to this question.

Here is a more precise version of Theorem 1.2, stated in terms of the lifted map

-Zg,« —v//j —>* 6/j

from Teichmüller space to Siegel space determined by a finite cover.

Theorem 1.3. Sz/ppose £/ze 7^Zc/zmZZ//^r zzzappZzzg Zzeftiwzz a pzzZr o/zZZs/fzzct poZzzfa

X, 7 G 7^ C6>zzz£s/zwzz a gzzadra/fc zZzjf/erezz/rVzZ wzY/z an ozZJ ozrfer z^zrz. TTzezz

sup 7(7(7), 7(7)) < 7(7, 7),

w/zere £/ze sz/prezzzz/zzz Zs tafezz over a/Z cözzzpa/fZzZ^yZzzZte Covers o/X ozzd 7.

Conversely, if the Teichmüller map from X to 7 has only even order singularities,
then there is a double cover such that c?(/(X), 7(7)) c?(X, 7) (cf. [Kra]). In
particular, the complex geodesics generatedby Squares of holomorphic 1-forms map
isometrically into Ag. The only directions contracted by the map Afg -> n ^re
those identified by Theorem 1.3.

Theorem 1.1 follows from Theorem 1.3 by taking X and 7 to be points on the
Teichmüller geodesic stabilized by the mapping-class /. It would be interesting to
find a direct topological proof of Theorem 1.1.

As a sample application, let G 2?^ be a pseudo-Anosov braid whose monodromy
map / : aS —> aS (on the zz-times punctured plane) has an odd order singularity. Then
Theorem 1.1 implies the image of /3 under the Burau representation satisfies

log sup p(fi(tf)) < A(/).
k?l=i
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Indeed, p(i?(g)) at any d-th root of unit is bounded by p(/*) on a Z/d cover S

[Mc2]. This improves a result in [BB]. Similar Statements hold for other homological
representations of the mapping-class group.

Notes and references. For diffeomorphisms of a compact smooth manifold,
one has A(/) > logsup^ p(/*|///Z)) [Ym], and equality holds for holomorphic
maps on Kahler manifolds [Gr]. The lower bound A(/) > logp(/*|//*(Z)) also

holds for homeomorphisms [Mn]. For more on pseudo-Anosov mappings, see e.g.
[FLP], [Bers] and [Th],

A proof that the inclusion of 7^ into universal Teichmüller space is a contraction,
based on related ideas, appears in [Mcl].

2. Odd order zeros

We begin with an analytic result, which describes how well a monomial z^ of odd
order can be approximated by the Square of an analytic function.

Theorem 2.1. > 1 odd, ond /(z) o /zoZoraorp/z/c/nncdon on dze nnd
dAA A sncZz / |/(z)/ 1. T/zen

Here the integral is taken with respect to Lebesgue measure on the unit disk.

^ _ V£ + lV£ + 3
^ Of — ^ X•~ £ + 2

Proo/ Considertheorthonormalbasis^(z) o„z/n > 0,= V/TTT/^tt, for
the Bergman space (A) of analytic functionson the disk with ||/|| 2 /|/(/)P <
oo. With respect to this basis, the nonzero entries in the matrix of the Symmetrie
bilinear form Z(/, g) / /(z)g(z)z^/|z|^ are given by

/ |z| —
Ja & + 2

In particular, Z= 0 for all Z (since A is odd), and Z(/;,£/) 0 for all

/,7 > fc.

Note that the ratio above is less than one, by the inequality between the arithmetic

andgeometricmeans,anditismaximizedwhenn <A/2<n + l. Thusthemaximum
of |Z(/, /) 1/II/|P over A^(A) is achieved when / + ^+i, (/ — 1)/2,
at which point it is given by C/.



956 C. T. McMullen CMH

3. Siegel space

In this section we describe the Siegel space of Hodge structures on a surface *S, and

its Kobayashi metric.

Hodge structures. Let be a closed, smooth, oriented surface of genus g. Then

//*(£> C) carries a natural involution C(a) ä fixing //*(£, R), and a

natural Hermitian form

(a>/3) ^
of signature (g, g). A //odg*? strwctare on 7/* (S) is given by an orthogonal Splitting

© K®'*

such that F*'® is positive-definite and F^* C(F^). We have a natural norm on
F*'° given by ||cif|p (cif,cif).

The set of all possible Hodge structures forms the S/egeZ space £>(£). To describe
this complex Symmetrie space in more detail, fix a Splitting 7/* (S) 0 JF®'*.

Then for any other Hodge structure F*^ 0 F^'\ there is a unique Operator

Z: FF''" -> W®'*

such that F*'® (/ + Z)(JF*'®). This means F*'0 coincides with the graph of Z
in W*>® © W®'*.

The Operator Z is determined uniquely by the associated bilinear form

Z(a,j8) {a,CZ(j8))

on JF*'*\ and the condition that F*'** 0 F^'^ is a Hodge structure translates into the
conditions

Z(a,/3) Z(j8,a) and |Z(a,a)| < 1 if ||a|| 1. (3.1)

Since the second inequality above is an open condition, the tangent space at the base

point p ~ jf*'® 0 JF®'* is given by

T^ö(iS) {Symmetrie bilinear maps Z: JF*'® x JF*'® —C}.

Comparison maps. Any Hodge structure onff^(S) determines an isomorphism

K*'® i/'(S,R) (3.2)

sending a to 9t (a) (a + C(a))/2. Thus 7/ * (S, R) inherits a norm and a complex
structure from F*'*\
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Put differently, (3.2) gives a morA/ng of F*'® by //*(£, R). By composing one

marking with the inverse of another, we obtain the real-linear componson map

r (/ + Z)(/ + CZ)"':If'-"^F^ (3.3)

between any pair of Hodge structures. It is characterized by 9t (a) 9t (T(a)).

Symmetrie matrices. The classical Siegel domain is given by

% {Z e Mg(C) : Z,y Z/,- and 7 — ZZ 0}.

(cf. [Sat], Chapter II.7). It is a convex, bounded Symmetrie domain in C^, V
g(g + 1)/2. The choice of an orthonormal basis for JF*'® gives an isomorphism
Z i-> Z(cty, &>/) between ß(S) and £>g, sending the basepoint /? to zero.

The Kobayashi metric. Let AcC denote the unit disk, equipped with the metric
|r/z |/(1 — |z p) of constant curvature —4. The KoZmyos/n' me/Wc on £>(£) is the largest
metric such that every holomorphic map /: A -> £>(£) satisfies ||Z)/(0)|| < 1. It
determines both a norm on the tangent bündle and a distance funetion on pairs of
points [Ko].

Proposition 3.1. 77z£ KoZmyos/n' norm on T^ö(aS) As g/ven fry

||Z||* sup{Z(of,cif)| : ||cif|| 1},

onJ KoZmyos/n' JAstance As g/ven zn terms o/7/ze com/mrAson mop (3.3) Zry

</(K*>o, Wi'O) log||r||.

Proo/ Choosing a suitable orthonormal basis for JF*'®, we can assume that

Z (&)/ n>)y A/ A'/y

with Ai > A2 > • • • Ag > 0. Since £>g is a convex Symmetrie domain, the Kobayashi
norm at the origin and the Kobayashi distance satisfy

||Z||jc r and rf(0, Z) 1
log Ftl

2 1 — r

wherer infjs > 0 : Z e s£>g}(see[Ku]). Clearlyr Ai sup |Z(cif,cif)|/||cif|p,
and by (3.3), we have

||r|f ||r(V=Tö,i)f oq Ai&q
+l-Ai 1-Ai

2 1 + A i
1 — Ai'

which gives the expressions above.
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4. Teichmüller space

This section gives a functorial description of the derivative of the map from Teich-
müller space to Siegel space.

Markings. Let S be a compact oriented surface of genus g, and let S c S be a

subsurface obtained by removing « points.
Let Teich(S) ^ denote the Teichmüller space of Riemann surfaces marked

by*S. A point in Teich (iS)isspecifiedbyahomeomorphism / : aS —> A" toa Riemann
surface of finite type. This means there is a compact Riemann surface X D X and

an extension of / to a homeomorphism / : S -> X.

Metrics. Let Ö(X) denote the space of holomorphic quadratic differentials on X
such that

IM* / kl < OO.
«/v:

There is a natural pairing (#, /x) i-> ^ #/x between the space <2(X) and the space
Af(X) of L°°-measurable Beltrami differentials /x. The tangent and cotangent Spaces

to Teichmüller space at X are isomorphic to Af(X)/<2(X)-^ and <2(X) respectively.
The Teichmüller and Kobayashi metrics on Teich(S) coincide [Royl], [Hub],

Chapter 6. They are given by the norm

H/iHr sup{|/?/x| : Ikllx 1}

on the tangent space at X; the corresponding distance function

7) inf 1
log ä:(0)

measures the minimal dilatation X(</>) of a quasiconformal map 0: X -> 7 respect-
ing their markings.

Hodge structure. The periodsofholomorphic 1-formsonX serve as classical moduli
for X. From a modern perspective, these periods give a map

/: Teich(S) -> fi(5) =* fi*,

sending X to the Hodge structure

# *0S) *(*) e

Here the first isomorphism is provided by the marking / : S -> X. We also have a

natural isomorphism between //^(X) and the space of holomorphic 1-forms £2(X).
The image /(X) encodes the complex analytic structure of the Jacobian variety
Jac(X) £2(X)*/L/i (X, Z). (It is does not depend on the location of the punctures
ofX.)
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Proposition 4.1. PAe o/VAe penod map sends /x G Af (X) to ^Ae gnndra/xc

/orra Z Z)/(/x) on £2(X) g/ven fry

Z(a,/3) /arß/x.

This is a basis-free reformulation of Ahlfors' variational formula [Ah], §5; see

also [Ra], [Roy2] and Proposition 1 of [Kra]. Note that a/3 G <2(X).

5. Contraction

This section brings finite Covers into play, and establishes a uniform estimate for
contraction of the mapping 7^ -> 7^ -> £>/*.

Jacobians of finite Covers. A finite connected covering space Si -> So determines
a natural map

P : Teich(iSo) -> Teich(Si)

sending each Riemann surface to the corresponding covering space Xi -> Xo. By
taking the Jacobian of Xi, we obtain a map / of: Teich(So) -> £>(Si).

Let #o ^ ö (*o) be a holomorphic quadratic differential with a zero of odd order
A, say at /? G Xo. Let /x #o/l#ol £ Af(Xo); then ||/x||^ 1. Let tt : Xi -> Xo
denote the natural covering map, and let tt * (#o).

We will show that /(Xi) cannot change too rapidly under the unit deformation /x
of Xq. Indeed, if /(Xi) were to move at nearly unit speed, then tt*(/x) #i/|#i |

would pair efficiently with for some unit-norm of G £2(Xi), which is impossible
because of the many odd-order zeros of gq.

To make a quantitative estimate, choose a holomorphic chart 0: (A, 0) -> (Xo, /?)
such that 0*(/x) z^/|z|^ Jz/Jz. Let L 0(A),andlet

m(<7) inf{|Mt/ : e ÖÄ), IM* !}•

(Here ||g||t/ |#|.) Since ö(Xo) is finite-dimensional, wehavem(L) > 0.

Theorem 5.1. PAe Annge Z o/PAe vector [/x] nnAer *Ae denvatf/ve o//of
ll^llif < <5 < 1 ||/i||r,

wAere 5 max(l/2,1 — (1 — Cfc)m (C/)/2) Joes no£ AepenA on Aze^n/to cover
Si -> So.

Proo/ The derivative of P sends /x to tt* (/x). By Proposition 3.1, to show || Z ||^ < 5

it suffices to show that

|Z(0f,0f)| / 0^7T*/X
I

< 5
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for all a G £2(Xi) with ||c^||j^ 1. Setting g tt*(o^), we also have

|Z(a,a)| / <7/^
1^0

< Iklko'

so the proof is complete if ||# ||;ro 5 1/2. Thus we may assume that

IIa*IIK > IMIt/ > >«(V)lklk> - (V>/2,

whereL tt~*(C/) (jf V/ isafinite union ofdisjointdisks. Using the coordinate
Charts F/ C/ A and Theorem 2.1, we find that on each of these disks we have

£ O IIa* II Fi-

Summing these bounds and using the fact that ||ar|| (Zi-K) + 11^'II K 1, we obtain

i/„ 0^7T*(/x) o o (1 — Ci-)m(C/)
< ||of ||(jf-j—v) + C*||«*||K < 1 - <= <5.

6. Conclusion

It is now straightforward to establish the results stated in the Introduction.

Proo/o/T/z^orem 1.3. Assume the Beltrami coefficient of the Teichmüller mapping
between IJ e 7^ has the form /x £#/#, where g g <2(^0 has an odd order

zero. Then the same is true for the tangent vectors to the Teichmüller geodesic y
joining X to 7. Theorem 5.1 then implies that Z)(/ o P)|^ is contracting by a factor
5 < 1 independent of P, and therefore

j(y o /»(x), y o p(r» j(y(x), y(f)) < 5 • </(*, 7).

Proo/o/T/z^orem 1.2. The contraction of «Mg,« -> f~[^ „ ^ some directions is

immediate from the uniformity of the bound in Theorem 1.3, using the fact that the

Kobayashi metric on a product is the sup of the Kobayashi metrics on each term, and

that there exist g G 2 (20 with simple zeros whenever X G «Mg,« anddimXfg^ > 1.

Proo/o/T/z^orem 1.1. Let /: So -> So be a pseudo-Anosov mapping. If / has

only even order singularities, then its expanding foliation is locally orientable, and

hence there is a double cover S -> such that log p(/*) A(/).
Now suppose / has an odd-order singularity. Let Xo G Teich (So) be a point on

the Teichmüller geodesic stabilized by the action of / on Teich (So). Then/z(/)
d(/ • Xo, Xo) > 0 (see e.g. [FLP] and [Bers]).
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Let /: iSi ^ iSi be a lift of / to a finite covering of So, and let Xi P(Xo) E

Teich(Si). Using the marking of Xi andtheisomorphism//i(Xi,R) ^
we obtain a eommutative diagram

where T is the eomparison map between ./(Xi) and /(/ • Xi) (see equation (3.3)).
Then Theorem 1.3 and Proposition 3.1 yield the bound

log Kr) < log mi i(y(Vi),/. /(Vi» < &/(*„,/ •*„) M(/)>

where 5 < 1 does not dependent on the finite covering Si -> Sq. Consequently,

sup log p(/*) < Ä(/).

Appendix. The hyperbolic metric via Jacobians of finite Covers

Let X A / T be a compact Riemann surface, presented as a quotient of the unit
disk by a Fuchsian group T. Let -> X be an ascending sequence of finite Galois
Covers which converge to the universal cover, in the sense that

r„ A/r„, r D Ti D T2 D Ts ••• and PI r,- {e}. (A.l)

The Bergman metric on (defined below) is invariant under automorphisms, so it
descends to a metric onl. This appendix gives a short proof of:

TheoremA.l (Kazhdan). TAe itergraon /nAented/rora tAe/irate GoZo/s Covers
Tw -> X converge o ranZApZe q/TAe AyperAoZ/c rae/Wc; more prec/seZy, we Aove

nm/orraZy on X.

The argument below is based on [Kaz], §3; for another, somewhat more technical
approach, see [Rh].

Metrics. We begin with some definitions. Let £2(X) denote the Hilbert space of
holomorphic 1-forms on a Riemann surface X such that
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The area form of the itergraan rae/Wc on X is given by

(A.2)

where (/«/) is any orthonormal basis of £2(X). Equivalently, the Bergman length of
a tangent vector u e TZ is given by

(^,u) supip^- (A.3)
o,#0 MI*

This formula shows that inclusions are contracting: if 7 is a subdomain of X, then

ßr > AY-
Now suppose X is a compact surface of genus g > 0. Then (A.2) shows its

Bergman area is given by

)8! dimnOO g. (A.4)
/X

In this case /3^ is also the pullback, via the Abel-Jacobi map, of the natural Kahler
metric on the Jacobian of X.

Finally suppose X A/T. Then the hyperbolic metric of constant curvature

-i,
2|dz|

Aa
1 - UP'

descends to give the /zyperfeoZ/c rae/Wc A^ on X. Using the fact that || <iz|| a tt, it
is easy to check that 4tt/3^ A^.

A. 1. We will regard the Bergman metric /3„ on as a T„-invariant
metric on A. It suffices to show that /3„//3a 1 uniformly on A.

Let g and g„ denote the genus of X and respectively, and let denote the

degree of T„/X; then g„ — 1 ^(g — 1). By (A.l), the injectivity radius of
tends to infinity. In particular, there is a sequence -> 1 such that y(r„ A) injects
into for any y e T. Since inclusions are contracting, this shows

< (1 + (A.5)

where -> 0.

Next, note that both /3„ and /3 a are T-invariant, so they determine metrics on X.
By (A.4), we have

/«=j-/ «=^te-u=/«
(since ^ A^ 2jr(2g — 2) by Gauss-Bonnet). Together with (A.5), this implies

|y6n-^A|'^0. (A.6)



Vol. 88 (2013) Entropy on Riemann surfaces and the Jacobians of finite Covers 963

To show -> /3 a uniformly, consider any sequence p„ e A and let x e [0,1]
be a limit point of (/3«//3a) (/?«)• It suffices to show x 1.

Passing to a subsequence and using compactness of X, we can assume that p„ ->
p e A and that /3„(p„) -> x/3a(/?). By changing coordinates on A, we can also

assume p 0. By (A.6) we can find ^ -> 0 such that -> jSa(O). Then

by (A.3), there exist -invariant holomorphic 1-forms o^(z)dz on A such that

/r„ 1 and

K(4«)l ßn(4n) ^A(0) —•
TT

Since is holomorphic and ^ p < 1, the equation above easily implies that
| -> |r/z|/TT uniformly on compact subsets of A. But we also have

j8„0„) > K0?n)l )6A(0),

and thus /3^(p^) -> /3a(0) and hence x 1.
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