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A Floer-Gysin exact sequence for Lagrangian submanifolds

Paul Biran and Michael Khanevsky*

Abstract. We establish a Floer-theoretical analog of the classical Gysin long exact sequence
from algebraic topology for circle bundles. We study algebraic and functorial properties of this
sequence and derive applications to computations of Lagrangian Floer homologies as well as to
questions on the topology of Lagrangian submanifolds.
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1. Introduction and main results

This paper is concerned with a Floer-theoretic analogue of the well known Gysin-
sequence from algebraic topology. In this paper we focus on the case of circle bundles
only. Recall that given a circle bundle = : I'"*! — L" over a closed manifold L
there is a long exact sequence in cochomology:

" Hk(L) Uea Hk+2(L) H*B Hk+2(F) 1*3 Hk+1(L) e

where e € H?(L)is the Euler class of the circle bundle and 7, : H*T1(T) — H*(L)
is the map that can be identified under Poincaré duality with the map induced by the
projection H,_,(I') - H,_,(L) (sometimes the map 7. is also called “integration
along the fibres”).

In this paper we will develop a Floer analogue of this sequence associated to a
Lagrangian submanifold L and certain circle bundle over it that appears naturally in
certain geometric circumstances.

Let (2, wy) beaclosed symplectic manifold with an integral symplectic structure,
ie, [ws] € H*(Z;R) admits a lift to H*(X;Z). Let L. C X be a Lagrangian
submanifold. One of the motives of this paper is to study the Floer cohomology of

L. and derive from it possible applications, e.g. to questions concerning the topology
of L.

*Both authors were partially supported by the ISRAEL SCIENCE FOUNDATION (grant No. 1227/06 *).
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Our starting point is that one can associate to L in a natural way a flat circle bundle
I'y, — L whose total space I'y, can be realized as a Lagrangian submanifold in a new
symplectic manifold which is a bundle over ¥. The construction is simple. Fix a lift
a € H*(%;Z) of [ws] and let & — X be the complex line bundle with ¢¥ = a.
One can endow A with a hermitian metric and a connection so that the curvature
of N is %C{)g. The total space of N can be endowed with a canonical symplectic
structure @y,, which restricts to wy, on X. Fix ro > 0 and let P,, C N be the circle
bundle of radius ro and denote by 7 : P, — X the projection. Then I'y, = 7~ (L)

becomes a Lagrangian submanifold of (N, @, ). Note that 'y in fact lies in N \ X.

Ideally one would like to relate the symplectic topology of 1. C X to that of
' € N orthatof 'y € N \ X, hoping that the latter would shed some new
light on L. The problem is that both & and N \ % have a symplectically concave
end (at infinity) which apriori makes them inaccessible to the current techniques of
symplectic topology, in particular Floer theory. Nevertheless, we will see that one can
still define a version of Floer cohomology for I, C N \ 2. Moreover, we will see
that the Floer cohomology of L and that of I';, are related by a long exact sequence
which is analogous to the Gysin sequence relating the singular cohomologies of L
and I';.

Although we can define the Floer cohomology for I';, € A \ 3 this notion is
apriori not very useful unless we can establish some geometric properties of this
cohomology, such as invariance under Hamiltonian isotopies, a vanishing criterion
when I'y is displaceable etc. This is not so clear in general since the manifold N \ X
has a concave end. However, there is one situation in which one can go through these
difficulties: when the contact manifold P,, is Weinstein fillable. This means that
N\ 2 (which is just the negative symplectization of P,,) can be compactified at the
negative (or concave) end into a Weinstein manifold W. As we will see later the Floer
cohomology of Ty in N \ X coincides with that of Ty in W. The latter is already
a completely standard object in symplectic topology and enjoys the usual geometric
properties expected from the theory. The fundamental example of fillable Py, is when
2 appears as a symplectic hyperplane section in closed symplectic manifold M (of
one complex dimension higher). Then W = M \ X is Weinstein and if one removes
from it the isotropic skeleton A C W we have W\ A ~ N \ X. In view of this we

will from now on work in this geometric framework. Here is the setup.

Let (M, w) be a symplectic manifold with an integral symplectic structure, i.e.,
o] € H*(M:;7Z). Let ¥ C M be a symplectic hyperplane section of degree k,
so that PD[X] = k[w] (see [Don]). In this setup, the Lagrangian circle bundle
construction [Bir2], [BC2] associates to every Lagrangian submanifold L. C ¥ a new
Lagrangian submanifold Ty, C M \ 2 which topologically is a circle bundle over L.
The construction of I'y is roughly the following (see §2 and more specifically §2.4
for the precise details). Take a tubular neighborhood U of ¥ in M which looks like a
disk bundle over 2, say U — 2. Itsboundary P = dUisacirclebundler: P — X
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over 2. Define
I, =r"YL)yc M\ X.

For an appropriate choice of the neighborhood U the resulting Ty, will be aL.agrangian
submanifold of M \ ¥. This procedure, which was introduced in [Bir2], [BC2],
proved to be useful for studying Lagrangians in manifolds X that appear as hyperplane
sections (in some manifold M). The point is that the symplectic topology of M \ X
is sometimes easier to study than that of X itself.

As I't — L is a circle bundle the singular cohomologies of the manifolds I'y,
and L are related by the Gysin long exact sequence. As we will see soon, there is an
analogous long exact sequence relating their Floer cohomologies too.

Before we state our main theorem we need to introduce some notation and elab-
orate more about the setting. Given a symplectic hyperplane section ¥ C M, put
W = M\ ¥. We will assume from now on that W is a Weinstein manifold. (This
is often assumed as part of the definition of “symplectic hyperplane section”.) The
basic familiar example is when M is Kihler and X is a complex hyperplane section
(then W is in fact affine). As for the Lagrangian [. C ¥ we will henceforth assume
that it is monotone with minimal Maslov number N7, > 2 (see e.g. [BC6] for the
definition). In what follows we will mostly work with Z, as the ground field both for
Floer cohomology as well as for singular cohomology. In particular when we refer
to the Euler class e of the circle bundle I';, — . we actually mean the 7 ,-reduction
of the integral Euler class, so that e € H?(L: Z,).

We denote by HF*(L) the Floer cohomology of the pair (L., L.). Since L is
monotone the coefficient ring will be taken to be the ring of Laurent polynomials A =
Zio[t=1, 1] where deg 1 = Nj (see e.g. [BC6]). Similarly we denote by HF* (I ) the
Floer cohomology of the pair (I'z, I'z ). Note that T'z can be viewed as a Lagrangian
submanifold of both W and M. Here, by HF*(I'z) we mean the Floer cohomology
in W (notin M!). By the results of [Bir2] when dimpg 2 > 4 the monotonicity of L
implies that I'y, C W is monotone too and that Ny, = Np. The same continues to
hold if dimg ¥ = 2 provided that W is subcritical.

Our main result is the following.

Theorem 1.1. Let M, ¥ and 1. C X be as above and assume that either dimg 2 > 4
or W is subcritical. Then there exist canonical maps

i: HF*(L) — HF*(I';), p: HF*(I'1) —» HF* (1)

and a class ep € HF?(L) which dll fit together into the following long exact se-
quence:

A— HFk(L) ﬂ} HFk+2(L) ; HFk+2(FL) L_ HFk+1(L) I

where xef stands for the Floer quantum product with the class ep. Moreover,
the maps i and p satisfy the following multiplicative properties with respect to the



902 P. Biran and M. Khanevsky CMH

quantum products on HF (L) and HF (I'y):

i(axB) =i(@#*i(B), p@*i(B)) = p@*p, pli)*p)=ax*pp), (1)

foreverya,f € HF* (L) and &, B € HF*(T7).

A similar theorem (in a somewhat different setting) has been independently ob-
tained by Perutz [Per] by completely different methods, based on the theory of quilted
Floer homology developed by Wehrheim—Woodward [WW 1], [WW2]. In fact, the
result of Perutz holds also for sphere bundles (not only circle bundles).

The exact sequence of Theorem 1.1 can be regarded as a Floer-homological ana-
logue of the classical Gysin sequence associated to the circle bundle I'y, — L. Indeed,
if we replace the Floer cohomologies by singular cohomologies in the above sequence
and the class e € HF?(L) by the Euler class e € H?>(L:Z,) of I', — L we get
precisely the Gysin sequence. For this reason we call this sequence the Floer—Gysin
sequence and the class ef the Floer—Euler class. Moreover, we will see below that
the maps i and p are in fact Floer-homological analogues of the pull back map 7#* of
7. I't — L and of the integration along the fiber, respectively.

Note that since ¥ C M represents the Poincaré dual to a multiple of [@] and
1. C ¥ is Lagrangian the bundle I'; — L is flat and so the Z-Euler class is torsion in
H?(L:;7). This might look like a restrictive situation for the choice of bundles Tz,
however the main object of study here is L rather than I'y,. In fact I'y, can be viewed
as an auxiliary object for studying I..

In what follows we will actually establish a more general theorem than 1.1 which
allows to take L to be a monotone Lagrangian submanifold of 2 x @ for any closed
symplectic manifold (). In contrast to the case (J = pt, in this case the circle bundle
I’y — L is not necessarily flat anymore. This generalization is described in §14. As
an application we will prove in §15 the following:

Theorem 1.2. Let (3, wx) be a spherically monotone symplectic manifold with min-
imal Chern number Cyx, (see §15 for the definition). Suppose that (%, wx) can be
embedded as a symplectic hyperplane section in a symplectic manifold M so that
M \ X is subcritical. Then Cs < 0o and H*M2C2) (3 7.0) is 2-periodic, i.e., for
every k € 7 we have:

@Hk-i-Zng (Z,Zz) o~ @Hk+2+2iCZ (Z,Zz)
i€Z i€z

The simplest example when this happens is & = CP”" (with M = C P+l
Then we have Cxy = n + 1 and the 2-periodicity is easy to verify. More examples of
2: C M with subcritical complement can be found in [BJ], as well as related theorems
in an algebraic geometric framework.
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1.1. Applications. Here is an immediate corollary of Theorem 1.1.

Corollary 1.3. Suppose that % appears as a symplectic hyperplane section in a
symplectic manifold M such that W = M \ X is subcritical. Let 1. C % be a
monotone Lagrangian submanifold with Ny = 2. Then, either HF (1) = 0, or the
Floer—Euler class e € HF?*(L) is invertible with respect to the quantum product.
In particular HF* (L) is 2-periodic, i.e., for everyi € 7 there exists an isomorphism
HFY(L) = OF**2(L).

See §15.1 for the proof. The simplest example satisfying this corollary is M =
CP*1land & = CP7, since we have W = C P*"+1\ CP"” ~ Int B2"+2(1).
Here 1s another corollary related to subcriticality.

Corollary 1.4. let . C X be as in Corollary 1.3 but assume now that Ny > 3.
Denote by N — % the normal bundle of % in M. If HF(L) # 0 then the classical
Euler class ¢ € H?(L; Z,) of the restriction N|p is non-trivial. In particular the
circle bundle Ty, — L is non-trivial and H?(L; 7)) has torsion.

The proofis given in §15.1. An example of a L.agrangian satisfying this corollary
isL=RP*C CP"n>2

Let X C C P"*! be asmooth quadric hypersurface, endowed with the symplectic
structure induced from CP"*!. As all such quadrics are symplectomorphic we
choose a specific model: £ = {z§ +--- +z" = zZ_,} C CP"*!. Put

Lo={zo:--:zp41] € Z | z; e Rforalli}.
It is easy to see that L is a smooth Lagrangian sphere.

Corollary 1.5. Let L C % be a monotone Lagrangian submanifold with Ny, > 2
anddim L = 2. If HF (L) # Othen L N Ly # 0.

We will prove in §15.1 a slightly stronger result. Note that the quadric 2 has many
Lagrangians L satisfying the conditions appearing in the corollary (see Section 1.3
in [Bir2] for such examples). We have recently been informed by M. Entov that
Corollary 1.5 should also follow from the theory of heavy and superheavy subsets [EP]
together with some computations from [BC6].

Since quite a few of the corollaries above make use of the assumption that
HIF (L) # 0itis worthwhile to list some topological conditions on 1. that ensure this
assumption.

Proposition 1.6 (Sec [BC6]). Let 1. C 3 be a monotone Lagrangian submanifold
with minimal Maslov number Np. Assume that L satisfies one of the following
conditions:
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(1) Ny = 3 and the cohomology ring of L, H*(L:Z,) is generated by H1(L; Z,)
with respect to the cup product.

(2) More generally, assume that H*(L: 7.2) is generated by H<N.=1(L; 7).

(3) Hi(L:7Z3) = O foreveryi € Z withi = —1 mod (Np). (This happens for
example if L ~ S§" with Np [ n + 1.)

Then HF(L) #£ 0. In fact, we have HF(L) = H(L:Z,) @ A.

Applying these conditions in each of Corollaries 1.3, 1.4, 1.5 one can obtain
topological restrictions on Lagrangians appearing in the corresponding 2’s.

1.2. Examples

1.2.1. Lagrangians L ¢ CP" with 2H(L:Z) = 0. Take ¥ = CP" M =
CP"tlandlet L ¢ CP" be a Lagrangian submanifold with 2H,(L; Z) = 0. For
example, one could take here L = R P". Itis easy to see that L is monotone. By the
results of [BC6], [BC5] we have Ny = (n + 1) and moreover:

(1) H*(L;Z,) = H*(RP":Z5),ie., H(L;Z>) = Z» forevery 0 <i <n.

(2) There exists a canonical isomorphism of A-modules
HF*(L) = (H(L:Z») ® A)”.

Note however, that the ring structures on these modules are different.

We will see later in §15.2 that the Floer—Euler class coincides with the classical Euler
class, er = e, which is the generator of H?(L:;Zj,) = Z,. Note that er = e is
invertible with respect to the quantum product * on HF (L), but of course not with
respect to the classical cup product w on H*(1L;7Z;).

1.2.2. The Clifford torus. Let Y = CP*, M = CP"tland L. = Ty C CP"
the Clifford torus given by

L={[zg:-:2,] € CP" | |z;| =1 foralli}.

This is amonotone Lagrangian torus with minimal Maslov number Ny, = 2. Itis well
known that there exists an isomorphism HF (L) = H(L;Z;) ® A (See [Cho], see
also [BC6]). Note that this isomorphism is not canonical (see |[BC6] for the details),
however there exists a canonical injection H9(L:7Z,) ® A — HF*(L) sending the
unit of H*(L;7Z>) to the unit of HF*(L).

A simple computation shows that Ty ¢ CP"*1\ CP" ~ Int B2"*2(1) is in
this case the split monotone torus. As we will see later on, the Floer—Euler class in
this case is e = { € HF?(L). Note that the classical Euler class e € H2(L:;75)
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of I'y — L vanishes since this bundle is trivial. Thus the classical Gysin sequence
splits into many short exact sequences:

0 — HY(L;7Z,) — H (T1:7Z,) — H™YL:Z,) — 0.

On the other hand, since M\ % = C P"+!1\C P" is subcritical we have HF (I'z) = 0.
It follows that the Floer—Gysin sequence splits into many isomorphisms:

0 — HFi(1) = HFi+2(L) —0.
We will work out this example and related ones in more detail in §15.2.

1.3. Main ideas in the proof of Theorem 1.1. Our approach to proving Theo-
rem 1.1 goes via the pearl complex and Lagrangian quantum cohomology. Recall
from [BCS5], [BC6], [BC4] that the self Floer cohomology HF (L) is canonically
isomorphic to the Lagrangian quantum cohomology QH(L). The latter is the ho-
mology of a cochain complex which is a deformation of the Morse complex of L.
The underlying vector space of this complex is the same as that of the Morse complex,
however the differential on the pearl complex is different. It counts combinations of
gradient trajectories with holomorphic disks attached to them (we call such config-
urations “pearly trajectories”). The resulting cohomology has also a ring structure
coming {rom a quantum product. We briefly recall the construction of this cohomol-
ogy theory in §3. The quantum cochomology QH (L) together with its ring structure
is canonically isomorphic to HF (L) via an isomorphism called the PSS. The same
holds for QH(I'y,) and HF(I'1), hence we can replace everywhere in Theorem 1.1
HF* by QH*.

The long exact sequence in Theorem 1.1 comes in fact from a short exact sequence
of pearl complexes

0——€*(L)——=ex Ty —L=e*1(L)—0

which is described in detail in §4. Exactness of this sequence is easy to verify, and
the non-trivial part lies in showing that / and p are cochain maps. This is done
by comparing the pearly trajectories on I'y, with those on L. The exactness of the
sequence follows from a correspondence between the 0 and 1-dimensional moduli
spaces of pearly trajectories on L. and on I'y .

The correspondence between pearly trajectories on 1. and on I'y is done in two
main steps. First note that if one removes the Lagrangian/isotropic skeleton A from
W then we have a well defined projection W \ A — 3. Fix an almost complex
structure Jy on X and Morse data on L. Given a pearly trajectory on I’y we would
like to project it to % and obtain a pearly trajectory on L. For this to work we have to
use Morse data on I';, which is adapted to the Morse data on L. Moreover, in order
for the holomorphic disks in the pearly trajectories to project to holomorphic disks
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in L we need to work with almost complex structures J on W that are adapted to Jx
in the sense that the projection is (J, Jx)-holomorphic. It is easy to find such J’s
on W \ A however in general they will not extend to A. Thus we have to allow our
J’s to be adapted to Jx away from some small neighborhood U of A. We then show
that for small enough U, the relevant pearly trajectories on I'y cannot intersect U,
hence they all lie in the region of W on which the projection is holomorphic and so
they can be safely projected to pearly trajectories on .. An essential ingredient in
the proof of this fact comes from symplectic field theory (SFT), in particular we use
a neck stretching procedure for this purpose. This is all done in §5.

The second step is to show that pearly trajectories on I. can be lifted to pearly
trajectories on I'z . The lifting of the gradient lines in a pearly trajectory can be done
via standard arguments from Morse theory. The lifting of the holomorphic disks is
done by an elementary argument from classical analysis which allows us to lift disks
with boundary on L to disks in W with boundary on I';. The basic construction
here amounts to solving the classical Dirichlet problem for harmonic functions on
the 2-dimensional disk. This is done in §7.

Apart from the above, one has to deal also with transversality issues for holomor-
phic disks in W. The point is that the set of admissible almost complex structure
J on W is not arbitrary since we need J to be adapted to Jyx and moreover have
a long enough “neck”). Thus we cannot choose J to be generic in the usual sense.
Nevertheless we show that by choosing Jx in a generic way the set of admissible J’s
on W is large enough to obtain transversality. This is done in §6.

1.4. Organization of the paper. The rest of the paper is organized as follows.
In §2 we recall the precise construction of the Lagrangian circle bundle I';, — L and
recall also some relevant facts about symplectic hyperplane sections and Weinstein
manifolds. As mentioned above we will use the Lagrangian quantum cohomology
model for Floer homology. The basic setting of this theory is recalled in §3. Thenin §4
we describe a short exact sequence of pearl complexes that gives rise to the long exact
sequence in cohomology that appears in Theorem 1.1. In §5 we explain the stretching
of the neck procedure and show how to use it in order to assure that the relevant pearly
trajectories on I'z, can be indeed safely projected to .. The transversality issues are
dealt with in §6. §7 is dedicated to lifting pearly trajectories from L to I'z. Then
in §8 we prove that the cohomological exact sequence 1s canonical, namely that it
does not depend on various choices made in the construction (such as Morse data
and almost complex structures). In §9 we prove the multiplicative properties of the
exact sequence mentioned in Theorem 1.1. In §10 we define the Floer—Euler class.
In §11 we show that the exact sequence continues to hold also for the positive version
of quantum cohomology. In §12 we give more information on the Floer—Euler class
and its relation to the classical Euler class. In §13 we present a variant of the exact
sequence that holds when one considers [';, as a Lagrangian submanifold of M (rather
than W) and discuss its relation the sequence from Theorem 1.1. Finally, in §14 we



Vol. 88 (2013) A Floer—Gysin exact sequence for Lagrangian submanifolds 907

present some generalizations of the exact sequence that appear in other geomeitric
settings and discuss further potential applications.

Acknowledgments. We would like to thank Octav Cornea for several useful sugges-
tions concerning the algebraic structures in the paper as well as the idea to use almost
gradient vector fields which simplified some of our constructions. Special thanks
to Misha Sodin for his help with Lemma 7.1. We would also like to thank Dietmar
Salamon and Michael Entov for useful comments.

2. The Lagrangian circle bundle construction

Here we recall a construction from [Bir2], [BC2] which associates to a Lagrangian
submanifold L C X a new Lagrangian I’y C W. Before doing that we briefly go
over a few necessary notions such as Weinstein manifolds and symplectic hyperplane
sections that will be used in the sequel.

2.1. Weinstein manifolds. A vector field X on a manifold W is called gradient-like
for a smooth function ¢ : W — R if there exists a positive function p: W — R and a
Riemannian metric on W such that d¢(X) > p|ld¢||? everywhere in W (see [Girl]).
An open symplectic manifold (W, ) is called Weinstein if there exists a primitive
A of w such that the dual vector field X, defined by ixw = A, is gradient-like with
respect to a Lyapunov Morse function ¢ : W — R. Moreover, ¢ is assumed to be
proper, bounded below and have finitely many critical points. Similarly we have the
notion of a Weinstein domain. By this we mean a compact symplectic manifold with
boundary (W, w) such that there exist A and ¢ as before only that now we assume
that ¢: W — [a,b], where —o0 < a@ < b < oo and that 3W = ¢~ 1(b) is a regular
level set of @.

Weinstein manifolds have special topology. They have the homotopy type of a
CW-complex of dimension < % dimpg W. In fact, the function ¢ has the following
property: for every x € Crit{g) we have ind,¢ < %dimR W (see [EG], [EL]). A
Weinstein manifold is called subcritical if there exists A and ¢ such that for every
x € Crit(g) we have a strict inequality ind, ¢ < %dimR Ww.

The basic example of a Weinstein manifold is a Stein manifold of finite type,
namely a complex manifold W which admits a proper and bounded below smooth
plurisubharmonic function ¢ : W — R without critical points outside some compact
subset. Clearly we can perturb ¢ with compact support to make it Morse and still
plurisubharmonic. Take A = —d%¢. Since ¢ is plurisubharmonic, @ = dA is
a symplectic form. Each level set of ¢ is pseudo-convex (away from the critical
points) hence the complex tangency distribution £ is contact and clearly we have
£ = ker A on the level sets of ¢. A simple computation shows that the contact
form that A induces on each level set of ¢ is positive. The simplest example of a
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subcritical (Wein-)Stein manifold is W = C", A = %2221(2:%612_&: — Zxdz;) and
(p(zlz EEED Zﬁ‘,) = ZZZI |Zk|2.

2.2. Standard symplectic disk bundles. Let (3, ) be an integral symplectic man-
ifold, i.e., the de Rham cohomology class [t] has an integral lift in H?(3; Z). Fix
a complex line bundle 7 : & — 3 such that ¢1(N) is a lift of 7. (We denote here
the symplectic structure on 2 by 7, rather than @y, since sometimes we might want
to take 7 to be a multiple of wx.) Pick any hermitian metric | - | on & and denote
by P; — X the associated unit circle bundle. Choose a hermitian connection V on
N with curvature RV = ﬁr. Denote 1V the horizontal distribution and by " the
global angular 1-form on N \ 0 associated to V, i.e.,

1
OJV|HV =0, agl)(u) =0, asg[)(iu) = forallu e Nz \ 0.

With these conventions we have da¥ = —m*z. Denote by r the radial coordinate
on the fibres of N defined by | - |. Define a symplectic form @, on the total space
of N by

tilgii = —d(e_r2ogv) — e xtr+2re ™ dr naV. (2)

The form @y, extends smoothly to the O-section of A and is symplectic. The fibres
of N are symplectic and they all have area 1 with respect to w¢,,. Next, note that
a is a contact form on each of the circle bundles P, = {u € N ||u| = r}, 7 > 0.
Moreover, if wepute = &V |p, then (N \ 0, we,,) can be naturally identified with the
negative symplectization of (£, ). Finally we remark that the symplectic structure
@Wean 18 independent, up to symplectomorphism, of the hermitian metric and the choice
of the connection. We will refer to @,y as the canonical symplectic structure on A
induced by (%, 7).
Denote by
E,={ueN||lu <r}

the (closed) disk bundle of radius » and by Int £, = {u € N | |u| < r} its interior.

We will call (E,, wen) a standard symplectic disk bundle over (%, t). (Note that the
area of the fibres of £, is 1 — e_rz.)

2.3. Symplectic hyperplane sections. Let (M2"%2 @) be an integral symplectic
manifold, i.e., [©] € H?(M;R) admits an integral lift « € H>(M;Z). Fix such a
lift @. A symplectic hyperplane section is a codimension-2 symplectic submanifold
¥2" C M?"*2 such that:

(1) [X] € Hy,(M; Z) is Poincaré dual to ka € H?(M: Z) for some k € N.

(2) There exists a tubular neighborhood U of ¥ in M whose closure is symplecto-
morphic to a standard symplectic disk bundle ( £, %a)can) over (X, kw|x).

(3) (M \ Int £, ) is a Weinstein domain.
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We will refer to k as the degree of 2. From now one we will denote wy = w|x.

The basic examples of symplectic hyperplane sections come from algebraic ge-
ometry. Let M be a projective algebraic manifold and let 2 C M be a smooth
ample divisor. Let @ be a Kéhler form on M representing ¢ of the bundle ¢y (3).
By the results of [Birl], ¥ C M is a symplectic hyperplane section. There are also
non-algebraic examples. By atheorem of Donaldson [Don], combined with results of
Giroux [Gir2] every integral symplectic manifold has symplectic hyperplane sections
of any large enough degree k.

The following proposition summarizes some relevant facts from [Birl |.

Proposition 2.1. lLet (M, w) be an integral symplectic manifold and ¥ C M a
symplectic hyperplane section of degree k. Denote by N the normal bundle of ¥ in
M and let weay be the canonical symplectic form on N induced by (3,1 = kwy).
Then there exists a symplectic embedding F: (N, %wcan) — M with the following
properiies:

(1) F(x,0) = x forevery x € . Here (x,0) € N stands for the point in the zero
section of N corresponding to x € 2.

(2) A = M\ F(N) has the structure of an isotropic CW-complex with respect to .
(3) Foreveryr > 0, (M \ F(Int E,), w) is a Weinstein domain.

(4) Ifthe Weinstein manifold (M \ %, @) is subcritical then A does not contain any
Lagrangian cells, hence dim A < % dimp M.

Note that in [Birl] these statements were proved under the additional assumption
that (M, w) is Kihler, however they easily extend to the non-Kihler case due to
the definition of the notion “symplectic hyperplane section” we gave in §2.3 above.
The point is that our definition of “symplectic hyperplane section” assumes that the
complement of tubular neighborhood of % is Weinstein. It is a rather non-trivial
theorem (which we will not use) that for large enough & the symplectic submanifolds
provided by Donaldson’s theorem [Don] are indeed hyperplane sections (in the sense
that their complements are Weinstein). See [Gir2] for more on that.

2.4. Lagrangian circle bundles. Let (M?"12 ) be an integral symplectic mani-
fold and ¥ C M a hyperplane section of degree k. Let L” C X" be a Lagrangian
submanifold. Let 7 : & — X be the normal bundle of X in M and @c,, the canon-
ical symplectic structure induced by (2,7 = kwy). Pick an arbitrary radius r¢ and
let Py, C N be the associated circle bundle of radius rg and Tyt Pry — X the
projection. Define

Iy = m, (L)

to be the restriction of this bundle to L. A simple computation shows that FE‘H 18
a Lagrangian submanifold of (N, @,,). Using the embedding F: (N, %wcan) —
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(M, @) coming from Proposition 2.1 we obtain a Lagrangian submanifold F(I'y) C
M \ X which in fact lies on the boundary of the Weinstein domain M \ F(Int £,).
Because of that we will identify from now on T’y with F(I';) and view I'; as a
Lagrangian submanifold of W = M \ X. We call I';, the Lagrangian circle bundle
over L.

Remark 2.2. Clearly I'y depends on the choice of r¢. Although different choices
lead to Lagrangian isotopic I'z’s, they are not Hamiltonianly isotopic. Nevertheless
the I'1.’s corresponding to different ro’s are conformally symplectic equivalent in W'.
In particular, if I';, is monotone for some rg it will continue to be so for every choice
of ¢ and the minimal Maslov number is not affected by this choice. Moreover, the
Floer homology, HF(T'r), of T’y in W (whenever it is well defined) does not depend
on the choice of ry. For this reason we will ignore the dependence on 7, keeping in
mind that everything we prove for I'y, C W holds for any choice of ro. This however
has one exception: later on in §13 we will also view I’z as a L.agrangian submanifold
of (M, w). We will see that in that case, when L. is monotone, there is precisely one
choice of ro which will make I';, C M monotone too.

Using the embedding £ from Proposition 2.1 we will often make the identification
F: N\ E — W\ A. Translating the projection & — % via this identification we
obtain a projection
m: (WNATL) — (2, L).

Since (P, 1) — (X%, L) is a fibration it is easy to see that

0!

s (W N A, Tr) — (2, L) isanisomorphism. (3)

Denote by t: W \ A — W the inclusion. The following proposition relates the
monotonicity of L to that of I';. For a Lagrangian submanifold K of a symplectic
manifold (V, w) we denote by pg: mo(V, K) — Z the Maslov index and by Nk the
minimal Maslov number (see [BC6]).

Proposition 2.3 (See [Bir2]). Assume that either dimg X > 4, or that dimg ¥ = 2
and W = M \ X is subcritical. Then:

(1) The homomorphismi, : my(WA\A,T'1) — 7,(W, 1), induced by the inclusion,
is surjective. When dimp 2 > 6, 14 is an isomorphism. The same statement
holds also for homology, i.e., if one replaces m; by H;.

(2) Forevery B € my(W \ A, T'p) we have:
pr, (B) = pr(m«(B)).

In particular, if L C X is monotone then I'y C W is monotone too, and Ny, = Np.
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Proof. The first statement follows easily from the fact that dim A < % dimp M. The
second statement is proved in [Bir2] (see Proposition 4.1.A there). ]

Clearly given B € 7p(W, '), any class B’ € mo(W \ A, Tp) with 1,(B') = B
will have the same Maslov index as 5. Therefore even when ¢+ 1s not an isomorphism,
we can always reduce the calculation of the Maslovindex in (W, 'z ) to (W \ A, 7).
This in turn can be reduced to computing the Maslov index in (X, ). In fact, as we
will see later, the holomorphic disks that will be relevant for computing the quantum

cohomology of I';, C W allliein W \ A.

2.5. A small simplification of the setting. Recall that ¥ C M is assumed to be
a symplectic hyperplane section in M, hence PD[X] = k|w]| for some k € N.
Rescaling the symplectic structure @ by k we may assume from now on that PD[X] =
[@]. By doing so we can assume without loss of generality that k¥ = 1| and can
get rid of the & and % factors that appear in many formulas earlier in this section
(e.g. in Proposition 2.1). Clearly, this will not change anything related to the Floer
cohomologies of neither L nor I'y.

3. Lagrangian quantum cohomology versus Floer cohomology

In what follows we will use the pearl complex described in [BC4], [BC6], [BC5].
We refer the reader to these papers for the precise construction of the theory. Below
we briefly recall the main definitions and setup the notation.

Let (V. ®) be atamed symplectic manifold, K C V a monotone Lagrangian with
minimal Maslov class Ng > 2. Since Maslov indices come in multiples of Ng we
will often use the following normalized version of the Maslov index:

i = wopg: ma(V, K) — 2.

We will sometimes omit the subscript K from px and fix when the Lagrangian
K 1n question is obvious. Also, we will sometime prefer to work with homology,
namely H,(V, K) instead of m,(V, K). This will not pose any difficulties since
the Maslov index g can be defined in a compatible way also as a homomorphism
Hy(V,K) — 7.

Put A = Z,[t™!, 1] whichis graded by |{| = Ng. Let Z = (f,(-.-), J) denote a
choice of auxiliary data, where f : K — IR is a Morse function, (-, ) is a Riemannian
metric on L. and J an almost complex structure tamed by @. The pearl complex
associated to 7 is

C(P) = Z{Crit f) @ A,
where the critical points are graded by Morse index and the total grading comes from
both factors. The complex is endowed with the differential

d: ¥ = et ()
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whose definition we briefly recall now. Denote by &, : K — K the negative gradient
flow of f. Let x,y € Critf and denote by W' and W}’ the unstable and stable
submanifolds of the critical points x and y respectively, with respect to negative

gradient flow of . Let A = (A4,,..., A7) be a vector of non-zero homology classes
A; € Hy(V, K).
Define P(x, v, A; %) to be the space of tuples (11,1, ..., 471, 1—1, ;) where

ti € (0,00), u;: (D,3D) — (V, K) are J-holomorphic disks in the class 4; and we
have the following incidence relations:

& (i (D) = ujpq(=1) forl =i <l-1,
u(—1) e Wr, (4)
u(l) € Wj.

Moreover, in this definition each of the holomorphic disks u; is taken modulo the
reparametrization subgroup of Aut() consisting of those elements that fix the points
{1,—1}. Finally, we allow A to consist of the zero class and define in this case
Plx, ,0; F) = (Wys N W) /R. We call elements of P (x, y, A; P) pearly trajec-
tories.

The space of pearly trajectories P (x, y, A; &) has virtual dimension

8(x,y,4) = |x| = |y] + u(4) =1 5)

where j1(A4) = Y, 1n(A;). We will also say that trajectories y € P (x, y, A; &) have
index §(v) := 8(x, v, A). By the results of [BC4], for generic choices of & the space
of pearly trajectories has the following properties. When § = §(x, y, A) < 1, the
space P(x,y, A; Z) is a smooth manifold of dimension 6. Moreover, when § = 0,
this manifold is compact, hence consists of finitely many points. Further regularty
properties of these spaces are described in [BC4], [BC6], [BC5].
We define
dy =) #P(x,y, 4;9) - x A4, (6)
x,A

where the sum is taken over all pairs x € Critf and vectors A (including A = 0)
such that §(x, vy, A) = 0. The count #P(x, y, A; &) is done in Z5.

It is proved in [BC4] that ¢ = 0 and that the cohomology of this complex
H*(€(2),d) is independent of the choices of the generic triple & (see [BC4],
[BC6], [BC5] for more details). This cohomology is called the quantum cohomology
of K and denoted by QH (K). (Sometime we will also call it the “pearl cohomology
of K”.) Note that QH (K) has additional structures such as a product * which turns
it into an associative unital ring (see §9).

3.1. Negative almost gradient vector fields. In what follows we will sometimes use
also the following slight variation on the pearl complex construction. Let f: K — R
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be a Morse function and ¥ a vector field on K. We call the pair ( £, Y') negative almost
gradient if

(1) (—f) is a Lyapunov function for ¥, ie, df (YY) < 0 away from the critical
points of 1,

(2) for every critical point x € Crit f there exists a neighborhood U C K of x and
a Riemannian metric p on U such thatin U, ¥ = —grad,, f.

Sometimes, instead of working with triples & = (f, (-,-), J) we will work with
2 = (.Y, J) and replace the negative gradient flow &, in the definition of & by the
flow of the vector field ¥, which we continue to denote ®;. The theory of Lagrangian
quantum cohomology remains unchanged in this setting in the sense that the resulting
cohomology is canonically isomorphic to QH (K).

3.2. Relation to Floer homology. The quantum cohomology OH(K) of a mono-
tone Lagrangian K has the following important property: it is canonically isomorphic
to the self Floer cohomology HF(K) := HF (K, K) via a well-known isomorphism
commonly called PSS (see [BC4], [BC6]). Moreover, this isomorphism identifies the
quantum product on QI (K) with the corresponding product on HF(K, K) defined
by counting holomorphic triangles. In view of this, from now on we will replace

the Floer cohomologies that appear in Theorem 1.1 by the quantum cohomologies
QH(L) and QH(T'y).

4. A short exact sequence of pearly chain complexes

In this section we construct a short exact sequence of Floer cochain complexes that
gives rise the long exact sequence of Theorem 1.1.

4.1. Setting. Let X C M be a symplectic hyperplane section and /. C ¥ a mono-
tone Lagrangian submanifold with minimal Maslov number N;, > 2. Fix once and
for all ry > 0 and put

P=P,={ueN||ul =ro.

Using the symplectic embedding of Proposition 2.1 we can view P also as a subset
of W =M\ X. Let 'y C P be the Lagrangian circle bundle associated to 1. C X.
We denote by n: N — X, wp = 7wlp: P — X, nr, = 7|, : Tt — L the
projections. Choose a connection V as in §2.2 and denote by H }Y C T(P) the
horizontal distribution corresponding to itin £.

Let f: 1. — R be a Morse function and (-, -) a Riemannian metric on .. Put
X = —grad f. Let X" be the horizontal lift of X to T'y, using I7 }Y . We will now
modify X" into a “negative almost gradient” vector field on IT';, with respect to some
Morse function.
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Denote by xq, ..., Xy, the critical points of f. Choose a small chart U; around
each x; and a trivialization 7; - U; x S = Ty |, - Next, choose for every i a Morse
function h; : S' — R with exactly two critical points p/ and p/ of indices 0 and 1
respectively. Let ¥; = —grad ; with respect to the standard metric on S!. Extend
Y; to a vector field on U; x S in a vertical way, i.e., by selting its component in the
U; direction to be 0. The resulting field will be still denoted by ;.

Finally, for every i choose a smooth cutoff function «;: I. — [0, 1] with the
following properties: there exist two neighborhoods V; C W; C U; of x; with
Vi C W;,and W; C U; suchthate; = 1 onV; and o; = 0 outside ‘W;. Fix a small
constant £ > (. We define a vector field X, on I'z by:

Xe = X" +&) (0 0mr,)dn(Y). (7)
i=1

It is easy to see that for ¢ > 0 small enough this vector field is “negative almost
gradient” for the following Lyapunov function on I'y:

m
fo=fomr, +&) (@ omr Yhior .
i=1

Note that outside of the neighborhoods U; we have f, = Jrl’l‘L f and therefore all
critical points of f, are contained in |_J U;. Using the trivializations z; one can see that
all of them lie in fibers of critical points of f. Moreover, to any x; € Crit f there are
exactly two critical points x/, x/ with 771 (x]) = (x;, p) and t71(x]) = (x;, p}).
The indices of these critical points are given by |x]| = |x;| and |x]'| = [x;| + 1.

We now turn to the almost complex structures that will be used in the pearl
complexes of L and I'y,. We first choose a generic tame almost complex structure Jx
on 2. Then, once Jy is fixed, we restrict to a class of almost complex structures J on
M which we call admissible. The precise definition is given in §5. Here is a rough
description: identify the complement of the skeleton A with N via proposition 2.1.
We require that the projection 7: N — % is (J, Jx)-holomorphic outside a small
neighborhood U of A. In addition, (N, w, J) is assumed to have a long enough
“neck” in the sense of “stretching of the neck” procedure. The precise definitions are
given in §5.

Put 7 = (f,(-,-), Jx) and g, = ( fe, X¢, J). We now define maps

i €L D) = €T D), p €T %e) — €L D)

as follows. Let 0 < k& < n, and denote by Critz( f) the set of critical points of f of
index k. Define i by:

i(x) =x" forall x € Critg(f).
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To define p note that Critg ( f,) = (Critg ( f))" U (Crity_1( f))”. Define:
p(x) =0 forall x € Critg(f), and p(y") =y forall € Critz_{(f).

We extend i and p linearly over A to the whole of €*(L; &) and €*(T'y; D).
The main statement of Theorem 1.1 can be reformulated as follows: let M, >, L
be as described above.

Theorem 4.1. Assume that either dimg % > 4 or W is subcritical. For a generic
choice of auxiliary data & described above and for an admissible J the pearl com-
plexes €*(L; ) and €*(T'L; &) are well defined and their cohomologies compute
the quantum cohomologies QH (L) and QH(I'1) respectively. The maps i and p are
cochain maps and they form a short exact sequence:

0 —=€*(L: D) —> €*(T; §p) ——>€*Y(L; Z) — 0
of cochain complexes. In particular, we have a long exact sequence in cohomology:

T QHk(L) By QHk+2(L) B QHIC+2(FL) _f, QHk+1(L) B s

The cohomological long exact sequence is canonical in the sense that it does not
depend on the auxiliary data. The connecting homomorphism §: QH*(L) —
QH*12(L) is given by quantum multiplication with a class ep € QH?*(L). More-
over, the maps induced by i and p in cohomology (which we continue to denote by i
and p) are compatible with the quantum products in the following sense:

i(axB) =i(@*i(B), p@*i(B)) =p@=*p, pli@) *p)=ax*pB), 8
foreverya,f € QH*(L) andﬁf,ﬁ e OQH*(I'1).

The exactness property of the short sequence above is obvious. The nontrivial
statements are:

* i and p are chain maps. This property will follow from the results presented
in §5 and §7. The argument is concluded in §7.3.

* theresulting sequence in homology is canonical. The details are provided in §8.

* the connecting homomorphism is given by quantum multiplication by a class
er € QH2(L). This will be proved in §10.

* the maps i and p satisfy the multiplicative identities (8). This will be proved
in §9.

§5 will be devoted to precise definitions of the class of almost complex structures
used, and §6 for establishing the transversality results.
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5. Stretching the neck and admissible almost complex structures

In all constructions which follow in this paper we will restrict ourselves to a specific
class of almost complex structures which is described as follows. Fix a regular almost
complex structure Jx on X which is tamed by wy. Given r > 0, denote by

E,={ueN||u<r}

the closed disk bundle of radius # in & (we use here the Hermitian metric | - | chosen
in §2.2).

Fix a small « > 0. Below we will use the embedding A i M from Propo-
sition 2.1 in order to identify N as well as £, C N with their images in M. The
complement in M of the (rg + «)-disk bundle E,,4, gives us a neighbourhood of
the skeleton A. We denote this neighbourhood by .

We choose a connection V as in Section 2.2 and, using the corresponding hori-
zontal distribution H V, we define an almost complex structure J on N as follows.
Forv € HY put

Tw(@) = (d|,v) " Iz o dn(v). )
We extend J y in the vertical direction by multiplication by / in the fibers. We define
an almost complex structure Jps on M by setting ittobe Fi(Jy) on M \ U (i.e., the
pushforward of J 4 by the embedding F: N — M). We then extend Jys to the rest
of M in a generic way.
Denote by M, M~ the connected components of M \ P, where M~ is the
component containing the skeleton A. For any R > 0 set

MR =M~ U(-R,R|xP)UMT,

with the obvious gluing along the boundaries, namely {—R} x P is identified with
M~ and {R} x P with dM T . See Figure 1. We define an almost complex structure
Jr on M ® by first setting it to be equal to Jpy on M+, M~. We then extend this
almost complex structure to [- R, R| x P in invariant way under translations along
[~ R, R]. The resulting almost complex structure is only continuous near M+ but
can be deformed near the boundary d([—R, R] x P) to a smooth almost complex
structure on M ® which we denote by Jg. (For this smoothing we choose a uniform
deformation which depends only on the (#, 0) coordinates on [—R, R| x P and is
independent of the projection to ).

Having defined Jg on M * we will push it back to M in the following way. Let
or: [-R, R+ k] — [rg,7p + «] be a diffeomorphism such that d%qu = —1 near the
boundary of [—R, R + «|. Then ¢g induces a diffeomorphism

Ap: ME 5> M, (10)

defined by identity on U and M *. Note also that A g preserves both the projection to
2 and the angular coordinate in a neighbourhood of [—R, R]| x P, and deforms the
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first coordinate on [—R, R] x P (as well as the radial coordinate in a neighbourhood
of [-R, R] x P) according to ¢pg. The pushforward of Jr by A g defines an almost
complex structure on M which we will denote by the same Jg by abuse of notation.
A simple computation, based on the description (2) of @, shows that Jr on M tames
@. Moreover Jp has the following property: the projection from the (rg + «)-disk
bundle of N to X

7T (Ero+x, Jr) = (%, Jx)

is holomorphic.

Figure 1. Splitting M along P.

For the rest of this section we will restrict our attention only to W = M \ 2. We
denote by Jy the restriction of the almost complex structure Jys to W. Put

W-=M", Wr=Mr\%, WFr=MF\ 3.

We endow these manifolds with the restrictions of the almost complex structures we
have justdefinedon M~ , M+, M R je., Jy and Jg. The reason for defining all these
structures beforehand on M is thatlater on in §13 we will use these structures to obtain
an analogous Floer—Gysin sequence for I'y, viewed as a Lagrangian submanifold
of M.

The construction above implies that replacing the almost complex structure J on
M (resp. W) by Jg (with a large R) is holomorphically equivalent to stretching the
manifold M (resp. W) along P in the sense of SFT [BEH+], [EGH]. We denote by

g =9z, U Ry) ={Jr |R>Ro}

the space of the stretched complex structures.
For J € & denote by

Po)= ) P&y 4:%)
8(x,y,4)=0

the union of moduli spaces of pearl trajectories with zero virtual dimension (for any
critical points x, y) for I'y, C W.
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Given r > 0, denote by
El!'=E\NZCN

the punctured disk bundle or radius r over 2. For 0 < r; < r» denote by
Err,=Er, \IntE,

the (closed) annulus bundle over % of inner radius r; and outer radius 7. We call it
the (ry1, r2)-annulus bundle of N over X.
The purpose of working with almost complex structures in 4 is the following:

Proposition 5.1. There exists Ry > O suchthat for every Jp as described above with
R > Ry the following holds: every pearly trajectory y € Po(Jg) is contained in the
image F(Ey, ro+x) of the (ro, 1o + k)-annulus bundle of N under F.

Before proving this proposition we derive an important corollary. From now on
we will fix the constant Ro which is large enough (so that the conclusions of Propo-
sition 5.1 hold) and will work with Jg where R > Ry. Wecall § = (Jx, U, Ry)
the space of admissible almost complex structures. The following corollary is an
immediate consequence of Proposition 5.1.

Corollary 5.2. Let & = (f.(-,), Jx) be auxiliary data with generic Jx, and g, =
( fe, Xe, J) as in §4 where the almost complex structure J is admissible. Then any
v € PolJ) projects via w to a genuine pearly trajectory on 2.

Note that the index of the projection 7 () might sometimes be 1 rather than 0.

Remark 5.3. As we will see in the proof of Proposition 5.1 below, the conclusions
of Proposition 5.1 and Corollary 5.2 continue to hold also for pearly trajectories
y € P(x,y,A; Ze) with §(x, y, A) = 1 provided that the minimal Chern number
Cyx of 2 is atleast 2. Here by the minimal Chern number of 3 we mean the following
number: Cg = min{cZ(S) | § € m2(X), ¢Z(S) > 0O}

Proof of Proposition 5.1. First of all note that by the maximum principle every non-
constant J-holomorphic disk (for J € ) u: (D,dD) — (W, Tr) must satisfy
u(Int D) C W\ E,,. The main part of the proof is to show that for Ry > 0 the
following holds: for every R > Ry all Jp-holomorphic disks u that participate in
index 0 pearly trajectories (for (W, I'.)) have their images lying inside £, 4.
Below we will refer to the results of [BEH+]. We remark that the statements of that
paper hold also for holomorphic curves with boundary on Lagrangian submanifolds.
Put W = (—00,0] x P Uy WT and W = W~ Uy [0,00) x P each glued
along the boundary. The almost complex structure Jyr on W+ and W™ is extended
to the cylindrical ends by invariance under translation in / coordinate. (One smoothes
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the resulting almost complex structures near the boundary in the fiber direction in a
standard way). Set (W, J*) to be equal to the disjoint union W5 U W, each
endowed with the preceding almost complex structures. This way, the split manifold
(W, J™) can be considered as a limit of (WX, Jg) when R — oo, in the sense
of [BEH+], [EGH]. See Figure 1.

Assume by contradiction, that for a generic almost complex structure /5, on % the
statement of the proposition is not true, that is, for any R > 0 there exists a pearly
trajectory y € Pp(Jr) which leaves the image of the(ry + «)-disk bundle. Let R,
be a sequence of stretching parameters with R, — oo and let y,, € $y(Jg,) be a
sequence of pearly trajectories with zero index which leave the (rp + «)-disk bundle.
Under the holomorphic identification between (W, J) and (WR, JR), we have a
sequence of manifolds W ®» together with a sequence of pearly trajectories in W *»
We will use the same notation y,, for these trajectories.

For simplicity of notation, we assume that each y;, contains a single holomorphic
disku,: (D, 3D) — (W& ). (The general case is similar.) Restricting ourselves
to a subsequence if needed, we may assume that all , have the same Maslov index.
We denote by u;,: (D,3D) — (W, T'r) the disks corresponding to u, via Ag, ie.,
Uy, = Ay 0 Up.

Using the notation of [BEH+], the w-energy of a J-holomorphic curve u in W
translates in our notation to the following:

E,u) =f utw —|—f u* rrws.
u—L(W+UW—) u—1([=R,R]xP)

In view of monotonicity of Ty, the area of the disks u’, : D — W satisfies || pi ;a) =
(', where the constant C is independent of . A simple computation (based on (2))
shows that:

/ urswy < / U ARw.
u—L([=R,R]xP) u—1([~R.R]xP)

It follows that £, (1, ) < C foreveryn. Lemma9.2 of [BEH+] implies then auniform
bound on the full energy E(u,) (see [BEH+] for the definition of this energy).

Theorem 10.3 of [BEH+] describes the compactification of the space of J-
holomorphic curves {u: D — (W& Jg)| E(u) < C}. According to this result,
there is a subsequence u,, of u, which converges to a so-called holomorphic build-
ing i in W, This u is a disconnected Joo-holomorphic curve which consists of the
following connected components:

* a J-holomorphic map uy: (S1,951) — (Wo;';, I'z), where S is a disk with
one or more punctures. Near these punctures u; 1s asymptotically cylindrical
and converges to a periodic orbit of the Reeb vector field of (P, ). (Here «
is the connection 1-form as chosen in §2.2.) Note that due to our choice of «

the periodic orbits of the Reeb vector field are precisely the fibres of the circle
bundle P — 2.
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¢ anumber of J-holomorphic maps, each of them looks like 1, : S, — W where
S 18 a sphere with one or more punctures. i, is asymptotically cylindrical near
each puncture in a similar way to 1. For simplicity we will assume that there
exists one such map. In the case there are many, the argument is the same.

* in addition, # may contain a number of J-holomorphic mapsu;: S; - R x P
where each S; is a sphere with one or more punctures each. u; are asymptotically
cylindrical near each puncture as well.

Moreover, the components of # fit over the punctures, so they admit gluing to a
topological disk.

Coming back to our situation, there is a subsequence of {y,} that converges
to a pearly-like trajectory y which has instead of a usual holomorphic disk a J-
holomorphic building # attached. We claim that this implies that the virtual dimen-
sion of the corresponding moduli space of trajectories is positive. This will give
a contradiction to our initial assumption that y, € $y(Jg,). Note that apriori, in
addition to the above limit, one may have all possible limits of pearly trajectories as
described in [BC4], [BC6], e.g. breaking of gradient trajectories, bubbling of disks
or spheres etc. For simplicity of notation, we assume that the holomorphic building
i consists only of two components: a punctured disk uy: (Sy,3S7) — Wt and a
punctured sphere (i.e., a finite energy plane) u,: S, — WL, where each component
has a single puncture. The general case can be treated in a similar way to what 1s
done below.

By the definition of Jo, on W, the projection my: Wi — X is (Joo, Jx)-
holomorphic, hence 7 sends 1, to a punctured disk 77y ¢ uy: (S1,081) — (X, L).
The periodic orbits at infinity project via 77 to single points in 2 since they are exactly
the fibres of the circle bundle P — 3. Due to the asymptotic behavior of 7 near the
puncture z we obtain that 7y o 1 extends continuously at the puncture. Therefore z
is a removable singularity and 7 © 1#; becomes a genuine Jx-holomorphic disk.

We would like now to project u>: S> — W to 2. However, this cannot be done
directly. Recall that on W_ we have a projection defined only away from the skeleton,
my: W\ A — X, and moreover this projection is not holomorphic on U \ A.
We deal with this difficulty as follows. As codim A > 2, we can always perturb
u near A (in a non-holomorphic way) and obtain a new surface i2: So — WZ
with 1,(5;) N A = @. Then m, o 1, gives a (not necessarily holomorphic) sphere
v: 8% — X. (Again, the puncture goes to a point at which we have a removable
singularity.) We claim that v has a positive Chern number. To see this recall that X
is monotone, hence CIE = Alws| on m2(X) for some A > 0. Therefore we have:

Fo]) = dwg]) = i [S TR .

(11)
= )Lf iy ' my wy + )Lf i, m, wy.
i~ (W) LW AW )
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The 2’nd term is non-negative since 7, is holomorphic on W_ \ W~. As for the first
term we have:

_ 2 _ 2
/: _ iy wy = oo+ /: _ i @ = ot f uyw > 0,
ty (W) ty (W) uz L (W)

where the equalities follow from Stokes theorem (recall that the perturbation 5 took
place away from the boundary #2(9S52)). The last inequality holds because u; is
holomorphic. This proves that ¢X([v]) > 0.

Next, replace in the “pearly” trajectories y the holomorphic curve u> by its per-
turbation #,. We continue to denote this trajectory by . Consider now its projection
7 oy to X. The projected trajectory is a pearly trajectory on % whose disk 7y o 1y
has a non-holomorphic sphere v attached, and moreover c?([v]) > (. (v cannot
be constant because in this case 1> would have zero w-energy.) Denote by yx the
trajectory obtained from 7 ¢ y after removing the sphere v. Note that yy is a genuine
pearly trajectory.

Denote by A € Ho(W \ A,I'r) the total homology class in ¥ and by B €
H,(%, L) the total homology class in yx after the sphere [v] is removed, i.e., B =
7+(A) — |v]. Let X,y be the starting and the ending critical points for y. Thus yx
connects xy = m(X) with yx = 7(¥). As yx isa genuine pearly trajectory and Jx is
regular, the virtual dimension of the corresponding moduli space P (xx, vx, B; Jx)
is non-negative:

lxs| = |ys|+ p(B)—120

Note that |y| = |yx| and |X| < |xx| + 1. Therefore
vzl —lxs| = ¥ - [X] + 1.
We also have:
pur, ([i]) = pr, (A) = pr(mad) = pr(B) + 2c7 (o) = pr(B) + 2. (12)
All together this gives us

PI= 1%+ pr (@) — 1= |ys| = |xz[ -1+ pe(B) +2-1
= (|yz| = |xz| + ur(B) = 1) + 1> 0,

which contradicts the assumption that we are in a moduli space of index 0.

The other configurations that might appear in the limit of y,, can be dealt with by
a combination of the argument above and the compactification of spaces of pearly
trajectories as described in [BC4], [BC6]. L]

Remark 5.4. Note thatin the proof of Proposition 5.1 we have used only transversality
for spaces of pearly trajectories on (2, L), not for (W, T'z).
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6. Transversality

The aim of this section is to establish the needed transversality results for the spaces of
pearly trajectories involved in the quantum cohomologies of 1. and I'y that appear in
our long exact sequence. While the general theory of pearl homology [BC4], [BC6]
assures this transversality for generic choice of auxiliary data, this is aprion not the
case in our setting. For example, the almost complex structures JJ that we use on W
are not arbitrary as they depend strongly on Jx, in particular they cannot be assumed
to be generic in the strict sense of the word. Still we will see below that transversality
can be still achieved by taking Jx to be generic.

6.1. Regularity of Jg. Holomorphic disks u: (D, dD) — (W, ') fall into two
types. Those who go out from £, 4, and those who remain entirely inside £y, 4.
Transversality for the first type is easy to achieve: recall that in our set of admissible
J’s there was no restriction on J outside of E,,4«. Thus we can take J o be generic
on M \ E, 4, and the general theory [MS] assures that such J’s will be regular for
this type of disks.

We now turn to those disks that are entirely contained in £, +,. In fact, as we saw
in §5, these are the most relevant disks, as all pearly trajectories of index 0 involve
only disks inside F,;4x-

We want to show that for a choice of a regular Jy on X any admissible Jr
(as it is constructed in §5) satisfies regularity conditions on the disk bundle £, 1.
This would imply that the moduli space M*(A; Jr) of simple Jg-holomorphic disks
u: (D,0D) = (Erg4x. L) with u4 ([ D]) = A is a smooth finite dimensional mani-
fold.

To prove the statement, we replace (E, 4. Jg) by a disk bundle E, gy C
(N, J ) using the identifications defined in §5, where A{R) dependson R. Below we
will use the same notation I'y, for the image of I';, in £ . Recall from [MS] (see §3.1
there) that regularity of an almost complex structure means the surjectivity of the lin-
earization of the d-operator D,, ateach J-holomorphic disku : (D, D) — (Egr,T'p).

Letu: (D,0D) — (Eg,I'1) be a holomorphic disk. Note, that the projection
7ou: (D,dD) — (X, L) is Jg-holomorphic. Pick a holomorphic trivialization
g:(mrou)*N — D x C. Using this trivialization, we associate to u a pair of
holomorphic maps (#x, u ) where uy = mou and 4y : D — C is the projection
of g o u to the second component. Accordingly, we have an associated pair of
linearizations of the E_)—operator (Dyy. Dy - ). For the surjectivity of D,, itis sufficient
to show that both Dy, and D, . are surjective. This property holds for D,, ;. from
the regularity of Jx. The same is true for Dy, . since the almost complex structure
in the fiber € (multiplication by #) is regular.

6.2. Transversality for pearly trajectories of index 0. Let & = (f, (-,), Jx) be
a choice of Morse function, metric on L and almost complex structure on 2. Recall
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from §4.1 that in order to construct ég we need the following additional auxiliary

objects: (V,a, h, Jr), where V is a connection as chosen in §2.2, o represents

a choice of cutoff functions near Crit( /) and / stands for a collection of Morse

functions S — R, as was described in §4.1. Here Jg is an admissible almost

complex structure on M which is induced from Jx and satisfies Proposition 5.1. We

will use the same notation J for the induced almost complex structure on £y 4.
Denote by ()¢ the image of the embedding:

(L\Crit( f)) x Rug —> L x L, (x,1) — (x. ®/ (x)),

where @If is the negative gradient flow of f. Similarly, define Q £ €T xIpto
be the image of the embedding:

(Tz \ Crit( £2)) X Rog —> Tz xTr,  (x.1) —> (x, ¥ (x)),

where @ is the flow of X.. Let M(A,J) be the moduli space of holomorphic
disks in the homology class A € H,(W,T';). For asequence A = (Ay,...,A4;) of
non-zero classes A; € Ho (W, T'r) put

M(A, )= M(A1, J)x ... x M(A7, J).
The space M(A, J) comes with an evaluation map:

eva: M(A,J) — T2
eva(uy, ..., uy) = (u(—1),uq1(1), ..., uz(—1).2;(1)).

Similarly we have the spaces M*(A4;, J) C M(A;, J) of simple disks and
MYA,T) = M (A, T) x ... x M (A;,J) C M(A,T).

Note that in general M(A, J) might not be a smooth manifold (even for generic
J’s). On the other hand, by what we have just seen in §6.1 for generic admissible
J the spaces M* (A, J) are smooth manifolds. (See [BC4] for more details on this
issue.) Denote by I C Aut(D) = PSL(2, R) the subgroup of all biholomorphisms
o: D — D which fix the two points —1,1 € D, o(£1) = £1. The group H acts
on M*(A;, J) by parametrization, i.e., o -u = u c o~ . Applying this to each factor
of M*(4;,J) we obtain an action of H*! on M* (A, J).
Let %, 7 € Crit (X,). Put

R e Wx_:? X (QX'E)X(I_I) X WJM}M
With this notation we have:

P(X,7.A: D) = evi (R)/H*
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Proposition 6.1. Let & = (f,(-,-), Jx) be generic data on (%, L). Let Jg be an
admissible almost complex structure as in Proposition 5.1, and let h be a generic

collection of functions. Let X, y € Crit (X.), A with8 = 8(%,7,A) < 0. Then:

(1) Every tuple of holomorphic disks u € M(A,Jg) that participates in
P(X,¥,A; D) consists of simple and absolutely distinct disks (see Defini-
tion 3.1.1 in [BC4] for the definition).

(2) The restriction of evq to M*™ (A, JR) is transverse to R.

In particular the spaces of pearly trajectories P(X, y, A; .@S) are smooth manifolds
of dimension 6. (In particular when § < 0 they are void.) Moreover, when § = 0
these manifolds are compact, hence consist of a finite number of elements.

Recall that by the results of [BC4], for a generic choice of data &, the same result
as in Proposition 6.1 holds for (3, 1.) whenever the virtual dimension §(x, y, w4 (A4))
is = 1. The main point in Proposition 6.1 is that this continues to hold for also for
(W, I'r) evenif one uses the (apriori non-generic) data &, which depends on &7. We
remark however that in contrast to (%, L), for (W, ;) we have to restrict only to
pearly trajectories of index 0. The reason is that the proof goes by comparing the
transversality of evy (for (W, I'r) with that of ev,, (4) (for (X, L)). If y is a pearly
trajectory on (W, I'z) of index 4(y) then the index (m(y)) of its projection satisfies:
8(m(y)) < 6(y) + 1, where equality might occur. Thus if §(y) = 1 we might have
d(m(y)) = 2 and transversality for index 2 trajectory is not known. Therefore, we
restrict on (W, 'y ) to spaces of virtual dimension 0 only. However, as we will see
in §6.3 this is enough for our purposes.

Proof of Proposition 6.1. In view of Proposition 5.1 we may assume that all disks
involved in pearly trajectories corresponding to Image (ev4) N R lie inside £ ro-ic-
Therefore we can project all pearly trajectories from P (X, y, A; @E) and obtain pearly
trajectories on (2, 1.). We will also view each of the classes A; in A as elements of
Hy(E Fotic s 'z ). Animportant point that will be used a few times in the proof below
isthatif y e P(I'z; X, ¥, 4; .@8) has index O then its projection () to % has index
< 1. Therefore, if & is generic then 7(y) consists only of simple and absolutely
distinct disks and moreover we have transversality for evy, (4).

Denote by ev’, the restriction of evyq to M™*(A, Jg). Write

M*PA(A,TR) C M* (A, TR)

for the open subset of those tuples # = (u4,...,u;) which consist of absolutely
distinct disks in the sense of [BC4] (see Definition 3.1.1 there). (Absolutely distinct
means roughly speaking that no disk #; has its image entirely covered by the union
of the rest of the disks, i.e., that u; (D) ¢ U;;u;(D) for every i.) Denote by evjl’d
the restriction of ev4 to the latter subspace. Note that by the discussion in §6.1 both
M*(A, Jg) and M*4 (A, Jg) are smooth manifolds for a generic admissible Jg.
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The first step of the proof is to show that evjl’d is transverse to K.

Letg = (g1,....q21) € Fle belong to the intersection of Image(evj;’d) and R.
Pick a sequence of disks & = (iiy, ..., ;) € M*9(A, Jg) such that evj{d(ﬁ) =gq.
We denote the projections (@), m(X),7(y) to X by u = (uy,...,u;),x and v,
respectively.

The proof goes by comparison of evz’d and R with their counterparts in (2, L)
namely ev:;dA and R = W x (Q_v )= x W}, which are assumed to be
transverse (due to a generic choice of &). Note that our choice of auxiliary data
implies that R = 7(R). Similarly, the lifting Lemma 7.1 (see §7 below) together
with the projection property of Jr ensure that eV;;dA = n’(evjl’d).

At each g; we choose a splitting 7, I'y, =~ fo @® R where HV denotes the
horizontal distribution of the connection V and R is the tangent space of the fiber.
Then 7,T;% ~ @ H, &R*? and the restriction Dz : @ H, x{0} — Tpqy L
is an isomorphism. Using the splitting T,T% ~ H & R* we introduce
coordinates (v, 7q,...,7y) on qu"le where v € HqV; and r; € R.

By Lemma 7.1 Jx-holomorphic disks u: (D?,3D?) — (X, L) correspond to
one-parametric families of disks #: (D?,3D?*) — (E;y 4« 2) which are para-
metrized by S!. More exactly, if # is one such lift, then the others are given by
rotations {e’? - i1} in the fibers of Erot+x- Therefore, M*(A, Jg) admits an (51
action (¢ which corresponds to independent rotation of the lifts of each disk uz. This
implies that eVZ’d(G i) C Image(evj;’d). Consequently, V; = quVj;’d(G i) C
Tquage(evj;’d). Note, that Vi = {0} X {(r1,71.72,72,...,71.71)}r,er in the co-
ordinates described above. On the other hand , each Q¢ also admits a simi-
lar S'-action. This gives rise to an (S')*¢~D-action on R which implies that
Vo = {0y x {0, r1, k171, ..o i1, ki—171-1. )b er C Tqﬁ (The constants k; are
equal to 1 in the case when the corresponding gradient trajectory segment does not
pass through any neighbourhood U of a critical point. In the case when it does, we
still have k; #£ 0.)

Now we analyze the possible configurations of the critical points X, y. Below we
will use the following observation: let = : /1y — U, be a surjective linear map. Let
V be a linear subspace of Uy. Assume that ker(w) € V. Then V' = U if and only
it (V) = Us.

* X = x’. In this case T, W contains the subspace {0} x IR, therefore V3 =
{0} x{(r,0,...,0)}rer © Tqﬁ. We now have

Vi4 Va4 Vs = {0} x R*? ¢ qumage(evjl’d) + Tqﬁ.

That is, the right-hand sum contains the complementary subspace {0} x R*%
which is the kemel of the projection 7 : T Ffl — Tn(q)Lzl . The observation
above implies that in this case the intersection is transverse if and only if the
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same is true for the respective projections Image(evj’:fA) and R. The latter are
assumed to be transverse by a generic choice of the data & on (X, L).

e y = y”. In this case T}, Wj’;‘ contains the subspace {0} x R, therefore V3 =
{0} X £(0,...,0,7)},er C T,R. Once again, V; + V, + V3 = {0} x R*%,
Using the same argument as before, we conclude that evjl’d and R are transverse
whenever their projections on X are.

* The only case left to consider is ¥ = x” and y = y".
Do 0 -1 : .
Wedenote R® = {e'"-W:}oe[0,22]X (Qfs)X( ) W;. Using argument similar
to that in the previous cases, one can show that R° intersects Image(evi;’d) in

transverse way. Therefore K = R° N Image(ev;’d) 1s a finite-dimensional
manifold. It follows from a version of Sard’s theorem, that for almost all values
of By, R = {e'f . W3} x (0 fs)x(l —1¥iog W3 has transverse intersection with

Image(evjl’d). Thus we can avoid non-transversality by a small perturbation of
x" inits fiber. Such perturbation corresponds to a perturbation of the appropriate
Morse function A; as defined in §4. For generic choice of functions {#;} this
non-transversality phenomenon will not occur.

This concludes the proof that evjl’d is transverse to R.

et -1 ~
Next we claim that evy ~1(R) = evjl’d (R), that is to say that all tuples u =

(11, ...,u;) that participate in (X, ¥, 4; @E) consist of simple absolutely distinct
disks. This can be done either by repeating the arguments from Section 3 of [BC4]
or alternatively by looking at the projection 7(y) of y to (%, L). Indeed, if the disks
in y are either non-simple or not absolutely distinct then the same would hold for
the disks in 7 (y) too. However, this is not the case for m(y) since for a generic &
all disks in pearly trajectories of index < 1 on (X, L) must be simple and absolutely
distinct (see Proposition 3.1.3 in [BC4]).

Finally, the fact that P(x, ¥, 4; @E) is compact when 4(x,y,A) = 0 can be
proved in a similar way as in Section 3 of [BC4]. One analyzes all possible apriori
limits of sequence of pearly trajectories from P (X, ¥, A ; Z,) and deduces that those
configurations thatdonotappear in (X, y, 4; Z,) belong to moduli spaces of virtual
dimension < 0. But such spaces must be void due to the transversality result we have
Just proved. L

6.3. Well-definedness of the pearl complex € (I'y ; .@s). Having established trans-
versality for the moduli spaces (I'z; X, y, A; Z,) whenever 6(x, v, A) = 0 we are
ready to prove that €(I'z; &) is well defined and its cohomology is isomorphic to
QH(I';). This is done as follows. B B

First note that due to Proposition 6.1 the pearly differential 4 on €(T'r; Z;) is well
defined as an operator. (Note however that as we have not established transversality
for 1-dimensional moduli spaces we apriori do not yet that d o d = 0.)



Vol. 88 (2013) A Floer—Gysin exact sequence for Lagrangian submanifolds 927

Let ég = (f,, X/, J’) be a small and generic perturbation of the data Z, where
f. = fe, (fe. X)) is negative almost gradient and J' is not necessarily admissible
(hence can be taken to be really generic). Denote by d’ the pearly differential of
€(Iy: 7 ’). By the general theory [BC4], [BC6], d’ is indeed a differential and

H*(e(Tp: Z)).d") = QH*(Ty).

Clearly €*(T'y; @;) = E€*TL; .@E) as graded vector spaces. Finally, the transver-

sality result of Proposition 6.1 together with standard arguments imply that d=d
which proves our claim.

7. Lifting pearly trajectories

Denote by & — X the normal bundle of ¥ in M, viewed as a complex line bundle
as in §2.2. We identify X with the zero section of &. We use the connection V on
N to define an almost complex structure J 4 on the total space of N, as was done at
the beginning of §5 (see (9) there, where the almost complex structure was denoted
by Jar).

In this section we show that any pearly trajectory on (%, L) (with respect to
D = (f.(-), Jx) admits a lift to (N \ X, I'y) with respect to the corresponding
data 7, = (fe, Xe, J). Due to compactness properties such lifts are contained in a
certain disk bundle of .V, hence using the identification (E4(g), J ) = (Erg4x. JR)
induced by A g, one obtains the same result for (W, 'y ; Jg) (under assumption that
the stretching parameter R is large enough).

Moreover, the set of lifts of any non-constant trajectory is parametrized by S1.
Having specified appropriate boundary conditions, one obtains a unique lift, hence
in the view of the projection property established in Corollary 5.2 in §5 there is one-
to-one correspondence between index 0 pearly trajectories in (2, L) and those on
(W, I'r). More precisely, we will see that for any x, y € Crit( f) and A € 7,(X, L)
such that |y| — |x| + u(4) — 1 = 0, we have:

BP(x,y. A, D) = #P (X, v . 77 (A): Do) = #P(x",y". w7 (A): D).

Here by 7+ we mean the homomorphism 7, : mo (W \ A, Tp) — 72(X, L) whichis
an isomorphism (see (3) before Proposition 2.3), hence it makes sense to write 7, L.

7.1. Lifting of disks
Lemma7.1. Letu: (D?,0D?) — (%, L) be a Js-holomorphic disk. Given§ € 3D?

and p € Tr. N7~ Y u(§)) there is a unique lift i : (D?,0D?%;i) = (N \ 2. TL: Jy)
of u such that u(§) = p.
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Proof. The pullback bundle (u* N, u*J ) — D admits a holomorphic trivialization
as (D? x C, Jy) where Jy acts by multiplication by i in both coordinates. Under this
trivialization #* Ty, |u (OD2) corresponds to a circle bundle

Ty = {(6.q) € D> x C | |g| = h(D)}

where 1: 9D? — R.g is a smooth function measuring the radius of the unit circle
in A (in the original hermitian metric on V) with respect to the trivialization.

In the trivialization above any lift of u is given by # = (1, V) with holomorphic
¥: D? — C which satisfies the following conditions:

o W(z)#£Oforallz € D?
o || = h(g) forany { € 3D?
*« W(§) = p where (&, p) is the image of p in our trivialization

In order to show existence of #, we take g: D? — R to be the harmonic function
which solves Dirichlet problem with boundary conditions g({) = log(#({)). Denote
by f its harmonic conjugate. Then Wy = 8+ is a holomorphic function which
satisfies the first two conditions. Its rotation ¥ = % Wy is a function which fulfills
all the three conditions.

For uniqueness we argue that if ii; = (u, ¥y), i, = (u, V) are two lifts, then
@ = 1s a holomorphic function D? — C without zeros which satisfies |¢(¢)| = 1

for all é’ € dD?. A simple application of the maximum principle shows that it must
be constant. We note that ¢(&) = 1, therefore ¢ = 1. (]

7.2. Lifting of pearly trajectories. Let y € P(x, v, A; &) be a pearly trajectory.
Again, to simplify the notation we assume without loss of generality that y consists
of a single disk u# and two gradient trajectories (yp, y1). Pick an arbitrary point
p € Imageyy. We claim that for any p € 7~ (p) N T there is a unique lift
v o€ P(X, ¥, 7, (A):; D) of y, which consists of a disk it and (79, 1) such that
P € Image yy. (Here x, y are critical points lying in the fibers of x, ¥, and we cannot
control in advance if they will be of type (-) or (-)".)

To prove this statement we note that there exists aunique lift yg of yo to a trajectory
along the flow of X, which satisfies p € Image Y. Denote by 5 the endpoint of yy.
Using Lemma 7.1 we obtain a unique lift # of u with u(—1) = £ Finally, there is a
unique lift of 4 to a gradient trajectory ¥y which starts from (1).

Thus all lifts of y are parametrized by the circle 771 (p) N T'r. It is easy to see
that exactly one such lift y” starts from x” and exactly one (we denote it by y’) ends
at y’. Assume that ¥ has index 0. Then by dimension argument ¢” must end at y”.
A similar argument shows that " must connect x’ to y’.

Other configurations of pearly trajectories are dealt in a similar way: we pick
a point p on one of the gradient trajectory segments. Then all lifts y of y are
parametrized by the lift p of p. Inthe case when y consists of a single disk # passing
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through critical points x, y, the lifts y consist of the lift # of u together with two
gradient trajectories lying in the fibers above x, y. It is easy to see that in this case
too there is unique lift which connects x’ to y’, and one which connects x” to y”.

Putting this together with Corollary 5.2 we obtain:
#P (X, v, A D) = #P (X, y w7 (A): D) = #P (", y" w7 (A): D). (13)
From dimension argument we get:

Py 7T (A D) = 0. (14)

7.3. Chain property for 7/ and p. We are now finally ready to show that the maps
i and p are chain maps. We will denote by d the differential on the pearl complex
€(Z) for (X, L) and by d the differential of the pearl complex €(Z;) for (W, 1)
with the data &, as constructed in the previous sections.

Recall that d : €*(2) — €*t1(D) is defined by:

dy = Z#J’(x,y, A; Dyx (1N
x. A

Accordingly, for d : €*(Z,) — €*+1(Z,):
dj =Y #P(X.7.B: G "M®.
%.B

Recall also that we have an isomorphism m (W \ A, T'1) — m2(X, L) induced by
the projection 7: W \ A — . Recall also that pur, (B) = pr(7m«(B)) for every
B € m(W \ A, TL) (see Proposition 2.3). To simplify the notation, we will write
below u for both pr, and piy.

From (13) and (14) we get:

c:jy’ — Z#J)(x', v, n'*_l(A); @E)x’tﬁ(‘q) + Z #P(x" y', n'*_l(A); @E)x”tﬁ‘(“l)

x',A x",A
= Z#J’(x, v, A; Q)x'tﬁ(A) + ZO cx” pRA)
x.!A x,A

dy" =" #2717 (A DX PO 1w Py w7 (A); Deyx” 1D

x', A x/t A
= Z#J’(x', ¥y, Tt'*_l(A); @E)x’ Ay 4 Z#J’(x, v, A; @)x”tﬁm).
x,A x, A

(15)
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These identities immediately imply that i and p are chain maps. Indeed:

c:ji(y) = c:jy’ = Z#J)(x,y,/l; Dyx’ 1A
x,A

— i(Z#JP(x,y,A; Dyx Iﬁ’(A)) = i(dy),
x,A

) = p( Do #20e,y. 4P D) = 0= d(©) = d p(y"),
x.,A

(16)
p@y") = p( L #P .y 77 (A): Fox! 1F)
x,4
+ p(z#ﬁ’(x,y,A;@)x”:ﬂ(A))
x,A

x.,A

8. Independence of auxiliary data

Let 2° = (fo. (- )os Jg) and 21 = (f1, (. )1. JXI}) be two choices of auxiliary data
for the pearl complex of L. C X. Denote by @EO and .@81 corresponding choices of
data for (W, ") as constructed in §4. Recall from [BC4], [BC4] that there exists a
comparison map

So.g1 €D — EHDY)
which is a chain map with respect to pearly differentials and induces an isomorphism

in cohomology QDI;ZO Y H*(€(9Y)) - H*(€(2°)). We use here the following

convention. Maps with superscript ¢ (e.g. ®°) denote chain maps, while superscript
indicates the induced map in cohomology (e.g. ®” is the induced map in cohomology
for &°).

Note that while the maps QD"@D’ 71 are not unique they are uniquely defined up to

cochain homotopy, hence the maps @hgo 71 are canonical. An analogous comparison

map CD%D s exists for the corresponding pearl complexes of I'y .
ey

The comparison maps are natural in the following sense: for any three choices of

data 2°, Z1, 22 we have in cohomology:
h h h h
q)@()’@l Q qD@lq@Z = @@0’@25 qD@Oq@O =Id.

In this section we show that the chain maps i and p are compatible with these
comparison maps, hence after passage to cohomology they can be viewed as canonical
maps between the corresponding Lagrangian quantum cohomologies.
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8.1. Construction of ¢ .
70 g1

Adding a positive constant to f1, if necessary, we may assume that f1(x) > fo(x)
for any x € L. Following [CR], Lemma 1.17, we pick a C* function v: [0, 1] —

[0, 1] which satisfies

We recall here the construction from [BC4].

v =1, vw()=0; 20 =v(1)=0;

V() <0 (0O<t<1); v'(0)<0<v’(1).

and define F: L x [0,1] — R by F(x,7) = v({t) fo(x) + (1 — v(1)) fi(x). We
allow a small perturbation of ' away from the boundary of L x [0, 1] in order to
make the construction generic. The function F extends f; (viewed as functions on
the boundary components 1.; = I x {i} of L. x [0, 1]) and has all critical points on
the boundary. In fact,

Crit( F) = Crit( fp) x {0} U Crit( f1) x {1}.
The indices of these critical points satisfy:

|, O] = [x[+1, |y, D] = [yl

Pick a Riemannian metric (-, -) on . x [0, 1] which restricts to (-, -); on each L;. As
the space of almost complex structures on I is connected, we can pick a generic path
J5,0 < <1 which connects Jg to Jé.

The chain map @;01@1 C€H(PY — €*(P20) is defined as follows. Let x €
Crit( fo) and y € Crit( f1) and A € H,(%, L). Now consider the critical points
(x,0),(y,1) € Crit(I"). Denote by 2 (x,v,A) the moduli space of pearly-like
trajectories which consist of the following objects: an increasing sequence (0 < f1 <
..w < Iy < 1,acollectionof disks u; : (D?,0D?) — (Ix{nYy, Lx{uN),i =1,...,1,
which are J é‘ holomorphic (4; 1s fixed for each ;) and a sequence of negative gradient
trajectories y; C L x |0, 1| of I connecting consecutive disks in a similar way we
had for usual pearly trajectories. The first trajectory should start at (x, ) and the last
ends at (y, 1). Moreover »_[u;] = A. (As was the case with usual pearly trajectories
we allow A = 0, in which case we do not have disks at all (i.e., / = 0) and the whole
pearly trajectory consists of a negative gradient trajectory of I'.) We refer the reader
to [BC4] for the precise details of this construction.

For a generic choice of the data involved, each Iz (x, v, A) is a smooth manifold
of dimension §(x, v, A) = |(x.0) = [, D] = 1 = p(A) = |y] = |x] + p(A).
Moreover, when 6 = 0 the space #(x, y, A) is compact, hence consists of finite
number of trajectories. Define

(1)690’91 (y) — Z #‘@(xsysA)x‘t'a(A)a
g(x,y,A):()
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where the sum is taken over all x € Crit( fp) and A with 5 (x,y,A) = 0. The same
construction works well if one replaces Morse functions and their negative gradient

flow by a negative almost gradient vector field as in §3.1.

We will now exhibit q)c 0 51 888 “lift” of @;0 41+ Weextend f ! toI'L x[0, 1] in

the following way: pick a connectlon on N x|[0,1]asin §2.2 Wthh extends V0, V!
on the boundaries of A x [0, 1]. The cutoff functions «, are extended into a tubular
neighborhood of a boundary in L x [0, 1] by a,(x)B;,(¢) where §;_: [0, 1] — [0, 1]
(iy € {0,1}) is a smooth cutoff function which is equal to 1 near i, and vanishes
outside a 1/3 neighborhood of i,. Now we use the same construction as in §4: lift
the negative gradient flow of F to X" using the horizontal distribution of V and put

X =X" 46 (agBi, omr,) o D1y (Vy)

where ¢ indexes all critical points of F, 7, are local trivializations of I';, x [0, 1]
and Y, are vertical vector fields near the critical point of f; as in §4. We obtain a
negative almost gradient vector field which restricts to % I (i = 0, 1) on the boundary
and whose projection coincides with the negative gradient field of F on L. x [0, 1].
The lift of J5 is constructed in the similar manner as in §5. As the pearl complex
Lk @;) does not change as one increases the stretching parameter R for the
almost complex structure Jg, we may assume that this R is the same as the one
used for the pearl complexes Z!. Moreover, we require that the parameter R is large
enough so that all the disks which participate in 0-index trajectories in Z (x,y,A4)
(there 1s a finite number of them) are located in the appropriate disk bundle which
corresponds to the stretching of a lift of Jy { . Transverality is obtained in analogous
way as in §6. By the results of [BC4], [BCG] CDC 70 are chain homotopic to the

comparison maps €*(I'z ; @;) — C*(Tr; @f i constructed by the general theory.
We now exploit the special relation between the pearly trajectories on I'y, x [0, 1]
and those on L x [0, 1]. We have a lift J, of J§ for which all the relevant pearly

moduli spaces @ (X, ¥, A) project to pearly moduli spaces on 2. A lifting procedure,
completely analogous to the one in §7, shows that when é(x, v, A) = 0 we have:

# P (T x v 7w Y (A) = # 2T x", ", w7 (A) = #P(L: x, v, A),

while & (Tr:x". v, w71 (A)) = @. These identities show that the following diagram
is commutative on the chain level:

0—=€*(L; @1)—>€ (Tp: F1) —2=e*Y(L: 91) —= 0

o (b‘tu . {ag
P50 o1 59,5} P50 o1

0——€*(L; 29 — € (L 1759 — (L 2% — 0.
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It follows that the maps induced in cohomology by i and p do not depend on the
choices of the auxiliary data in the sense that they are compatible with the comparison
maps. In other words, these maps are canonical.

9. Product structure

9.1. Multiplicativestructure.. Recall from [BC4], [BC6], [BC5]that QH (L )hasa
quantum product * which turnsit into an associative (but not necessarily commutative)
unital ring.

The quantum product is defined in following way. Pick a Riemannian metric (-, -)
on L, an almost complex structure Jy on 3 and three Morse functions fq, f2. f3
on L. Put % = (fi,(,),Jx),i = 1,2,3. Let x € Crit{ f1) and ¢ € L a point
(which is not necessarily a critical point of f;). Fix also Ay € H,(X, L). Denote
by H(q,x, A1; Z1) the space of pearly trajectories going from ¢, converging to x
and with total homology class 4;. We have similar spaces for %, and %5. Now let
x € Crit( f1), y € Crit( f2), g € Crit( f3),and A € H,(X, L). Consider the space of
tuples (y1, v2. 3, u) which consist of a J-holomorphic disk u: (D,dD) — (X, L)
(which is allowed to be constant) and a triple of pearly trajectories

(1. v2.v3) € P(u(@™7), x, A;: D1) x P(ue™>5), y, A2: Do)
x P(z.u(l), As: D),

where A = [u] + A1 + A2 + A3 € Ho(%, L). We denote the space of such tuples
(yl: Y2, V3, u) by gzprod(zz X, ¥, A)

The virtual dimensionof Hpa(z, x, ¥, A)isgivenby § = |z|—|x|—|y|+u(A). If
8 < 1 then for a generic choice of data ( f1, f2, f3. (-,-), Jx), the space Z#(z,x,y, A)
is a smooth manifold of dimension §. Moreover, when é = 0 the moduli space consists
of a finite number of elements (see [BC4], [BC6]). Define now a chain level operation

C(Z1) @C(Z2) — C(D3), x®@yr— x*Y,

by
X *y = Z#ﬁprod(zsxsyaA)Zt'a(A)a

where the summation goes over z, A with §(z, x, y, A) = 0. This operation descends
to an associative unital product on QH *(L).

The same construction works of course for 'y, C W too. We will now implement
it on I'z, using auxiliary data induced from that of L so that it is adapted to our
situation. We would like to lift the pearly configurations from szmd(z, x,y,A4) to
(W, T'r) in a similar way to what we have done for the ‘usual’ pearly trajectories.

Consider three lifts of —grad f;, i = 1,2, 3, to negative almost gradient vector
fields X‘&‘l, X5, X{onTI'p as described at the end of §3. Consider also an admissible
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almost complex structure Jr on M induced by Jx, as in §5 with stretching parameter
R large enough.

For a generic choice of parameters the spaces #p0q(Z, X, ¥, A; T'r) enjoy similar
transversality properties as in §6 and one may use them to define a chain level product
which descends to the quantum product on QH™*(I'z).

The projection property for &2;a(Z, X, ¥, A; I'r) follows from the construction
by similar arguments as in §5. Moreover, arguing in a similar manner as in §7
we establish the following identities. For every critical points x, y,z of fi1, f2, f3
respectively and A € mp(X, L) with |z| — |x]| — |y| + u(A4) = O

#ﬁprod(zaxa ya A! L) = #‘@pfod(zlﬁ x"ﬁ y!’ T[*_l (A)5 FL)

#C@prod(z’ x’ y: A’ L) = #g’szrocl(zﬂa x”’ y,: jT:k_l(A): FL)
= Pt sy w A T
Moreover, Ppoq(z”. X', ¥, m; 1(A): 1) does not have any zero-dimensional com-
ponents. All together this implies that for every x € Crit(f1), y € Crit( f2) and
X € Crit(X7), y € Crit(X5) we have:

i(xxy) =i(x)*i(y), pE*i(y))=pX)xy. plix)*y)=xx*p(y). (17)

Note that these identities hold on the chain level.

10. The Floer-Euler class

Denote by §: QH*(L) — QH**2(L) the connecting homomorphism in the long
exact sequence of Theorem 4.1. Denote by 1 € QH (L) the unity. Define:

er = 68(1) € QH*(L). (18)
We call this class the Floer—Euler class of I';, — L.
Proposition 10.1. Foreverya € QH*(L) we have:
fla)=axep =ep *a.
Proof. The proof follows easily by noting the multiplicative properties of the mor-
phisms 7 and p (see (8) in Theorem 4.1) together with the fact that the pearly differ-

entials on €(L) and on € (I} ) satisfy the Leibniz rule with respect to the quantum
chain level operation. L
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11. The positive pearl complex

Recall from [BC5], [BC6] that the quantum cohomology of a monotone Lagrangian
K admits also a positive version, QT H*(K). The construction goes as follows.
Let At = Z,]t] be the ring of polynomials in ¢, graded so that |[{| = Ng. Let
% = (f,(-,),J) be a pearly data and put € (K; Z) = Z,{(Crit( f)) @ AT. We
grade € in the same way as €, i.e., by Morse indices on the left factor and using the
grading of A 4+ on the right factor. We endow €4 (K; &) with the same differential J
which was defined for €(K; &) in §3. The fact that this  maps € into € follows
from the monotonicity of K since the Maslov index of non-constant holomorphic
disks is always strictly positive.

The cohomology of (€1 (K; Z).d) is denoted by QT H*(K) and is called the
positive quantum cohomology of K. By the results of [BC6] it does not depend on &.

Note that in contrast to QH*(K), Ot H*(K) is quite different from HF*(K)
and there is no isomorphism between the two. Note also that Ot F/(K) can never
vanish (unlike HF(K)). See [BC6], [BC5] for more on that.

Note also that there is an obvious inclusion of cochain complexes €, (K; &) —
€(K:%). The resulting morphism in cohomology 0x: QT H(K) — QH(K) is
canonical. However, in general it is not injective.

Going back to our Lagrangians L and I';, we have:

Theorem 11.1. Theorem 4.1 continues to hold if one replaces everywhere €* by €
and OH* by Q1 H*. The corresponding class e; belongsto Ot H?(L). Moreover
the morphisms 0 : QYH(L) — QH(L) and 0y, : QT H(') — QH(Ty) give
rise to a long commutative diagram that maps the long exact sequence for QH to
the corresponding long exact sequence for QO H. Moreover we have 0y (e}';) = i
(Therefore, from now on we will denote both classes by ef).

Proof. The proof is done precisely the same as for Theorem 4.1 by noting that, due
to monotonicity, all differentials, cochain maps and connecting homomorphisms in
the proof of Theorem 4.1 always involve only non-negative powers of 7. (]

11.1. Comparison with the sequencein singular homology. Let 2 = (f, (-,-), J)
be auxiliary pearl datum for the Lagrangian K. Denote by &' = (f.(-,-)) the
corresponding Morse datum, and by CM(K; &) the corresponding Morse complex.

Denote by
6:C1(K: %) — CM*(K: 7 (19)

the morphism induced by sending 7 € At 00, ie.,d(x) = x forevery x € Crit(f)
and 6(xt') = Oforeveryi > 0. Itis easy to see that ¢ is a cochain map (see [BC5]
Section 4.3). We denote the resulting map in cohomology

o: QY H*(K) — H*(K:Z-). (20)
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This map is canonical in the sense that it does not depend on .
Going back to the Floer—Gysin sequence we obtain the following commutative
diagram:

0—CHL: D) =€l (TL: D) —2 =€ (1;2) —0

| | |

0—= CM*(L: @) > CM*(T1: Z) L= CM*(L: 9') —= 0

where the maps i’ and p’ are defined exactly in the same way as i and p. Note
that the long exact sequence in cohomology induced by the bottom short sequence is
precisely the Gysin sequence of the circle bundle I'; — L for singular (or Morse)
cohomology. We now obtain a map between the two long exact sequences (induced
by the 6°s):

§ 08 5 Q+Hk(L) _rer Q+Hk+2(L) £ Q+Hk+2(l"L) £ Q+H"+1(L) —_ -
| | |
cee s Hk(L; Z3) - Hk+2(L; Z3) L;_ Hk+2(FL; Z2) L Hk+1(L; Do) = """

From this it is easy to see that 6(ef) = e. In this sense, the Floer—Euler class can be
viewed as a deformation of the classical Euler class.

Remark 11.2. The chain map in (19) fits into the following exact sequence of cochain
complexes:

0— e V(L 9) —=CLL: D) —2 - CM*(L: 7)) —=0  (21)

where the first map is the inclusion. Since ‘(f’_]f__NL (L;9) = 0 forevery 0 <
k < Np it follows, after passing to the long exact sequence in cohomology, that
o: QY HX(L) — H*(L;7Z,) is injective for every 0 < k < Np. In particular if
Ny > 3andifer # Othene # 0 € H*(L:75).

12. More on the Floer—Euler class

Recall from [BC6] that a Lagrangian L is called wide if there exists an isomorphism

of A-modules:
OH*(L) = (H(L:Z2) ® A)*. 22)

Note that in this case we also have:

OYH*(L) = (H(L;:Z,) @ A1), (23)
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It is important to note however, that for a wide Lagrangian L there is in general no
canonical isomorphism in (22) or (23) (at least not for all degrees *). Therefore it is
in general impossible to make a canonical identification

QF (L) = (H(1L:72) ® AT)?.

Nevertheless, if L is wide and Nz > 3 the identification is possible for degree * = 2
and we have a canonical identification:

OTH*(L) = H*(L: Z,). (24)

See [BC6], Section 4.5 for more on that. When Ny = 2 we still have short exact
sequence:

0 — HOL:Zy)t -1 0 H2(L) <> HX(L:7,) —> 0, (25)

where the morphism o is the one defined in (20).
Summarizing the above with the discussion in §11.1 we have:

Proposition 12.1. Let I. C X be a monotone wide Lagrangian. Let e € H*(L; 7.5)
be the Euler class of the circle bundle Ty — L andep € QT H?(L) the Floer-Euler
class. Then o(ep) = e. Moreover, if N; = 3 then via the identification (24) we have
er = ¢&.

Proof. The fact that o(er) = e has already been proved in §11.1. The statement
concerning Ny > 3 follows immediately from the fact that via the identification (24)
we have o |g+ g2y = id. O

We now examine closer the case Ny = 2. Denote by ciN € H?(X;Z) the first
Chern class of the normal bundle of X in M (so thatif PD[X| = ka € H*(M;7),
with ¢ being an integral lift of [w] € H?(M:R), then c‘lN = ka|y € H*(Z:Z)).
Note that in our notation the Euler class e € H2(L: Z5) is the restriction to L of the
modulo-2 reduction of cfv .

Assume that L. is wide and that e = 0 € H?(L;Z,). From Proposition 12.1
and (25) it follows that e = 7 ¢ for some r € Z,. We would now like to identify
this coefficient r.

Let A € Hy(%, L) with u(A) = 2. Denote by M(A, Jx) the space of Jx-
holomorphic disks u: (D, 0D) — (%, L) with u,[D] = A. Denote by G =
Aut(D) = PSL(2,R) the group of biholomorphisms of D. The group G acts on
(M(A, J=) x 0D)by o - (u,z) = (4 o 0~!, 0(z)). We now have an evaluation map

ev: (M(A,Jg) xaD)/G — L, ev(u,z) = u(z).
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As ev is a smooth map between two closed manifolds of the same dimension it has
a well defined degree modulo 2 which we denote v(A4) € Z,. Define now a class
Dy e Hy(%,L) by
Dy = b V(A)A.
AeHz(XZ L), u(A)=2

By Proposition 4.2.1 of [BC6] wideness of L implies that 8(Dy) = 0, where
a: Hy(X,1L;7Z2) — Hy(L;7Z5) is the connecting homomorphism. Denoting by
i1 Hy(L;Zp) — Hy(%;Zy)andby j: Hy(X;Z,) — Ha(E, L; Z5) the homomor-
phisms induced by inclusion, it follows that there exists an element Sy, € H,(%; Z7)
so that j(Sz) = Dp, and moreover that Sy is unique up to a summand com-
ing from i(H,(L;7Z3)). Denote by ¢ € H?(X;Z;) the modulo-2 reduction of
ciN € HX(X;Z). Asc|p. = e =0 € H?(L:Z>), the value of (¢, S.) € Z, depends
only on Dy .

Proposition 12.2. Let I. C % be a wide Lagrangian with Ny = 2 and withe = 0.
Then

ep = (C, SL)I.

The proof is rather straightforward and follows from the definition of the Floer—
Euler class er as the image of 1 € QH°(L) under the connecting homomorphism:
er = 8(1). We therefore omit the details.

Next we would like to establish a relation between the first Chern class of the
normal bundle &' — X of ¥ in M and the Floer-Euler class e € QHZ?(L).
Recall from [BC4], [BC6], [BC5] that QH (1) has a structure of a module over
the quantum cohomology QH(2; A) = H(X) & A of the ambient manifold X,
where the latter 1s endowed with the quantum product ring structure. For reasons of
compatibility with QH (L) we use here A as the coefficients for QH(%; A), which
is an obvious extension of the usual ring of coefficients commonly used for QH (%).
(See Section 2.5 of [BC5] or Section 2.1.2 of [BC6] for more details on this.) This
module structure 1s given by a degree preserving morphism:

QH(E; AN ®@p QH(L) — QH(l), a®o+— a*a.

(Since this module structure is compatible with the quantum multiplications of both
QH(Y) and QH (1) we have denoted it by abuse of notation by * too.) A similar
construction works with A replaced by AT everywhere.

Consider now the map

ri: OH*(Z;A) — OQH*(L), ar—ax*l.

We view this map as a quantum analogue of the classical restriction map H*(X) —
H*(L), a +> a|r. Note that the image of ¢;" under the classical restriction is the
classical Euler class e € H?(L). The following proposition is a quantum version of
this:
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Proposition 12.3. Let L. C X be a monotone Lagrangian. Denote byc € H*(Z; Z;)
the modulo-2 reduction avfciNr € H*(Z:; 7). Then

er = ri(c).

The proof is again straightforward and is based on a Morse theoretic interpretation
of the class ciN € H?(X) using the classical Gysin sequence for the circle bundle
P — X. We omit the details.

13. An analogous exact sequence in (M, w)

In this section we discuss the analogous sequence which arises when one replaces
the ambient manifold W = M \ ¥ with M. Recall from [BC6] (Section 6.4) that for
a suitable choice of the parameter g in the construction of I'y, in §2.4 I';, becomes
monotone also when viewed as a Lagrangian submanifold of M. (In contrast with
'y, € W, here there is a unique ro which makes I'y, monotone in M ).

Assume that the minimal Maslov number Ny of I is even and > 2. As in
Proposition 2.3 the homomorphism 72(M \ A,T'1) — w2(M, I’z ) induced by the
inclusion is surjective. We also have:

T MA\A,TL) = 1N, TL) = ZF @ maN \ 2, T1), (26)

where F 1s the class represented by the vertical disks in the fibres of the disk bundle
E.y — X,1e,by{v € Ny | |v| < ro}. (Here pis a pointin L and N, is the fibre
over p.) Moreover the Maslov class of 'y, in M behaves as follows (compare to 2.3):

ur; (F)y=2, pur,(4) = pr(m«(A)) foral A € ma(N \ Z,T1).

It follows that Np, = 2.

Since the minimal Maslov numbers of I';, and . are now different we will use
the following extension of the coefficient ring for the pearl complex of L. Put A =
Zlg™'. q], with |¢| = 2 andlet A = Z,[t~', ] with |1| = Ny, as before. We define

on # a structure of an A-algebra via the ring homomorphism A > ¢ q%]'“ € A.
Given auxiliary data &, we define the pearl complex on I using coefficients in +A:

C(L; Z,A) =C(L; D) @4 A,

with the obvious extension of the pearly differential by linearity over 4. We de-
note the corresponding cohomology by QH(L: 4). As for I', we define the data
De = (fe, Xe, J) as in §4. Here J is an admissible almost complex structure in-
duced from Jx as described in §5 but now J is defined on the whole of M. Note
that by the construction in §5 such J’s coincide with Jx on %, hence > is a J-
holomorphic submanifold. The pearl complex of I’y C M is defined as usual, but



940 P. Biran and M. Khanevsky CMH

we denote the coefficients by #4 (rather than A which is already used for L). In order
to distinguish the pearl complex of I'y, C M from that of I'y, C W we denote the
former by (€ar (T'z; Ze), dar) and the latter by (Cw (T ; Z.), dw). We denote their
cohomologies by OHpy (I'r) and QHw (I'1) respectively.

In this new setup a similar version of Proposition 5.1 holds, namely:

Proposition 13.1. For generic &, there exists Ry > 0 such that for every Jg as
described above with R > Ry the following holds: every pearly trajectory y €
Po(JR) is containedinthe image F(E;q1) of the (ro+«)-disk bundle of N under F.

Proof. The proof is almost identical to that of Proposition 5.1 except of the fol-
lowing points. First, by the maximum principle, if u: (D,9D) — (M,Tr) is a
Jg-holomorphic disk then either (D) is contained in M \ Int £, or u (D) intersects
2. For those disks that lie entirely in M \ Int £, the proof of Proposition 5.1 holds
without any change.

Now suppose that we have a sequence of pearly trajectories y, which contain Jz,, -
holomorphic disks u# g, such that g, (D) intersect X (as well as the complement of
Ero+x. as was assumed in the proof of Proposition 5.1). Arguing exactly as in the
proof of Proposition 5.1 we obtain a holomorphic building in M *® part of which,
say @' is in M and another part #” in M (which also intersects X). There may
appear additional part i#"” whose components lie in the cylinder R x P. The first part,
', can be analyzed and dealt with as in the proof of Proposition 5.1. In particular
we assume that one of its components u5, after being perturbed to lie away from A,
projects into a sphere v in X with positive Chern number. The second part, i” might

contain components of the following kinds:
(1) holomorphic spheres u” (appearing as bubbles) in M,
(2) disks u;’, in the class F (or its multiples),

(3) holomorphic curvesu” similarto 1 from the proof of Proposition 5.1 defined on
a punctured disk or sphere and at the punctured asymptotically go to a periodic
orbit at —oo in Mo‘g,

(4) some other genuine holomorphic disks ) in (M °°, I'z.) (lying in a compact part
of M1).

Note that the projection of the disks 4/, via 7 must be constant (since . (F) = 0),
hence these disks are vertical. Next, the projection of the curves of the type u”
gives us in % a holomorphic curve with a removable singularities at the punctures,
precisely as was done with 71 o 1 in the proof of Proposition 5.1. The disks of the
type u/, project to genuine holomorphic disks in (X, 1.). Components of & (if any)
project to holomorphic spheres. Consider now the pearly trajectory y obtained from
the limit of the y,. We remove from y the component w5, ", the vertical disks u/;

(if there are any) and the holomorphic spheres u (if there are any), and then project
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the rest to 2 via w. We thus obtain a genuine pearly trajectory yy for (%, L). Denote
by A € H,(M,Tr) the total homology class of the holomorphic curves (including
u;) in y. Since the vertical disks (if there are any) have constant projection the total
homology class B € H,(2, L) of the holomorphic curves involved in yx is:

B = my(A) — [v] — ma[u)] — ma[0""].

(In case there are no spheres 1, we have [u]] = 0).
Now forevery C € H,(N,T'r) we have (see (26)):

pr, (C) = pr(m«(C)) + 2C - [Z],

where C - X stands for the intersection number between C and 2. We thus obtain:

jury ([i]) = pr, (A) = pr(B)+2c7 (W) +2¢ (raluf]) + 27 (rali”]) +24-[Z].

(27)

We now claim that A-[X] > 0. Indeed the class A is represented by J g, -holomorphic

disks (those that appear in each of the y;,’s) and X is Jg,-holomorphic. The claim
follows from positivity of intersections.

Next, by monotonicity we have ¢Z([u”]) > 0. By the same argument as in the

proof of Proposition 5.1 we also have clz[v] > 1 (in contrast to u}, we explicitly
assumed that v does occur). Going back to (27) we obtain the inequality

pr, ([H]) = pr(B) + 2,

which is the same as (12) in the proof of Proposition 5.1.
The rest of the proof continues exactly as for Proposition 5.1. (|

Having established Proposition 13.1 we can prove transversality for moduli spaces
involved in € (T'L; Z¢) in the same way done in §6. _

Wenow define themapsi: €*(L; Z:A) — €y, (I'L; Ze)and p: €3, (I1; Pe) —
e*Y(L; 9; A) exactly as in §4.

It remains to show that these remain chain maps also with respect to the pearly
differential dps of Ty in M. The proof of this goes along the same lines as that for
W: we compare pearly trajectories in (M, 'y, ) with those on (%, L). In particular we
project pearly trajectories from (M, 'z ) to (X, L) as we did for (W, I'1.). The discus-
sion for the lifting property which is presented in §7 applies here with the following
modifications. L.emma 7.1 shows that any holomorphic disku : (D?,3D?) — (X, L)
admits a unique holomorphic lift to adisk in (M \ 3, I'z. ) having specified appropriate
boundary conditions. In addition, there is a family of lifts of # to holomorphic disks
which intersect 2. For any such lift iz of ¥, we have ur, (i) = pp(u) + 2[u| - [X]
(here |u] - [%] stands for the intersection product in homology). A simple index com-
putation shows that the virtual dimension of any /iffed trajectory which contains disks
intersecting 3 is greater than zero, so these do not contribute to the differential. In
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addition there may appear trajectories in (M, Iy ) whose projections to (X, L) are
degenerate. Analyzing possible configurations of degenerated trajectories, one shows
that the only index 0 trajectories which appear this way are trajectories consisting of
a single vertical disk in the fiber of w: £,, — X. For every critical point x on L
there is unique such trajectory which connects x” to x’ (its projection to X consists
of a single point x).

The above discussion yields the following identities for every x € Crit(f):

dy (x') = dw (x').
5M(x”) — d”W(xfr) . xrq

We have identified here €5, (I'z; @E) with €5, (I'z.; @E) ® A+ as graded vector spaces.

The additional summand x” ® ¢ in das (x”) comes from the vertical disks described
above.

A straightforward computation now shows that i and p are chain maps. We now
have the following version of Theorem 4.1:

(28)

Theorem 13.2. The maps i and p form a short exact sequence
0 —> C*(L; D5 A) —> €3, (T; Do) ——> €*U(L; Z: A) — 0

of cochain complexes. For a generic choice of data % and an admissible correspond-
ing data %, the maps i and p are chain maps. In particular, we have a long exact
sequence

4 QHk(L,A)ag" QHk+2(L;u4))
L QHEY(Tp) Lo oHFI(L: A) B e

Moreover, this exact sequence in homology is canonical in the sense that it does not
depend on the auxiliary data. The connecting homomorphism § is given by quantum
multiplication by a class e, € QH?(L; A) (which does not depend on the auxiliary
data), i.e., (o) = o x e for every o € QH™(L; A). The relation between ey and
the Floer—Euler class from Theorem 4.1 is given by et = ep — q, where we view
here ep as a class in QH?(L; A).

The independence of the choice of auxiliary data issues are treated in a similar
way to those in for W. Finally, (28) implies that the connecting homomorphisms
§: QH*(L) — QH**+2(L) in the sequences for (M, I'z) and that for (W, T'z) are
related as follows:

S = Sw —q. (29)

(Here g stands for multiplication by g.) The fact that e, = er — ¢ follows now from
similar arguments as in §10.
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14. Further results and generalizations

Here we present a generalization of Theorem 1.1 that allows to replace 2 by a product
2 x @ with a symplectic manifold Q. Here is the precise setting.

Let (Q, wg) be a closed symplectic manifold. Let L C (X X 0, wx @ wg)bea
Lagrangian submanifold. Define the circle bundles P, — % as in §2.2. Denote by

!

Tyt Pry X O — X x 0 the projection and define

r —1
fo

Ty = (FxD(m,, (L) CWxQ,
where F 1s the embedding from Proposition 2.1. A simple computation shows that I'y
is a Lagrangian submanifold of W x @ if we endow this manifold with the symplectic
structure

Wy,

—r2
n =wde we.

We now fix rg once and for all and consider I'y as Lagrangian submanifold of

(W x 0. wy,). We have the following version of Proposition 2.3 which is proved
in [Bir2]:

Proposition 14.1. Assume that either dimgp X > 4, or that dimgp X = 2 and W =
M \ X is subcritical. Let (Q,wg) be as above and L C X X Q be a Lagrangian
submanifold. Let 'y, C W X Q be the Lagrangian circle bundle over L as constructed
above. Then:

(1) The homomorphism ty,: (W x O\ A X Q, 1) = m(W x Q,p), induced
by the inclusion, is surjective. When dimg X > 6, 4 is an isomorphism. The
same statement holds also for homology, i.e., if one replaces 7w, by H.

(2) Forevery B € my(W x O\ A x Q,T1) we have:

pr, (B) = pp(m,(B)),

where 7' (W x A) x Q — X X Q is the projection induced by W \ A — X.

In particular, if L C 2 x Q is monotone then 'y C W x Q is monotone too, and
Nr, = Nr.

Note that if . C X x @ is monotone then in particular ((, @) is a spherically

monotone manifold, i.e., there exists A > 0 so that wg(S) = )LCIQ (S) for every
S e Tl'z(z)
We now have the following generalization:

Theorem 14.2. Theorems 4.1, 11.1, the discussion in §11.1 as well as Proposi-
tions 12.2, 12.3 continue to hold for monotone L. C 2 x Q and'y C W x Q.
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The proof is very similar to the proofs of the analogous statements for the case
Q = pt,ie, L. C ¥and I't C W. Sull, there are a few points where some
adjustments are needed. We indicate them below.

First of all, the construction of the chain maps i and p is the same as before. As for
the almost complex structures, we use the following adjustments. Fix a generic wx-
tamed almost complex structure Jx on X and an wg-tamed almost complex structure
Joon Q. Let ngixQ = Jx @ Jo be the split almost complex structure on X x Q.
We will work with almost complex structures Jxxg on X x () that are generic small
perturbations of J. gx o- This class is obviously enough in order to obtain transversality
for the pearl complex of L C X x (. Given such a generic Jyx g we construct, as
in §5, the almost complex structures on N x Q, M x O, W x Q etc. as well as their
stretched versions on W2 x ( etc. We denote the resulting almost complex structure
by Js x@ (we omit here the parameter R to simplily the notation). Note that W x 0 1s
not symplectically convex at infinity anymore, and the maximum principle does not
apply due to the ¢ factor. To go about this difficulty we fix 0 < rq < rp and adjust
Jsxp on (Int E; ) x O so that it coincides with Jw & Jg (i.e., the lift of J Q)

on (Int £ /5) x (. We denote the resulting almost complex structure by Js. j! X0 and
call them admissible. Such almost complex structures are enough in order to ensure
compactness for holomorphic disks in W x (0 with boundary on I'y. The reason
is that the projection to W is holomorphic on (Int £, ;») X @ and the maximum
principle applies to these projections. Thus holomorphic disks with boundary on I'z,
cannot escape to infinity.

The preceding construction of admissible almost complex structures creates how-
ever a new problem. The problem is that due to the perturbation in £, x Q these al-
most complex structures are not compatible with the projection (WA\U)xQ — XxQ
in the domain (£,, x O (in the sense that the projection is not holomorphic anymore).
This compatibility was crucial in the proof of Proposition 5.1. To solve this prob-
lem, fix ry such that 0 < ry < 7| < rp. We claim that for Jxx g close enough to
Jzon and admissible fng’s induced by such Jxxg’s the following holds: all J
holomorphic disks u#: (D, 3D) — (W x Q, T'p) lie in the domain (M \ Efé) x Q.
Indeed if the contrary would happen then there exists a sequence J,, — ng g on

2 X ( and a sequence of corresponding admissible almost complex structures f,;
on W x Q together with J,-holomorphic disks u#, whose image intersects E for

every . In the limit, when n — o0, J, 7! converges to a split almost complex structure
fo = Jw @& Jp and (after passing to a subsequence) the disks u,, converge to a
fo—holomorphic CUI'VE U, (With some bubble components) with boundary on I'; .
As Joisa split almost complex structure the projection of 1o, to W is Jy holomor-
phic. The projection of its boundary lies in P, and there is an interior point lying in
E ry: This contradicts the maximum prin(:lple It now follows that all pearly trajec-
tories lie above the hypersurface P,,é x (), where the projection to % x ¢ is indeed
holomorphic.
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There is yet another point in the proof of Proposition 5.1 where an additional argu-
ment is needed. One has to take care of another possible configuration of holomorphic
curves appearing in the limit while stretching the neck. Namely, holomorphic spheres
that might appear in the holomorphic building # as bubbles from the limit of the se-
quence u,, . These spheres might appear now since W x () is not exact symplectic
manifold anymore, due to the () factor. However, due to the monotonicity of Q these
spheres have positive Chern numbers hence the total Maslov index of u still drops
after removing them, and a similar argument to the proof of Proposition 5.1 goes
through.

The other components in the proof of Proposition 14.2, such as the lifting and
the transversality are carried out in a similar way to the case ¢ = pt with almost no
significant adjustments. U

15. Applications and examples

We will now prove Theorem 1.2 from §1 which we state again as Theorem 15.1 below
for convenience.

Recall that a symplectic manifold (%, wy) is called spherically monotone if there
exists A > 0 such that wx(S) = )L(:lE (S) for every § € m,(S). We define the
minimal Chern number of X to be:

Cxz = min{cZ(S) | § € m(S), cZ(S) > 0}.
We use the convention that min ) = oo (e.g. in case m> (%) = 0).

Theorem 15.1. let (¥, wx) be a spherically monotone symplectic manifold with
minimal Chern number Cx. Suppose that (X, wy) can be embedded as a symplectic
hyperplane section in a symplectic manifold M so that M \ 3 is subcritical. Then
Cs, < 00 and H*™92C2)(5: 7,0) is 2-periodic, i.e., for every k € 7 we have:

@Hk-FZI'CZ(Z;Zz) ~ @Hk+2+2icz (Z,Z‘z)
ieZ I€Z

As mentioned before the most basic example hereis ¥ = CP? ¢ M = CP"+!
(with Cy = n + 1). See [BJ] for more examples coming from algebraic geometry.

A theorem similar to 15.1, with coefficients in Z, has been recently obtained
in [BJ], without any appeal to L.agrangian submanifolds. The theorem in [BJ] deals
with projectively embedded algebraic manifolds which have a so called small dual.
This class of manifolds is closely related to the subcriticality of M \ % (see [BJ] for
more details).
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Proof of Theorem 15.1. We will derive our theorem from Theorem 14.2.
Put (0. wg) = (¥, —wy) so that

(Ex 0,05 Dwg) = (XXX, 0x d-wx).

Let . = {{x,x) | x € £} C ¥ x Q be the diagonal embedding of ¥. Then L is
Lagrangian and it is easy to see that it is monotone with minimal Maslov number
N = 2Cs.
PutW = M\ XandletT'y C W x Q be the Lagrangian circle bundle over 1. as
constructed in §14. By Proposition 14.1 I';, is monotone too and N, = N = 2Cx.
Since W is subcritical we have HF(['y) = 0 hence QH(I';) = 0. By Theo-
rem 14.2 the Floer—Gysin long exact sequence splits into many isomorphisms:

OHM(L) = QH*2(L). (30)

Next recall that there is a graded isomorphism of A modules: QH*(L) =
HF*(L,L). It is well known that for I. = diagonal C (X x ¥, wy & —wyx)
the self Floer cohomology HF*(L, L) is isomorphic as a graded A-module to
(H(L:Z2)®A)* (seee.g. [FOOOL1], [FOOO2]). The latter is just (H(Z; Z2) @ A)*.
Finally note that for every k£ € Z we have:

(H(Z:Z2) @ N = @ H (8 2oy O
ieZ

Remark 15.2. The isomorphism (30) is given by quantum multiplication by the
Floer—Bulerclassep € QH?(L). It follows that e is an invertible class with respect
to the Lagrangian quantum product. By Proposition 12.3 (see also Theorem 14.2)
the class ep can be written as the quantum restriction ep = r;(pr*c). Here ¢ €
H?(X;Z,) is the modulo-2 reduction of the first Chern class ¢;¥ € H2(X; Z) of the
normal bundle of ¥ in M, N — %, and pr: ¥ x ¥ — X is the projection on the
second factor.

Next, note that the isomorphism QH *(L) = (H(X;Z;) ® A)* can be rewritten
as an isomorphism between the L.agrangian quantum cohomology of L. and the sym-
plectic quantum cohomology of X: QH*(L) =@ QH*(X). The latter isomorphism
is, at least by a folklore result, not only an isomorphism of A-modules but in fact an
isomorphism of rings (where both rings are endowed with their respective quantum
products). The proof of this fact is rather straightforward, modulo transversality is-
sues that arise when working with almost complex structure J on X & 3 for which
the involution (x, y) — (v, x) becomes anti-holomorphic.

Assuming this, it follows that ¢ € H?(X; Z;) is an invertible element in QH (%)
with respect to the quantum product. (c.f [BJ] for related algebro-geometric results
over Z.)
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15.1. Proof of the corollaries from §1.1

Proof of Corollary 1.3. Since W 1is subcritical any compact subset in W is Hamil-
tonianly displaceable in the Weinstein completion of W (see [BC1]). In particular,
HF(T'r) = 0. Substituting this into the Floer—Gysin long exact sequence of Theo-
rem 1.1 we obtain that multiplication by the Floer—Euler class xep: HF'(L) —
HF'™2(L) is an isomorphism for every i € 7. This shows that HF'(L) =
HF'F2(L).

Assume now that HF(L) # 0. Denote by 1 € HF?(L) the unity. Then there
exists ¢ € HF72(L) such that @ * e = 1, hence eF is invertible. O

Proof of Corollary 1.4. Asinthe proof of Corollary 1.3 we obtain that e r is invertible
and since HF (1) # 0 we have er # 0 (note that, at least formally a zero element in
the zero ring 1s invertible, so must exclude this case). By the discussion in §11.1 and
in particular Remark 11.2 we deduce that the modulo-2 reduction e € H?(L; Z») of
the classical Euler class of the bundle Iy — L is not zero. This immediately implies
that I'y, — L is not trivial.

Denote now the Z-Euler class of I, — L by ez € H?*(L:Z) and by eg €
H?(L:;R) its projection into the real cohomology. Clearly eg = 0 since eg is
proportional to wy and 1. is Lagrangian with respect to wy. It follows that ez is
torsion. O

We now turn to the proof of Corollary 1.5. We will actually prove the following
more general version:

Corollary 15.3. et I. C X be alagrangian submanifold. Assumethatn = dim [, >
2 and that L satisfies one of the following conditions:

(1) H{(L:7) = 0.

(2) n = 3, Hi(L;Z) = 0 is 2-torsion (i.e., for every a« € H(L;Z) we have
2a = 0) and either dimpg, HY(L:Z,) > 1 orthere exists | <i <n —1 such
that H' (L; 7.5) # 0.

(3) L is monotone and QH(L) # 0.

Then L. Ly # 0.

This corollary, under assumptions (1) or (2), has been proved before in [Bir2] by
somewhat different methods (see Theorem G there).

Proof. Assume that L N Ly = @. We will show that none of the conditions (1)—(3)
in the statement of the corollary can be satisfied.

Put W = CP"*1\ X. By the results of [Bir2] if LN Lo = @ then Ty C W is
displaceable in the Weinstein completion of W, hence HF (I'1,) = 0. It follows that
er € QH?(L) is invertible.
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Next note that since % is a quadric in C 2"+ it normal bundle & in C P!
is actually & = Op pnr1(2)|s. It follows that the modulo-2 reduction of ¢{¥ is
0 € H?(X;7Z,). By Proposition 12.3 we have ez = 0. But we have just showed
that e is invertible, hence QH (L) = 0. This already rules out condition (3).

Assume now that (1) holds. We will show that this implies that (3) holds. Indeed,
it is easy to see that 1. is monotone and that the minimal Maslov number of L is
Np = 2n. Asn > 2 we have N;, = 2n > n + | and standard arguments in Floer
theory (see [Bir2]) show that OQH(L) # 0. So (3) holds.

Assume now that (2) is satisfied. We may assume that H,(1; Z) # 0 (otherwise
we are in case (1)). It follows that L. is monotone and its minimal Maslov number
is a multiple of n, say Ny = kn. It k = 2 we arrive at contradiction in a similar
way as we did for case (1). So assume that k = 1,ie, Np = n. As QH(L.) =0,
standard arguments from [Bir2] (e.g. applying the spectral sequence described in
that paper) show that if # > 3 then HYWL:Z>) =%y and H'(L:Z,) = 0 for every
l <i < n—1, contrary to the assumptions in (2). ([

15.2. Examples revisited. We review here in retrospect the examples from the in-
troduction after having developed the theory in the paper.

15.2.1. Lagrangiansin C P" with 2-torsion Hy(L;Z). Itremains to explain here
the computation of the Floer—Euler class. Recall that Ny = n + 1 and that there is
a canonical isomorphism HF*(L) = QH*(L) = (H(L;7;) ® A)*. In particular
QH?(L) = H*(L:7Z,) = 7. We claim that under these identifications the Floer—
Euler class er equals the classical Euler class of the bundle 'y — 1. and moreover
that this must be the generator of H 2(L; Z2) = Z,. To see that denote by ¢ €
H?(CP"; Z,) the generator. Clearly ¢ is the modulo-2 reduction of the first Chern
class cfv of the normal bundle of ¥ = CP" in M = CP"*1. Therefore, by
Proposition 12.3 we have e = r;(c), where r, is the quantum restriction map
QH*(CP") — QH*(L). Butitis well known that ¢ € QH?(C P") is invertible,
hence ep = r;(c) = ¢ x 1 cannotbe 0. (¢ * 1 stands for module operation where 1
is the unity of QH *(L).) It follows that e is the generator of H2(L; 7).

15.2.2. The Clifford torus revisited. We first compute the Floer—Euler class. It
is clear that the classical Euler class of I';, — L is trivial since H2(L;Z) has no
torsion. We now use the recipe and notation from §12. By Section 6.2 of [BC6] (see
also [Cho], [CO]) we have S; = [CP!] € H(CP";7Z,). As ciN = PD[C P"7!|
we have (ciN ,87.) = 1, hence by Proposition 12.2, ep = ¢. Alternatively, we could
use Proposition 12.3 and the computations in [BC6], [BC4] to calculate eF .

It is interesting to examine what happens to the torus T'y in M = C P"*! (rather
thanin W = C P"+1\C P"). A simple computation shows that Tz, becomes now the
standard Clifford torus of C P"*1. By Theorem 13.2 the Floer—Euler class e’p is now
eJ’F = er — 1 = 0. (We use here the variable / instead of ¢ since N; = 2 anyway.)
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It follows from Theorem 13.2 that the long exact sequence of I'y in M = C pPr+!
splits as:

0 — QHN(L) —— QH; (T1) —— QH*"(L) —= 0.
It easily follows now that Iy, € C P?+liswide, ie., OH 3 (T ) = (H(TL, Z2)QA)*.

15.3. Wide and narrow Lagrangians. Recall from [BC6], [BC3] that a Lagrangian
submanifold L C X is called wide if there exists an isomorphism of A-modules
QH(IL) = H(l;7;) ® A. At the other extremity we have narrow Lagrangians,
i.e., Lagrangians I with QI (1) = (. Of course, this notion is very sensitive to the
choice of the ground coefficients ring (in this case Z»), and given aring K one could
talk about K-wide and K -narrow Lagrangians whenever QH (L) can be defined over
the ground ring K (see [BC3] for more on that). Interestingly, when K is a field
all known examples of Lagrangians are either wide or narrow. This “wide-narrow”
dichotomy can actually be proved for some topological classes of Lagrangians such
as Lagrangian tori (see e.g. Theorem 1.2.2 in [BC6]). Below we will examine these
notions in view of the Floer—Gysin long exact sequence.

For simplicity assume that Nz, = 2. By Theorem 4.1, if L is narrow then so
is FL.

Assume now that L is wide and that the Z»-Eulerclasse € H?(L:Z,)ofI'; — L
vanishes. By Proposition 12.2 we have e = rt for some r € Z,. By Theorem 4.1, if
r = 1 then I'y, is narrow. Similarly, if » = 0, then ['7, is wide. Itis interesting to note
that if one considers I'; as a Lagrangian submanifold of M then things get reversed.
Indeed by Theorem 13.2 if » = O then I'y is wide in M, while if » = 1 then Iy is
narrow in M. Note that examples with » = 0 are easy to construct: just take > C M
with ¢} € H2(Z; Z) which is divisible by 2 (e.g. & = quadricin M = CP"1),

It would be interesting to study the same issues when K is a general field (other
than Z») or even K = Z, assuming that the Floer—Gysin sequence continues to hold
in these cases (of course, one should add here the assumptions that L is oriented and
endowed with a spin structure. See §16). Assume as before that X is a field, L is
K-wide and the K -Euler class e € H?(L: K) is 0. Assume further that the class Dy,
defined in §12 is not O (in particular for generic J there are holomorphic disks of
Maslov index 2 through a generic point in L). One would expect thatif r #£ 0 € K
then I'y is narrow and if » = O then I'y, is wide. Note that by Proposition 12.2 one
expects that whenever K has characteristic 0 we should have » # 0. In other words,
if K is a field of characteristic O then I';, should always be K-narrow.

The situation should become more interesting over K = 7. For example, assume
that 1. is wide with Ny = 2 and with e = 0. In this case if » > 2 one would expect
QH(I'1) to have torsion in the sense that QH(I'r) # Obutr - a = 0 for every
ae QH(IL).
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16. Discussion and further questions

Here we briefly discuss possible extensions of the theory developed in the paper and
pose some questions.

All Floer and quantum cohomologies in this paper were defined over the ground
field 7. It is well known that both theories can be extended to work over any ground
ring (e.g. Z) under the following conditions: the Lagrangians must be oriented and
one should fix a spin structure on them. These choices allow to orient the moduli
spaces of holomorphic disks and pearly trajectories in a coherent way. Consequently
the pearly differential can be defined over Z. See [FOOO2], [FOOO3] for orientations
of holomorphic disks and Floer trajectories and [BC3] for pearly trajectories and the
pearl complex.

Considering our situation, assume that L. C X is oriented and endowed with a
spin structure 7 . The orientation of L. induces a natural orientation on I';, (we orient
the fibers of I’y — I with the orientation coming from the fibers of the complex
line bundle & — ). Moreover, the spin structure s;, induces a corresponding spin
structure s, on I'y. With these structures at hand the pearl complexes of L and
I'y can be defined over Z. It seems very plausible that most of the theory (i.e., the
Floer—Gysin long exact sequence as well as the analysis of the Floer—Euler class)
continues to hold in this setting too. In particular the Floer—Euler class ep will now
be related to the Z classical Euler class e € H?(L;Z) and moreover, the quantum
contribution to e whenever it exists will be in Z¢ and might lead to more interesting
computations and stronger consequences. For example, when W is subcritical (or
more generally, when QH(I'; ) = 0) one would expect that ep is invertible over Z
which is a much stronger restriction than over Z, (or even over a field).

In the same context, it would be interesting to study the relations between the
wide varieties of L. and I'y via the techniques of the paper once they are extended
over Z. (See [BC3] for the definitions of wide varieties.) It would also be interesting
to study the invariants from [BC3] for L and I';, e.g. the quadratic forms and their
discriminants, by our techniques.

Another interesting direction is to study the behavior of the Floer—Gysin sequence
with respect to other quantum structures, such as the quantum module structure and
the quantum inclusion. For example, the quantum cohomology of 1. is endowed with
a structure of a QH(X)-module and it seems likely that one can lift it to a natural
O H(%)-module structure on QH (I'z ). One would then expect that the Floer—Gysin
becomes compatible with these QH (X)-module structures in the sense that the maps
i, p and the connecting homomorphism all become linear over QH(%). Note that
this is obviously the case for the classical Gysin sequence.

Finally, we expect that much of the theory developed in this paper can be gener-
alized to Floer homologies of pairs of Lagrangians. More precisely, let L1, L., C X
be two Lagrangian submanifolds and let I'z,, 'y, € W be the corresponding La-
grangian circle bundles over them. It seems plausible that similarly to Theorem 1.1
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there should be a long exact sequence relating HF(Lq, L) to HF(I'y . I'r,). Of
course, one could try to extend this to questions relating the A-algebras (or Fukaya
categories) of Lagrangians in ¥ and the corresponding ones in W.
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