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On the infinity flavor of Heegaard Floer homology and the integral
cohomology ring

Tye Lidman

Abstract. For a three-manifold ¥ and torsion Spin® structure s, Ozsvith and Szab6 construct a
spectral sequence with E2 term an exterior algebra over H ! (¥; Z) converging to HF > (Y, s).
They conjecture that the differentials are completely determined by the integral triple cup product
form. In this paper, we prove that HF®°(Y, s) is in fact determined by the cohomology ring
when s is torsion. Furthermore, we give a complete calculation of such HE (Y, ), with mod
2 coefficients, in the case where b (¥) is 3 or 4.

Mathematics Subject Classification (2010). 57M27, 57R58.
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1. Introduction

Throughout the previous decade, Heegaard Floer theory has been a very useful and
calculable machine in low-dimensional topology. It includes invariants for closed
three- and four-manifolds, as well as for knots and links. Similarly, manifolds with
boundary, singular knots, and contact structures can be studied as well. One of the
most effective computational tools in Heegaard Floer theory is the integral surgery
formula (Theorem 1.1 of [18]), which converts the Heegaard Floer complex for a
nullhomologous knot X in a closed, oriented 3-manifold Y into the Heegaard Floer
homology of Dehn surgeries on K.

Given a Heegaard splitting of ¥ along a surface X, Heegaard Floer homology is
defined to be the Lagrangian Floer homology of certain tori in the symmetric product
of . The Heegaard Floer homology of Y splits as a direct sum over the set of Spin®
structures on Y. Different flavors of Heegaard Floer homology twist the differential
by a count of the intersection number of a holomorphic disk with a codimension-two
submanifold of the symmetric product determined by some choice of basepoint(s) on
the surface.

While many new results in low-dimensional topelogy have come from calculations
of these groups, one flavor, HF °°, has the simplest structure. Still, it has many useful
applications. For example, studying the absolute grading on HF®° allows one to
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define a powerful invariant, the correction term ¢ (Definition 4.1 in [11]). This has
had numerous applications, including a lower bound for the four-ball genus of a knot
(Theorem 1.5 in [19]). Furthermore, in [11], Ozsvath and Szabd use properties of
HF ™ to find new restrictions on intersection forms for four-manifolds.

In fact, HF °° has been calculated for three-manifolds with #; at most 2 in Theo-
rem 10.1 of [14]. In this case, itis completely determined by the integral cohomology
ring. Also, Mark [7] has obtained results in this direction, gaining information about
HF® from a complex C2°(Y) with differential given completely by the cup product
structure. If one calculates HF °° with the U variable formally completed (or in other
words, coefficients in Z[[U, U™!]), it is shown in Section 2 of [6] that these groups
vanish for any non-torsion Spin® structure s. Therefore, we are only concerned with
torsion Spin® structures in this paper.

In Theorem 10.12 of [14], it is shown that for each torsion Spin® structure s there
exists a coefficient system such that the Heegaard Floer homology with twisted co-
efficients, HF*®(Y, &), is isomorphic to Z[U, U™ as Z[U, U™ @z Z[H (Y ; Z)]-
modules, where H '(Y; Z) acts trivially on Z[U, U™!]. There is therefore a universal
coefficients spectral sequence with E2 term A*(H YWY ; 7)) ®z Z|U, U | converg-
ing to HIF*°(Y,s). We refer the reader to Proposition 16 of [7] for more details on
the construction of this spectral sequence.

We do need to recall how the gradings work in this spectral sequence. More
specifically, the universal coefficients spectral sequence identifies El2 ,» for i even,
with A*(H'(Y;Z)). Since multiplication by U induces an isomorphism between
EIZ* and EI.Z_Z’*, we see that Eﬁ* vanishes for odd i. This implies that dy : Elkj —
E Ik k1, i—k automatically vanishes if k is even. Therefore, the £2 and E? pages are
isomorphic. Furthermore, in Conjecture 4.10 of [12], Ozsvath and Szabd propose
that the rest of the behavior of the spectral sequence is easily computed from the
integral cohomology ring on Y. In order to state their conjecture more precisely, we
first need a definition.

Definition 1.1. For a closed, oriented three-manifold, the integral triple cup product
form, py, is the three-form on I (Y'; Z) given by

puylanbrne)y={avbuc,|Y]).

Conjecture 1.2 (Ozsvith-Szabd). The differential ds: AV (HYW(Y 7)) @ U' —
A THYWY 7)) @ U1 is given by

dyl@ @ U') = 1y, (@) @ U™ (1)

In other words, ds is essentially contraction by the integral triple cup product form.
Furthermorve, all higher differentials vanish. (For notational purposes, we will omit
the U’s in the domain and range).
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Note that if this conjecture is true, knowing the integral triple cup product form on
Y allows a complete calculation of HF*°(Y, s). The goal of this paper is to present
a few partial results in this direction. This work will be used in [5] to completely
calculate HF*°(Y, s; Z/27). From now on all of our coefficients for Heegaard Floer
homology will be F = Z/2Z. For compatibly with [F-coefficients, we will take
integral triple cup products and then reduce mod 2, as opposed to taking the triple cup
products in ”7*(Y ;). Therefore, when referring to Conjecture 1.2, we will mean
with mod 2 coefficients in this sense.

Theorem 1.3. HF°(Y, s) is completely determined by the integral cohomology ring.
Inotherwords, if H*(Y,; Z) = H*(Y,; Z) as graded rings and 5| and s, are torsion
Spin® structures on Y1 and Y, respectively, then HF *(Y1,s1) and HF *(Y,, 33)
are isomorphic as relatively-graded F[U, U~ |-modules.

Theorem 1.4. [fb1(Y) = 3, then Conjecture 1.2 holds.

Theorem 1.5. Forb(Y) = 4, HF (Y, s) agrees with the prediction for the homol-
ogy given by Conjecture 1.2.

Remark 1.6. The analogues of the above theorems were previously known in mono-
pole Floer homology (see Chapter IX in [4]).

We now outline the arguments given for the proofs in this paper. In order to
calculate TF*°(Y, s) in general, we prove that it suffices to consider any manifold
which can be obtained from ¥ by a sequence of nonzero surgeries on nullhomologous
knots. This is done by showing that such a sequence of surgeries does not affect the
integral triple cup product form or HF *°. Furthermore, we show that we only need to
calculate HF*° in the case of Hy(Y; Z) = Z", by showing that in each torsion Spin®
structure, HF (Y, 5) behaves as HF*° of a manifold which is some “version” of ¥’
with H torsion-free. Since these torsionless versions will have a different number
of torsion Spin® structures, as an abuse of notation, we will say that two three-
manifolds ¥ and Y’ have the same HF *° if for all torsion sy and sy, HF (Y, sy)
is isomorphic to HF (Y’ sy).

We then use a theorem of Cochran, Gerges, and Orr [1] which constructs an
explicit class of “model manifolds”. Their results show that any Y with torsion-free
first homology can be related to a model manifold by a sequence of £1-surgeries on
nullhomologous knots. Therefore, we will have that ¥ and the model manifold have
the same HF . For by = 3 and 4, we will explicitly write down these models and
calculate HF* simply based on knowledge of HF* (T3, s¢) (calculated in [11])
and the integer surgery formula for knots of [18].

Acknowledgements. 1 would like to thank Ciprian Manolescu for his knowledge
and patience as an advisor, as well as for sharing with me his construction of homo-
logically split surgery presentations. I would also like to thank Liam Watson for his
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encouragement to work on this problem and his aid in drawing Heegaard diagrams.
Finally, I thank Kevin Ventullo for his help with commutative algebra.

2. Eliminating torsion

The goal of this section is to reduce the general calculation of HF°(Y,s) to the
case where H,(Y;Z) is torsion-free. The idea is to construct a sufficiently nice
surgery presentation for ¥ and then argue that we can remove each knot surgery that
is not contributing to by (¥') without changing either the integral triple cup product
form or HF°°. The notion of isomorphism for the integral triple cup product form
(uy = py’)is an isomorphism ¢ : H'(Y;Z) — H'(Y’; Z) such that

puy(a b Ac)) = py(pla) A ) Adlc)).

Let’s do an example to see the idea of removing torsion from f7;.

Example 2.1. Fix a closed, oriented three-manifold ¥ and consider Y#S3(K) for
some K and n # 0. Notice that the integral triple cup product form of Y#S7(K) is
isomorphic to that of ¥ . Similarly, the connect-sum formula for #F°° (Theorem 6.2
in [14]) and the calculation of HF®° for rational homology spheres (Theorem 10.1
in [14]) give HF®(Y#S2(K), sy#sg) = HF*(Y,sy) for any choice of Spin®
structures on ¥ and S2(K). Thus, to calculate HF > for Y#53(K) it suffices to
study Y instead. We have now, for our calculations, removed S3 (K) from Y#S52(K),
and thus removed a factor of Z/nZ from H,.

We want to generalize this procedure in order to remove all of the torsion in Hj.

Proposition 2.2. Perform n-surgery on a nullhomologous knot K in Y for some
nonzero integer n. The resulting manifold, Y,(K), and Y have isomorphic integral
triple cup product forms.

Proof. We simply use the result of Cochran, Gerges, and Orr on rational surgery
equivalence (Theorem 5.1 of [1]), which states that two three-manifolds will have
isomorphic integral triple cup product forms if and only if there is a sequence of non-
longitudinal surgeries on rationally nullhomologous knots relating the two. U

The following proposition is made as an observation in Section 4.1 of [12].

Proposition 2.3 (Ozsvith-Szabd). Fix atorsion Spin® structure s on' Y and anonzero

integern. Let sg be atorsion Spin® structure on Y, (K ) which agreeswiths on Y — K.
Then we have that HF*°(Y,s) and HF *°(Y,,(K), sg) are isomorphic.
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We will give a proof of this in Section 4.

To remove the torsion from /1, we need a sufficiently nice surgery presentation
to try to generalize the argument from Example 2.1. However, since a surgery pre-
sentation might not consist of all pairwise-split components, we have to find the next
best thing. The idea is to represent ¥ by surgery on a link in §* where the compo-
nents have pairwise linking number 0. Such a link is called homologically split. The
following lemma tells us that we can do this if we are willing to slightly change the
manifold. The proof can be found at the end of this paper.

Lemma 2.4 (Manolescu). Let Y be a closed, oriented 3-manifold. There exist finitely
many nonzero integers, Mmy, ..., My, such that there exists a homologically split
surgery presentation for Y #L(my, 1)# . #L(my,1).

Proposition 2.5. For all Y, there exists a three-manifold M given by O-surgery on
a homologically split link such that Y and M have the same HF *° and isomorphic
triple cup product forms. In particular, H{(M:; Z) is torsion-free.

Proof. By applying Lemma 2.4, we may connect-sum Y with the necessary lens
spaces such that the resulting manifold is presented by S3 (L), where L is a homo-
logically split link. We know that connect sums with lens spaces do not change HF*°
or the integral triple cup product form. Since each nonzero surgery in the presenta-
tion will now be performed on a nullhomologous knot, Proposition 2.2 (respectively
Proposition 2.3) shows that the triple cup product form (respectively HF ) of the
3-manifold obtained by surgery on the sublink of L consisting of components that are
0-framed will be isomorphic to the triple cup product form (respectively HF ) for
SR (L). If we take M to be surgery on the O-framed components of L, then Hy (M)
will clearly be torsion-free since the linking matrix for this presentation will be the 0
matrix. Therefore, this is the desired manifold. U

This is the method of removing torsion from Hy (Y ; Z). Observe that a manifold
with torsion-free H; has a unique torsion Spin® structure.

3. Model manifolds

Following [1], we will call two 3-manifolds, Y7 and Y5, surgery equivalent if there
is a finite sequence of %1-surgeries on nullhomologous knots, beginning in Y; and
terminating at Y.

We can rephrase the work of the previous section by saying that if ¥; and Y are

surgery equivalent, then they have isomorphic triple cup product forms and the same
HF®™,



B8R0 T. Lidman CMH

Theorem 3.1 (Cochran—Gerges—Orr (Corollary 3.5 of [1])). Let H{(Y1:Z) = Z™.
Suppose that Y1 and Y, have isomorphic integral triple cup product forms. Then Yy
and Y, are surgery equivalent.

It is important to note that this is not necessarily true if /; has torsion. A coun-
terexample can be exhibited by taking Y7 as#; | L(5, 1) and Y as 5-surgery on each
component of the Borromean rings (Example 3.15 of [1]).

Since both ¥; and Y, have by = 0, we know they must have the same HF®™.
Therefore, ITF*° cannot quite detect the subtlety seen by singular cohomology with
certain coefficient rings, as ¥ and }> can be distinguished by their triple cup product
forms over Z /57%. However, for the rest of the paper, we will always assume our
triple cup product forms are integral.

Proof of Theorem 1.3. Theorem 3.1 and Proposition 2.5 prove that the integral triple
cup product form determines HF ™. A little more work allows the statement for
the integral cohomology ring. If the integral cohomology rings of ¥; and Y, are
isomorphic (grading preserving), then the integral triple cup product form of ¥7 is
isomorphic to either that of ¥, or —Y,. Note that if we apply Proposition 2.5 to
both Y and Y;, then the resulting manifolds, My and M5, will also have isomorphic
cohomology rings. Furthermore, we have not affected the integral triple cup product
forms or HF°°. Thus, we may assume Y7 and Y, do not have torsion in Hy. If ¥y
and Y5 have isomorphic triple cup product forms, then we are clearly done by the
theorem. On the other hand, if ¥; and —¥, have isomorphic triple cup product forms,
then we apply Corollary 3.8 of [1] to see that ¥, is surgery equivalent to —Y,. This
completes the proof. (]

Inthe caseof by = 3orb; = 4, we can explicitly see what the set of surgery equiv-
alence classes is that we are dealing with. The following is calculated in Example 3.3
in [1].

Theorem 3.2 (Cochran—Gerges—Orr). For each Y with H((Y ;) = 7.3, there exists
a unique n > O such that Y is surgery equivalent to the manifold M, with Kirby
diagram shown in Figure 1.

We will call the component that spirals # times Z,. It is useful to note that
My = #;3:152 x S1and My = T3, Calculating HF*° for each M, is what suffices
to prove Theorem 1.4. Furthermore, it turns out that calculating by = 3 combined
with the following proposition is sufficient to understand by = 4 as well.

Proposition 3.3 (Cochran—Gerges—Orr (Corollary 3.7 of [11)). If Hi(Y) = Z*, then
Y is surgery equivalent to M,#S% x S! for some n = 0.
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0

Figure 1. Surgery presentation of M,,.

In fact, there is an explicit way to produce a 3-manifold with H,(Y) = Z" in
each surgery equivalence class by a construction similar to the M,, (see Corollary 3.5

in [1]).

4. Review of the surgery formula

In this section we review the integer surgery formula for knots, Theorem 1.1 of
[18], with the perspective and notation of [6]. We will assume the reader has some
familiarity with the constructions of Heegaard Floer homology for three-manifolds
and knots ([15] and [14] respectively). For convenience, we will assume that Y is an
integer homology sphere; this is solely for the purpose of having one Spin® structure
to keep track of. This construction will apply for any torsion Spin¢ structure on
any three-manifold with the appropriate bookkeeping. Finally, we will assume all
diagrams are admissible and stabilized as needed.

Let K be a nullhomologous knot in ¥ and fix sq to be the torsion Spin® structure
on Y. Knowledge of the knot Floer complex will be used to calculate the Heegaard
Floer homology of surgeries on K.

Let (X, a, 8, z, w) be a doubly-pointed Heegaard diagram for K in Y. Note that
(X,a,B8.z) and (X, a, 8, w) are each singly-pointed diagrams for ¥, and thus no
longer contain any information about the knot. Recall that K determines a Z-valued
Alexander grading A on the elements of T, N Ty satisfying

A(x) — A(y) = nz(¢) — nw () 2)

for ¢ € my(x, y), which can canonically be made absolute (see Section 3.3 of [13]).
Similarly, since s is torsion, for any pointed Heegaard diagram for Y, there is an
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absolute -valued Maslov grading M satisfying

M(x) — M(y) = p(¢) — 2np(y). 3)

where p is the chosen basepoint and again ¢ € m2(x, y) (this is due to Theorem 7.1
in [16]). Recall that multiplication by U lowers 4 by 1 and M by 2.

We can now define a CFK -like complex with differential twisted by the Alexander
grading. For notation, let x vV y = max{x, y}.

Definition 4.1. Fix s € Z. 91, is the chain complex over F[U, U ™!] freely-generated
by Ty N Tg. This is equipped with the differential

3, (x) = Z Z H(M(P)/R) - UA@—O—(AD)=s)V0tnuw(@) (4
yeToNTy ¢pema(x.y)
u(¢)=1

forx € Ty NTg.

While this complex first arises in Theorem 1.1 of [18], the explicit formulation
for d; can be found in Section 4.2 of [6]. This is also where the reader can find an
explicit description of the relative Z-grading and a proof that (3;)? = 0.

We will use CF,, to denote the chain complex (or sometimes just the chain group)
CF*(Z,a, B, p) for some basepoint p on 3 and 9 for its differential. Note that
CF,, and CF; correspond to ¥4, and A_, respectively. We now describe chain
maps relating U, CF ,, and CF,, given by

UAs
1'7 {
—-K
cr, —2 CF .
First, the diagonal maps are the inclusions

If(x) = U(A(X)—S)Vox’ IS—K(x) - U(S—A(x))\/ox.

After stabilizing the diagram if necessary, the diagram (3, ¢, 8, z) can be transformed
into (X, a, B, w) by a sequence of basepoint-avoiding isotopies and handleslides,
since they both represent Y. Choose such a sequence of moves and let the destabi-
lization, DX, denote the induced chain homotopy equivalence of CF ™ as described
by the proof of Theorem 1.1 in [15].

It turns out that the choice of Heegaard moves does not affect DX on the level of
homology as long as the path that z follows to w is fixed (see Remark 4.15 in [6]). We
will ignore the concern of paths as one can insist on using a good set of trajectories
(Definition 6.27 in [6]) to eliminate this concern. We define the destabilization DX
to be the identity map. The reason for this is that we can relate the Heegaard diagram
(2, o, B, w) toitself by performing no isotopies or handleslides.
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Proposition 4.2. The inclusion maps, I SiK , are quasi-isomorphisms which preserve
the relative Maslov grading. Furthermore, DX is a quasi-isomorphism and its
induced map on homology preserves absolute gradings.

Proof. The inclusions are quasi-isomorphisms because they are bijective chain maps.
That they preserve the relative grading is shown in Section 7.1 of [6].

The map £ X is known (o be a quasi-isomorphism which preserves relative grad-
ings (Theorem 1.1 of [15]). Theorem 7.1 of [16] proves that the absolute grading on
Heegaard Floer homology is solely an invariant of a given three-manifold and torsion
Spin® structure. Furthermore, H~X induces a relatively-graded quasi-isomorphism
between the subcomplexes, CF~, which are generated by elements with only non-
negative powers of I/ (Theorem 11.1 of [15]). Similarly, /F~ inherits this absolute
grading. The key observation is that H/F~ always has an element of maximal grad-
ing, because multiplication by U lowers the grading in IF[U/] by 2; however, we know
the value of this maximal grading is independent of Heegaard diagram. If H~X did
not preserve the absolute grading, then the induced map on HF™ could not be a
relatively-graded isomorphism. 0

Remark 4.3. This is the key point where we are making use of the infinity flavor.
In general, the 7 maps will not be quasi-isomorphisms for other flavors of Heegaard
Floer homology. On the other hand, H~X is always a quasi-isomorphism, regardless
of flavor.

Following [6], let ;% = DK o 17K and @K = DX o 1K = 1K,

Remark 4.4. Lemma 7.12 in [6] shows that @O_K and @(I){ shift the gradings by the
same amount. Therefore, @O_K + @(I){ 1s a homogeneous map.

We are ready to define the integer surgery formula for knots.
Definition 4.5. Foreach s € Z, let 5, = CF,,. Consider the chain map

lllf: H?IS — l_[ B, (s,x)—> (s, CDSK(x)) + (s + n, CDS_K(x)).
seZ s€t

The mapping cone of X C(¥X), is called the surgery formula.

Remark 4.6. There exists a correspondence between the mod # equivalence classes
of Z and the Spin® structures on Y, (K) (see Section 2 of [ 18] for more details). When
n = 0, the unique torsion Spin® structure on ¥5(K) corresponds to s = 0.

We therefore use C(¥X [s]) to represent the subcomplex generated by the 9y
and By with ' = s (mod n).
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Remark 4.7. If n # 0, then each C(¥X | [s]) admits a relative Z-grading. If n = 0,
then C(¥X,[0]) also admits a relative Z-grading. This is explicitly described in
Section 7 of [6].

Theorem 4.8 (Ozsviath—Szabo (Theorem 1.1 of [18])). Fix an integer n. If n = 0,
then we assumethats = 0aswell. The mapping cone C(VX [s]) is quasi-isomorphic
to CF®(Y,(K), s), where s corresponds to |s] as described in Remark 4.6.

The wary reader will note that Theorem 4.8 is not proved for the infinity flavor
in [18]; furthermore, the argument there does not quite work for HF*. In order to
actually prove Theorem 4.8 for HF*°, one must complete with respect to the variable
U; in other words, the proof requires working with F[[U, U ~!]-coefficients instead.
This is in fact what is done in Theorem 1.1 of [6] to prove a more general version of
this theorem for links. The reason is that in order to prove that the integer surgery
formula calculates the Heegaard Floer homology of surgery on a knot, one must sum
over infinitely many cobordism maps with increasing powers of I/, which may be all
nonzero in CF ®; therefore, one must work over F[[U, U ~!] to make sense of these
sums.

However, we would like to show that for torsion Spin® structures on the surgered
manifold, it suffices to use the surgery formula with F[U, U~1]-coefficients. We
define (F®, HF*, and C(¥X | [s]) to be the analogous constructions with F [[U, U ~!]-
coelficients instead.

Lemma 4.9. As an F[U, U™ -module, F[[U, U™1] is flat.

Proof. All of the following steps can be found in a standard commutative algebra
text (see, for example, [8]). The field of fractions of F[U, U~ !]is F (I) (the rational
functions in one variable over IF). Since localization is exact, F(I/) is flat over
F[U, U~!]. Furthermore, F(I/) is a subfield of F[[U, U~!]. Note that every field is
flat over a subfield since it is a vector space over the subfield. Therefore, F[[U, U]
is flat over F[U/, U™!] by transitivity of flatness. O

Lemma 4.10. We have that H,(C(¥X [s])) is isomorphic t0 HF®(Y,(K),s) as

long as s is O when n = 0. In particular, Theorem 4.8 is true as stated.

Proof. The first thing we point out is that for any Y and torsion s9, HF (Y, s¢)
is always a finitely generated, free F[U, U ~!]-module. This is because for torsion
Spin¢ structures, U lowers the relative Z-grading on CF (Y, sq) by 2.

Since F[[U, U] is flat over F[U, I/ 71|, we have that

HF®(Y,(K), 5) @py,u-1 FIIU. U™ = HF® (Y, (K), 3).

Because both HF* and HF® are free and finitely generated over their respective
base rings, it is now clear how to recover HF °° from HF.
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Let us consider the case n # 0. In order to do this, we look ahead in this
section at the specifics of the proof of Proposition 2.3. This in fact gives a direct
proof that H,(C(¥XK [s])) and HF%(Y,s,) are isomorphic; note that this iso-
morphism goes to Y, the non-surgered manifold. Repeating the proof with
F[[U, U ']-coefficients shows that H,(C(¥X [s])) = HF®(Y,sy). By applying
Theorem 4.8 for F[[U, U~!]-coefficients (the case which is proved in [6]), we see
that HF™(Y, 59) == HF*™(Y,(K), ). Since we can recover HF > from HF*°, we
have HF (Y, 39) = HF*(Y,(K), ). We can therefore pass through these various
isomorphisms to obtain that

H(C(PE,[s]) = HF®(Y, 50) = HF®(Y,(K). s),

which is what we needed to show.
The case when n = 0 is easier. Since C(¥X, [0]) is finitely generated (its chain
group is Uy & CF,,), we have that
C(¥y . [0) @iy FIIU. U] = C(Zy . [0]).

By Theorem 4.8 for F[[U, U ~1]-coefficients and Lemma 4.9,
HL (C(y . [0]) ®pjy.p—11 FIIU, U™ = Ha(C(Ly . [0])

=~ HF*° (Yo(K), )
= HF®(Yo(K). s) ®p.u-— FIU. U7,

By the same grading arguments used previously, now applied to Remark 4.4, we have
that F1,.(C(¥X,|0])) is free and finitely generated. This allows us to recover the
desired isomorphism. 0

In light of this technical interlude, we are content to work with F[U, U™1]-
coefficients for the rest of the paper.

To give some practice with the integer surgeries formula, we will use it to prove
Proposition 2.3. We remark that the technique here will be useful in the sequel [5].

Proof of Proposition 2.3. Again, for notational convenience, we assume that } is an
integer homology sphere. Furthermore, we work with # > 0; the proof forn < O1is
essentially the same. Fix a Spin® structure, sg, that agrees with sq on ¥ — K. The
idea is to show that for some s, H, () = HF (Y, (K), s ). Since Proposition 4.2
implies that H, () is isomorphic to HF* (Y, sy), this will complete the proof.
Fix an s whose mod n equivalence class corresponds to sg. Recall that Theo-
rem 4.8 tells us H,(C(¥K [s])) = HF*®(Y,(K), sg). Consider the subcomplex of

C(¥K, [s]) given by
C>s — l_[ g[s’ ©® l_[ ?Bs’-
s'>s §'>s

s'=s(modn) s’'=s(modn)
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We claim that this complex is acyclic. Equip C..; with the filtration #..(x) = —s’
for x € Ay or x € By, The only components of the differential that do not lower
the filtration level are 9y, 3, and ®X. Therefore, the associated graded splits as a
product of complexes of the form

(I)K
(Uyr, 35r) — (By, 3).

By Proposition 4.2, these are all acyclic. Therefore, C.; is acyclic as well.
Construct the subcomplex

GE— H%s’ ] HQ?)‘S!.

s'<s—n s'<s
s'=s(modn) s'=s(modn)

Note that if we take C (lllf . [s]) and remove C.; and C., we are left solely with
I, since there can be only one integer in the interval (s — n, s| that corresponds to
sx. Thus, the proof will be complete if we can show that C«; is also acyclic. This
follows by the same argument as before, except now we use the filtration

s if x e Ay,
Folx) = { s

s"—n ifx € By.
This time the associated graded splits into the complexes

—K
(msfa aS’) CD—> (Q%S’+n s 3)

Again, by Proposition 4.2, these are acyclic. Thus, C.; is acyclic. (]

For the remainder of the paper we will only be working with 0-surgery on K in
Y with Hj torsion-free; more specifically we will restrict to the unique torsion Spin®
structure on Yp(K), %, which agrees with the unique torsion Spin® structure on Y,
sg, on Y — K. Most importantly, we will restrict the surgery formula to ignore all
nontorsion Spin® structures. In other words, we will study the mapping cone of UX,
where
oK = of + o %: %y — CFy.

Note that our constructions for the surgery formula must be restricted to be com-
patible with sq; in other words we are restricting %y and CF,, to be generated
only by the elements of Ty N Ty that correspond o s9. Note that we are now do-
ing away with the *5; notation, since there is only one copy of CF,, to keep track
of. Furthermore, we will eliminate the s index from the ® and I maps. We let
H,(CF,) = K, and H,(%y) = K, 4. It is important to note that from the surgery
formula, HF* (Yy(K), s) is a free F[U, U™ !]-module with

tk HF®(Yy(K), ) = 1k Ky + 1k K, 4 — 21k(¥K). (5)
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We will further abuse notation; from now on, the symbol for any of the chain maps
defined previously will refer to the induced map on homology, unless otherwise
specified.

5. Example: T3

Recall that we are interested in calculating the Heegaard Floer homology of the
manifolds M, given in Figure 1. The main goal of this section is to understand the
simplest nontrivial example, My = T3. From Figure 1, we can represent M, by
0-surgery on the knot Z, in §? x S'#52 x §! and can therefore apply the surgery
formula. For M, this in fact gives (-surgery on the Borromean rings, which is
T3. The Heegaard Floer homology of T2 has already been calculated to have rank
6 in Proposition 1.9 of [11]. Analyzing this result via the surgery formula will
allow us to deduce valuable information for the remaining M,. But first, let us
specialize to the case of by = 3 for the universal coefficients spectral sequence with
E3 page A*(HY(Y;Z)) ® Z[U, U] converging to HF*(Y,s) mentioned in the
introduction.

Let’s study the differentials dy, : Elkj — Eik+k—1 ik Since each Eﬁj is a copy

of A7(H(Y;Z), the E, page is supported entirely in the region 0 < j < b((Y).
Therefore, for 5y = 3 the spectral sequence must collapse after 5. In fact, the only
possibly nontrivial component of d5 maps from A3(H1) to A°(H1), each of which
has rank 1. Therefore, to calculate d5 for by = 3, it suffices to find HF*°. If HF*°
has rank 8, then d5 = 0, and if JIF™ has rank 6, then d3(¢! A @2 A §) = 1.

Before dealing with M, we note that My = #?:1 5?2 x S'hastk HF®(Mp) = 8
by the connect-sum formula. Thus, this corresponds to d3 being identically 0 in
Equation (1). For T3, Conjecture 1.2 predicts that the map d5: AS(H') — A°(H!)
should be nonzero, which agrees with tk HF>(T?3,s,) = 6. We now want to use
this fact to understand the map H~7! in detail. We will ignore the underlying choice
of Heegaard diagram for Z;, since this will not show up in our calculations.

The best way to understand the calculation is via matrix representations, so we
must pick out the right bases for K 4, K, and Ky, .

Let’s fix our knot K. Define the map ©X : CF, — CF,, by X (x) = U4c®)x,

Proposition 5.1. ©X o 17K = 1K,

Proof. Add the powers of U together. 0

This proposition shows that @& must be a chain map and, like the inclusion maps,
this is a quasi-isomorphism.

Lemma 5.2. ©X preserves absolute Maslov gradings.
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Proof. We study ®X + &K = (0K + D=K) o 17X on the chain level. We know
that the invertible map I~X preserves relative gradings by Proposition 4.2. Applying
Remark 4.4 and factoring out I~X shows ©®X + D~X must be a homogeneous
map that preserves gradings. However, DX preserves the absolute grading by
Proposition 4.2. Therefore, @% must preserve absolute gradings as well. U

As before, we will now use ®X to denote the induced map on homology. Observe
that K, = K, = K, = F[U, U] @ H*(T?2), by applying the connect-sum
formula to S2 x §'#5? x S'. We can choose ordered F-bases (x1, x2) for (K)o
and (yy, ¥,) for (K,);. The key point about this choice is that the pairs live in
adjacent Maslov gradings. This clearly gives an ordered F[U, U/ ~!|-basis for the
entire module. Furthermore, we use ®X to push this basis over to K, to obtain a
basis with the same properties. By Proposition 4.2, DX is represented by a matrix
(we keep the same ordering between the bases) of the form

a,b,c,d,e, f,g.hel.

7

s B e B S JE N
oo RO

o oo
St oo

g

Choose a basis for K, such that 7=X can be represented by the identity. The
next thing that we would like to understand is the matrix representation of IX.

Lemma 5.3. With respect to these bases, IX is represented by the identity.

Proof. Because the representation for =X is the identity, Proposition 5.1 guarantees
IX and ©X will be represented by the same matrix. However, we know that ©®X is
represented by the identity by construction. (|

We now specialize to the case of K = Z. Consider the collection of matrices

1 1 0 0 1 0 0 0 01 00
Y = ¢ 1 0 ¢ 1 1.0 0 1 00 0
¢ 01 6710 01 0170 0 1 O}
¢ 0 0 1 ¢ 0 0 1 00 01
1 0 0 O\ 1 ¢ 0 O\ { 1 ¢ 0 O\
¢ 1 0 0 ¢ 1 0 0 01 0 0
¢ 01 1]’j6 61 010 O O 1
¢ 0 01 ¢ 0 1 1 0 0 1 O

Proposition 5.4. The map D~ is represented by a matrix in X.
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Proof. Note that the rank of ®Z1 + ®~Z1 must be precisely 1. This follows from
Equation (5) as HF (T3, sy) has rank 6 and both K, and KX, ,, have rank 4. Since
®Z1 + &7 s represented by

( a—+1 b 0 0 \
¢ d+1 0 0
0 0 e+1 Y
0 0 g h+1
exactly three of the two-by-two blocks must be identically O and the other must have
rank 1. It is easy to check that each of the matrices in X have this property. Either

(g 3 ) or (; f: ) must be the identity. Withoutloss of generality, we assume (; {: ) =

(6 (1’) Now, the possible blocks (‘; 3 ) € GL,(F) that don’t appear in matrices in
Xare (39),(91),and (]}). Direct calculation shows that ®Z1 + &~Z1 would
have either rank O or rank 2 in any of these cases, which would be a contradiction.
Repeating the arguments with the top-left and bottom-right blocks switched discounts
all of the other matrices notin X. U

Remark 5.5. We note that Proposition 5.4 does not apply to every knot in §2 x
S'#52 x S1. Doing 0-surgery on the split unknot, Z, to get #_,S%x S!, which
has rank 8, shows that ®Zo = ®Zo. This in fact means that after this choice of
bases, £D~Z° must be the identity.

After choosing bases analogously, it remains to analyze D ~%" (o yield the cal-
culation for M, (n > 2). To do this, we rephrase the computation as an iteration of
what we’ve done for T3 using a technique we call composing knots.

6. Composing knots and the calculation for M,

Recall that given a Heegaard diagram (%, e, #), any two points on X —«—f8 determine
a knot, K, in Y. Now, suppose there are instead 3 distinct points, z, u#, and w. Then
the pairs of basepoints, (z,u), (u, w), (z, w), determine three knots. We want to
consider Heegaard diagrams containing this information. We will ignore concerns
with orientations, since these will not arise in our setting. Finally, knots will always
be nullhomologous.

Definition 6.1. A Heegaard diagram for (K, K1, K7) in ¥ is a Heegaard diagram
for Y, (X, a, 8), equipped with 3 distinct basepoints z, #, and w, in ¥ — e — 8, such
that (z, u), (1, w), and (z, w) determine Ky, K>, and K respectively.

Proposition 6.2. Consider a Heegaard diagram for (K, Ky, K;). We have that
D K=9p%.pK,
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Proof. The map DX isinduced by asequence of Heegaard moves taking (Z, e, 8, 2)
to (X, e, B,1) and DX2 comes from a sequence of moves from (2, o, B, u) to
(X, e, B, w). Therefore, the composition of isotopies and handleslides goes from
(Z,a,8,2) to (T, a, B, w) and gives us a choice of DK, O

Remark 6.3. In this setup, the concatenation of a good set of trajectories from z to
u and from u to w gives a good set of trajectories from z to w, so there are still no
concerns with our choice of paths.

Thus, since most of the complexity in the knot surgery formula for H/F°° comes
from the map D ~X having a Heegaard diagram for (K, K1, K») and an understanding
of each D% should make the computation more manageable. This is the approach
we will use for the rest of the M,,. However, we must first establish that such things
exist and more importantly, derive a way of relating this information to the M,,.

Lemma 6.4. Suppose K1 and K, are knots in Y where K1 N K3 is an embedded
connected interval. Then if K is the knot obtained from (K1 U K3) — K1 N K3 (see
Figure 2), there exists a Heegaard diagram for (K, Ky, K>).

Ky —Ky K| NK, Ky — X

Figure 2. Each simple cycle comresponds to a knot.

Proof. The idea follows the construction of Heegaard diagrams for knots in [17].
Begin with a self-indexing Morse function, 2: S® — [0, 3], with exactly two critical
points. Note that traversing a flow from index 0 to index 3 and then another flow in
“reverse” gives a knot. Thus, three flow lines give three knots in a natural way as
before (see Figure 3).

Choose a small neighborhood, U, of three flow lines between the two points.
Identify a neighborhood of Ky U K5 in Y, N, with U such that each knot gets
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Figure 3. Three flow lines forming three knots.

mapped to the union of two of the three flows. We will now use 2 to refer to the
induced Morse function on N, with index O and index 3 critical points, p and q.
Extend / to a Morse function f on all of ¥ such that it is still self-indexing. If there
were no other index 0 or index 3 critical points, then we could construct the desired
Heegaard diagram simply by choosing the three basepoints to be where the three flow
lines pass through the Heegaard surface, £ ~!(3/2). The ideais to cancel any critical
points of index 0 or 3 outside of N, without affecting f|y.

It such critical points exist, we rescale the Morse function in a neighborhood of p
and g so as to not affect the critical points, but make 2(p) = —e and h{g) = 3+¢ (and
thus the same for ). Now, removetheballs { f > 34+¢/2} and{ /' < —e/2} around
the index 0 and index 3 critical points from N, to obtain acobordism W : §2 — S2. In
the terminology of [9], thisis a self-indexing Morse function on the triad (W, §2, $2).
Since each manifold in the triad is connected, we know that for each index ( critical
point, there is a corresponding index 1 with a single flow line traveling to the index 0.
This pair can be canceled such that the Morse function will not be changed outside of a
neighborhood of the flow line between them. We want to see that by perhaps choosing
a smaller neighborhood, N’, of the knots inside of N, this flow line does not hit N'.
This must be the case because if no such neighborhood existed, by compactness, this
flow line would have to intersect Ky or K,. But these are flows of f themselves, so
the two lines cannot intersect.

Hence, we can alter f to remove the index (/1 pair without affecting f |y-. By
repeating this argument and an analogous one for index 2/3 pairs, we can remove all of
the critical points of index () and 3 in W in this fashion. This says, after rescaling the
function on the neighborhoods of p and g back to their original values, the new Morse
function is self-indexing on ¥ with exactly one index 0 and one index 3 critical point,
and furthermore, still agrees with 2 when restricted to a small enough neighborhood
of the knots. This is exactly what we want to give the desired Heegaard diagram.

O

Consider the link in the Kirby diagram for M,,, Figure 1. Since Z,, is the knot
which we will apply the surgery formula to, we would like a way to decompose Z,
and apply Lemma 6.4.
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Proposition 6.5. For each n, there exists a Heegaard diagram for (Z,, 72, Zy—1)
in 82 x S1#52 x S1.

Proof. Let us first study Figure 4. Here we have attached an arc to Z,, at two points
(the large black dots). This creates two additional knots as follows. Note that one
can travel two different paths from the bottom attachment point to the top attachment
point; we may either wind in an upward spiral once around the two vertical strands
or follow the path that begins by winding downward n» — 1 times. Beginning at
the top attachment point, following the attaching arc to the bottom point, and finally
traversing one of the two winding paths back to the top point gives either Z; or Z,_1.
We are now in the position to apply Lemma 6.4 to Z,, Z1, and Z, . O

0

Figure 4. Splitting of Z,, into Z,,_1 and 2.

When applying the surgery formula for T3, it was critical to use the map X to
make all of the inclusions consistently identity matrices. The following lemma will
allow us to do this in general.

Lemma 6.6. Consider a Heegaard diagram for (K, Ky, K;). Then ©% = 9%2 o
ok,

Proof. Consider the Alexander gradings for the three knots in the diagram.

Ag(x) — Ag(y) = nz(@) — ny(p)
= nz(p) — ny(P) + ny(P) — 1w ()
= Ak, (x) — Ag, (¥) + A (%) — A, ()
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foreach ¢ € 7, (x, v). Therefore, the relative Alexander grading for X is the sum of
the relative Alexander gradings for K and K. Thus, the absolute Alexander grading
for K is the sum of the absolute Alexander gradings for K; and K plus an additional
constant. Therefore, kK = yt. %2 -, X 1, for some £ € Z. By Proposition 5.2,
the ® maps preserve absolute Maslov gradings, so we know that £ = 0. (]

Fix a Heegaard diagram as given by Proposition 6.5. We now will choose the
proper bases as in the T? example. Figure 5 will provide a useful visual reference
for the upcoming proposition.

ch,w

I—<n IZn

ch,u qu,w
21 1~ Zn—1
I~z IZn—1
K K
w

D—Zn

Kz

w

Figure 5. The setup that appears in Proposition 6.7.

Propesition 6.7. Following Section 5, choose bases for K, ., K., and K, such
that the inclusions and ©%1 are given by the identity and the map D~ is a matrix
in X. Now, choose bases for K, and K, y, such that the inclusions and OZr=1 gre
the identity. There exists a basis for K, such that IZn IZn and ©Zn are given
by the identity.

Proof. Clearly we can fix a basis for /K, such that =77 is the identity. Now, we
combine the fact that I%7 = @%» o J=%» with ©%» = ©%"—1 c ®%1 = [, to get
the required result. (]

Remark 6.8. These constructions could be generalized to any number of basepoints
(and the corresponding larger number of induced knots), but we only need three
basepoints for our purposes.

Although H~%»—1 is not necessarily represented by an element of X in this
diagram, we do know that it comes in the form of A & B for A, B € GL,([F), since
D~Zn—1 preserves absolute gradings.

Remark 6.9. While the individual matrix representations may seem to depend on
the choice of Heegaard diagram, if H~X = I, this is independent of the diagram as
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long as the bases are chosen such that 7X = ©X = I A similar statement based on
the work of Section 5 can be made about D% being in X regardless of diagram.

We are now ready for the calculation of the maps D~7» for all n.

Theorem 6.10. Begin with a diagram for (Zan+1, Z1, Zan ). After a choice of bases
given by Proposition 6.7 we have that D~%2n is the identity and D~22n+1 is a matrix
in X foralln = 0.

Proof. For n = 0, we know that the map D~%° must be the identity in order to
have tk HF ™ (#]_ S?x § 1y = 8. Similarly, from our computation for T3, we have
seen that H 21 is in X . Thus, the base case 1s established. For the induction step,
note that as soon as H~%2» is the identity, we can compose with D% to get that
D~Z2n+1 is of type X. Thus, we only need to find D~%27

By hypothesis, H~%27—1 € X. The first case we consider is if H~%! and
D=Z2n—=1 were (o be represented by two different elements of X when consider-
ing bases chosen for (Z5,, Z1, Z2,—1). If this were to happen, then the product of
the matrices, which gives a representative for ®~%27, has the property that its sum
with the identity, @72~ has rank at least 2. However, this is impossible by the rank
bounds coming from the spectral sequence. Therefore, both H~Z2#—1 and H~Z1
are represented by the same matrix. But, every element of X squares to the identity.
D~Z2n must then be the identity. O

Proof of Theorem 1.4. We apply Theorem 6.10 to see that the rank of ®~%2n 4 dZ2n
is equal to that of ®~%0  ®Z0_ Therefore, [IF>®(M,,,sq) and HF (M, s)
are isomorphic by Equation (5). Similarly, we see that ®=%2n+1 4 ®Z27+1 and
®~Z1 4 ®Z1 have the same rank. Thus, HF ®(M,,41.50) = HF®(M1,s,). But,
this shows exactly that d5 must satisfy x1 A xp A X3 = {x1 v x2 v x3,[Y]) (mod 2)
by the discussion at the beginning of Section 5. L

7. Calculations for h; = 4

Recall from Proposition 3.3 that if 5, (Y) = 4, then Y has integral triple cup product
form isomorphic to that of M,#S52 x S! for some n. We then choose a basis for
HYY:7), {x1,x2, x3, x4}, with the property that tuy (X1 A X2 A X3) = n and
Ly (Xi Axj Axyg) =0foralli and j.

Theorem 7.1. Let 5 be torsion. If n is even, HF*°(Y, s) has rank 16. For n odd,
HF (Y, s) has rank 12.

Proof. As before, we simply need to calculate HF > for M,#52?xS!. By the connect
sum formula, HF*°(Y,s) = HF>*(M,, s9) @ (F[U. U_l])z. Therefore, applying
the work of the previous section gives the result. U
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Proof of Theorem 1.5. To see that the homology agrees with the differential coming
from the conjecture, we just need to study the predicted differential d5. If n is even,
then we have the result, since both homologies are rank 16, as d; = (.

Now consider the case where n is odd. Note that d5 is identically 0 on each
A (HY(Y: 7)) except for xq A x5 A x5 and X1 A X5 A X3 A x4. Therefore, the kernel
of d3 has rank 14 and the rank of d5 is 2. This gives the desired rank of 12. ]

8. Proof of the existence of homologically split surgery presentations

This section has been reproduced with the permission of Ciprian Manolescu.

We start with a discussion of some results from algebra. A lattice is a free Z-
module of finite rank, together with a nondegenerate symmetric bilinear form taking
values in Z. A lattice § is called odd if there exists 1 € § with ¢ -1 € Z being odd.
By 51 & 5> we denote the orthogonal direct sum of two lattices.

The bilinear form of a lattice S determines an embedding of S into §* =
Hom(S,Z). The factor group As = §*/S is a finite Abelian group. It comes
naturally equipped with a bilinear form

bs: As X As = Q/Z, bstti+S.+8)=H 6L+7Z,

called the discriminant-bilinear form of §.
The following results are taken from the literature; see [3], [2], [20], [10]:

Theorem 8.1 (Kneser—Puppe, Durfee). Two lattices S1 and Sy have isomorphic
discriminant-bilinear forms if and only if there exist unimodular lattices 1.1, L7 such

that S1 P 1.1 = S, & L».

Theorem 8.2 (Milnor). Let § be an indefinite, unimodular, odd lattice. Then § =
m(l) @ n{—1) for some m,n > 1.

We say that two lattices Sy, 8, are stably equivalent if there exist nonnegative
integers my, n1,my, ny such that the stabilized lattices

S{ =5 & ml(l) @nl(—l),
Sé = Sz @mz(l) @ﬂz(—l)

are isomorphic.
Note that for any lattice .S, the direct sum § @ (1) & (—1) is indefinite and odd.
Therefore, an immediate consequence of Theorems 8.1 and 8.2 is:

Corollary 8.3. Tiwvo lattices are stably equivalent if and only if they have isomorphic
discriminant-bilinear forms.
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Observe that we can restate Theorem 8.2 by saying that all unimodular lattices are
stably diagonalizable. This is not the case for general lattices. Indeed, Corollary 8.3
shows that alattice is stably diagonalizable if and only if its discriminant-bilinear form
comes from adiagonal lattice. Wall [21] classified nonsingular bilinear forms on finite
Abelian groups and showed that any such form can appear as a discriminant-bilinear
form of a lattice; see also Proposition 1.8.1 of [10]. The classification contains non-
diagonal forms. As a consequence, for example, the lattice of rank two given by the

matrix
0 2
n= (3 0)
is not stably diagonalizable.

Following the classification scheme for discriminant-bilinear forms (see Proposi-
tion 1.8.2 of [10]), we see that given any discriminant-bilinear form Ag, there exists
A coming from a (not necessarily unimodular) diagonal lattice, L, such that As $ Az
is isomorphic to Az, where L' is also a diagonal lattice. Applying Corollary 8.3 we
obtain the following result:

Proposition 8.4. For any lattice S, there exists a diagonal lattice L (not necessarily
unimodular), such that § & L is diagonalizable.

For example, H> & (2) is isomorphic to (2) & (2) & {-2).

Remark 8.5. Any degenerate symmetric bilinear form over Z can be expressed as a
direct sum of a non-degenerate form and some zeros. Hence, the result of Proposi-
tion 8.4 applies to all symmetric bilinear forms (not necessarily non-degenerate).

Proof of Lemma 2.4. LetY be a 3-manifold. We represent it by surgery on S> along
a framed link, with linking matrix S. Handleslides and stabilizations correspond to
elementary operations (integral changes of basis and direct sums with {£1}) on the
bilinear form of §. Since a connect sum with f.(m, 1) can be presented by m-surgery
on a split unknot, this corresponds to a direct sum of the linking matrix of ¥ with the
diagonal lattice (). Proposition 8.4 and Remark 8.5 complete the proof. U
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