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Strong convergence of Kleinian groups: the cracked eggshell

James W. Anderson and Cyril Lecuire

Abstract. In this paper we give a complete description of the set SH(7r| (M)) of discrete faithful
representations of the fundamental group of a compact, orientable, hyperbelizable 3-manifold
with incompressible boundary, equipped with the strong topology, with the description given in
term of the end invariants of the quotient manifolds. As part of this description, we introduce
coordinates on SH(mw (M)) that extend the usual Ahlfors—Bers coordinates. We use these
coordinates to show the local connectivity of SH(zr; (M )) and study the action of the modular
group of M on SH(z1 (M)).

Mathematics Subject Classification (2010). Primary 57M50; Secondary 30F40.

Keywords. Kleinian group, deformation space, algebraic limits, geometric limits, strong con-
vergence.

1. Introduction and statement of results

Kleinian groups have been studied since the late 19" century in the work of Poincaré
and Fricke and Klein, and more extensively since the work of Ahlfors and Bers in the
1960s and Thurston in the 1970s and 1980s. In this paper, we consider a particular
aspect of the basic question of understanding the behavior of sequences of Kleinian
groups.

There are two standard notions of convergence for a sequence of Kleinian groups.
The first is algebraic convergence, which is convergence on generators. The second is
geometric convergence, which is convergence of the quotient hyperbolic 3-manifolds.
The topology of algebraic convergence on the set of isomorphic, finitely generated
Kleinian groups is roughly understood. In particular, there is a correspondence be-
tween connected components of this set of Kleinian groups and marked homotopy
classes of compact 3-manifolds, up to a natural equivalence. Geometric conver-
gence is considerably less well-behaved, as a sequence of isomorphic, finitely gener-
ated Kleinian groups may converge geometrically to an infinitely generated Kleinian
group.

Strong convergence of Kleinian groups combines these two different notions,
so that a sequence of Kleinian groups converges strongly to a Kleinian group if it
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converges to that Kleinian group both algebraically and geometrically. Thurston
proposed a picture of what the space of Kleinian groups with the strong topology
looks like, which we consider here.

Let M be a compact, orientable, hyperbolizable 3-manifold with incompress-
ible boundary. Let D(m;(M)) denote the set of discrete faithful representations
p: (M) — PSL(2, C) equipped with the topology of algebraic convergence (for-
mal definitions are given in Section 2). The group Isom™*(H?) =~ PSL(2,C) of
orientation-preserving isometries of hyperbolic 3-space acts on D(m{(M )) by con-
jugation. We denote the quotient by AH(mw1(M)). Note that a sequence {|p,]} C
AH(m(M)) convergesto |p| € AH(m, (M)) ifthereisasequence {#,} C PSL(2,C)
so that {4, pn, h; 1} converges to p in D(sr; (M)). When there is no possibility of con-
fusion, we refer to elements of both D(x (M )) and AH(m(M )) as representations,
even though the elements of the latter set are formally equivalence classes of repre-
sentations.

By considering the quotient manifold M, = H?/p(w;(M)) corresponding to a
representation p, we can identify AH(z{ (M )) with the set of hyperbolic 3-manifolds
homotopy equivalent to M up to isometry, where the homotopy equivalence induces
the given representation. A sequence {p,} in AH(m(M)) converges strongly to a
representation p, if {p,} converges to p, algebraically and if {p,(71(M))} con-
verges geometrically to po (71 (M )). We denote by SH(m1 (M )) the set AH(m1(M))
equipped with the strong topology. Though we do not use this description, one can
identity SH(7r1 (M )) with the space of hyperbolic manifolds homotopy equivalent to
M (up to isometry) equipped with a marked pointed Hausdorff—Gromov topology.

By Bonahon, see [Bon], each representation p € AH(mw{(M)) is tame, namely
the corresponding quotient manifold M, = T/ p(7; (M)) is homeomorphic to the
interior of a compact 3-manifold. Combining this result with the uniqueness of
the compact core, see [MMS], it follows that the topology of the quotient manifold
does not change under strong convergence (compare with [CaM]). Namely if {p,}
converges strongly to peo, then Mo, = T3/ poo (71 (M)) is homeomorphic to M, =
H3/ pp (71 (M)) for n sufficiently large. Using the Ending Lamination Theorem, see
[Mi2] and [BCM], and Thurston’s Double Limit Theorem, see [Th3], one can then
see that the connected components of SH(7r; (M )) are in one-to-one correspondence
with the set of marked homeomorphism types of 3-manifolds homotopy equivalent
to M (we see that this fact can be deduced from our results as well). In particular, as
a first point of contrast with AH(mw(M)), we show that SH(m (M )) does not have
the bumping phenomenon described for AH(7; (M )) for many M in [AnC].

Inaddition to the existence of bumping, another disturbing property of AH (71 (M))
is that it may not even be locally connected, see [Br], [Mag] and [BBCM]. We will
show that this does not happen with the strong topology.

Theorem A. Let M be a compact, orientable, hyperbolizable 3-manifold with in-
compressible boundary. Then the space SH(mw{(M)) is locally connected.
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Even when M is suchthat AH (w1 (M )) islocally connected, the space AH {7y (M))
may have so-called self-bumping points, see for instance [McM], [BrH] and [Oh1].
We will see that this kind of phenomenon does not appear in SH(m (M )).

Theorem B. Let M be a compact, orientable, hyperbolizable 3-manifold with in-
compressible boundary. Let p € SH(m((M)) be a representation uniformizing M.
Then every neighborhood of p contains a neighborhood V C SH(mw1(M)) of p such
that 'V Nint(SH(mw1(M))) is connected.

The reason why self-bumping points may be present in AH(z1 (M )) and not in
SH(m(M)) is that some sequences of representations that converge in AH( (M))
do not converge in SH(7r{(M)). This has the following consequence:

Lemma 1.1. Let M be a compact, orientable, hyperbolizable 3-manifold with in-
compressible boundary. Then the space SH(w(M)) is not locally compact.

We denote by AH(M ) C AH(m (M)) the set of representations p whose quotient
manifold H?/ p(m1(M)) is homeomorphic to the interior of M by a homeomorphism
that induces p. This setis contained in the closure of the component of the interior of
AH(m1(M)) containing the minimally parabolic Kleinian groups T for which M is
homeomorphic to the interior of M (this can be deduced from [Mar], [Su], [BCM]).
Let SH(M ) denote the set AH(M ) with the strong topology. Let Mod(M ) be the
group of isotopy classes of orientation-preserving diffeomorphisms of M. When
M = 85 x I is a trivial /-bundle, Kerckhoff and Thurston, see [KeT], have shown
that the action of Mod(M) = M CG(S) on AH(M) is not properly discontinuous.
This result has been extended to other manifolds by Canary and Storm, see [CS]. On
SH(M ) we have the following result.

Theorem C. Let M be a compact, orientable, hyperbolizable 3-manifold with in-
compressible boundary. Assume that M is not an I -bundle over a closed surface.
Then the action of Mod(M) on SH(M)) is properly discontinuous.

Furthermore, we show that when M is a trivial /-bundle, this action has fixed
points and hence is not properly discontinuous.

The authors would like to thank the referee for their careful reading of the paper
and for their comments and suggestions, which have significantly improved the paper.

1.1. Outline of the paper. Thurston [Th2] gives the following conjectural descrip-
tion of AH(M ) and SH(M ). When M does not contain an essential annulus, AH(M )
is homeomorphic to a closed ball, like an hard-boiled egg with its shell, whereas
SH(M) is obtained by thoroughly cracking the eggshell on a hard surface. In order
to get a precise description of this cracked eggshell, we introduce some coordinates
for SH(M).
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Say that a representation p € AH(M ) uniformizes M, and note that by definition,
M, has a compact core K homeomorphic to M. Without loss of generality, we may
choose K tointersect each cusp of M, in either a single annulus (in the case of arank 1
cusp) or a torus (in the case of a rank 2 cusp), see [McC]. Define the ends of M, to
be the complementary regions of K U cusps. Such an end is geometrically infinite if
it can be chosen to be contained in the convex core C, of M, and geometrically finite
otherwise. We define the conformal end invariants of p to consist of the hyperbolic
metrics associated to the conformal structure at infinity of each geomeirically finite
end and of the ending laminations associated to its geometrically infinite ones. Suchan
invariant (I, m, L) consists of a complete hyperbolic metric s on an open subsurface
F of 9M and of a geodesic lamination . C dM — F on its complement; we call it
a gallimaufry on M or on dM (see definition in Section 2.8). We put on the set of
gallimaufries a topology that extends the usual topology of the Teichmiiller space. We
say that the gallimaufry (F,m, L) is doubly incompressible if there is a transverse
measure A supported by L and n > 0 such that for every essential disc, annulus
or Mébius band (E,9E) C (M,0M — F) we have i(dE,A) = n. We prove the
following result:

Theorem D. et M be a compact, orientable, hyperbolizable 3-manifold with incom-
pressible boundary. The ending map that associates to a representation uniformising
M its end invariants is a homeomorphism from SH(M ) into the set of doubly incom-
pressible gallimaufries on OM.

By the proof of the Ending Lamination Theorem, see [Mi2] and [BCM], the map
associating its ending gallimaulry to a (conjugacy class of) representation is one-to-
one. Thus we only need to show that the ending map defined in Theorem D is proper
and continuous.

We then prove that the set of doubly incompressible gallimaufries equipped with
its topology is locally connected, does not have self-bumping points, and is not locally
compact.

In Section 2, we give the definitions and some basic results that are used in the
paper. In particular, we define the space of gallimaufries and describe some of its
properties. The proof that the ending map is proper is divided in two. In Section 3
we show that given a sequence of representations whose end invariants converge to a
doubly incompressible gallimaufry, a subsequence converges algebraically. This can
be viewed as a refinement of Thurston’s Double Limit Theorem. The proof mixes
arguments of Thurston’s original proof, see [Th3], arguments of Otal’s proof, see
[Of2], and a cut and paste operation. In Section 4 we show that the algebraically con-
vergent subsequence provided in the preceding section actually converges strongly,
by studying the behaviour of the convex cores of the sequence and concluding that
the limit sets converge in the Hausdorff topology. In Section 5 we show that the
ending map is continuous. The main difficulty here is in handling the geometrically
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infinite ends of the limit. This will be dealt with by proving a relative version of
Bonahon’s Intersection L.emma, see [Bon]. At this point we have proved Theorem D
and Lemma 1.1. In Section 6, we prove Theorems A and B by constructing appropri-
ate paths in the space of doubly incompressible gallimaufries. In Section 7 we prove
Theorem C.

2. Background material and definitions

The purpose of this section is to provide the background material we use in this
paper. We often pass to subsequences; unless otherwise stated, we will without further
comment use the same notation for the subsequence as for the original sequence.

2.1. Kleinian groups and 3-manifelds. Standard sources for material on Kleinian
groups and hyperbolic 3-manifolds are [Thl1], [MaT] and [Ka]. A Kleinian group isa
discrete subgroup of the group PSL(2, C) of all orientation-preserving isometries of
hyperbolic 3-space H3. Throughout this paper, we assume that Kleinian groups are
torsion-free and non-elementary, so that they contain a non-Abelian free subgroup.

A hyperbolizable 3-manifold is an orientable 3-manifold that admits a complete
Riemannian metric all of whose sectional curvatures are equal to —1. A 3-manifold
endowed with such a metric is a hyperbolic 3-manifold. It follows that an orientable
hyperbolic 3-manifold N can be expressed as the quotient N = H*/T for a Kleinian
group I', and that T" is unique up to conjugacy in PSL(2, C).

An (orientation-preserving) isometry of H? extends to a conformal homeomor-
phism on the boundary at infinity o H? = C of H3. The domain of discontinuity
Q2r of a Kleinian group I" is the largest open subset of C on which the action of T is
properly discontinuous.

The limit set Ar C C of T is the complement of Qr. Let Hr C T3 be the convex
hull in TI3 of Ap, which is the smallest non-empty convex subset of 1% invariant
under the action of I'. The convex core Cr of I is the quotient of Hr by the action
of I'.

A Kleinian group I' is geometrically finite if the unit neighbourhood of its convex
core Cr has finite volume in H?/T". A Kleinian group I is convex co-compact if its
convex core Cr is compact, or equivalently, if it is geomeitrically finite and contains
no parabolic elements. A Kleinian group is minimally parabolic if every parabolic
isometry belongs to a rank two free Abelian subgroup.

A compact 3-manifold is hAyperbolizable if there exists a Kleinian group I so that
the interior int(M ) of M is homeomorphic to the quotient manifold T1% / T'. Note that,
under this definition, a hyperbolizable 3-manifold M is necessarily irreducible (so
that every embedded 2-sphere in M bounds a 3-ball in M ), orientable, and atoroidal
(so that every incompressible torus 7 in M is homotopic into dM ).
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An embedded compact submanifold W in a 3-manifold M is incompressible
if 71(W) is infinite and if the inclusion W < M induces an injective map on
fundamental groups. A compact 3-manifold has incompressible boundary if each
component of M is incompressible.

For a compact 3-manifold M, let 9, .o M denote the union of the components of
oM of negative Euler characteristic, so that 9, <o M consists of 9M with all boundary
tori removed.

Let £ C OM be an incompressible compact surface. An essential annulus
(or Mdbius band) E in (M, F) is a properly embedded incompressible annulus (or
Mabius band) (F, dF) C (M, F) that cannot be homotoped into F by a homotopy
fixing dE. An essential disc D is a properly embedded disc (D, dD) C (M, F) that
cannot be homotoped into F by a homotopy fixing aD.

2.2. Discrete faithful representations. Let M be a compact, orientable, hyper-
bolizable 3-manifold. A discrete faithful representation of w1 (M) into PSL(2,C) is
an injective homomorphism p: 7, (M) — PSL(2, C) whose image p(z(M)) is a
Kleinian group. A discrete faithful representation p of w1(M ) is geometrically finite
if the image group p(mw{(M)) is geometrically finite, and is convex co-compact if
p(m1(M)) is convex co-compact.

Let p: w1 (M) — PSL(2, C) be a discrete faithful representation. Assume more-
over that the quotient manifold M, = H?/p(7;(M)) is homeomorphic to int(H)
by a homeomorphism f: int(M) — M, = H*/p(1(M)) that induces p, so that
p = f+. Under these assumptions, say that p uniformises M.

Choose now a pairwise disjoint set of horoballs in TI? so that each horoball is
centered at a parabolic fixed point of p(m(M)), and there is a horoball centered at
the fixed point of each parabolic subgroup of p(m(M)) and hence invariant under
the corresponding parabolic subgroup. It is a standard application of the Margulis
lemma that such a set of horoballs exists. The cuspidal part of M, is the quotient of
such a collection of horoballs. Where relevant, we will assume that we have made a
convenient choice of such a collection of horoballs.

Let D(1(M)) be the space of all discrete faithful representations of w{(M)
into PSL(2, C). By choosing a fixed set of p generators g, ..., g, for 71 (M),
we can realize D(m;(M)) as a subspace of (PSL(2, C))# by the identification p >
(p(g1).....p(gp)); the topology thus obtained is called the algebraic topology or the
topology of algebraic convergence. By [Jor], D(sr1(M)) is closed in this topology.
In this paper, we do not work with all of D(71(M)), but rather with the connected
components of its interior; for a full description of D(71(M)) in light of the proof
of the Ending Lamination Theorem, see [ACM]. The representations contained in
a given connected component of the interior of D(mw{(M)) are the geometrically
finite minimally parabolic representations uniformising a given compact, orientable,
hyperbolizable 3-manifold M’ homotopy equivalent to M, by work of Ahlfors, Bers,
Kra, Marden, Maskit, Sullivan, and Thurston. Such a component of int(D{7w{(M)))
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is uniquely defined by the given manifold M’.

If we instead consider the Chabauty topology on subgroups of PSL(2,C), we
get the geometric topology or the topology of geometric convergence. A sequence
{®,} of Kleinian groups converges geometrically to a Kleinian group ®, if every
accumulation point a of every sequence {a, € ®,} lies in P, and it every element
a of P is the limit of a sequence {a, € P,}. We will normally consider geometric
convergence for the sequence {p,(w1(M))} for a sequence {p,} C D{(m1(M)); let
(G oo be the geometric limit of {p, (w1 (M ))}. In this case, note that the limit manifold
IH?/ G is not necessarily homeomorphic to int(M ), and in fact the geometric limit
G o 0f a sequence of (isomorphic) finitely generated Kleinian groups can be infinitely
generated.

The sequence {p,} C D(m(M)) converges strongly it {p,} converges alge-
braically to some representation po and if {p, (7r1(M))} converges geometrically to
Poolm1(M)). As we commented in the introduction, strong convergence preserves
the topology of the quotient manifold.

Lemma 2.1. Let M be a compact, orientable, hyperbolizable 3-manifold with in-
compressible boundary. Let {p,} be a sequence of representations uniformising M
that converges strongly to a representation peg. Then poo uniformises M.

Proof. By the proof of Marden’s tameness conjecture for such 3-manifolds, see [Bon]
(see also [Ag] or [CaG] for the general case), there is a compact 3-manifold M’ such
that Mo, = 3/ peo(m1(M)) is homeomorphic to int(M’). Consider a compact core
K for M., which we can choose to be homeomorphic to M. Since {p, (1 (M))}
converges geometrically to pac (771 (M )), there are points x,, n € N U{oc}, and maps
Gn: Moo — M, = H3/p, (7 (M)) with ¢, (x0) = x,, such that the restrictions of
the ¢, to B(xs, Ry) are g,-bilipschitz with R, — oo and ¢,, — 1, see [MaT]. For
n sufficiently large, we have K C B(x, R,). By construction ¢, (K) is a compact
core for M,,. By [MMS], any compact core for M}, is homeomorphic to K. It follows
that M,, 1s homeomorphic to M, for n sufficiently large. (|

On int{D(7r1(M))), the algebraic and strong topologies are equivalent.

The group PSL(2,C) acts on D(w{(M)) by conjugation. By AH(m{(M)) we
denote the quotient of D(7r1 (M )) by PSL(2, ') endowed with the algebraic topology.
We denote by SH(m (M )) the quotient of D{m(M)) by PSL(2, C) endowed with
the strong topology. The interiors of both AH(7 (M)) and SH(m(M)), with their
respective topologies, are the quotient of int(D(mx1(M)) by PSL(2, C).

Let D(M ) be the set of representations p € D(mr (M )) that uniformise M. Recall
that this means that the quotient manifold M, = H>/p(w1(M)) is homeomorphic
to int(M) by a homeomorphism f : int(M) — M, = H?/p(1(M)) that induces
p. (Hence, the interior of D(M ) consists of quasiconformal deformations of a given
minimally parabolic Kleinian group uniformizing M.) We denote by AH(M ), re-
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spectively SH(M ), the quotient of D(w{(M)) by PSL(2, C) endowed with the al-
gebraic topology, respectively the strong topology. When oM is incompressible, it
follows from the work of Ahlfors, Bers, Kra, Maskit, Sullivan and Thurston that
int(AH(M)) = int(SH(M )) is homeomorphic to the Teichmiller space 7 (35 <oM );
in particular it is a topological ball.

It follows from LLemma 2.1 that for every topological manifold M, SH(M) is
a closed set and is disjoint from any other set SH(M’) C SH(m=(M)). Hence to
understand SH(7; (M)), we only need to understand each of the SH(M') separately
as M’ varies over all the 3-manifolds homotopy equivalent to M .

An R-tree is a path metric space such that every two points can be joined by
a unique geodesic arc. Let 7 be an R-tree and let G be a group acting on 7 by
isometries. We say that the action is small if the edge stabilizers are virtually cyclic.
We say that the action is minimal if no proper subtree of J is invariant under the
action of ¢. We will normally consider actions of R-trees that are both small and
minimal.

Morgan and Shalen [MoS1] introduced a compactification of AH(M ) by small
minimal isometric actions of 71 (M ) on R-trees. Consider an element g of 1 (M ).
For p € AH(M) we denote by £,(g) the translation distance of p(g) (which is 0
if the isometry is parabolic). Given an isometric action of 71 (M) on an R-tree 7,
we denote by £7(g) the translation distance of the action of g on 7. A sequence
of representations {p,} C AH(M ) tends to a minimal isometric action of 7y (M)
on an R-tree 7 if there are &, — 0 such that £,£,,(g) — £7(g) for every element
g of m (M), see [Otl]. Multiplying the sequence £, by a given constant yields
an isometric action on another R-tree which is homothetic to the first one. Hence
AH(M ) has thus been compactified by actions on R-trees up to homothety.

Replacing H? by H? we get a compactification of the Teichmiiller space which by
Skora’s Theorem, see [Sk], is equivalent to Thurston’s compaciification by projective
measured geodesic laminations (see Section 2.6).

2.3. Geodesic laminations. Standard sources for material on geodesic laminations
are [Pe] and [Ot2], Appendice. Note that unless otherwise explicitly stated, a surface
of negative Euler characteristic will be equipped with a complete hyperbolic metric
of finite area.

A geodesic lamination L. on a closed hyperbolic surface S is a compact set that
is the (non-empty) disjoint union of complete embedded geodesics. Note that this
definition can be made independent of the choice of metric on S, see [Ot2], Appendice,
for example. A geodesic lamination is minimal it it does not contain a geodesic
lamination as a proper subset. A minimal lamination is either a simple closed geodesic
or an irrational lamination. A leaf of a geodesic lamination is recurrent if it lies in a
minimal sublamination. A geodesic lamination is the disjoint union of finitely many
minimal sublaminations and finitely many non-recurrent leaves. The recurrent part
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of a geodesic lamination is the union of its recurrent leaves. It is itself a geodesic
lamination. A multi-curve is a union of disjoint simple closed geodesics. We say
that two geodesic laminations 1. and L' cross if at least one leaf of 1. transversely
intersects a leaf of L'.

Let ¥ be a compact surface with boundary. We define a geodesic lamination in
I’ similarly as in the case of a closed surface by considering a hyperbolic metric
with geodesic boundary on I* (again the definition can be made independent of the
metric). A geodesic lamination L. C F is peripheral if L is a simple closed curve
freely homotopic to a component of dF .

Let I. C § be a connected geodesic lamination that is not a simple closed curve.
The warren W(L) of L is the smallest subsurface of § with geodesic boundary
containing L. Notice that we may have W(L) = §. It is not hard to see that
W (L) contains finitely many simple closed curves that are disjoint from L, see [Lel],
§2.4. Removing from W(I.) an annulus around each such curve, we get the surface
embraced by L that we denote by S(1.). When 1. is a simple closed curve, we take
S(L) to be an (open) annular neighbourhood of L. In the particular case that L is
a non-connected geodesic lamination, we take S(L) to be the disjoint union of the
S(L;) as L; runs through the connected components of 7.. Notice that S(1) is an
open surface (i.e. without boundary).

A measured geodesic lamination A consists of a geodesic lamination |A| and a
transverse measure on |A|. Any arc & = [0, 1] embedded in S transverse to |A|, such
that ok C S — |A[, is endowed with a transverse measure d A such that:

— the support of dA| is |A| N k;

— if an arc k’ can be homotoped to k& by a homotopy preserving |A| then [, dA =
Je dA.

If A is a measured geodesic lamination, then its support |A| contains only recurrent
leaves. Two measured geodesic laminations cross if their supports cross.

We denote by M E(S) the space of measured geodesic laminations on .§ endowed
with the weak™ topology on transverse measures. If y is a weighted simple closed
curve with weight w(y) and A is a measured geodesic lamination transverse to y,
the intersection number i(A,y) is defined by i(A,y) = w(y) fwdk. Weighted
simple closed curves are dense in M L(S) and so i extends to a continuous function
it ME(S) X ME(S) — R ([R], see also [Bon]).

Given a complete hyperbolic metric s on S, the length of a weighted simple closed
curve with support ¢ and weight w € R is w€;(c), where £5(c) is the length of ¢ with
respect to s. This length function extends continuously to a function £;: ML(S) —
R called the length function, see [Bon].

This definition can be extended to define the length of a measured geodesic lami-
nation in a hyperbolizable 3-manifold as follows. Let M be a compacthyperbolizable
3-manifold with boundary. We are not interested in curves lying in a torus component
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of 9M , so we use the notation ML (IM ) for ML(D, o M). Let S be compact subsur-
face of d,-oM . Let p € AH(M ) be a representation uniformizing M and letc C §
be a simple closed curve. Denote by ¢* the closed geodesic in M, = H? /p(z1(S))
in the free homotopy class defined by ¢, if such a geodesic exists. We denote by
£,(c™) the length of ¢* with respect to the hyperbolic metric on M,. When p(c) is
a parabolic isometry, we take £,(c*) = 0. This allows us to define the length of a
weighted multi-curve. Using the density of weighted multi-curves in ML (dM ), we
can then define the length £,(A*) of a measured geodesic lamination A € ME(IM ).

We can associate to a measured geodesic lamination § on a hyperbolic surface
S a small minimal action of 7{(S) on an R-tree 73 dual to B, see [O12]. If ¢ is
a simple closed curve, we denote by £g(c) the translation distance of an isometry
of Ty corresponding to c¢. The action of 71(S$) on 7z we get in this way satisfies
£g(c) = i(B,c). Notice that this property completely defines the minimal action of
71(S) on Tg, see [OL2].

Let S be a connected hyperbolic surface and let ¢: H? — S be the covering
projection. Let L. C S be a geodesic lamination and let 71(S) ~ ¥ be a minimal
action of 71(S5) on an R-tree 7. Then L is realized in T if there is a continuous
equivariant map H? — 7 whose restriction to any lift of a leaf of L is injective.
When § is a component of the boundary of a 3-manifold M, we extend this definition
to actions of 71 (M) on R-trees in the following way. Given an action of 7{(M) on
an R-tree 7, we use the map i, : w1(dM ) — m1(M) induced by the inclusion to get
an action of 71 (dM) on T (which is still small when dM is incompressible). By
saying that [. is realized in 7, we actually mean that 1. is realized in the minimal tree
invariant under the action of i, (m;(§)) on T, equipped with the (minimal) action of
71(S)

A simple closed curve ¢ in a compact (1.e. closed or compact with boundary) sur-
face S is essential if ¢ does notbound adiscin S. A compact subsurface F C S ises-
sential if every simple closed curve ¢ C F thatbounds adiscin § bounds a disc in F.

2.4. Train tracks. Consider a compact surface S endowed with a complete hyper-
bolic metric of finite area. The purpose of this section is to introduce the notion of a
train track, which is an object on a surface used to combinatorially encode measured
geodesic laminations. Specifically, a train track  in § is the union of finitely many
“rectangles” b;, called the branches. In a rectangle [0, 1] x [0, 1] we call a segment
{p}x[0,1] C [0, 1]x]0, 1] avertical segment and asegment [0, 1]x{p} C [0, 1]x][0, 1]
a horizontal segment. The two extremal vertical segments are the vertical sides. The
branches of a train track satisfy:

— abranch b; is the image of a rectangle |0, 1] x [0, 1] under a smooth map whose
restriction to |0, 1[x[0, 1] is an embedding;

— the union of the double points of a branch is either empty or a non-degenerate
vertical segment;
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— given a pair of branches and the corresponding rectangles and maps, the inter-
section of the images is either empty or a non-degenerate segment;

— given the collection of rectangles and smooth maps producing the branches,
every connected component of the union of the images of the vertical sides 1s a
simple arc embedded in §.

Furthermore, we will assume that the closure of the complement of a train track
contains no components that are either discs, monogons, bigons, punctured discs or
annuli.

The images of the vertical segments { p} x |0, 1] are the ties. A maximal connected
union of ties lying in different branches is a switch. A sub-track of a train track 7 is
a train track all of whose branches are branches of 7.

A geodesic lamination L is carried by a train track T when there is a hyperbolic
metric m on § such that the m-geodesic lamination L lies in 7 and is transverse to the
ties. A geodesic lamination L 1s minimally carried by t if no proper sub-track of 7
carries L. A measured geodesic lamination A is carried by a train track t if its support
|A| is carried by 7. Associating to each branch b of t the transverse measure A(h) of
a tie, we get a weight system for T. A weight system is a function {branches} — R+
satisfying the switch conditions: each switch is two-sided and the sum of the weights
of the branches on one side is equal to the sum on the other side. If a train track
minimally carries a measured geodesic lamination, there is a bijection between the

set of measured geodesic laminations carried by t and the weight systems for 7, see
[Pe], Theorems 1.7.12 and 2.7 4.

2.5. End invariants. Consider a discrete faithful representation
p: m(M) — PSL(2,C)

that uniformizes M. By a result of Scott, the quotient manifold M, has a compact
core K homeomorphic to M. We can choose K to intersect a chosen collection €
of cusps of M, (see Section 2.2) in annuli or tori. The ends of M, are (equivalence
classes of) the complementary regions in M, of K U €. To each end we associate an
open surface F C dK ~ oM, and the end is homeomorphic to F x [}, oo), by the
Tameness Theorem.

Denote the convex core of M, by C,. An end of M, as defined above, is geomet-
rically infinite if it is contained in the convex core C, of M, (up to a compact piece)
and geometrically finite otherwise. We note that a Kleinian group is geometrically
finite by the definition given earlier in Section 2.1 if and only if it has finitely many
ends, each of which is geometrically finite by this definition.

The quotient Q,/p(m1(M)) of the domain of discontinuity is a Riemann surface
of finite type and adds a natural conformal boundary to the open manifold M. This
yields a natural embedding Q,/p(m1(M)) — 0M well defined up to homotopy.
To each geometrically finite end £ = F x [0, 00) is associated the component of
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Q,/p(m1(M)) homeomorphic to F. Thus we get a point in the Teichmiiller space
T (F); this is the end invariant associated to this end.

Let £ =~ F x [0, 0c) be a geometrically infinite end of M. Thurston associated
to £, see [Th1], a minimal geodesic lamination 1. on F' defined as follows. Consider
a sequence {c,} C F of simple closed curves whose geodesic representatives ¢, C
E C M, exit every compact subset of £. Make ¢, into a geodesic lamination
by using the counting measure. The existence of such a sequence of curves is a
non-trivial fact proved in [Bon]. Extract a subsequence such that {¢,} converges in
PME(F) to a projective measured geodesic lamination [A]. Then [A] is supported
by L. Furthermore L does not depend on the choice of {c,}, as long as {c } exits
every compact subset of £.

Combining the end invariants of the geometrically finite ends and the ending
laminations of the geometrically infinite ends, we get the end invariants of p. In
Section 2.8, we describe more precisely the kind of objects thus obtained.

2.6. Thurston’s compactification. The Teichmiiller space 7 (S) of a hyperbolic
surface S can be compactified by actions on R-trees, up to homothety. The actions
thus obtained are small and minimal. By Skora’s Theorem, see [Sk], such an action is
dual to a measured geodesic lamination. Since 7 (.8) is compactified by actions on R-
trees up to homothety, we actually get a projective measured geodesic lamination. In
order to prove some results in the present paper, we need a more precise description of
the behavior of a sequence {m,} C 7 () tending to a projective measured geodesic
lamination [A]. In this section we recall how Thurston compactifies 7 (.5) directly by
projective measured geodesic laminations (that is, without using R-trees), following
the exposition given in [FLP], Exposé &.

Let m be acomplete hyperbolic metricon §. Let £ C 5 be amulti-curve such that
the components of S — P are 3-holed spheres. We refer to a 3-holed sphere as a pair
of pants, and such a multi-curve P is called a pants decomposition of S. Following
[FLP], §1.2. Exposé 8, and using P, we associate a partial measured foliation ¥p(m)
of 5 to m. (Here, a measured foliation of a surface § is a singular foliation of §
with a transverse measure, where the measure of a curve transverse to the foliation is
preserved by homotopies preserving the foliation. A partial measured foliation is a
measured foliation of a subset of S.) Let R be a pair of pants and let /1, /5, /5 be the
leaves of P bounding R.

Assume first that £,,,(/;) < £,(L;) + £ (lg) foreveryi # j # k. Fori # j,let
ki ; be the geodesic segment orthogonal to /; and /;. Let T; ; be the set of points at
a distance at most %(Em (i) + €m(lj) — £m(ly)) from k; ;. This set is foliated by the
curves {z | d(k; ;, z) is constant} and the transverse measure is given by the distance
between two leaves. Thus in R we have three foliated sets. Notice that by the choice
of their widths they don’t intersect in int(R). Thus we have constructed a partial
measured foliation ¥p (m) of R (see Figure 1).
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A

Triangular inequality Em(l1) > Enll2) + € (l3)

Figure 1. The partial foliation of R.

If on the other hand £,,,(!1) > £,,(l2) + £,x({3) (up to relabeling, this is the only
case left to consider) we take 77 ,, respectively 77 3, to be the set of points at a

distance at most @ from k; », foliated as before, respectively the set of points

at a distance at most %13) from kq3. Let ki 1 be the (simple) geodesic segment
orthogonal at both ends to /;. The set of points of /; not lying in the interior of
Ty, N1y norof Ty 3 Ny form two arcs A and A’. We take Ty 1 to be the union of the
curves {z | d{ky1,1, z) is constant} starting at A (notice that k1 ; may not lie in 77 1).
Thus we have constructed a partial measured foliation p (m) of R (see Figure 1).

It is proved in Exposé 8 of [FLP] that the projection mapping m to Fp(m) is
a homeomorphism from 7 (S) into the set of partial measured foliations giving a
non-zero measure to every leaf of P. Notice that ¥p (m) depends on the choice of P.

One can extend this measured partial foliation into a singular measured foliation
of the whole surface. This singular foliation is well defined up to isotopy. It has been
noticed by Thurston that there is a natural bijection between equivalence classes (up to
isotopy and Whitehead moves, see [FLP]) of singular measured foliations of a surface
and measured geodesic laminations, see [Lev]. To a measured foliation Fp (m), there
corresponds the measured geodesic lamination A satisfying i (Fp(m),c) = i(A,¢)
for every simple closed curve ¢. From now on we give the same name to a foliation
and to the corresponding lamination.

The measured geodesic lamination Fp (1) roughly describes the length spectrum
of m, as can be seen in the following result, see Theorem 2.2 of [Th3]:

Theorem 2.2. Let mg be a complete hyperbolic metric on S, and let P be a pants
decomposition of S. Let ¢ > 0 be such that {,,,(c) = ¢ for every leaf ¢ of P. Then
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there is Q = (&) such that every measured geodesic lamination A on S satisfies

i(A, Fp(mo)) = bing(A) = i(A, Fp(mo)) + Qlmy(A).

Now we explain how a projective measured geodesic lamination is associated to
a diverging sequence of points of 7(.§). First, note that there exists & > 0 so that
if a simple closed geodesic ¢ C § has length less than e then every simple closed
geodesic crossing ¢ has length at least . The existence of such an & can be easily
deduced from the Collar Lemma and & does not depend on the hyperbolic metric on
§. Take any pants decomposition Q of §. Given a sequence {m,} C T(S5), we
extract a subsequence such that there exists N such that for every leaf ¢ of () either
€m,(c) < eforeveryn = N or €, (c) = eforeveryn = N. If aleaf ¢ of O
satisfies £,,,(¢) < e for every n = N then we replace it by a simple closed curve d
that crosses ¢ and is disjoint from () — ¢. Thus we get a new pants decomposition
P such that for every leaf ¢ of P, £,,,(c) > ¢ for every n > N. Now we consider
Fp(my). Assume that {m,} is a diverging sequence. By Theorem 2.2, ¥p(m,)
diverges as well. We extract a subsequence so that {[Fp (m,)]} converges in the
space of projective measured geodesic laminations.

Thus we get Thurston’s compactification of Teichmiiller space by projective mea-
sured geodesic laminations. Using Theorem 2.2 itis easy to see that this compactifica-
tionis the same as the one obtained by combining the Morgan-Shalen compactification
by actions on R-trees with Skora’s Theorem.

Forgetting the transverse measure, we say that a sequence {my } of complete hy-
perbolic metrics on S fends to a lamination L on § if every subsequence contains
a further subsequence converging to a projective measured geodesic lamination sup-
ported by L.

2.7. Compactification of Teichmiiller space for surfaces with boundary. Given
a sequence of complete hyperbolic metrics {#,} on a closed surface, we will need
to describe the behavior of the sequence on some specified subsurfaces. Namely we
need to define a compactification of Teichmiiller space for surfaces with boundary.

The fastest way to do so is to use the compacitification by actions on R-trees and
Skora’s Theorem. Consider a compact surface ¥ with boundary and let {m,,} be a
sequence of hyperbolic metrics on F such that 9F is an union of m;,-geodesics for
every n. Assume that {m, } does not contain a convergent subsequence and that there
is a non-peripheral simple closed curve ¢ C F such that Eg*n:‘ (?:3) — 0. Weuse c to
make sure that there is a non-peripheral closed curve whose lerilgth grows much faster
than the length of 9F. This ensures that each element of dF, viewed as a conjugacy
class in 71(5), has a fixed point when acting on the R-tree to which {m,} tends.
Such a fixed point is necessary to use Culler—Morgan—Shalen’s Theory and Skora’s
Theorem. Then, by [MoS1] and [Sk], a subsequence of {m, } tends to an action of
71 (£) on an R-tree dual to a compact geodesic measured geodesic lamination A.
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Thus we say a sequence {m,, } of hyperbolic metrics with geodesic boundary on

I tends to a lamination L. on F if there is a non-peripheral simple closed curve

¢ C F such that EE,;: (?S) — 0 and any subsequence contains a further subsequence
F

converging to a projective measured geodesic lamination supported by L.

For technical reasons, we will need to associate to a metric m on F a measured
geodesic lamination, as was done for closed surfaces. Let m be a hyperbolic metric
on I such that 8F is an union of closed geodesics. Let Pr be a pants decomposition
of F, so that the connected components of F — (P U dF) are three-holed spheres.
(Hence, we do not consider dF to be contained in Pp.) Fix ¢ > 0 so that £,,,(c¢) > ¢
for every leaf ¢ of Pr. We are especially interested in sequences of metrics on F
with arbitrarily short boundary curves. In particular, we cannot simply repeat the
construction of Fp (m) in each component of ¥ — Pp as we did in the case of a
closed surface, as we won’t then satisfy the hypotheses of Theorem 2.2.

Consider the surface DF obtained by doubling £ along its boundary, 1.e. DF
is obtained by taking £ and its mirror image and by identifying the corresponding
boundaries of these two surfaces. Endowing F* C DF with a hyperbolic metric m
with geodesic boundary and its mirror image with the mirror image of m, we get a
complete hyperbolic metric Dm on DF. We denote by dF C DF the multi-curve
corresponding to the identified boundaries of ¥ and its mirror image. We consider
the pants decomposition Pr and its mirror image; the union yields a multi-curve
DPp C DF. There is a natural involution t: DF — DF that exchanges I’ with its
mirror image. By construction we have t(DPfr) = DPp. We complete DPp into
a pants decomposition Ppp so that we have t(Ppr) = Ppr (see Figure 2). There
are two possibilities for a component of DF — DPp that intersects dF, and Figure 2
shows how to extend DPp in both cases.

Ppr

Figure 2. Extending DP g to a pants decomposition Ppg.

Now we consider the map ¥p,,. : T(DF) — MEL(DF) associated to Ppr as
defined in Section 2.6. When we have i (¥p,,,. (Dm), 9F) = 0, then the restriction of
Fp,(m) to the copy of I used to construct DF is a measured geodesic lamination
Fppr(m). The metric m is uniquely defined by ¥p,,(m) and the lengths of the
components of 3F. Thus we have a well-defined injective map from the set of
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metrics on F satistying i (¥p,,, (Dm), 0F) = 0 to ML(int(F)) x R’fi_ (where k is
the number of components of 9I").
Let us show that when £,,,(9F) is small enough, we have i (¥p, . (Dm),dF) = 0.

Claim 2.3. Givene > 0, there exists n > O depending only on ¢ suchthat if €, (3F ) <
1 then i (Fp,.(Dm),dF) = 0.

Proof. Consider the partial measured foliation ¥p, - (Dm) as originally defined and
let | Fp,,. (Dm)| be its support. By [FLP], Exposé 8, there is a uniform bound X on
the length of the closure of every leaf of |¥p,,.(Dm)| N (DF — Ppr), depending
only on . By the Margulis Lemma, we can find 5 so that every component of DPp
is at distance at least K + 1 from dF. With this choice of 7, the closure of a leaf of
| Fpy(Dm)| N (DF — Ppp) with one endpoint on DPfp cannot intersect 3F .

As Ppr isinvariant under the action of 7, we have 1 (Fp,, . (Dm)) = Fp, - (Dm).
Furthermore dF is fixed pointwise by the action of 7. It follows that the closure of
a leaf of | #p,, . (Dm)| N (DF — Ppr) intersects dF only if it has both endpoints in
DPp.

Combining these two paragraphs, we conclude that for 7 small enough no leaf of
Fppp(Dm) crosses dF . In particular, we have i(Fp,, . (Dm), 0F) = 0. L

Given a sequence of metrics {m,} on F such that £,, (0F) — 0, we choose
a pants decomposition Pr (not containing dF) so that we have {,, (c¢) > ¢ for
every leal ¢ of Pr and every n. We construct a map Fp,,,. : {m,} — MIL(F) as
described previously. Taking a subsequence {m,} such that {¥p, . (m,)} converges
projectively, we geta projective measured geodesic lamination [A]. Since Theorem 2.2
holds for Dmy and ¥p,, . (Dm,;), it is still true when applied to m,, and Fp,, . (my).
It follows that {m, } tends to an action on an R-tree which is dual to [A].

A complete metric /2 on an open surface £ can be approximated by a sequence
of metrics m,, on the surface F obtained by adding a simple closed curve along each
cusp of F. The metrics m,, have the property that 3F is an union of m,-geodesics
whose lengths converge to 0. Choosing an appropriate pants decomposition P of F
(again not containing d£), one can define measured geodesic laminations Fp,, . (1)
associated to {m,} as above. It is easy to see that {Fp, . (m,)} converges to a
measured geodesic lamination Fp, . (7). Notice that #p,, (m) depends on P but
not on the choice of the sequence {m1, }. We have thus definedamap ¥p, . : 7(F) —
ML (F) for which Theorem 2.2 holds.

2.8, Gallimaufries. Let § be a compact orientable surface of genus at least 2, not
necessarily connected. A gallimaufry " = (F, m, L.) on § ismade as follows: Fisan
open incompressible subsurface of S, namely if a simple closed curve d C F bounds
a disc in S, d bounds a disc in £'; m is a complete hyperbolic metric (up to isotopy)
on F with finite area, so that in particular a connected component of F endowed with
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m 1s either a surface with cusps or a connected component of .S; and L is a recurrent
geodesic lamination on the compact surface S — . We furthermore require that 1.
does not have any closed leaf and that the connected components of § — (F U L)
are discs or annuli. The surface F is the moderate surface of I' and the lamination L
forms its immoderate lamination. We denote by §A(S) the set of all gallimaufries on
§. As an example, the end invariants of a hyperbolic 3-manifold form a gallimaufry:
the union of the open surfaces facing the geometrically finite ends forms its moderate
surface, equipped with the metric induced by the corresponding conformal structure
at infinity; the union of the ending laminations of its geometrically infinite ends is its
immoderate lamination. We now define the topology on §A(S).

Let {T, = (Fy,my, Ly)} be a sequence of gallimaufries on S. For each compo-
nent of § — F;,, which is an annulus A, we add to L, an essential simple closed curve
that can be homotoped into A. Thus we get a new geodesic lamination 1.;. We say
that {T,, } converges to T'ss = (Foo, Moo, Loo) in EA(S) if the following hold:

1) for every n we have Foo C Fy End the restrictions of the m,, o Fo converge
to Mqo, Namely we have I, (0F) — 0 and for every non-peripheral closed
curve ¢ C Foo, wehave £, (¢) — £, (c),

i) the recurrent part of the Hausdorff limit of every convergent subsequence of
{L}}liesin L.,

iii) if a component L of L« lies in infinitely many F,, then the restrictions of the
m; to S(L) tend to L.

A gallimaufry with empty immoderate lamination is simply a point in the Teich-
miiller space of §. Thus by defining a gallimaufry we have constructed a bordification
of Teichmiiller space. Notice that §A(S) is not compact and not even locally com-
pact.

Lemma 2.4. The space §A(S) is not locally compact.

Proof. Consider a simple closed curve ¢ C § and an embedded annulus A C §
around ¢. Let m be a complete hyperbolic metric on the open surface § — A and let
{m, } be a sequence of complete hyperbolic metrics on § converging tom on § — A
in the sense of 1) above. In particular since ¢ corresponds to a cusp of § — A, we have
Im,(c) — 0.

Let¢: § — S be a (right) Dehn twist along ¢. By construction the sequence of
gallimaufries {(S, m,,, @)} converges to (S — A, m, ¥) and since we have £, (¢) — 0,
forevery fixed k, the sequence {(S, ¢Xm,, @)} also converges to (S — A, m, @). On the
other hand if we fix n and let &k — oo, no subsequence of {(.S, gb,’:mn, @)} converges
in A(S) for the following reason. First notice that if a sequence of metrics {m,,}
converges to a gallimaufry I = (Foo, Mo, Loo), it follows from the definitions
that we have /,,, (3Fs) — 0. However, the ¢~ m,,-length of any given simple closed
curve is bounded away from 0, when 7 is fixed and &k varies. It follows that if
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{(S. ¢pkm,,, @)} converges to a gallimaufry s, = (Fio. Moo, Loo) then we would
have Foo = S and L, = #. This would mean that the metrics {qbf:f My } converge,
when # is fixed and & varies, which is clearly not the case.

Thus for every given compact set K, we can find a sequence {k,} so that the
sequence {(S ,gb':f”mn, @)} eventually exits K. On the other hand, the sequence
{(S, qb':f”mn, @)} converges to (S — A,m,@). Hence we have shown that SA(S)
is not locally compact. L

2.9. Double incompressibility. Let M be a compact 3-manifold and let ¥ C dM
be a compact surface whose boundary is incompressible. We say that a geodesic
lamination I. C F is doubly incompressible in F if it contains the support of a
measured geodesic lamination A satistying the following condition: there exists > 0
such that for every essential disc, annulus or Mébius band (£, 3£) properly embedded
in (M, F), wehave i(A,dFE) > n.

Notice that if a measured geodesic lamination L. is doubly incompressible, then
every measured geodesic lamination with support L 1s also doubly incompressible.

Say that a gallimaufry I' = (F,m, L) is doubly incompressible if L is doubly
incompressible in oM — F. The end invariants of a compact 3-manifold form a
doubly incompressible gallimaufry, see [Bon] and [Cal].

We give this definition in the most general case but, since we will only consider
orientable manifolds with incompressible boundary, we will not need to consider
essential discs or Mdbius bands in the definition of doubly incompressibility. Notice
that although an orientable 3-manifold may contain some essential Mdbius bands,
a regular neighborhood of such a band contains an essential annulus and thus for
every essential M&bius band £ C M, there is an essential annulus A C M such that
i(A,04) = 2i(A,0E).

3. Algebraic convergence

In this section we prove that the convergence of the end invariants to a doubly in-
compressible gallimauiry implies the algebraic convergence of the corresponding
representations (up to taking a subsequence).

Proposition 3.1. Let M be a compact. orientable, hyperbolizable 3-manifold with
incompressible boundary. Let {pp} C AH(M) be a sequence of representations
uniformizing M and let Ty, = (F,,,my, L,) be the end invariants of pp(m1(M)).
Assume that {T'y} converges in §A(OM) to a doubly incompressible gallimaufry
Il = (Foo, Moo, Loo). Then a subsequence of {py} converges algebraically.

This result should be regarded as another extension of Thurston’s Double Limit
Theorem ([Th3]). The improvement from previous results (for example from [Oh2]
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which seems to be the closest one) lies in the fact that we are considering the limit
of {I';} in the space of gallimaufries rather than its projective limit (however it may
be defined). It is not hard to construct an example where {T", } converges to a doubly
incompressible gallimaufry even though the projective limit of the end invariants is
not doubly incompressible.

We prove this proposition by contradiction, roughly following the plan of Otal’s
proof of the Double Limit Theorem, see [Ot2]. Assume that no subsequence of {p, }
converges algebraically. By work of Morgan and Shalen, see [MoS1], a subsequence
of {p,} tends to a small minimal action of 71(M ) on an R-tree 7. Consider a
component /. of the immoderate lamination f.o, of I'. Using the assumption that
{I'»} converges to 'y, we construct a sequence of laminations sufficiently close to
L whose lengths are sufficiently well controlled. We then deduce from the work of
Otal, see [Otl], that 1. cannot be realized in 7. On the other hand we see that since
I' is doubly incompressible, at least one component of its immoderate lamination
is realized in 7. This yields the expected contradiction.

3.1. Cut and paste. Before starting the proof of Proposition 3.1, we will describe
a relatively straightforward cut and paste operation that will be used many times
throughout this paper.

Consider a closed orientable surface S and an essential open subsurface F C §
which is not a pair of pants. Let ¢ C § be a simple closed curve that intersects F.
We use a classical construction to get a simple closed curve e C F that behaves
somewhat like ¢. If ¢ lies in F then we take ¢ = ¢. Otherwise, let & be a component
of ¢ N F; it is an arc joining two boundary components of F (which may not be
distinct). Let 'V be a small neighborhood of the union of & and of the components of
dF containing the endpoints of k. The boundary of 'V N F contains one or two simple
closed curves, depending on whether the endpoints of & lie in different components
of 3F. Since F is not a pair of pants, at least one of these curves is not peripheral.
Let e be such a simple closed curve, namely e is freely homotopic to a component of
'V and is not peripheral in F .

By construction we have:

Claim 3.2. The simple closed curve e satisfies the inequalities {s(e) = 24;(c) +
£s(0F) andi(e,c) <i(c,dF). O

Consider now a sequence of simple closed curves {c,} C S and the sequence
of simple closed curves {e,} C F produced by the operation above. Extract sub-
sequences so that {¢,} and {e,} converge in the Hausdorff topology to geodesic

laminations C and E respectively. Assuming that a minimal sublamination L of C
fills F, we have:

Claim 3.3. The lamination L is a sublamination of E.
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Proof. Put a weight u,, on ¢, so that {u,c, N F} converges to a measured geodesic
lamination A supported by L. With such weights, we have i (u,c,,dF) — 0. Since
we have i(e,, c,) < i(c,, dF) we get i(u,c,,e,) — 0. Put a weight v, on e, so
that {v,e,} converges to a measured geodesic lamination u. The support of u is a
sublamination of £. Since {v,, } is bounded, we have i (A, u) = limi(u,c,, vye,) —
(0. Since we have assumed that the support L of A fills 7, then A and p have the same
support and L is a sublamination of £. L

Using this Claim, we will describe the behavior of a sequence of simple closed
curves with bounded length in a sequence of metrics that degenerates.

Lemma 3.4. Let {m,,} be a sequence of hyperbolic metrics on a closed surface S.
Let F C S be an incompressible subsurface such that the restrictions of the {m,}
to F tend to a geodesic lamination L (in the sense of Section 2.7) that fills F. Let
{cn} be a sequence of simple closed curves on § such that {£,, (cn)} is a bounded
sequence and that {c, } intersects S(1L.) for n large enough. Extract a subsequence
such that {cp, } converges inthe Hausdorfftopology to a geodesic lamination C. Then
L is a sublamination of C.

Proof. Using the cut and paste construction described above, we get a sequence of
simple closed curves {e,, C S(L)} with £,,, (e,) < 2£,,,(cy) + £, (3S(L)) and
i(en.cn) < i(cp, 3S(L)). Consider a sequence {u,} converging to 0 such that the
sequence {une,} C ME(S(L)) converges to a measured geodesic lamination A. By
Claim 3.3, the support of A is a sublamination of C.

Consider the double DSW) of S(_L) as defined in Section 2.7 and the metric Dwm,,
on DSE) induced by the restriction of m, to S(_L) Choose a pants decomposition
P of DS(L) as in Section 2.7 such that there is ¢ > 0 for which we have that
£pm,(d) = e for every n and every leaf d of P and that P is invariant under the
natural involution T of DS(L). We have a measured geodesic lamination ¥p (Dmy,)
defined as in Section 2.6.

Extract a subsequence such that {|¥p (Dm,,)|} converges in the Hausdorft topol-
ogy to a geodesic lamination L’ and we have t(L") = L’. Let us show that any
component d of dS(L) which is a leaf of L’ is an isolated leaf. Otherwise L’ would
contain leaves spiraling toward d. Since t(L') = L', L’ would contain leaves on
both sides of d spiraling in the same direction towards . Such behavior cannot
happen in a Hausdorff limit of measured geodesic laminations. It follows that any
component d of 3S(L) which is a leaf of L’ is eventually a leaf of {|Fp (Dm,)|}.

We remove from Fp (Dm,) every leaf that is a component of 35(L). Since the
restrictions of the m, to S(L) tend to L, up to extracting a subsequence there are
v, — O such that {v, Fp(Dm,)} converges to a measured geodesic lamination D .
It follows from the previous paragraph that Dy is disjoint from dS(L). Since the
restriction of m,, to F tends to L, the support of Dy is the “double” of L. By
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definition, we have v,/pm, (0S(L)) — i(Du,dS(L))) = 0. We denote by e, the
curve defined by e,, on the copy of §(I) comprising DS(L). From Theorem 2.2,
we get i{e,, v Fp(Dmy)) < vplm,(cn) + 2vnim, (BSﬁ)) — 0. It follows that
i(A,Dp) = limu,vyile,, Fp(Dmy)) = 0. Hence the support of A is L. Now from
the first paragraph, we can conclude that 7. is a sublamination of C. 0

3.2. Length and realization. Consider a component . of the immoderate lamina-
tion L~ of I'ss. In this section, we show that L. cannot be realized in 7. To do that,
we construct a sequence of geodesic laminations with controlled lengths which are
close enough (in a sense to be made precise) to .. We start by roughly approximating
L. by simple closed curves of bounded length, using l.emma 3.4.

Claim 3.5. There is a sequence {cy } of simple closed curves on § suchthat {£,,(c;)}
is bounded and so that, up to extracting a subsequence, {c,} converges in the Haus-
dorff topology to a geodesic lamination containing L.

Proof. We firstassume that L C F, forn sufficiently large, where F, is the moderate
surface of I',,. Itis a classical result of Bers [Be2] that there are pants decompositions
Py of the F;, sothat {{,,, (Py)} is a bounded sequence. Extract a subsequence such
that { P, } converges in the Hausdorff topology to a geodesic lamination P,,. Since P,
is a pants decomposition of F,, and since F is an incompressible subsurface of F,, for
every n thereis aleaf ¢, of P, thatintersects . By assumption, {£,,, (¢, )}isbounded.
Furthermore {c, } converges in the Hausdortt topology to a sublamination C of Pu.
By Lemma 3.4, L is a sublamination of C. By [Bel], we have £, (c) < 2{,,(cp).
In particular {£,, (c,)} is bounded.

If we have L. ¢ F, then L lies in the Hausdorff limit of every convergent sub-
sequence of {1} } where L/ is obtained by adding to L, a curve in each component
of dy.oM — F, which is an annulus. By the definition of L}, if a component B,
of L7 intersecting S(L) is not a closed leaf, it is an ending lamination of p,. In
this case, there are curves ¢ such that £,, (¢f) < Q for some Q depending only
on dM , such that {cy } converges in the Hausdorff topology to a geodesic lamination
containing B,. Taking a diagonal sequence we get a sequence {c, } of simple closed
curves so that the sequence {{,, (c;;)} is bounded and so that {¢,} converges in the
Hausdorff topology to a geodesic lamination containing £.. If B, is a closed curve,
then £,, (B;) = 0 and we are done by taking ¢,, = Bj. This concludes the proof of
Claim 3.5. O

Now that we have this sequence {c, }, we use the following proposition to deduce
that no component of L is realized in 7.

Lemma 3.6. Let M be acompact, orientable, hyperbolizable 3-manifold with incom-
pressible boundary. Let {p,} C AH(M) be a sequence tending to a small minimal
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action of (M) on an R-tree 7. Let {c,} C IM be a sequence of simple closed
curves such that {£,, (cy )} is bounded. Assume that {c,} converges in the Hausdorff
topology 1o a geodesic lamination Cyo and let C be an irrational minimal sublami-
nation of Coo. Then C is not realized in T .

Proof. The study of the behavior of the lengths of geodesic laminations that are
realized in 7 has already been initiated by J.-P. Otal, see [Ot1]. His results are stated
under the assumption that M is ahandlebody, and he considers a sequence of geodesic
laminations that converges in the Hausdorff topology. But a careful look at the proof
yields the following statement.

Theorem 3.7 (Continuity Theorem [Otl]). Let M be a compact, orientable, hyper-
bolizable 3-manifold. Let {p,} be a sequence of geometrically finite representations
of m1 (M) tending to a small minimal action of m\(M ) onan R-tree 7. let e, — 0 be
such that for all g € m1(M ), we have en{,,(g) — L7(g) andlet L C 0y<oM be a
minimal geodesic lamination which is realized in T . Consider a geodesic lamination
FE C S(L) containing L.. Then there exists a neighborhood V(E) of E and constants
Q, ng such that for every simple closed curve ¢ C V(L) and for every n > ny,

enbp, (€)= Qg ().

In this statement, sg 18 a reference metric which is used to measure the “complex-
ity of the curve ¢. Any complete hyperbolic metric on M can be chosen and Q
will depend on this choice.

Theorem 3.7 is enough to conclude the proof of Lemma 3.6 when {c, } converges in
the Hausdorff topology to C. Inorderto deal with the more general case, we use the cut
and paste operation described in Section 3.1in S(C) onthe ¢,,. This providesus witha
sequence of simple closed curves {e,} C S(C) satisfying: £5(e,) < 2£5(c)+£,(3F)
andi(e,.c) < i(c, aF ). Furthermore, by Lemma 3.3, up to extracting a subsequence,
{e, } converges in the Hausdortf topology to a geodesic lamination £ containing C.

Now it remains to control the length in M, = H?/p, (7r1(M)) of the sequence
{e,} thus constructed. Let S be the connected component of dM containing C. Let
T C W(C) be the maximal multicurve that is disjoint from C, T C W(C) — S(C).
Denote by ¢ : § — S the mapping class that performs one left Dehn twist along each
component of 7. Fora fixed 1, the sequence {¢* (¢, )} converges as k — oo to a finite
geodesic lamination whose non-compact leaves spiral in W(C) — S(C). Extend this
lamination to a finite lamination 7, whose non-compact leaves spiral in W(C)—S(C)
and whose complementary regions are ideal triangles. Let f,,: § — M, be a pleated
surface (see definition in [CEG], §5.1) homotopic to the inclusion map such that f,
maps every leaf of T;, to a geodesic of M,,. The existence of such a pleated surface
follows from [CEG], §5.3. We denote by £, (d ) the length of a closed geodesic d of

S endowed with the metric induced by f,,. I a component ¢ of J.5(C) corresponds
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to a parabolic isometry in p,(7(M)), we consider a map f,: § — ¢ — M, such
that the cusps of § — ¢ are mapped to the corresponding cusps of M,,. Such a map
Ju is called a noded pleated surface, see [Mil], and we set £, (¢) = 0 in this case.

Given ¢ > 0, it follows from the “efficiency of pleated surfaces”, see [Th3], Theo-
rem 3.3, that there is a constant Q = Q(e) such that £5,(c, N Rp) < £,,(cy) +
Qi(cy,, T), where Rp is the complement of the e-Margulis tubes around the compo-
nents of 3S(C) with short length (with respect to the metric induced by f£;,). (Compare
with [Mil], p. 138.) It follows that there is a component &, of ¢, N .S(C) N Rp such
that {{, (k,)} is bounded by some constant K > 0 depending on () and on the bound
onthe £, (c;). Using these arcs k;, in the construction described in Lemma 3.1, we
get a lamination £ C S(C) with C C F and a sequence of simple closed curves
{ent € ME(S(C)) such that {e,} converges to £ in the Hausdorft topology and
such that £, (en) < 2£7 (kn) + £7, (3S(C)).

By the choice of k;, the sequence {£, (k)} is bounded by K, and so £, (e;) =<
2K + {5, (3S(C)). Notice that since f,, realizes 3S(C), we have £y, (3S(C)) =
Lo, (3S(C)*). Thus we get £,,(ey) < 2K 4+ £,, (dS(C)*). Since the action of
pn(m1(M)) tends to the action of 771 (M ) on the R-tree 7, there is a sequence &, — 0
such that we have ¢,{,,(g) — £7(g) for every g € m1(M). In particular, we
have &,£,, (35(C)*) — £3(3S(C). Thus g,£,, (¥) < 28, K + ek, (3S(C)*) is
bounded.

On the other hand, since {e,} converges to £ D C, we have £4,(e;) — oo for
every complete hyperbolic metric so on S. It follows then from Theorem 3.7 that
C C FE isnotrealized in 7. This concludes the proof of Lemma 3.6. 0

Combining Claim 3.5 and Lemma 3.6, we conclude that no component of L« 18
realized in 7.

3.3. Double incompressibility and realization. Now we show that when 'y is
doubly incompressible, at least one minimal sublamination of L is realized. Thus
we get a contradiction with Claim 3.5 and Lemma 3.6.

Lemma 3.8. Let M be a compact, orientable, hyperbolizable 3-manifold with in-
compressible boundary. Consider a sequence of representations {p,} C AH(M)
uniformizing M that tends to a small minimal action of m1(M) on an R-tree T .
Let ' = (F,m, L) be a doubly incompressible gallimaufry. Assume that for every
simple closed curve ¢ C F, the sequence {£,,(c*)} is bounded. Then at least one
component of L. is realized in T .

Proof. Consider a component § of d,.oM. Since dM is incompressible, we can
view m1(S) as a subgroup of m1(M). Thus we have a small action of 71(§) on
. Let Js be the minimal sub-tree of 7 for this action. By Skora’s Theorem, see
[Sk], this action is dual to a measured geodesic lamination 8. Doing the same for
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each component of dJM we get a measured geodesic lamination § € MEL(IM). By
[MoS2], g is not trivial. By [Otl], if a minimal geodesic lamination crosses |S/[, then
it is realized in 7. So we have to show that one component of L crosses |f].

For a simple closed curve ¢ C F, we have assumed that {£, (¢*)} is bounded.
Hence we have i(c, ) = 0 for every simple closed curve ¢ C F. This is possible
only if | 8| lies in M — F. Let us show that | 8| crosses L.

By [MoS2], (M, S(B)) isnotacylindrical, i.e. there is at least one essential annulus
with boundary in S(8). In particular, if 8 is a multi-curve, it contains the boundary
of an essential annulus or M&bius band. Since L is doubly incompressible, it follows
that 1. crosses 8.

Now we can assume that 8 is not a multi-curve and denote by @ a connected
sublamination of 8 which is not a simple closed curve. By [MoS2], § lies in the
boundary of an essential /-bundle W C M and 8 N W N dM factors through the
fibration. Namely, if we denote by B the base surface of W and by p: W — B the
projection along the fibers, then p~1(p(u)) N W is a sublamination of 8 (compare
with [BoO], see also [Lel], Lemme 4.7). Consider a sequence ¢, C B of simple
closed curves that converge in the Hausdorff topology to the support of p(z). Then
{E, = p~(e,)} is a sequence of essential annuli or Mobius bands such that {3F,,}
converges in the Hausdorff topology to a sublamination of |8|. Since 1. is doubly
incompressible in (M, M — F), L crosses |B].

Thus we have proved that | 8| crosses 1.. By Theorem 3.1.4 of [Ot1] this concludes
the proof of Lemma 3.8 (]

We can now conclude the proof of Proposition 3.1.

Proof of Proposition 3.1. Assume that the conclusion is not satisfied, namely that a
subsequence of {p,} tends to an action of 7;(M) on an R-tree 7. By Claim 3.5 and
Lemma 3.6 no component of L is realized in 7. By the definition of the topology
on §A(IM ), for every simple closed curve ¢ C Foo, the sequence {{,,,(c)} is
bounded. By [Bel], the sequence {£,, (c*)} is also bounded. Thus the hypotheses
of Lemma 3.8 are fulfilled. It follows that at least one component of L, is realized
in . We conclude from this contradiction that a subsequence of {p,} converges
algebraically (up to conjugacy). (]

4. Strong convergence

Let M be a compact, orientable, hyperbolizable 3-manifold, let {p,} C SH(M ) be a
sequence of representations uniformizing M and let T, = (F,,m,, L,) be the end
invariants of p,. Assume that {I', } converges to a doubly incompressible gallimaufry
Foo = (Foo: Moo, Loo). We proved in the preceding section that a subsequence of
{pn } converges algebraically. We now show that this subsequence converges strongly
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to its algebraic limit po (771 (M )), by showing that the convex cores of the p,, (71(M))
converge to the convex core of peo(1(M)).

4.1. The ends of M,,. We start with the geometrically finite ends of ps (771 (M)).

Lemma 4.1. Let F be a connected component of the moderate surface Foo of oo
Then there is a convex pleated surface foo: F — Moo = H?/poo(m1 (M) homo-
topic to the inclusion F C M.

Proof. For n sufficiently large, F is a subsurface of F},; let H}, be the connected
component of £, containing F. We know that the restrictions of the m,, to F converge
to a complete hyperbolic metric m on F. Let Cp, be the convex core of p,(7(M)).
Since M, is a component of I, there is a convex pleated surface f,: H, — 0C,,.
Furthermore, by [EpM], H,, endowed with the metric induced by f,, is bilipschitz to
(Hy,mpy) with a uniform bilipschitz constant. It follows that £, (3F) — 0 and that
{€r,(c)} is bounded for every simple closed curve ¢ C F, where £, is the length
function of the metric induced by f,. From this we deduce that there is a subsequence
such that the restrictions to F of the metrics induced by the £, converge to acomplete
hyperbolic metric.

Let ¢ C F be a simple closed curve such that py(c) is a hyperbolic isometry.
Since {£f, (c)} is bounded, the distance between c¢* C M, and f,(c) is bounded
uniformly in #. Using Arzela—Ascoli’s Theorem as in [CEG] we can extract a sub-
sequence of { f,,} that converges to a pleated surface foo: F — C,_, homotopic to
the inclusion ¥ C M. Since the f, are convex surfaces, by [BoO], f is a convex
surface as well, see also [Le2]. [

Next we show that each component of the immoderate lamination L of I's 1s
an ending lamination of M.

Lemma 4.2. Let L be a connected component of Loo. Then there is a geometrically
infinite end E of Moo = H?/poc(1(M)) such that E is homeomorphic to S(L) x
[0, 00), the inclusion E — My is homotopic to the inclusion S(L) — M and L is
the ending lamination of I£.

Proof. Let S be the component of M containing L and leto, : 71(S) — PSL(2, C)
be the representation induced from p, by the inclusion map. We note that £, (u*) =
£,, (™) for every measured geodesic lamination € ME(S) C ME(IM).

By Claim 3.5, there is a sequence {c, } of simple closed curves converging in the
Hausdorff topology to a geodesic lamination containing L such that {{5,(c})} is a
bounded sequence. Choose a transverse measure A supported by L. Since {£,, (c)}
is abounded sequence, it follows from the continuity of the length function, see [Bro],
that {5 (A*) = 0. This means that L is not realized in H? /oo (71(S)). It follows
that L is an ending lamination of an end £’ of H? /oo (71 (S))
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By [Ca], the end £’ covers an end £ of M, and the covering £" — F is finite-
to-one. On the other hand, £’ is homeomorphic to S(1) x [0, o0) (this comes from
the fact that the ending lamination has to “fill up” the surface defining the end) and
if we consider the surface S(L) x {1} its image in £ under the covering £/ — E
is homotopic to the inclusion S(L.) < M. Therefore the covering £/ — E isa
homeomorphism. Thus we have proved that there is a geometrically infinite end £
of Moo = T3/ peo(m1(M)) such that £ is homeomorphic to S(L) x [0, 00), the
inclusion £ < M is homotopic to the inclusion S(L) — M and L is the ending
lamination of £. (]

4.2. Reconstructing the convex core. In this section we show how the results of
the preceding section allow us to describe the convex core of M.

Let L be a component of L. By Lemma 4.2, M has a geometrically infinite
end homeomorphic to S(L) x [0, o) with ending lamination L. Choose some p > 0
and consider the map fo.: S(1.) — S(L) x {p}. Each cusp of S(1.) is mapped under
Jfoo to acusp of M. Let G, be the union of the surfaces S(/.) when L runs through
all the components of L ,. We have thus constructed an embedding foo: Goo — Moo
which 1s homotopic to the inclusion map.

In Lemma 4.1, we defined a map fo: Foo — C,_, which is a homeomorphism
onto its image and is homotopic to the inclusion map. Now we have amap foo @ FooU
Goo — M. The complementary regions of Fo, U Gy in 9,.0M are annuli. By
Lemmas 4.1 and 4.2, the simple closed curve in the homotopy class defined by each
of these annuli corresponds to a (maximal) parabolic conjugacy class of pe. (71 (M)).
Furthermore, since I'w, is doubly incompressible, to each such parabolic element of
Pooclm1(M)) there corresponds exactly one component of 0M — (Foo U Go). To
each such component (which is an annulus) corresponds two cusps of Foo U G
whose images under f,, are two homotopic non-compact annuli lying in a cusp of
Moo. Remove from foo(Foo U Goo) these two non-compact annuli and connect the
boundary components so created by a compact annulus. Perform the same operation
for all the components of 3y <o M —(Foo UG o). We getacompact surface Soo C Moo.

Change fo to get a homeomorphism goo: 0y<oM — S (this only involves
making the correct choice of the Dehn twisting in 0y<oM — (Foo U G) so that
Zoc 18 homotopic to the inclusion 3y<oM — Moo). Adjoin to Su the boundary of
the rank 2 cusps of My and extend g to dM. Now we have a homeomorphism
oo’ M — S which is homotopic to the identity. Since dM bounds a compact 3-
manifold, so does g (M ). We deduce easily from this that f.o(Foo U Geo) bounds a
subset Co 0f Mo which has a finite volume (compare with [BoO], Lemme 21). Since
foo(S (L)) bounds an union of geometrically infinite ends and since foo(Foo) 1S an
union of convex pleated surfaces, the union of C and of the geometrically infinite
ends contains the convex core C,__ of po. If one component of 9C,__ were to lie
in int(Cx), the corresponding geometrically finite end would lie inside Co. This
would contradict the fact that C, has finite volume (see [BoO], Lemme 21, for more
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details). It follows that the union of C, and of the geometrically infinite ends of M,
is the convex core of po.

Extend goo to a homotopy equivalence /2 from M to the compact set bounded
by goo(dM). By [Wa], & is homotopic to a homeomorphism. It follows that pq,
uniformizes M .

4.3. Domain of discontinuity and strong convergence. Now that we know the
geometrically finite ends and the behavior of the m,, we can deduce from [KI] that
the algebraically convergent sequence {p, } converges strongly. On the other hand,
as we have already proved the convergence of the convex cores, it is not hard now to
conclude directly that we have strong convergence. So we briefly describe here why
the sequence {p, } converges strongly.

The main tool is a result of [JoM] (see also [MaT]):

Theorem 4.3. Let {p,} C AH(M) be a sequence of representations that converges
algebraically to poo. Assume that Q, is not empty. If {Q,,} converges to Q. in
the sense of Carathéodory, then {p, } converges strongly 10 poo.

Recall that {2, } converges to 2, in the sense of Carathéodory if and only if
{Q,, | satisfies the two following conditions:

— every compact subset K C £2,_ liesin £, for all sufficiently large 7;
— every open set O that lies in £, for infinitely many » also lies in Q2,__.

We show that the £2,, and £, __ satisfy these two conditions.

Lemma 4.4. Under the hypotheses of Proposition 3.1, a subsequence of {p,} con-
verges strongly to pog.

Proof. When Q,._ is empty, {p,} converges strongly to ps by [Ca] (see [KI]).
Assume now that £2,__ is not empty.

Consider the convex pleated surface f,,: F, — Cp,. Let Il be a hyperbolic plane
that intersects foo(Foo) in a non-degenerate subsurface. The ideal boundary of IT in
€ = 9?3 is a circle which bounds a disc D C 8H? such that int(D) C Qp,-

Let K C €, be a compact connected subset. Such a compact set is covered
by the interiors of finitely many discs D; defined as above. Since { f,,} converges to
Joo, €ach such disc D; is the limit of a sequence {D; ,} where D;, C ,, is the
disc bounded by the ideal boundary of a support plane for f,(F;). It follows that for
n sufficiently large, K is covered by the D; ;. In particular, we have K C £, forn
sufficiently large.

Now, we will prove, by contradiction, that every open set () that lies in 2, for
infinitely many 7 also lies in £2,__. Let O be an open set lying in £2,,, for infinitely
many 7 and let w € O N A,_,. Since the fixed points of hyperbolic isometries are
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dense in A, and since {p,} converges (o P, there is a sequence {w,} of points
converging to w such thatwy, € A, . Forn sufficiently large, wehave w,, € ONA,,,
contradicting our hypothesis that O C £, for infinitely many 7. 0

Finally, we have now proved that the ending map is proper, namely:

Proposition 4.5. let M be a compact, orientable, hyperbolizable 3-manifold with
incompressible boundary. Let {pp} C AH(M) be a sequence of representations
uniformizing M and let T, = (F,,, my, L,) be the end invariants of p,. Assume
that {T'y} converges in §A(OM) to a doubly incompressible gallimaufry T'oe =
( Foo, Meg, Lag). Then a subsequence of {p,} converges strongly. L

5. Necessary conditions

In this section we prove that the end invariants of a sequence {p,} converge to the
end invariants of the limit.

Proposition 5.1. Let M be a compact, orientable, hyperbolizable 3-manifold with
incompressible boundary. Let {p, } be a sequence of representations that uniformize
M. Assume that p, is geometrically finite and minimally parabolic for all n and
let Ty = (Oy<oM,my,0) be its end invariants. If {p,} converges strongly to a
representation Peo, then {I'y} converges in §A(OM ) to the end invariants oo 0f poc-

Proof. First recall that we have seen in Lemma 2.1 that pso uniformizes M. Let
us also recall the topology of $A(dM) as described in Section 2.8. Consider our
sequence of gallimaufries {I';, = (d,<oM, my,,D)}. Then {I',} converges to I'y, =
( Foos Meg, L) in GA(IM ) if we have the following:

1) for every n we have F, C F, and the restrictions of the m,, to F,, converge
to Mmoo, Namely for every closed curve ¢ C Foo, we have £, (¢) — €5, (C),

111) if a component L of L lies in infinitely many of the F,,, then the restrictions
of the m,, to S(I.) tend to L.

Notice that since the I’ lie in int($4A(0M)) the definitions are simpler than in
the general case. In particular, part (i) of the definition is trivially satisfied.
The first property can be deduced from the convergence of the limit sets.

Lemma 5.2. Consider the moderate surface Fo of I'ao equipped with its complete
hyperbolic metric mo. For every closed curve ¢ C Foo, we have £y, (¢) — £y (C).

Proof. Let F be the component of F, containing ¢ and let § be the component of
dM containing F. Since {p,} converges strongly, as proved in [KeT] and [Oh3],
the limit sets {A,, } of the Kleinian groups p,(71(S)) converge to the limit set of
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Poo(m1(S)) in the Hausdorff topology. It follows that {2, } converges to 2, in the
sense of Carathéodory, and hence that the Poincaré metrics on the £2,, converge to
the Poincaré metric on 2, _,. By this, we mean that if we consider a point x € £,__,
and a sequence {x,} C £2,, converging to x (whose existence is guaranteed by the
convergence of the A, ) the Poincar€ metric on £2,, at x,, converges (o the Poincaré
metric on £2,_ at x, see [He].

Consider a component O of Q,__ covering I’ and an arc ¢ thatis a lift of ¢ to O.
Let Go C m1(M) be the subgroup such that poo(G ) is the stabilizer of O. If we
let x be one endpoint of ¢, then the other endpoint is the point poo(g)(x), where
Poolg) 1s the element of po (G o) (up to conjugacy) corresponding to ¢. Let K be the
closure of the e-neighborhood of ¢ in the Poincaré metric on O, and note that K is a
compact subset of 0. In particular, K C £, for all # sufficiently large. Since the
Poincar€ metrics on the £2,, converge to the Poincaré metric on £, uniformly on
compact subsets, since p,(g)(x) liesin K forn sufficiently large and since {p, (g)(x)}
converges to poo(g)(x), we see that £,,, (¢) — £, (c), as desired. L

Next we prove that for a connected component 1. of L, up to extracting a sub-
sequence, the restrictions of the m,, to S(L) tend to a measured geodesic lamination
supported by L. To prove this property, we use some of the ideas of the “lemme
d’intersection” [Bon], Proposition 3.4. Consider a component . of the immoder-
ate lamination of I',. By definition of the end invariants of poo, 1. is the ending
lamination of a geomeitrically infinite end of Ms,. We want to show that, up to ex-
tracting a subsequence, the restrictions of the m, to S(1.) tend to a measured geodesic
lamination supported by L.

Lemma 3.3. Consider a connected component L. of L. Then, up to extracting a
subsequence, the restrictions of the my, to S(L) tend to a measured geodesic lamina-
tion supported by L.

Before starting the proof of Lemma 5.3 recall that it finishes the proof of Propo-
sition 5.1. Putting Lemmas 5.2 and 5.3 together yields that given a strongly con-
vergent sequence {p,} of representations that uniformize M with end invariants
Iy = (<o M, my, 9), we have that {T', } converges in §A(9M ) to the end invariants
of the limit ps, . This concludes the proof of Proposition 5.1. L

Proof of Lemma 5.3. Let S bethe connected componentof dM that contains 7. Since
L 1s a minimal component of the immoderate part of L it is the ending lamination
of a geometrically infinite end of M. Then there is a sequence {ex} C S(L) of
simple closed curves such that {ey } converges in PMEL (3M ) to a projective measured
geodesic lamination supported by L, the geodesic representatives ezqoo of ex in M,
exit every compact subset of Moo, and {£,,_(e; )} is bounded. This follows directly
from Lemma 7.9 of [Mi2] but one can also write a simpler proof using a sequence of



842 J. W. Anderson and C. Lecuire CMH

pleated surfaces exiting the end faced by S(L) and Bonahon’s Intersection Lemma
([Bon], Proposition 3.4).

Since {p, } converges strongly to p, there are sequences g, — 1 and R, — oo,
a point X, € Mo, and a sequence of diffeomorphisms v, : B(Xeo, Rp) C Moo —
M, = H?*/p,(m(M)) such that ¥,(xs) = x, and that ¥, is a g,-bilipschitz
diffeomorphism onto its image. Choose ¢ such that for every & either e; oo 18 disjoint
from the e-thin part of My, or ek is the core of an e-Margulis tube.

Consider a sequence {P,} of pants decompositions of S such that {£,, (P,)}is
a bounded sequence. We show that, up to extracting a subsequence, { P, } converges
in the Hausdorff topology to a geodesic lamination containing £.. Then we show that
this can happen only when the m,, degenerate transversely to L. First we control the
intersection numbers between P, and e; using the following lemma.

Lemma 5.4. Consider a sequence {dp,} C S of simple closed curves. There is
O > 0 such that for every k sufficiently large there is Ny such that i(ey,d,) <
Q€m, (dn) + 27) for n = Ni.

Proof. The basis of this proof comes from [Bon], Proposition 3.4.

Let Koo C Cpy C Moo = H?/poe(m1(M)) be a compact core for Mo,. Since
{pn } converges strongly to p, for n sufficiently large v, (K ) is a compact core for
M, (see Lemma 2.1). By [KeT] or [Oh3], {A,, } converges to A, in the Hausdorff
topology. By [Bow], the convex hulls {H,,} C H? converge to H,., C H- in the
Hausdorff topology. It follows that we have ¥, (Ko) C Cp, for n large enough.
We use the notation K,, = y,,(K,,). Notice that the induced metrics on the 0K,
converge to the induced metric on 9K o

Recall that ek is the geodesic representatlve of ey in M,,. Since ek exits every
Compact set, d(ek Koo) > 3Cy for some Cj, — oo. Fix k. For n sufficiently large,
ek, lies in B(xoo, R n) C My,. Furthermore £, (1, (e;’oo)) < gnfpoe (e;c“’oo) where
¢n is the bilipschitz constant of ¥,,. So €(e; ) < gnlp (e} ) for n sufficiently
large. Sincethe lengthof ey  isbounded, there are () and Ny such thatforn > N,
we have £,,(e/ ) = O (note that 1 depends on the sequence {e;} but not on
k). Forn sufﬁ01ently large, d(y, (ek’oo) K,) = 2Cy. Since ¥, is g,-bilipschitz,

Yn (ez’ o) 18 @ g2-quasi-geodesic. It follows that d(e;’n, Ky) = Cy for n sufficiently
large.

In what follows, we view d, and ey as simple closed curves in § C K. Let
Ja: S — 9C,, be the map sending S C 9M to the corresponding part of the
boundary of the convex core of M,, = H?/p,(71(M)). Consider an annulus A,
joining ¥, (dy) to fu(dy) in Cp, and an annulus A, , joining ¥, (eg) to e;’n in
int(C,, ). Since K, is a compact core for M, and dM is incompressible, M, — K,
is homeomorphic to IM X R (see [MMS]). It follows that we can choose A4, and
Ae, , so that they intersect K, only along ¥, (d,) and ¥ (ex) respectively. By
[Bon], Lemme 3.2, we have i(eg, dy) < i(fy(dy). Aoy ) + i(e;’n, Ag,) where the
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first term is the geometric intersection number in S and the two others are geometric
intersection numbers in M,, (as defined in [Bon], §11I). Since e; C int(Cp, ), we can
choose A,, sothatitliesinint(C,,). In particular A,, does not intersect C,,,
follows then that i ( f4(dn), Ae, ,,) = 0. Hence we only need to bound l(ek | dn)
Notice that i (ek!n Ag,) is invariant by homotopy (of ek!n or Ag,) as long as ek’n
does not intersect 94,4, through the homotopy ([Bon], Lemma 3.1). We will now
modify 4,4, to make computation easier. For each n, we choose a point £, € Ay,
such that {d(KX,,,,)} is a bounded sequence. We also choose points y, € V¥, (d,)
and z, € fu(dy). Start with the annulus A4, C C,, joining ¥, (dy) to fuldy)
that was used in the previous paragraph. Let us change A4, by a homotopy so that
it contains f, and a geodesic segment &y, joining yy, to z,. Lift this annulus to an
mﬁnlte band Ad in the universal cover TI° of M,,. The annulus Ag, 1s the quotient
of Adn under a covermg transformation P (an). The part of Adn between two lifts
k, and k’ = Py (an)(k ) of k,, is a disc D, contalnmg alift 7,, of 1. We change

rl-!

D, bya homotopy to the geodesic cone from 7, to 3D,. Then we replace Ad
by |J ez Pn (a,{)(Dn) and Ay, by the quotient of this new band. The new annulus
Ay, 1s the union of the set £, made up of geodesic segments joining ¥, (d,) to .,
of the set F,, made up of geodesic segments joining k, to f, and of the set G, of
geodesic segments joining f,(dy) to ;. Notice that 94, has not been moved during
these homotopies, hence i(eit,m Ag,) has not changed. According to the previous
paragraph, we have i(eg, d,) < i(ez’n, Ag,).

By construction, for n sufficiently large, E, C ¥, (B(Xoo,72)) and 7, 1(E,,) lies
in a compact set (independent of #). It follows that for & sufficiently large, e;’n does
not intersect £,. Thus for & sufficiently large, ez only intersects £, U G,. Since
Ay HE,), ek o) —> 00 as k — oo, we even have some & > 0 such that for n
sufficiently large the intersections between ek and F, U Gy, are at distance at least
¢ from the two geodesic segments in £, U G, joining £, to y,. Furthermore, since
{H,, } converges to H,__ in the Hausdorff topology, we have d (e,’;’n, 0C,,) = &, for
n large enough. Thus the intersections between e;’n and F,, U G, are at distance at
least & from d(F, U Gy,).

By construction, F,, is the union of two geodesic triangles. Thus we have
area(F,) < 2m. Since f,(d,) is piecewise geodesic, G, is a union of geodesic
triangles. It is well known that the area of a hyperbolic triangle is less than the length
of each of its edges, see [Th1], Lemma 9.3.2. Thus we have area(G,) < £( f,(dn))-

From the proof of [Bon], Proposition 3.4, we get:

— If £(e; ) > e, then i(eg, dyp) < 054, (ef ,)area(F, U Gy), where Q> is the
volume of the ball with radius % in R x H?:

- If E(e’,’; n) < g, then we have i(eg. d,) < Q;larea(Fn U Gy,), where Q5 is the
area of a hyperbolic disc with radius ¢.
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We have seen above the inequality
arca(F, U Gy) < £(f (d)) + 27,

It follows from a result of Sullivan (see [EpM]) that there 1s K > 0 depending only on
M such that £( f,(dn)) < K&, (dy). Consider Q = max{KQ; 05", KQ3'} and
notice that () depends on the choice of the sequence e. For k sufficiently large and for
n sufficiently large (depending on k), we have i(ex, d,) < Q€m, (dy) + 27). O

We can now show that every sequence of short pants decompositions, with respect
to the m,,, converges to L. More precisely, we have:

Claim 5.5. Let { P, } be a sequence of pants decompositions of § such that {£,,, (Pyp)}
is a bounded sequence. Extract a subsequence such that {P,} converges in the
Hausdorff topology to a geodesic lamination Py, C S. Then L is a sublamination of

Pz,

Proof. Since L 1s an irrational geodesic lamination, if P, crosses L, then we have
i{er, Pn) — oc. By Lemma 5.4, {i(ex, P,)} is bounded. It follows that either . is
disjoint from P, or L is a sublamination of P.,. Since P, is a pants decomposition
for every n, no geodesic lamination is disjoint from Ps. So we conclude that L 1s a
sublamination of Pa. O

Now we can conclude the proof of Lemma 5.3. As we have seen, there is a
constant K depending only on § such that for every complete hyperbolic metric m
on §, there is a pants decomposition Ps with £,,(Pg) < K (see [Be2]). Consider
a sequence { P, } of pants decompositions such that {£,,, (£,)} is bounded. Extract
a subsequence such that {P,} converges in the Hausdorff topology to a geodesic
lamination P,,. By Claim 5.5, L is a sublamination of Py,. Let ¢ C S(L) be a
non-peripheral simple closed curve. Since ¢ crosses L, we have i(P,,¢c) — oo. It
follows then from the Collar Lemma that £,,, (¢) — oco. In particular the restrictions
of the m,, to S(1.) are unbounded. By LLemma 3.4, the restrictions of the m,, to S(1.)
tend to L.. This concludes the proof of LLemma 5.3 and of Proposition 5.1. L

Using the Ending Lamination Classification and Propositions 4.5 and 5.1, we can
now prove Theorem D.

Theorem D. Let M be a compact, orientable, hyperbolizable 3-manifold with in-
compressible boundary. The ending map that to a representation uniformizing M
associates its end invariants is a homeomorphism from SH(M ) into the set of doubly
incompressible gallimaufries.

Proof. By the Ending Lamination Classification, see [Mi2] and [BCM], the end-
ing map is injective. By Proposition 4.5, this map is proper. Combining Proposi-
tions 4.5 and 5.1, we get that a sequence {p,} C SH(M) with end invariants {I, =
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(0y<0M,m,,8)} converges strongly 10 po, With end invariants I'ny = (Foo, Mo, Loo)
if and only if {I7,} converges to ', in HA(OM ). In particular it follows that every
Poo € SH(M) can be approximated by geometrically finite minimally parabolic rep-
resentations in the strong topology, namely SH(M ) is the closure of its interior. By
using such approximations we can drop the assumption in Proposition 5.1 that p,,
is geometrically finite and minimally parabolic. It follows that the ending map is
continuous. Thus the ending map is injective, continuous and proper: it is a homeo-
morphism onto its image. U

From this theorem and from LLemma 2.4, we deduce that SH(7r; (M)) is not locally
compact (Lemma 1.1).

Lemma 1.1. Let M be a compact, orientable, hyperbolizable 3-manifold with in-
compressible boundary. Then the space SH(M) is not locally compact. L

6. Self bumping and local connectivity

By constructing appropriate paths in §A(dM ) we study the local connectivity of the
set of doubly incompressible gallimaufries. We note that by [Lel], the set of doubly
incompressible gallimaufries is an open subset of §A(IM ).

A note about the notation in this section: The approximating gallimauiries all have
the same moderate surface, namely 9, .o (dM ), and the same immoderate lamination,
namely the empty lamination. Therefore, we identify each approximating gallimauiry
with the metric on 9, .o(dM ). In particular, we speak of sequences of metrics on the
moderate surface as converging to a limiting gallimaufry.

Proposition 6.1. Let M be a compact, orientable, hyperbolizable 3-manifold with
incompressible boundary. Let T = (F,m, L) be a doubly incompressible g allimaufry
and let {{0y<oM, my, D)} and {(3y<oM, s,,0)} be two sequences in int(§A(OM))
converging to I'. Then, up to passing to a subsequence, there is an arc ky, in the
set int(§A(IM)) joining my, to s, such that every sequence of points {z, € ky}
converges to I

Proof. The maindifficulty is that on ¥ we need to have precise control on the behavior
of z,, whereas on S(L) we need to control the large scale behavior of z,,. To deal
with that issue, we use Fenchel-Nielsen coordinates to control the behavior of z,, on
I’ and the measured geodesic lamination ¥p (z,) as defined in Section 2.7 to control
the large scale behavior of z, on S(L).

We denote by G the surface obtained by adding to F every component of dM —
F that is an essential annulus. For each n and ¢ we will define the metric k, (¢)
independently on G and on the closure H of d,.oM — G.
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Choose £ > 0 and consider a pants decomposition P of 3M so that every compo-
nent of 3 F is homotopic to a component of P and so that £,, (c) > eand {5, (c) > ¢
for every n and every component ¢ of P that is non-peripheral in F .

Let us first define the restriction of k,(f) to H. In (dy<oM,m,,d) and
(0y<0M.s,,90) we view H as a subsurface with geodesic boundary. Since {s,} and
{my}tendtoT", we have £,,, (0H{) — Oand £, (301) — 0. Then for n large enough,
there is associated to the restriction of m,,, respectively s, to /1 a measured geodesic
lamination Fp(m, ), respectively Fp(s,) (see Section 2.7). Also, the restriction of
my to H is uniquely defined by ¥p(m,) and {£,,, (¢)|c is a component of 0H }.

Extract a subsequence such that { Fp (m,, )} converges to a geodesic lamination R
in the Hausdorff topology. Since the restriction of m,, to S(L) tends to L, then any
subsequence of ¥p (m,) that converges projectively has a projective limit supported
by L. It follows that 1. is a sublamination of R. Consider a sequence {t,} of train
tracks carrying R so that {z,} is a basis of neighborhoods of R for the Hausdorff
topology. Namely every sequence of laminations {R,} such that R, is minimally
carried by 1, converges to R in the Hausdorll topology (for the existence of such train
tracks, see [Otl]). Notice that if R, is minimally carried by z;, then up to extracting
a subsequence {R;,} converges to a sublamination of R. Since L is a sublamination
of R, we may choose the 7, so that L is minimally carried by a sub-track of 7, for
every n.

Since {Fp (my)} converges to R, up to changing the indices, we may assume that
Fp(my)is carried by 7,,. In particular Fp (m,,) defines a weight system Fp (n1,)(z,)
on 7. Let A be ameasured geodesic lamination with support £., and note that Fp (m,,)
also defines a weight system A(z, ) on 1. Let K;,, — oo be a sequence of positive real
numbers. For? € [0, %], the weight system 2(% —)Fp(my)(ty)+2t K, A1, ) defines
a measured geodesic lamination ., (¢) carried by 7, such that u,(0) = ¥p(m,) and
,un(%) = KA. Borf &£ %, iy is minimally carried by t,,. It follows that we have:

Claim 6.2. Consider a sequence {t,} € [0, %]N. Then the Hausdorff limit of every
subsequence of { iy (ty)} is either R or L. In particular it contains L.

Consider a simple closed curve ¢ C G. The intersection number i(c, (1, (f)) is
given by the following formula:

Claim 6.3. For n large enough, depending on c, we have
forallt € ]0,1].

Proof. Since {t,} is a basis of neighborhoods of R for the Hausdorff topology, for
large enough, depending on ¢, we can change 7, and ¢ by homotopies so that for every
measured geodesic lamination A carried by z,,, i (¢, A) is the sum of the weights of the
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branches of 7, that ¢ intersects transversely, counted with multiplicity. In particular,
for n large enough, we have i(c, u,(¢)) = 2(% — Di{c, Fp(my)) + 2tK,i(c, A).
O

Using a similar construction, replacing m, by s, we get a path of measured
geodesic laminations p,(f), t € [%, 1] with ;Ln(%) = KuA and pnu(l) = Fplsy).
Hence, given a sequence {/,,} € [%, 1]*, the Hausdorff limit of every subsequence of
{1n(ty)} contains L.

We define the restriction of k,,(7) to H for 1 € [0, 1] as follows: £z, )(c) =
(1 —1)tm, (c) + tLs, (c) for every component ¢ of dH and Fp(k, (1)) = pn(r).

Next we define the restriction of k,(f) to G. Consider the Fenchel-Nielsen
coordinates {(£., 6.)|c a component of P} associated to P. Namely for a metric m,
£.(m) €]0, oo is the m-length of ¢ and 6, € R is the twist angle along ¢ (taking
the convention that 0.(m') = 0.(m) + 27 corresponds to a full Dehn twist along
¢). On G we define the restriction of &, (¢) as follows: each component ¢ of 4G is
a closed geodesic with length £.(k,(t)) = (1 — ){.(m,) + t£.(s,); the Fenchel-
Nielsen coordinates of &, () along each non-peripheral component ¢ of P N G are
{(1 — )be(my) + te(sy), (1 — £)0.(my) + 160.(s,)}. This defines a metric with
geodesic boundary on G.

Notice that a component d of 3G is also a component of dH and that the length
given to d by the restriction of k,(¢) to G is the same as the length given by the
restriction to /7. We just need to define how we glue together the metrics defined
on G and H to get a complete definition of 4, (7). For a component ¢ of 9G, the
Fenchel-Nielsen coordinates of k,(f) along ¢ are {(1 — r)€.(my) + t€.(s,), (1 —
1)0c(my) + 10:(sn)}-

Now a complete hyperbolic metric k,(¢) has been defined on d,-oM for every
n € Nandalls € [0, 1]. It follows easily from the definition that, for a fixed n, &, (¢)
is a continuous path joining m, to s,. The following two claims will conclude the
proof of Proposition 6.1.

Claim 6.4. Forevery sequence {t,,} C [0, 1]N the restrictions of the k, (1) to G tend
to the complete hyperbolic metric m on F.

Proof. Since {m,} and {s,} both converge to m on F, for every component ¢ of P
that is homotopic to a cusp of F, we have {,,,(c) — 0 and £;,(c) — 0. Thus we
get £, 1,y (¢) = tnle(my) + (1 — 1)Ee(sy) — 0. If ¢ is a component of P M G that
is not homotopic to a cusp of F, then {£.(m,), 0.(m,)} and {£.(s,),0-(s,)} both
converge to {£.(m), 6.(m)}. Hence

e lkn(tn)), Oc(kn(tn))} = {tnle(mp) + (1= 1) e (sn), 10 0c(mp) + (1 — £,)0:(5n)}

converges to {£.(m), 8. (m)}. It follows that the restrictions of the &k, (¢) to G tend to
the complete hyperbolic metric m on F. (]
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Claim 6.5. Let L1 be a component of L. Then for every sequence {t,,} € [0,1]Y, the
restrictions of the ky,(t,) to S(1.) tend to L.

Proof. We will assume that we have {7,} € [0, %]N. The proof is similar if we
assume {f,} € [%, 1]N and these two results are enough to conclude the proof of
Proposition 6.1. Consider a non-peripheral simple closed curve ¢ C S(Z.1). Since
the restrictions of the m, to S(1.1) tend to L, we have i(¥p(m,),c) — oo and

i(ﬁﬁéﬁ?ﬁiﬁ)) — (. We also have that K,i(A,c) — oo and Ki(A,d) = 0,
where d is as defined in the second paragraph before the statement of Claim 6.4.
Ekn (ln)(aS(Ll))

ke (1) (€)
Hence, up to extracting a subsequence the restrictions of the k, (#,) to S(L1) tend to a
projective measured geodesic lamination. By Claim 6.2, the support of this projective

lamination is L. This concludes the proof of Claim 6.4. (]

From Claim 6.3 and Theorem 2.2, we get £, (;,)(c) — oo and

By Claims 6.4 and 6.5, for every sequence {£,} € [0, 1]V, {k,(t,)} converges
toI'. O

Using Theorem D and Proposition 6.1, we can now prove Theorems A and B.

Theorem A. Let M be a compact, orientable, hyperbolizable 3-manifold with in-
compressible boundary. Then the space SH(mw1(M)) is locally connected.

Proof. Consider a representation p € SH(w;(M)). By the tameness of p(w1(M)),
see [Bon], there is a compact manifold M’ such that puniformizes M’. By Lemma 2.1,
every sufficiently small neighborhood V € SH(m1(M)) of p lies in SH(M'). Let
I' € §A(dM’) be the end invariants of p. By Theorem D, V is homeomorphic to
a neighborhood ‘W C §A(IM’) of I'. By Proposition 6.1, ‘W contains a connected
neighborhood ‘W’ of T'. Taking the preimage of ‘W’ under the ending map, we get
a connected neighborhood V' C 'V of p. Thus we have proved that SH(w1(M)) is
locally connected. (]

The proof of Theorem B follows the same lines.

Theorem B. Let M be a compact, orientable, hyperbolizable 3-manifold with in-
compressible boundary. Let p € SH(w1(M)) be a representation uniformizing M.
Then every neighborhood of p contains a neighborhood V C SH(m(M)) of p such
that V Nint(SH(mw1(M))) is connected.

Proof. Let Vi C SH(mw1(M)) be a neighborhood of p. By Lemma 2.1, V; contains
a neighborhood V, C SH(M) of p. We denote by e the ending map as defined
in Theorem D. By Proposition 6.1, ¢(V,) contains a neighborhood W C Im(e) of
e(p) such that W N int($A4(3M)) is connected. Taking V = e (W), we get a
neighborhood of p such that V M int(SH(7x{(M))) is connected. O



Vol. 88 (2013) Strong convergence of Kleinian groups: the cracked eggshell 849

7. The action of Mod (M)
In this last section we study the action of Mod(M ) on SH(M ).

Theorem C. Let M be a compact, orientable, hyperbolizable 3-manifold with in-

compressible boundary. Assume that M is not an I -bundle over a closed surface.
Then the action of Mod(M) on SH(M)) is properly discontinuous.

Proof. Consider a sequence of representations {p, } C int(SH(M )) and a sequence
of diffeomorphisms {¢,: M — M} such that {p,} and {p, o ¢} converge respec-
tively to representations po, and p._ (up to conjugacy) in SH(M). We show that up
to extracting a subsequence, the ¢, are isotopic. It follows easily that the action of
Mod (M) on SH(M ) is properly discontinuous. Since minimally parabolic geomet-
rically finite representations are dense in SH(M ), we may assume that p, is such a
representation without any loss of generality. As a first step, the following claim is
useful to pick the correct representation in each conjugacy class.

Claim 7.1. Let {y,}, {a,} and {b,} be sequences of elements of PSL(2, C). Assume
that the sequences {a,} and {b, } converge to hyperbolic isometries do, and by such
that d s and beo do not have a common fixed point. Assume also that the sequences
{ynan vty and {yub, v 1} converge. Then, up to extracting a subsequence, {y,}
converges.

Proof. Assume that no subsequence of {y, } converges. We show that we end up with
a contradiction. For n sufficiently large, a,, and b,, are hyperbolic isometries. Let 4,
and B, be the axes of a, and b, respectively, forn € N U{oco}. By assumption {4, },
respectively { B, }, converges to A, respectively B, in the Hausdorff topology on
3 U 84, 3. Consider a point x € T*. Since we have assumed that no subsequence
of {y,} converges, we have d(x, y, 1(x)) — oo. Since a,, and b, do not have a
commen fixed point, we have max{d(y, ' (x), 4,),d(y; 1 (x). B,)} = oc.

By assumption the sequence {d(x, y,a, Y, 1(x))} converges. On the other hand,
we have d(x, yuany, H(x)) = d(y; 1(x),any; 1(x)) which converges if and only
if {d(y;1(x), A,)} is a bounded sequence. Similarly we get that {d(y, 1(x), B,)}
is a bounded sequence. Thus we get that max{d(y, !(x), 4,).d(y; 1(x), Bp)} is
bounded, contradicting the preceding paragraph. (]

This claim allows us to get the expected conclusion under some extra assumptions
on the diffeomorphisms ¢;,.

Lemma 7.2. Let M be a compact, orientable, hyperbolizable 3-manifold with in-
compressible boundary. Let N C dM be an incompressible compact submanifold
such that m1(N) is not Abelian. Let {¢p,: M — M} be a sequence of diffeomor-
phisms such that, up to homotopy, ¢, | is the identity and let {p, } C int{SH(M)) be
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a convergent sequence. Assume that the sequence {py, © Pp.} converges as well. Then
there is a diffeomorphism ¢: M — M such that up to extracting a subsequence,
each ¢ o ¢y, is isotopic to the identity.

Proof. Let p,: m (M) — PSL(2,C) be a representative of p, € int(SH(M)) such
that {p,} converges to peo, namely we have actual convergence and not only just
up to conjugacy. Consider the sequence {p, © ¢n+: m1 (M) — PSL(2,C)}. By as-
sumpltion there is a sequence {y,} C PSL(2, C) so that {y, (pn o dn+)y; !} converges.
Since 1 (N ) is not Abelian, the non-elementary Kleinian group poo (71 (N )) contains
two hyperbolic isometries po{g1) and pso(g2) with disjoint fixed point sets. By as-
sumption, we have p, o ¢u«(g;) = palg;) fori = 1,2. Thus taking a, = p,(g1)
and b, = p,(g2), we get from Claim 7.1 that, up to extracting a subsequence, {y,}
converges. Hence, up to extracting a subsequence {p, © ¢4} converges.

We have py, o Ppa(m1(M)) = pn(m1(M)), as follows. Since {p,, o @y, «} converges
and since {p,} converges strongly, for every ¢ € 71(M) there is b € w1(M) such
that {p, o ¢n«(a)} converges to pso(h). It follows from [Jor] that for n sufficiently
large ¢+ (a) = b. Thus we have proven that for every closed curve a C M there is
a closed curve b C M such that ¢, (@) is homotopic to b for n sufficiently large.

Consider a pants decomposition P of d,-oM. By the above paragraph, for #
sufficiently large, ¢, maps each component ¢ of P to some given curve d C dM that
is freely homotopic in M to ¢. By [Joh] and [JaS], for a given curve ¢, there are only
finitely many such simple closed curves 4 up to isotopy on dM . It follows that up to
extracting a subsequence there is 71 such that ¢, 01 o ¢, maps P to itself up to isotopy.
Consider another pants decomposition P’ C d,.oM such that the components of
0y<oM — (P U P’) are discs. Using the same arguments we find a diffeomorphism
¢ and a subsequence of {¢,} such that ¢ o ¢, (P) is isotopic to P and ¢ o ¢, (P')
is isotopic to P’ in aM . It follows that the restrictions of the ¢ ¢ ¢, to 3o M are
isotopic to the identity. By [Joh], up to passing to a subsequence, ¢ o ¢, is isotopic
to the identity for every n. This concludes the proof of Lemma 7.2. (]

This is enough to conclude the proof of Theorem C in most cases that remain. Let
W be a characteristic submanifold for M. Such a characteristic submanifold is an
union of /-bundles and solid tori and its basic property is that every essential annulus
in M 1s isotopic to an annulus lying in W. The existence of such a characteristic
submanifold has been proved in [Joh] and [JaS]. If we assume that a component N
of M — W has a non-Abelian fundamental group, then we can argue as follows. By
[Joh], up to extracting a subsequence there is a diffeomorphism ¢: M — M such
that, up to homotopy, each (¢ o ¢y, ) |ar—w is the identity. In particular, up to homotopy,
(¢ © ¢dn)|n is the identity. By assumption the sequences {p,} and {p, © (P © ¢p)«}
converge in SH(M ). It follows from Lemma 7.2 that up to extracting a subsequence
and up to changing ¢, the diffeomorphism ¢ o ¢, is isotopic to the identity for every
n. Hence, up to extracting a subsequence, the diffeomorphisms ¢, are isotopic and
we are done.
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When every component of M — W has Abelian fundamental group, the closure
of M — W is an union of solid tori. In this case we will use Theorem D to find
an incompressible surface 7 C oM satisfying the hypotheses of Lemma 7.2. Let
Iy = (Fu,my,Ly) and I, = (F,,m,, L) be the ending gallimaufries of p, and
P, = Pn © Pus, Iespectively. Since we have assumed that p,, is minimally parabolic
and geometrically finite, we have F,, = F,, = 0y.oM and L, = L = §. Let
Il = (Foo, Moo, Loo) and 'L = (F] ,m., L. ) be the ending gallimaufries of
Poo and pl . respectively. By Theorem D, {I',} converges to ', and {I', } converges
to I'_. To each end of H?/p.,(1(M)) corresponds a subsurface of dM ; we will
say that this subsurface faces an end of T3 / po (771 (M)). Now we reduce the search
for H to the search for a curve ¢ C dM with some specific properties.

Claim 7.3. Let ¢ C dM be a simple closed curve such that ¢,(c) is isotopic to ¢
on IM for every n. Assume that there are surfaces H > ¢ and H' D ¢ such that
H faces an end of 1? [ poo(m1(M)) and that H' faces an end of T1? / p', (7r1(M)).
Assume that ¢ is peripheral in neither H nor H'. Then there exist a diffeomorphism
¢: M — M and a subsequence such that each (¢ o ¢y )| g is isotopic to the identity.

Proof. First, we show that the ends faced by H and H' are of the same type.

Claim 7.4. The surface H' faces a geometrically finite end of M. if and only if H
faces a geometrically finite end of M.

Proof. By Theorem D, H, respectively H’, faces a geometrically finite end if and
only if {£,,,(c)}, respectively {£,,, (¢n(c))}. is bounded. By assumption, ¢, (c) is
isotopic to ¢ hence we have £,,, (¢, (¢c)) = €5, (c). Thus H' faces a geometrically
finite end of M if and only if H faces a geometrically finite end of M. L

Consider the case where H and H' face geometrically finite ends of Mo, and M/
respectively. By Theorem D, {m,|g} and {m;,,|g’} converge to complete hyperbolic
metrics on / and H’ respectively. Since ¢, (H ) contains c, ¢, (H ) intersects H'. On
the other hand, £,/ (¢ (0I1)) — 0. Thus, for n large enough, ¢, (3H ) N H' c ail’
up to isotopy. It follows that up to isotopy, for n large enough, ¢, (H) either is disjoint
from H' or contains H'. Sincec C ¢, (H) (uptoisotopy)andc C H', H' C ¢, (H).
Similarly, ¢ 1(BH YN H C 3H up to isotopy. It follows that H C ¢, ' (H') for
n large enough Thus we have proved that ¢,,(F) = H', up to isotopy, for n large
enough. Up to extracting a subsequence and composing by a fixed diffeomorphism,
we may assume H' = H up to isotopy.

Given a curve d C H, there is K such that £, (d) < K. We also have
Epy (Pn(d)) = €y, (d) = K. Since T}, converges to I'w,, m;, converges to my. It
follows that for n large enough, we have £, (¢, (d)) < 2K. There are only finitely
many m,-geodesics with length bounded by K. Hence there are only finitely many
possibilities for the isotopy class of ¢, (d). Since this holds for any closed curve
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d C H, there are only finitely many possibilities for the isotopy class of the diffeo-
morphism ¢y, |z : H — H. This concludes the proof of Claim 7.3 when H faces a
geometrically finite end of M.

Assume now that /{ faces a geometrically infinite end of M, with ending lamina-
tion 1. and that A’ faces a geometrically infinite end of M/ with ending lamination
L’ Consider pants decompositions P and P’ of d,.oM such that £, (d) < & for
every component d of P and £,/ (d') < & for every component d” of P’. Consider
ey — 0 such that, up to extracting a subsequence, &, ¥p (m,) N H tends to a mea-
sured geodesic lamination A. Since T, tend to T'w,, the support of A is the ending
lamination L, N H of H, which in particular it fills /7. By Claim 7.4, the restriction
of the m, to H' does not contain a convergent subsequence. Extract a subsequence
such that {&, Fp-(m),) N H'} tends to a measured geodesic lamination A’. Since {I"} }
converges to Iy, the support of A" is the support of the ending lamination L., N H'
of H’, which fills H’.

If 9H is empty, then H is a component of M and the same holds for H'. Since
¢ C ¢p(H) and ¢ C H' by assumption, we have H' = ¢, (I1). Otherwise, for a
component d of 3F1, we have &, €,,,(d) — 0. Hence &, Loy (Pn(d)) — 0. Extract
a subsequence such that {¢, (d )} converges in the Hausdorff topology to a geodesic
lamination D. Since 4 is disjoint from ¢, D is disjoint from ¢. Since |A/| fills
H', if D were to intersect H' without being peripheral, then D would cross |A].
Since {&, Fp:(m,) N H'} tends to A" we would then have liminf &,£,, (¢n(d)) =
liminf e, (Fp:(m’,), ¢n(d)) > 0. Thus we have proved ¢, (3H) N H' C 3H' up to
isotopy. Similarly we have ¢, ! (0HYNH C 9H up to isotopy and we may assume
H' = ¢, (H) up to isotopy, for the same reasons as in the geometrically finite case
above.

Let us extend ¢ to a pants decomposition C of H and consider a leat d of
C. Extract a subsequence such that {¢,(d)} converges in the Hausdorff topol-
ogy to a geodesic lamination D C H. Since 4 is disjoint from ¢, D is dis-
joint from ¢ and hence crosses |A|. If D is not a simple closed curve, we have
eni(Fpr(my), pn(d)) — oco. By Theorem 2.2, we have &,£,,; (¢n(d)) — oo. This
would contradict en€,,’ (Pn(d)) = enm,(d) — i(d,A). Thus, up to extracting a
subsequence ¢, (d ) does not depend on n. It follows that there is ¢: M — M such
that up to extracting a subsequence {¢ o ¢, } leaves C invariant, up to isotopy. For
each leaf d of C, we choose a transverse ¢, namely a simple closed curve that crosses
d and is disjoint from C — d. By the same argument, up to extracting a subsequence
¢n (1) does not depend on . It follows that, up to changing ¢, (¢ o ¢, )|z 1s isotopic
to the identity. L

Now we can conclude the proof of Theorem C by finding a curve ¢ satisfying
the assumption of Claim 7.3. Let W C M be a characteristic submanifold. By
[Joh], up to extracting a subsequence, there 1s a diffeomorphism ¢: M — M such
that (¢ © ¢, )|ar—w 1s isotopic to the identity. As we have seen after the proof of
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Lemma 7.2, if a component of M — ¥ has a non-Abelian fundamental group, we are
done.

Assume that all components of M — ¥ have Abelian fundamental groups. Then
all the components of the closure of M — W are solid tori and either M is an /-bundle
or decomposes as the union of /-bundles over compact surfaces with boundary, /-
bundles over tor1 and solid tori.

If a component T; of this decomposition is an /-bundle over a torus, 077 N dM is
the union of one torus and some (atleast one) annuli and ¢,, exchanges the components
of 71 N dM (up to isotopy). Hence there is a homeomorphism ¢ : M — M such that
Y o ¢, maps each component of 71 MM to itself (up to isotopy and) up to extracting
a subsequence. Since ['s and I') are doubly incompressible, every curve ¢ lying
in such an annulus lies in the “middle” of an end. Namely for every representation
p € SH(M), ¢ lies in a surface I facing an end of M, and ¢ is not peripheral in 7.
Since ¥ ¢ ¢, maps each component of 77 N M to itself, ¥ o ¢, (c) is isotopic to ¢
on dM . Hence ¢ fulfills the hypothesis of Claim 7.3 (replacing ¢, with yr o ¢,,). This
provides us with an incompressible surface H C dM with non-Abelian fundamental
group and a diffeomorphism ¢: m — M such that (¢  ¢,) g is isotopic to the
identity.

If a component 77 of the decomposition of M is a solid torus, 77 N IM is the
union of annuli. If those annuli are not primitive then we are in the same situation
as before. Namely, every curve ¢ lying in such an annulus lies in the “middle” of an
end. Hence we can conclude as in the preceding paragraph.

We are left with the case where M is the union of 7-bundles over surfaces with
boundary and solid tori and where for each such solid torus 7, 7 N dM is an union
of primitive annuli. By assumption M is not an /-bundle. This is possible only if at
least one component 77 of W is a solid torus such that 77 N dM has at least three
components. Furthermore ¢, exchanges the components of 71 N dM, hence there is
¥ such that v o ¢, maps each component of 71 N dM to itself. Since I'so and I', are
doubly incompressible, at most one simple closed curve d C 77 M dM, respectively
d’" © Ty N dM, is peripheral in a surface G facing an end of M, respectively in a
surface G' facing an end of M/ . Since 77 M dM contains at least three non-isotopic
simple closed curves, we can chose a simple closed curve ¢ # d with ¢,(¢c) # d’
and ¥ o ¢, (d) isotopic to d for infinitely many n. Thus ¢ lies in a surface H facing
an end of M, ¢ is not peripheral in H, ¢n(c) lies in a surface H’ facing an end of
M/ and ¢, (c) is not peripheral in A’ and we can conclude as before.

The surface 1 produced in Claim 7.3 provides us with an incompressible manifold
N = H satisfying the hypotheses of Lemma 7.2. From Lemma 7.2, we conclude that
up to extracting a subsequence, the diffeomorphisms ¢, are isotopic. This concludes
the proof of Theorem C. L

When M is a trivial /-bundle over a closed surface § it is easy to see that The-
orem C does not hold. Consider a pseudo-Anosov diffeomorphism ¢: S — 5 with
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stable lamination AT and unstable lamination A~. Consider the diffeomorphism
¢: M — M whose projection along the fibers is ¢p. Consider the representation
p € dSH(M) which is doubly degenerate and has ending laminations |A 7| on one
side and |A™| on the other side. Then p is a fixed point of the action of ¢ on SH(M ).
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