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Outer automorphisms of free Burnside groups

Remi Coulon

Abstract. In this paper, we study some properties of the outer automorphism group of free
Burnside groups of large odd exponent. In particular, we prove that it contains free and free
abelian subgroups.
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Introduction

The free Burnside group of rank r and exponent«, denoted by (ft), is the quotient of
the free group by the subgroup FJ? generated by the w-th powers of all its elements.
In 1902, W. Burnside asked whether had to be finite of not (see [9]). For a

long time, one only knew that for some small exponents B^ (ft) was finite (for « 2

see [9], « 3 [9] and [22], « 4 [31] and « 6 [21]). In 1968, P. S. Novikov
and S. I. Adian achieved a breakthrough (see [25], [26] and [27]). Using the small
cancellation theory developed by V. A. Tartakovskii [33] and M. Greendlinger [17],
[18], [19], they proved that for large odd exponents, Br(ft) is infinite. Thanks to
a diagrammatic formulation of small cancellation, A. Y. Ol'shanskii simplified the

proof of P. S. Novikov and S. I. Adian [28]. Recently, T. Delzant and M. Gromov

gave a more geometrical proof of the same theorem [15]. These results not only
provide examples of infinite Burnside groups, they also help to study many of their
properties (Solution for the word-problem, description of finite subgroups,...). Other
information about the history of the Burnside problems can be found in [20].

The next Step to understand Burnside groups is to study their automorphisms. In
this paper, we are interested in the following questions. What kind of outer automor-
phisms of Br («) have infinite order? Does Out (B^ («)) contain relevant subgroups
like free groups or free abelian groups? To that end, we focus on the canonical map
Out (Fr) -> Out (Br(ft)).

Using the work of R S. Novikov and S. I. Adian, E. A. Cherepanov proved that
the automorphism </9 of F2 F(a, Z>), defined by ^(a) and ^(Z?) a, induces
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an outer automorphism of infinite order of B,. (n) (see [10] and Proposition 1.1). Our
first theorem provides a large class of automorphisms of the free group having the

same property.

Theorem 1 (see Theorem 1.3). <p Z?£ an anfomarpZn'sm a/ F^. Avsnme dza£ <p Zs

ZzyperAaZZc, Z.e. tAe semZ-dZrect prodwct x^> Z de^Zned Zry <p Zs a ZzyperAaZZc granp.
emfa an Znteger no ^ncZz tAat/br aZZ add Zntegers n Zarger dzan no, <p Zndwces

an anter antemarpZn'sm a/Zn/ZnZte arder a/ (n).

All proofs dealing with free Burnside groups have the same weakness: they involve
a presentation of B^ (n) which is not stable under automorphisms. Our work tries to
regain a little symmetry: we build a sequence of groups (£/&) such that <p induces

an automorphism of for all A and lim B^(n). To that end, we Start with

//o Fr and, at each step, we construct T/^+i as a small cancellation quotient
of //£. Some difficulties appear during this process. Assume that p is one of the
relations defining the first quotient F^ //o —//i. Since we want <p to induce
an automorphism of //i, the elements (p) for all m G N have to belong to the
set of relations. However the small cancellation theory only deals with relations

having more or less the same length. In our case, the relations <p(p) may have

very different lengths. To avoid this problem, we encode the information concerning
the automorphism in a larger group: F^ Z. Thus the elements <p(p) become

conjugates of p and do not need to be added to the set of relations. We shall now
use the fact that the group F^ x Z is hyperbolic. In 1991, A.Y. Ol'shanskii provided
a generalisation of the Novikov-Adian theorem (see [29]). Given a torsion-free,
hyperbolic group G, he proved that for large odd exponent n the quotient G/G" is

infinite. This result was recovered by T. Delzant and M. Gromov in [15]. We would
like to apply the same techniques to G F^ x Z. However we must take care not
to kill all n-th powers of G. Indeed, if we did so, the automorphism obtained at the
end of the construction would have finite order dividing n. That is why we propose
an extension of the Delzant-Gromov construction where the relations are chosen in
a normal subgroup of F^ x Z. This construction works in a more general Situation.

It leads to our main theorem:

Main theorem. l^//^G^F^lZ?ea sZzar^ evact segnence a/granps.
Avsnme dza£ // Zs nan-teZvZaZ, ^ZnZteZy generated, G Zs ZryperiaZZc, nan-eZementery,
te>nsZan-/ree and F Zs tensZan-/ree. FZzere exZste an Znteger no sncA dnte/ar aZZ add
Zntegers n Zarger dzan no, dze cananZcaZ map F -> Out (//) Zndnces an Zn/ecdve

ZzamamarpZn'sm F ^ Out (/////").
Theorem 1 is obtained by applying the main theorem to the short exact sequence

1 ^F^F^Z ^Z ^ 1. The work of M. Bestvina, M. Feighn and M. Handel
(see [5]) provides examples of hyperbolic extensions of free groups by free groups.
Using this result, we obtain our second theorem.
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Theorem 2 (see Theorem 1.8). Lef r 5= 3. TAere emfa an Znteger «o swcA fAaf/ar
aZZ add Zntegers a Zarger fAan «o, *Ae graap Out (B^ («)) confaZns a saAgraap wAZcA

Zs ZsaraarpAZc F2.

The strategy to embed abelian subgroups in Out (B^ («)) is a little different. We do

not apply the main theorem to an appropriate hyperbolic extension of the free group.
We construct a family of automorphisms of which already commute in Aut (F^)
and check "by hand" that they do not satisfy any other relation in Out (B^ («)). This

yields the following result.

Theorem 3 (see Theorem 1.10). Lef r ^ 1. TAere emfa an Znfeger no sacA fAaf

/or aZZ Zntegers n Zarger fAan no, fAe graa/zs Out (B2r(^)) Out (B2r
eanfaZn a saAgraap wAZeA Zs ZsaraarpAZc fa ZL

Hyperbolic automorphisms induce automorphisms of infinite order of free Burn-
side groups of large exponent. But they are not the only ones. For instance, the

automorphism </9, studied by E. A. Cherepanov and characterized by </9(a) aA and

(/9(A) a is not hyperbolic. Indeed, </9^ fixes the commutator [a~*, A~*]. The semi-
direct product F^ xi«p Z contains therefore a subgroup which is isomorphic to Z^. We
wonder if there exists a criterion to decide whether an automorphism of F^ induces

an outer automorphism of infinite order of B^(n) for some large exponent or not.
In particular, is there a link between this property and the growth of the automor-
phism? Section 1.2 gives a partial answer. We prove that a polynomially growing
automorphism always induces an automorphism of finite order of B^ (n).

Outline of the paper. In Section 1 we explain the consequences of the main theo-

rem. In particular, we provide examples of automorphisms of infinite order of B^ (n).
We also construct free and free abelian subgroups of Out (B^(a)). Section 2 deals

with the proof of the main theorem. To begin with, we recall the geometrical point of
view on the small cancellation theory developed by T. Delzant and M. Gromov. We
also improve some results of [15] which are necessary to control the small cancella-
tion parameters in our Situation. Then, we prove an induction lemma (Lemma 2.16)
which is the fundamental Step of the induction process used in Section 3 to prove the
main theorem.

Acknowledgement. I am grateful to Thomas Delzant for his invaluable help and

advice during this work. I would like to thank Gilbert Levitt for related discussions,
in particular, concerning the growth of automorphisms. Many thanks also go to
Etienne Ghys who points out many questions to me, like the embedding of free abelian

subgroups. I thank also the referee for many useful comments and corrections.
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1. Automorphisms of Burnside groups

Remark. In this paper, we are interested in outer automorphisms of free Burnside

groups. One question still unanswered is the following: given an automorphism of
the free group F,., does it induce an automorphism of infinite order of («)? Note
that every element of B^ (ft) has finite order. In particular, every inner automorphism
of Br (/?) has finite order. It follows that an element of Aut (B^ («)) has finite order if
and only if so has its image in Out (B^ (/?)).

1.1. Examples ofautomorphisms of infinite order. Using the work of P. S. Novikov
and S. I. Adian (see [25], [26] and [27]), we exhibit a first example of outer automor-

phism of infinite order of B^ («). This example was already studied by E. A. Chere-

panov in [10].

Proposition 1.1 (see [10], Theorem 1). {a, A} Ae a generaAng q/TAe/ree
growp F2. Ae tAe ßwfomorpAZs'm 0/ F2 <iq/Zn£<i Ay </9(a) aA and </9(A) a.
TAere emA an Znteger «0 ^ncA dza^/ar aZZ add Zntegens- n Zarger dzan no, </9 Zndwces

an antoraorpAZsra q/dn/ZmYe order 0/ B2(n).

Proo/ We consider the sequence of iterated images of a by <^.

</9^(ö) <2, </(«)
</9*(ö) aA,

</9^(ö) aAa, <^(«)

</9^(ö) aAaaA,

This sequence converges to a right infinite positive word

</9°°(a) aAaaAaAaaAaaAaAaaAaAa

which has the following property. For every word n in {a, A}, is not a subword of
<p°°(a) (see [24]). Let n be an odd integer larger than 10 000. In order to prove that
the free Burnside group of large exponent is infinite, P. S. Novikov and S .1. Adian use
the following fact: if m is a non-trivial reduced word in {a, A} which does not contain
a subword that equals a fourth power, then m defines a non-trivial element of 62(7?)

(see [1], IV. 2.16, or Statement 1 in [2]). In particular, (<^(a)) induces a sequence
of pairwise distinct elements of 62(71). It follows that </9 induces an automorphism of
infinite order of B2 (n).

We now wish to investigate a large class of automorphisms of free groups: the

hyperbolic ones. We prove that they induce automorphisms of infinite order of free
Burnside groups.
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Definition 1.2. Let G be a hyperbolic group. An automorphism </9 of G is hyperbolic
if the semi-direct product G xi^ Z defined by </9 is hyperbolic.

Example. Let I] be the fundamental group of a compact surface S of genus larger
than 2. Thanks to Thurston's hyperbolisation Theorem, every pseudo-Anosov home-

omorphism of induces a hyperbolic automorphism of I] (see [30]).

There exist many characterizations of hyperbolic automorphisms. Let us endow
G with the word metric | | relative to a generating set. M. Bestvina and M. Feighn
proved in [3] that an automorphism ^9 of G is hyperbolic if and only if there exist
A > 1 and m e N such that for all g e G

A |g| s= max {|^/"(g)|, |^"(g)|}.
On the other hand, an automorphism of a free group is hyperbolic, if and only if
it has no non-trivial periodic conjugacy classes (see [5] and [8]). Note that the

automorphism </9 studied in Proposition 1.1 is not hyperbolic: </9^ fixes the commutator
; Z>~*]. More generally, Aut (F2) does not contain hyperbolic elements. Every

automorphism </9 of F2 is indeed induced by a homeomorphism of the punctured torus.
Therefore </9^ has to fix the conjugacy class of F2 corresponding to the boundary of
the torus.

Theorem 1.3. Lef r ^ 3. Lef </9 Z?£ <2 ZzyperZwZ/c awforaorpZzAra 0/ Fr. TTzere exAfa

an fizteger «0 ^wcZz ^Zzaf/or aZZ odd mtegers « Zarger fZzan /ndwces an awter
antomorp/zfsm 0/zurate order 0/ Br (r/).

Proo/ By definition, the group Fr xi«p Z is hyperbolic. It follows that the short

exact sequence 1 -> Fr -> Fr xi^ Z -> Z -> 1 satisfies the assumptions of the
main theorem (see page 790). Thus there exists an integer «0 such that for all odd

integers a larger than 0, the map Z -> Out (TV) induces an injective homomorphism
Z ^ Out (Br(ft)). However, the morphism Z -> Out (Fr) is by construction the

one that maps m to the outer automorphism induced by Consequently, </9 induces

an outer automorphism of infinite order of Br (a).

1.2. Polynomially growing automorphisms of free groups. We provide now ex-
amples of automorphisms of infinite order of Fr which induce automorphisms of
finite order of Br (a). Given a conjugacy class x of Fr, we denote by [x] the length
of any cyclically reduced word representing x. Let O be an outer automorphism of
Fr. We look at the action of O on the conjugacy classes of Fr.

Definition 1.4. The automorphism O grows polynomially if for every conjugacy
class x of Fr, the sequence ([O^(x)]) grows polynomially.
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Proposition 1.5 (see [23]). LcZOkapoZynomZoZZygrowZngonZcronZomorpZzZsmo/
F,.. Fp Zo rcpZoccmcnZ o/ O wZzZz o power o/ O, one o/zZze/oZZowZng osserZZon ZzoZFs.

(i) FZzere cmZ </9 G Aut (F^) represenZZng O onF o non-ZrZvZoZ/ree FecomposZzZon

Fi * F2 0/ F^ wZzZcZz Z.s ZnvorZrmZ nmZer 99.

(ii) FZzere cmZ </9 G Aut (F^) represenZZng O, o non-ZrZvZoZ /ree FecomposZzZon

Fi * (z) 0/ Fr onF an eZemenZ / 0/ Fi sncZz zZzoZ Fi Zs ZnvorZonZ nmZer </9

OftF </9(Z) Z/.

Theorem 1.6. LeZ r ^ 1. LeZ Ofeß poZynomZoZZy growZng onZer onZomorpZzZsm 0/
Fr- For oZZ posZzZve ZnZegers n, O ZmZnces an onZer onZomorpZzZsm q/yZm'Ze orFer 0/
Br(/I).

Proo/ The proof is by induction on the rank r of the free group. The outer automor-
phism group of Z is reduced to {id, — id}. Hence the theorem holds for rank one.
Let r 5= 1. Assume that the theorem holds for any rank smaller or equal to r. Let
O be a polynomially growing outer automorphism of Fr+i and n a positive integer.
Following Proposition 1.5, we distinguish two cases.

FZrsZ cose. There exist an automorphism </9 G Aut (Fr+i) representing a power of O

and a non-trivial free decomposition Fi * F2 of Fr+i invariant under </9. We denote

by (/9; the restriction of </9 to F;. By induction, there exists an integer p; such that
</9^' induces the identity of F; /FZ\ It follows that </9^^ j§ trivial in Aut (Br
Therefore O induces an outer automorphism of finite order of B^+i (n).

SecomZ cose. There exist an automorphism </9 G Aut (Fr+i) representing a power of
O, a free decomposition Fi * (z) of F^+i and an dement / of Fi such that Fi is

invariant under </9 and <^(Z) Z/. We denote by <^1 the restriction of ^ to Fi. By
induction, there exists an integer pi such that induces the identity of Fi/F".
On the other hand, for all integers g, <^(Z) equals Z/<^i(/)<^ (/)... <z>i "*(/). It
follows that the equality below holds in B^+i (n):

^(0 f[/<?i(/)^(/)...^"k/)]" *.

Hence </9^i is trivial in Aut (B^+i (n)). Therefore O induces an outer automorphism
of finite order of B^ +i(n).

1.3. Subgroups of Out (B,. (w)). We are now interested in relevant subgroups that

can be embedded in Out (B^ (n)). We Start with free subgroups. The following result
is due to M. Bestvina, M. Feighn and M. Handel

Theorem 1.7 (see [5], Theorem 5.2). LeZ r ^ 3. LeZ</9i onF^2 Zwo onZomorpZzZsms 0/
Fr- We awwme zZzoZ zZze onZer onZomorpZzZsms ZmZnceF Zry </9i one? ^2 ZrreFncZZ?Ze,

Fo noZ Zzove common powere omZ neZzZzer Zzove o nonZrZvZoZ perZoFZc con/Fgocy cZoss.
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FZ^re emfa an /nteger m sncZz Pzaf ^9^ and </9^ generate a/ree gronp. Moreover, dze

seraz-d/recf prodncf x F2 de^Zned Zry </9^ and </9^ A Zzy/?erZ?oZ/c.

Theorem 1.8. Lef r 5= 3. FZzere an integer «0 ^ncZi diaf/or aZZ odd integers- n

Zarger dian «0. Out (IL 00) conta/ns <2 snZigron/? wZncZi A AoraorpZiic te> F2.

Proo/ Theorem 1.7 provides a hyperbolic extension of F^ by F2. In other words,
1 —> F,. F^ F2 —> F2 -> lisa short exact sequence such that F^ x F2 is

hyperbolic. The result follows from the main theorem.

We are now looking for free abelian subgroups of Out (IL(n))- Let Gi and G2
be two torsion-free groups. We denote by G the free product Gi * G2. Since Gi and

G2 are torsion-free, so is G (see [32]). Moreover, for all integers n, G" D Gi Gj.

Lemma 1.9. Lef n Z?e an integer. Lef 49 Z?e an awtomorp/w'sm o/G wZiicZi stfaMizes die

/acter Gi. We awwme diaf </9 i'ndwces an aiteoraorpZiAin o//inite order o/G/GF FZien,

die resteicdon o/</9 te> Gi i'ndwces aZso an aiteoraorpZiAin o//nite order o/Gi/G".

Proo/ Since </9 induces an automorphism of finite order of G/ GF there exists /: e N *

such that for all gGG, <Z^(g")g"~* £ GF However Gi is invariant under Thus for
all g e Gi, <^(g)g~* e G" fl Gi G". It follows that the restriction of </9 to Gi
induces an automorphism of finite order of Gi /G".

Theorem 1.10. Lef r ^ 2. FZiere evAte an integer no sncZi diaf/or aZZ odd integers-

n Zarger dian no, Out(B2r00) ^nd Out(B2r+i00) eonfain a snZigron/? wZncZi rs-

AoraorpZiic te> ZF

Proo/ We denote by </9 the automorphism of F2 studied in Proposition 1.1. There
exists an integer no such that for all odd integers n larger than no, </9 induces an

automorphism of infinite order of 62(71). Let n be an odd integer larger than no. We
consider F2r as a free product Fi * • • • * P^ of r copies of F2. For all 1 e {1,..., r},
we define an automorphism ^ of F2r as follows.

(i) The restriction of ^ to F; is <^.

(ii) The restriction of ^ to any other factor is the identity.

By construction, the </9; 's generate an abelian subgroup ofAut (F2r) and all the more of
Out (B2r 00) • We now study the relations between the ^ 's in Out (B2r 00) • Consider

r integers such that / induces an inner automorphism
of B2r00- By Lemma 1.9, <^', which is the restriction of / to F;, induces an

automorphism of finite order of F;/F/ B2(n). This forces to equal zero.
Hence the </9; 's generate a subgroup of Out (B2r00) which is isomorphic to ZF For
Out (B2r+i00) we apply the same argument with the following free factorization:

J/r + 1 Fl * • • • * Fr * Z.
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2. Small cancellation theory

In this section we will be concerned with the small cancellation theory. We expose
the geometrical point of view developed by T. Delzant and M. Gromov in [15] and

used in Section 3 to prove the main theorem.

2.1. Hyperbolic spaces. Let X be a proper and geodesic space. The distance be-

tweentwopointsx andx'of X isdenotedby |x — x'|x (orsimply |x — x'|). Although
it may not be unique, we denote by [x, x'] a geodesic joining x and x'. We assume
that X is 5-hyperbolic (in the sense of Gromov) i.e. for all x, y, z, Z e X,

|x — y| + |z — Z| ^ max{|x — z| + |y — Z|, |x — Z| + |y — z|} + 23.

The boundary at infinity of X will be denoted by 3X (see Chapter 2 of [11]). A subset

7 of X is a-quasi-convex if every geodesic of X joining two points of 7 lies in the

a-neighbourhood of 7, denoted by 7++

Lemma 2.1 (see [15], Lemma 2.1.5, or [12], Corollary 1.2.2). L^x, x', y and y'
Z?£/anr pomfa q/*X. o/[x, x'] sncZz |w — x| > |x — y | + 8<5 and
|w — x'| > |x' — y'l +83. TTzen n Z^Zangs to dze 83-n£/gZzZ?6>nrZz<96>d q/*[y, y'].

Proposition 2.2 (see [15], Lemma 2.2.2, or [12], Proposition 1.2.4). 7 and Z Z?<?

ftvo a^gnasz-canvex snZ?s£to o/X. Lbr aZZ A 5= 0

diam (r+^ n Z+^) s= diam (y+«+io* n z+"+') + 2.4 + 205.

Let g be an isometry of X. In order to measure its action on X, we dehne two
translation lengths. By the toansZadan Zengdz [g]^ (or simply [g]) we mean

[tf] inf |gx-x|.

The asymptot/c /ransZa/fan Zengdz [g]|? (or simply [g]°°) is

[g]°° lim — |g"x —x|.
«—+ 00 /7

These two lengths satisfy the following inequality (see [11], Chapter 10, Proposi-
tion 6.4):

fe]°° < [?] < [?r + 325 for all g e G.

The axA Ag of g, dehned as follows, is a 403-quasi-convex subset of X (see [15],
Proposition 2.3.3):

^ {x e Z/|gx -x| s= max{[g], 405}}.
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The isometry g is Zzy/?£rZ?oZ/c if its asymptotic translation length is positive. In
this case, g fixes exactly two points of 3X denoted by g~ and g+. The cylinder of
{g~, g+}, denoted by Tg, is defined to be the set of points of X which are 103-close

to some geodesic joining g~ andg+. Itis a g-invariant, 83-quasi-convex subset of X.

Proposition 2.3. Lef g k a Zzy/?£rZ?oZ/c Aorae/ry o/X. Wfe Z?y er o geodesic

jom/ng g~ ond g~*~, fZze po/nfa o/3X /xe<i Z?y g. Lef Fkß a^gw<2s/-conv£x swZ?s£f o/
X. //* T Zs g-/mxznonf, fZz^n er zs confaZned Zn fZze (a + 83)-n£/gZzZ?owrZzoo<i o/T. 7n

porf/cwZor, er Zs confaZned m fZze 483-n^/gZzZ?owrZzooJ o/^4g.

Proe/ Let x be a point of er. We write tZ for the distance between x and T. Let y be a

point of T such that |x — y | ^ tZ + 3. Since g is hyperbolic, there is an integer m such

that |gx — g"x| > 2tZ + 483 (see [11], Chapter 10, Lemme 6.5). We denote by
/?+ (respectively /?_) a projection of g^x (respectively g~x) on er, i.e. a point of
er such that |gx — /?+1 eZ (g^x, er) (respectively |g~x — /?_| eZ (g~x, er)).
The geodesics er and g^cr have the same extremities. It follows that they are 83-close

(see [11], Chapter 2, Proposition 2.2). In particular, |gx — /?+| ^ 83. In the same

way, we have |g~x — /?_ | ^ 83. Note that x lies on the subgeodesic of er delimited
by /?_ and /?+. Indeed, if it was not the case we should have

|g~x - g"*x| ^ 1/7- - p+| + 165 ^ ||x — p_| — |x - p+|| + 165

s= Hx-g-^xl - |x-gx|| + 325

s= 325.

Contradiction. On the other hand, we have

|x — /?+| ^ |x — gx| — 83 ^ ^|g-^x — gx| — 83 > tZ + 163.

Hence

|x - p+l > |g"»y - g*x| + |g»«x - p+l + 85 ^ |g"V - p+| + 85.

In the same way, we have |x — /?_| > |g~^y — /?_| + 83. By Lemma 2.1, the

point x is 83-close to [g~y, g"*y]. However g~^y and g^y belong to T which
is a-quasi-convex. Therefore the distance between x and T is smaller than a + 83.

Definition 2.4. Let P be a set of isometries of X. The Zn/ecZZvZ/y rad/ws denoted by
Hnj (P, X) and the raox/raoZ overZop denoted by A(P, X) are the following quantities

nnj(P,*) inf{[gr/ge i>*},

A(P,Z) sup{diam(r+^ n r+^)/g,g' er+/g'},
where P * denotes the set of hyperbolic elements of P.
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Let G be a group acting properly, co-compactly, by isometries onl. An element

g of G is either eZZ/pft'c (in particular, it has finite order) or AyperAoZ/c (see [11],
Chapter 9). A subgroup of G is called eZeraentary if it is virtually cyclic. Since G is

a hyperbolic group, every non-elementary subgroup of G contains a copy of F2, the
free group of rank 2 (see [16], Chapter 8, Theorem 37). Given a hyperbolic element g
of G, the normalizer of (g) is elementary (see [11], Chapter 10, Corollary 7.2). The

group G satisfies the sraaZZ cenfraZ/zers AypctfAesA if G is non-elementary and every
elementary subgroup of G is cyclic. The next lemma will be needed in Section 2.5.

Lemma 2.5. Wfe ^Aotf G sa/A/As sraaZZ cenfraZ/zers Ay/?6tfA£s/s. Z? Ae

<2 swAse/- 0/ G sfa&Ze Ay cön/wg<z/zc>n wAose eZemenfa are AyperAaZ/c an<Z

nctf proper powere. TAere emfa a swAse^ Z?o 0/ Z?, staAZe Ay con/wgaft'on sa/A/y/ng
^Ae/oZZow/ngs:

(i) /or aZZ A e Z? one an<Z onZy one eZemen^ o/{A, A~*} AeZongs to Z?o,

(ii) any ftvo <ZZs/Azct eZeraento o/Z?o g^n^rato a non-eZeraentory sz/Agrowp.

ZVoo/ To prove (i) it is sufficient to show that an element A of Z? cannot be conjugate
to its inverse. Suppose, contrary to our claim, that there exist ÄeZ? and g e G such

that g/zg-i A~*. Thus, g belongs to the normalizer of A, which is elementary
(see [11], Chapter 10, Proposition 1). In particular, g and A generate an elementary
subgroup of G. Since G satisfies the small centralizers hypothesis, g and A commute.
It follows that A A~*. Hence A is not hyperbolic, a contradiction.

Let us now prove (ii). Let Ai, A2 e Z?o- Assume that they generate an elementary
subgroup. G satisfying the small centralizers hypothesis, Ai and A2 commute. Since

Ai and A2 are not proper powers, they are either equal or inverse. However Z?o does

not contain an element and its inverse. Hence Ai A2.

Definition 2.6. Let G be a group acting properly co-compactly by isometries on a

proper, geodesic, <5-hyperbolic space X. The invariant A(G, X) is the upper bound
of diam(A+^ p where g and g' are two elements of G which generate a

non-elementary subgroup and whose translation lengths are smaller than 1005.

Remark. If there is no such g and g' we adopt the Convention that A(G, X) +00.
However in our study, G will be non-elementary and the translation lengths of its

generators small in comparison to 5. Therefore A(G, X) will always be finite.

This invariant A(G, X) wasusedby T. Delzant andM. Gromov to study hyperbolic
groups satisfying the small centralizers hypothesis (see §2.4 in [15]).

Remark. The objects defined previously depend implicitly on the hyperbolicity con-
stant 5 (e.g. Tg, Ag, and A(G, X)). Although the notation does not make this depen-

dency explicit, we should keep in mind that it plays an important role. For instance,

we have the following lemma:
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Lemma 2.7. Lef X Z?£ proper, geodes/c, <5-Zzyp£rZ?oZ/c 5-poce and G a gronp ac/fng
proper/};, co-corapacdy Z?y womefr/e^ on X. Lef A Z?e o posirfve nnraZ?£r PZzen

A(G, AAf) AA(G, X), wZzere AAf A fZze A5-Zzyp£rZ?oZ/c spoce X endowd wzYA fZze

rescoZed mefr/c A | [y.

Proo/ Let g be an element of G. Its translation lengths satisfy [gUx A[g]x
and [g]^ A[g]^?. Since AAf is a A5-hyperbolic space, the axis of g in AAf is

exactly the image in AAf of the axis Ag of g in X. We will denote it by AAg. Let

g and g' be two elements of G that do not generate an elementary group and whose

asymptotic translation lengths in AAf are smaller than 100A5. In particular, we have

[£"']? ^ 1005. By definition of A(G, Af), we have

diam (A4+*°^ n A4+/^) Adiam (4+^ n ,4+/^)

^ A,4(G,X).

After taking the upper bound for all g and g', we obtain A(G, AAf) ^ AA(G, Af). In
the same way, A(G, AAQ ^ AA(G, Af). This establishes the desired equality.

2.2. Small cancellation theorem. In the remainder of Section 2 we require X to
be a proper, geodesic, simply-connected, 5-hyperbolic space and G a group acting
properly, co-compactly, by isometries on X.

Let P be a set of hyperbolic elements of G. We assume that P is stable by
conjugation and contains only a finite number of conjugacy classes. We denote by
ZV the (normal) subgroup of G generated by P. Our goal is to study the quotient
G G/ZV. The small cancellation parameters A(P, X) and r^j (P, X), defined
in the previous section, respectively play the role of the length of the largest piece
and the length of the smallest relation in the usual small cancellation theory. We

are interested in situations where the ratios A ^ and jHAAl are very small (see

Theorem 2.8 below). To that end, we build a space X with an action of G. We only
recall the main steps of this construction. For more details we refer the reader to [12]
and [13],

Fix ro > 0. Its value will be made precise in the small cancellation theorem (see

Theorem 2.8). Let p e P. We endow Lp with the length metric | |p induced by the
restriction of | to Lp. The con<? ov^r Lp denoted by Cp(ro) (or simply Cp) is the

topological quotient of Lp x [0 ro] by the equivalence relation which identifies the

points (y, 0) for all y £ Lp. Given two points x (y, r) and x' (y', r') of Cp the

following formula defines a distance on Cp (see [7], Chapter 1.5, Proposition 5.9 (1)):

cosh(|x,x'|) coshr coshr' — sinhr sinhr'cos (min Itt, ———
V l sinh ro

The cone-ojffover X reZadveZy fo P, denoted by Afp (ro) (or simply Af), is obtained

by attaching for all p e P the cone Cp to Af along Lp. The distances | and | Ic
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induce a metric on X (see [12], Proposition 3.1.7). We extend by homogeneity the
action of G on I in an action of G on X. Let x (y, r) e Cp and g e G. We
define gx to be the point of Cgpg-i gCp given by gx (gy, r). The group G

acts by isometries on X (see [12], Lemma 4.3.1). The space Xp(ro) (or simply X)
is the quotient of X by X.

Theorem 2.8 (Small cancellation theorem, see [15], Theorem 5.5.2, or [12], Theo-

rem 4.2.2). 7Pere ex/stf posift've nwraZ?£rs <5o, <5i, Ao ßnJ ro 5= 10^<5i safZs/yZng ^
/oZZcnvZng pro/^rztov

Xkß proper, g^oJ^^Zc, sZrapZy-connected, <5-ZzyperZ?oZZc space. Le£ G fea
gronpac/fngproperZy, co-corapacdy, Z?y ZsoraeteZesonX. Le£Pfease/to/PyperZ?oZZc
eZeraente o/G. We awwme P Zs stoPZe Z?y con/ngadon and contoZns onZy a^ZnZte

nnrafeer o/can/wgacy cZasses.

7jf5 ^ $o, A(P, X) ^ Ao and rinj(P, X) 5= 3tt sinhro, dzen Xp(ro) Zs proper,
geodesZc, sZrapZy-connected and <5i-ZzyperZ?oZZc. Moreover G acte properZy, co-cora-
pacdy, Z?y ZsometeZes on Zf.

Remark. The fact that the constants ro, <5o, and Ao do not depend on X, P or G

is very important in order to iterate the small cancellation construction.

2.3. Estimation of an injectivity radius. From now on we suppose that X, G and

P satisfy the assumptions of the small cancellation theorem. In particular, 5 ^ <5o,

A(P, X) ^ Ao and r^ (P, X) 5= 3tt sinh ro, where <5o, Ao and ro are the constants

given by Theorem 2.8. We also assume now that G satisfies the small centralizers

hypothesis, i.e. G is non-elementary and all elementary subgroups of G are cyclic
(see Section 2.1). We are now interested in the properties of the action of G on X.
This will allow us to iterate the small cancellation process. We need in particular
an estimation of A(G, X) and some injectivity radius. We already know that X is

<5i-hyperbolic (see Theorem 2.8).
For all p e P, we write Pp for the subgroup of G which stabilizes 7p. It is an

elementary subgroup of G (see [11], Chapter 10, Proposition 7.1). Let v and tt be the

respective maps v : X -> X and tt : G —G. The space X is obtained by attaching
cones of large radius to v(X). This provides a kind of Margulis' decomposition. The

cones play the role of the thick part: the translation length of a hyperbolic element of
G in a cone is very large. The following lemma illustrates this fact.

Lemma 2.9 (see [15], Lemme 5.9.3). Le£ g Z?e an eZeraen/to/G swcAfAaf[g] ^ 200<5i.

Assnrae dza£ g Joes netf Z?eZong to Pp 7r(Pp)/or aZZ p E P. PZzen Ag Zs contoZned
Zn v(X) +*^i and Ag fl v(X) Zs non-erap/y.

To study v(X) +*^i, which is an analogue of the thin part of the Margulis de-

composition, we use the fact that the map v(X) -> X is a local quasi-isometry:



Vol. 88 (2013) Outer automorphisms of free Burnside groups 801

Lemma 2.10 (see [12], Proposition 3.1.8). Lef x and x' Z?£ ftvo po/nfa o/X. Pz'rsf

|x—x'|^ ^ |x—x'|x- M<9r£6>V£?; z/|x—x'|^ ^ y fZz£/2 |x—x'|x ^ ^jrsmhro

Using this point of view, T. Delzant and M. Gromov proved the following result.

Proposition 2.11 (see [15], Lemme. 5.10.1). Lef C feß 50<5i-gz/asz-c6>nv£x

6>/v(X) + *^L PZzere exzsfa <z sz/Z?s£f C o/X sz/cZz fZzaf

(i) fZze map v : X -> X /ndwces an z^ome/ry/rora C onto C,

(ii) fZze prq/ectzon tt : G -> G mdwces an zsoratfrpZzzsra Z?£ftv££n Stab(C) and
Stab(C) wZzzcZz are respecrfveZy fZze staMzz^rs o/C anzZ C.

Proposition 2.12. Lef // Z?£ <z norraaZ sz/fegroz/p o/G cc>nfa/rang P anzZ // zYs zraage
Z?y fZze prq/Vctzon tt : G -> G. PZzen r^Cff, X) 5= min {/cZ, <5i}, wZzere /c stanzZs/or
4ö7r^sinh

ro
^ ^ ^ smaZZesf ayympto/fc frazzsZa/Pm ZezzgfZz 6>/a ZzyperZwZ/c eZemezzf

<?/// fZzaf Joes nof Z^Zong any Pp.

Remark. This lemma is a refinement of Lemma 5.11.1 proved by T. Delzant and

M. Gromov in [15]. They gave indeed a lower bound for r^j (G,X). Four our
purpose, we need a more accurate result. We provide here an estimation of the

injectivity radius of a normal subgroup of G.

Proo/ Since // is a normal subgroup containing the relations P, //.
Suppose the assertion of the lemma is false. There exists a hyperbolic element Zz of
// such that [Ä]°° < min {/cZ, <5i}. Fix an integer m such that 7<5i ^ m min {/cZ, <5i} ^
85i. By [11], Chapter 10, Proposition 6.4,

[Ä] ^ m[Ä]°° + 325i < m min {/cZ, <5i} + 32<5i ^ 40<5i.

Since [Zz] ^ 200<5i, the axis of Ä in X, is a 40<5i-quasi-convex (see [15],
Proposition 2.3.3), which is contained in the 100<5i-neighbourhood of v(X) (see

Lemma 2.9). By Proposition 2.11, there exists a subset C of X such that

(i) the map v: X -> X induces an isometry from C onto

(ii) the map tt : G -> G induces an isomorphism from Stab(C) onto Stab(A^).
However Zz belongs to Stab(A^). We denote by Zz its preimage in Stab(C). Since Zz

is hyperbolic, Zz is necessarily a hyperbolic element of // that does not belong to Pp
for all p G P. By assumption, [Zz]|? 5= Z.

On the other hand by Lemma 2.9, PI v(X) 7^ 0. Fix x G PI v(X) and

denote by x its preimage in C P I. As the map v: C -> is an equivariant

isometry we have |Zzx — x= |Zzx — x |^. Recall that x belongs to the axis

of Ä. It follows that

|Zzx — x|^ |Äx — x|jp ^ max {[/z^], 40<5i} ^ 40<5i.
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By Lemma 2.10, |Zzx — x|x is smaller than ^smhro Consequently,

m/ s= m[Ä]^ s= [A]* ^ IA^jc - JC|*

7*0

80tt<5i sinh ro 651

ro /c

In particular, 7<5i ^ m min {/cZ, <5i} ^ m/cZ ^ 6<5i, a contradiction.

2.4. Other properties of G and X. In this section, we review some results obtained

by T. Delzant and M. Gromov in [15].

Proposition 2.13 (see [15], Lemme 5.9.5). PZze constan^ A(G, X) sads/es dze/oZ-
ZowZng Zner/naZz7y.

.4(G,Z) s= v4(G,X) + 1000Äi^o«i.

Proposition 2.14 (see [15], Lemme 5.10.2 and Lemme 5.10.3). Assznne /Pa£ every
eZemen^ o/P Zs an oddpower o/an eZemen^ o/G wZzZcZz Zs no£ aproperpower PZzen

G sads/es zTze/oZZowz'ng properdev

(i) Fvery eZementary sndgronp o/ G Zs cycZZc.

(ii) Le£ F de a/nzYe sndgronp o/G. FZtZzer F Zs dze o/a/nz7e sndgronp o/
G, or dzere e-mfa p G F sncZz rZzzzr F Zs a sndgronp o/Fp jr(Fp).

Proposition 2.15 (see [15], Theorem 5.7.1). PZze Fzder cZzaracterZsdc o/G sads/es
/(G, Q) /(G, Q) +1P/G |, wZzere | P/G | denotes dze zzwmkro/con/ngacy cZavses

o/P.

2.5. An induction lemma. One should think of the next lemma as a Step of the
iterative procedure involved in the proof of the main theorem. We recall that the
invariant A(G, X) Stands for the maximal overlap between the axes of two small

hyperbolic elements of G (see Definition 2.6). The injectivity radius r^ (//, X)
denotes the smallest asymptotic translation length of a hyperbolic element of // (see

Definition 2.4).

Lemma 2.16 (Induction lemma). FZzere evZ^posZdve zzwmkn <5i, Ai, Zi, Z2, /3 and

an z'nteger /7 0 sads/yZng dze/oZZowZng properdev Le£ n de an o/Z/Z Znteger Zarger dzan

no- Pe£ Ifea propez; geodesZc, sZmpZy-connected, <5i-ZzyperdoZZc space. Le£ G de a

gronp acdng properZy, co-compacdy, dy ZsometrZes an X and // a normaZ sndgronp
o/G. Le£ P de dze se£ o/ZzyperdoZZc eZemenfa o///, wZzZcZz are no£properpowere Zn G

and wZzose ayymptodc /ransZadon Zengdzs are smaZZer dzan Zi. Le£ ZV de dze normaZ

sndgronp o/G generated dy {Zz^/ Zz E P}, G dze gnoden^ G/ZV and // dze Zmage 0/
// dy dze eanonZeaZ map tt : G -> G. We assznne dza£

(i) G sads/es dze smaZZ cen/raZZzers- Zzypo^Zze^Z^; moreover dze order 0/every/nzYe
sndgronp 0/ G dZvZdes n,



Vol. 88 (2013) Outer automorphisms of free Burnside groups 803

(ii) A(G, A-) Ai a«Jrinj(7/,Z) 5= ^=,

(iii) / (G, Q) + ^ |R/G | >0, tv/zere / (G, Q) A Eft/er c/zftracterA/Zc ö/G ftftd
| R / G | o/cöftjftgftc); cZftvs£s /ft i?.

77z£ft, f/zere emPs <2 proper, geo<Zes/c, ^Zmp/y-connecfeJ, ^i-ZzyperfeoZ/c .spoce X
oft w/ft'c/z G acta proper/};, eo-eoftzpoef/};, fry woftzefr/e^. Moreover, G, // ofte? X
sft/A/y f/ze pomf^ (i) ofte? (ii), / (G, Q) >0 ofte?

br(#)]f7r(g) s= "7_[g]~ /orall g e G.

Remark. If G, //, X and ft satisfy the hypothesis of the previous lemma - including
hypotheses (i), (ii) and (iii) - we will say that (G,//, X) sofrs/zes f/ze mdwcrfoft

ossftftzp/Zofts/or expofteftf ft. The induction lemma says in particular that if (G, //, X)
satisfies the induction assumptions for exponent ft, so does (G, //, X).

The remainder of this section will be devoted to the proof of the induction lemma.

Proo/ The positive numbers ro, <5o, <5i, and Ao are given by the small cancellation
theorem (see Theorem 2.8). The constant /c 49^^^ is the one that appears in

Proposition 2.12. We define a rescaling parameter L„ The sequence

(L„) is increasing and tends to infinity. Up to chose fto large enough, we may assume
that for all ft ^ fto

(i)

20005ie^05i +5 ^ min {Ao, IOOOV^oäi}, (2)

3/c<5i
(3)

Note that fto only depends on <5o, <5i, Ao and ro. We now define the following
constants:

Ai 2000<5ie^^, Zi 3<5i, /2 3v^üTsinh~rö and /3 /^ ^inh

V ^1

Let ft be an odd integer larger than fto. We assume that (G,//, X) satisfies
the induction assumptions for exponent ft. In particular, is the set of hyperbolic
elements of //, which are not a proper powers in G and whose asymptotic translation
lengths are smaller than /1. For the remainder of the proof ofLemma 2.16 we consider
the action of G on the rescaled space By (1), this space is <5-hyperbolic with
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5 ^ <5o. As explained in the remark on page 798, we should keep in mind that
the hyperbolicity constant we are now always working with is

By Lemma 2.5, there exists a subset Po of P, stable by conjugation satisfying the

followings:

(i) for all A e P one and only one element of {A, A~*} belongs to Po,

(ii) any two distinct elements of Po generate a non-elementary subgroup.

Let us denote by P the set of relations P {A", A e Po}-

Lemma 2.17. PAe sef P saris/Zes fAe/öZZöw/ng assT/rap/Zons:

A^P, ^ Aq ßnJ ^inj^P, ^ sinhro.

Proo/ Let Ai and A2 be two elements of Po such that A" 7^ A^. By Proposition 2.3,

L/j« is contained in Thus Proposition 2.2 gives

diam (r«« n r««) ^ diam fl

^ diam (.4^°* n + 1765.

If Ai and A2 generated an elementary subgroup, by Lemma 2.5 we should have
A" AJJ. Hence Ai and A2 generate a non-elementary subgroup. On the other hand,

[Ai]°° and [A2]°° are smaller than 35. By definition of ^4(G, X),

diam (l^®* n 1^®*) < ^(o, + 176 5

3_^(G,X) + 176 5

Ai + 1765i 20005ie^o5i +

By (2), A(P, t^-X) is smaller than Ao.

The injectivity radius of ZZ on -^-X is larger than

1 1 Z2 /tt sinhro 3Vk<5itt sinhro 3tt sinh
'"inj (7/, X) >̂

7*0

Lft
' ^7 V /7/C$i ^7 77

In particular, [A"]°° ^ 3tt sinhro for all A e Po. Therefore, 7mj(P, ^-X) ^
3tt sinhro.
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On account of the previous lemma, we can now apply the small cancellation
theorem (Theorem 2.8) to the rescaled space ;^X, G and P. We obtain a proper,

geodesic, simply-connected, <5i-hyperbolic space X on which G G/ « P » acts

properly, co-compactly, by isometries.

Lemma 2.18. Pvery deraentary sz/Agrowp o/G Zs cycZZc, dfAer Zn/ZnZte or/mte wZfA

order dZvZdZng /?.

Proo/ All elements of P are odd powers of elements of G which are not proper
powers. By Proposition 2.14, all elementary subgroups of G are cyclic. Assume now
that P is a finite subgroup of G. According to the same proposition, we distinguish
two cases.

(i) P is the image of a finite subgroup of G. However, the order of every finite
subgroup of G divides /z. Thus the order of P divides zz.

(ii) There exists A e Po such that P is a subgroup of P^« tt (P/*«) (tt (A)),
whose order divides zz.

Lemma 2.19. PAe cozzsfozzf A(G, X) Zs Aoz/zzded oAove Ay Ai. PAe ZzzjectZvZ/y rodZz/s

rinj(//, X) Zs Aoz/zzded AeZow Ay

Proo/ By Proposition 2.13, A(G,X) ^ A(G,-^-X) + 1000<5ie^^P However,
using inequality (2), we obtain

v4(G, 2jj <c 1A(GJ) ^ — —I. «= 1000Ä1^50«1.
V P^ / P^ P^ P^

Hencev4(G,X) s= 2000V^i Aj.
Let gbea hyperbolic dement of //, which does not belong to P^« (A) for

all A e Po- Its asymptotic translation length in ^j-X is larger than By
Proposition 2.12 and inequality (3),

/£J iA ^ \ 3/c5i 3V^i7rsinhro /2 „'"inj

Lemma 2.20. PAe PzzZer cAoroctemtZc o/ G .sozPv/ks

/(G, Q) /(G, Q) + 1 |/?/G| >0,

wAere |P/G| Zs dze zzz/zzzAer o/cozzjz/gocy cZosses o/P. 7zzpordcz/Zoz; G Zs zzozz-eZe-

zzzezzfory.
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Proo/ Consider now Zzi,/z2 G Po and rz e G such that /z" rz/z^rz"*. Since Po
is stable by conjugation, /zi and zz/z2zz~* are two elements of Po which generate an

elementary subgroup. By Lemma 2.5, /zi zz/z2zz~*. In other words, there are as

many conjugacy classes in P as in Po- By construction, there are twice as many
conjugacy classes in P as in Po. Thus |P/G| |Po/G| | |P/G|. The result
follows from Proposition 2.15.

Lemma 2.21. For aZZ g e G, we Zzave [yr(g)]^]°° ^

Proo/ By Lemma 2.10, the map ^ X contracts the distances. Thus for all

Mrilf * £wr ^wr-
The previous lemma completes the proof of the induction lemma.

3. Proof of the main theorem

Recall the Statement of the main theorem.

Main theorem. l^T/^G^F^lfeea sZzozt exact segz/ence o/grozzps.
Assz/rae t/zat // zs ne>zz-/rzvzaZ, ^zmYeZy gezzeratecZ, G zs ZzypezPoZzc, zzozz-eZeraezztary,

zt>r.sz<9zz-/ree azzcZ F z.s zt>rsz<9zz-/ree. F/zere exzsts an zVzzFger zzo sz/cZz z7zczf/or aZZ ocZcZ

zzz/egers zz Zarger ^Zzan /Zo, tAe canomcaZ map F -> Out (//) zncZz/ces an znjec/fve
ZzoraoraorpZzzsra F ^ Out (/////").

Proo/ The constants <5i, Ai, Zi, Z2, Z3 and zzo are given by the induction lemma
(see Lemma 2.16). Up to increase zzo, we may also assume that -^= < 1. Let

l^//^G^F^lbea short exact sequence of groups, which satisfies the

hypotheses of the theorem. The strategy is to build by induction a family of short

exact sequences 1^7/^^G^^F^l with an action of G^ on a hyperbolic
space Xfc, such that the direct limit lim //^ is the Burnside group /////".

Initialization. Put //o // and Go G. Let Xo be a proper, geodesic, simply-
connected, hyperbolic space on which G acts properly, co-compactly, by isometries.
Take for instance the Rips polyhedron of G (see Chapter 5 in [11]). We can assume,
by rescaling Xo if necessary, that

• Xo is 51-hyperbolic,

• A (Go, Xo) ^ Ai (see Lemma 2.7),
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• {A G ///[A]°° ^ Zi, A is not a proper power in G} contains a number of conju-

gacy classes in G bounded below by —2/ (G, Q).

The group G is hyperbolic and torsion free. Since // is a non-trivial subgroup of
G, it contains a hyperbolic element. In particular, the injectivity radius of // is

positive (see [14]). Thus, up to increase one more time «o, we may assume that

Hnj (#o, *o) 5= Hence (Go, //o, ^o) satisfies the induction assumptions for
exponent «o-

Let be an odd integer larger than «o- (Go,//o,^o) satisfies a /örft'ori the

induction assumptions for exponent

Induction. Let (G&, 7/^, satisfying the induction assumptions for exponent
We denote by the set of hyperbolic elements of T7& which are not proper powers
in G^ and whose asymptotic translation lengths are smaller than /i. Let be the
normal subgroup of G^ generated by {A"/ A G 7^}, the quotient G^/A^ and

L/fc+i the image of T7& by the canonical map : G^ -> G^+i. By the induction
lemma, there exists a metric space such that (G^+i, T/^+i A^+i) satisfies the
induction assumptions for the exponent In this way, we obtain two sequences of
groups (7/fc) and (G^) whose properties we want to study now.

Properties of //# and G#

Lemma 3.1. Abr every Znteger A, fAere emfa a map G^ -> F swcA fAaf tAeybZZowZng

dZßgram Zs corarawtafZw. Zfa rows are sAarf exact segaeaces.

1 ^7/ > G >- F »1

1 > i/* >- G* > F >- 1

TVoo/ Following the construction of 77^ and G^, the proof is by induction on A. The
result is obvious for A 0. Assume the lemma holds for A. The group A^ being
generated by elements of 7/^, A^ c 7/^. Consequently, the short exact sequence
1 —T7& —G& —F —1 induces maps such that the following diagram commutes
and its rows are short exact sequences.

1 > tfjfc >- G* F >- 1

1 > i/*+i Gfe+i F » 1

Thus the lemma holds for A + 1.
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Our next goal is to compare the groups 77/77" and lim T/^. To shorten notations,

we let /z stand for an element of // as well as its images in 77^, lim 7/^ or 77/77".

Lemma 3.2. FZze e/ ^Zze cazzozzzcaZ map 7/ -> lim 7/^ zs evactZy 77", ^Zze

sz/Zzgroz/p o/T/ gezzeratezi fry o/Z zz-^Zzpowrs.

Proo/ Let /z be an element of 77 \ {1}. By the induction lemma,

& / 7 \ &

["IS « 0j) ["IS s 0=) ["IS

for all integers However, we chose zzo in such a way that -^= < 1. It follows that

there is an integer /: such that [ä]|? < By construction, the injectivity radius of

77^ on is larger than -^= (point (ii) of Lemma 2.16). Therefore /z is an elliptic
-y TZ

isometry. In particular, /z has finite order dividing zz in //^ (point (i) of Lemma 2.16).
Hence 77" is contained in the kernel of 77 ^ lim 77^.

On the other hand, at each step of the construction, the kernel of the map 77^ ->
77^_|_i is generated by zz-th powers of elements of 77^. It follows that the kernel of
the morphism 77 -> lim 77^ is contained in 77".

Lemma 3.3. 77ze groz/ps 77/77" ozzJ lim 77^ are zsozzzozpZzzc.

Proo/ This lemma follows from the previous one and from the fact that the map
77 -> lim 77^ is onto.

Lemma 3.4. / Z?£ o zzozz-ZrzvzaZ eZezzzezz/^ e/F. g Z?£ o prezzzzage o// Zzy ^Zze

zzzop G -> F. FZze cozzjzzga/Fzzz Zzy g de/zzes ozz az/tozzzozpZzzszzz o//7 wZzzcZz zzz<7z/c£s o
zzozz-ZrzvzaZ oz/ter az/tozzzozpZzzszzz o/77/77".

Froo/ Let *S be a finite generating set of 77. We denote by </9 the automorphism of
77 defined by </9(/z) g/zg~* for all /z G 77. Assume, contrary to our claim, that </9

induces an inner automorphism of 77/77". There exists / G 77 such that for all /z G 77

<p(Zz) andZZzZ"* havethesameimagein77/77". AccordingtoLemma3.3, 77/77" and

lim 77^ are isomorphic. Since is finite, there is an integer /: such that for all s G *S

<^(s) equals ZsZ~* in 77^. However S is a generating set of 77. Thus <^(/z) g/zg~*
is equal to Z/zZ~* in 77^ for all Zz G 77. Lemma 3.1 yields the following commutative
diagram.

1 > G > F »-1

1 ZZfc G* F 1
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Hence, the image of /~*g in G^ commutes with every element of T/^. By construc-
tion, the injectivity radius of on is positive. Therefore, it contains a hyperbolic
element /z. Thus /z and /~*g generate an abelian subgroup of G^, which has to be

cyclic. There exists (p,g) G Z* x Z such that (/~*g)^ /z^ in G^. Using the
commutative diagram, we push this identity in F and obtain 1. Since F is

torsion-free, / is trivial. This contradicts our assumption.

End of the proofof the main theorem. The map F -> Out (//) can be constructed
as follows. Let / be an element of F and g a preimage of / by G -> F. The image
of / by the map F -> Out (//) is exactly the outer automorphism of // induced by
the conjugation by g in G. The previous lemma is hence an equivalent formulation
of the following fact: the map F -> Out (//) induces an injective homomorphism
F ^ Out (///TP). This remark completes the proof of the main theorem.
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