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Outer automorphisms of free Burnside groups

Rémi Coulon

Abstract. In this paper, we study some properties of the outer automorphism group of free
Bummside groups of large odd exponent. In particular, we prove that it contains free and free
abelian subgroups.
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Introduction

The free Burnside group of rank » and exponent 72, denoted by B, (1), is the quotient of
the free group F, by the subgroup F! generated by the n-th powers of all its elements.
In 1902, W. Burnside asked whether B, () had to be finite of not (see [9]). For a
long time, one only knew that for some small exponents B, (n) was finite (forn = 2
see [9],n = 3 [9]and [22], n = 4 [31] and n = 6 [21]). In 1968, P. S. Novikov
and S. . Adian achieved a breakthrough (see [25], [26] and [27]). Using the small
cancellation theory developed by V. A. Tartakovskil [33] and M. Greendlinger [17],
[18], [19], they proved that for large odd exponents, B, (n) is infinite. Thanks to
a diagrammatic formulation of small cancellation, A. Y. Ol’shanskil simplified the
proof of P. S. Novikov and S. L. Adian [28]. Recently, T. Delzant and M. Gromov
gave a more geometrical proof of the same theorem [15]. These results not only
provide examples of infinite Burnside groups, they also help to study many of their
properties (solution for the word-problem, description of finite subgroups,...). Other
information about the history of the Burnside problems can be found in [20].

The next step to understand Burnside groups is to study their automorphisms. In
this paper, we are interested in the following questions. What kind of outer automor-
phisms of B, (n) have infinite order? Does Out (B, (7)) contain relevant subgroups
like free groups or free abelian groups? To that end, we focus on the canonical map
Out (F,) — Out(B,(n)).

Using the work of P. S. Novikov and S. I. Adian, E. A. Cherepanov proved that
the automorphism ¢ of F, = F(a, b), defined by ¢(a) = ab and ¢(b) = a, induces
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an outer automorphism of infinite order of B, (1) (see [10] and Proposition 1.1). Our
first theorem provides a large class of automorphisms of the free group having the
same property.

Theorem 1 (see Theorem 1.3). Let ¢ be an automorphism of F,. Assume that ¢ is
hyperbolic, i.e. the semi-direct product ¥, Xy Z defined by @ is a hyperbolic group.
There exists an integer ng such that for all odd integers n larger than ny, @ induces
an outer automorphism of infinite order of B, (n).

All proofsdealing with free Burnside groups have the same weakness: theyinvolve
a presentation of B, (n) which is not stable under automorphisms. Our work tries to
regain a little symmetry: we build a sequence of groups (H}) such that ¢ induces
an automorphism of Hj for all & and h_r)n H; = B,(n). To that end, we start with

Hy = F, and, at each step, we construct 4 as a small cancellation quotient
of Hy. Some difficulties appear during this process. Assume that p is one of the
relations defining the first quotient ¥, = Hy — H;. Since we want ¢ to induce
an automorphism of Hy, the elements ¢™(p) for all m € N have to belong to the
set of relations. However the small cancellation theory only deals with relations
having more or less the same length. In our case, the relations ¢™(p) may have
very different lengths. To avoid this problem, we encode the information concerning
the automorphism in a larger group: F, %, Z. Thus the elements ¢" (p) become
conjugates of p and do not need to be added to the set of relations. We shall now
use the fact that the group F, % Z is hyperbolic. In 1991, A.Y. Ol’shanskii provided
a generalisation of the Novikov—Adian theorem (see [29]). Given a torsion-free,
hyperbolic group G, he proved that for large odd exponent n the quotient G/G" is
infinite. This result was recovered by T. Delzant and M. Gromov in [15]. We would
like to apply the same techniques to G = F, x Z. However we must take care not
to kill all n-th powers of . Indeed, if we did so, the automorphism obtained at the
end of the construction would have finite order dividing n. That is why we propose
an extension of the Delzant—Gromov construction where the relations are chosen in
a normal subgroup of F, x Z. This construction works in a more general situation.
It leads to our main theorem:

Main theorem. /et 1 — H — G — I' — | be a short exact sequence of groups.
Assume that H is non-trivial, finitely generated, G is hyperbolic, non-elementary,
torsion-free and F is torsion-free. There exists an integer ng such that for all odd

integers n larger than ng, the canonical map F — Out (H ) induces an injective
homomorphism F — Out (H/H™).

Theorem 1 is obtained by applying the main theorem to the short exact sequence
l - F, - F, x7Z — Z — 1. The work of M. Bestvina, M. Feighn and M. Handel
(see [5]) provides examples of hyperbolic extensions of free groups by free groups.
Using this result, we obtain our second theorem.
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Theorem 2 (see Theorem 1.8). Let r = 3. There exists an integer ny such that for
all odd integers n larger than ny, the group Out (B, (n)) contains a subgroup which
is isomorphic to F,.

The strategy to embed abelian subgroups in Out (B, (#)) is a little different. We do
not apply the main theorem to an appropriate hyperbolic extension of the free group.
We construct a family of automorphisms of F, which already commute in Aut (F;)
and check “by hand” that they do not satisfy any other relation in Out (B, (n)). This
yields the following result.

Theorem 3 (see Theorem 1.10). Let r = 1. There exists an integer ng such that
for all odd integers n larger than ng, the groups Out (B, (n)) and Out (B, +1(n))
contain a subgroup which is isomorphic to 7.".

Hyperbolic automorphisms induce automorphisms of infinite order of free Burn-
side groups of large exponent. But they are not the only ones. For instance, the
automorphism ¢, studied by E. A. Cherepanov and characterized by ¢(a) = ab and
@(b) = a is not hyperbolic. Indeed, ¢? fixes the commutator [a~!, 5~!]. The semi-
direct product F, 3, Z contains therefore a subgroup which is isomorphic to 7. We
wonder if there exists a criterion to decide whether an automorphism of F, induces
an outer automorphism of infinite order of B,(n) for some large exponent or not.
In particular, is there a link between this property and the growth of the automor-
phism? Section 1.2 gives a partial answer. We prove that a polynomially growing
automorphism always induces an automorphism of finite order of B, ().

Outline of the paper. In Section 1 we explain the consequences of the main theo-
rem. In particular, we provide examples of automorphisms of infinite order of B, (1).
We also construct free and free abelian subgroups of Out (B, (77)). Section 2 deals
with the proof of the main theorem. To begin with, we recall the geometrical point of
view on the small cancellation theory developed by T. Delzant and M. Gromov. We
also improve some results of [15] which are necessary to control the small cancella-
tion parameters in our situation. Then, we prove an induction lemma (Lemma 2.16)
which is the fundamental step of the induction process used in Section 3 to prove the
main theorem.

Acknowledgement. I am grateful to Thomas Delzant for his invaluable help and
advice during this work. I would like to thank Gilbert Levitt for related discussions,
in particular, concerning the growth of automorphisms. Many thanks also go to
Ftienne Ghys who points out many questions to me, like the embedding of free abelian
subgroups. I thank also the referee for many useful comments and corrections.
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1. Automorphisms of Burnside groups

Remark. In this paper, we are interested in outer automorphisms of free Burnside
groups. One question still unanswered is the following: given an automorphism of
the free group F,, does it induce an automorphism of infinite order of B, (n)? Note
that every element of B, () has finite order. In particular, every inner automorphism
of B, (n) has finite order. It follows that an element of Aut (B, (7)) has finite order if
and only if so has its image in Out (B, (n)).

1.1. Examplesof automorphisms ofinfinite order. Using the work of P. S. Novikov
and S. 1. Adian (see [25], [26] and [27]), we exhibit a first example of outer automor-
phism of infinite order of B, (7). This example was already studied by E. A. Chere-
panov in [10].

Proposition 1.1 (see [10], Theorem 1). Let {a, b} be a generating set of the free
group Fy. Let ¢ be the automorphism of ¥, defined by ¢(a) = ab and p(b) = a.
There exists an integer ng such that for all odd integers n larger than ny, @ induces
an automorphism of infinite order of By(n).

Proof. We consider the sequence of iterated images of a by ¢.

(PO(G) =d, (p4(a) = abaababa,
(PI(G) = ab, @>(a) = abaababaabaab,
¢*(a) = aba, ¢%(a) = abaababaabaababaababa,

¢ (a) = abaab,
This sequence converges to a right infinite positive word
¢ (a) = abaababaabaababaababa . ..

which has the following property. For every word u in {a, b}, u* is not a subword of
@™ (a) (see [24]). Let n be an odd integer larger than 10 000. In order to prove that
the free Burnside group of large exponent is infinite, P. S. Novikov and S .I. Adian use
the following fact: if m is a non-trivial reduced word in {a, b} which does not contain
a subword that equals a fourth power, then m defines a non-trivial element of B (7)
(see [1], IV. 2.16, or Statement 1 in [2]). In particular, (¢# (a)) induces a sequence
of pairwise distinct elements of B, (n). It follows that ¢ induces an automorphism of
infinite order of B, (n). L

We now wish to investigate a large class of automorphisms of free groups: the
hyperbolic ones. We prove that they induce automorphisms of infinite order of free
Burnside groups.
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Definition 1.2. Let & be a hyperbolic group. An automorphism ¢ of G is hyperbolic
if the semi-direct product GG %, Z defined by ¢ is hyperbolic.

Example. Let % be the fundamental group of a compact surface § of genus larger
than 2. Thanks to Thurston’s hyperbolisation Theorem, every pseudo-Anosov home-
omorphism of .§ induces a hyperbolic automorphism of X (see [30]).

There exist many characterizations of hyperbolic automorphisms. Let us endow
G with the word metric | . | relative to a generating set. M. Bestvina and M. Feighn
proved in [3] that an automorphism ¢ of G is hyperbolic if and only if there exist
A>landm € N suchthat forallg € G

Algl = max {le™ (). le™™ ()]}

On the other hand, an automorphism of a free group is hyperbolic, if and only if
it has no non-trivial periodic conjugacy classes (see [5] and [8]). Note that the
automorphism ¢ studied in Proposition 1.1 is not hyperbolic: ¢? fixes the commutator
[a=Y;571]. More generally, Aut (F») does not contain hyperbolic elements. Every
automorphism ¢ of F; is indeed induced by a homeomorphism of the punctured torus.
Therefore ¢ has to fix the conjugacy class of F, corresponding to the boundary of
the torus.

Theorem 1.3. Let v = 3. Let ¢ be a hyperbolic automorphism of ¥,. There exists
an integer ng such that for all odd integers n larger than ny, ¢ induces an outer
automorphism of infinite order of B;(n).

Proof. By definition, the group F, %, Z is hyperbolic. It follows that the short
exact sequence 1 — F, — F, x, Z — Z — 1 satisfies the assumptions of the
main theorem (see page 790). Thus there exists an integer ng such that for all odd
integers n larger than ny, the map Z — Out (F, ) induces an injective homomorphism
Z. — Out (B, (n)). However, the morphism Z — Out (F,) is by construction the
one that maps m to the outer automorphism induced by ¢". Consequently, ¢ induces
an outer automorphism of infinite order of B, (7). O

1.2. Polynomially growing automorphisms of free groups. We provide now ex-
amples of automorphisms of infinite order of F, which induce automorphisms of
finite order of B, (n). Given a conjugacy class x of F,, we denote by |x] the length
of any cyclically reduced word representing x. Let @ be an outer automorphism of
F,. We look at the action of ® on the conjugacy classes of F,..

Definition 1.4. The automorphism & grows polynomially if for every conjugacy
class x of F;, the sequence ([®F(x)]|) grows polynomially.
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Proposition 1.5 (see [23]). Let ® be a polynomially growing outer automorphism of
F,. Upto replacement of ® with a power of ®, one of the following assertion holds.

(i) There exist ¢ € Aut(F,) representing ® and a non-trivial free decomposition
I * Fy of ¥, which is invariant under .

(i) There exist ¢ € Aut(F,) representing ®, a non-trivial free decomposition
Fy % {t) of ¥, and an element f of Fy such that Fy is invariant under ¢
and (1) = tf.

Theorem 1.6. Let v = 1. Let @ be a polynomially growing outer automorphism of
F,. For all positive integers n, ® induces an outer automorphism of finite order of

B, (n).

Proof. The proof is by induction on the rank r of the free group. The outer automor-
phism group of Z is reduced to {id, —id}. Hence the theorem holds for rank one.
Letr = 1. Assume that the theorem holds for any rank smaller or equal to . Let
® be a polynomially growing outer automorphism of ¥, and » a positive integer.
Following Proposition 1.5, we distinguish two cases.

First case. There exist an automorphism ¢ € Aut (F, ;) representing a power of ¢
and a non-trivial free decomposition F * I, of F, invariant under ¢. We denote
by ¢; the restriction of ¢ to F;. By induction, there exists an integer p; such that
(pf * induces the identity of F;/F. It follows that ¢”172 is trivial in Aut (B, 41(n)).
Therefore ® induces an outer automorphism of finite order of B, (7).

Second case. There exist an automorphism ¢ € Aut(F, 1) representing a power of
®, a free decomposition Fy * (¢} of F,; and an element f of F; such that Fy is
invariant under ¢ and @(f) = 7f. We denote by ¢; the restriction of ¢ to F;. By

induction, there exists an integer py such that ¢f* induces the identity of Fy/Fj.

On the other hand, for all integers g, ¢4(¢) equals £fg1()e2(f) ... ¢ (f). It
follows that the equality below holds in B, 4+ (#):

¢ (1) = t[for(ep(f) - o TN =1

Hence @™ is trivial in Aut (B, 4+1(n)). Therefore ® induces an outer automorphism
of finite order of B, 1 (n). L

1.3. Subgroups of Out (B; ()). We are now interested in relevant subgroups that
can be embedded in Out (B, (n)). We start with free subgroups. The following result
is due to M. Bestvina, M. Feighn and M. Handel

Theorem 1.7 (see [5], Theorem 5.2). Letr = 3. Let @1 and ¢ two automorphisms of
F,. We assume that the outer automorphisms induced by ¢ and @, are irreducible,
do not have common powers and neither have a nontrivial periodic conjugacy class.
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There exists an integer m such that @' and ¢i' generate a free group. Moreover; the
semi-direct product ¥, X ¥ defined by o' and 3" is hyperbolic.

Theorem 1.8. let r = 3. There exists an integer ng such that for all odd integers n
larger than ng, Out (B, (n)) contains a subgroup which is isomorphic to F5.

Proof. Theorem 1.7 provides a hyperbolic extension of F, by F>. In other words,
l - F, - F, xF, - F; — 1 1is a short exact sequence such that F, x F; is
hyperbolic. The result follows from the main theorem. U

We are now looking for free abelian subgroups of Out (B, (n)). Let Gy and G,
be two torsion-free groups. We denote by G the free product Gy * (2. Since (1 and
G2 are torsion-free, so is G (see [32]). Moreover, for all integers n, G" N Gy = G7.

Lemma 1.9. Let n be an integer. Let ¢ be an automorphism of G which stabilizes the
factor Gy. We assume that ¢ induces an automorphism of finite order of G/ G". Then,
the restriction of ¢ to Gy induces also an automorphism of finite order of G1/GY.

Proof. Since ¢ induces an automorphism of finite order of G/ G", there exists k € IN*
such that for all g € G, ¢*(g)g~"! € G”. However G is invariant under ¢. Thus for
allg € G1, ¢F(g)g ' e G" NGy = G7. It follows that the restriction of ¢ to Gq
induces an automorphism of finite order of G1/G7. O

Theorem 1.10. Let v = 2. There exists an integer ng such that for all odd integers
n larger than ngy, Out (B, (n)) and Out (Ba, +1(n)) contain a subgroup which is
isomorphic to 7.7.

Proof. We denote by ¢ the automorphism of F; studied in Proposition 1.1. There
exists an integer ng such that for all odd integers n larger than no, ¢ induces an
automorphism of infinite order of B, (7). Let n be an odd integer larger than ry. We
consider F3, as a free product Fy * --- % F, of r copies of F5. Foralli € {1,...,r},
we define an automorphism ¢; of F,, as follows.

(1) The restriction of @; to F; 1s ¢.
(i) The restriction of ¢; to any other factor is the identity.

By construction, the ¢; ’s generate an abelian subgroup of Aut (F5, ) and all the more of
Out (B,,(n)). We now study the relations between the ¢; ’s in Out (B, (n)). Consider
r integers k1, ...,k such that Y = gafl ...(p,lfr induces an inner automorphism
of B;,(n). By Lemma 1.9, gakf, which is the restriction of v to F;, induces an
automorphism of finite order of F;/F" = Ba(n). This forces k; to equal zero.
Hence the ¢;’s generate a subgroup of Out (B;, (7)) which is isomorphic to Z". For
Out (By,+1(n)) we apply the same argument with the following free factorization:

Fop1=F1 %% Iy x 7. L]
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2. Small cancellation theory

In this section we will be concerned with the small cancellation theory. We expose
the geometrical point of view developed by T. Delzant and M. Gromov in [15] and
used in Section 3 to prove the main theorem.

2.1. Hyperbolic spaces. Let X be a proper and geodesic space. The distance be-
tween two points x and x” of X is denoted by |x — x'|x (or simply |x — x’|). Although
it may not be unique, we denote by [x, x'] a geodesic joining x and x’. We assume
that X is §-hyperbolic (in the sense of Gromov) i.e. forall x, y,z,f € X,

X =yl + |z =t s max{|x —z[ + |y — 1], |x =] + |y — z[} + 28.

The boundary at infinity of X will be denoted by 8X (see Chapter 2 of [11]). A subset
Y of X is a-quasi-convex if every geodesic of X joining two points of ¥ lies in the
a-neighbourhood of Y, denoted by ¥ +¢.

Lemma 2.1 (see [15], Lemma 2.1.5, or [12], Corollary 1.2.2). Let x, x’, y and y’
be four points of X. Let u be a point of |x, x'| such that |u — x| > |x — y| + 88 and
|lu — x'| > |x" — y'| + 88. Then u belongs to the 88-neighbourhood of |y, y'|.

Proposition 2.2 (see [15], Lemma 2.2.2, or [12], Proposition 1.2.4). Let Y and Z be
two a-quasi-convex subsets of X. Forall A =2 0

diam (Y4 1 Z14) < diam (Y 121190 o zFe+108) 4 o4 4208

Let g be an isometry of X. In order to measure its action on X, we define two
translation lengths. By the translation length [g|x (or simply [g]) we mean

[g] = inf |gx —x].
The asymptotic translation length [g]§° (or simply [g]*°) is

1
| = lim —|g"x—x|.
n—+oo i1

lg

These two lengths satisfy the following inequality (see [11], Chapter 10, Proposi-
tion 6.4):
lg]%° < |g] < [g]®° + 328 forallg € G.

The axis Ay of g, defined as follows, is a 405-quasi-convex subset of X (see [15],
Proposition 2.3.3):

Ay =1{x € X/|gx — x| < max {[g], 405}} .
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The isometry g is hyperbolic if its asymptotic translation length is positive. In
this case, g fixes exactly two points of 3X denoted by g~ and g*. The cylinder of
{ g . g"'}, denoted by ¥, , is defined to be the set of points of X which are 104-close
to some geodesic joining g~ and gT. Itis a g-invariant, 8§-quasi-convex subset of X .

Proposition 2.3. et g be a hyperbolic isometry of X. We denote by ¢ a geodesic
joining g~ and g™, the points of 3X fixed by g. Let Y be a a-quasi-convex subset of
X. If Y is g-invariant, then o is contained in the (o« + 88)-neighbourhood of Y. In
particular, 0 is contained in the 488-neighbourhood of Ag.

Proof. Let x be a point of 0. We write d for the distance between x and Y. Let ybea
pointof ¥ such that [x — y| < d 4 §. Since g is hyperbolic, there is an integer m such
that |g"x — g7 x| > 2d + 485 (see [11], Chapter 10, Lemme 6.5). We denote by
p+ (respectively p_) a projection of g™ x (respectively g7 x) on 0, i.e. a point of
o suchthat |g”x — p4+| = d (g"x, o) (respectively |g7""x — p_| =d (g7 x,0)).
The geodesics ¢ and g™ o have the same extremities. It follows that they are 85-close
(see [11], Chapter 2, Proposition 2.2). In particular, |g”x — p4+| < 85. In the same
way, we have |g7""x — p_| < 834. Note that x lies on the subgeodesic of o delimited
by p— and p4. Indeed, if it was not the case we should have

lg7x — g™x| < |p— — p4| + 168 < ||x — p—| — |x — p4|| + 168
< |lx—g™"x| —|x — g"x|| + 328
< 326.

Contradiction. On the other hand, we have

1
lx — py| = |x —g"x| -85 = §|g_mx —g"x|—88 > d + 164.

Hence
|x — py| > g7y —g"x| +1g"x — py| + 85 = |g"y — py| + 84

In the same way, we have |x — p_| > |g7™"y — p—| + 8. By Lemma 2.1, the
point x is 8§-close to [¢7"y,. g y]. However g7y and gy belong to ¥ which
is a-quasi-convex. Therefore the distance between x and V is smaller than o 4 84.

L

Definition 2.4. Let P be a set of isometries of X. The injectivity radius denoted by
7inj (P, X) and the maximal overlap denoted by A(P, X)) are the following quantities

ri (P, X) = inf {[g]™/g € P*},

A(P.X) = sup {diam (Y, N Y}*%)/g. ¢ € P*, g # g'}.

where P* denotes the set of hyperbolic elements of P.
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Let G be a group acting properly, co-compactly, by isometries on X. An element
g of G is either elliptic (in particular, it has finite order) or hyperbolic (see [11],
Chapter 9). A subgroup of G is called elementary if it is virtually cyclic. Since G is
a hyperbolic group, every non-elementary subgroup of G contains a copy of F», the
free group of rank 2 (see [16], Chapter 8, Theorem 37). Given a hyperbolic element g
of G, the normalizer of (g) is elementary (see [11], Chapter 10, Corollary 7.2). The
group ( satisfies the small centralizers hypothesis if G is non-elementary and every
elementary subgroup of G is cyclic. The next lemma will be needed in Section 2.5.

Lemma 2.5. We assume that G satisfies the small centralizers hypothesis. Let R be
a subset of G stable by conjugation and inverse, whose elements are hyperbolic and
not proper powers. There exists a subset Ry of R, stable by conjugation satisfying
the followings:

(i) forall h € R one and only one element of {h, h='} belongs to Ry,

(i) any two distinct elements of Ry generate a non-elementary subgroup.

Proof. To prove (i) it is sufficient to show that an element /2 of R cannot be conjugate
to its inverse. Suppose, contrary to our claim, that there exist # € R and g € G such
that ghg™' = h~'. Thus, g belongs to the normalizer of &, which is elementary
(see [11], Chapter 10, Proposition 1). In particular, g and # generate an elementary
subgroup of G. Since G satisfies the small centralizers hypothesis, g and # commute.
It follows that 2 = A~!. Hence A is not hyperbolic, a contradiction.

Let us now prove (ii). Let i, 2 € Ro. Assume that they generate an elementary
subgroup. G satistying the small centralizers hypothesis, 41 and /1> commute. Since
hy and A, are not proper powers, they are either equal or inverse. However Ry does
not contain an element and its inverse. Hence /11 = #5. ]

Definition 2.6. Let G be a group acting properly co-compactly by isometries on a
proper, geodesic, d-hyperbolic space X. The invariant A(G, X) is the upper bound
of diam(A;'SO‘g N A;,S 05), where g and ¢’ are two elements of G which generate a
non-elementary subgroup and whose translation lengths are smaller than 1004.

Remark. If there is no such g and g’ we adopt the convention that A(G, X) = 4oc.
However in our study, G will be non-elementary and the translation lengths of its
generators small in comparison to 8. Therefore A(G, X) will always be finite.

This invariant A(G, X)) wasused by T. Delzant and M. Gromov to study hyperbolic
groups satisfying the small centralizers hypothesis (see §2.4 in [15]).

Remark. The objects defined previously depend implicitly on the hyperbolicity con-
stant § (e.g. Yy, Ag, and A(G, X)). Although the notation does not make this depen-
dency explicit, we should keep in mind that it plays an important role. For instance,
we have the following lemma:
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Lemma 2.7. Let X be proper, geodesic, 6-hyperbolic space and G a group acting
properly, co-compactly by isometries on X. lLet A be a positive number. Then

A(G,AX) = AA(G, X), where AX is the AS-hyperbolic space X endowed with the
rescaled metric A | . |y.

Proof. Let g be an element of (. Its translation lengths satisfy [g]lix = Algly
and [g]55 = Algly’. Since AX is a Aé-hyperbolic space, the axis of g in AX is
exactly the image in AX of the axis A, of g in X. We will denote it by AAg. Let
g and g’ be two elements of G that do not generate an elementary group and whose
asymptotic translation lengths in AX are smaller than 100A4. In particular, we have
[£]%, [g]% < 1004. By definition of A(G, X), we have

: +50A8 +50A8 ; +508 +508
diam ()LAg N )LAg, ) = Adiam (Ag M Ag, )

< AA(G, X).

After taking the upper bound for all g and g’, we obtain A(G,AX) < AA(G, X). In
the same way, A(G,AX) = AA(G, X). This establishes the desired equality. O

2.2. Small cancellation theorem. In the remainder of Section 2 we require X to
be a proper, geodesic, simply-connected, §-hyperbolic space and G a group acting
properly, co-compactly, by isometries on X .

Let P be a set of hyperbolic elements of G. We assume that P is stable by
conjugation and contains only a finite number of conjugacy classes. We denote by
N the (normal) subgroup of ¢ generated by P. Our goal is to study the quotient
G = G/N. The small cancellation parameters A(P, X) and Finj (P, X), defined
in the previous section, respectively play the role of the length of the largest piece
and the length of the smallest relation in the usual small cancellation theory. We

] e o : . ] A(P.X)
are interested in situations where the ratios o and i pyy are very small (see

Theorem 2.8 below). To that end, we build a space X with an action of G. We only
recall the main steps of this construction. For more details we refer the reader to [12]
and [13].

Fix ro > 0. Its value will be made precise in the small cancellation theorem (see
Theorem 2.8). Let p € P. We endow Y, with the length metric | . |, induced by the
restriction of | . |y to ¥,. The cone over ¥, denoted by C,(rp) (or simply Cp) is the
topological quotient of ¥, x [0, rg| by the equivalence relation which identifies the
points (y,0) forall y € Y,. Given two points x = (y.7) and x” = (¥, 7’) of C,, the
following formula defines a distance on C,, (see [7], Chapter 1.5, Proposition 5.9 (1)):

.
cosh(|x, x'|) = coshr cosh7’ — sinh 7 sinh 7’ cos (min {n, —ly- o }) .
sinh rg

The cone-off over X relativelyto P, denoted by X p (ro) (or simply X ), is obtained
by attaching for all p € P the cone Cj, to X along ¥,. The distances | . [y and | . ¢,
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induce a metric on X (see [12], Proposition 3.1.7). We extend by homogeneity the
action of G on X in an action of G on X. Let x = (y,7) € Coand g € G. We
define gx to be the point of C, -1 = ¢C, given by gx = (gy, r). The group G
acts by isometries on X (see [12], Lemma 4.3.1). The space Xp(ro) (or simply X)
is the quotient of X by N.

Theorem 2.8 (Small cancellation theorem, see [15], Theorem 5.5.2, or [12], Theo-
rem 4.2.2). There exist positive numbers 8y, §1, Ay and ro = 10°81 satisfying the
following properties.

Let X be a proper, geodesic, simply-connected, §-hyperbolic space. Let G be a
group acting properly, co-compacily, by isometries on X. Let P be a set of hyperbolic
elements of G. We assume that P is stable by conjugation and contains only a finite
number of conjugacy classes.

If 8 < 8o, A(P,X) < Ag and ripj(P, X) = 3msinhrg, then Xp (ro) is proper,
geodesic, simply-connected and 81-hyperbolic. Moreover G acts properly, co-com-
pactly, by isometries on it .

Remark. The fact that the constants rg, 8o, §; and Ag do not dependon X, P or G
is very important in order to iterate the small cancellation construction.

2.3. Estimation of an injectivity radius. From now on we suppose that X, ¢ and
P satisty the assumptions of the small cancellation theorem. In particular, § < o,
A(P,X) = Ag and 7y, (P, X)) = 37 sinh rp, where 8y, Ag and 7y are the constants
given by Theorem 2.8. We also assume now that G satisfies the small centralizers
hypothesis, i.e. G is non-elementary and all elementary subgroups of G are cyclic
(see Section 2.1). We are now interested in the properties of the action of G on X
This will allow us to iterate the small cancellation process. We need in particular
an estimation of A(G, X) and some injectivity radius. We already know that X is
81-hyperbolic (see Theorem 2.8).

For all p € P, we write I, for the subgroup of G which stabilizes Y,. Itis an
elementary subgroup of G (see [1 1], Chapter 10, Proposition 7.1). Let v and 7 be the
respective maps v: X — X and 7: G — G. The space X is obtained by attaching
cones of large radius to v(X). This provides a kind of Margulis’ decomposition. The
cones play the role of the thick part: the translation length of a hyperbolic element of
G in a cone is very large. The following lemma illustrates this fact.

Lemma 2.9 (see [15], Lemme 5.9.3). Let g be an element of G suchthat 3] < 2008,.
Assume that g does not belong to E, = n(E,) for all p € P. Then Ag is contained
in v(X)T10%1 gng Az N v(X) is non-empty.

To study v(X)T1%%%1  which is an analogue of the thin part of the Margulis de-
composition, we use the fact that the map v(X) — X is alocal quasi-isometry:
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Lemma 2.10 (see [12], Proposition 3.1.8). Let x and x' be two points of X. First
|x—x'|y < |x—X'|x. Moreover, if |x—x'|y < R then|x—x'|y < %M—x’b{.

Using this point of view, T. Delzant and M. Gromov proved the following result.

Proposition 2.11 (see [15], Lemme. 5.10.1). Let C be a 508,-quasi-convex subset
of V(X)T190% There exists a subset C of X such that

(1) the map v: X — X induces an isometry from C onto C,

(ii) the projection w: G — G induces an isomorphism between Stab(C') and
Stab(C) which are respectively the stabilizers of C and C.

Proposition 2.12. Let H be a normal subgroup of G containing P and H its image

by the projection m: G — G. Then riyj(H, X) = min{x!, 81}, where k stands for
3rp

40m sinh F

of H that does not belong to any F,.

and [ is the smallest asymptotic translation length of a hyperbolic element

Remark. This lemma is a refinement of Lemma 5.11.1 proved by T. Delzant and
M. Gromov in [15]. They gave indeed a lower bound for iy (G, X ) Four our
purpose, we need a more accurate result. We provide here an estimation of the
injectivity radius of a normal subgroup of G.

Proof. Since II is a normal subgroup containing the relations P, z~1(/T) = H.
Suppose the assertion of the lemma is false. There exists a hyperbolic element /4 of
H such that [2]® < min {x/, §;}. Fix an integer m such that 78; < m min {x/, 81} <
881. By [11], Chapter 10, Proposition 6.4,

[2"] < m[h]™ + 3281 < mmin {kl, 81} + 3281 < 405;.

Since [A™] < 20041, the axis Ay, of W in X, is a 40481 -quasi-convex (see [15],
Proposition 2.3.3), which is contained in the 1006;-neighbourhood of v(X) (see
Lemma 2.9). By Proposition 2.11, there exists a subset C' of X such that

(i) the map v: X — X induces an isometry from C onto A s
(ii) the map 7: G — G induces an isomorphism from Stab(C) onto Stab(A )

However / belongs to Stab(A4 7m ). We denote by £ its preimage in Stab(C). Since h
is hyperbolic, / is necessarily a hyperbolic element of £ that does not belong to E,
forall p € P. By assumption, [A| = 1.

On the other hand by Lemma 2.9, Az, N v(X) # @. Fix x € A;,, N v(X) and
denote by x its preimage in C N X. As the map v: C — Aj,, is an equivariant
isometry we have |2"x — x|y = |h" % — % | ¢ Recall that X belongs to Aj,,, the axis
of ™. 1t follows that

|h"x — x|y = |h™X — X|g < max {[h™], 406, } < 406;.
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By Lemma 2.10, |#™x — x|x is smaller than %an — x|y . Consequently,

8078, sinh 65
ml < mh]E < [y < |A"x — x|y < — lrSI o Kl.
0

In particular, 76; < mmin {x/, 81} < mxl < 681, a contradiction. O

2.4. Other properties of G and X. Inthissection, we review some results obtained
by T. Delzant and M. Gromov in [15].

Proposition 2.13 (see [15], Lemme 5.9.5). The constant A(G, X) satisfies the fol-
lowing inequality.

A(G, X) < A(G, X) + 1000837,

Proposition 2.14 (see [15], Lemme 5.10.2 and Lemme 5.10.3). Assume that every
element of P is an odd power of an element of G which is not a proper power. Then
G satisfies the following properties.

(1) Every elementary subgroup of G is cyclic.

(ii) Let F be a finite subgroup of G. Either F is the image of a finite subgroup of
G, or there exists p € P such that F is a subgroup of E,, = m(E)).

Proposition 2.15 (see [15], Theorem 5.7.1). The Euler characteristic of G satisfies
(G, Q) = x(G,Q)+|P/G|, where | P/ G| denotes the number of conjugacy classes
of P.

2.5. An induction lemma. One should think of the next lemma as a step of the
iterative procedure involved in the proof of the main theorem. We recall that the
invariant A(G, X') stands for the maximal overlap between the axes of two small
hyperbolic elements of G (see Definition 2.6). The injectivity radius riy (H, X)
denotes the smallest asymptotic translation length of a hyperbolic element of  (see
Definition 2.4).

Lemma 2.16 (Induction lemma). There exist positive numbers 51, Ay, 11, {2, 5 and
an integer ng satisfying the following properties. Let n be an odd integer larger than
no. Let X be a proper, geodesic, simply-connected, 51-hyperbolic space. Let G be a
group acting properly, co-compactly, by isometries on X and H a normal subgroup
of G. Let R be the set of hyperbolic elements of H, which are not proper powers in G
and whose asymptotic translation lengths are smaller than 1. Let N be the normal
subgroup of G generated by {h" /h € R}, G the quotient G/N and H the image of
H by the canonical map m: G — G. We assume that

(1) G satisfies the small centralizers hypothesis; moreover the order of every finite
subgroup of G divides n,
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(i) A(G.X) € Ay andrii(H, X) = f

(i) (G, Q) + 3 |R/G| > 0, where y (G, Q) is the Euler characteristic of G and
|R/ G| the number of conjugacy classes in R.

Then, there exists a proper, geodesic, simply-connected, 81- hyperbolic space X

on which G acts properly, co-compactly, by isometries. Moreover, G, H and X
satisfy the points (1) and (i1), (G, Q) > 0 and

{
[ (@IE7(g) < %[g]? forallg € G.

Remark. If &, H. X and n satisfy the hypothesis of the previous lemma — including
hypotheses (i), (ii) and (iii) — we will say that (G, H, X') satisfies the induction
assumptions for exponent n. The induction lemma says in partlcular thatif (G, H, X)
satisfies the induction assumptions for exponent n, so does (G, H, X).

The remainder of this section will be devoted to the proof of the induction lemma.

Proof. The positive numbers ry, dg, 81, and Ay are given by the small cancellation

theorem (see Theorem 2.8). The constant £ = ﬁm 1s the one that appears in
Proposition 2.12. We define a rescaling parameter L, = ;;i'fli‘ro. The sequence

(L) is increasing and tends to infinity. Up to chose g large enough, we may assume
that for all n = n

51
<5 1
L 0 (1)

200083391 4 1768
¢ - + 700 < min {Ag, 10008, 3591}, )

i

3K51
< 8. 3
I 1 (3)

Note that ny only depends on dy, 81, Ag and 9. We now define the following
constants:

inh
Al = 200051635051, lh =381, I =3Vkéimsinhrg and /53 = AL SH; i‘o_
K01

Let n be an odd integer larger than ng. We assume that (G, H, X') satisfies
the induction assumptions for exponent n. In particular, R is the set of hyperbolic
elements of /7, which are not a proper powers in G and whose asymptotic translation
lengths are smaller than /;. For the remainder of the proof of Lemma 2.16 we consider
the action of G on the rescaled space LL,,X . By (1), this space is é-hyperbolic with
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S 5‘ < 8o. As explained in the remark on page 798, we should keep in mind that

the hyperbohclty constant we are now always working with is §.

By Lemma 2.5, there exists a subset R of R, stable by conjugation satisfying the
followings:

(i) for all 2 € R one and only one element of {#, h~!} belongs to Ry,
(i1) any two distinct elements of Ry generate a non-elementary subgroup.

Let us denote by P the set of relations P = {A", h € Ryp}.

Lemma 2.17. The set P satisfies the following assumptions:

1 1
A(P, —X) < Ao and rinj(P, —X) = 3mw sinh rp.

Proof. Let by and h; be two elements of Rp such that 2] # h. By Proposition 2.3,
Yh;z is contained in A;;s 8 Thus Proposition 2.2 gives

: +208 +208 : +788 +788
diam (Yh{‘ N th ) < diam (Ah1 n Ah2 )
< diam (4;°% 0 AF3%) 4 1765.

If A1 and h, generated an elementary subgroup, by Lemma 2.5 we should have

hi = h’. Hence h and A, generate a non- elementary subgroup. On the other hand,
[/1]°° and [h2]™ are smaller than in = Tnl' = 34. By definition of A(G, X),

1
diam (YhJE,ZOS n thzoﬁ) < A(G, L—nX) +176 6

1
< —A(G.X) +176

n

_ AL+ 1768 20008, + 1766,
S L, Ly, '

By (2), A(P, ﬁX) is smaller than Ay.
The injectivity radius of I on L%,X is larger than

1 1 5 7 sinh rg 3+/k817 sinh ry 3 sinh ry
rmi(H,X) 2 —— = = :

X)

In particular, [A"]*® = 3msinhrg for all # € Ry. Therefore, rinj(P
37 sinh ry.

5Ln

(Y
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On account of the previous lemma, we can now apply the small cancellation
theorem (Theorem 2.8) to the rescaled space ﬁX , G and P. We obtain a proper,
geodesic, simply-connected, §;-hyperbolic space X on which G = G/ < P > acts
properly, co-compactly, by isometries.

Lemma 2.18. Every elementary subgroup of G is cyclic, either infinite or finite with
order dividing n.

Proof. All elements of P are odd powers of elements of (¢ which are not proper
powers. By Proposition 2.14, all elementary subgroups of G are cyclic. Assume now
that F is a finite subgroup of G. According to the same proposition, we distinguish
two cases.

(i) F is the image of a finite subgroup of G. However, the order of every finite
subgroup of G divides n. Thus the order of F divides .

(ii) There exists # € Rq such that F is a subgroup of Eyn = 7 (Epn) = ((h)),
whose order divides #. (]

Lemma 2.19. 7he constant A(G, X) is bounded above by A1. The injectivity radius
rini(H , X) is bounded below by %

Proof. By Proposition 2.13, A(G, X) < A(G, ﬁX) + 100083591 However,
using inequality (2), we obtain

G,—X | < —A(G,X) L —_— — = 100051635081,

A( 1 ) 1 Ay 200058300
Ly Ly Ly Ly

Hence A(G, X) < 20008,¢35%%1 = A;.

Let g be a hyperbolic element of H, which does not belong to Eyn = (h) for
all 4 € Rp. Its asymptotic translation length in LL,,X 1s larger than I% = % By
Proposition 2.12 and inequality (3),

3Ky 5 } B kb B 3./ kb1 sinhrg B {5
L, Y7L, N N

Lemma 2.20. The Euler characteristic of G satisfies

Fini (H,X) Bmin{

_ 1
(G, Q)= x(G, Q)+ 3 |R/G| >0,

where |R /G| is the number of conjugacy classes of R. In particular, G is non-ele-
mentary.
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Proof. Consider now hy,h; € Ry and u € G such that 2} = uhgu_l. Since Ry
is stable by conjugation, /7 and uh,u~! are two elements of Ry which generate an
elementary subgroup. By Lemma 2.5, h; = uh,u~'. In other words, there are as
many conjugacy classes in P as in Ro. By construction, there are twice as many
conjugacy classes in R as in Ry. Thus |P/G| = |Ry/G| = % |R/G|. The result
follows from Proposition 2.15. L

o0

Lemma 2.21. Forall g € G, we have [7(g)] 5] < %[g]X.

Proof. By Lemma 2.10, the map Ll_nX — X contracts the distances. Thus for all

gel,
1 7 sinh rg I3
oo < — 0o _ 2 ety oo _ 15 0o 0
[ (D)5 » [¢]% \/ — [¢]x ﬁ[g]x
The previous lemma completes the proof of the induction lemma. L

3. Proof of the main theorem

Recall the statement of the main theorem.

Main theorem. et | - H — G — F — 1| be a short exact sequence of groups.
Assume that H is non-trivial, finitely generated, G is hyperbolic, non-elementary,
torsion-free and I is torsion-free. There exists an integer ng such that for all odd
integers n larger than ny, the canonical map F — Out (H) induces an injective

homomorphism F — Out (H/H").

Proof. The constants §y, Ay, /1, [, /3 and np are given by the induction lemma
(see Lemma 2.16). Up to increase 1y, we may also assume that j—;_o < 1. Let
1 - H — G — F — 1 be a short exact sequence of groups, which satisfies the
hypotheses of the theorem. The strategy is to build by induction a family of short
exact sequences 1 — Hy — Gy — F — 1 with an action of G on a hyperbolic
space Xy, such that the direct limit h_l‘)[l Hy, is the Burnside group H/H™.

Initialization. Put Hy = H and Gy = G. Let X be a proper, geodesic, simply-
connected, hyperbolic space on which (r acts properly, co-compactly, by isometries.
Take for instance the Rips polyhedron of G (see Chapter 5 in [11]). We can assume,
by rescaling X if necessary, that

* Xy is §;-hyperbolic,
« A(Gy, Xy) < Aq (see Lemma 2.7),
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* {h € H/[h]* < [y, h is not a proper power in G} contains a number of conju-
gacy classes in G bounded below by =2 (G, Q).

The group G is hyperbolic and torsion free. Since /1 is a non-trivial subgroup of
G, it contains a hyperbolic element. In particular, the injectivity radius of H 1is
positive (see [14]). Thus, up to increase one more time ng, we may assume that
rini (Ho, Xo) = j—fl_o. Hence (Gg, Hy, Xo) satisfies the induction assumptions for
exponent 7.

Let # be an odd integer larger than ng. (Go, Ho, Xo) satisfies a fortiori the
induction assumptions for exponent 7.

Induction. Let (G, Hy, X;) satisfying the induction assumptions for exponent 7.
We denote by Ry the set of hyperbolic elements of H; which are not proper powers
in Gy and whose asymptotic translation lengths are smaller than /;. Let Ny be the
normal subgroup of G generated by {#"/h € Ry}, G4 the quotient G /Ny and
Hj 41 the image of Hj by the canonical map 7y : Gy — Gy41. By the induction
lemma, there exists a metric space X4 such that (Gg4q1, Hy41, Xi41) satisfies the
induction assumptions for the exponent n. In this way, we obtain two sequences of
groups (1) and (Gy ) whose properties we want to study now.

Properties of H; and G

Lemma 3.1. Forevery integer k, there exists amap Gy — F such that the following
diagram is commutative. Moreover its rows are short exact sequences.

1 H G F 1
1 Hy Gy F 1

Proof. Following the construction of Hj and Gy, the proof is by induction on k. The
result is obvious for & = 0. Assume the lemma holds for k. The group N being
generated by elements of Hy, Ny C Hy. Consequently, the short exact sequence
l - Hy — G — F — 1 induces maps such that the following diagram commutes
and its rows are short exact sequences.

1 Hy Gy F 1
o=
| — Hiy1 ——Gra F 1

Thus the lemma holds for k + 1. O
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Our next goal is to compare the groups H/H"™ and lim Hj.. To shorten notations,
—_—

we let /i stand for an element of H as well as its images in Hy, lim Hy or H/H".
—

Lemma 3.2. The kernel of the canonical map H — lim Hy is exactly H", the
—

subgroup of H generated by all n-th powers.

Proof. Let h be an element of A \ {1}. By the induction lemma,

for all integers k. However, we chose ng in such a way that «/I_St_o < 1. It follows that
there is an integer & such that [h]}’(‘;C & % By construction, the injectivity radius of

Hji. on X is larger than % (point (ii) of Lemma 2.16). Therefore £ is an elliptic

isometry. In particular, /2 has finite order dividing # in Hy (point (i) of Lemma 2.16).
Hence H" is contained in the kernel of H — lim Hy,.
—_—

On the other hand, at each step of the construction, the kernel of the map H; —
Hy 41 1s generated by n-th powers of elements of Hy. It follows that the kernel of
the morphism ' — lim Hj} is contained in H". (]

.

Lemma 3.3. The groups H/H" and lim Hy are isomorphic.
—_—

Proof. This lemma follows from the previous one and from the fact that the map
H — lim Hj is onto. ]
_

Lemma 3.4. Let | be a non-trivial element of . Let g be a preimage of | by the
map G — F. The conjugation by g defines an automorphism of H which induces a
non-trivial outer automorphism of H/H".

Proof. Let § be a finite generating set of /7. We denote by ¢ the automorphism of
H defined by ¢(h) = ghg™! forall h € H. Assume, contrary to our claim, that ¢
induces an inner automorphism of H/H". There exists/ € H suchthatforallh € H
@(h) and [hl~! have the same image in I /H". According to Lemma 3.3, /f/H™ and
l'ilg Hy are isomorphic. Since § is finite, there is an integer & such that forall s € §

@(s) equals /s/~1 in IT,. However S is a generating set of [/ Thus ¢(h) = ghg™!
is equal to /hl~" in H} forall A € H. Lemma 3.1 yields the following commutative
diagram.
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Hence, the image of /~!g in G; commutes with every element of Hy. By construc-
tion, the injectivity radius of /iy on X} is positive. Therefore, it contains a hyperbolic
element 4. Thus 4 and /~'g generate an abelian subgroup of Gy, which has to be
cyclic. There exists (p,q) € Z* x Z such that (l_lg)P = h? in Gi. Using the
commutative diagram, we push this identity in F and obtain f# = 1. Since F is
torsion-free, f is trivial. This contradicts our assumption. 0

End of the proof of the main theorem. The map F — Out (H ) can be constructed
as follows. Let f be an element of F and g a preimage of f by G — F. The image
of f by the map F — Out (H) is exactly the outer automorphism of # induced by
the conjugation by g in (¢. The previous lemma is hence an equivalent formulation
of the following fact: the map F — Out () induces an injective homomorphism
F — Out(H/H"). This remark completes the prootf of the main theorem. O
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