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Varieties n-covered by curves of degree §

Luc Pirio and Francesco Russo

Abstract. We continue the study, began by classical geometers and considered more recently in
[33] and [52], of complex projective varieties X C PV such that through # > 2 general points
of X there passes an irreducible curve of degree é.

Mathematics Subject Classification (2010). 14M22, 17C36.

Keywords. Projective variety, rationally connected variety, Jordan algebra.

Introduction

The theory of rationally connected varieties is quite recent and was formalized in
[10], [36] and [35], although these varieties were intensively studied from different
points of view by classical algebraic geometers, see for example [19], [59], [56], [6],
[51, [42].

Animportantresult in this theory, see Theorem IV.3.9in [35], asserts that through »
general points of a smooth rationally connected complex variety X there passes an ir-
reducible rational curve, which can be taken also to be smooth as soon as dim(.X) > 3.
From this one deduces that for dim(X) > 3 a fixed smooth curve of arbitrary genus
can be embedded into X in such a way that it passes through # arbitrary fixed general
points. When a (rationally connected) variety X is embedded in some projective space
P¥ (or more generally when a polarization or an arbitrary Cartier divisor is fixed on
X'), one can consider the property of being generically #n-(rationally) connected by
(rational) curves of a fixed degree §.

This stronger condition depends on the embedding, on the number # > 2, on the
degree § > 1 and natural constraints for the existence of such varieties immediately
appear.

In this paper we shall study complex irreducible projective varieties X = X(r +
1,n,8) < PV of dimension dim(X) = r + 1 such that through #n > 2 general
points there passes an irreducible curve C of degree § > 1 or more generally pairs
(X, D) with D a Cartier divisor on a proper irreducible complex variety X which
is n-covered by irreducible curves C such that (D - C) = § = n — 1. Itis well
known that a X(7 4+ 1.2, 1) C PV is necessarily a P"*! linearly embedded in PV
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and that a non-degenerate X(r + 1,n,n — 1) C P**"~! is a variety of minimal
degree n — 1. The smooth X(r + 1,2, 2)’s were recently classified in [33] (see also
[48] for a generalization to the polarized case). Without some reasonable restrictions
the classification of varieties X (r 4+ 1,7,8) C PV becomes immediately extremely
difficult and out of reach, especially for singular varieties.

Recently (see [63], [51] and also [49]), it has been realized that the study of these
varieties 18 also closely related to an important question in web geometry, namely
the algebraization of webs of maximal rank. In order to solve this problem of web
geometry, it was proved in [52] that the dimension of the linear span of such varieties
satisfies the inequality

dim ((X(r + 1,n,68))) < @(r.n.8) — 1, 0.1)

see Section 1. Here 7 (r, n,8) = w(r,n,d) withd = §+r(n—1)4+2where 7 (r,n,d)
stands for the Castelnuovo—Harris bound function for the geometric genus of non-
degenerate irreducible 7-dimensional projective varieties ¥ € P"+7~! of degree d,
see [30] and also Section 4.2 for some details and definitions. The bound (0.1) is
proved geometrically via the iteration of projections from general osculating spaces to
X(r+1,n,§) determined by the irreducible curves of degree § which n-cover the vari-
ety. This is a classical tool used also by del Pezzo, Enriques and Castelnuovo to bound
the dimension of linear systems on surfaces, see [11], [12], [22], Section 7 in [16] and
[52]. The above bound also reveals a connection with Castelnuovo theory of linear
systems on curves and with the so-called Castelnuovo varieties, see [30] and [14].
From this point of view, non-degenerate varieties X = X(r + 1,n,8) C prn.d)-1
denoted from now on by X = X(r + 1,n.8), are the extremal ones and they are
subject to very strong restrictions —e.g. they are rational and through » general points
there passes a unique rational normal curve of degree §, see [52] and Theorem 2.2 and
Theorem 2.4 below. Due to these numerous geometrical properties, it is possible in
many cases to obtain a complete classification, see for example [52] or Theorem 2.2,
Theorem 5.7, Corollary 5.9 and Corollary 5.12 below in this paper.

Some basic results of [52] are generalized here in Theorem 2.4. One proves the
bound A (Ox (D)) < 7(r,n,8) for a Cartier divisor D on a proper irreducible variety
X of dimension 7 + 1, n-covered by irreducible curves C suchthat (D-C) = § = n—1.
We also show that equality holds if and only if ¢p| maps X birationally onto a
X(r 4+ 1,n,8). Furthermore, if A°(Ox (D)) = 7(r,n,§) then X is rational and
through n > 2 general points there passes a unique smooth rational curve C such that
(D-C)=3.

Another consequence of the previous bound is that under the same hypothesis we
have D"+1 < §7*1 /(n —1)" if D is nef, see Theorem 3.1. This is a generalization of
aresult usually attributed to Fano in the case n = 2, see for example Proposition V.2.9
of [35].

The classical roots of this type of results go back to C. Segre, [59], who proved
that dim({X(2,2,2))) < 5 and that X (2,2,2) C [P is projectively equivalent to the
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Veronese surface. Bompiani generalized this result in [6] to dim({X(r + 1,2,§))) <
(F ‘:f_}_‘fﬁ) —1 with equality holdingif and onlyif X (r+1,2, §) is projectively equivalent
to the 6-Veronese embedding of P” *1 see Theorem 2.2 here and also [32] and [64].

Alotof examples of)?(r +1,n,8) (forarbitraryn > 2,r > land§ = n—1)have
been described in [52] via the theory of Castelnuovo varieties and their construction
will be briefly recalled in Section 4.2. The main result of [52] ensures that these
examples of Castelnuovo type are the only ones except possibly whenn > 2,7 > 1
and 6 = 2n — 3.

Here we consider in detail the last open case, that is the classification of varieties
X(r + 1,n,2n — 3), especially for n = 3. We immediately point out that there
are examples of X(r + 1,n,2n — 3) of dimension at least 3 that are not of Castel-
nuovo type. For n = 3 these varieties share very special structures being related to
the theory of cubic Jordan algebras, see Section 4.3. Indeed interesting examples of
X (r+1,3,3) ¢ P¥ 13 are the so-called twisted cubics over complex Jordan algebras
of rank 3, see [46]. There is an infinite family of such varieties: the Segre embed-
dings P! x Q" < P?" 3, where Q7 C P"*!is an irreducible hyperquadric, and also
four smooth exceptional examples associated to the four simple cubic Jordan alge-
bras (these four varieties are also known as Lagrangian Grassmannians) and other
examples constructed by considering cubic Jordan algebras naturally arising from
associative algebras, see Section 4.3. For an arbitrary )?(r +1,3.3) € P?"3 we
consider the birational projection onto P”*1! from a general tangent space. By study-
ing the geometry of this birational map we are able to give an explicit parametrization
of these varieties and also to associate to them a quadro-quadric Cremona transfor-
mation from the projectivization of a general affine tangent space onto a hyperplane
in P"*!, see Theorem 5.2. From this unexpected connection we deduce the clas-
sification of arbitrary X (r + 1,3,3) for » < 3 (even if our method actually works
also for r = 4 or for bigger values of r), see Corollary 5.9 and Corollary 5.12.
As a consequence we also prove that the base locus of a quadro-quadric Cremona
transformation and the base locus of its inverse are projectively equivalent so that
essentially these transformations are involutions, Corollary 5.3, a fact which seems
to have been overlooked as far as we know. Moreover in Theorem 5.7 we provide the
classification of all smooth X (r + 1, 3, 3), showing that they are either smooth ratio-
nal normal scrolls (hence of Castelnuovo type) or the Segre embeddings of P! x O
or one of the four Lagrangian Grassmannians. Our approach yields also a geomet-
rical direct proof of the classification of all cubic Jordan algebras whose associated
variety is smooth, showing that they are either simple (L.agrangian Grassmannian) or
semi-simple (P! x @7 with Q" smooth).

The paper is organized as follows. In Section 1 we introduce some definitions and
explain the notation. We also recall the main steps for the proof of the bound (0.1).
In Section 2, a modern version of Bompiani’s theorem [6] is proved, Theorem 2.2.
Then, inductively via osculating projections and the study of the rational map ¢ p
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we prove in Theorem 2.4 the bound on the dimension of linear systems of Cartier
divisors described above and the consequences of the maximality of this dimension.
In Section 3 we deduce from the bound on the dimension of the linear span a general
bound for the degree of nef divisors on varieties n-covered by irreducible curves. In
Section 4, after describing the X(r + 1,n,8) of Castelnuovo type in Section 4.2, we
construct new examples of )?(r + 1,n,6) whenr > 1, n > 2and § = 2n — 3.
In particular we describe in detail examples of X (r + 1,3,3) of Jordan type in
Section 4.3. In Section 4.5 we present some examples of X (3,7.2n — 3) which
are not of Castelnuovo type for n = 4,5, 6. Section 5 concerns the classification of
several classes of X (r+1, 3, 3) under different assumptions either on r, Corollary 5.9
and Corollary 5.12, or on the smoothness of the variety, Theorem 5.7. We also discuss
some open problems pointing towards the equivalence of these apparently unrelated
objects: varieties X (r + 1, 3, 3), quadro-quadric Cremona transformations of [P and
complex Jordan algebras of rank three and of dimension » 4 1.

Acknowledgements. Both authors are grateful to Ciro Ciliberto for some discussions
at different stages of the preparation of the paper and for alot of suggestions leading to
animprovement of the exposition. The first author has considered the problem studied
here when developing a research on webs in common with Jean-Marie Trépreau. He
learned a lot from the numerous discussions with him on this subject during last years.
The second author expresses his gratitude to Paltin lonescu for a direct or indirect but
undoubtedly rich intellectual exchange of ideas and points of view on some contents
of the paper, for his interest in the results and for a lot of remarks which improved
the presentation.

1. Preliminaries and notation

We shall consider irreducible varieties X which are projective, or proper, over the
complex field C.

We will use the following notation: r, n and § are positive integers such that
n — 1 < 4. Then one defines p = LHEIJ ande =5 —pn—1) e {0,....,n—2}.
One alsodefinesm = e+ 1> 0andm’' =n—1—m > 0sothatm +m’' =n — 1.
Finally, for any integer k, one sets k* = max{0, k}.

For classification results there is no restriction in supposing that an irreducible
variety X C PV is non-degenerate. Otherwise (X) C PV will denote the linear
span of X in PV, that is the smallest linear subspace of PV containing X. For
computational reasons, when dealing with classification results, we shall define
such thatdim(X) =r + 1.

Let x be a smooth point of X. For any £ € N, we denote by Osc§( (x) c P¥
the £-th order osculation space of X at x. If yr: (C"T1,0) = (X, x), u — ¥ (u)
is a regular local parametrization of X at x, then Osc§( (x) can be defined as the
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projective subspace (8'“'1,#(0)/814“ |l € N'FL, |a| < E) C P¥. This space can
also be defined more abstractly as the linear subspace spanned by the £-th order
infinitesimal neighborhood of X at x and also generalized to the case of arbitrary
Cartier divisors D on X. Indeed, for every integer £ € N, let J’f (D) denote the
£-th principal part bundle (or £-th jet bundle) of Oy (D). For every linear subspace
V € H%X,Ox (D)) we have a natural homomorphism of sheaves

¢tV ® Oy — PLHD), (1.1)

sending a section s € V to its £-th jet qbf (s) evaluated at x € X, that is qbﬁ (s) is
represented in local coordinates by the Taylor expansion of s at x, truncated after the
order £. Taking a smooth point x € X C P¥ = P(V) (Grothendieck’s notation)
and Ox (D) = Ox(1), it is easily verified that Oscff(x) = [P(Im(qbﬁ)). Ifxe X
is a smooth point, the previous definitions yield dim (Oscf(, (x)) < rk(JP)‘?) -1 =

(’“ +1+£) — 1 and in general it is expected that equality holds at general points of

r+1
X c PN assoonas N > ('“:_}_TE

of order £ of X at x is regular.

A curve C C PV is a rational normal curve of degree § if it is rational, smooth,
of degree § and its linear span in P has dimension &. In other terms: the restriction
of |Op~ (1) to C is the complete linear system of degree § on C >~ P

Let us define the following Castelnuovo—Harris function which bounds the geo-
metric genus of irreducible projective varieties, see Theorem 4.2 below:

) — L. In this case, we shall say that the osculation

n'(r,n,d):Z(J—l_r_1)(d—(cf—|—r)(n—l)—1)+. (1.2)

a
c=>0

We will also use the following function that is closely related to m(r,n, d):

- tf Pl -t P
8) = ! 1.3
= (70T (1), 05

foré > n — 1 fixed with p = |_nSTlJ,m =f—pn—D+landm’ =n—-1-—m.

It is not difficult to prove that 7 (r, n,§) = w(r,n,d), see [52] for details.

An irreducible projective variety X C P¥ of dimension  + 1 that is n-covered by
a family of irreducible curves of degree § will be denoted by X(r +1,7,8) c P . In
most of the cases we shall also assume that X( + 1,7,8) C PV is non-degenerate.

For reader’s convenience we reproduce here some basic results of [52] on varieties
X=X(r+1,ndC PV . For an irreducible curve C < PV of degree §, for non-
negative integers aq, . . ., d,, with & > 0 fixed and such that Zle(a,- +1)=5+1
and for x1, ..., x, € C pairwise distinct smooth points, one has:

(C) = (Osc‘éf (x;)|i=1,....k) (1.4)
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(otherwise there would exist a hyperplane H ¢ (C) containing {Osc (x;) | i =
1,...,k) and § = deg(C) = deg(H N C) > >7_,(a; + 1), contrary to our
assumption).

Let X = X(r+1,7n,8) c P¥ andlet X be afixed #-covering family of irreducible
curves of degree 6 on X. If xy,..., x,—; are distinct general points on X one can
consider the subfamily ¥, . , ={C € E|x; € C fori =1,...,n—1}
Since X is n-covering, the family X, . .,_, covers X and we can also assume that

the general curve in this family is non-singular at xq, ..., x,—1. Let {ay,...,a,-1}
be a set of # — | non-negative integers such that Zf;ll (@i +1) = § + 1. By
(1.4) and since Oscc("j'" (x;) C Osc? (x;) foreveryi = 1,...,n — 1, it comes that
(C) C (Osc;’: (x;)| i =1,...,n—1) forageneral C € X4, x,_,- Since the
elements of 2y, ., _, cover X, one obtains

(X} =40sey (53) | = Lismnatto— L (1.5)

Therefore for these varieties we deduce that dim({X))+1 < Z::ll (rt:_"iaf). Taking
a; =-=ay = pand dy4+1 = -+ = ap—1 = p— | and recalling (1.3), we obtain

the following result for arbitrary X = X(r + 1,#,9), see [52]:
dim((X)) <7 (r,n,8) — 1. (1.6)

Recall that for 7 (7, n, §) defined in (1.3) we have 7 (r,n,8) = =(r,n, d), where
the Castelnuovo—Harris bound 7 (r,n, d) is defined in (1.2) and where d is defined
asafunctionof §byd =8 +r(n—1)+4 2. Since dim(Oscf,Z((x)) < (r‘r"_}_'l"g) — 1 for
any point x € X and for any integer £ € N, we deduce an immediate consequence
of (1.5) that for a non-degenerate X = X(r + 1,n,8) ¢ PT&m0-1 the following

hold:

(1) the osculation of order p of X at a general point x € X is regular, that is

. r+14p
dim (Osc?, = —1; 1.7
im (Osc% (x)) ( ] ) ; (1.7)
(i) if xq,...,x,—1 are general points of X, then

(X) = (é Oscg’((xl-)) ® ( ® oscg’;l(xmﬂ)) = PEOnA-1 (18)
i=1 j=1

From now on an irreducible non-degenerate projective variety X = X(r +
1,n,8) C P7m8-1 will be denoted by X(r + 1,n,8) C prrnd—1 op simply
by X(r 4+ 1,n,8). In the next sections we shall describe the notable geometric
properties of these varieties and of their covering families.
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2. Rationality of X (r +1, n, §) and of the general curve of the n-covering family

The following simple remark, which is surely well known to the experts, will play
a central role several times in our analysis, see also Lemma 2.2 in [32] and [52] for
related statements. Since we were unable to find a precise reference for the generality
needed, we also include a proof.

Lemma 2.1. Let ¢p: X ——> X' be a dominant rational map between proper varieties
of the same dimension, let 2. be anirreducible n-covering family of irreducible curves
on X and let 3 be the induced n-covering family on X'. If X' is projective, if the
restriction of ¢ to a general curve C € % induces a morphism birational onto its
image and if through n-general points of X' there passes a unique curve C' € 3/,
then the same is true for X on X and moreover ¢ is a birational map.

Proof. There exists adesingularization o : ¥ - XwithX projective and a morphism
p: X - X solving the indeterminacies of ¢. Thus without loss of generality we
can assume X smooth and projective, that ¢ is a morphism and that ¢ restricted
to a general C € X is a morphism birational onto its image. The morphism ¢
is generically étale by generic smoothness, i.e. there exists an open set U’ C X’
such that letting U = ¢~ 1(U’), then ¢y : U — U’ is an élale morphism. Let
d = deg(¢) = deg(¢)y) = 1. We shall prove that d = 1.

Fix x1,...,xp—1 € U general points. There exists an open subset /1 € U such
that for every x € Uy, there passes exactly s > 1 curves in % through x1, ..., xp—1
and x. Since ¢ is a proper morphism we can also take Uy = ¢~ (U{) with U] € U’
open. Let x' € U/ be a (general) point and let $~1(x') = {%1,...,%4}. Let
x; = ¢(x7),! = 1,...,n—1, and let 6,-,1,...,6,-55 be the curves of X passing
through xy,...,x,—1,X;. Then forevery j = 1,...,s, the curves qb(a-,j) belong

to X’ and they pass through x7,...,x,_,.x’ so that they coincide with the unique

curve C’ € %' having this property. nSiIllCG ¢ is a local isomorphism near x;, we
deduce s = 1. In particular through n general points of X there passes a unique
curve belonging to X.

Then X; € 6,-, X1 € 5,- and qb(é) = C'foreveryi = 1,...,d. Since ¢ is also
a local isomorphism at x; since x1 € U, we see that 61 = = éd = (. Since
C e X is general, by hypothesis ¢|c: C — C’is a morphism birational onto its
image, yielding d = 1 because x; € C, ¢(x;) = x" foreveryi = 1,...,d, and by
the generality of x” we can also suppose that ¢~!(x’) consists only of a point. [

We begin to study general properties of X (r + 1,7, 8)’s starting from the case
n = 2. This case was classically considered by Bompiani in [6], where the proof
was essentially provided for surfaces. Under the assumption that the general 2-
covering curve is smooth and rational, this result was also obtained by Ionescu in
[32], Theorem 2.8. A similar but stronger result holding in the analytic category
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and not only for complex algebraic varieties has been proved recently by Trépreau
in [64]".

Theorem 2.2. An irreducible projective variety X = X(r +1,2,8) C [P(r_f.’_-}-_l._a)_1 is
projectively equivalent to the Veronese manifold vs (P"+1). In particular every curve
inthe 2-covering family is a rational normal curve of degree § in the given embedding
and there exists a unique such curve passing through two distinct points of X.

Proof. By definition p = § so that by (1.7), for x € X general we have

r+4é
r—+1

r+1+5)_1

dim(Oscgf_l(x)) = ( ) —1 and OSC?((X) _ p(74

Now let x € X be a fixed general point and let 7 = OSCX l(x) = IP(f’+1) 1
Let pr: X ——> PTU=1:28=1 pe (he restriction to X of the projection from 7. The
rational map pr is given by the linear system | D | cuton X by hyperplanes containing
T so that the corresponding hyperplane sections have a point of multiplicity & at
x € X. A general irreducible curve of degree § passing through x is thus contracted
by pr. Let X7 = pr(X). Wehave (X7) = P*U—1.28=  gince (X) = p7¢-2.H)-1,

We claim that X7 is projectively equivalent to vs(P”) ¢ PFU 128~ ndeed,
let 7 : Bl,(X) — X betheblow-upof X at x, let £ = [P" be the exceptional divisor
and let p7. = pr om: Bl(X) --» X7 be the induced rational map. The restriction
of p7 to E is a rational dominant map from P" to X7 C P7(=1.28)=1 given by a
sublinear system of |Opr (5)| of dimension w(r + 1,2, §) — 1 sothat it is given by the
complete lincar system |Opr(8)| (since Osc§ (x) = P21 the restriction of the
strict transform of the linear system of hyperplane sections containing Osc?’(_1 (x) to
E is not zero). Thus the restriction of p7 to E induces an isomorphism between £
and X7 given by |Qpr (8)|, proving the claim. Moreover since a general curve C € X
is not contracted by pr, we have that pr(C) is a curve on X7 of degree §" < §. Thus
pr(C) is a smooth rational curve of degree §, T N C = @, the rational map pr is
defined along C and it gives an isomorphism between C and pr(C).

By Solving the indeterminacies of p7., we can suppose that there exists a smooth
variety X, a birational morphism ¢: ¥ > Xanda morphism pr: X > X7 ~
vg(P") such that progp = pr. Letp*(|Dx|) = Fx + |D | with |D | base point free
and let |D,| = pr{|Opr(1)]). Then Dy ~ 8D, and dim(| D, |) > r. Moreover for
the strict transform of a general curve Cy in % passing through x we have (D Cy) =

0 and (F, - C) = § while for the strict transform of a general curve C € ¥ we have
(D .C)=46. Thus (Dy - Cx) = 0and (D, - C) = 1.

"Trépreau’s version of Bompiani’s theorem is the following: ler (X, x)} C PN be a smooth germ of a
(r + 1)}-dimensional analytic variety with regular 8-th order osculation (at x). Assume that X is 1-covered

by (germs of ) rational curves of degree § passing through x that are (generically) smooth at this poini. Then
X Cvg(PTT1).
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Letting T’ = Osc?{l (x) with x’ € X general and performing the same analysis
we can also suppose that on X the rational map pr: o ¢ = pr is defined and that
there exists a linear system |D,/| such that dim(|D,/|) = r, (Dy - Cyr) = 0 for
general Cyr € X, and (]jx; - C) = 1 for general C € 3. Since a general Cy in
¥/ does not pass through x we have |[D,| # |Dy|. On the other hand for x € X
general, the linear systems | D[ vary in the same linear system |D| on X since X is
rationally connected.

Thus dim(|D|) = 7 + 1, (D - C) = 1 for the strict transform of a general curve
C in ¥ and C does not intersect the base locus of | D| by the previous analysis. Let
s+ 1 =dim(|D|) and let ¥ = p|: X -—> X’ C P5+! be the associated rational
map. Since ¥ (C) is a line passing through two general points of X', we deduce
X’ = P**! and r = 5. Moreover by Lemma 2.1 the rational map ¥ is birational.
Hence there exists a birational map ¢ = ¢ o ~!: P’T! ——» X sending a general
line in P"*1 onto a general curve of degree § in ¥. Composing ¢ with the inclusion
X ¢ P*2:8=1 we get a birational map from P+ given by a sublinear system of

|Opr=1(8)| of dimension (" 'H_Ta) — 1, that is ¢ is given by the complete linear system

|Opr+1(8)|. Inconclusion X ¢ P*2:8-1 i projectively equivalent to the Veronese
manifold vg (P7+1). O

The rationality and the smoothness of the general member X of the 2-covering
family of a X (r +1, 2, §) can also be deduced differently. Indeed in the previous proof
we saw that the linear system of hyperplane sections having a point of multiplicity
greater than or equal to § at a general x € X cuts a general C € X, in the Cartier
divisor §x. By varying x on C we see that this property holds for the general point of
C . Thus the smoothness and rationality of a general element of X are consequences
of the following classical and surely well-known result, which seems to go back to
Veronese, [65], at least in the projective version. The proof is well known and left to
the reader.

Lemma 2.3. Let C be an irreducible projective curve. Then:

(1) if C C PV is non-degenerate and of degree §, then N < § and the following
conditions are equivalent:

(a) N = § and C C F? is a rational normal curve of degree §;

(b) forageneral x € C there exists a hyperplane H, C PV suchthat H.NX =
& - X as schemes.

(2) The following conditions are equivalent:

(a) C is a smooth rational curve;
(b") there exists a Cartier divisor D of degree§ = 1 on C suchthat dim(| D|) = §.

() Oc(b-x1) = Oc(8-x3) for some § = 1 and for x1, x2 € C general points.
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Via Lemma 2.3 one could also prove differently Theorem 2.2 above following
the steps of Mori’s characterization of projective spaces given in [45] because in this
case the family of smooth rational curves 2., is easily seen to be proper.

We now investigate the higher dimensional versions of Lemma 2.3 from the point
of view of proper varieties n-covered by irreducible curves of degree § with respect
to some fixed divisor D, providing generalizations of Theorem 2.8 in [32] and of
Theorem 4.4 in [1]. Part (1) below has been obtained in [52] while (i) is an abstract
version of (0.1).

Theorem 2.4. et X be an irreducible proper variety of dimension v + 1 and let D
be a Cartier divisor on X. Suppose that through n > 2 general points of X there
passes an irreducible curve C such that (D - C) =6 > n — 1. Then:

(i) 1°(X, Ox(D)) = 7(r,n,8);

(i) Equality holds in (1) if and only if ¢\ p| maps X birationally onto a X(r+
l.n,§) C Prm=1 1y this case the general deformation of C does not
intersect the indeterminacy locus of ¢ p).

(i) If equality holds in (1), then
(a) the variety X is rational;

(b) the general deformation C of C is a smooth rational curve and through n
general points of X there passes a unique smooth rational curve C such that

(D-C) =34.
In particular:

(1) a X(r +1,n,8) c PP~V s rational, the general curve of the n-covering
family is a rational normal curve of degree § and through n general points of X
there passes a unique rational normal curve of degree §;

(2) a X(r +1,n, §) C P81 s 4 linear birational projection of vs(P*+1) (or
equivalently, a X (r + 1,n,8) is the birational image of P"+! given by a linear
system of hypersurfaces of degree § and dimension w(r,n,8) — 1).

Proof. Suppose h°(Ox (D)) = 7(r,n,§) = 2 and let
¢ =¢ip|: X --> X' S P(H(Ox(D)) = PV,

The variety X' C PN is irreducible, non-degenerate, of dimension dim(X’) =
s+ 1 < r + 1 and is n-covered by irreducible curves of degree §" < 8. Therefore by
(1.6) one gets

r(Ox(D)) < 7(s.n,8) < 7(r,n.8),

yielding #°(Ox (D)) = 7(r,n,§) and X' = X (v + 1,n,8). We have thus proved
the bound (i) and also that if equality holds then X' = X(r + 1,7, d).
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One implication of the first part of (i1) 1s trivial and we shall prove only the non-
trivial implication and the second part of (ii). If A°(Ox (D)) = 7(r, n,§), then by the
previous analysis dim(X’) = r + 1 and deg(¢(C)) = & for a general deformation
Cof C.

Now we shall prove the birationality of ¢ and part (iii) for n = 2. Later we
shall treat the general case n > 2. If n = 2, it follows from Theorem 2.2 that
X' = X(r + 1,2,8) is projectively isomorphic to vs(P"T1!) so that ¢(C) is the
unique rational normal curve of degree § passing through two general points of X'
Let | D| be the linear system on C obtained by restricting | D| to C. Thendeg(D) = §
and dim(|D|) = § since ¢(C) is a rational normal curve of degree §. Part (2) of
Lemma 2.3 implies that C is a smooth rational curve, that ¢ is defined along C and
that the restriction of ¢ to C is an isomorphism onto its image. Thus from Lemma 2.1
we deduce that ¢ is birational and that through 2 general points of X there passes a
unique smooth rational curve C such that (D - C) = §.

Suppose n > 2 and recall the following notation, see Section 1: p = [§/(n — 1)],

m = 5:p(n—1)—|—1andnj’ =n—1—m. Letxy,...,x,—1 ben—1 general points on
X =X+ 1,18 c PP0H-1 By (1.7) and (1.8), we know that the osculating
spaces Oscf;(,(x,-) and Oscf;(_,l(xm+j) (fori =1,...,mand j = 1,...,m") have

the maximal possible dimension and are in direct sum in the ambient space, yielding
a decomposition
PrOmI=T = (X') = Osch (x1) @ S,

where

S = (Enéz Osc’% (x:) ) @ ( %1 Osc';(_,l(xmﬂ)).
i= j=

Let )
Ps: X" - [, = OSCpX’(xl) — [PJI’(I",Z,p)—]

be the restriction to X’ of the linear projection from S onto L and let X¢ = ps(X').

Let 2, .. x,_, be the family consisting of curves in the covering family X passing
through x5,...,xp—1. The family X, . x,_, is 2-covering and a general C €
2 %s....xy,—; has contact of order at least (m — 1)(p + 1) + m’p with S and is not

contracted by ps. Thus the irreducible curve Cs = ps(C) has degree p/ < § —
(m — 1){(p + 1) — m’p = p. The projections of the curves in X, _, , produce a
2-covering family of irreducible curves of degree p” on the non-degenerate irreducible
variety X¢ C [P7(2:0)=1_ Then (1.6)implies that X5 = X(r+1,2, p)is projectively
equivalent to v,(P"T1) so that Cs C X ¢ is a rational normal curve of degree p by
Theorem 2.2. Moreover, C is a rational normal curve of degree § by part (2) of
Lemma 2.3 since the restriction of ps to C is given by a linear system of degree p
and ps(C) = Cg is a rational normal curve of degree p.

The dominant rational map py is birational and through n > 2 points of X' there
passes a unique rational normal curve of degree § by Lemma 2.1. Thus (1) is proved
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for every n > 2. Applying once again Lemma 2.1 to ¢p: X -->» X’ we immediately
deduce also for # > 2 that the map ¢ is birational and that through » > 2 points of
X there passes a unique smooth rational curve C such that (D - C) = §, proving (a)
and (b) of (iii).

To prove (2), let ¢ = pgl Pt —-» X’ = X(r + 1,n,8). The birational
map ¢ sends a general line / C P"+1 onto a general element C € Xy,  x,_,. The
composition of ¢ with the natural inclusion X’ = X (r + 1,n,8) < P*0m9-1 g
given by a sublinear system of |Op,+1(8)| of dimension 7(r, n, §) — 1, showing that
X' = X (r + 1,n,8) is a birational linear projection of vs(P” 1) from a linear space
of dimension 7 (r,2,8) — 7(r,n,8) — 1. L

The preceding statement concerns varieties X that are n-covered by irreducible
curves of degree & with respect to an arbitrary given Cartier divisor, hence it is more
general than the corresponding result in [52] considering embedded X = X (r +
l,n,8) C p7(rn.8)~1  Note however that the main tool used to prove Theorem 2.4,
namely the reduction to the well understood case # = 2 via an osculating projection,
is the same as in [52].

3. Bound for the top self intersection of a nef divisor

In this section, as a consequence of part (i) of Theorem 2.4, we prove a bound for
the top self intersection of a nef divisor D on a proper variety X such that through
n > 2 general points there passes an irreducible curve C with (D - C) =48 = n — 1.
In particular we obtain a bound for the degree of varieties X (r 4+ 1,n,8) C PV. The
bound (3.1) below generalizes a result usually attributed to Fano, who proved it for
n = 2. The reader can consult the modern reference [35], Proposition V.2.9, for the
case n = 2 of Fano’s result and also the several applications given in loc. cit., e.g. to
the boundedness of the number of components of families of smooth Fano varieties
of a fixed dimension, see [35], Chapter V.

Theorem 3.1. Let X be a proper irreducible variety of dimensionr + 1, let D be a

nef Cartier divisor on X and suppose that throughn > 2 general points there passes
an irreducible curve C suchthat (D -C) =8 >n — 1. Then

5r+1

Dr+1 < (n_—l)r ) (3.1)

In particular, if X = X(r + 1,n,8) C PV, then
r+1

deg(X) = (n——l)” .

37
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Proof. By the Asymptotic Riemann—Roch Theorem, see for example [35], Theo-
rem VI.2.15, we know that

€r+1

Oy (ED)) = D”“m + O(t")
so that "
rr1 .+ DR(Ox (D))
- R 83)

Since X is n-covered by a family of irreducible curves having intersection with [

equal to 8, X is also n-covered by a family of irreducible curves having intersection
8¢ with £D for any £ > (. Theorem 2.4 yields

2 (Ox (ED)) < 7(r,n, §£)

for every positive integer £. From (3.3) we deduce

.
B = T U 1 00

{—+00 gt B34

Let p; = L%J for £ > 0. The definition of 7 (r, n,6£) in (1.3) implies that

n—1((r+1+ !
prt! §liminf( ) pe) .
=400 £r+lp,!

Using Stirling’s formula, for £ — +oc, we have

m—D(r+1+p) (-1 m(i‘+1€+pg)r+l+pg

€F+IP£! €r+1\/p—£(%)pf

(n—1)(r—|—1—|—p,zg)r+1 { F+ 1y ee
~ frtlgrtl ( s o0 ) :

Since py — +oo if £ — +oo and recalling that limy— 4 o (1 +
obtain

(=D (r+1+p)! (=1p;"
€r+1p£! ™~ gr+1

But py ~ % if £ - 400 hence we finally get

_ SE f+1 r+1
D't < liminf (n =D (7 = d .
T {—>+oc £rtl (n—1)F
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Remark 3.2. The bound (3.2)is sharp forn = 2 since §” +1is the degree of vg (P* T1).
More generally, it is sharp for every n > 2 as soon as § = p(n — 1) for some integer
p since in this case §"t1/(n — 1)" = p"+l(n — 1) is the degree of v,(Y) for any
non-degenerate variety ¥ "1 < P"*'~! of minimal degree n — 1.

We apply the previous bound on the degree to classify the X (7 + L, n,n— 1 +k)’s
for n sufficiently large, when r and k are fixed.

Suppose k = 0. Sincem(r,n,n—1)=n+r, X = )?(r—l— l,n,n—1) c prtr-1
is a variety of minimal degree equal to codim(X) + 1 = n — 1 by (3.2), as it is
well known. These varieties were classified in ancient times by classical algebraic
geometers, see [21] and also Section 4.

Now we consider the case £ > 0. When n is sufficiently large, wehavern = k+1,
m'=n—k—2and p = l,yieldingm(r,n,n—1+k)=(k+ 1)(r+2)+n—k-2.
So (3.2) implies that X = X(r + 1,n,n — 1 + k) is a variety of minimal degree as
soon as the quantity

O0=mn—1+k)T —n—-1)"(n+k(r+1)—2) (3.5)

is strictly positive. But § = n” + Q(n"~!) as a simple and direct expansion shows.
Therefore for n sufficiently large § > Oand X = X(r + 1,n,n — 1 + k) is a variety
of minimal degree. Assuming moreover that 7 > 5, as we shall do from now on,
one deduces that X is a rational normal scroll S, . 4 WwithO < a9 <--- < a, and
Yl oai =n+k(r+1)— 1. We want to prove that X is projectively equivalent
to S{x0+k,...,ar+k with ag, ..., o, verilying 0 < wp < -+ < o, and Zf:o o =
n — 1. With the terminology introduced in Section 4 this will mean exactly that
X = X(r + 1,n,n—1+ k) is of Castelnuovo type for n sufficiently large.

Assume that xq,...,xz4+1 and yy,..., y,—k—z are general points of X and let
7 =7(r,n,n—1+4 k). According to (1.6),

k+1
BEL = (&)= (6_91 Osc k(%)) & (¥1. ... Yn—k—2).

Let us introduce some notation. Let 0 < ay < ay < -+ < a, with a, >
0 be integers and set P(ay,...,a;) = IP(EB?ZO (9|p1(a,-)). Let H be a divi-
sor in |Op(q,,....q,)(1)| and consider the morphism ¢ = ¢g|: Play,...,ay) —
Paot+ar+r whose image is denoted S,,.... 4, and called a rational normal scroll of
type (ag, . ...a,). The morphism ¢ is birational onto its image so that S, .. 4, has
dimension r + 1 and its degree is ag + --- + a,. The scroll S4,,... 4, is smooth if and
only if ag > 0 and ¢ is an embedding in this case. If 0 = a; < a;41, then §,,
is a cone over Sai+1 _____ a, With vertex a P!,
Lemma 3.3 ([16], p. 13). Let by, ..., b, be natural integers such that 0 = by =
ce=by <bjpr by <o =bylet{dy, .. d_;y =4biq1— 1, ..., b, =2}



Vol. 88 (2013) Varieties n-covered by curves of degree § 729

and let {dy,...,d,_;} be a rearrangement of {d{,...,d|_;} such that 0 < dy =
dy < -+ < d,_;. Then the general tangential projection of Sp, . p, 15 Sq,...d,_;-

Thus if ag < k, there would exist £ < k& + 1 such that the image X’ of X via
the linear projection ps from § = Osc }1( (x1) & ---PO0sc }1( {x¢) would be a rational
normal scroll of dimension 7" < #. This would imply dim({X (r 4+ 1,7, n—14k))) <
7 (r,n,n—1+k)—1,leading toacontradiction. In conclusion we proved the following
consequence of (3.2).

Corollary 3.4. If n is sufficiently large, a variety X (r + 1,n,n — 1 + k) is projec-
tively equivalent to a rational normal scroll S+, ... a,+k With &g, . .., &0, such that

Y i =n—1

.....

Remark 3.5. The value of # in the previous result can be made effective: X (r +
l,n,n — 1+ k) is a scroll as in the previous corollary as soon as # > max(6, k — 2)
and € > 0, where 6 is the quantity defined in (3.5).

4. Some examples of varieties X (r + 1, 1, §)

In this section we describe in detail three classes of X (r + 1, , §). The simplest ones
are the so-called varieties of minimal degree. Next, using the theory of Castelnuovo
varieties, we will construct examples of )?(r + 1, n,8) forarbitrary n, r and§ > n—1.
These latter examples have already been presented in [52]. Finally, we will show
that twisted cubic curves associated to Jordan algebras of rank 3 are examples of
X(r+1,3,3).

4.1. Varieties of minimal degree and their associated models [21], [30]. Itiswell-
known (see [28], p. 173) that the degree of an irreducible non-degenerate projective
variety Y C P"*"~! of dimension r + 1 satisfies deg(Y) > codim(Y)+ 1 =n — 1.
By definition, ¥ C P"*"~1 is a variety of minimal degree if its degree is n — 1.
Such varieties exist and are well known. Their classification goes back to Bertini and
Enriques and can be summarized as follows (the notation being as in [30]):

Theorem 4.1. The following is an exhaustive non redundant list of the (r + 1)-
dimensional varieties Y C P~ of minimal degree n — 1:

(1) the rational normal scrolls Sq,,....a, for some integers ay, ..., a, verifying 0 <
dg <a1 <--<g,<n—landag+---+a, =n—-1;

(2) the ambient space P11 itself (n = 2);
(3) the quadric hypersurfaces of rank 0 > 5 (n = 3);

(4) the cones over a Veronese surface in P> (n = 5).
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Recall that a scroll Sy,
cone over the scroll Sg;

,,,,, a, 1s singular if and only if @y = 0. In this case, it is a
_____ a, Where j stands for the smallest integer such thata; # 0.

LetY < P"*"~1 be a variety of minimal degree. The space spanned by n generic
distinct points yy,..., ¥, on Y is an (n — 1)-dimensional subspace in P?*7~!. The
latter being generic, it intersects ¥ along an irreducible non-degenerate curve of
degree n — 1, which by Lemma 2.3 is a rational normal curve in (yy, ..., y,) passing
through y; for any i = 1,...,n. This shows that ¥ C P"*t"~1 is n-covered by
rational normal curves of degree n — 1. Since 7 (r,n,n — 1) = n + r, it follows that
varieties of minimal degree are examples of X (r + 1,n,n— 1), which will be called
models of minimal degree. Note that also the converse is true because according to
Theorem 3.1, every X(r + 1,n,n — 1) C P"*"~! is a variety of minimal degree
n—1.

4.2. Castelnuovo’s varieties and their associated models [30], [14], [52]. Let
V < P"*"~1 be an irreducible non-degenerate variety of dimension r and degree
d > 1. There is an explicit bound on the geometric genus g(V') of V in terms of an
explicit constant depending on ¢, and r. The geometric genus g(V') is defined as

the dimension A°(K i7) for one (hence for all) resolution of the singularities I/ — V
of V.

Theorem 4.2 (Castelnuovo—Harris bound [30]). The following bound
gV) =m(r,n.d) (4.1)

holds for the geometric genus of V. C P*"7=1 In particular g(V) = 0 ifd <
rin—1)4+ 2.

Anirreducible variety V C P?*"~! asaboveandsuchthat g(V) = w(r,n,d) > 0
is called a Castelnuovo variety. Note that in this case necessarily d > r(n — 1) + 2.

Remark 4.3. The bound (4.1) can be generalized to more general objects than pro-
jective varieties. Indeed, a basic result of web geometry says that the bound rk(W) <
(¥, n,d) holds for the rank rk(W) of an r-codimensional d-web W = W;(n,r)
defined on a manifold of dimension n#. This result, due to Chern and Griffiths [13],
can be proved by quite elementary methods (see [51] and [49]). Combined with
Abel’s addition theorem, this implies the inequality WV, wv) < a(r.n.d) — here
wy denotes the sheaf of abelian differential r-forms on V', see [37], [43], [3]. [31] -
as soon as I is such that its generic (-dimensional linear section is in general position
in its span, which is stronger than (4.1).

The classification of projective curves of maximal genus has been obtained by
Castelnuovo in 1889. More recently, in [30], Harris proved the following result.
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Proposition 4.4. Ler V C P?1'~1 be a Castelnuovo variety of dimension v > 1

and codimension at least 2. The linear system | Iy (2)| cuts out a variety of minimal
degree Y C P"H 1 of dimensionr + 1.

Thus a Castelnuovo variety V' C P"T"~! of dimension 7 is a divisor in the variety
of minimal degree ¥ C P+ ~! cut out by | Iy (2)|. This property was used by Harris
to describe Castelnuovo varieties (see also the refinements by Ciliberto in [14]): if
p: Y — Y denotes a desingularization (obtained for instance by blowing-up the
vertex of the cone ¥ when it is singular), Harris determines the class [V] of ¥ (the
strict transform of V' in Y via p) in the Picard group of y. Assuming (to simplify)
that 7 is smooth, let Ly = Ky + V. By adjunction theory, there is a short exact
sequence of sheaves

0— Ky — Kg(V) - Ky — 0.
Since ho(f, Ky) = hl(?, Kg) = 0 (because ¥ is smooth and rational), the map
H(Y.Ly) —» H'(V. Kp) (4.2)

is anisomorphism. Thus itinduces rational maps ¢y = ¢k, and @y = Pz, jop~!

such that the following diagram of rational maps is commutative:

l}{ — e EV_ . [P:r(rn d)—1 (4.3)
¥ o= o= ?V_ - [Pn(r,n,d)—ll

Let Xy be (the closure of) the image of @y . It is an irreducible non-degenerate
subvariety in P7¢"4~1 and dim(Xy) = dim(Y) = r + 1. Moreover, one proves
that the image by ®y of a generic 1-dimensional linear section of ¥, that is of a
rational normal curve of degree n — 1 passing through » general points of ¥, is a
rational normal curve of degree § = d — r(n — 1) — 2 contained in Xy. Thus
Xy c prlnd)y—l — palnnd)—1 jg 4y example of )?(r + 1,n,8). These examples
will be called models associated to the Castelnuovo variety V. C P*7~1 and also
models of Castelnuovo fype. They are described in detail in [52] where the authors
also prove the following result.

Theorem 4.5. Let X € X(r + 1,n,8). If§ # 2n — 3 then X is of Castelnuovo type.

It follows that varieties X (r + 1,7, 8) not of Castelnuovo type can exists only
for § = 2n — 3. In the sequel, we shall focus on the case n = 3 and present some
examples of varieties X (r + 1,3,3) not of Castelnuovo constructed from Jordan
algebras.
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4.3. Models of Jordan type associated to cubic Jordan algebras. Recall that a
(complex) Jordan algebra is a C-vector space J with a C-bilinear product I xJ — J
verifying
2 (yvx)=(x*y)x forallx,yeJ.

We will restrict here to the case of commutative Jordan algebras of finite dimension
admitting a unit, denoted by e. A classical result in this theory ensures that a Jordan
algebra is power-associative: for every x € J and any k € N, the kth-power x¥ of
x is well-defined. This allows us to define the rank of J, denoted by rk(J): it is the
dimension (as a complex vector space) of the subalgebra C[x] = Spang (x* |k € N)
generated by a general element x € J. Let m = rk(J) and let £ be the restriction
of the multiplication by x to C[x] and let M, be its associated minimal polynomial.
Then the relation M, (£;)e = 0 expands to

X" — o ()X o (=)o (x)e = 0, (4.4)

where x — 0;(x) is a homogeneous polynomial map of degree i on J (for every
i =1,...,m). Bydefinition, (4.4) is the generic minimum polynomial of the Jordan
algebra J (cf. [24], Proposition I1.2.1). Its generic trace is the linear map T': x
T(x) = o1(x) and the homogeneous polynomial map N : x > N(x) = 0,,(x) of
degree m is its generic norm. The latter is multiplicative in the following sense: forall
y € J,wehave N(x x') = N(x) N(x) forevery x, x" € C|y] (see Proposition I1.2.2
of [24]).
One defines the adjoint x* of an element x € J by setting

m—1

W= Y o)t
i=0

where 0y = 1. It follows from (4.4) that x x* = x*x = N(x) e so that N(x) # 0
implies that x is invertible (for the Jordan product) with inverse x~! = N(x)™'x*.

The map 7 : x — x~! is a birational involution on J. Let Str(J) be the set of

g € GL(J) such that g o/ = i o h (as birational maps on ) for a certain 2 € GL(J).
When it exists, such a/ is unique: by definition, it is the adjoint of g and is denoted by
g". One proves (see [61]) that Str(J) is a closed algebraic subgroup of GL(J), called
the structural group of the Jordan algebra J. Moreover, ¢ — g* is an automorphism
of Str(J) and there exists a character y: Str(J) — C* such that N(g(x)) = n, N(x)
forall x € J (¢f. [61], Proposition 1.5).

The complex vector space Z2(J) of Zorn’s matrices is defined by

7.l {(; f) 5.1 €C, x,yeﬂ}.

Assuming from now on that J is of rank 3, one defines the twisted cubic associated
to J (noted by X J?) as the (Zariski)-closure in P Z,(J) of the image of the polynomial
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affine embedding

253 J— [P.Zz(ﬂ),

1 x
. [x# Nm]_

Then the Zariski-closure of v3(Ce) in [P Z,(J) is a rational normal curve of degree
3 included in X 3 that we denote by Cy:

=l B]lreejuilo 1)

It contains the following three points:

OJ=U3(O)=|:(1) g], 1\]]:U3(€):|:i (1?] and OOJ:|:8 (1)i|

Recall that i stands for the inverse map x — x~!. From now on we shall suppose
g € Su(J). Forafixedw € J, let{,: J — I be the translation x + x + @ and
denote by # the bilinear map associated to x*: one has x#y = (x + y)* — x* — y*
forx,y € I.

Forw € J and g € Str(J), one sets forevery M =[5 7 | € P Z2(J):

on=[; 1],
[ s g(x)
Ge (M) = | ngg* () ngt}

and

Tm(M) =

i s X+ sw
ytotx+set 1+ T 0)+Txo®)+sNw) |’

These maps are projective automorphisms of F Z,(J).

The proof of the following lemma is straightforward and left to the reader.

Lemma 4.6. Forevery w € J and for every g € Str(J), we have
vzoi =1lovy, vyog==Ggovy and vizol, =T,o0vs. (4.5)
Consequently, the maps I, G and T, are projective automorphisms of the cubic X J?.

Let Conf(J) be the conformal group of J, that is the subgroup of PGL(Z,(J))
generated by / and the maps G, and 7, for all w € J and all g € Str(J). From
Lemma 4.6, it follows that Conf(J) is a subgroup of the group of projective automor-
phisms of X 3.
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Proposition 4.7. The group of projective automorphisms of X J? acts transitively on
3-uple’s of general points of XJ? In fact, if x1,x2,x3 € ] are sufficiently gen-
eral, there exists € Conf(Jl) such that u(v3(x1)) = Og, p(vs(xz)) = ly and
pv3(x3)) = oog.

Proof. First let § = Str(J) - e be the orbit in J of the unit e under the linear action
of the structural group. By Theorem 6.5 of [61], one knows that § is a Zariski-open
subset of J.

Assume that x, y,z € Jaresuchthat(1) y; = y—xandz; = z—x are invertible;
(2)zy =zl =yl € G, ie z; = gle) foracertain g € Str(J). Then set

U= (Gg)_l o T—(yl)_l ol oT_, € Conf(J).

We leave to the reader to verify that u(v3(x)) = ooy, u(v3(v)) = Oyand u(vs(z)) =
17. Since v3(J) is dense in X3, the conclusion follows. O

Let x1,x,,x3 € Jandlet 4 € Conf(J) be as in the statement of Proposition 4.7.
Since p € PGL(Z2(1)), the curve ;=1 (Cy) is a rational normal curve of degree 3
passing through the points v3(x;) fori = 1,2,3. Since p is a projective automor-
phism of X ; (by Lemma 4.6 above), this twisted cubic curve is also contained in X J?.
Thus we have proved the following result.

Corollary 4.8. The twisted cubic X § associated to a rank 3 Jordan algebra J is
3-covered by rational normal curves of degree 3.

Let & be the dimension of arank 3 Jordan algebra J. Then X 3 is anon-degenerate
algebraic subvariety of the projective space PZ,(J), whose dimension is 2k + 1.
Since 7(k,3,3) = 2k + 2, one obtains that X3 C PZ,(J) = P?**1 is an example
of X(k,3,3). Thus the cubics X § associated to rank 3 Jordan algebras are exam-
ples of varieties of type X (k, 3,3), which will be called models of Jordan type. A
consequence of Theorem 5.2 1s thata X ; 1s never of Castelnuovo type.

In fact, using Theorem 5.2, one can easily prove the following criterion which
characterizes the varieties X ( + 1, 2, 2n —3) of Castelnuovo type for arbitrary n > 3.

Proposition 4.9. A variety X = X(r + 1,n,2n — 3) is of Castelnuovo type if and
only if for any n — 2 general point X, ..., xXy—1 € X, the intersection of the space
EB::; OSC)l( (x;) with X contains a hypersurface.

In fact, it can be verified that the X = X (r + 1,n,2n — 3) of Castelnuovo type
are exactly the two scrolls S, n—2,and 8,3 . p—2 p—1n—1 1D =D +2)—1

.....

auran
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4.3.1. Examples. We shall describe some explicit examples of models of Jordan
type.

A Jordan algebra J is simple if it does not admit proper non-trivial ideals. It is
semi-simple il it is a direct product of simple Jordan algebras (or equivalently, if the

bilinear symmetric form (x, y) — T(xy) is non-degenerate, see Theorem 5, p. 240,
in [34]).

Exemple 4.10. Let B be asymmetric bilinear formon W = C’~!. ThenJ’ = CHW
with the product defined by

Ao, ¥)=(AA =B y). Ay +1y) (4.6)

is a Jordan algebra of rank 2. Moreover, x> — 24 x + (A% + B(y,y))e = 0 for
any x = (A,y) € J (where ¢ = (1,0)). The generic norm and the generic trace
are N(A,y) = A2 + B(y.y) and T (A, y) = 2, respectively, hence the adjoint is
given by x* = (A, —y). One verifies that C @& W is semi-simple if and only if B
is non-degenerate and C & W is simple if B is non-degenerate and » > 2. When
r = 2,0 = C & W with the product (4.6) is isomorphic to the direct product (of
Jordan algebras) C x C.

One can define the conic associatedto a Jordan algebra J' of rank 2. By definition,
it is the (Zariski)-closure, denoted by X Jz,, of the image of the affine map J' 5 x
[1:x:NXx)]eP(Ca&JI & C). Since N is homogeneous of degree 2, X3, is a
non-degenerate quadric hypersurface in P*+! (where » = dimg J’). It is smooth if
and only if J’ is simple. In any case, X3, is an example of X (r,3,2) (of minimal
type).

Lemma 4.11. If J = C x I’ is the direct product of C with a Jordan algebra J' of

rank 2 and dimension r, then J is of rank 3 and X3 ~ P! x Xﬂz, Segre embedded in
P27+3,

This result ensures the existence of examples of models of Jordan type of any
dimension. For J = C x J with J’ of rank 2, note that X3 is smooth if and only if
J 1s semi-simple.

4.3.2. Examples of X (r + 1,3,3)’s associated to simple Jordan algebras of
rank 3. Let us now consider models of Jordan type associated to simple Jordan
algebras of rank 3, which can be completely classified. We recall the well-known
Hurwitz Theorem that there are exactly four composition algebras over the field of
real numbers: R itself, the field C of complex numbers and the algebras H and
O of quaternions and octonions respectively (the reader can consult [2] for a nice
introduction to these objects).
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It A denotes one of these algebras, let A = A ® C be its complexification
(over R). Any such Ac is a complex composition algebra: for x; = a; @ r; € Ac,
witha, € Aandr; € Cfori = 1,2, wedefine xy-Xy = a1dr @ ¥ 12, X1 = a1 Ry
and ||x1 || = x1-X7 € C. Of course, except for O, there are classical isomorphisms
(of complex algebras)

Re=2C, Co=2CahC and He = MR(0).

Let H3(Ac) be the space of Hermitian matrices of order three with coefficients
in Ag:

1 X3 X3
%3(AC): X3 ] x_l ‘XI,XZ,X3€A(E, r15r25r3€q: g
X2 X1 3
The multiplication
1
(M,N)—~ E(MN + NM) (4.7)

induces on H3(A¢) a structure of complex (unital commutative) Jordan algebra. For
A = R, C or H, it is a direct consequence of the fact that A and hence the rings of
3 x 3 matrices, M3(A¢), are associative algebras. For M5(O¢) a particular argument
is needed and we refer to [24], Chapters V and VIII, for this case. One proves (see
again [24]) that any Jordan algebra H3(Ac) is simple and of rank 3.

We are now able to describe all simple Jordan algebras of rank three. Their
classification is classical (¢f. [34], p. 233, or [24] for instance) and is given in Table 1
below with a description of the corresponding cubic curves, see also [46], [39], [18].
The table also shows classical isomorphisms of H3(A¢) with some matrix algebras
having (4.7) as Jordan product (in the case A = R, C or H).

Table 1. Simple (unital and finite-dimensional) Jordan algebras of rank 3 and their associated
cubic curves.

Jordan algebra J Twisted cubic curve X J? over J

6-dimensional Lagrangian

Hs(Rg) >~ S C
3(Re) ym;(T) grassmannian LG3(C®) ¢ P13

9-dimensional Grassmannian

Hiz(Ce) = M3(C
3(Ee) = M3(C) manifold G5(C®) ¢ P19

15-dimensional orthogonal
Grassmannian OGe(C1?) ¢ P3!

Hs(O¢) 27-dimensional E;-variety in [P>°

Hz(He) > Alts(C)
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It follows from [39], [18] that the cubic curves X J? associated to one of the simple
Jordan algebras presented in Table 1 are homogeneous varieties, yielding non-singular
examples of X (k,3,3) of Jordan type, fork = 6,9,15 and 27.

The four varieties of the last column in Table 1 have been studied by several
authors from many points of view. The interested reader can consult for example
[46], [38], [39], [41], [18].

4.3.3. A Jordan cubic curve associated to the sextonions. The algebra of (com-
plex) sextonions S¢ is an alternative algebra over C such that He € S¢ € Oc¢. It
is of (complex) dimension 6 and has been constructed in [40], [67].

The product (4.7) realizes H3(5¢) as a 21-dimensional sub-Jordan algebra of
H3(O¢). Then H3(S¢) is of rank 3 but is not semi-simple (¢f. [40], Section 8.2).
The cubic curve over Hz(S¢) is denoted by G, (53, $¢) in [40] where it is explained
why it can be considered as a kind of Lagrangian Grassmannian. It is a X (21,3, 3)

in P4* that is quasi-homogeneous and singular along a quadric of dimension 10
(¢f. 140], Corollary 8.14).

4.4. Some cubic curves associated to associative algebras. Let A be an associative
algebra (of finite dimension) not necessarily commutative but with a unit e. Let A
denote the algebra A endowed with the product x % y = %(xy + yx). If Ais
commutative, then 4 = A%, It is immediate to see that in general A% is a Jordan
algebra with e as unit. We will say that a Jordan algebra is special if it is isomorphic
to a subalgebra of a Jordan algebra of the form A with A associative. For instance,
the simple Jordan algebras H3(A¢) in Table 1 are special except when A = O.

Being associative, A is also power-associative so that one can define its rank as
introduced at the beginning of Section 4.3. Of course, the rank of the associative
algebra A and the rank of the associated Jordan algebra A™ coincide.

Complex associative algebras have been classified in low dimensions — e.g. in
dimension 3, 4 and 5 — in classical or more recent papers and looking at these lists
one immediately computes the rank of these algebras. Then, considering the A™’s
associated to rank three associative A’s, one obtains examples of special cubic Jordan
algebras in dimension 3, 4 and 5. The computations needed to obtain the examples
appearing in the following subsections are elementary but tedious and quite long so
that they will not be reproduced here.

4.4.1. The X (3, 3, 3)’s associated to special Jordan algebras of dimension three.
The classification of 3-dimensional complex associative algebras is classical, see [62],
[57]. We refer to [23], [26] for more recent references.

Theorem 4.12. A 3-dimensional complex associative (unital) algebra of rank 3 is
isomorphic to one of the following ones:

cix] , _ CIx]

A1 =CxCxC, Ag:Cx(Xz), 3 = x5
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The above algebras are commutative so that AIT" = A; (fori = 1,2,3) are
examples of special 3-dimensional cubic Jordan algebras. Let X4, be the cubic curve
associated to A;". Clearly, the cubic curve X4, is nothing but Segre’s threefold P! x
P! x P! C P7, whichis a particular case of the general construction of Lemma 4.11.
Similarly, one verifies that X4, is isomorphic to the Segre embedding of P! x Sy,
in P7.

On the other hand the cubic curve associated to A5 yields a new example. One
takes x = 1,y = X and z = X? as a C-basis of A5. Since this algebra is com-
mutative, the Jordan product coincides with the associative one of A3 and may be
expressed as follows:

(x,v,2)- (x", .2y = (x",xy +x'yv.xz' + X'z + y¥) .

Then the generic norm and the adjoint of (x, y,z) € A5 are given by the following
formulae:

N(x,y,z) =x* and (x,y,2)" = (x*, —xy, y? — x2).
So the cubic curve X4, is the closure of the image of the rational map
[x:y:z:t]— [I3 : 12 b pE® ¥ gt? ¢ %0 =yt 1 Gy = xa)f :x3]. (4.8)

The variety X4, C P7 can also be described as the image of P? by the rational
map associated to the linear system of cubic surfaces passing through three infinitely
near double points (two of them generate the line x = ¢ = 0 contained in the base
locus scheme of the linear system) so that it has degree 6.

4.4.2. Some X (4,3, 3) associated to Jordan algebras of dimension four. The
classification of 4-dimensional complex associative algebras is also classical, see
[62], [58], and was also reconsidered more recently in [26], see also the references
in these papers. As explained above, we are essentially interested in those of rank

3, whose classification is contained in the next result where we use the labels and
notation of [26], p. 151-152.

Proposition 4.13. Let A be a 4-dimensional associative algebra of rank three. Then
if A is commutative, it is isomorphic to one of the following algebras

C[X,Y] C[X, Y] C[X, Y]
X — = =

TATZ - TR T N EF TR )

Ag =L

If A is not commutative, then one of the following holds:
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» A is isomorphic to one of the following three triangular matrix algebras

a 0 0
A13:(E><((IO: g), Ag = c da 0) ‘a,b,c,de(ﬁ 3
d 0 b

Ays = (A14)°7;

* there exists A € C\ {1} such that A is isomorphic to

C(X,Y) _
(X2,YZ,YX —AXY) '

A1z =

» A is isomorphic to

C(X,Y)

Ao = .
YT V2L, X2+ YX, XY + YX)

(Here C{X,Y) stands for the free associative algebra generated by 1, X and Y').

Since A5 = (A14)°P? one has Ai"4 = Ai"s. Moreover, one verifies easily (via
elementary computations) that the Jordan algebras Ai"g( ;) and ATQ are associative so
that they are isomorphic to one of the three commutative associative algebras Ag, A7
or Ag (in fact one has Aii_s( N = A7 and Ai"g ~ Ag). Thus we get the following result.

Corollary 4.14. Let J be a rank 3 Jordan algebra of dimension 4 of the form AT
with A associative and of rank three. Then I is isomorphic to one of the following

algebras:

As, A7, As, AT, or Aj,. (4.9)

The reader has to be aware that not every 4-dimensional cubic Jordan algebra is
of the form A" with A associative. For instance (as explained above), if J’ stands
for the simple Jordan algebra of rank 2 on C? then the direct product C x I’ is a
non-associative Jordan cubic algebra not isomorphic to any of the Jordan algebras in
(4.9). In this case, the associated cubic curve X¢xgs is P! x O < P? where O isa
smooth hyperquadric in P*.

Another example is given by the Jordan algebra denoted by I, the Jordan product
of which is explicitly given by

X*y = (— X1V1, X2¥2, Xa¥4 —X1¥3 — X3V¥1, 5(x2y4 + X4V — X1y4 — X4y1))

for x = (xl-)?:1 and y = (y; ?:1 in C* = J,. One verifies that J, is indeed of
rank 3.
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After some easy computations, one obtains explicit affine parametrizations of the
form x — [l : x : x* : N(x)] of the cubic curves associated to the cubic Jordan
algebras mentioned above in this subsection. We collect them in the following table
for further reference.

Table 2
Algebra J Adjoint x* Norm N(x) XycP?
Ag_ = A6 (XZZ , X1X2,—X1X3, —X1X4) X1 XZZ [Pl X 5002
A-;r :A7 (xlz,—xlxz,—x1X3, QXZXQ, —X1X4) X13
A;r :Ag (xlz,—xlxz,—x1X3, XZZ—X1X4) X13
AL, (Foriy , By Mg, ¥z, W1 .0p) X1 X2 X4 P! x Sp11
A7, (x1x2,X1%, —X2X3, —X1X4) x12% x2
CxJ (x%+x§+x%, X1X2, —X1X3, —X1X4) xl(x%+x%+x£) pl x 0
Js (x1X2, X12, X4% — X2X3, X1X4) x12 X2

4.5. Some other examples of X (r + 1,1,2n — 3) when n > 3. According to the
main result of [52], a variety X (r + 1,7, 8) is of Castelnuovo type except maybe
whenn > 2,7 > 1 and § = 2n — 3. The cubic curves associated to Jordan algebras
of rank three provide examples of X (r + 1, 3, 3) that are not of Castelnuovo type. It
is natural to try to produce some examples of X ( + 1,7, 2n — 3) not of Castelnuovo
type forn > 3.

We are aware essentially only of examples which are closely related to varieties
3-covered by twisted cubics.

The Veronese manifold v3(P?) < P17 is of course a X(3,2,3) but is also a
X(3,6,9). Indeed, since P? is 6-covered by twisted cubics, it follows that v5([P?)
is 6-covered by rational normal curves of degree 9. Of course, v3(P?) is not of
Castelnuovo type (since deg(vs(P?)) = 27 whereas the degree of a Castelnuovo
model X = )?(3, 6,9) is 17). Now let xy, x5, x3 be three generic points on v5(P?).
For I C {1,2,3}of cardinality i < 3, let X; be the image of v5([P?) by the osculating
projection of center S; defined as the span of the 1-osculating spaces of v3([P?) at
the points x; withi € /. Then X; is non-degenerate in P1°=% is (6 —i)-covered by
rational normal curves of degree 9 — 27 hence is an example of X (3,6 —i,9 — 2i).
When i = 3, one has X7 = P! x P! x P! hence this example is not new. But
fori = 1 and i = 2, one obtains respectively two new examples of X(3,5,7) and
X (3, 4,5) that are not of Castelnuovo type.
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5. Classification of projective varieties 3-covered by twisted cubics

By definition 7 (r, 3,3) = 2r + 4 for every > 1. In this Section we shall classify
varieties X = X (r + 1,3,3) c P?*3 for r small and/or under suitable hypothesis.

Let us recall some facts, which were proved in the previous sections or which are
easy consequences of them.

Lemma 5.1. Let X = X(r + 1,3,3) € P23, Then:

(1) Thetangential projectionp: X ——> P7T! fromthetangent space T = Ty X =
OSC}( (x) at a general point x € X is birational. In particular X is a rational
variety, SX = P23 and X is not a cone.

(2) The variety X C P?"3 is not the birational projection from an external point
of a variety X' C P2 +4,

Proof. The family of twisted cubics passing through x is 2-covering and a general
twisted cubic in this family projects from 7 onto a general line in P"*! so that the
birationality of w7 follows from Lemma 2.1 and the first part is proved.

Suppose that X = 7,(X') with p € PP\ X', Letx; € X,i = 1,2,3,
be general points and let x; € X' such that 7,(x]) = x; foreveryi = 1,2,3. If
C C X is the unique twisted cubic passing through xq, x5, x3 and if C' C X’
is its strict transform on X', then C’ is a rational curve passing through x|, x5,
x4 such that 7,(C’) = C, yielding deg(C’) = deg(C) = 3. This would imply
X' = X(r +1,3,3) ¢ P¥*4, and we would obtain 2r + 5 < 7(r,3,3) = 2r + 4.
This contradiction concludes the proof. (]

By definition, there exists an irreducible family of twisted cubics, let us say X,
contained in X = f(r + 1,3,3) ¢ P?"*3. Moreover, X has dimension 37, is 3-
covering and through three general points of X there passes a unique twisted cubic
belonging to 3. The family of twisted cubics in % passing through a general point
x € X contains an irreducible component of dimension 2r which is 2-covering for
X . These twisted cubics are mapped by 77 onto the lines in P t! and a general line
in P"*+1 is the image via w7 of a twisted cubic passing through x. The birational map

¢) — 7[’1_"1: [Pi"+1 A X C [P2F+3

is thus given by a linear system of cubic hypersurfaces mapping a general line of P"+!
birationally onto a twisted cubic passing through x. The general cubic hypersurface
in this linear system is mapped by ¢ birationally onto a general hyperplane section
of X.

Let 7,: X = Bl,(X) — X be the blow-up of X at x and let £ = P’ be the
exceptional divisor of 7. Let 77 = 7y o r: X —-» P"*!. The restriction of T
to £ is defined by a linear system |/ fx | of quadric hypersurfaces in £ = [P”, the



742 L. Pirio and F. Russo CMH

so-called second fundamental form of X at x. We shall denote by B, C E = P’ the
base locus scheme of |11y x|.

Since X C P?*3 is non-degenerate, the birational map 77 is defined at the
general point of £. We claim that E' = 77| (E) = P” C P"*1is ahyperplane and
that the restriction of 77 to E is birational onto its image. Indeed, if dim(E") < r,
then a general line in P"*! would not cut £’ and its image by ¢ would not pass
through x. If deg(E’) > 2, then a general line / C P"+! would cut E” at deg(E")
distinct points where ¢ is defined. From ¢(E’) = x we would deduce that ¢ (/) is
singular at x, in contrast with the fact that ¢(/) is a twisted cubic. From this picture
it also immediately follows the birationality of the restriction of 7 to .

Therefore dim(|/Ix x|) = 7 and 77 |g: E -—> E’ is a Cremona transformation
not defined along By, the base locus scheme of |/ Iy . |. Moreover, since ¢p(E') = x,
the restriction of the linear system of cubic hypersurfaces defining ¢ to £’ is constant
and given by a cubic hypersurface €, C E’ = P’. One can assume that E’ C P" 1!
iscutoutby xop = 0. Letx = (xq,....Xp41) € C"t1! and let f(x) be a cubic
equation for €, C E’. Let us choose homogeneous coordinates (o : -+ : Y2,43) On
P2"+3 suchthat x = (0:---:0: Dand T X = V(yg,..., Yr+1)-

The map ¢: P't1 —— X < P#*3 is given by 2r + 4 cubic polynomials
g0, -- -, £2r+3. We can suppose that xo does not divide g2, 5 and that x¢ divides g;
forevery j = 0,...,2r + 2. Moreover xé divides go, . . . gr+1 since the hyperplane
sections of the form Aggg + -« + A,+18,+1 = O correspond to hyperplane sections
of X containing Ty X and hence having at least a double point at x. Modulo a change
of coordinates on P* 1 we can thus suppose g; = x%x,- foreveryi =0,...,r +1
and that g,,43 = xpg + f, with ¢ = g(x) quadratic polynomial. The hyper-
plane sections of X passing through x and not containing 7x X are smooth at x from
which it follows that we can also suppose g,424; = Xof; with j = 0,...,r and
fi = f;(x) quadratic polynomials. By Lemma 5.1 we can also suppose g = 0,
or equivalently g € {fo...., fr). Otherwise X C P?*3 would be the birational
projection on the hyperplane V(yz,44) = P?" T3 C P?"*4 from the external point
(0:---:0:1:—1) € P?"*4 of the variety X’ C P?"*4 having the parametrization
$: PPl s X7 prte given by the following homogenous cubic polynomials:
gi=gifori =0,...,2r +2; 82443 = xpg and 22,44 = f.

By blowing-up the point x on P2"*3 it immediately follows that the restriction
of ﬁz;l to £’ is given by (fo : --- : f;). Hence ¥y := 7r|gp: E -->» E' is either
a projective transformation or a Cremona transformation of type (2, 2), i.e. given by
quadratic forms without a common factor and such that the inverse is also given by
quadratic forms without a common factor. In conclusion we can suppose that the
rational map ¢ is given by the 27 + 4 cubic polynomials

g 5
X3 XgX1s v s XgXr 41> X0 f0s s X0 fro f (5.1)

and that the base locus of w;l, B, Cc P =L isV(fy.....fr) C P, where
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in this case the polynomials f;(x) are considered as polynomials in the variables
Xy e s ¢ ol

Let 7 X denote the affine tangent space to X at x. The first principal result in this
section is the following.

Theorem 5.2. Let X = X(r + 1,3,3) C P23 and let notation be as above. Let
x € X be general andlet Yy : P" ——> P be the associated Cremona transformation.
Then the following conditions are equivalent:

(a) ¥y is equivalent to a projective transformation as a birational map;
(b) X is projectively equivalent eitherto S1. 122 orto S1..113;

(c) the dffine parametrization deduced from (5.1) is, respectively, either
v e C 2. co -
(10X7 -t X1 DX T XX D oo D X1 Xpgr © XTX2)

or
. . . C 2 . . A
(1.x1 D DXl DXL X1X2 D D XX .xl),

(d) the projection from T = T, X of a general twisted cubic included in X is a
conic.

IfX = )?(r +1.3,3) C P? 3 s not a rational normal scroll as above, then:
(1) the associated Cremona transformation ry is of type (2, 2);

(2) the linear system defining ¢: PPt1 ——» X < P¥ 13 consists of the cubic
hypersurfaces in P"t1 having double points along B, ¢ E' c P'+1;

(3) the scheme By C [P’ is equal (as scheme) to £ C [P’, the Hilbert scheme
of lines contained in X and passing through x in its natural embedding into
E = P((txX)*). Moreover, B, C E' = P and By = £x C E = P
are projectively equivalent so that \r, and its inverse have the same base loci,
modulo this identification.

(4) if X is also smooth, then By = £ and B, are smooth schemes.

Proof. The birational map r, is equivalent to a projective transformation as a bira-
tional map if and only it the linear system |/ [x .| has a fixed component, which is
necessarily a hyperplane. It is well known, see also [29], (3.21), that this happens
if and only if X C P2"*3 is a scroll in the classical sense. From Lemma 5.1 we
deduce that this happens if and only if X C [P?"*3 is a smooth rational normal scroll,
yielding the equivalence of (a) and (b). If X C P?'*3 is a rational normal scroll
as before, a general twisted cubic C C X cuts P. = 7, X N X in a point so that
7r(C) = C c P"*! is a conic cutting £’ in two points, possibly coincident. These
two points are contained in the base locus of ¥ and one of this point is double for
the general cubic hypersurface in the linear system defining v since y(C)=Cisa
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twisted cubic. From this we deduce that €/, consists of a double hyperplane IT C E7,
which is exactly B, and of another hyperplane, possibly infinitely near to TI. By
reversing the construction we see that if 77 (C) = C is a conic, then €/, is as before
and the general cubic hypersurface defining ¢ has a double point along a hyperplane
I1 ¢ E’, which is easily seen to be equal to B, yielding that X C P> %3 is a
scroll. Therefore also the equivalence of (b) and (d) is proved. If we suppose that
B! =P~ C E’is given by xo = x; = 0 and if we take into account the previous
description we immediately deduce the equivalence between (c) and (d).

Suppose from now on that X = X (v + 1,3,3) C P?*3 is not a rational normal
scroll so that by the previous part the associated Cremona map v, is of type (2, 2),
proving (1).

By the discussion above on P*T! \ E’ the map ¢ has an affine expression

$() = (L:x: i Xppr s fol®) 1ot fi(x) 1 F(2)),

Let (vo : -+ ¥2,4+3) beasystem of homogeneous coordinates on P?” 3 as above.
Then the equations defining X < P23 in the affine space A2' 13 = P2 +3\ V(yy)

arey; = x;,i =L....r + Liyrgoq; = f;(x), 7 =0,....rand y2,43 = f(x),

that is, letting y = (y1,..., Yr+1), We get the equations y,yo4; = f;(y) for
J=0,....rand ysr43 = f(y)

Let p=o¢(:p)={0:p: folp):---: fr(p): f(p)) be a general point
of X, with p = (p1...., pr+1) € €1, In particular (0 : p) is a general point on

E’. A tangent direction at p € X corresponds to the image via d¢, of the tangent
direction to some line passing through ¢ = (1 : p) € P"*!. We shall parametrize
lines through ¢ via points (0 : y) € E’ so that such a line, denoted by L ,, admits

{ — p + fy as an affine parametrization. Then fori = 0, ..., r, one has
filp +1y) = filp) + 20/,(p. y) + 12 fiy). (5.2)
where fl.l stands for the bilinear form associated to the quadratic form f;. Moreover
f(p+1y)= f(p)+1f(p.y) +12f(y. p) + 1 f(y), (5.3)

where f(p,y) = df,(y) is quadratic in p and linear in y.
Clearly, the base locus of the second fundamental form at p = ¢(1 : p) is the
scheme

By =V(fo(3). . fr(3). f (3. 2) = V(fo(3), ..., () C PG X)),

where the second equality of schemes follows from the equality dim({ fo, ..., f;)) =
r + 1 combined with the fact that dim(|/7x ,|) = dim(|/ Ix «|) by the generality of
p € X. In particular we deduce that for z € B, we have f(z, p) = 0. Because
(0 : p)is general in E’, this implies df; = 0 (since f(z, p) = dfz(p) for every p)
on one hand, and gives f(z) = 0 on the other hand (since 0 = f(z,z) = 3f(z) after
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specializing p = z). The previous facts show that the cubic €. = V(f(x)) C P"t!
has double points along B’ and part (2) is proved. From these facts it immediately
follows also that the closure of the image of the line L, (for z € B),) via the map ¢
is a line included in X and passing through p, proving (3). Put more intrinsically,
the equation of &£, the Hilbert scheme of lines contained in X and passing through
p in its natural embedding into P((z,X)™), is the scheme defined by the equations
Ji(x), f(x, p), f(x) and we proved that the ideal generated by these polynomials
coincides with the ideal generated by the f;’s which defines B, as a scheme.

To prove (4) we recall that for a smooth variety X C P¥ the scheme £, C
P((fx X)*), when non-empty, is a smooth scheme for x € X general, see for example
Proposition 2.2 of [53]. ]

Let
¢ = (go,....0r): P" ——> P’

be a Cremona transformation of bidegree (2, 2). Let B, respectively B’, be the base
locus of @, respectively of 1. The classification of such maps is known for r = 2,
r = 3 (see [47]) and for ¥ = 4 in the generic case (see [60]). From this classification
one deduces thatin low dimension the base loci B and B’ are projectively equivalent so
that, modulo a projective transformation, every Cremona transformation of bidegree
(2,2) in P", r < 4, is an involution. As a consequence of Theorem 5.2 we deduce
below that this holds for arbitrary » > 2 a priori and not as a consequence of the
classification. As far we know, this question has not been addressed in the literature.

Corollary 5.3. lLet ¢ = (¢y,...,¢,): PF ——> P" be a Cremona transformation of
bidegree (2,2) withr > 2. Let B, respectively B’, be the base locus of , respectively
of ¢~\. Then B and B’ are projectively equivalent.

Proof. Consider
71 Blp(P") — P,

the blow-up of P along 5, and
n2: Blp(P") — P,

the blow-up of P” along B’. We deduce the following diagram of birational maps:

Blg (P") = Blg/(P") C P" x P (5.4)
/ \
[PI" __________ T e e = [PI"

where 7; are naturally identified with the restriction of the projections on each factor.
The equality Blg([F") = Blg/(P"), from now on indicated with P”, follows from the



746 L. Pirio and F. Russo CMH

fact that these reduced and irreducible schemes are the closure of the graph of the
maps ¢ and ¢~ ! inside P x P7.

Let E; = ny7'(B) and E; = 7, '(B’) be the m;-exceptional Cartier divisors,
i = 1,2, defined by the invertible sheaves JTI_IIB - O, , respectively JTZ_IIBf O
Let I1; € [z} (O(1))| fori = 1,2. We have

Hy ~2H,—F; and H; ~2H,—FE, (5.5)
from which we deduce
E{~3H,—2F, and FE, ~3H;—-2F;. (5.6)

Let x = (x1 : -+ : Xr4+1) be homogeneous coordinates in P”, which we shall
consider as the hyperplane V{(xg) on P"*! with homogeneous coordinates (xg : x; :
ceo i Xpg1). Let Cp = m(E7) = Vn(x)) C P" and let C; = ma(E1) = Vn(x)).
By the above description C; C P’ is a cubic hypersurface singular along B, that
is the partial derivatives of n(x) also belong to the homogeneous saturated ideal
Ig C C[xyq,...,xr+1]- One also immediately proves that C; is the so-called secant
scheme of B, thatis the scheme defined by the image of the universal family of lines in
[P27+3 aver the lines generated by length 2 subschemes of B. From this one deduces
another proof that ('; is singular along 5.

The map ¢: P’T! ——» P?'*3 given by

d(xg, x) = (xg L XEXD el XgXp1 D Xo@olx) T et Xo@(x) n(x))

is birational onto the closure of its image X C P?**3. We claim that X = X (r +
1,3, 3) so that the conclusion will follow from part (3) of Theorem 5.2. Indeed
let p1, p2. p3 € P71 be three general points, let I1 = (py, pa, p3) be the plane
they span and let . = V{(xg) N TI. Then I. C V{(xy) = [P’ is a general line so
that ¢(1.) = C is a conic in P” cutting B’ in a length 3 scheme R’ spanning a
plane I1". Then ¢~!(I1") = Il is a plane containing Z and cutting B in a length 3
scheme R spanning I1. Then {py, p2, pz, R) = P? and through the length 6 scheme
p1U p2 U psU R there passes aunique twisted cubic C. Then ¢(C) is a twisted cubic
since the linear system defining ¢ consists of cubic hypersurfaces having double points
along B and it passes through the three general points ¢(p1), ¢(p2),¢(p3) € X.

O

Let the notation be as above. Then, modulo composition to the left by a linear
map, one can assume that B = B’. This implies in particular that there exist £ €
End(C" ') invertible such that ¢—! = £ o @. Thus there exists a cubic form n(x)
such that

Eogop(x)=n(x)x (5.7)

forevery x = (xq,...,%,41) € C'TL.



Vol. 88 (2013) Varieties n-covered by curves of degree § 747

In substance, Theorem 5.2 and the construction in Corollary 5.3 say that every
X (r + 1,3, 3) not of Castelnuovo type determines (and is determined by) a quadro-
quadric Cremona transformation of P”. We point out that the previous remark has
the following interesting geometric consequence.

Corollary 5.4. Let X = X(r + 1.3,3) € P23, Then X is a variety with one
apparent double point, that is there passes a unique secant line to X through a
general point g € P?'+3,

Proof. Let notation be as above and let g = (1 : ¢ : ¢’ : z) € P?"*3 be a fixed
general point, where ¢, ¢’ € C"*1and z € C* by generality of ¢. Moreover, we can
also suppose that all the pairs of distinct points py, p» € X such that g € {p1, p2)
are of the form p; = (1 : x; : x} : n(x;)) with x; € C'*t!l fori = 1,2. We
shall essentially argue as in Proposition 8.4 of [18] (see also [40], Proposition 8.16).
Modulo a translation in C”+! we can suppose without loss of generality that g = 0,
that n(g’) # Oand that p; = (1 : x; : @(x;) 1 n(x;)) € X,i = 1,2, are two distinct
points such that ¢ € {p1, p2). We have to show that the equation

g = Ap1 + pp2

has uniquely determined solutions. The above equation splits into the following four:

A+p=1 = —— p(x1)==¢" and n(x;)=———z2. (5.8)
= X, = x X1) = - nd n(x;)=— z. (5.
’ ? u ke : A . Alp — A)

Thus relation (5.7) implies

2
n(E)x1 = (Lo g)pxn)) = T3 (Cop)a)

so that : 5
M= I — M !
¥1="7— (fog)g) and x,=——((cp)g).
Z nz

We deduce that py, p» € X are uniquely determined by ¢ as soon as we show
that (A, 1) are uniquely determined by this point. Since A + p = 1, we shall prove
that A p is uniquely determined.

From relation (5.7), it follows that there exists a cubic form m such that ¢ o £ o
o(y) = m(y)y forevery y € €1 This yields m(g(x)) = n(x)? for every x.
Applying m to ¢(x) = §q" we deduce n(xp)? = ’i‘—:m(q’). Combining this with
the last relation in (5.8) and remarking that (i — A)? = 1 — 4Au (since A + p = 1),
we finally get

. mq)
TP ram)
concluding the proof. (]
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Remark 35.5. Following a classical approach of Bronowski, see [8], it was proved in
[15] that an irreducible variety X C P23 with one apparent double point (OADP
variety) projects birationally onto P”+! from a general tangent space T = Ty X, see
also [16] for generalizations. Letting notation be as in the discussion before Theo-
rem 5.2, then w7 (E) = E’ C P"*! is hypersurface of degree d = deg(E’) > 1,
which is a birational projection of the quadratic Veronese embedding of P’. In par-
ticular 1 < d < 27. In Theorem 5.3 of [17] it is proved that for normal OADP
varieties having d = deg(£’) = 1, not scrolls over a curve, the birational map
rzl: PP+l ——» X € P?7*3 is given by a linear system of cubics hypersurfaces hav-
ing double points along the base locus of the quadro-quadric Cremona transformation
n;ﬂE : £’ -—» E. In particular this class of normal OADP varieties is contained in

the class of X = X (r + 1, 3,3) C P?"*3 so that the subsequent classification results
of X(r + 1, 3, 3)’s of different kind or dimension can be reformulated for the above
class of normal varieties, see [17]. Conjecturally every X (r + 1,3,3) should be
projectively equivalent to a Xy C P2 %3 see discussion in Remark 5.13 below. The
known examples of twisted cubics over cubic complex Jordan algebras are normal
varieties even if we are not aware of a general proof of this fact and neither of the fact
that a X (r + 1,3, 3) is a priori normal. If these were true, one would deduce a one
to one correspondence between normal OADP varieties with d = deg(£’) = 1 and
X(r + 1,3, 3) and also probably with twisted cubic over Jordan algebras.

Cremona transformations have been studied since a long time and several clas-
sification results have been obtained, especially for quadro-quadric transformations.
These classifications can be used to describe all the X (+ + 1,3, 3) in low dimension
or under suitable hypothesis. We shall begin by recalling some easy results on Cre-
mona transformations of type (2, 2) having smooth base loci, see also [20] and [53],
Section 4, for the study of related objects.

Proposition 5.6. Let ¢: P" --» P be a Cremona transformation of type (2,2)
whose base locus B C [P" is smooth. Then one of the following holds:

(1) » =2, B = Q02U p with Q"2 a smooth quadric hypersurface and p &
(Q72);

(2) ¥ = 5and B is projectively equivalent to the Veronese surface v,([P?);

(3) r = 8 and B is projectively equivalent to the Segre variety P2 x P?:

(4) r = 14 and B is projectively equivalent to the Grassmann variety G,(C®);

(5) r = 26 and B is projectively equivalent to the 16-dimensional Eg variety.

Proof. Let notation be as in the proof of Corollary 5.3. Let By, ..., B be the irre-
ducible components of B and let Bj, ..., B} be the irreducible components of B’
It is easy to see that the general quadric hypersurface defining ¢ is smooth at every
pointof B.
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The smoothness of B ensures that B; N By = @ for every j # [ so that P is
smooth and naturally isomorphic to the successive blow-up of the B;’s in some order.
In particular s = ¢ (see also Corollary 5.3).

Let E; = ny'(B;) and let E] = 75 '(B)). Let H; = JT;(H) with j = 1,2
and with / C [P” a hyperplane. We have the following linear equivalence relation
of divisors on F7, see proof of Corollary 5.3:

Ei+ -+ E;~3H, - 2(E{+---+ E))

s

and
Ei —|—---—|—E;~3H1—2(E1 + -+ Ey).

Thus the scheme-theoretic images 72(£1 + --- + E,) and w1 (E] + --- + E}) have
degree 3, yielding s < 3.

Suppose s = 3. Then deg(m2(E;)) = deg(m((E])) = 1foreveryi = 1,2,3
so that B; and B/ are a linearly embedded P~ since the intersection of two dis-
tinct hyperplanes 7((E), respectively 7> (E;), is contained in the base locus. The
smoothness of a general quadric defining ¢ along each B; = P"~2 C P implies
r—2< %, that is 7 < 3. Thus necessarily r = 2 since #°(Ig(2)) = r + 1 and
we are in case (1).

If s = 2, we can suppose deg(m1(£])) = 2 and deg(m1(£3)) = 1. Thus
the quadric 77 (£]) N 7y (£5) is an irreducible component, let us say By, of B. The
birationality of ¢ implies 2°(Jp(2)) = r+ 1. Since 2°(Jp(2)) < h°(Jp,(2)) = r+2,
we see that B, consists of only one point and we are in case (1).

If s = L1, the above diagram (5.4) shows that for general ¢ € 7 (£7]) \ B
there exists a linear space Pg_l_dim(B’) passing through g and cutting X along a
quadric hypersurface of dimension r — 2 — dim(B). If ¢(g) = ¢’, then naturally
pr—1-dim(B’) — P((Np’/pr )3 )- Thisimmediately implies that 1 (£ ) is the variety of
secant lines to B and that B C [P" isa Q F L-manifold of type §(B) = % dim(B), see
[53], Proposition4.2. Indeed, r —2—dim(B) = §(B) = 2dim(B)+ 1 —dim (7 (E]))
yields dim(B) = %(r — 2), see also the computations in [20]. Thus B C P" is a
Q E I.-manifold and also a Severi variety in the sense of Zak. The classification of
Severi varieties due to Zak, see [68] and also [53], Corollary 3.2, assures that we are

in one of the cases (3)—(6). L

The classification of arbitrary X (r + 1,3,3) c P?*3 is difficult due to the
existence of a lot of singular examples. By Theorem 5.2 and Corollary 5.3 this
classification is closely related to that of all Cremona involutions of type (2, 2) on P*
and also to the classification of arbitrary complex cubic Jordan algebras of dimension
r 4 1. On the contrary for smooth X (r + 1, 3, 3)’s a complete classification is possible
due to Proposition 5.6 and Theorem 5.2.

Theorem 5.7. Let X = X(r+1,3,3) C P 3 be smooth. Then one of the following
holds, modulo projective equivalence:
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() X iseither 81,122 0r S1..113/
(i) X isthe Segre embedding P! x Q7 C P?'+3 with Q" a smooth hyperquadric;
(i) 7 = 5 and X is the Lagrangian Grassmannian LG5(C®)  P'3;
(iv) r = 8 and X is the Grassmannian G5(C®) C P!°;
(v) r = 14 and X is the orthogonal Grassmannian OGg(C'?) c P31;

(vi) ¥ = 26 and X is the Ez-variety in P>,

Proof. 11 the associated Cremona transformation is equivalent to a projective trans-
formation we are in case (i) by Theorem 5.2. Otherwise, by Theorem 5.2, the as-
sociated Cremona transformation v, is of type (2, 2) with smooth base locus. Let
¢: P’ ——» X C P?"*3 be the birational representation of X given by the linear
system of cubic hypersurfaces having double points along B.. Then B’ is projec-
tively equivalent to a variety as in cases (1)—(5) of Proposition 5.6 so that X is as
in cases (i1)—(vi) by a well-known description of the corresponding varieties, see for
example [38], [39], [46]. L

Now we apply the classification of quadro-quadric Cremona transformations in
low dimension to deduce the corresponding classification for varieties 3-covered by
twisted cubics. Forinstance, since every birational map ¢ : P! --» P!is equivalent to
a projective transformation, one immediately deduces that a surface X (2, 3,3) C P°
is necessarily of Castelnuovo type, namely it is one of the scrolls Sy3 or S22. Then,
by projecting from m — 3 general points, one gets the following result:

Corollary 58. Let X = X(2.m,m) C P"*2 m > 3. Then X is projectively
equivalent to a smooth rational normal scroll of degree m + 1.

The classification of birational maps of degree 2 on P? is classical, easy and
well known. From this we shall immediately deduce the classification of arbitrary

KB, 3.3) & P2,

Corollary 5.9. Let X = X(3,3,3) C P7. Then X is projectively equivalent to
(1) a smooth rational normal scroll of degree 5, that is S113 or S122; or
(2) the variety P! x Q% C P7 where 0% C P? is an irreducible quadric; or

(3) the normal del Pezzo 3-fold obtained as the image of P? by the linear system
of cubic surfaces having three infinitely near double points or equivalently de-
scribed as the twisted cubic over the Jordan algebra As of Theorem 4.12 and
admitting the parametrization (4.8).
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Proof. If . : P? --» [P? is equivalent to a projective transformation, then we are in
case (1) by Proposition 5.2. Otherwise v, : P? ——» P2 is a Cremona transformation
of type (2,2). If ¥, is the ordinary quadratic transformation, then the cubic surfaces
defining ¢: P? --» X C P’ have three double distinct points at the indeterminacy
points of ¢! so that this linear system coincides with the complete linear system of
cubic surfaces having these three double points. In this case X C P is projectively
equivalent to the Segre embedding of P! x Q2 with Q2 a smooth quadric surface,
see also Theorem 5.7.

It v, has two infinitely near base points and another base point, reasoning as
above we have that X C [P7 is projectively equivalent to the Segre embedding of
[Pl X Soz.

It yry has three infinitely near base points, then ¢ is given by a linear system of
cubic surfaces having three infinitely near double points and we are in case (3). Ul

Using the last result, we can now classify irreducible 3-folds X = X3, m,m) C
P44 for every m > 4. If m > 4, by projecting from m — 3 general points we get
an irreducible 3-fold X,,_3 C [P” which is 3-covered by twisted cubics. If X,,_3 is
a smooth rational normal scroll of degree 5, then X C P”**4 is a smooth rational
normal scroll of degree m + 2. If X,,_3 C P’ is a 3-fold as in Corollary 5.9, then
X < P™** would be a normal del Pezzo 3-fold of degree 6+ m—-3=m+3 =7,
which is linearly normal. Moreover since SX,,,_z = P7, we deduce dim(SX) = 7.
The normal del Pezzo 3-folds X < P4 of degree m + 3, m > 4, are smooth and
with dim(SX) = 6, see [25]. In conclusion we have proved the following result:

Corollary 5.10. Ler X = X(3,m.m) C P4 withm > 4. Then X is a smooth

rational normal scroll of degree m 4 2.

Also the classification of quadratic Cremona transformation on P> is known. By
comparing Tableau 1 in [47] and Table 2 above one obtains the following result.

Theorem 5.11. Let v : P? -—> P? be a Cremona transformation of bidegree (2, 2),
not equivalent to a projective transformation. Then up to composition to the right
and to the left by linear automorphisms, ¥ can be assumed to be one of the seven
quadratic involutions x v« x* defining the adjoint of one of the seven cubic Jordan
algebras on C* described in Section 4.4.2 (see Table 2 for explicit formulae).

From Theorem 5.11, it follows immediately the

Corollary 5.12. Let X = X(4,3,3) C P°. Then X is projectively equivalent to one
of the following varieties:

(1) a smooth rational normal scroll of degree 6, that is S1113 or S1122; or

(2) a cubic curve over one of the seven Jordan algebras in lable 2.
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Remark 5.13. The varieties appearing in Theorem 5.7 are also particular examples
of smooth Legendrian varieties, see [41] for definitions, some related results and
references. They are also interesting examples of smooth varieties with one apparent
double point defined before by Corollary 5.4, see also [46] and [15].

The class of Cremona transformations v : P" --» P" of type (2, 2) arising from
two different birational projections from one point of an irreducible quadric hypersur-
face Q7 will be called elementary quadratic transformations, thatisif m: Q" --» P/
and if 7o: Q" --» P” are the two projections we have ¥ = m o ny!. The
well-known classification of plane quadratic Cremona transformations and the re-
sults of Theorem 5.11 say that for » < 3 every Cremona transformation of type
(2,2) is an elementary quadratic transformation. These examples yield varieties
X (r +1,3,3) C P23 not rational normal scrolls, which are either the Segre
embedding of P! x Q7 or projective degenerations of them when some base point
becomes infinitely near.

There is an interesting approach to Jordan algebras developed by T. A. Springer
[61], Section 1.27, and based on j -structures and indirectly also on the so-called Hua s
identities, see [44]. These results and our geometrical treatment yield the following
consequence, probably well known to the experts: two twisted cubic curves over
Jordan algebras Xy, C P73, i = 1,2, are projectively equivalent if and only if J,
and J» are isomorphic Jordan algebras.

In particular in Theorem 5.7, Corollary 5.9 and Corollary 5.12 we obtained geo-
metrical proofs of the classification of all cubic Jordan algebras J such that the
associated twisted cubic Xy < P2"%3 is respectively smooth, of dimension 3, of
dimension 4.

Based on the results of Theorem 5.2, of the construction in the proof of Corol-
lary 5.3, of Theorem 5.7, of Corollary 5.9 and of Corollary 5.12, one could ask the
following question:

Isa X(r + 1,3,3) € P¥ 3 not of Castelnuovo type projectively equiva-
lent to a twisted cubic Xy C P?'t3 for some cubic Jordan algebra J of
dimension v + 17

We conjecture that the answer to the previous question is affirmative. In other
terms, we conjecture that the following a priori unrelated mathematical objects in fact
coincide:

« varieties X (r + 1,3, 3) € P?"*3, up to projective equivalence;
* rank 3 Jordan algebras of dimension 4+ 1, up to isomorphism;

* quadro-quadratic Cremona transformations of P”, up to linear equivalence.

In [9], see also [60] and [66], a classification of quadro-quadric Cremona trans-
formations in P# is obtained. This immediately yields also the classification of
X (5,3,3) C P'! and provides an affirmative answer to the above conjecture also for
r = 4. We refrain from listing this classification and we will come back in a future
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paper, [50], on the beautiful relations between the above apparently unrelated objects,
trying to develop further the classification results and the connections among these

arcas.
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