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Rigidity of pseudo-Anosov flows transverse to R-covered
foliations

Sergio R. Fenley*

Abstract. A foliation is M-covered if the leaf Space of the lifted foliation to the universal cover
is homeomorphic to the set of real numbers. We show that, up to topological conjugacy, there

are at most two pseudo-Anosov flows transverse to a fixed M-covered foliation. If there are two
transverse pseudo-Anosov flows, then the foliation is weakly conjugate to the stable foliation of
an M-covered Anosov flow. The proof uses the universal circle for M-covered foliations.
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ondary 57M50, 57M60, 57R30.
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1. Introduction

Pseudo-Anosov flows are extremely common amongst 3-manifolds [GK1], [Mo2],
[Fe2], [Cal2], [Cal3] and they yield important topological and geometrical informa-
tion about the manifold. For example they imply that the manifold is irreducible
and the universal cover is homeomorphic to M^ [Ga-Oe], [Fe-Mo]. There are also

relations with the atoroidal property [Fe3]. Finally there are consequences for the

large scale geometry of the universal cover when the manifold is atoroidal: In that

case it follows that the fundamental group is Gromov hyperbolic [GK2] and in cer-
tain cases the dynamics strueture of the flow produces a flow ideal boundary to the
universal cover which is equivariantly homeomorphic to the Gromov boundary and

yields many geometric results [Fe7].
As for the existence of pseudo-Anosov flows, it turns out that many classes of

Reebless foliations in atoroidal 3-manifolds admit transverse or almost transverse

pseudo-Anosov flows which are constructed using the strueture of the foliation. For
example this occurs for: 1) fibrations over the circle [Thl], 2) finite depth foliations
[Mo2], 3) M-covered foliations [Cal2], [Fe2] and 4) Foliations with one sided branch-

ing [Cal3]. Pseudo-Anosov flows also survive under the majority of Dehn surgeries
on closed orbits [Fr], [GK1], which makes them extremely common. On the other
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hand there are some examples of non existence of pseudo-Anosov flows in certain

specific manifolds: see [Br] for examples in Seifert fibered Spaces and [Ca-Du], [Fe5]
for examples in hyperbolic manifolds.

In this article we consider the uniqueness question for such flows: Up to topo-
logical conjugacy, how many pseudo-Anosov flows are there in a closed 3-manifold?
TopoZog/caZ cön/wgßcry means that there is a homeomorphism of the manifold sending
orbits to orbits. The less flows there are, the more rigid these flows are and conse-

quently more likely to give information about the manifold. In this generality the

question is, at this point, very hard to tackle. Here we Start the study of this question
and we consider how many pseudo-Anosov flows are there transverse to a given fo-
liation. This is very natural, since as explained above, many pseudo-Anosov flows
are constructed from the foliation and are transverse to it. We will consider a class

of foliations called M-coverai: this means that the leaf space of the lifted foliation
to the universal cover is homeomorphic to the set of real numbers [Fei]. This is the

simplest Situation with respect to this question. The uniqueness analysis involves a

detailed understanding of the topology and geometry of the foliation and flow in this
case.

There are many examples of M-covered foliations: 1) Fibrations over the circle.
2) Many stable and unstable foliations of Anosov flows, which are then called M-
covered Anosov flows. These include geodesic flows of hyperbolic surfaces and

many examples in hyperbolic 3-manifolds [Fei]; 3) t/m/orra foliations [Th2]: this
means that given any two leaves of the lifted foliation in the universal cover, they
are a bounded distance from each other. Obviously the bound depends on the pair of
leaves. This is associated with slitherings over the circle [Th2]. 4) Many examples
foliations which are M-covered but not uniform in hyperbolic 3-manifolds [Call].

We should stress that in this article pseudo-Anosov flows include flows without
singularities, that is (topological) Anosov flows. On the other hand, we do not allow
1-prong singularities. With 1-prongs almost all control is lost, for example x S*

has a pseudo-Anosov flow with 1-prongs and the manifold is not even irreducible.
A flow transverse to a foliation is regwZa/fng if an arbitrary orbit in the universal

cover intersects every leaf of the lifted foliation. In particular this implies that the fo-
liation is M-covered. This is strongly connected with the atoroidal property: Given an

M-covered foliation with a transverse, regulating pseudo-Anosov flow, it follows that
either the manifold is atoroidal or it fibers over the circle with fiber a torus and Anosov
monodromy [Fe3]. Conversely if the manifold is atoroidal and acylindrical and the

foliation is transversely orientable, then there is a regulating, pseudo-Anosov flow
transverse to the M-covered foliation [Fe2], [Cal2]. So transverse pseudo-Anosov
flows are as general as possible in this Situation and the uniqueness question is a very
natural one in this setting.

There is one case where the uniqueness question for transverse flows is known,
which is the simplest case of foliations: a fibration over the circle. It is easy to see

that any transverse flow is regulating. Any two transverse flows induce homotopic
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and hence isotopic monodromies of the fiber S. This works even if the flow is not
pseudo-Anosov. If the flow is pseudo-Anosov, then the associated monodromy is

a pseudo-Anosov homeomorphism of [Thl]. In particular the fiber cannot be

the sphere or the projective plane. If the fiber is Euclidean, then the flow has no
singularities and is a topological Anosov flow. In this case it is not hard to prove
that there is at most one transverse pseudo-Anosov flow up to conjugacy. Suppose
then that the fiber is hyperbolic and therefore the monodromy is pseudo-Anosov
with singularities. It is proved in [FLP], expose 12, that any two homotopic pseudo-
Anosov homeomorphisms are in fact conjugate. This implies that the corresponding
flows are also topologically conjugate and consequently in this case there is only one
transverse pseudo-Anosov flow up to conjugacy.

This result turns out to be very close to what happens in general for R-covered
foliations:

Main theorem. ^ Z?£ an R-covered/oZ/a/fon Z/z cZ<9S£<7. TTze/z z/p to topoZ^gZcaZ

co/zjz/gacy ^Zzere Zs one /ra/zsv£rs£ p^z/do-A/zosov^W wZzz'cZz Zs regz/Za/z/zg/or
7/. 7/z azZzZzYZo/z, zz/z to co/zjzzgßcy, ^Zz<?r<? Z.s <:/Z.S6> <:/f rnczst o/n? /zo/z r<?gzzZ<:/tozg frvzzzsverse

/zs£z/<7<9-A/z6>s6>v to 7/. 7/TZzere Zs o /r<2/zsv£rs£ p^^z/Jo-A/zo^ov wZzz'cZz Zs /zo/z

regz/Za/z/zg/or 7/, ^Zze/z ^ZzZsZz<zs /zo sZ/zgz/Zar orZ/Zfa <z/z<7 Zs <z to/zoZogZazZA/zosov
wZzz'cZz Z.s R-coverai. 7/z oJJzYZo/z Z/z z7zz'.s c<zse, o/tor o ZzZow Jow/z o//oZZotoJ / -Zzn/z<iZ^s

tf/7/, ^Zze/z ^Zze resz/Z/f/zg/oZZß/zo/z 7/' Zs co/zjz/gato to ezYZzer ^Zze stoZ/Ze or ^Zze zz/zstoZ/Ze

/oZzWZo/z q/TZze A/zo^ov^ow.

Consequently if 7/ is not a blow up of the stable/unstable foliation of an R-covered
Anosov flow then up to topological conjugacy, there is at most one pseudo-Anosov
flow transverse to 7F Furthermore there is one such flow if Af is atoroidal.

A/oZZotozZ /-Z/zz/zzZZ^ of 7/ is an /-bündle F embedded in Af so that F is a union
of leaves of 7/, which are transverse to the 7-fibers in F. In particular the boundary
of F is an union of leaves of 7F In general the base of the bündle is not a compact
surface. The blow down Operation collapses a foliated 7-bündle onto a Single leaf,
by collapsing 7-fibers to points. In the theorem above one may need to do this blow
down Operation a countable number of times. With reference to the abstract of this
article, the phrase 7/ is weakly conjugate to a foliation 5^, means that some blow
down 7/' of 7/ is topologically conjugate to F.

This theorem generalizes the result for fibrations, because as explained above in
that case any transverse flow is regulating.

In order to prove the theorem we split into two cases: the regulating and non
regulating situations. The non regulating case was studied in [Fe4] where all of the
Statements concerning non regulating flows were proved except for the uniqueness of
the transverse pseudo-Anosov flow. In the last section of this article we use the con-
structions and results of [Fe4] to finish the proof of uniqueness in the non regulating
case. For completeness here is an outline of the proof of the other Statements in the
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non regulating case. In the universal cover M of M, the lifted flow has stable and

unstable foliations. Since ^ is M-covered there is only one transverse direction to the

lift ^ of the foliation ^ to M. After a considerable analysis, using the topological
theory of pseudo-Anosov flows [Fe4], [Fe6], this implies that there is only one trans-

verse direction to the stable and unstable foliations of the flow in the universal cover.
In particular we show that there are no singularities of the flow - it is a (topological)
Anosov flow. In addition we prove that the stable and unstable foliations of the flow

- which now are non singular foliations - are M-covered foliations. Therefore the
flow is an M-covered Anosov flow.

The next Step is to show that for each leaf of ^ there is a well defined stable

(or unstable) leaf in the universal cover associated to it and these two leaves (one
stable/unstable and the other a leaf of ^) are a bounded Hausdorff distance from
each other. For simplicity assume they are stable leaves. After collapsing foliated
/-bundles of this correspondence between leaves of the stable foliation in the
universal cover and leaves of^ is a bijection. Since the leafof^ and the corresponding
stable leaf are a bounded Hausdorff distance from each other, there is a map between
them which sends a point in one leaf to a point at a bounded distance in the other
leaf. As both foliations are M-covered then this map is a quasi-isometry. Since leaves

of the stable foliation are Gromov hyperbolic [PI], [Su] and any leaf of ^ is quasi-
isometric to a stable leaf, it follows that the leaves of ^ are also Gromov hyperbolic.
In particular in the non regulating case, there are no parabolic leaves in In [Fe4]
the analysis was done under the assumption that leaves of ^ are Gromov hyperbolic.
The argument above shows that this assumption is not necessary. Using a result of
Candel [Can], we can assume that the leaves of ^ are hyperbolic leaves.

The next Step is to show that for each flow line in a fixed leaf of the stable foliation
in the universal cover there is a unique geodesic in the corresponding leaf of so that

they are a bounded Hausdorff distance from each other. These geodesics in leaves of
^ jointly produce a flow, which projects to a flow in Af whose flow lines are contained
in leaves of In [Fe4] we show that this new flow is conjugate to the original Anosov
flow and therefore ^ is topologically conjugate to the stable foliation of the original
Anosov flow. Essentially what is left to prove is the uniqueness of the new flow.

We remark that it is very easy to construct non regulating examples for certain
foliations: let ^ be the stable foliation of a smooth M-covered Anosov flow 4>, so that

^ is transversely orientable. Perturb the flow slightly along the unstable leaves, to
produce a new Anosov flow O which is transverse to ^ and non regulating for ^ -
see details in [Fe4].

The bulk of this article concerns the regulating Situation, whose analysis is com-
pletely different from the non regulating case: in that case the proof was internal
to M - we only used the topology of the pseudo-Anosov flow and showed that sta-

ble/unstable leaves in Af and leaves of ^ are basically parallel to each other. Clearly
this cannot happen in the regulating Situation. In the regulating case we use the

asymptotics of the foliation, contracting directions between leaves, the universal cir-
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cle for foliations and relations of these with the flow. We show that the universal
circle of the foliation can be thought of as an ideal boundary for the orbit space of
a regulating pseudo-Anosov flow and this can be used to completely determine the

flow from outside in - from the universal circle ideal boundary to the universal cover
of the manifold in an equivariant way.

The proof of the theorem goes as follows. Let O be a transverse flow which is

regulating for the foliation 7/. Suppose first that there is a parabolic leaf in 7/. Then

we show that there has to be a compact leaf which is parabolic. Hence the manifold
fibers over the circle with über this leaf and the flow is topologically conjugate to
a Suspension Anosov flow. In this case there is at most one pseudo-Anosov flow
transverse to 7/, since there cannot be a non regulating transverse pseudo-Anosov
flow. This is done in Section 2.

In the case that all leaves are Gromov hyperbolic, we use Candel's theorem [Can]
and assume the leaves are hyperbolic. The orbit space of a pseudo-Anosov flow is the

space of orbits in the universal cover. It is always homeomorphic to the plane [Fe-Mo]
and the fundamental group of the manifold acts naturally on this orbit space. Given
two regulating pseudo-Anosov flows transverse to 7/ we produce a homeomorphism
between the corresponding orbit Spaces, which is group equivariant. This is the main

step here. Using the foliation 7/ which is transverse to each lifted flow, this produces
a homeomorphism of the universal cover of the manifold, which takes orbits of one
flow to orbits of the other flow and is group equivariant. This produces the conjugacy.

In order to produce the homeomorphism between the orbit Spaces, we use in
an essential way the universal circle for foliations as introduced by Thurston [Th2],
[Th3], [Th4]. For R-covered foliations, the universal circle is canonically identified
to the circle at infinity of any leaf of 7/ [Fe2], [Cal2]. Notice that the universal circle
depends only on the foliation and not on the particular the transverse pseudo-Anosov
flow. We first consider only one pseudo-Anosov flow transverse to 7/. We show
that the orbit space of the flow in Af can be compactified with the universal circle
of the foliation to produce a closed disk. This is canonically identified with the
Standard compactification of any hyperbolic leaf of 7/. Here one has to show that the

topology of the orbit space of the flow in Af union the universal circle of the foliation
is compatible with the topology of the compactification of the leaves of 7/ and also

that this topology is independent of the particular leaf of 7/. To prove this fact, one
has to distinguish between uniform and non uniform foliations. Recall that uniform
means that any two leaves of 7/ are a finite Hausdorff distance from each other - for
example fibrations over the circle. The uniform case is simple. The non uniform case

requires arguments involving the denseness of contracting directions between leaves,
after a possible blow down of foliated 7-bundles. Using the same ideas we analyse
how stable/unstable leaves in the universal cover intersect leaves of 7/, particularly
with relation to the universal circle. We proved in [Fe6] that for any pseudo-Anosov
flow transverse to a foliation with hyperbolic leaves the following happens: given

any ray in the intersection of a stable/unstable leaf (in the universal cover) with a leaf



648 S. R. Fenley CMH

of then this ray limits to a Single point in the circle at infinity of this leaf of
In this article we show if ^ is M-covered then given a fixed stable (or unstable) leaf
and varying the leaves of then the ideal points of these intersections in different
leaves of ^ follow the identifications prescribed by the universal circle. So clearly
the universal circle is intrinsically connected with any regulating, transverse pseudo-
Anosov flow. This is done in Section 4. These two results are the key tools used in
the analysis of the theorem.

The next Step is to analyse how an dement of the fundamental group acts on the
universal circle. If an dement of the fundamental group is associated with a closed
orbit of the flow, then we show that some power of it acts on the universal circle with
a finite even number > 4 of fixed points and vice versa. This key result depends on
the analysis in Section 4 and on further properties of the intersections of leaves of ^
and stable/unstable leaves, which is done in Section 5.

Finally in Section 6 we consider two pseudo-Anosov flows transverse and regu-
lating for We first prove that for each lift of a periodic orbit of the first flow, there
is a unique periodic orbit of the second flow associated to it. This depends essentially
on the study of group actions in Section 5. This produces a map between the orbit
spaces of the two flows restricted to lifts of closed orbits. The final Step is to show
that this can be extended to an equivariant homeomorphism between the orbit spaces.
This finishes the proof of the main theorem.

At the end of the article we also study the following two questions: 1) Given
O, pseudo-Anosov flows transverse to a foliation ^ which is M-covered, when is

there a topological conjugacy between O and which also d/recft'on along
flowlines? Given the analysis of the main theorem, if this happens, then either both
O and are regulating or they are both non regulating. By the main theorem again,
this question reduces to asking whether there is a topological conjugacy between O

and its inverse <t>~* which preserves the direction along flow lines. Here <t>~* is the

same flow O traversed in the opposite direction. We show that all possibilities can

occur. 2) The other question we analyse is whether the conjugating homeomorphism
can be chosen to be isotopic to the identity. We show that this is always the case.

We thank the reviewer for several useful suggestions, in particular the simplifica-
tion of the proof of Theorem 2.1 and also the implied Suggestion of the isotopy result.
We also thank Lee Mosher who asked the same isotopy question and also helped with
conjugacy issues in the mapping class group of surfaces, which was useful to address

question 1) above.

2. The case of parabolic leaves

Leaves of the foliation ^ are conformally either spherical, Euclidean or hyperbolic.
In this section we quickly rule out the first Option and prove the main theorem in the
second Option. We say that a leaf is if it is conformally Euclidean.
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The stable and unstable foliations of O induce 1-dimensional perhaps Singular
foliations in any leaf of 7/. There are no 1-prongs in the stable foliation and no
centers, so Euler characteristic arguments disallow the existence of spherical leaves.

Theorem 2.1. 7/ Z?£ an M-cöveredybZZdtfZön /Amsveree o psewdo-Anosov
O. //"T? Zzas o porafeo/Zc Zeo/ ^/zere Zs o compact Zca/C wZzZcZz Zs parafeoZZc ancZ

M^Zfecre over dze cZre/e wZ^A^ier C. /n dzZs casc ^/ze )?ow Zs an Arnxsov )?ow ancZ Zs

ccmjngate a swspension)?ow wZ^A^ier C. 77zere/ore z/an M-covered/o/Zodon 7/ Zzas

aparafeoZZc Zca/ ^Zzcn np to topoZogZcaZ con/ngacy, ^Zzere Zs a£ mo5/ one pscmio-Anosov
)?ow toansvcrec to 7/.

Proo/ If the pseudo-Anosov flow O is not regulating for 7/ then as explained in the

introduction, the leaves of 7/ are Gromov hyperbolic and therefore not conformally
Euclidean. Therefore O has to be regulating.

We assume first that Af is orientable.
Let L be a parabolic leaf of 7/.

Suppose first that 7/ has a compact leaf. Since 7/ is M-covered, it was shown by
Goodman and Shields [Go-Sh] that any compact leaf is a über of Af over the circle.
We show that there is a compact leaf which is parabolic. This is not true in general,
but it holds for M-covered foliations. We may assume that L is not compact. Using
the M-covered hypothesis we show that L limits on a compact leaf. Consider the

component of the complement of the compact leaves which contains L and let O be

the closure of this component. Then O is homeomorphic to C x [0,1] and in addition

we can assume that 7/ is transverse to the /-fibration in O (see [Fe2]). Identify C
with the lower boundary of O. Look at the points that L hits in a fixed 7-fiber /.
Let x be the infimum of these points. If x is in the boundary of O we are done. The
foliation in O is determined by its holonomy which is a homomorphism from tti (C)
into the group of orientation preserving homeomorphisms of /. This holonomy has

to fix x for otherwise some dement would bring x closer to C and hence L would
have a point in / lower than x. Since the holonomy fixes x then the leaf through x
is compact, contrary to assumption that there are no compact leaves in the interior
of O.

We conclude that L limits on a compact leaf C and since L is parabolic, then

so is C. The flow O is regulating for 7/ and so every orbit through C intersects C
again, in other words O is conjugate to a Suspension flow and the cross section is an

Euclidean surface. In particular O is an Anosov flow. Any two pseudo-Anosov flows
transverse to 7/ will generate Suspension flows in Af transverse to C. As explained
in the introduction, any two such flows are topologically conjugate. This finishes the

analysis (in the orientable case) when there is a compact leaf.

Suppose now that there is no compact leaf. Our goal is to show that this cannot
happen. As proved in Proposition 2.6 of [Fe2] there is a unique minimal set Z in
7/. Since L must limit on leaves in a minimal set, then there are parabolic leaves in
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the minimal set, and hence all leaves in the minimal set are parabolic. There are at

most countably many components in M — Z each of which has a closure which is

an /-bündle over a non compact surface. In addition the flow can be taken to be the
/-fibration in this closure [Fe2]. Therefore these /-bundles can be blown down to
Single leaves and this yields a foliation which is still transverse to O and now is a

minimal foliation. Clearly this happens for any pseudo-Anosov flow transverse to
Hence if there are no compact leaves, we may assume that ^ is minimal.

Let now L be an arbitrary leaf of which is parabolic. Since L has polynomial
growth, then Plante [PI] showed that there is a holonomy invariant transverse measure

supported in the closure of L. Since L is dense, this shows that the support of the

measure is all of M.
The lift of this transverse measure to M identifies the leaf space of ^ to R in a way

that covering translations preserve the measure, that is, act by translations. Therefore
there is a Single subgroup G of tti(M) which is the stabilizer of any leaf of
In particular all leaves of ^ are homeomorphic. This group G is the kernel of the

holonomy homomorphism tti (M) -> Hom(R) and therefore it is a normal subgroup
of tti (M). In addition G is the fundamental group of a parabolic leaf L, which is not

compact and which is orientable, hence G is either trivial or isomorphic to Z.

If G 1 then all leaves of ^ are planes. In this case Rosenberg [Ros] proved
that M is homeomorphic to the 3-torus and hence tti (M) has polynomial growth of
degree 3. On the other hand a manifold with a pseudo-Anosov flow has fundamental

group with exponential growth [Pl-Th]. Therefore this case cannot happen.

If G Z then since ^ is transversely orientable and M is orientable, the leaves

of ^ are orientable and hence all annuli. We show that M is a nilmanifold. Start
with a simple closed curve y in L which is not null homotopic in L and let i? a small
closed annulus transverse to ^ and with one boundary y. Since there is no holonomy
in ^ the foliation induced by ^ in i? is a foliation by circles near y and we may
assume the other boundary /3 is also a closed curve in L as L is dense. Then /3 is not
null homotopic in L, for otherwise y would be null homotopic in M contradicting
Novikov's theorem [No]. Hence y and /3 bound an annulus A in L and the union

can be perturbed to a surface S transverse to ^ and foliated by circles (again
by the no holonomy condition). In addition it is easy to see that is transverse to the

flow, hence double sided and therefore has to be a torus as M is orientable.

Cut M along S to produce a manifold Mi with an induced 2-dimensional foliation
^ i transverse to 3Mi. If a leaf ^ i is non compact then there is a leaf of ^ not
intersecting S, contradiction. Hence every leaf of is compact and as every leaf of
^ is an annulus, it now follows that every leaf of^ i is a compact annulus. We deduce
that Mi is S x [0,1] and M is obtained from Mi by a glueing which preserves circle
foliations. Hence M is a nilpotent 3-manifold. It follows that tti (M) has polynomial
growth, again contradicting the fact that tti (M) has exponential growth [Pl-Th]. So

again we conclude that this cannot happen.
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We conclude that if Af is orientable, then ^ has to have a compact leaf C, which
is a fiber of a fibration of Af over S * and O is topologically conjugate to a Suspension.
The result is proved in this case.

If Af is non orientable then it is doubly covered by an orientable manifold and

the result applies to the double cover. The fiber C" in the double cover projects to a

leaf C of ^ in Af which intersects every orbit of the flow. Hence C is a fiber in Af
and has to be a torus as there are no pseudo-Anosov homeomorphisms of the Klein
bottle. The rest of the proof is the same. This finishes the proof the theorem.

3. General facts about M-covered foliations

Remark. Unless otherwise stated, from now on we assume that ^ has only Gromov

hyperbolic leaves.

A theorem of Candel [Can] then shows that there is a metric in Af so that leaves of^
are hyperbolic surfaces. We assume this is the metric we are using. Let tt : Af -> Af
bee the universal covering space of M. The following facts concerning M-covered
foliations are proved in [Fe2], [Cal2]. There are two possibilities for

• ^ is wm/orra. Given any two leaves L, i? of then they are a finite Hausdorff
distance from each other. This was defined by Thurston [Th2]. If a is the
Hausdorff distance between the leaves L, £ (which depends on the pair L, £),
then for any x in L choose /(x) in £ so that <i(x, /(x)) < a. Note that / in
general may not even be continuous. However, given the M-covered hypothesis,
then / is boundedly well defined: any two choices of /(x) are a bounded
distance from each other. The bound depends on the pair of leaves. The map

/ is a quasi-isometry between L and £ and hence induces a homeomorphism
between the corresponding circles at infinity still denoted by / : 3oo^ 9oo^-
Clearly these identifications between circles at infinity are group equivariant
under the action by tti (Af). In addition they satisfy a cocycle property: given 3

leaves L, £, S of then the identifications between 3oo^ and 3oo^ composed
with those between 3oo^ and 9ooS\ induce the direct identifications between
3oo^ and 3qo^- Hence all circles at infinity are identified to a Single circle,
which is called the wmversaZ c/rcZe of ^ or ^ and is denoted by W. By the

equivariance property, tti(M) acts on W. The fact to remember here is that

given x in 3oo^ and g in then x, g are associated to the same point of W

if and only if a geodesic ray r in L defining x is a finite Hausdorff distance in
Af from a geodesic ray r' in £ defining g.

• ^ is not uniform. If^ is not a minimal foliation, then it has up to countably many
foliated /-bundles. One can collapse the /-bundles to produce a foliation which
is minimal (notice this does not work in the uniform case, for instance when ^
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is a fibration). If a pseudo-Anosov flow is transverse to then one can do the
blow down so that the flow is still transverse to the blow down foliation [Fe2].
Sometimes we will assume in this case that ^ is minimal. If ^ is minimal then
the following important fact is proved in [Fe2], [Cal2]: for any L, £ leaves of
then there is a dense set of contracting directions between them. A confracFng
d/recFon is given by a geodesic r in L so that the distance between r and £
converges to 0 as one escapes in r. Notice this only depends on the ideal point
of r in 3qo^ as all such rays are asymptotic because L is the hyperbolic plane.

Any such direction produces a mßrfer m. This is an embedding

m: [0, oo) x [0,1] -> Af

so that for each s in [0,1] there is a leaf Fy of ^ so that

m([0, oo) x {s}) c Fy

is a parametrized geodesic ray in Fy. In addition, m({^} x /) is a transversal to
^ for each £ in [0, +oo), and for all .sq, £2 £ F

^ 0 as £ -> 00.

Hence these geodesics of F^, F^ are asymptotic in M. The contracting direc-
tions between L, F induce an identification between dense sets in 9oo^
which preserves the circular ordering. This extends to a homemorphism be-

tween 3oo^ and 3oo^- These homeomorphisms are clearly tti(M) equivariant
and in addition they satisfy the cocycle property as in the uniform case. Hence
as before each circle at infinity is canonically identified to a fixed circle W, the
universal circle of ^ or Finally tti (Af) acts on W.

We now explain what happens if ^ is not uniform and not minimal. This was
not discussed in [Fe2] but it is a simple consequence of the analysis of the minimal
case as follows: Let Z be the unique minimal set of ^ [Fe2]. Blow down ^ to a

minimal foliation The analysis above produces the universal circle W' for Let
3: Af -> Af be the blow down map sending leaves of^ to leaves of and homotopic
to the identity. Lift the homotopy to produce a lift 5 of 5, which is a homeomorphism
of M. For any A, F leaves of there are F, F leaves in Z so that A, F are between

F, F. Let F' 5(F), F' <5(F). Then in there is a dense set of contracting
directions between F' and F'. For any such there is a ray F in F' asymptotic to a ray
/' in F'. Under the blow up map, this produces corresponding rays in F, F: a ray
r in F which is a bounded distance from a ray / in F. By the M-covered property,
the ideal point of the ray / is the unique direction for which there is a ray a bounded
distance from r in M. This provides an identification between dense sets in 3ooF and

9oo£. This is equivariant and satisfies the cocycle property. This can be extended
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to a group equivariant homeomorphism between 3qo^ and 3oo^- This produces the
universal circle in this case.

Calegari [Call] produced many examples of M-covered, non uniform foliations
in closed, hyperbolic 3-manifolds.

4. Intersections between leaves of ^ and pseudo-Anosov foliations

The main goal of this section is to show that a pseudo-Anosov flow transverse to an
M-covered foliation interacts very well with the universal circle. We show that leaves

of A^ are essentially vertical products with respect to the universal circle. Let O

be a pseudo-Anosov flow in closed. Background on pseudo-Anosov flows can
be found in [Mol], [Fe6]. We stress that pseudo-Anosov flows do not have 1-prong
Singular orbits. Let A^, A" be the stable/unstable foliations of <E> and 3>, A^, A" the

lifts to the universal cover of O, A*% A^ respectively. Given z in Af let IL^(z) be
the stable leaf containing z and similarly dehne JF"(z). Our assumption is that O is

transverse to the foliation ^ and is regulating for Therefore given any leaf L of
the foliations A^, A^ are transverse to L and they induce 1-dimensional Singular

foliations A£, A£ in L. We are in the case that leaves of ^ are isometric to the

hyperbolic plane. The orbit space of O is 0 Af / O with the quotient topology and

it is homeomorphic to M^ [Fe-Mo]. The foliations A**, A^ induce 1-dim foliations
0**, 0^ in 0. If x is in 0, then 0**(x) is the leaf of 0^ through x and similarly for
0".

One fundamental fact used here is that we proved in [Fe6] that each ray of a leaf
of A£ or A^ accumulates in a Single point of 3ooL. This works even if ^ is not
M-covered.

A Convention that will be used throughout the article is the following: the group
tti (Af) acts on several objects: the universal cover Af, the orbit space 0, the universal
circle W, the foliations A^, A^, 0^, 0^, etc. If g is an dement of tti (Af) we still use
the same g to denote the induced actions on all these spaces M, 0, W, A^, A", 0^,
0", etc.

Lemma 4.1. ^Zzotf <2 O Zs regwZßtfZng/or <2/2 M-covered
/oZZa/fon TTzen stafeZe and nnstaZde /aZZa/nms- A**, A^ Zzave //ansda/jff Zea/

space. /q/bZZenvs ffcaf/br any Zea/L dze Zeaves q/TZze one dZraensZanaZ/aZZadans

A£, A^ are nm/orra qnasZgeadesZcs Zn L.

Proa/ This is stronger than the fact that rays in these leaves limit to Single points
in 3oo^. If we suppose on the contrary that (say) A^ does not have Hausdorff leaf

space, then there are closed orbits aq /3 of O (maybe with multiplicity), so that they
are freely homotopic to the inverse of each other, see [Fe6]. Lift them coherently to
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orbits a, /3 of O. Since O is regulating for then both a and /3 intersect every leaf
of£.

Let g in tti (Af) non trivial with g leaving a invariant and sending points in a
forward (in terms of the flow parameter). Therefore g acts in an increasing way in
the leaf space of By the free homotopy, g also leaves /3 invariant and g acts

decreasingly in /3, hence also in the leaf space of This is a contradiction.
Hence the leaf Spaces of A/ are Hausdorff. As proved in Proposition 6.11

of [Fe6] this implies that for any L in then all leaves of A£, A^ are uniform

quasigeodesics in L. The bounds are independent of the leaf of A£, A^ in L and

also of the leaf L of For non singular leaves, this implies that any such leaf is a

bounded distance (in the hyperbolic metric of L) from a minimal geodesic in L. For
singular /7-prong leaves of A£, A^ the same is true for any properly embedded copy
of R in such leaves.

In this section we want to show that the asymptotic behavior of leaves of A£, A^
is coherent with the identifications prescribed by the universal circle.

Let be the leaf space of which is homeomorphic to the set of real numbers.
Let A be a leaf of A^ (or A"). We will show that each half leaf of A has a Single

point of the universal circle associated to it. In order to do that choose an arbitrary
leaf L of ^ to Start with and let r be a ray of A H L — this is a ray of A£. Let now
i? be an arbitrary leaf of ^ or an element of Since O is regulating, then O^(^)
intersects £ for any g in r. The intersection of O^(r) and £ is a ray of A^ — again
because of the regulating condition. This ray also defines an unique ideal point in
doo£. Since 3oo^ is canonically identified with the universal circle W this defines a

map

/r (£) ={equivalence class in W of the ideal

point in 3oo^ of the ray (O^(r) D £")}.

The set O^(r) is a half leaf of A. Clearly the map /• only depends on the

equivalence class of half leaves of A, where two half leaves are equivalent if they
both contain a half leaf of A.

Proposition 4.2. Any Zeo/A 0/ A^ or A^ Zs <2 prodnct wZtA respect to nnZverraZ

cZrcZe, ^Zzotf Zs, ZdeoZ poZnfa o/AflL/or L Zeoves 0/^ ora conston^ Zn nnZ-

verraZ cZrcZe. Mora specZ/ZcoZZy gZven o ray ro/AflL, wZzera L Zs Zn ^Zz^n

corraspondZng raop /•: JC ^ W de/ned ofeove Zs o conston^ raop.

Proo/ The proof depends on whether ^ is uniform or not.

Cos£ 1. ^ is uniform.
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Claim. 7/* ^ zs w/zZ/brra and O zs Zransverse and regnZaZ/ng /ar zZzen /ar any *S,

Zeaves ö/^, zZzere zs a Zzannd an zZze ZengZZz q/7Zaw Z/nes /ranz *S Za iL 77ze Zzannd

de/zends an zZze /za/r S, iL
Otherwise we find /z^ in S with <t>^ (/Zj) in £ and 6 converging to (say) infinity.

Up to subsequence assume that tt(/Zj) converges to a point /z in M. Take covering
translations g^ in tti (Af) with g^ (/z^) converging to /zq. For each Z take ^ in g^ (£")
with d gz (/z*)) < a for fixed a. This uses the uniform property. Up to subsequence
assume that g* converges and hence g* (i?) converges to a leaf i?o. The orbit of O

through /zq intersects i?o, since the flow is regulating. Hence there is Zo with <t>^ (/zo)
in £"o. By continuity of flow lines of O, then for any z in Af near /zq and G leaf of
^ near £"o, then there is Z near Zo so that <$h(z) is in G. But <t>^ (g* (/z^)) is in g* (iL),
which is a leaf near i?o and Z* converges to infinity, contradiction. This proves the
claim. Notice that it is not necessary for O to be pseudo-Anosov in this claim, just
that it is regulating.

Since r is a quasigeodesic in L, let Z be the geodesic ray in L with starting point
/z and a finite Hausdorff distance (in L) from r. By the above O^(r) intersects £
in a ray r' of A^ which is a bounded distance from r in M. The ray r' is also a

uniform quasigeodesic ray in iL hence r' is a bounded distance in £ from a geodesic

ray /'. Then Z, /' are a finite distance from each other in M. The definition of the
universal circle in the uniform case implies that r, r' define the same point in W. This
establishes this case.

Case 2. ^ is not uniform.

In this case, first assume that ^ is minimal. Therefore between any two leaves of^,
there is a dense set of contracting directions. The proof essentially uses that flow lines
cannot cross these contracting directions. The proof will be done by contradiction.
Let r be a ray of a leaf of A^ for some L in ^ with initial point /z. Let a be the ideal

point of r in 3oo^- Suppose that for some £ leaf of then

r' 0]&(r) fl £ defines a distinct point in W.

Let Zz be the point in 3qo^ identified to the ideal point of r' in 3oo^L by the universal
circle identification. Hence a, Zz are different. By density of contracting directions
between L and iL there are points c, d in 3oo^ which separate a from Zz in 3oo^ and

so that c, d correspond to contracting directions between L and iL Let mi, m2 be
markers between L and £ associated to the contracting directions c, d respectively.
Let ü* Image(m,) and let C be the union of the points in Af contained in leaves

intersecting the markers nz i, nz2. Removing initial pieces ifnecessary we may assume
that 2?i, i?2 are disjoint. Since nz* ({Z} x /) is a very small transverse are if Z is big
enough, we can also assume the following: if z is in iL or iL then O^(z) will
intersect any leaf in C near z, producing a small transversal from L to i? passing
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through z. For each leaf of ^ intersected by the markers, let

rs geodesic arc in S joining the endpoints

of Image(mi) D S and Image(m2) H S.

Let A be the union of the for such S. This is topologically a rectangle with the

bottom in L the top in £ and the sides transversals from L to iL Then U F2
separates C into 2 components Ci, C2. Since {a, Z?} is disjoint from {c, d} the ray
r does not accumulate on c or J in 3oo^- Hence starting with a smaller ray r if
necessary we may assume also that r, F are disjoint from 5/ and far away from it.
In particular the flow line through any point of r will not intersect 5/, since points in
5/ are in very short transversals from L to iL

By renaming Ci, C2 we may assume that r is contained in Ci and F is contained
in C2. For each z in r it is in Ci, then the flow line through z intersects £ in F which
is in C2. Therefore this flow line has to intersect 4Ußi U F2. The above remarks

imply that this flow line cannot intersect either Fi or F2. Hence this flow line must
intersect A. Since A is compact we can choose z; in r escaping in r so that Om(z/)
intersects A in

4/ 5>f,. (z,0 and ^ -» 4 e ,4.

Since z; escapes in r, it follows that Z; converges to infinity. By the regulating property
of O, the orbit through g intersects L. Hence nearby orbits intersect L in bounded
time, contradicting that Z; converges to infinity.

This contradiction shows that F has to define the same point in W that r does.

This finishes the proof when ^ is minimal.
If ^ is not minimal, then first blow down ^ to a minimal foliation We can

assume that O is still transverse to ^F. Now use the proof for ^F as above. The walls
4 U U ^2 for ^F pull back to walls for Because the foliation ^ is a blow up
of ^F and O is transverse to both of them, it follows that flowlines of O cannot cross
the two ends of the pullback walls and if necessary can only cross the compact part
of these walls. Therefore the same arguments as above prove the result in this case.
This finishes the proof of Proposition 4.2.

A leaf F of ^ is isometric to the hyperbolic plane, so we consider the canonical

compactification F U 3ooF with a circle at infinity. Given any two leaves F, F
in then using the universal circle analysis there is a homeomorphism between

9oo^ and 9oo^- In addition if a flow O is regulating for ^ then there is also a

homeomorphism between F, F by moving along flow lines. We next show that these

two homeomorphisms are compatible:

Proposition 4.3. GZven F, F Zn ^ cons/der zZze map g/rora F U 9<x>F to F U 9<x>F

fry: z/x A Zn F zZzen raove aZong ZZne o/Ö zZzrowgZz x z/nZZZ Zz ZzZZs F.
FZze ZnZersecZZonpoZnZZs £(x). 7/x Zs Zn 9qoF, Z^Z£(x) Z?£ zZzepoZnZZn 900^ ß^ocZßtoJ
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to x fry fto wmversto cZrc/e Zd£n/ryZc<to<m £ Z.s a Zzom^omorp/zZ^m. to atoZZ/ton

toese /zora^tfraorptotois' are growp egwZvarZan^ and sato/y toe cacyc/e candZ/ton.

Proa/ The map £ is a bijection. We only need to show that it is continuous, since the
inverse is a map of the same type. The equivariance and cocycle properties follow
immediately from the same properties for flowlines and identifications induced by
the universal circle.

We now prove continuity of £: This is very similar to the previous proposition and

we will use the setup of that proposition. The first possibility is that ^ is uniform.
The claim in Proposition 4.2 shows that the map £: F -> £ is a quasi-isometry and

it induces a homeomorphism £* from F U 3ooF to F U 3oo^- The image of an ideal

point in 9qqF is determined by the ideal point of £ (r) where r is a geodesic ray in
F with ideal point /?. But £ (r) is a bounded distance from r in Af and this is exactly
the identification associated with the universal circle.

Suppose now that ^ is not uniform. Assume first that ^ is minimal. We know
that £ restricted to both F and 3oo^ are homeomorphisms. Since F is open in
F U 3ooF all we need to do is to show that £ is continuous in 3oo^- Let a in 3oo^
and (a;) converging to a in F U 9oo^\ so we may assume that a; is in F. Suppose

by way of contradiction that £(a/) converges to £(Z>) where & is not a. Choose c, d
in 3ooF which separate a,Z> in 3oo^- Then construct the wall A U Fi U P2 as in
Proposition 4.2. The flow lines from a; tog(a/) have tointersect this wall in a compact
set, contradiction as in Proposition 4.2. This finishes the proof if ^ is minimal.

If ^ is not minimal, then use the same arguments as in the end of the previous
proposition to deal with this case.

Topology in 0 U 1/. Proposition 4.3 allows us to put a topology in 0 U W as follows:
Consider any leaf L of There are homeomorphisms between L and 0 and 3qo^
and W. The combined map induces a topology in 0 U U from the topology in
L U 9oo^- Proposition 4.3 shows that this topology is independent of the leaf L we
Start with. In addition covering translations induce homeomorphisms of 0 U Ii — this
is because if L is in ^ and / in tti (Af) then / is a homeomorphism from L U 3qo^
to (/(L) U 300/(£)), both of which are homeomorphic to 0 U U. We think of this
as an action on 0 U U. Given / in tti (Af), then the notation / will also denote the
induced map in 0 U U. The analysis above makes it clear that / in tti (M) acts as

an orientation preserving way on 0 if and only if it acts as an orientation preserving

way on W.

5. Action of elements of 7Ti (M)

The main purpose of this section is to analyse how elements of tti (Af) act on W for
an R-covered foliation particularly with respect to a transverse pseudo-Anosov
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flow. We first need a couple of auxiliary results. Let

0: M -> 0 be the projection map.

A point x in 0 is called if there is g 7^ Z J in tti (M) with g(x) x and an

orbit of of O is periodic if ©(a) is periodic. A Z/ne Zea/of A^ is a properly embedded

copy / of R in a leaf of A^ of a leaf L of ^ so that: if / is in a Singular leaf r of

A£, then r does not have prongs on both sides of Z in L. A singular leaf with a

/7-prong singularity has /? lines leaves. Consecutive line leaves intersect in a ray of
A£. Non singular leaves are line leaves themselves. Similarly one defines line leaves

for A£, 0/ 0", A/ A^ (the last two are pullbacks to M of line leaves of 0/ 0").
Given z in M let fF^(z) be the stable leaf containing z. The secfors of fF^(z) are
the connected components of M — IT^(z).

Lemma 5.1. Lef ^ fe ß regwZotf/ng /or <2 /oZ/otf/on ^ w/z/c/z zs R-
coverai wzYZz ZzyperZwZ/c Zeaves. Z; Z?£ Z/ne Zeaves wZzere L; are Zeaves 0/

Sappen £Zza£ £/z£re are x; zn Z; so £Zza£ x; converges Zn M toß poZn£ x zn a Zea/L
o/^. Tjf W^(x) Zs s/ngnZar assnrae £Zza£ aZZ X; are Zn ^Zze cZosnre 0/0 sector o/tT^(x).
77zen f/zere Zs a Z/ne Zea/ Z 0/ A^ wzY/z x Zn Z and /; converg/ng to Z Zn dze geomezWc

topoZogy o/M. /n addzY/on z/s; are dze geodesz'cs Zn L; a feonnded dzstance/rom /;
Zn L/ and s Zs dze geodesZc a feonnded dZstonce/rora Z Zn L dzen s/ converges to s Zn

dze georaetoZc topoZogy o/M.

Proo/ We first prove the Statement about Z; and Z. Geometrie convergence means
that if z is in Z then there are z; in Z; with the sequence (z;) converging to z and in
addition if z^ is in Z^ and (z^) converges to u; in M then u; is in Z.

Since the flow O is regulating for then Z; flows into line leaves r; of A£. The

points x/ flow to g; in L and clearly converges to x. Hence there is a line leaf Z

of A^ through x, so that any point z in Z is the limit of a sequence (z^) with z^ in

r;. If IL'* (x) is singular, this uses the fact that the x; are all in the closure of a sector
of JT^(x). Otherwise it could easily be that different subsequences of r; converge to
distinct line leaves of A£. Let z; O^(z^) D Z;. Then z; converges to z. This shows

that any z in Z is the limit of a sequence in Z;.

Now suppose that (z^) is a sequence converging to z with z^ in L^. Here x^
is in and x is in L and hence converges to L in the leaf space of Since

is Hausdorff then no sequence of points in converges to a point in another leaf

of^. If follows that z is in L. Let

^ ^'(*/*), K W^(x).

Then 1/ converges to L. By Lemma 4.1 the leaf space of A** is also Hausdorff. It
follows that z is in L. Hence z is in L D L r. It was also proved in [Fe6] that
L n Fis connected and hence r is exactly the leaf of A£ containing x.
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If r is non singular this finishes the proof of the first Statement. Suppose then that

(x) is singular. Since the x; are in the closure of a sector of (x) then so are
the /,£ and hence the z^. Consequently the same is true of z. The boundary of this

sector is a line leaf of tT^(x) and so z is in the corresponding line leaf of which
is /. This finishes the proof of the first Statement of Lemma 5.1.

We now consider the second part of Lemma 5.1. By Lemma 4.1 the leaves of A^
are uniform quasigeodesics in £ for any £ leaf of Let then & > 0 so that any
line leaf of A^ is < & from the corresponding geodesic in £ and likewise for arcs

in such leaves. Let /; be line leaves of A£., / its limit in a leaf L of ^ as in the first
part of the lemma. Let s; be the geodesics in L; corresponding to /; and let s be the

geodesic in L corresponding to /.
For any 6 > 0 there is fixed /x(e) > 0 so that if two geodesic segments in the

hyperbolic plane have length bigger than 3/x(e) and the corresponding endpoints are
less than 2/7 + 2 from each other, then except for segments of length /x(e) adj acent

to the endpoints, then the rest of the segments are less than e/3 from each other.

Let then z in s. Given 6 > 0, find u/, iL in s which are exactly (3/x(e) + 2Z> + 1)

distant from z. There are u;, w in / with

u/) < & + w') < & + -.

Let r be the segment of / between u;, w. There is a corresponding segment of r; of
/; between points w, so that the Hausdorff distance in Af from r to r; is << 1.

The corresponding geodesic segment m; from u;; to w, in L; is less than & from r;
and by choice of u/, iL then the midpoint of m; is less than e/3 from a point in

Hence is less than 6 from z. By adjusting the 6 to converge to 0 and the i to
increase, one finds in s; with converging to z.

Suppose now that z^ are in with contained in L^. Suppose that the

sequence z^ converges to z in M. The proof is very similar to the above: Fix 6 > 0.

Choose big segments in centered in z^. The length is fixed and depends on 6.

There are geodesic arcs of with endpoints in the leaves whose midpoints are

very close to z^. Very close depends on 6 and the length above. There are arcs in /;
with these endpoints so that the above arcs converge up to a subsequence to a segment
in / by the first part of the lemma. The geodesic arcs above converge to a geodesic
are with endpoints in /. Up to subsequence the midpoints of the geodesic arcs (which
are 6 close to the z^) converge to a point (this point is z) which is close to a point
in closeness depending on 6. Now make 6 converge to 0 and prove that z is in s.
This finishes the proof of Lemma 5.1.

At this point it is convenient to do the following: for the remainder of this section

we fix a leaf L of The bijection L U 3oo^ 0 U U is a homeomorphism.
Therefore the action of tti (Af) on0UU induces an action by homeomorphisms on
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L U 3oo^ under this identification. This action leaves invariant the foliations Ä£,
A£, because 0**, 0^ are 7iq(M) invariant and 0L 0^ are identified with A£, A^ by
the bijection above.

We need one more auxiliary fact. This is a technical result concerning ideal points
of leaves of A£, A£.

Lemma 5.2. L^Z £ Z?£ <2 Ze<z/ö/^ and Zi, /2 d/sZz'ncZ Z^ßv^ 0/ A^ or A^. TTzen Zi,

Z2 noZ sZz^re an Zde<zZ po/nZ Zn 3 00 iL

Proo/ Roughly the proof goes like this: rays in A^ with same ideal points are a

bounded distance from each other. Zoom in to the ideal point and use covering
translations to bring it back to a compact region and produce line leaves of say A£
(for appropriate L) with Z?6>zZz ideal points identified. Then use the transitive property,
pseudo-Anosov dynamics and the regulating property to derive a contradiction. Here
are the details:

Suppose first by way of contradiction that there are Zi, Z2 rays in leaves of A^
for some £ in ^ with the same ideal point <2 in 300^ and so that Zi, Z2 do not share

a subray. We can assume that Zi, Z2 do not have singularities. Let Wy, 7 1,2 be

the starting points of Zy. Let 77, 7 1,2 be a line leaf of A^ containing Zy. Choose

points Xz in Zi escaping in Zi. As explained before the leaves of A^ are uniform
quasigeodesics in i? and hence they are at a bounded distance in i? from geodesics
in i?. This implies that there are ^ in Z2 so that ^ are a bounded distance from Xz in
iL Up to taking a subsequence we may assume that tt(xz) converges in M. Let then

gz in tti (Af) with gz (*i) converging to xo. For simplicity of explanation we assume
that the leaf of ^ containing xo is the fixed leaf L as above. Let iq be the line leaf
of A£ containing xo and which is the limit of the gz (ri) as proved in the previous

lemma. If fL^(xo) is Singular then, up to taking a subsequence, we may assume that
the gz (xz), gz (Vz) satisfy the requirements of the previous lemma.

Since the distance in gz (i?) from gz (xz) to gz (#z) is bounded we may assume up
to subsequence that gz (#z) also converges and let go be its limit. It follows that go is

also in L and let i>2 be the line leaf of A^ containing go which is the limit of gz (7*2).

Here the rays

g; (70, /6 ('2) in £ have the same ideal point g, (a) in dooÜ6 (£))•

The line leaves 77 are uniform quasigeodesics in i? and a bounded distance from a

geodesic^y in iL Hence the geodesics gzC?i),gz (^2) share an ideal point in 3oog? (£)•
By the second part of the previous lemma gz (s,) converges to a geodesic Zy in L with

same ideal points as iq for both 7 1, 2. By continuity of geodesics in leaves of
it follows that Zi and Z2 share an ideal point. Therefore iq, i>2 share an ideal point
in 9<x>£-
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We claim that u i, ^2 also share the other ideal point. The line leaves g; (ri), g; (>2)
have big segments from

gi-(wi) to and g;("2) to g,(<7/fc)

which are boundedly close to each other. Here i and so g;(x;) is in these

segments. Also g;(x;) converges to xo. The corresponding geodesic arcs between
the points above have endpoints which are boundedly close to each other. As explained
in the proof of the previous lemma they have middle thirds which are arbitrarily close

to each other. The limits of the geodesic arcs are contained in /q and This shows

that /i and ^ have infinitely many points in common and therefore are the same

geodesic.

Suppose first that iq, i>2 are distinct. The two line leaves ri,r2 of A[ have the

same two ideal points, which we denote by <21, <22- The line leaves

vi, iq bound a region in L.

For any stable leaf / of A^ in then / has ideal points which can only be <21, <22-

But / is a quasigeodesic in L. Therefore this leaf is non singular and has ideal points
exactly öi, <22- Now consider a periodic orbit a of O intersecting L in very close to

iq so that the unstable leaf PF" (a) intersects iq. Notice that the set of periodic orbits
of O is dense in Af when O is transitive as proved by Mosher [Mol]. In addition
if Af is atoroidal then O is transitive [Mol]. In the Situation here, O is regulating
and ^ has hyperbolic leaves, which implies that Af is atoroidal as mentioned in the

introduction.
We now use that L U 9oo A is identified with 0UÜ. Let g in tti (M^non trivial

so that g(a) a and in addition g leaves invariant all components of PF**(ar) — a.
Under the identifications above then

g fixes öi and <22 in 9oo^-

Notice that <21, <22 are the ideal points of PF** (a) H L in 9oo A. Assume that g" (PF** (v 1))

moves away from PF** (a) when « converges to infinity. Since iq (line leaf of A£) has

ideal points <21, #2, it follows that the same happens for all leaves g"(PF**(iq)) fl L.
These line leaves are nested in L and they are uniform quasigeodesics in L, so they
cannot escape compact sets in L. Hence they have to limit in a line leaf u of A£. Since

the leaf space of A£ is Hausdorff, the limit is unique, which implies that g(i>) v.
The leaf z of 0^ corresponding to v is also invariant under g. This produces a point
y of 0 in z which is invariant under g. Let /3 be the orbit of O with 0(jö)
But g also leaves invariant the point u; 0(a). This shows that there are 2 fixed
points in 0 under g. Then 7r(ar), 7r(jß) are closed orbits of O which up to powers
are freely homotopic to the inverse of each other. Since O is regulating, this is

impossible: notice that g is associated to the negative flow direction in a — as it acts
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as an expansion in the set of orbits of JL"(af). The regulating property applied to a
implies that g acts freely and in an decreasing fashion on the leaf space of The

property that tt(/3) is freely homotopic to the inverse of 7r(cif) implies that g would
have to act in an increasing way on contradiction. Notice that the last argument is

about the leaf space of ^ and not of AL This contradiction shows that /i, Z2 cannot
have the same ideal point in This finishes the analysis if i>i, i>2 are distinct.

If i?2, then for Z big enough we may assume that x; is very closed to
Then one can choose of periodic with JL"(a) intersecting both /1 and /2. It follows
that D L has one endpoint <2. Then one applies the same arguments as in
the case i>i, i>2 distinct to produce a contradiction. This finishes the first part of the

lemma.

We now prove that if /1 is a ray in a leaf of and /2 is ray in a leaf of A^ then

they cannot share an ideal point in 3oo^- Suppose this is not the case. Apply the same

limiting procedure as above to produce a stable line leaf in A£ and an unstable

line leaf ^2 in A^ which share two ideal points. Clearly in this case they cannot be

the same leaf and they bound a region in L with ideal points <21, #2. Consider a

non singular stable leaf / intersecting £2. Then it enters and cannot intersect the

boundary of (in L) again. Therefore it has to limit in either <21 or <22 and share an

ideal point with a ray of This is disallowed by the first part of the proof.

Given these facts the following happens: For any L in ^ and leaf / in A^ if / is

non singular let Z* be the geodesic in L with same ideal points as / If / is a /7-prong
leaf, let <5i,..., <5^ be the line leaves of / and let <5* be the corresponding geodesics.
In this case let Z* be the union of the <5*, which is a /7-sided ideal polygon in L. Let

be the union of such /* for / in A^ and similarly define

Lemma 5.1 implies that <££ are closed subsets of L and so are geodesic

laminations in L. Lemma 5.1 also implies that the complementary regions of
are exactly those associated to /7-prong leaves of A£, and so these complementary

regions are finite sided ideal polygons. As leaves of A^ are uniform quasigeodesics

(Lemma 4.1), then varies continuously if L varies in This produces a lamina-

tion in Af which intersects leaves of ^ in geodesic laminations. As A£, A^ have no

rays which share an ideal point, it follows that is transverse to It now follows
that for any y in then y has a neighborhood System in L U 3oo^ defined by
a sequence of leaves in either or Therefore the same holds for A£, A^ as

these are uniform quasigeodesics.
We are now ready to analyse the properties of the action of tti (Af) on W.

Proposition 5.3. ^ Z?e an M-covered/oZZo/fon wZtA <2 /ronsvense regnZo/fngpsendo-
Anosov^/Zow O. g Zn tti(M) Z?e <2 non /WvZoZ eZeraent TTzen one o/TZze/oZZowZng

op/fons mwV Zzoppen:
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I. Tjf g /xes 3 or more poZ/zto Z/z W, ^Z/£/z g Joes //6tf act /re^Zy o/z 0 a/zd Z/z/s a
zz/zZgz/£/x£<ipoZ/zf xinö. //^rg g Zs assoczYztod to a cZosed orZ/zY o/O. 7/z zzddzYZö/z g
acta Z?y a/z onewtoto presera/zg Zz6>//z£6>//z6>/pZzzY//z o/0 zz/zd g Z^z/ves Z/zvanYz/z^ eacZz

pro/zg o/0^(x), 0"(x) wZze/z actZ/zg o/z 0. 7/e/zce g/xes ^Zze zYZ^aZ poZ/zto o/0^(x),
0"(x) Z/z W wZzZcZz are £V£/z Z/z /zwmkr. TTze^re are ^Zze a/zZy/xezZ paZ/zto o/g Z/z W a/zzZ

z7zgy are aZtor/zatore/y rep^ZZZ/zg a/zzZ oztractog;
II. g/xes exacrfy Ava paZ/zto Z/z W. 77z£/z, eZ^/zer 1) g acto/re^Zy a/z 0 a/zzZ ^Zzere

zY a/ze atfrac/zYzg a/zzZ a/ze rep^ZZZ/zg /xezZ paZ/z£ Z/z W; or 2) g /xes a paZ/z£ x Z/z 0
a/zzZ Zeaves Z/zvarZa/z£ exactZy Ava pra/zgs a/(say) 0^(x) Z?zA /za£ £/za*re a/0"(x) ar
a/zy a^/zer passZZ/Ze pra/zgs a/0^(x) (ar vZ<re versa). FZere g reverses arZe/ztoA'a/z Z/z

0. 77ze arfoY assacZatozZ to x raay Z?e /za/z sZ/zgz/Zar Z/z w/zZc/z case aZZpra/zgs o/0**(x)
are Ze/Z Z/zvarZa/zf a/z<i zYzere are 4/xe<i paZ/zto Z/t W z//z<ier z7ze sgware a/g. 77ze arZ/Zf

assacZatod to x z/zay Z?e sZ/zgz/Zaz: 77ze/z £/ze sgz/are o/ g /zas raare £/za/z 4 /xe<i paZ/zA
Z/t K.

III. g /zas /za/xed paZ/z£ Z/t W. 77ze/z g/xes a sZ/zgZe paZ/z£ x Z/t 0 a/z<i a pawer o/
g/xes o/t eve/z /zzrazZ?er > 4 a/paZ/zA Z/t W.

Ca/zsegzze/z/7y, g a/ways/xes a//zZto eve/z /zzrazZ?er o/paZ/zfa Z/t W (zY raay Z?e zera).

Praa/ Since g acts on 0 and leaves invariant the foliation 0**, then it acts on the leaf

space of 0**. This is the same as the leaf space of (under the identification of
0 with L), and is also the same as the leaf space of A**. Recall that in our Situation
the leaf space of 0^ is Hausdorff. Therefore the leaf space of 0^ (same as the
leaf space of A^) is a topological tree [Fe3]. The same happens for the leaf space
of 0".

Given any g in tri (Af) it induces a homeomorphism of this topological tree JP.
Z actions on such trees are well understood [Ba3], [Fe3], [Ro-St]. There are two
options:

— g acts freely and has an axis t;. Elements in the axis are those z in for which
g(z) separates z from g^(z), or

— g fixes a point in JP.
Suppose first that g acts freely on JP. Then g has an axis t; for its action on
and consequently an axis for its action on the leaf space of A£. Because is

Hausdorff it follows that the axis /; is properly embedded in [Fe3]. Let Z be a

leaf of A£ in the axis and we may assume that Z is non singular again because is

Hausdorff [Fe3]. By the axis properties it follows that the leaves

{£"(/)> « e Z}

are nested in L and they are uniform quasigeodesics. Since they escape when viewed
in the leaf space of A£, the same is true in L. As they are uniform quasigeodesics
and nested, then there are unique points y, z in 3oo^ so that g"(Z) converges to y
if // converges to infinity and to z if // converges to minus infinity. Hence under the
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identification of W with then y, z are the unique fixed points of (any power of)

g in W, where y is attracting and z repelling. In this case the action of g in 0 could
be orientation preserving or not. This is case II, 1).

From now on in the proof we assume that g has a fixed point in JP, so there is a

leaf C of JT with g(C) C. Then the leaf

0(C) of 0^ contains unique x in 0 with g(x) x.

If g has no fixed points in W then it acts as an orientation preserving homeomorphism
on W and hence the same happens for the action on 0.

There is a smallest positive integer z'o so that A g*° leaves invariant all prongs
of 0'(x), 0"(x). If there are 2« such prongs, each generates an ideal point of L and
also a point of W. By Lemma 5.2 any two distinct prongs have different ideal points
in W. Hence A has at least 2« fixed points in W. Let a be the flow line of O with
0(a) x. Without loss of generality assume that the prongs above are circularly
ordered with corresponding ideal points

#1, Ai,... in W

where

30^(x) {öi,ö2, • • • and 30^(x) {Ai, A2, • • • > A„}.

Suppose that g is associated to the positive flow direction in a. Fix a prong r of
0'(x) and let / be the maximal interval of W — 30^ (x) containing the ideal point
of r. Let now /x be an arbitrary unstable leaf of 0^ intersecting r. Then as /x gets
closer to prongs of 0"(x), the ideal points of /x approach the endpoints of /. The
action of A on r is as follows: A fixes x and for a leaf /x as above then A takes it to
a leaf farther away from x. This is because in Af the flow lines along stable leaves

move closer in forward time. It follows that A acts as an expansion in r with a Single
fixed point in x. Given /x as above then A"(/x) PI r escapes in r as « converges to
infinity. These also form a nested collection of leaves. If the sequence A"(/x) does

not escape compact sets in 0, then it limits in a collection

TV {WJ, z e T}

of leaves of 0", where / is an interval in Z either finite or all of Z [Fe6]. In addition
A leaves invariant IT. If IT is not finite, then in particular it is not a Single point and

then the leaf space of 0^ is not Hausdorff, contrary to our Situation. If on the other
hand IT is a Single leaf IL, then A(IL) IL and there is a Single periodic point z in
IL with A(z) z. Then A fixes x and z and this is also impossible as seen previously.

It follows that A" (/x) escapes compact sets in 0 and as seen in the free action

case, they can only limit in a Single point of W, which corresponds to the ideal point
£ of r. This shows that A acts as a contraction in / with fixed point L Hence the
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points 1 < Z < « are attracting fixed points of A in W. Using A~* one shows that
the A;, 1 < Z < /z are repelling fixed points and these are the only fixed points of A in
W. Hence A fixes exactly 2/z points in W, where /z > 2.

We now return to g. If g is orientation reversing on W, then so is the action on
0. In this case there are exactly 2 fixed points of g in W. The Square of g is now
orientation preserving on W and it has fixed points. In particular any fixed point of
g2* is a fixed point of g^. It follows that A is equal to g^ and this is case II, 2).

Suppose finally that g is orientation preserving on W. Since A g*° has fixed
points in W, then either g has no fixed points in K or g has exactly the same fixed
points in W as A does. In the second case A is equal to g and g has exactly 2/z fixed
points in W, which are alternatively attracting and contracting. This is case I). In the
first case g acts essentially as a rotation in W and 0. This is case III).

This finishes the proof of Proposition 5.3.

Notice that cases I, II and III are mutually exclusive.

6. Construction of the conjugacy

We are now ready to prove the main theorem. Let then O, O be two pseudo-Anosov
flows transverse to the M-covered foliation ^ and both regulating for Fix a trans-
verse orientation to ^ and we assume that both O, O are positively transverse to
We may assume that because as we defined conjugation, the identity is a topological
conjugacy between a flow and its inverse. We want to show that O and O are topo-
logically conjugate. Let 0 be the orbit space of O and 5" be the orbit space of O.
The first and main step is to construct a tti (M)-equivariant homeomorphism from 0
to 5". Let

0i:M-»0 and

be the corresponding orbit space projection maps. Let 0**, 0^ be the projections of
the stable and unstable foliations of O to 0 and 7"**, 7"^ the corresponding objects
for O. Recall that tt : Af -> Af is the universal covering map.

The main property to note here is that the universal circle K depends only on ^
and not on O or O. The same is true for the action of tti (Af) on W. This will allow
us to go from O to W and then back to O, using Proposition 5.3. Before we prove
the theorem, we first construct an identification between closed orbits of O and O.

Lemma 6.1. Lef of Ae an orAZ* o/ O so ^Aotf 7r(cif) Zs o cZosed orAZ* o/O. Lef g Ae ^Ae

eZeraezz^ o/tti (Af) ossocZoted ^Ae cZosed orAZ^ 7r(cif). TA^zz ^Aere Zs o z/zzZgz/e orAZ^

/3 o/ O so ^Aotf tt(/3) Zs o cZosed orAZ^ o/O ozzd ossocZoted g, ^Aotf Zs, tt(/3) Zs/r^^Zy

AoraofopZc 7r(cif).
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Proa/ Let x ©i (a) and g non trivial in tti (Af) with g(x) x and indivisible with
respect to this property, hence g is associated with ar. Suppose that g is associated to
the forward flow direction of 7r(ar). Let A be the smallest power of g so that A leaves

invariant all prongs of 0^(x), 0"(x). Proposition 5.3, Case I shows that A has 2«
fixed points in W, with /z > 2. Now apply this proposition to A and VF. Since A has

fixed points in W and /z > 2, Proposition 5.3 implies that there is a unique y in 5"

with A(y) y. Let

/3 be the orbit of with ©2 OS) so A(/3) /3.

If g acts freely on 5" then the analysis of Proposition 5.3 shows that A can have only
2 fixed points in W, impossible (this is case II. 1 of Proposition 5.3). It follows that

g cannot act freely on 5" and therefore the only fixed point of g in 3" is y — as it is

fixed by a power of g. This implies that g(/3) /3 and consequently 7r(cif) is freely
homotopic to a power of jr(yö). Reversing the roles of of and /3 implies that jr(of)
and tt(/3) are freely homotopic to each other or their inverses. The action of A on W

shows that the first Option is the one that happens — this is because they both have

attracting fixed points in W in the same points. This finishes the proof of the lemma.

This defines a map from the periodic points of 0 to the periodic points of 5".

Notice that in the lemma above 30^ (x) 37^ (y) as points in W and similarly for
0"(x), 7^(g). This is the key property which will characterize the map between
orbit spaces as shown in the next result.

Theorem 6.2. O, Ae pseada-A/zasav^Ws, wA/cA are /ra/zsveree a/zd regz/Za/Azg

/ar a/z Rreavered/aZZa/fa/z PA^/z O, are topaZag/caZZy ca/zjz/gate.

Praa/ Given a transversal orientation to ^ we may suppose that both O, are

positively transverse to Fix a leaf L of We first define a map 77 from 0 to 5"

which extends the correspondence between periodic points obtained previously. The

map 77 will assign to any point in the orbit space 0 a corresponding point in 5" so that

corresponding stable and unstable leaves in 0 and 5" have the same ideal points in
W. More specifically, given x in 0, we will let y be the unique point of 5" with

37"® (y) 30® (x), 37""ö0 30" (x). (1)

If x is periodic the previous lemma shows that there is an unique such a y.
Now consider x not periodic and let x„ in 0 which are periodic and converging

to x. We want to show that the associated to x„ converge to a Single point y. We

may assume that no x„ is Singular since the Singular orbits form a discrete subset of 0.
We can also assume that (0^(x„)) forms a nested sequence, and so does (0^(x„)).
Let Zji, <7,1 points in W with

30® (x„) {z„,<5f„} and let {z,g} 30® (x).
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Then up to renaming we can assume that z„ converges to z in W and converges to

g in W. Let in 5" periodic with 95"^ (y„) {z„, }. Notice that the /„ 5"^ (y„)
are leaves of 7^, which are nested in 7* because their ideal points are nested in W. By
the identification of L with 0, then the /„ are associated to uniform quasigeodesics
in L which have ideal points which converge to distinct points in 9oo^ (associated to

z, g in W). Therefore these quasigeodesics converge to a Single quasigeodesic in L
and consequently

T^Cvw) converges to a leaf / of 5"L

Similarly 5""(y^) converges to a leaf s of 7"". For allthe pairs 90^ (x^), 90" (x^)
link each other in W, so the same happens for 97^ (j«), 95"" (y^). It follows that
the ideal points of /, s link each other in W, for otherwise we would have a leaf of
7^ sharing an ideal point with a leaf of 5"" — which is disallowed by Lemma 5.2.

Therefore
n

converges to a point y> in 5". Clearly 97^ (y>) contains 90^ (x) and similarly 95"" (y>)

contains 90" (x). If y> is a Singular orbit, one could apply the inverse process to
produce x' in 0, x' Singular so that 90^(x') contains 97^(y). But then 90^(x')
contains 90^ (x) and x is non singular. This is disallowed by Lemma 5.1. Therefore
y> is non singular and hence equation (1) holds for y> and x. In addition y> is well
defined, that is, given x in 0 there is a unique y> in 7* satisfying equation (1): If
yq and satisfy (1), then 95"^ (yq) 97^(yq) and 95"" (yq) 95""(yq). By
Lemma 5.2 the first fact implies that 5"^(yq) 5"^(yq) and the second fact implies
that 5""(yq) 5""(yq). Therefore their intersection is yq yq.

This defines a map 77: 0 —> T', given by 77(x) y>, if x, y> satisfy equation (1).
The same argument as above that shows that 77 is well defined, also shows that 77 is

injective — when one applies the argument to the domain rather than to the ränge. In
addition, the map 77 clearly has an inverse by applying the same procedure from to
O. Therefore 77 is a bijection.

We claim that 77 is continuous and by symmetry, then the inverse will also be

continuous. Let then x in 0 and (x„) a sequence in 0 converging to x. Assume first
that x is non singular. Then

0'(x„) converges to 0^(x) in 0 and 90^(x^) converges to 90^(x) in K.

Hence 97^(t7(x„)) 90^(x„) converges to 97^(t7(x)) 90^(x) and similarly for
95""(t7(x„)). This shows that ^(x^) converges to 77(x) in 5".

Suppose finally that x is singular. Up to subsequence we may assume that (x„)
are all in a sector of 0^(x) bounded by the line leaf / (contained in 0^(x)). Then

0'(x„) converges to / and 90^ (x„) converges to 9/ in W. It follows that

97^(t7(x„)) converges to 9/ - a subset of W
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which is contained in 97^(t7(x)). The same happens if are in 0^(x), that is, if
97^(?7(x„)) is contained in 97^(t7(x)). This shows that 97^(t7(x„)) only accumu-
lates in 97^(t7(x)). The same is true for 97^(t7(x„)), which only accumulates in
37"" 0(*)). Then

>7(*„) r'0(*„)) n r»0(x„))
only accumulates in

?,(x) ^(??(x)) n r"(?/(x))
This shows that 77 (.x^) has to converge to 77 (x). This shows that 77 is a homeomor-

phism from 0 to 5".

In addition 77 is tti (Af) equivariant, and in fact it commutes with the action of
tti(M) on 0. Again this is because of property (1) above. Here is a detailed expla-
nation: If g is in tti (Af) and x is in 0, then the stable and unstable leaves

g(0'(*)) ö'GK*)), s(0"(*)) ©"(£(*))

have ideal points in W

30*(g(x)) and 3<9"fe(x))

respectively. Hence these are also the ideal points of

tPOGK*))), y"0?te(*))).

In addition

3!FO(x)) 3(9^ (x) and 3(g(!F(»?(x)))) 3:T'feO(x))).

Hence they are the same as 97^(T7(g(x)). Since this is also true for the unstable

foliations, it follows that

77(g(x)) g(yj(;c)), commutation with tti(M) action (2).

In other words, equation (1) says that 77 is defined by having the same ideal points
in the universal circle W. Since the action of tti (Af) on W is independent from the

flow, then one expects the commuting relation above.

We now finish the proof of topological conjugacy between O and We dehne a

map /i:M^Mas follows. Given z in Af, then z is in a leaf L of Dehne

Ä(z) ^r(/?(0i(z))) n L,

here ©1 (z) is in 0 and 77(61 (z)) is in 5". Essentially we look at the orbit ar Om(z)
of the how O through z and consider the corresponding orbit of VF under the map 77:

that is the orbit (77(61 (z))) of Vf. Then we intersect this orbit of VF with L. This

map A preserves the leaves of ^ — not just the foliation but the leaves themselves.
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In addition A sends orbits of O to orbits of By the first part of the proof the

map A is clearly continuous and hence defines a homeomorphism of M. From the

commuting property (2) of z? the same follows for A, that is, for any g and z in Af,
then A(g(z)) g(A(z)). Therefore /z induces a homeomorphism of Af, which sends

orbits of O to orbits of Hence O and are topologically conjugate. This finishes
the proof of Theorem 6.2.

We now improve this result and prove that the conjugating homeomorphism is

actually isotopic to the identity. Here we also must consider the case with parabolic
leaves.

Proposition 6.3. O and Ae /ransverse to an R-coverai
/oZzWzoft ^ and awzzme ^Aey are ActfA regz/Za/fng /or ^ and Aadz (say) paszYzv^Zy

/ransvenre to TAen dzere zs a topaZagzcaZ canjz/gacy Zz Aeftiwn O and wAzcA zs

a Zz6>m^6>m6>rp/zz\sm Zsoto/nc to fA<? Zdend/y.

Proa/ Suppose first that ^ has parabolic leaves. In the proof of Theorem 2.1 we
showed the following facts: 1) ^ has a compact leaf C, 2) Any two pseudo-Anosov
flows O and transverse to ^ are Anosov flows and their monodromies are maps of
C which are homotopic. Homotopic homeomorphisms of surfaces are isotopic, and

this implies that the conjugating homemorphism between O and is isotopic to the

identity.
From now on assume that the leaves of ^ are hyperbolic. We Start with the

topological conjugacy /z defined in Theorem 6.2 and we let A be the lift to Af as in the

proof of Theorem 6.2. For every z in Af then z and /z(z) are in the same leaf L which
is isometric to the hyperbolic plane. Hence there is an unique geodesic y^ in L from
z to Zz(z), parametrized with constant speed passing through z at time 0 and through
/z(z) at time 1. Define /z*(z) to the y^(Z). The map /z is continuous and geodesics
in leaves of ^ vary continuously, because the hyperbolic metrics in leaves of ^ vary
continuously [Can]. It now follows that A* is a homotopy in Af, preserving leaves

of Clearly the homotopy A*, 0 < Z < 1 is tti(M) equivariant and so induces a

homotopy A^,0<Z<linM between the identity and A.

Since O is a regulating pseudo-Anosov flow for ^ and the leaves of ^ are hyper-
bolic, then the flow O has singularities [Fe2], [Cal2]. Blowing up the singularities
produces an essential lamination [Ga-Oe], which is genzdne, that is, the complemen-
tary regions are not all /-bundles. In addition since there is a regulating pseudo-
Anosov flow for ^ and ^ does not have parabolic leaves, then Af is atoroidal [Fe2],
[Fe3]. Given these conditions Gabai and Kazez [GK3] proved that if a homemor-

phism A of Af is homotopic to the identity, then A is in fact isotopic to the identity.
This finishes the proof of Proposition 6.3.

Remarks (The question of preserving the flow direction). 1) Notice again that by
definition the conjugating homeomorphism A is not required to preserve flow direction
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along flowlines. In particular the identity is a topological conjugacy between a flow
O and its inverse <t>~*.

2) If in addition one requires the conjugating homeomorphism to preserve flow
direction along orbits, then there may be two transverse regulating flows for 7/, that
is, O and its inverse For example if 7/ is a fibration, the question of whether
O is direction preserving conjugate to its inverse boils down to a question about the

holonomy g of the fibration TZ In particular it depends on whether g is conjugate to
its inverse in the mapping class group of the über. This question has been analysed by
Mosher and others. In the case of torus über this question has a well known and fairly
simple characterization [Mo3]: Given a matrix representative A of g, the conjugacy
invariant has two parts: A cyclic word IF in the letters 7? (for right) and L (for left)
and the sign of the trace. First find an dement in the conjugacy class in SL(2, Z) of
the form Af • (±7), where Af is a positive matrix, that is, all entries of Af are positive.
This is possible if and only if the conjugacy class is Anosov. The sign of the trace is

the =b sign in this expression. Then one factors the positive matrix Masa product of
matrices

The word IF obtained in Z?'s and L's is unique up to cyclic permutation [Mo3].
The cyclic word for the inverse conjugacy class is obtained from IF by writing it
backwards and replacing each Z? with an L and each L with an Z?. The sign of the

trace is invariant under inverse. Using this characterization it is easy to see that both

possibilities occur. For example given representative matrices for g below

*
1 1

* *
1 0

*

0 1
z

1 1

x
2 1

1 1
5

2 3

1 2

Then the conjugacy class of A has cyclic word IF Z?L and the inverse A~* has the

same cyclic word. In this case the corresponding Suspension flow O is conjugate to
<t>~* by a conjugacy which preserves direction along orbits. As for 7?, its conjugacy
class has cyclic word IF Z?LZ? and the one for Z?~* is IF' LLZ?. This shows

that the associated monodromies g and g~* are not in the same conjugacy class. In
this case the resulting Suspension Anosov flow is not direction preserving conjugate
to its inverse. We remark that the higher genus case is much more unclear because

the conjugacy invariants in the higher genus case are much more complicated [Mo3].

7. The non regulating case

In order to finish the analysis of the non regulating case we first need some information
about the structure of R-covered Anosov flows. Let 7/ be an R-covered foliation and

let O a pseudo-Anosov flow transverse to 7/ and non regulating. We also need to
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understand the projection of leaves of ^ to the orbit space 0 of O. Since the flow is

not regulating, this projection is not the whole orbit space, in particular the boundary
of this projection is relevant to us here. Recall that 0: Af -> 0 is the projection
map to the orbit space 0. Details of the results here are in [Fei], [Fe4]. As proved
in [Fe4] the non regulating hypothesis implies that O is an R-covered Anosov flow.
Therefore there are 2 options for the flow O. In both cases we describe the structure
of the foliations in the orbit space 0.

• Sfewee? fype. The orbit space is homeomorphic to the strip 0 in the plane
bounded by x 0 and x 1. Stable leaves are horizontal segments and

unstable leaves are segments making oriented angle tt/4 with the positive x
axis. A stable leaf and an unstable leaf which have a common "ideal point" z
in 30 are said to form a perfect fit [Fe3], [Fe4]. They do not intersect, but just
barely.

In this case given a leaf 0 of then its projection 0(0) to the orbit space is an

open subset whose boundary is an union of exoc/Ty £wo Z<?ov£s: one stable leaf
£ and another unstable leaf S and the leaves 0, S form a perfect fit. The leaf £
is denoted by r? (0) and if the foliation ^ is minimal then the map r?: -> J0
is a homeomorphism [Fe4]. Similarly 0 -> S defines -> e7P, another

homeomorphism.

• Proe?z/ct Here the orbit space is also homeomorphic to 0 as above. Stable
leaves are horizontal segments and unstable leaves are vertical lines. Notice
that any stable leaf intersects every unstable leaf and vice versa. This does not
occur in the skewed case. In this case the flow is topologically conjugate to a

Suspension Anosov flow [Bai].
In this case given a leaf 0 of its projection 0(0) is an open subset of the orbit

space 0, whose boundary is a sz'ngZ*? Z<?o/ which is either stable or unstable.

Theorem 7.1. ^ Z?£ an R-covereeZ/oZZo/ron.

1) 7/TZzere Zs a pseneZo-Anosov /W O /ronsverse Z?zA non regzzZo/fng/or ^
^Zzen O Zs on R-coveree? Anosov/W one? ^ Zs w£oZ/y conjz/gote ezYZzer ^Zze staZ?Z£

or z7ze nn.stoZ?Ze/oZz'ozfon o/O. 7n oe?e?zYZon,

2) np topoZogz'coZ conjz/gocy ^Zzere Zs o£ mo5/ one sz/cZz j?ow O. //* O Zzos sfewee?

/ype ^Zzen ^Zzere Zs onZy one sz/cZz j?ow np eZZrectZon pre^ervZn^ conjz/gocy, wZzereo^

z/ O Z.s pro<incf f/zere zne/y Z?e ftvo szzc/z j?ow5, z7zof z's, O one? z'A z'nvense.

Proo/ Part 1) of the theorem was proved in [Fe4] and most of part 2) as well. As

explained in the introduction one can blow down ^ to a minimal foliation, still
transverse to O. Also the leaves of ^ can be assumed to be hyperbolic.

Suppose first that O has skewed type. As described above we proved in [Fe4]
that for each leaf 0 of ^ there is a unique leaf 0 r? (0) of A^ associated to it,
producing a homeomorphism between the leaf Spaces of ^ and A0 This uses the
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skewed hypothesis. The leaf £ projects to the stable boundary of 0(A). In addition
the orbits of O in £ are in one to one correspondence with a pencil of geodesics of L
with ideal point in 3oo^ and also each orbit of O in £ is a fixed bounded distance

(in Af) from a Single geodesic with ideal point c# in L. One constructs a flow O

in Af where the flowlines are tangent to the pencil of geodesics in L with forward
ideal point This induces a flow <U in Af by geodesics in leaves of The above

describes a homeomorphism between the orbit Spaces of O and O

Unlike in the regulating case this does not easily produce a homeomorphism to Af
sending orbits of O to orbits of O Still using the homeomorphism between the orbit
spaces one can produce a homotopy equivalence ofAf which sends orbits of O to orbits
of <t>' but may not be injective along orbits [Gh], [Ba2]. Using averaging techniques
along orbits of O, <t>', this homotopy can be deformed into a homeomorphism A which
sends orbits of O to those of <t>' [Gh], [Ba2]. The topological conjugacy A preserves
the flow direction along orbits [Fe4].

Claim. TAere A on/y <t>' no mator wAdtf/fow O we Star* wAA.

Clearly the flow <t>' is completely determined by the ideal points in leaves L
of We claim that these points depend only on L and not on O or F. It was proved
in [Fe4] that the flow <t>' in Af which is by geodesics in leaves of is an Anosov
flow. For every point <7 in 3oo^ which is not c# then <7 is the endpoint of a geodesic
/ of L with <7 as the negative ideal point of the associated flow line of <t>'. Since

/ is contained in an unstable leaf of the flow O then this direction is a contracting
direction for the foliation Therefore there is a Single non contracting direction in
L, which must be c#. Hence c# is uniquely determined by L and so is the flow <t>'.

This shows that any non regulating flow O is topologically conjugate to <t>' by a

conjugacy preserving the flow direction. This finishes the proof of 2) in the skewed

case. In particular this shows that O is direction preserving conjugate to its inverse
unlike the Situation in the regulating case.

Now consider the case that O is product. The difference here is that the corre-
sponding projection 0(L) has boundary which is a Single leaf and can be eAAer a

stable or unstable leaf. In [Fe4] the analysis was done assuming that the boundary of
0(L) is a stable leaf. If now this boundary is an unstable leaf, then the analysis in
[Fe4] would consider O"* instead of O — which then produces stable boundary for
0(L). Once this is done, the analysis proceeds as above. Therefore the same argu-
ments as in the skewed case above show that either O or O"* is direction preserving
conjugate to <U and this proves 2) in the product case. However as explained in the

previous section there are examples where O is not direction preserving conjugate
to in this case. In particular there are such examples when O is a Suspension
Anosov flow. This finishes the proof of Theorem 7.1.

Finally we again consider the question as to whether the conjugacy between the

flows is isotopic to the identity, now in the non regulating Situation.
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Proposition 7.2. Sz/ppcsc ^Zzctf O, are ncn regz/Za/mg toans-

vcrec to an M-ccvcred/cZza/fcn wZzzcZz are d/recdon prescrvzng c^njag^^ Zry a
ZzaracaraazpZzzsra /z'. TTzcn /z' z\s zsotopzc to f/zc zdezzd/y.

Proo/ Let O' be the flow by geodesics in leaves of ^ constructed in [Fe4] and

described above. Let /z be the conjugacy between O and O' deseribed in the previous
theorem. First we need some additional information about /z: by its definition, the

homeomorphism r? between the leaf Spaces of^ and of A^ is group equivariant:
g(ry(L)) Ty(g(L)) for any L in ^ and any g in tti (Af). Notice that here we are

assuming that 0(L) has stable boundary — but exactly the same proof works when

0(L) has only unstable boundary. Given L in ^ the identification between orbits of
O in Ty (L) and a fixed pencil of geodesics in L is by bounded distance, so this is

also group equivariant. Therefore the homeomorphism between the orbit Spaces of O

and O commutes with the action of tti (M). By doing the averaging steps carefully
it follows that the lift of the conjugacy /z also commutes with the action of tti (Af)
[Gh], [Ba2], [Fe4],

Under appropriate identifications of tti (Af) with tti (Af, y) and tti (Af, Zz(j)) for
a given y in Af, this implies that /z induces the identity in the fundamental group
level. Because Af has a pseudo-Anosov flow it follows that Af is a AT(tt, 1) and this

implies that /z is homotopic to the identity.
If Af is toroidal then Waldhausen's theorem shows that /z is isotopic to the identity

[He]. If Af is atoroidal, then since ^ has hyperbolic leaves it was proved in [Fe2],
[Cal2] that ^ has a transverse pseudo-Anosov flow A which is regulating for
Notice that A is completely different from the non regulating transverse flows O,
In particular this pseudo-Anosov flow A has singularities [Fe2], [Cal2]. Then exactly
as proved in Proposition 7.2, the result of Gabai and Kazez [GK3] implies that /z is

isotopic to the identity. In the same way there is another homeomorphism /z *, isotopic
to the identity, so that /z* conjugates O' to preserving flow direction. This finishes
the proof of the proposition.

Remark. In some cases it is very easy to see that the conjugating homeomorphism
between O and <t>~* is isotopic to the identity. For example let O be the geodesic flow
in the unit tangent bündle M of a closed, orientable hyperbolic surface *S. We first
construct the isotopy: let /z* be the homeomorphism in M that corresponds to turning
each vector in S by an angle Ztt This uses the fact that is orientable. Then /z* is an

isotopy in M. Projecting to *S, the homeomorphism /z i sends geodesics to the same

geodesics, but with the opposite direction. However they are going backwards, and
hence they are going forwards for the inverse flow <t>~*. In this case /zi is a conjugacy
between O and <t>~* which preserves direction along flow lines and /z i is isotopic to
the identity.
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