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A Splitting for Äi of completed group rings

Peter Schneider and Otmar Venjakob

Abstract. For /? 7^ 2 and a uniform pro-/? group G and its Iwasawa algebras A(G) := Z^ [[G]]
and £2[[G]] := F^[[G]] we show that the natural map TG (A(G)) -> TG (£2(G)) has a Splitting
provided that SXi(A(G)) vanishes. The image of this Splitting is described in terms of a

generalised norm Operator. This result generalises classical work of Coleman for the case
G Z^. We verify the vanishing condition for certain unipotent compact /?-adic Lie groups.

Mathematics Subject Classification (2010). 19B28, 11S23.

Keywords. Completed group ring, Iwasawa algebra, algebraic ^f-group, Adams Operator, norm
Operator, Coleman isomorphism.

Introduction

This paper is motivated by the following result of Coleman ([Col]). Inside the alge-
braic closure of the field of /?-adic numbers we fix, for any « > 0, a primitive
/?"-th root of unity ^ in such a way that We let denote the ring of
integers in the field The groups of units O* in these rings form a projective
System

0X flX ; J. ox .yx
with respect to the Galois norms. On the other hand one considers the group of units

Z^[[T]]* in the formal power series ring in one variable T over the ring of /?-adic
integers Coleman constructs a natural "norm" Operator JV* on this group and

shows that the map

(Z/,[[r]]V=" A imio,;,
F I— (F(e„ - 1))„,

is an isomorphism. This result is of basic importance in Iwasawa theory. There is a

twist added to it by Fontaine ([Fon]) which is the starting point of our investigation.
By the theory of the field of norms the group lim O*, in fact, coincides with the

group of units in the ring of integers O# of a specific local field £ of characteristic /?.
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The choice of the gives rise to a choice of a prime element in O# so that we

may identify O# with the ring F^[[T]] of formal power series over F^. With these

identifieations the Coleman map simply is the map induced by the natural projection
^/>DTII ^DTH of power series rings. Hence Coleman's theorem says that the

eigenspace (Z^ [[T]]*)^^ of the norm Operator JV* provides a natural section for the

projection map Z^[[T]]* -> F^QT]]*.
We remark that the group of units in a commutative local ring has a more concep-

tual interpretation as the algebraic K-group Ki of that ring. From this point of view
we are dealing with the natural map Ki(Z^[[T]]) -> Ki(F^[[T]]). We also recall
that the power series rings Z^ [[T]] and F^ [[T]] are isomorphic to the completed group
rings of the additive group G := Z^ over Z^ and F^, respectively.

In noncommutative Iwasawa theory one investigates towers of number Heids

whose Galois group G is much more general, in particular possibly noncommu-
tative, than the group G Z^. The problem of constructing /?-adic L-functions in
this context is closely related to the computation of the algebraic K-group Ki (A(G))
of the completed group ring A(G) of G over Z^. Clearly, Coleman's theorem then

suggests the investigation of the natural map

*i(A(G))—
where £2 (G) is the completed group ring of G over F^. The main purpose of this paper
is to provide a list of requirements on the group G which guarantees the existence of
a Splitting of the above map which is characterized by a certain "norm type" Operator
equation in Ki(A(G)).

We let /? 7^ 2 be an odd prime number and G be a pro-/? /?-adic Lie group. First
of all we will construct an "Adams Operator"

*i(A(G))—>*i(A(G)).
Next we assume that G satisfies:

(O) The map 0: G -> G given by 0(g) := is injective, and 0"(G) is open in G

for any « > 1.

(P) 0(G) is a subgroup of G.

Then 0(G) is an open normal subgroup in G. Hence A(G) is a free module of rank
/?**:= [G : 0(G)] over A(0(G)). By general principles of K-theory we therefore
have the norm map Aa(g)/a(0(G)) • (A(G)) -> Ki (A(0(G))), and we introduce
the composite "norm Operator"

Wo: *i(A(G)) *i(A(0(G))) Ai(A(G)).

In order to formulate our third axiom (SK) we also need the completed group ring
A°°(G) of G over Q^. We require that:

(SK) The natural map Ki(A(G)) -> Ä^(A°°(G)) is injective.
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Our main result is the following.

Theorem. 7/*G (O), (P), and (SK) n<2ri/raZ map Ki(A(G)) —>

Ki(£2(G)) res/Wcta an Zsoraorp/z/sra

ATi(A(G))^()=5()^"' Jl> Ä"i(fl(G)).

Whereas (O) and (P) are easily seen to hold for any uniform pro-/?-group G the
axiom (SK) is of a more subtle nature. In the last section we will show that the group
G of lower triangulär unipotent matrices in GL^(Z^), for any n > 1, satisfies (SK).

There is the aspect of groups of local units in the original Coleman isomorphism.
In our present general setting this is disguised in the group Ki(A°°(G)). The ring
A°°(G) is a projective limit of semisimple Q^-algebras. The group Ä^(A°°(G))
therefore can be computed, via the determinant map, in purely representation theoretic
terms through a Fröhlich style Hom-description

*i(A~(G))^Hom*,(ÄG,Qp.

Here denotes the representation ring of G, i.e., the free abelian group on the set

of isomorphism classes of irreducible Q^-representations of G which are trivial on
some open subgroup. The homomorphisms in the right-hand side are assumed to
be equivariant for the absolute Galois group ^ := Gal(Q^/Q^). We extend our
Operators O and Ag from Ki(A(G)) to Ä^(A°°(G)) and there prove them to be

equal, on the Hom-description, to the adjoints of the usual Adams Operator and

the induction Operator

triM) := [V Qp[G/0(G)]]

on respectively. Under our requirements on the group G this leads to a natural

embedding

Ä-i(A(G))*G<•>=*<•)**"' ^ Hom*„(ÄG/im(i' - /~V).QP
which is the generalization of the Coleman map. Unfortunately, for a general group
G its cokernel is very big. The case of the group G Z^, where the cokernel turns
out to be isomorphic to the group Z* of /7-adic units, seems quite exceptional. At
this point it remains an open problem to determine the image of this embedding.

In the first section we will review the formalism of exponential maps which pro-
vides an identification of the kernel of the map Ki (A (G)) -> Ki (£2 (G)) with the quo-
tient A(G)*k of the additive group A(G) by the additive commutators. In the second

section we will introduce the integral/7-adiclogarithm map T : Ki(A(G)) -> A(G)^
of Oliver and Taylor. It is a very careful analysis of the interplay between the expo-
nential map and T which will enable us to dehne the Adams Operator O and to prove
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the above theorem in this section. The third section will be devoted to the discussion
of the group Ai (A°°(G)) and its Hom-description. In the final section we establish
the axiom (SK) for unipotent radicals of Borel in GL„ (Z^).

We thank K. Kato for pointing out to us the results from [Oli], §2b. Both of us are

grateful to the Centro de Investigaciön en Matemäticas (CIMAT, Guanajuato, Mexico)
and the Newton Institute (Cambridge) for support and a stimulating environment while
we worked on this paper. The first, resp. second, author acknowledges support by the

DFG-Sonderforschungsbereich 478, resp. by DFG- and ERC-grants.

1. Exponential maps

In this section we begin by recalling the formalism of the exponential map, as devel-

oped in [Oli], §2b, for any (possibly noncommutative) Z^-algebra A which is finitely
generated and free as a Z^-module. Following [Oli] we call such a ring A a /7-adic
order. Throughout the paper we assume ^ 2. Let / c A denote the Jacobson

radical. The ring A is semi-local in the sense that A// is semisimple. It is well
known (cf. [Bas], V.9.1) that in this Situation the natural map

is an isomorphism. In [Oli], Lemma 2.7 and Theorem 2.8, it is shown that the usual

exponential power series converges on inducing a bijection

±5 1 +

with inverse given by the equally converging logarithm power series. Moreover, if
[A, A] denotes the additive subgroup of A generated by all additive commutators of
the form [a, &] — /7a with a, & e A and if /?A) denotes the kernel of
the natural map 1 + -> Ai(A,/?A) into the relative A-group then the above

bijections induce isomorphisms of groups

/?v4//?[v4,,4] 1 + p,4/£'04,/?v4) ^ ÄTi04,p,4)

which are inverse to each other and which we denote by exp and log, respectively.
Note that the second isomorphism above is a consequence of Swan's presentation
([Oli], Theorem 1.15) which also says that £"^(A, /?A) is the subgroup generated by
all elements of the form (1 + /?a&) (1 + for a, e A. Since A is /7-torsionfree
it is convenient to renormalize to the isomorphism

exp(/?.): A/[A,A] Ai(A,/?A).

Obviously everything is covariantly functorial in unital ring homomorphisms.
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For any « e N let (A) denote the /?-adic order of « by « matrices over A. The

group homomorphisms

and

,4—>M„04),

o)-

then induce the commutative diagram

M„04)/[M„04),M„04)]

d/[d,d]

GL„(d),
/a

V°

o\

exp(/>.)

exp(/>.)

Ai(M„04),pM„04))

where the perpendicular maps are isomorphisms by Morita invariance. In fact, the

usual matrix trace provides an inverse for the left perpendicular map (cf. [Lod],
Lemma 1.1.7).

Consider now a unital homomorphism A -> i? of /7-adic Orders such that i? is

finitely generated free of rank « as a right A-module. Choosing a basis of i? over A the
left multiplication of i? on itself gives a unital algebra homomorphism i? -> (A)
and hence, by functoriality, a commutative diagram

exp(/?.) tfi (*,/>*)ß/[ß,ß]

M„ (X) / [M„ (X), M„ (X)] i (M„ (X), (X)).

By combination with the previous diagram we obtain the canonical commutative
diagram

ß/[ß, ß] ATi(ß, pß)

A4

d/[d, d]

in which trg/^ is the usual trace map and is the transfer map in AT-theory (cf.
§ld in [Oli]).

Now let G be any profinite group. We then have the completed group rings

A(G) := limZp[G/G] and fi(G) := limFp[G/G]
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of G over and respectively, where G runs over all open normal subgroups of
G. Both carry a natural compact topology. The ring A(G) is also referred to as the
Iwasawa algebra of G. In the following we assume that G contains an open normal

pro-/? subgroup which is topologically finitely generated. Then the rings A(G) and

£2(G) are semi-local. Any Z^[G/G] is a /?-adic order, of course. By a projective
limit argument we deduce from the previous section the isomorphism

exp(/>.): limZ„[G/£/]/[Z„[G/£/],Z„[G/£/D lim^i(Z„[G/G],/>Z„[G/G]).

The left-hand term clearly is equal to A(G)/[A(G), A(G)] where [A(G), A(G)]
denotes the closure of [A(G), A(G)] in A(G). To understand the right-hand term we
Start with the Standard exact sequence of ^f-groups

*2(F,[G/£/]) — *i(Z,[G/£/],/>Z,[G/£/])
— *i(Z,[G/G]) — *i(F, [G/t/]) — 0,

where the zero at the end is immediate from the description of ÄF of the respective
rings as a quotient of the unit group of the ring (use [Ros], Proposition 1.3.8). Using
the isomorphism Z^[G/G]/[Z^[G/G],Z^[G/G]] Ä^(Z^[G/G],/?Z^[G/G])
from the previous section we see that Ä^(Z^[G/G],/?Z^[G/G]) can be viewed
as the free Z^-module over the set of conjugacy classes in G/G and hence is /?-
torsionfree. On the other hand Ä^(F^[G/ G]) is finite ([Oli], Theorem 1.16). Hence

already

0 — ^i(Z„[G/G],pZ„[G/G]) — Ä-i(Z^[G/G]) — ^i(F„[G/G]) — 0

is exact. In fact, this is an exact sequence of countable projective Systems with
respect to G. The corresponding transition maps for the second and the third term
are surjective (again by their description in terms of units). This implies that the

sequence remains exact after passing to the projective limit with respect to G. So we
obtain the exact sequence

0 — Hm ÄTi (Z^[G/1/], pZ^,[G/ G])

— HmÄTi (Z^[G/G]) — UmÄ'i(Fp[G/G]) — 0.

As a consequence of [Oli], Theorem 2.10(ii) and [FK] Proposition 1.5.1, we have the
natural isomorphisms

limÄ:i(Zp[G/G]) ^ lim AiCZ/p^G/G]) s /u(A(G)) (1)
£/ m,t/

and

HmAi(Fp[G/G]) ^ Ä-i(fl(G)).
£/



Vol. 88 (2013) A Splitting for ffi of completed group rings 619

Altogether we arrive at the basic exact sequence

0 A(G)/[A(G), A(G)]
exp(/>.)

> *i(A(G)) — Ai(ß(G)) — 0. (2)

We emphasize that via the isomorphism Ä"i(A(G)) A(G)*/[A(G)*, A(G)*] the

map in this sequence is induced by the map /?A(G) -> 1 + ffA(G) given
by the exponential power series.

Consider now a fixed open subgroup // c G. Then A(G) is finitely generated
free of rank [G : ff] as a right (or left) A(//)-module and so is Z^[G/G] over

Z^[/// G] for any open normal subgroup G c G such that G c //. By passing to
the projective limit we obtain from the previous section and [Oli], Proposition 1.18,
the commutative diagram

6X01Z? 1

A(G)/[A(G), A(G)] ^i(A(G)) Ä'i (£2(G)) —3«- 0

trA(G)/A(/f) AA(G)/A(/7) Äfo(G)/ß(i7) 0)

0 —A(//)/[A(//), A(//)] ^i(A(//)) —A:i(n(Z7)) —» o.

2. The integral ff-adic logarithm

In this section we assume G to be a pro-ff ff-adic Lie group (for some ff 7^ 2). In this
case the rings A(G) and £2(G) are strictly local with residue field F^. As before G
runs over all open normal subgroups of G. The integral ff-adic logarithm of Oliver
and Taylor is the homomorphism

T TG/IG AI(Z^[G/G]) — Z„[G/G]/[Z„[G/G],Z„[G/G]] =: Z„[G/G] ab

defined by

with the additive map

r(x) := log(x) <J>(log(x))

<&: Z^[G/G]

geG/G

Z/,[G/G],

Z ögS*
geG/G

We note that the latter induces an additive endomorphism of Z^ [G/£/]*; this is

an straightforward consequence of the identities gA — Ag gA — A(gA)A~* and

gAg~*—A (gA)g~* —g~*(gA). Accordingto [Oli], Theorem 6.6 and Theorem 7.3,
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the sequence

0 -> /v_i X (G/£/)"* X S*i(Z„[G/£/])

-> ATj (Z^[G/t/]) -A Z„[G/t/]"* (G/G)"* -* 0

is exact. Here (G/ G)^ denotes the maximal abelian quotient of G/ G, the map is

defined by

XI := n mod [G/G.G/G]
geG/G geG/G

and

SAi(Z„[G/G]) := ker(£i(Z„[G/G]) — *i(Q„[G/t/])).

The map /Xp_i x (G/G)^ -> Ä^(Z^[G/G]) is induced by the obvious inclusion

/Xp_i x G/G c Z^[G/G]*. Clearly the above exact sequence is natural in G so

that we may pass to the projective limit with respect to G. On all terms in the exact

sequence except possibly the SXi-term the transition maps are surjective. The *SXi-
terms are finite by [Oli], Theorem 2.5(i). Hence passing to the projective limit is

exact. By setting G^ := G/[G, G] (note that G, by [DDMS], Theorem 8.32, is

topologically finitely generated and hence [G, G], by [DDMS], Proposition 1.19, is

closed in G),

5ÄTi(A(G)) := Hm5'Ä'i(Zp[G/G])

and using (1) we therefore obtain in the projective limit the exact sequence

1 — X G* X 5Ai(A(G))
r „ „

(4)
— *i(A(G)) —> A(G)/[A(G), A(G)] — G — 1.

In Corollary 3.2 we will see that SXi (A(G)) coincides with the kernel of the natural

map from ^i(A(G)) to Ä^(A°°(G)). We assume from now on that G has the fol-
lowing property.

Hypothesis (SK). SAi(A(G)) 0.

Our second basic exact sequence now is

1 —> Gp-i x G*k —> ÄTi(A(G)) —> A(G)/[A(G), A(G)] —> G^ —> 1. (5)

One easily checks that T o exp(/?.) /? — O holds true. Hence (2) and (5) combine
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into the commutative exact diagram

1

621

ab
/Zp_i X G

A(G)«b^i^i(A(G))-

A(G)°» ^ A(G)""

"^ab

1

X G ab

*i(n(G)).

A(G)/(p - *)A(G) + [A(G), A(G)] - 0

G<*

1,

where we have abbreviated A(G)^ := A(G)/[A(G), A(G)]. Next we study the

endomorphism /? — O of A (G)^\ It is convenient to do this is an axiomatic framework.
Let X be any compact topological space together with a contmuous map ^: X ->

X which satisfies

- ^ is mjective,

- ^(X) is open (and closed) in X for any n > 1, and

- a>i ^"00 {^0} is a one element subset.

It follows that

- ^(xo) *0, and

- X \ {xo} U„>o 00 \ ^**00 is a disjomt decomposition into open and

closed subsets.

We let C(X, Z^) denote the Z^-module of all Z^-valued contmuous functions on X,
and we put Z^[[X]] := Hom^ (C(X, Z^), Z^). The map tnduces by functonality
endomorphisms and of C(X, Z^) and Z^[[X]], respectively. We claim that
the map

COPpO, 2p) © kerC*!'* - p) C(X, Zp)

which on the first, resp. second, summand is the extension by zero, resp. the mclusion,
is an isomorphism. For the mjectivity we note that any / e ker(*F* — /?) satisfies

/(VP" (x)) /(x) for any x e X and any /i > 1; lf, m addition, / |X \ *P(X) 0
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it follows that necessarily / 0. To see the surjectivity we first introduce, for any
continuous function g: X \ *R(X) ^ the function

[p"gOO ifx ¥"00 ^"+1(X),
X I > <

10 if x xq.

By construction g^ is continuous, satisfiesgtt|X\*I>(X) g, and lies in ker(*R *—/?).
If now / G C(X, Z^) is an arbitrary function we put g := /|X \ *F(X) and obtain
a decomposition / (/ — g#) + g^ as claimed.

The above Splitting, combined with the canonical Splitting

copoo, z^) © C(X \ *(*), z^,) -=» C(X, Zj),

gives rise to an isomorphism

kerOP* -p) s C(X\*r(X),Zp) (6)

which is nothing eise than the inclusion followed by the restriction map.
\j/*

Moreover, the map C(X, Z^) > C(X, Z^) is surjective (to obtain a preimage
of / G C(X, Z^) extend the function / o on *F(X) by zero to X). For any
given / G C(X, Z^) we set go := / and choose inductively, for any « > 0, a

g„+i e C(Z,Zp) such that >k*(g«+i) g„. Setting g := £„>i/>""*£» we

obtain / VP*(g) — /?g. This shows that the map C(X, Z^) C(X, Z^) is

surjective. It is even split-surjective since

CCY.Z,) —kerOP* -p),
g i-> (g|* \ *00)»,

is a projector onto its kernel.
VE** — />

Dually we then obtain the split-injectivity of the map Z^ [[X]] ^ Z„[[X]]
and the direct sum decomposition

Homz^ (ker(*P* - p), Z^) © (*P* - p)Z^[[X]]
Z„pT \ *(*)]] © (<I<* - p)Z„[[X]]

where we used the dual of (6) in the second equation.
We apply this general consideration to the space X := 0 (G) of conjugacy classes

in G and the map induced by 0(g) := g^ on G. Then Z^[[0(G)]] A(G)^ and

>p* <J>.

Lemma2.1. n«>i^"(^) {!}•
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Proo/ If G is finitely generated and powerful then our assertion holds true by
[DDMS], Proposition 1.16 (iii) and Theorem 3.6 (iii). But our general pro-/? /?-
adic Lie group G contains an open normal subgroup TV which is uniform and hence

finitely generated and powerful by [DDMS], Corollary 8.34. Let [G : iV]
Then0"+*(G) c 0"(A).

— 9^.

It is easily verified that the space 0(G) satisfies the above conditions provided
we assume the following.

Hypothesis (O). The map 0: G -> G is injective, and 0"(G) is open in G for any
n > 1.

For example, any uniform G satisfies this hypothesis by [DDMS], Proposi-
tion 1.16(iii), Theorem 3.6(iii), and Lemma 4.10.

Henceforth assuming both (SK) and (O) the above diagram therefore can be

completed to the commutative exact diagram:

ab
AO?—l * G

exp(/2.)
0 > A(G)** ^ Ä"i (A(G))

0 s- A(G)<">
^ A(G)*"

ab
1 * G

Ai(ß(G))

A(G)/(p - <&)A(G) + [A(G), A(G)] ^ 0

"^ab "»ab

(7)

Moreover, the subgroup Z^[[0(G) \ 4>(0(G))]] c A(G)^ provides a section for the
lower short exact sequence. It follows that the subgroup

tf*(A(G)) := r-'(Z^[[0(G) \ f (0(G))]]) c *i(A(G))

provides a section for the upper short exact sequence, i.e., that the natural map

tf*(A(G))-=> *i(fi(G))
is an isomorphism.



624 P. Schneider and O. Yenjakob CMH

In order to characterize the group (A(G)) in a different way we make the

following further assumption.

Hypothesis (P). 0(G) is a subgroup of G.

Then 0(G)neeessarilyisa normal subgroup and isopenby(O). Let[G : 0(G)]
We introduce the homomorphism

*i(A(G))—»Ä:I(A(G)),
x i—> exp(/?T(x))~*x^

(thinking in terms of units we write the groups multiplicatively). The diagram

0 ^ A(G)°* Ai (A(G)) v Ai (fi(G)) v 0

$ $ (8)

0 > A(G)*> Ai(A(G)) tfi(fi(G)) » 0

is easily eheeked to be commutative, and we have the identity

r o $ <d o r. (9)

On the other hand, as a consequence of [Oli], Theorem 6.8, we have the commu-
tative diagram

Ä'i (A(G)) A(G)**

#A(G)/A(0(G)) (10)

^i(A(^(G)))dÄA(0(G))^.

where the modified traee map : A(G)^ -> A(</>(G))^ is the unique contin-
uous -linear map which on group elements g e G is given by

lE/=iÄ/gÄp lfge^(G),

where in eaeh ease the A; run over a set of representatives for the left cosets of
0(G) < g > in G. We extend the above diagram (10) by the canonical maps induced
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by the inclusion of groups 0(G) c G to the commutative diagram:

*i(A(G)) ——>- A(G)^

#A(G)/A(0(G)) *G/<£(G)

^i(A(0(G)))2^A(0(G))«b (11)

ATi(A(G)) A(G)*.

The left, resp. right, composed vertical endomorphism of Ä^(A(G)), resp. A(G)**\
will be denoted by Ag, resp. tr^. Then

tr'Gfe)

tr^ restrictedto

ig/» ifg^0(G),
ifge0(G).

Hence with respect to the decomposition

A(G)*> Z„[[0(G) \ *(0(G))]] © Zp[[*I*(0(G))]]

we have

fz^[[0(G)\*(0(G))]] //-i<D,
[ Zp[[*I*(0(G))]]

Lemma 2.2. We Zzave

Z„[[0(G) \ f(0(G))]]
(A(G)^G=^"'* := {j e A(G)*> : tr^OO /"^Cv)}.

Proo/ The above discussion shows that Z^[[0(G) \ *k(0(G))]] is contained in the

kernel of tr^ — O. It also shows that it remains to establish the vanishing of any

y G A(G)*k such that O(y) /?^y. Since A(G)^ is torsion free this means
that O(y) /?y. But we know the injectivity of O — /? from the diagram (7).

Using Lemma 2.2 together with (9) and (11) we deduce that

Ai(A(G))^()=5()""

:= {x *i(A(G)) : JVg(x) '} c Ä?(A(G)).

Proposition 2.3. // Z?e Gn GrZ?rirary pro-/7-growp and ZV c // Z?e Gn open normaZ

swZ?gre>w/?; rizen ^Zze coraposed map

can
ATi(£^(A/)) A:i(ß()V)) ATi(12(A/))

comc/des wriZz ^Zze map x ^ x [tf:AT]
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Proo/ Step 1: We assume that [// : TV] p. Let x £ £2(//)* be an arbitrary
element. Its image in ATi (£2(//)) under the asserted map can be obtained as follows.
The £2(//)-bimodule £2(//) ^(//) is free of rank [// : TV] as a left £2(//)-
module. We choose any corresponding basis. Right multiplication by x is a left
£2(//)-linear endomorphism, and we may form the associated matrix with respect to
the chosen basis. This matrix represents in ATi (£2(//)) the image of x we are looking
for. In order to make a clever choice for the basis we use the bimodule isomorphism

»ßffl ß(ff) £2(1/) C2(tf x tf/AO,
Ai ® Ä2 i—>• (A1A2, ^2^),

where // acts on the right-hand side from the left by left multiplication on the first
factor and from the right by diagonal right multiplication. We also choose an element

g £ // such that the 1, g,..., g^~* are coset representatives for TV in //. If we write
x J]fzTo with Xz £ £2(Af) then the right multiplication by x on £2(//) (g)^
£2(7//Af) is given by

1

(j <g> z)x X JX, g' 0 z (g/V)'.
/ =o

Obviously, 1 <g) 1,1 <g)gAf,..., 1 (g) (gAf)^~* is abasis of £2(7/)®^ £2(///A0 as aleft
£2(//)-module. But we use the elements 1 (g) 1,1 (g) (gAf — 1),..., 1 (g) (gAf — 1)^~*
which also form a basis since the coefficients in the binomial equations (gAf — 1)

form an integral, triangulär matrix with 1 on the diagonal.
For this basis we compute

(i ® (g^v - idi ® (g^v - ir(g7V)'
/=ü
p-i
X*«*' ® -1) +1)'
/=ü

XX*<£' ® ^ ~ - iy
/=ü ./>()

/?—1—m /?-l

X (X '

7=0 /=() ^ '
77-1

e x(i ® (gTV -1)) + X n(tf)0 ® te# -1)*),
fc=m +1

where the last identity comes from the fact that (gAf — 1)^ 0. This shows that in
this basis the matrix of right multiplication by x on £2(//) (g)^ £2(7//Af) is triangulär
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and has the element x everywhere on the diagonal. Its class in ATi (£2(//)) therefore
coincides with the class of x^ (cf. [Sri], p. 4/5).

Step 2: In the general case we choose a sequence of normal subgroups /V

Ao ^ /Vi c c /Vr // such that all indices satisfy [/V/ : /V;_i] p. The
assertion now follows by applying the first Step successively to the composite maps
can o Afo(jVi)/f2(A/> can o ^(^/«(ATi). • • • > can o ^Vn(^)/n(^-i)- ^

Proposition 2.4. ATf(A(G)) ATi(A(G))^A ^

Proo/ Let x e ATf (A(G)) and put y := /Vg(x)0(x)~^ As a consequence of
(9) and (11) we have the commutative diagram:

*i(A(G))

AI(A(G))

A(G)**

«G -P

A(G)**.

Lemma 2.2 therefore implies that T(y) 0. Moreover, by (3), (8), and Propo-
sition 2.3 (applied to // := G and /V := 0(G)) we also have the commutative
diagram:

Ai(A(G)) *tfi(n(G))

jVGO$o-^~y i

*i(A(G)) -Ai(ß(G)).

Hence y is mapped to 1 e ATi (£2 (G)). Finally, as part of (7) we have the commutative
exact diagram:

0 A(G)* ^ (A(G)) Ai (fi(G))

r
0 » A(G)* > A(G)*>.

The element y in the upper middle term has trivial image in both directions. It follows

that necessarily y 1, which means that x e ATi(A(G))^A•)=$(-F

At this point we have established the theorem stated in the introduction.
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3. The ring A°°(G)

We now introduce for our pro-/? /?-adic Lie group G (with /? 7^ 2) the ring

A°°(G) :=limQ„[G/£/]

with G running again over all open normal subgroups of G. There is an obvious unital
ring monomorphism A(G) -> A°°(G). The ring A°°(G) in fact is of a rather simple
nature. As the projective limit of the semisimple finite group algebras Q^[G/ G] it
deeomposes into the product

A~(G)=n*.
TT

of two sided ideals where tt [F] runs over the set Etq^ (G) of isomorphism
classes of all irreducible Q^-representations F of G which are trivial on some open
subgroup. Each is a matrix algebra over the skew field := EndQ^[G](F).
But since G is pro-/? the Schur indices of all its finite quotient groups are trivial (cf.
[Roq]). This means that each is in fact a field and is a finite extension of
generated by some /?-power root of unity. In particular, does indeed only depend,

up to unique isomorphism, on the class tt of F. We obtain the homomorphism

*i(a°°(G)) —
TT TT TT

It is surjective since in the commutative diagram

A°°(G)X X*

*i(a°°(G))—^i(^)
the right vertical map is surjective.

Proposition 3.1. TTze mz/rzraZ razz/? (A°°(G)) —> ]~[^ L* zs an Zsoraorp/z/sra.

Proo/ It remains to establish the injectivity of the map. Let x be an dement in
its kernel. We may lift x to an dement in GL„(A°°(G)), for a sufficiently big
integer /z, which we again denote by x. We write x (x^)^ according to the

decomposition GL„(A°°(G)) n?r Let M^(^)(L^). Then the
Morita invariance isomorphism reads

Ajt ^ (G^(G^)
GL„(A^/[GL„(XXGL„(Xr)] Ai(^).
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That x lies in the kernel therefore means that, for any tt, we have

•^JT £ C^TT) [GLu(eAjj-), GLu(eAjj-)].

By a result of Thompson ([Tho]) any element in SL„^(^)(L^) is a commutator.
Hence we find e GL„(A^) such that Weputy := OOjt and

z := (z^)^ in GL„(A°°(G)). It follows that

x [y,z] e [GL„(A°°(G)), GL„(A°°(G))]

which means that x maps to zero in ATi (A°°(G)).

Corollary 3.2. 5ÄTi(A(G)) ker (ATj (A(G)) -> Ai(A~(G))).

Proo/ This is a consequence of (1) and Proposition 3.1.

It leads to a more conceptual point of view if we rewrite the isomorphism in
Proposition 3.1 in the style of the so called Hom-description of Fröhlich for finite

groups. Let ^ := Gal(Q^/Q^) denote the absolute Galois group of the field Q^.
Moreover, let denote the free abelian group on the set Ihq (G) of isomorphism

classes [F] of all irreducible Q^-representations F of G which are trivial on some

open subgroup. Then the map

*i(A°°(G)) Hom*„(ÄG,Qp,
[a] i— [[F] h+det^(a-;F)],

where the class [a] G Ä^(A°°(G)) is represented by a unit a G A°°(G)*, is an

isomorphism. This can easily be deduced from Proposition 3.1 (compare [Tay],
Chapter 1, for the case of a finite group). The group G being compact any tt [F]
in Irr(G) contains a G-invariant lattice over the ring of integers c L^. The

isomorphism in Proposition 3.1 therefore extends to a commutative diagram

Ai(A(G)) <
C

tfi(A~(G))-2Un„^-
In terms of the Hom-description this amounts to the commutative diagram

(A(G)) -Ä- Hom^, (äg ZP

Ai(A°°(G)) Horn*,(tfg, Q£),
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where Z^ denotes the ring of integers in ; the upper horizontal map henceforward
will be denoted by DET.

Additively we have the isomorphism

A°°(G)"* := A°°(G)/[A°°(G), A°°(G)] Hörnte, Q/0,

x^[[R]^tr^(x.;R)],
where the closure on the left-hand side is formed with respect to the product topology
on A°°(G) n?r ForthesamereasonasbeforeitindueesamapTR: A(G)^ ->

On Rg we have the elassieal Adams Operator whieh is eharaeterized by the
character identity

tr(g; V^IX]) [F]) for any g e G

(cf. [CR], § 12B). Its adjoints on Hom^ (Rg Q/>) and on Hom^ (Rg as well as

the corresponding (via (12)) Operator on (A°° (G)) willbe denoted by ^ (compare
[CNT] for the case of a finite group).

The diagram

A(G)"* > A°°(G)^ > Horn«, (äg, Q/0

$ $

7? ^

A(G)"» >- A°°(G) >- Horn*, (äg. QD

is eommutative. It suffiees to check the latter on group elements where it is immediate
from the definitions. Since the logarithm log: Z* -> transforms the determinant
into the trace we deduce the eommutative diagram

Ai(A(G)) ^ » A(G)*

DET TR

where the map THom is defined by

Horn*, (Rg, ZD Homfc (Rg, Q»).

UfernC/) := ~ log o
^ -(p-V^)(10go/).

/> <M/) ^
We now introduce the subgroup

HomgCRe^p := {/ e Hom^(/?G,zp : ^ "om^(/?G, 1 +
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On the one hand it is a result of Snaith ([Sna], Theorem 4.3.10) that the image of
DET lies in Hornel #g> 1 + pZ^). On the other hand log(l + /?Zp) c pZ^. We
therefore obtain the commutative diagram

r*i(A(G)) ab

DET

Homg(ÄG,Zp

-A(G)

TR

Horn«

(13)

It is easily seen that the Operator respects the subgroup Hom^(i?G>

Proposition 3.3. 77z£ d/agrara

*i(A(G)) -^Homg(*G,zp

(A(G)) -Ä Homg (*G Z£)

zs C6>rarawtariv£.

Proo/ (We note that the definition of our map O did not need any of our additional
hypotheses on the group G.) Introducing the map

$Hom: Homg (*G, zp — Horn*, (*g Z£),

/ I— (expo^rHom(/))~V.

we obtain from (13) the commutative diagram

5
*i(A(G)) *i(A(G))

HomJ^(/?G,ZDX \ ^Hom u / /)Horn« (äg.ZD.

But

exp oprHom(/)) exp o log o

for any / e Hom^(i?G,Z*) since exp o log id on 1 + /?Z^. It follows that

d>Hom O

7
<M/) m/)~7"
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Next we turn to the norm map assuming again our hypothesis (P) that 0(G) is a

subgroup of G. By a slight abuse of notation we let Ag also denote the composed

map

*i(A°°(G)) *i(A°°(0(G))) *i(A°°(G)).

This is justifiedby theidentity A°°(G) A(G) ®a(0(G)) (0(G)) which implies
the commutativity of the diagram

*i(A(G)) ^*i(A°°(G))
AAg AAg

AI(A(G)) > ÄTi(A°°(G)).

We need to understand this map Ag on (A°° (G)) in terms of the Hom-description

V(G)(12). The induction functor Ind?,^ induees a map P</>(g) ^G- Since 0(G) is

normal in G the composite map

„ restriction induction

r : ÄG ^0(G)

is explicitly givenby F*([F]) [F Q^[G/0(G)]] with G acting diagonally on
the tensor product.

Proposition 3.4. 77z£ d/agrara

Ai (A°° (G)) Horn*, (Ag Q£)

AAg Horn-

Ai(A°°(G)) Horn*,(Ag, <Q£)

Proo/ The left vertieal map Ag is indueed by the functor which sends a (left) finitely
generated projective A°°(G)-module P to A°° (G) ®a°°(0(G)) P. On the other hand,
fix a class [F] e IrrQ^(G). The corresponding component

*i(A°°(G)) — q;,
[fl] i > detQ^(a-; F),

in (12) is the composed map

*i(A°°(G)) — Ai(Endö (K)) A *i(Q„)
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wherethe left arrow is inducedby thebase change functor P i-> End^ (F) (8)a°o(^) P
and the right Morita isomorphism by <2 F* ®End^ (V) ö- Hence the composite

is given by P i-^ F* ®a°°(G) Here F* := Hom^ (F, Q^) denotes the contra-
gredient representation. Going through the left lower corner in the asserted diagram
therefore comes from the functor which sends P to

K* ®a~(G) A°°(G) ®ACO(<kg»

F* ®a°°(0(G)) -P

<8>A°°(0(G)) A°°(G) ®A~(G) T

Ind^>(10* 0A~(G) T

HomQ^^j(lF, Ind^^-^(F)) (JF* (8>A^(G) E>).

[W]eIrr^(G)

Assuming (P) the above Propositions 3.3 and 3.4 lead to the isomorphism

^i(A°°(G))^(-)=Vv()^ '
^ Hom^(ÄG/im(t^ -p"Vri,Q£)- (14)

induced by (12) and, in particular, to the map

ATi(A(G))^(-)=3>()^ '
-^.Hom^CÄG/imCt^-p^'VO.Zp (15)

Therefore, assuming (SK), (O), and (P), and using (7) and Corollary 3.2 the map (15)
embeds into the commutative exact diagram

1 x G'* —25!^Hom^(ÄG/(im((^ VO + im(/> - ^)),Z£)

1 Ä"i(A(G))^o6)=«f(.)^ ' —' > Hom^'(/G;/im(^ - V^),Z*)

where

:= Hom^(/?g/im(t^ — i^),Z*) n Hom^(/?G, Z*)..4-1,/^'

r rHorn

A(G)»»
TR

Hom^(ÄG,Zp)
(16)
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77z£ evarapZe tf/YZz£ growp G Z^: We recall from the introduction our choice

(Gi)w>o of compatible primitive /?"-th roots of unity. Let G Irr^(G) be the

eorresponding eharaeter of G such that /«(l) e«. The set {/«}«>o is a set of
representatives for the ^-orbits in Irr^ (G). It is straightforward to check that the

map

Hom^(/?g/im(V - (Hm 0*) x Z*,

/1—> ((/(;r«))n>i,/(;ro))),

is an isomorphism. As a consequence of Coleman's theorem wehave the commutative
diagram

Ä"i(a(G))*G=* ^HE 0»

DET pr

Hom^(Äc/ im(t* - /"), Z£) (Hm O*) x Z*.

We, in particular, see that, for any / := DET(/x) in the image of DET, the value

/(xo) is already determined by all the other values /(/«),« > 1. Indeed, from the
well known fact that

Igt^I E
/gG/ G«

is the characteristic function of the subgroup G„ := G^", G/ G„ denoting the char-
acter group of G/G„, and since

DETO*)Or) /" /d/i
«/ G

where we consider /x g A(G)* c A(G) as a measure on G, we obtain

/Ofo) [G : <?«] y charo„^ - y] /Gr).

xeG/G„,x^xo

Letting /r pass to infinity, we arrive at

/Ofo) - lim y] /(/)
xeG/G„,x^xo

- Z trace<Q^(,„)/Q^ (/(/„))
«>1

due to the Galois invariance of /. Note that the last series on the right-hand side

converges for any / in Hom^ (Z?g / im(^ — Z*) (not necessarily in the image
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of DET) as a consequence of [Ser], III§3, Proposition 7, IV§1, Proposition 4, and

IV§4, Proposition 18. Moreover, for any such / the commutativity of the above

diagram implies that

DET(Col~* ((/(jf«))n>i))(/o)

- E traceQp(^)/Qp (DET(Col~* ((/(/«))„>i))(/„))
«>1

-J]traceQ,(en)/a, (/(*»»))•
«>1

Hence the map

/ ^ -J3traceQ^(e„)/Qp(/(*«))
«>1

is multiplicative in /, a fact which seems very surprising to us and which we were
not able to show without using Coleman's result! Finally, consider the (surjective)
homomorphism

A: Hom^,(ÄG/im(^ - —> Z*,

y ^ /Pfo)

- E«>i traceQp(^)/Qp (/(/„))'
The above discussion immediately implies that / belongs to the image of DET if
and only if A(/) 1, i.e., the homomorphisms / in the image of DET are precisely
characterized by the additional relation

/(Zo) -53traceQ^(e„)/Q^(/OrO)-
«>1

Last but not least one checks that

We finish this section by a discussion of the upper horizontal arrow

/^_1 x G^ Hom^(ÄG/(im(^ - + im(/> -
in the above diagram (16). It is not difficult to see that already for the group G
the cokernel of this map is rather big. But, in fact, there is an intrinsic characterization
of its image. Let Ig £ ^G denote the class of the trivial representation.

Remark 3.5. Note that Z?g / im(/? — is a torsion group whose prime to /? part is

Z/(/? - 1)Z • Ig.



636 P. Schneider and O. Yenjakob CMH

Proo/ On the one hand we have (p — 1) • Ig (p — V^)1g- On the other hand let

[F] G be the class of an arbitrary representation F. Since some open subgroup of
G acts trivially on F we find some integer tz > 0 such that ([F]) dim^ F • 1 g •

The tensor product of representations makes Z?g into a commutative ring with
unit Ig- The augmentation is the ring homomorphism

a: /?G —^ 2,
[K] ^ dim^ K,

and the augmentation ideal/g := ker(a) isits kernet. We obviously have the additive
decomposition

Z?G =Z-1G®/G.
The exterior power Operations on representations equip /?g with the structure of a

special A-ring (cf. [Sei]). As such Z?g carries the so called y-filtration

#G ^G.O 2 /G *G,1 5 ÄG.2 5 •••5 ÄG,i 5 ••• •

Lemma 3.6. i. TTze map DET mdwces an Aomorp/zAm

Hom^(i?G/(^ • Ig © ^G,2)>/V») ~ Hom^,(/G//?G,2.

w/zere /inoo ^ erowp öfaZZ rtföfa o/'wraYy g/* p-pmver
ii. im(> - ^ (p - 1)Z • Ig ® ^g,2-

PrGG/ i. If [F] G /?g is the class of an arbitrary representation F, m := dim^ F,
and det(F) denotes the maximal exterior power of F (which is a character of G^)
then [Ati], Lemma (12.7), implies that

[F] — m • Ig [det(K)] - Ig mod äg,2-

This shows that the natural map

/G^b / /^Gab_^2 — /G/äg.2

is surjective and reduces us to the case that the group G G^ is abelian. In this case

we have Z?g,2 ^g [Ati], Corollary (12.4). The representation ring Z?g becomes

the integral group ring Z[G] of the character group G of G. If /(G) c Z[G] denotes

the usual augmentation ideal then it is well known that the map

G — /(G)//(G)2,

X x " 1 + /(G)*,

is an isomorphism (cf. [Neu], p. 48/49).
ii. Wehave^^lG Ig and, by thesecondlemmain [Sei], (p —i/^)/g ^ ^g,2-

b
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Using Remark 3.5 and Lemma 3.6 we conclude that

DET(^_i x G*") Hom*„(ÄG/(Q> - 1)Z • Ig © *0,2), Z£)

^_i xHom^,(/G/ÄG,2,Zp.

4. Unipotent compact p-adic Lie groups

We fix an integer J > 2. Inside the group GL^ (Q^) we consider the Borel subgroup
i? of lower triangulär matrices. It satisfies i? 7W with T the diagonal matriees
and Af the unipotent radical of iL The unipotent compact /7-adic Lie group which
we will study in this section is

G := WnGLrf(Z„).

Let us recall right away the basic structural features of this group which will be used

at several subsequent places. For any J > i > y > 1 and any a e we introduce,
as usual, the matrix £)y (a) with ones on the diagonal, the entry a where the ith row
and y th column intersect, and zeroes elsewhere. We also abbreviate £)y := £/y(l).
Then:

£)y(a)£)y(£) £)y(a + 6) ; (17)

in particular, the matrix £)y is a topological generator of the "integral" root subgroup
G;y := {£/y (a) : a e Z^} ^ Z^. The basic commutation relations are:

[£,y (ß), £*/(£)] 1 if 7^ / and ; 7^

[£)y(a), £)•/(£)] £)/(a6), (18)

[£y(a),£^-(0]

in particular, £/y(a) is an (7 — 7 — l)-fold iterated commutator. If G^ := G,
G(w) [g,G^"^] denotes the descending central series of G then the above

relations imply the following list of properties:

(a) G^ n,-y>m G/y (set theoretically, and for any fixed total ordering of the

roots (L 7); in particular, G^~^ {1}.

(b) The matrices £»,+2,1, £»»+3,2, £rf.rf-(m+i) generate G''"' topologically.

(c) G^~^/G^ is the center of G/G^.

Proposition 4.1. S£7(Z/?[G(/?")]) 0 wAere G(/?") denotes,/or any n > 1, tAe

o/G /n GL^(Z//?"Z).

Proo/ We fix n and write G := G (/?"). More generally, we let £,7 and G^ denote
the image of £)y and G^, respectively, in G. The commutation relations and their
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consequences recalled at the beginning of this section remain valid for these images
in G. In particular, G^ is the descending central series of G, and we have the central
extensions

1 — — G/G^ — G/G^-^ — 1.

For each m there is the exact sequence (cf. [Oli], Theorem 8.2)

G^-D/G^) ®G/G<*> //2(G/G^,Z)

— 7/2(G/G^~i\Z)

We see, in particular, that the image of the natural map

#2(G,Z) — //2(G/G^,Z),

for m > 0, lies in the kernel of <5^. In order to recall the definition of the map y^ we
choose a free presentation l^i?^F^G/G^^l and use Hopfs formula

7/2(G/G^\Z) s(«n [F, F])/[F,F].

Then

7m(gG*-"^ (8) AG^) := [g,Ä] mod [F, F]

where, quite generally, we let g e F denote any lift of g G G/G^. Following [Oli]
we let //|k(G, Z) denote the sum of the images of the natural maps //2(//, Z) ->
//2 (G, Z) where // runs over all abelian subgroups of G. In fact, in terms of Hopf s

formula the subgroup //|^(G/G^\ Z) is generated by all

gG^ A AG^ := [g, Ä] mod [F, F]

where gG^,AG^ run over all pairs of commuting elements in G/G^. The
restriction of <5^ to //^(G/G^, Z) then can be explicitly described by

MgG^' A AG<*>) [gG^+V/*G^+i>].

We also see that the image of y^ is contained in //|^(G/G^\ Z) which makes it
possible to compute the composite <5^ o y^ as

o Km : 0 G/G<*> — G^>/G^+1>,

gG^ 0 AG<*> i— [gG^+VAG^+^].

For all of this see [Oli], p. 187. We combine this information into one commutative
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diagram

^(m—1) ^(m)
<5/77— 1

//f(G,Z) ^ker(5„_i) —^(G/G^-i', Z)

#.f(G, Z) ker(5„) ^(G/G'"'», Z) — >- G<'">/G<"'+1)

yw

ker(<5„, o y„,) -=>- g^"-i>/G^ 0 G/G"> G<'">/G<"'+1)

whose two middle columns are exact. We claim that the two arrows emanating from
the left most term Z) for any m > 1 are surjective. Let us first suppose that
this indeed is the case. For m J — 1 we then obtain the equality

7/f (G,Z) #2(G,Z).

But according to Theorem 8.7 of [Oli] there always is an isomorphism

S*i(Z,[G]) //2(G,Z)///f (G,Z).

Hence the assertion of the present proposition follows. To check the claimed surjec-

tivity it suffices, by induction with respect to m, to show that

y„(ker(Ä„ ° y„)) c (G,Z) — tfzCG/G^.Z)).

We know from the property (b) in the list at the beginning of this section that

G(-i)/G() (8) G/G^ is the free Z//?"Z-module generated by

(8) £fc+i,A;G^ for 1 < i < J — m and 1 < ä: < <i — 1.

By the commutation relation (18) the image under <5^ o y^ of this generator is equal
to

p„+i,i-iG<"+i> if / A: + 1,

| -£„+i+i,,-G("'+^ if m + z fc,

[0 otherwise.

It follows that the kernel of <5^ o y^ is the free Z//?"Z-module generated by the
elements

£„+/+!,/+iG^> 0 £/+i,iG^ + G<"«> 0 £„+i+i,„+iG^
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for 1 < i < <Z — m — 1, and

for 1 < i <<Z — m, 1<Z<<Z — 1, and ä; ^ — 1, m + /.
In the latter case and £&+!,£ commute in G so that £^+;,;G^ A

£fc+i,A;G^ g //|^(G/G^\Z) obviously lifts to //|^(G,Z). To deal with the
former elements we fix a 1 < / < <Z — m — 1 and abbreviate

^4 £"m+/ + l,/ + l. ^ •— ^z + l,A C •— -Em+z',z'> and Z) := -

We need to show that AGWa5GW + CGWa DG<> lifts to (G, Z). First
of all we note that in the case m 1 this element actually is equal to zero so that
there is nothing to prove. We therefore assume in the following that m > 1. We have

£ := A,+;+u [A, 5] [C, DA e G<>

and

[X, C] [X, ß>] [ß, C] [ß, ß>] [£", y4] [£, ß] [£", C] [£,£>] 1.

From this one easily derives that

[A,ßZ)] ß, [C,ßZ)] £~\ [AC,ßZ)] l.

The Operation A being bi-additive as long as all terms in the respective identities are
defined we compute

y4CG^ A ßDG^'
y4G^ A ßß>G^' + C A ßß>G^'

ylG^ A ßG<"*> + /4G^ A DG^ + CG^ A ßG<"*> + CG<"*> A DG^
and hence

AG'' A ßG^' + CG^ A DG^
y4CG^ A ßDG^' - AG'' A DG'' - CG'' A ßG<A

In all three summands on the right-hand side the two group elements already commute
in G. It follows that the right-hand side lifts to //|^(G, Z).

Corollary 4.2. 77z£ growp G /rypctfAesis (SK).

Proo/ We have G lim G (/?").

Adrfed m proo/ Meanwhile we have obtained more general results concerning the

vanishing of SXi(A(G)) in [SV],
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