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A splitting for K; of completed group rings

Peter Schneider and Otmar Venjakob

Abstract. For p # 2 and a uniform pro-p group G and its Iwasawa algebras A(G) 1= Z[[G]]
and 2[[G] := [F,[[G]] we show that the natural map K{(A(G)) — K1(£2(G)) has a splitting
provided that SK;(A(G)) vanishes. The image of this splitting is described in terms of a
generalised norm operator. This result generalises classical work of Coleman for the case
G = Z,. We verify the vanishing condition for certain unipotent compact p-adic Lie groups.

Mathematics Subject Classification (2010). 19B28, 11823.

Keywords. Completed group ring, Iwasawa algebra, algebraic K -group, Adams operator, norm
operator, Coleman isomorphism.

Introduction

This paper is motivated by the following result of Coleman ([Col]). Inside the alge-
braic closure @ » of the field of p-adic numbers (Q,, we fix, for any 7 > 0, a primitive
p"-th root of unity €, in such a way that €2 11 = €x. Welet Oy denote the ring of
integers in the field Q, (e, ). The groups of units O, in these rings form a projective
system

norm

n

with respect to the Galois norms. On the other hand one considers the group of units
Zp|[T]]* in the formal power series ring in one variable 7" over the ring of p-adic
integers Zp. Coleman constructs a natural “norm” operator & on this group and
shows that the map

~

@ ITT)* 4 =5 tim O],
Fr— (F(en — 1))u,

is an isomorphism. This result is of basic importance in Iwasawa theory. There is a
twist added to it by Fontaine ([Fon]) which is the starting point of our investigation.
By the theory of the field of norms the group l(gl O, in fact, coincides with the
group of units in the ring of integers O of a specific local field £ of characteristic p.
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The choice of the €, gives rise to a choice of a prime element in Jg so that we
may identify Og with the ring IF,,[[7']] of formal power series over IF,,. With these
identifications the Coleman map simply is the map induced by the natural projection
ZplIT]] — Fp[[T]] of power series rings. Hence Coleman’s theorem says that the
eigenspace (Z,[[T]*)? =4 of the norm operator A provides a natural section for the
projection map Z,([T]* — Fp|[T]]*.

We remark that the group of units in a commutative local ring has a more concep-
tual interpretation as the algebraic K-group K of that ring. From this point of view
we are dealing with the natural map Ky (Z,[[T]]) — K(F,[[T]])). We also recall
that the power series rings Z, || T']| and IF, || T']] are isomorphic to the completed group
rings of the additive group G := Z, over Z, and F,, respectively.

In noncommutative Iwasawa theory one investigates towers of number fields
whose Galois group & is much more general, in particular possibly noncommu-
tative, than the group ¢ = Z,. The problem of constructing p-adic L-functions in
this context is closely related to the computation of the algebraic K-group K (A(G))
of the completed group ring A(G) of G over Z,. Clearly, Coleman’s theorem then
suggests the investigation of the natural map

K1(A(G)) — K1(8(G))

where Q(G) is the completed group ring of G over[F,. The main purpose of this paper
is to provide a list of requirements on the group G which guarantees the existence of
a splitting of the above map which is characterized by a certain “norm type” operator
equation in K1(A(G)).

We let p # 2 be an odd prime number and G be a pro-p p-adic Lie group. First
of all we will construct an “Adams operator”

&: Ki(A(G)) — Ki(A(G)),

Next we assume that (¢ satisfies:
(®) Themap ¢: G — G givenby ¢(g) := g¥ isinjective, and ¢ () is open in G
for any n > 1.
(P) ¢(() is a subgroup of G.
Then ¢(() is an open normal subgroup in G. Hence A(() is a free module of rank
p? =[G : ¢(G)] over A(¢(G)). By general principles of K-theory we therefore

have the norm map NaGy/a@c)): Ki(A(G)) — Ki(A(¢(G))), and we introduce
the composite “norm operator”

A(G)/ AP (G))

N : Ky(A(G)) — Ki(AGG)) =2 Ki(AG)).

In order to formulate our third axiom (SK) we also need the completed group ring
A®(G) of G over Q,. We require that:

(SK) The natural map K{(A(G)) — K{(A™(G)) is injective.
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Our main result is the following.

Theorem. If G satisfies (®), (P), and (SK) then the natural map K1(A(G)) —
K1(2(G)) restricts to an isomorphism

Ki(AG)YeO=30"" 2, k().

Whereas (@) and (P) are easily seen to hold for any uniform pro- p-group G the
axiom (SK) is of a more subtle nature. In the last section we will show that the group
G of lower triangular unipotent matrices in GL,(Z,), for any n > 1, satisfies (SK).

There is the aspect of groups of local units in the original Coleman isomorphism.
In our present general setting this is disguised in the group K{(A®°(G)). The ring
A®®(G) is a projective limit of semisimple (,-algebras. The group K1(A((G))
therefore can be computed, via the determinant map, in purely representation theoretic
terms through a Frohlich style Hom-description

K1(A™(G)) = Homg, (Rg, Q).

Here Rg denotes the representation ring of G, 1.e., the free abelian group on the set
of isomorphism classes of irreducible @ ,-representations of G which are trivial on
some open subgroup. The homomorphisms in the right-hand side are assumed to
be equivariant for the absolute Galois group g, := Gal(Q,/Qp). We extend our
operators ® and Ng from K1(A(G)) to K1(A®(G)) and there prove them to be
equal, on the Hom-description, to the adjoints of the usual Adams operator ¥# and
the induction operator

(V) = [V ®g, QplG/¢(G)]]

on Rg, respectively. Under our requirements on the group ( this leads to a natural
embedding

ot d—1 e
K{(A(G)NeW=20" " < Homg, (Rg/im(:? — p?~ 14 7). Q)

which is the generalization of the Coleman map. Unfortunately, for a general group
G its cokernel is very big. The case of the group G = Z,, where the cokernel turns
out to be isomorphic to the group Z; of p-adic units, seems quite exceptional. At
this point it remains an open problem to determine the image of this embedding.

In the first section we will review the formalism of exponential maps which pro-
vides an identification of the kernel of the map K1 (A (G)) — K1 (2(G)) with the quo-
tient A(G)® of the additive group A (G) by the additive commutators. In the second
section we will introduce the integral p-adiclogarithmmapT: K1(A(G)) — A(G)™
of Oliver and Taylor. It is a very careful analysis of the interplay between the expo-
nential map and I' which will enable us to define the Adams operator ® and to prove
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the above theorem in this section. The third section will be devoted to the discussion
of the group K1(A®(G)) and its Hom-description. In the final section we establish
the axiom (SK) for unipotent radicals of Borel in GL,(Z).

We thank K. Kato for pointing out to us the results from [Oli], §2b. Both of us are
grateful to the Centro de Investigacidn en Matematicas (CIMAT, Guanajuato, Mexico)
and the Newton Institute (Cambridge) for support and a stimulating environment while
we worked on this paper. The first, resp. second, author acknowledges support by the
DFG-Sonderforschungsbereich 478, resp. by DFG- and ERC-grants.

1. Exponential maps

In this section we begin by recalling the formalism of the exponential map, as devel-
oped in [Oli], §2b, for any (possibly noncommutative) Z ,-algebra A which is finitely
generated and Iree as a Z,-module. Following [Oli] we call such aring A a p-adic
order. Throughout the paper we assume p # 2. Let J € A denote the Jacobson
radical. The ring A is semi-local in the sense that A/J is semisimple. It is well
known (ct. [Bas], V.9.1) that in this sitvation the natural map

A*[[4%, AX] = Ki(A)

is an isomorphism. In [Oli], Lemma 2.7 and Theorem 2.8, it is shown that the usual
exponential power series converges on pA inducing a bijection

pAS 1+ pA

with inverse given by the equally converging logarithm power series. Moreover, if
|4, A] denotes the additive subgroup of A generated by all additive commutators of
the form [a,b] = ab — ba with a,b € A and if E'(A, pA) denotes the kernel of
the natural map | + pA — K (A, pA) into the relative K-group then the above
bijections induce isomorphisms of groups

pA/plA. Al S 1+ pA/EY(A, pA) = Ki(A, pA)

which are inverse to each other and which we denote by exp and log, respectively.
Note that the second isomorphism above is a consequence of Swan’s presentation
([Oli], Theorem 1.15) which also says that E'(A4, pA) is the subgroup generated by
all elements of the form (1+ pab)(1+ pba)~! fora,b € A. Since A is p-torsionfree
it is convenient to renormalize to the isomorphism

exp(p.): A/[A, A] — K1(A, pA).

Obviously everything is covariantly functorial in unital ring homomorphisms.
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Forany n € N let M, (A) denote the p-adic order of n by n matrices over A. The
group homomorphisms

A — M,(A4), A* —s GL,,(4),
a 0
(a ) and 1
ar— ) a+— ,
0
0 1

then induce the commutative diagram

My (A)/ [ My (A), My ()] =20 (M, (A). pM(A)

- |

A/[A, A] Slie Ki(A, pA),

where the perpendicular maps are isomorphisms by Morita invariance. In fact, the
usual matrix trace provides an inverse for the left perpendicular map (cf. [Lod],
Lemma 1.1.7).

Consider now a unital homomorphism A — B of p-adic orders such that B is
finitely generated free of rank » as aright A-module. Choosing abasis of B over A the
left multiplication of B on itself gives a unital algebra homomorphism B — M, (A4)
and hence, by functoriality, a commutative diagram

B/|B, B] it K1(B.pB)

l exp(p.) l

M (A)/[Mp(A), My (A)] ——— K1 (Mn(A). pMn(A)).

By combination with the previous diagram we obtain the canonical commutative
diagram

B/B, B exp(p.)

trB/Al

A/lA, A

Ki(B, pB)
lNB/A
exp(p.) K1(A, pA)

in which trg; 4 is the usual trace map and Ng, 4 is the transfer map in K-theory (cf.
§1d in [Oli]).
Now let ¢ be any profinite group. We then have the completed group rings

A(G) :=limZ,[G/U]  and  Q(G) :=imF,[G/U]
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of G over Z, and I, respectively, where U runs over all open normal subgroups of
(G. Both carry a natural compact topology. The ring A(() is also referred to as the
Iwasawa algebra of ;. In the following we assume that (¢ contains an open normal
pro-p subgroup which is topologically finitely generated. Then the rings A(G) and
Q(G) are semi-local. Any Z,[G/U] is a p-adic order, of course. By a projective
limit argument we deduce from the previous section the isomorphism

exp(p): lim Z,(G/ UN/|Z,[G/ UL, Z,|G/U)| <> lim K\ (Z,|G/ U], p7,|G/ U))

The left-hand term clearly is equal to A(G)/[A(G), A(G)] where [A(G), A(G)]
denotes the closure of [A(G), A(G)] in A(G). To understand the right-hand term we
start with the standard exact sequence of K-groups

Ko(FplG/U]) — Ki(Zp|G/ U], pZp|G/U])
— K1(Zp[G/U]) — K1(F,4[G/U]) —> 0,

where the zero at the end is immediate from the description of K; of the respective
rings as a quotient of the unit group of the ring (use [Ros], Proposition 1.3.8). Using
the isomorphism Z,[G/U]/[Z,[G/ U], Zp|G/U]| = Ki(Z,|G/U], pZ,|G/U))
from the previous section we see that K1(Z,|G/U], pZ,|G/U]) can be viewed
as the free Z,-module over the set of conjugacy classes in /U and hence is p-
torsionfree. On the other hand K»(F,[G/U]) is finite ([Oli], Theorem 1.16). Hence
already

0 — Ki(Z,1G/ U\, pZplG/U) — Ki(Z5[G/U]) — K1(FplG/U]) — 0

is exact. In fact, this is an exact sequence of countable projective systems with
respect to /. The corresponding transition maps for the second and the third term
are surjective (again by their description in terms of units). This implies that the
sequence remains exact after passing to the projective limit with respect to /. So we
obtain the exact sequence

0 — lUm Ki(Z,[G/U]. pZ,[G/U])
— im K1(Zp|G/U]) — lim K1 (Fp|G/U]) — 0.

As a consequence of [Oli], Theorem 2.10(i1) and [FK] Proposition 1.5.1, we have the
natural isomorphisms

%HKI(ZP[G/U]) = Lil_?]Kl(Z/me[G/U]) = K1(A(G)) (1)

and
lm K (5[G/ UD 2 Kn(@(6),
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Altogether we arrive at the basic exact sequence

0 — AG)/A@. RG] M Ki(AG) — Ki(QG) — 0. @)
We emphasize that via the isomorphism K7 (A(G)) = A(G)"/[A(G)*, A(G)™] the
map exp(p.) in this sequence is induced by the map pA(G) — 1 + pA(G) given
by the exponential power series.

Consider now a fixed open subgroup H € G. Then A(G) is finitely generated
free of rank [G : H] as a right (or left) A(H)-module and so is Z,[G/U] over
Zp|H /U] for any open normal subgroup /' € G such that U € H. By passing to
the projective limit we obtain from the previous section and [Oli], Proposition 1.18,
the commutative diagram

0 — A(G)/[A(G), A(G)] ) K1 (AG)) — Ki(Q2(G)) —= 0

UA(G)/A(H)l lNA(G)/A(H) lNQ(G)/Q(H) (3)

0 — A(H)/[A(H), A(H)] R, Ki(A(H)) — K1(Q(H)) —0.

2. The integral p-adic logarithm

In this section we assume G to be a pro-p p-adic Lie group (for some p # 2). In this
case the rings A(G) and Q(G) are strictly local with residue field Fp,. As before U
runs over all open normal subgroups of G. The integral p-adic logarithm of Oliver
and Taylor is the homomorphism

T = Ty KiZplG/U) — Z,[G/UN/IZ,IG/ U, 2,16/ U] =: Z,G/ U
defined by

F(x) = log(x) - %cbaog(x))
with the additive map

&: Z,|G/U) — ZpG/ U],

Z (g8 > Z agg?.

geG/U geG/U

We note that the latter induces an additive endomorphism of Z,[G/U|®; this is
an straightforward consequence of the identities gh — hg = gh — h(gh)h™! and
ghg™'—h = (gh)g~'—g Y (gh). According to [Oli], Theorem 6.6 and Theorem 7.3,
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the sequence

0 — pp—1 X (G/U)Y™® x SK1(Zp|G/U))
s Ki(Zp[G/U]) —s Zp[G/ U™ 25 (G/UY® — 0

is exact. Here (G/U )™ denotes the maximal abelian quotient of G/ U, the map @ is
defined by

a)( Z agg) = H ¢“¢ mod [G/U,G/U],

geG/U geG/U

and

SK(Zp|G/U]) = ker(K((Zp|G/U]) — Ki(Qp[G/U])).

The map pp—1 x (G/U)® — K1(Zp[G/U]) is induced by the obvious inclusion
pp—1 X G/U C Z,|G/UJ*. Clearly the above exact sequence is natural in U so
that we may pass to the projective limit with respect to /. On all terms in the exact
sequence except possibly the SK;-term the transition maps are surjective. The SK-
terms are finite by [Oli], Theorem 2.5(i). Hence passing to the projective limit is
exact. By setting G*® := G/|G, G| (note that G, by [DDMS], Theorem 8.32, is
topologically finitely generated and hence [, G|, by [DDMS], Propesition 1.19, is
closed in (7),

SK1(A(G)) = lim SK1(Z,[G/U]) ,

and using (1) we therefore obtain in the projective limit the exact sequence

1 — pip1 X G x SK{(A(G))
o m (4)
— KA G)) = MG/ [AG). AG)] 2> G — 1.

In Corollary 3.2 we will see that SK(A(G)) coincides with the kernel of the natural
map from K (A(G)) to K1(A®(G)). We assume from now on that G has the fol-
lowing property.
Hypothesis (SK). SK1(A(G)) = 0.

Our second basic exact sequence now is

L — ppt X G — Ky(A(G)) — A(G)/[AG), AMG)] —> G — 1. (5)

One easily checks that I' o exp(p.) = p — ® holds true. Hence (2) and (5) combine
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into the commutative exact diagram

1

fep—1 X G pp—1 x G

0 — A(G)™ =P g (A(G)) K1(2(6)) 0

=l :

AG)™ 22 (G —— AG)/(p — DIA(G) + [A(C). A(C)] — 0

(3] [42)

Gab Gah

1 L,

where we have abbreviated A(G)™® := A(G)/|[A(G), A(G)]. Next we study the
endomorphism p—® of A(G)™. Itis convenient to do this is an axiomatic framework.
Let X be any compact topological space together with a continuous map W: X —

X which satisfies

— W is injective,

— W (X) is open (and closed) in X forany » > 1, and

— [(a=1 Y"(X) = {xo} is a one element subset.
It follows that

— W(xg) = x9, and

— X\ {xo} = U,zo Y (DN P +1(X) is a disjoint decomposition into open and
closed subsets.

We let C(X, Zp) denote the Z ,-module of all Z ,-valued continuous functions on X,
and we put Z,[| X]] := Homg,,(C(X, Zp), Zp). The map W induces by functoriality
endomorphisms W* and W, of C(X,Z,) and Z,[[X]]. respectively. We claim that
the map

C(U(X),Zp) ® ker(V* — p) —> C(X,Z,)

which on the first, resp. second, summand is the extension by zero, resp. the inclusion,
is an isomorphism. For the injectivity we note that any f € ker(\l'” — p) satisfies
f(¥(x)) = p" f(x)forany x € X and any n > 1; if, in addition, f|X \W¥(X) =0
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it follows that necessarily f = 0. To see the surjectivity we first introduce, for any
continuous function g: X \ W(X) — Z, the function

gﬂ:X—>ZP,
n : _ n n+1
NN prg(y) ifx =W (y) g W (X),
0 if x = xp.

By construction g¥ is continuous, satisfies g| X \ U(X) = g, and lies in ker(¥* — p).
If now f € C(X,Zp) is an arbitrary function we put g := f|X \ ¥(X) and obtain
a decomposition f = (f — g%) + ¢* as claimed.

The above splitting, combined with the canonical splitting

C(U(X). Zp) & C(X \ W(X). Zp) —> C(X.Zp).
gives rise to an isomorphism
ker(¥” — p) = C(X \ W(X), 7Z,) . (6)

which is nothing else than the inclusion followed by the restriction map.

\p*
Moreover, the map C(X, Z,) — C(X. Z) is surjective (to obtain a preimage
of f € C(X,Z,) extend the function f o ¥~ on ¥(X) by zero to X). For any
given f € C(X,Zp) we set go = [ and choose inductively, for any n > 0, a

gn+1 € C(X,Zp) such that W*(g,41) = gn. Setting g == > ., " lg, we

o
obtain f = W*(g) — pg. This shows that the map C(X,Z,) — C(X.Zp) is

surjective. It is even split-surjective since
C(X,Zp) — ker(¥* — p),
g = (gIX \ T,

is a projector onto its kernel.
W —

Dually we then obtain the split-injectivity of the map Z, [ X]] —F 7z PlX]]

and the direct sum decomposition
ZpllX 1| = Homg,, (ker(V" — p), Zp) ® (Vs — p)Zp|lX]|
= ZpllX \ VXN ® (Vs — p)Zp[[X]]

where we used the dual of (6) in the second equation.

We apply this general consideration to the space X := @(G) of conjugacy classes

in G and the map V¥ induced by ¢(g) := g” on G. Then Z,[[0(G)]] = A(G)™ and
lI’* = @.

Lemma 2.1. (), ¢"(G) = {1}
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Proof. It G 1s finitely generated and powerful then our assertion holds true by
[DDMS], Proposition 1.16 (iii) and Theorem 3.6 (iii). But our general pro-p p-
adic Lie group G contains an open normal subgroup N which is uniform and hence
finitely generated and powerful by [DDMS], Corollary 8.34. Let [G : N] = p”.
Then ¢"*+"(G) € ¢"(N). O

It is easily verified that the space @((r) satisfies the above conditions provided
we assume the following.

Hypothesis (). The map ¢ : G — G is injective, and ¢ (G) is open in G for any
n > 1.

For example, any uniform G satisfies this hypothesis by [DDMS], Proposi-
tion 1.16(iii), Theorem 3.6(iii), and Lemma 4.10.

Henceforth assuming both (SK) and (&) the above diagram therefore can be
completed to the commutative exact diagram:

1 1

tp—1 X G* fip—1 X G™

0 —> A(G)ab % Ky (A(G)) K (Q(G)) 0

=l .

0 — A(G)® —LZ5 A(GY® —— A(G)/(p — D)A(G) + [A(C), AG)] — 0

(¢} o

Gab Gah

1 1.
(7)
Moreover, the subgroup Z,[[O(G) \ ¥(O(G))]] € A(G)™ provides a section for the
lower short exact sequence. It follows that the subgroup

KP(AG)) := I L [[0(G) \ W(O(G)]) € Ki(A(G))
provides a section for the upper short exact sequence, i.e., that the natural map
KF(M(G)) — Ki((6))

is an isomorphism.
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In order to characterize the group K 1@ (A(G)) in a different way we make the
following further assumption.

Hypothesis (P). ¢(G) is a subgroup of G.

Then ¢p(G) necessarily is anormal subgroup andis open by (®). Let [G : ¢p(G)] =
p?. We introduce the homomorphism

d: K1(A(G)) — Ki(A(G)),

x — exp(pl(x))~1x?
(thinking in terms of units we write the groups K| multiplicatively). The diagram

0 — A(G)® 2L K (A(G)) — K1(AG)) — 0

lq; lg, l_p (8)
exp(p.)

0—— A(G)® ——= Ki(AM(G)) —— Ki(Q(G) ——0
is easily checked to be commutative, and we have the identity
Fo®=0®oT. 9)

On the other hand, as a consequence of [Oli], Theorem 6.8, we have the commu-
tative diagram

r
Ki(A(G)) —=— A(G)®
NA(G)/A(qb(G))J UG /6(G) (10)
FoG)

Ki(A(@(G))) — A@(G)™,

where the modified trace map try, 166 A(G) — A(¢(G))? is the unique contin-
uous Zp-linear map which on group elements g € G is given by

P
tr,G/qb(G)(g) = { ;jl h*g_?i %fg g Pp(G),
i—q Pigh; if g € 9(G),

where in each case the /; run over a set of representatives for the left cosets of
¢(G) < g >in G. We extend the above diagram (10) by the canonical maps induced
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by the inclusion of groups ¢(G) € G to the commutative diagram:

Ki(A(G)) — = A(G)®

NAG)/ MGG UG/ b(G)
r
Ki(A@(G) —> A($(G)* (11)

can can

K1(A(G)) — S A(G)™.

The left, resp. right, composed vertical endomorphism of K1(A(G)), resp. A(G)?®,
will be denoted by Ng, resp. tri;. Then

o= 1P7TEY itg € 9(G),
Holg) = {pdg if g € $(G).
Hence with respect to the decomposition
AG)™ = Z,[[0(G) \ ¥ (O(G)]] & Zp[[¥(O(G))]

we have
try; restricted to {ZP[[@(G) \U(O(G))] = pj_lq)’
Zp[[¥(OG)] = p°.
Lemma 2.2. We have
ZpllO(G) \ ¥(O(G))]]
= (A(GY™)6=P"""® .= {y € A(G)™ : trfy(y) = p O}

Proof. The above discussion shows that Z,[[O(G) \ W(O(())]] is contained in the
kernel of try; — p?~1®. Ttalso shows that it remains to establish the vanishing of any

y € A(G)® such that p9=1®(y) = p?y. Since A(G)™ is torsion free this means
that ®(y) = py. But we know the injectivity of ® — p from the diagram (7). L

Using Lemma 2.2 together with (9) and (11) we deduce that

K1 (A(G))Ne =gy !
= {x € Ki(A(G)) : No(x) = B(x)?" ™'} € KP(A(G)).

Proposition 2.3. Let H be an arbitrary pro-p-group and N C H be an open normal
subgroup; then the composed map

Ki(Q(H)) 2208 g (V) < Ky(QUH))

coincides with the map x — x[7:N],
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Proof. Step 1. We assume that [H : N| = p. Let x € Q(H)* be an arbitrary
element. Its image in K1 (€2 (# )) under the asserted map can be obtained as follows.
The Q(H )-bimodule Q(H ) @q(n) 2(H) is free of rank [/ : N] as a left Q2(H )-
module. We choose any corresponding basis. Right multiplication by x is a left
2(H )-linear endomorphism, and we may form the associated matrix with respect to
the chosen basis. This matrix represents in K1 (£2(#)) the image of x we are looking
for. In order to make a clever choice for the basis we use the bimodule isomorphism

Q(H) ®qv) QUH) — Q(H) @5, QUH/N) = Q(H x H/N),
h1 @ hy — (h1ha, hoN),

where 1 acts on the right-hand side from the left by left multiplication on the first
factor and from the right by diagonal right multiplication. We also choose an element
g € Hsuchthatthe 1, g,...,g? ! are coset representatives for N in H. If we write
X = f:(} x; g’ with x; € Q(N) then the right multiplication by x on Q(H) ®F,
QI /N) is given by

p—1

(y®@z)x =) yxg ®z(gN).

i=0
Obviously, 1®@1,1®@¢gN, ..., 1®(gN)?~lisabasis of Q(H) ®¥, Q(H/N)asaleft
Q(I)-module. But weuse theelements 1 @ 1,1 @ (gN —1), ..., 1 ® (gN — )71
which also form a basis since the coefficients in the binomial equations (gN — 1)" =
D e (’?) (—1)"7(gN)’ form an integral, triangular matrix with 1 on the diagonal.
For this basis we compute

p—1
(1® (N —1)"x = _Z xig' @ (gN — )™(gN)'

A .
=Y xg @@EN-D"(gN -1+ 1)

=0

i . i _
=Y Y ugt @ (e - 1)'"( .)(gN 1y

i=0j=0 Y

p—1—m p—1 ; . .
_ (Z(.)xfg’)@a(gfv—l)mﬂ

j=0 i=0 J
p—1
ex(1®@EN-D"+ Y QU)1®(EN -1,
k=m+1

where the last identity comes from the fact that (gN — 1)# = 0. This shows that in
this basis the matrix of right multiplication by x on Q(H ) ®y, Q(H/N) is triangular



Vol. 88 (2013) A splitting for K of completed group rings 627

and has the element x everywhere on the diagonal. Its class in K;(Q2(H)) therefore
coincides with the class of x# (cf. [Sri], p. 4/5).

Step 2: In the general case we choose a sequence of normal subgroups N =
No € Ny € ... € N, = H such that all indices satisfy [N; : N;—1] = p. The
assertion now follows by applying the first step successively to the composite maps

can © Novy /@) can o Nows)y/Qv)s - --» can o Nooy/Qv,—1)- O
= d—1
Proposition 2.4. KP(A(G)) = K1(A(G))NeO=¢0"

Proof. Let x € K2(A(G)) and put y := Ng(x)é(x)_pd_l. As a consequence of
(9) and (11) we have the commutative diagram:

Ki(A(G)) —— A(G)™

N OB l l wg—pile

Ki(A(G)) — = A(G)™

Lemma 2.2 therefore implies that ['(y) = 0. Moreover, by (3), (8), and Propo-
sition 2.3 (applied to H := G and N := ¢(G)) we also have the commutative
diagram:

K(A(G)) — K1((6))

N (B2 l l 1
Ki(A(G)) — K1 (Q(G)).

Hence y ismapped to 1 € K;(2(G)). Finally, as part of (7) we have the commutative
exact diagram:

0 —— A(G)® 2L K (A(G)) —— K1(Q(G))

|

—¢
00— A(G) —Z= = A(G)™.

The element y in the upper middle term has trivial image in both directions. It follows
= od—1
that necessarily y = 1, which means that x € K;(A(G))¥6 (=207 O

At this point we have established the theorem stated in the introduction.
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3. The ring A°°(G)
We now introduce for our pro-p p-adic Lie group G (with p £ 2) the ring

A™(G) = limQ,[G/ U]

with U running again over all open normal subgroups of G. Thereis an obvious unital
ring monomorphism A(G) — A®(G). The ring A®°(G) in fact is of a rather simple
nature. As the projective limit of the semisimple finite group algebras Q,|G/U] it
decomposes into the product

A®(G) = [ [ A«

of two sided ideals #, where 7 = [V] runs over the set Irrg, (G) of isomorphism
classes of all irreducible ) ,-representations V' of G which are trivial on some open
subgroup. Each 4, is a matrix algebra over the skew field L, := Endg,[61(V).
But since ( is pro-p the Schur indices of all its finite quotient groups are trivial (cf.
[Roq]). This means that each L, is in fact a field and is a finite extension of Q)
generated by some p-power root of unity. In particular, L, does indeed only depend,
up to unique isomorphism, on the class 7 of V. We obtain the homomorphism

Ki(A®(G)) — | [Ki(An) = [ [ Ki(La) = [ [ L.
Fig Fig T
It is surjective since in the commutative diagram

AZ(G)" [T A7

| |

Ki(A®(G)) —[1; Ki(Ax)

~

the right vertical map is surjective.

Proposition 3.1. The natural map K1(A*(G)) = [1, L% is an isomorphism.

Proof. It remains to establish the injectivity of the map. Let x be an element in
its kernel. We may lift x to an element in GL, (A®(G)), for a sufficiently big
integer n, which we again denote by x. We write X = (x;); according to the
decomposition GL, (A*(G)) = [], GL,(A;). Let Ay = M(7)(L5). Then the
Morita invariance isomorphism reads

(AR | S T P §
= GLy(Ayz)/[GLy (), GLy (Az)] —> Ky (Axr).
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That x lies in the kernel therefore means that, for any 7, we have
Xx € SLymn)(Lz) = [GLy(Ar), GLy (Ar)].

By a result of Thompson ([Tho]) any element in SL,,,(z)(L=) is a commutator.
Hence we find vy, z; € GL, (A ) suchthat x, = [yy,z,]. Weputy := (yz)r and
z = (zZz)x in GL,(A®°(G)). It follows that

x = [y, z] € [GL, (A™(G)), GL, (A™(G))]
which means that x maps to zero in K1 (A®(G)). O
Corollary 3.2. SK{(A(G)) = ker (K1 (A(G)) — Kl(AOO(G))).

Proof. This is a consequence of (1) and Proposition 3.1. (]

It leads to a more conceptual point of view if we rewrite the isomorphism in
Proposition 3.1 in the style of the so called Hom-description of Fréhlich for finite
groups. Let §, = Gal(Q,/Q,) denote the absolute Galois group of the field Q.
Moreover, let Rg denote the free abelian group on the set Irrg, (G) of isomorphism

classes [V] of all irreducible @ p-representations V' of G which are trivial on some
open subgroup. Then the map

K1(A®(G)) —» Homg, (Rg. Q7).

(12)
la] — [[V] > det@p(a-; V)],

where the class [a] € K1(A®(G)) is represented by a unit @ € A®(G)™, is an
isomorphism. This can easily be deduced from Proposition 3.1 (compare [Tay],
Chapter 1, for the case of a finite group). The group G being compact any 7 = [V]
in Irr(G) contains a G-invariant lattice over the ring of integers o, € L. The
isomorphism in Proposition 3.1 therefore extends to a commutative diagram

Ki(AG)) —— [, 07

T

Ki(A(G)) — T, L
In terms of the Hom-description this amounts to the commutative diagram

K1(A(G)) == Homsg, (Rg. Z)

| ,

K1(A®(G)) — Homg, (Rs.QJ),
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where 7, p denotes the ring of integers in Q > the upper horizontal map henceforward
will be denoted by DET.
Additively we have the isomorphism

A®(G)® := A®(G)/[A®(G), A¥(G)] —> Homg, (Ra. Tp),
x+—[[V] trg,, (X ).

where the closure on the left-hand side is formed with respect to the product topology
on A®(G) = [],, +=. Forthe same reason as before itinducesamap TR : A(G)™ —
Homg, (Rg,Zp).

On Rg we have the classical Adams operator # which is characterized by the
character identity

tr(g; ¥ P [V]) = uw(g?;[V]) foranyge G

(cf. [CR], §12B). Its adjoints on Homg, (R, @p) and on Homg, (Rg, @;) as well as
the corresponding (via (12)) operator on K (A () ) will be denoted by v, (compare
[CNT] for the case of a finite group).

The diagram

A(G)™® — A®(G)™ — Homyg, (Rg, Qp)

“’l “’l |

A(G)™® — A®(G)™ — Homg, (Rg, Qp)

is commutative. It suffices to check the latter on group elements where it is immediate
from the definitions. Since the logarithm log: 7 ; — @ transforms the determinant
into the trace we deduce the commutative diagram

r

K (A(B)) AGY™

] I

e 1" L e
Homg, (Rg, Z¥) —> Homg, (Rg. Q).

where the map I’y 1s defined by

P

1 f 1
Thom = —logo = —(p— logec f).
Hom ( f) . 0g () p(P Yp)(loge f)

We now introduce the subgroup

Hom(Rg.Z%) := { f € Homg, (Rg.Z%) : /7
gp Ga p a 'gp Ga p

T3 € Homg,(Rg.1 + pZp)}.
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On the one hand it is a result of Snaith ([Sna], Theorem 4.3.10) that the image of

DET lies in Hom;)(RG 1 + pZ,). On the other hand log(l + pZ,) C pZ,. We
therefore obtain thé commutative diagram

K1(A(G)) ——— A(G)™ (13)

| I

Hom{(Rg. Zj) — Homg, (R Z,).

It is easily seen that the operator i, respects the subgroup Homgp) (Rg.7 2)-

Proposition 3.3. The diagram

K1(A(G)) =2~ Hom{) (Rg, Z)

| N

K1(A(G)) === Hom{ (Rg, Z})
Is commutative.

Proof. (We note that the definition of our map ® did not need any of our additional
hypotheses on the group (.) Introducing the map

Prom: Hom (Rg, Z};) —> Homs, (Rg, Z}),
f — (exp OpFHom(f))_l fp’

we obtain from (13) the commutative diagram

Ki(A(G)) —2 K1 (A(G))

| |

Hom(l)(R Zx) ﬂ Homg, (Rg, Z:;).

But
P

f
Pp(f)

for any f € Homg;(Rg,Z;() since expelog = idon 1 + pzp. It follows that
aSHom = wp- O

= Wp(f)_lfp

expopluom(f)) = expeloge
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Next we turn to the norm map assuming again our hypothesis (P) that ¢(G) is a
subgroup of (. By a slight abuse of notation we let Ng also denote the composed
map

ACO(GY/ ACO(P(G))

Ki(A™(G)) — KUA®(@(G)) = Ki(A®(G)).

This is justified by the identity A(G) = A(G) @ as(6)) A (P(G)) which implies
the commutativity of the diagram

K1(A(G)) — K1 (AZ(G))

o |

K1(A(G)) — K1(A™(G)).

We need tounderstand this map Ng on K1(A®(()) in terms of the Hom-description
(12). The induction functor Indg(G) induces a map Ry(Gy — Rg. Since ¢(G) is
normal in G the composite map

restriction induction
7 RG _— Rq}(G) _— RG

is explicitly given by #([V]) = [V ®q, QplG/ qb(G)]] with G acting diagonally on
the tensor product.

Proposition 3.4. The diagram
K{(A®(G)) — Homg, (R¢, Q%)
Ng l lHomgp 7, Q3)
K1(A®(G)) — Homg, (R, Q)
is commutative.

Proof. The left vertical map Ng 1s induced by the functor which sends a (left) finitely
generated projective A (G )-module P 1o A™(G) @ pcss(G)) P . On the other hand,
fix a class [V] € lrrgg, (G). The corresponding component

Ki(A®(G)) — Ki(@,) = T,
la] — det@p (a; V),

in (12) is the composed map

K1(A®(G)) — K;(Endg (V) — K1(@))
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where the leftarrow is induced by the base change functor £ — End@p (V)®@ax) P
and the right Morita isomorphism by Q + V* ®End@p (vy ©. Hence the composite

is given by P = V* @poo(gy P. Here V* = Hom@p(V, @p) denotes the contra-
gredient representation. (Going through the left lower corner in the asserted diagram
therefore comes from the functor which sends P to

V* @ A(G) AOO(G) @ A ($(G)) P
= V" @ne@iy P
=V* R Ao (B(GY) A(G) RArcoq) P
= Indg(G)(V)* ®A°°(G) P

[W]EIrr@p (G)

Assuming (P) the above Propositions 3.3 and 3.4 lead to the isomorphism

d—1 —
K{(A®(G)NeO=¥0" " = Homg, (Rg/im(t? — p*~'y7).QF).  (14)
induced by (12) and, in particular, to the map

= d—1 —
Ki(A(G)Ne O8O 20 Hom() (Rg/ im(i? — p*~ly ). Z)  (15)

where
; ' 3 _
Hom;;(Rgﬁm(tp —p? 1wp),Z;()
:= Homg, (Rg/ im(:¥ — pily ), Z;) N Homgp)(Rc;, ZS).

Therefore, assuming (SK), (), and (P), and using (7) and Corollary 3.2 the map (15)
embeds into the commutative exact diagram

1 1

| —— pp1 x G — > Homg, (R /(im(:” — p?~'y?) + im(p — ¥7)). L)
<

1=K, (A(G))Nc(.)=ff>(.)pd71 _ DT Hom(glp) (RG/im(t? — p?~1y?) Z%)

r 1—‘Hom

TR

| — = A(G)®

Homyg, (Rg,zp).
(16)
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The example of the group G = Z,: We recall from the introduction our choice
(€n)nz>0 of compatible primitive p”-th roots of unity. Let y, € Irrgg (G) be the
corresponding character of G such that y,(1) = €,. The set {y,},>0 is a set of
representatives for the §,-orbits in I, (). It is straightforward to check that the
map

Homg, (R /im(:? — yP), Z%) => (lim 0;) x 2,
fr— ((f()(n))nzls f(XO)))s

is anisomorphism. As aconsequence of Coleman’s theorem we have the commutative
diagram

~

- & X
Ki(A(G)No=® ol Qi O,

DETl Tpr

Homg, (Rg/im(t” — w),Z;;) = (l<£1 O )X L.

We, in particular, see that, for any f := DET(u) in the image of DET, the value
f(xo) is already determined by all the other values f(x,),# > 1. Indeed, from the

well known fact that L

e T oo
§ XEéTé‘n

is the characteristic function of the subgroup G, := G?", %n denoting the char-
acter group of G/G,,, and since

DET(1)(x) = fG oy

where we consider 1 € A(G)* € A(G) as a measure on (7, we obtain

f0) =16:Go) [ ehargudu= Y 1.

X€G/Gn.x#x0

Letting 7 pass to infinity, we arrive at

fro)=—1lim > f(x)

nH—>00 oy
X€G/Gp, xFx0

—— Z traceQ,, (en)/Qp (f (Xn))

n=>1

due to the Galois invariance of f. Note that the last series on the right-hand side
converges forany f in Homg, (Rg/im(:# — #), Z7) (not necessarily in the image
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of DET) as a consequence of [Ser], II1§3, Proposition 7, IV§1, Proposition 4, and
IV§4, Proposition 18. Moreover, for any such f the commutativity of the above
diagram implies that

DET(Col ™ (( f (xn))n=1))(¥0)
= — ) traceq, (e,)/@, (DET(Col ™ (£ (Xn))n=1)) ((n))

n>1

=— Z raceq,, (e,)/Qp (f (Xn))-

n>1

Hence the map

[ =) traceq, (e,)/@, (f (xn))

n>1

is multiplicative in £, a fact which seems very surprising to us and which we were
not able to show without using Coleman’s result! Finally, consider the (surjective)
homomorphism

h: Homg,(Rg/im(:# — wP),Z;;) — 77,

fi f(xo0)

= 2 nz1 HACEQ, (en)/0, (f (Xn))

The above discussion immediately implies that f belongs to the image of DET if
andonly if 2( f) = 1, i.e., the homomorphisms f in the image of DET are precisely
characterized by the additional relation

f(xo) = =) _ wraceq, (e,)/c, (f(in))-

n>1

Last but not least one checks that
1 ; 2 = -
Homfgp)(Rg/lm(tp - pd llpp),Z;) =n1 + PZp).
We finish this section by a discussion of the upper horizontal arrow
ab DET : p__ d—1,.p : P 7 X
fip—1 X G —— Homg, (Rg/(im(tF — p*~'y?) +im(p — ¢P)), Z )

in the above diagram (16). It is not difficult to see that already for the group G = Zf,
the cokernel of this map is rather big. Bug, in fact, there is an intrinsic characterization
of its image. Let 1g € Rg denote the class of the trivial representation.

Remark 3.5. Note that Rg/im(p — ¥) is a torsion group whose prime to p part is
Z/(p—1DZ-1g.
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Proof. On the one hand wehave (p — 1) - lg = (p — ¥#)1 . On the other hand let
|V ] € Rg be the class of an arbitrary representation V. Since some open subgroup of
G acts trivially on VV we find some integern > 0 such that w 2" (|V]) = dim@p V-lg.

The tensor product of representations makes Rg into a commutative ring with
unit 1. The augmentation is the ring homomorphism

o RG — 7,
V] — dim@p V,
and the augmentation ideal I := ker(«) isits kernel. We obviously have the additive

decomposition
Rg=7-1g & Is.

The exterior power operations on representations equip R with the structure of a
special A-ring (cf. [Sei]). As such Rg carries the so called y-filtration

Reg=Rgo21l¢=Rg12RG22--2Rg; 2
Lemma 3.6. i. The map DET induces an isomorphism

G™ = Homg, (Rg/(Z - 1g ® Rg,2). ptp~) = Homg, (IG/Rg 2. p=)
where [Lpoo denotes the group of all roots of unity of p-power order.

ii. im(p —¢?) S (p—DZ- 16 & Rg,2.

Proof. 1. If [V] € Rg is the class of an arbitrary representation V, m := dimg V,

and det(V) denotes the maximal exterior power of V (which is a character of G™)
then [At], Lemma (12.7), implies that

[V]—m-1lg = [det(V)] — 1g mod Rg.
This shows that the natural map
IGab/RGab’z — IG/RG,Z

is surjective and reduces us (o the case that the group G = G is abelian. In this case
we have Rg o = 1 é by [Afi], Corollary (12.4). The representation ring R g becomes
the integral group ring Z[@] of the character group Gof G. If I(G) € Z[@] denotes
the usual augmentation ideal then it 1s well known that the map

G — I(G)/1(G)?,
x—x—1 —|—I(§)2,

is an isomorphism (cf. [Neu], p. 48/49).
ii. Wehave ¥ 1g = 1l and, by the second lemma in [Seil, (p—¢¥?)Ig € Rg 2.
O
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Using Remark 3.5 and Lemma 3.6 we conclude that

DET(i1p—1 x G*) = Homg, (Rg/((p — )Z - 1 & Rg2).Z))
= pp—1 X Homg, (Ig/Rg.2. Z;)

4. Unipotent compact p-adic Lie groups

We fix an integer d > 2. Inside the group GL;({};) we consider the Borel subgroup
B of lower triangular matrices. It satisfies B = TN with T the diagonal matrices
and N the unipotent radical of B. The unipotent compact p-adic Lie group which
we will study in this section 1s

G := N NGLy(Z,).

Let us recall right away the basic structural features of this group which will be used
at several subsequent places. Forany d > i > j > 1 and any a € 7Z, we introduce,
as usual, the matrix ;; (a) with ones on the diagonal, the entry @ where the 7th row
and jth column intersect, and zeroes elsewhere. We also abbreviate E;; := E;;(1).
Then:

Eij(a)Eij(b) = Eij(a +b) ; (17)

in particular, the matrix £;; is a topological generator of the “integral” root subgroup
Gij :=1{Eij(a) 1 a € Zp} = Z,. The basic commutation relations are:

[Eij(a), Ex(D)] =1 ifi #1and j #k,
|Eij(a), Eji(b)] = Ei(ab), (18)
[Eij(a), Exi(D)] = E;(—ab);

in particular, E;;(a) is an (i — j — 1)-fold iterated commutator. If ¢® = G,
G = |G, G V] denotes the descending central series of G then the above
relations imply the following list of properties:

(a) G = [ i=m Gij (set theoretically, and for any fixed total ordering of the
roots (i, j); in particular, G¥=1 = {1}.

(b) The matrices Ep+2.1, Em+3.2..... Eg d—@n+1) generate G topologically.

(c) GV /G s the center of G/ G,

Proposition 4.1. SK(Zp[|G(p")]) = 0 where G(p") denotes, for any n > 1, the
image of G in GL4(Z [/ p" 7).

Proof. We fix n and write G := G(p"). More generally, we let £;; and G ™ denote
the image of £;; and G respectively, in G. The commutation relations and their
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consequences recalled at the beginning of this section remain valid for these images
in G. In particular, G is the descending central series of G, and we have the central
extensions

1 — GV 5 G/G™ — GG — 1.
For each m there is the exact sequence (cf. [Oli], Theorem 8.2)
GG @ GGV s Hy(G /G, 7)
s Hy (GG, 7) 2l GO G,
We see, 1n particular, that the image of the natural map
Hy(G,7) — Hy(G/G™,7),

for m > 0, lies in the kernel of §,,,. In order to re_call the definition of the map y,,, we
choose a free presentation 1 - R — F — G/G™ — 1 and use Hopf’s formula

Hy(G/G™ 7) = (RN [F, F))/|F, R].

Then
ym(gGY @ hGW) := [3.h] mod [F, R]

where, quite generally, we let § € F denote any lift of g € G /G, Following [Oli]
we let H;b(@, 7) denote the sum of the images of the natural maps H,(H,7) —
H,(G, 7)) where H runs over all abelian subgroups of G. In fact, in terms of Hopf’s
formula the subgroup H*(G/ G 7) is generated by all

gG™ ARG :=[g.h] mod [F,R]

where gG) hG™) run over all pairs of commuting elements in G/G™) . The
restriction of &, to H2(G/ G Z) then can be explicitly described by

8 (G ARG = [¢GMFD pGHD),

We also see that the image of y,, is contained in H2*(G/ G, 7) which makes it
possible to compute the composite 8, o ), as

O © Ym - (_}(m—l)/(_;(m) ® (_;/(_;(1) S (_;(m)/(_;(m+1)’
g(_}(m) ® h(_;(l) s [g(_;(m+1)’ h(_}(m"'l)],

For all of this see [Oli], p. 187. We combine this information into one commutative
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diagram
Gon=1) G m

8m—1

— = s
H3"(G,Z) — ket(8m—1) — H2(G/G" 1 Z)

T_

B b Sin _ _
HS'”(G, Z) — ker(8,,) —_ H>(G/G"™ 7)) ———— g guntDh

i T=

ker(8,n © Ym) L= Gm—1Gm & GGV I Gom) G om+1)

whose two middle columns are exact. We claim that the two arrows emanating from
the left most term Hi*(G, Z) for any m > 1 are surjective. Let us first suppose that
this indeed is the case. For m = d — 1 we then obtain the equality

H®G.7) = Hy(G, 7).
But according to Theorem 8.7 of [Oli] there always 1s an isomorphism
SK1(Zp|G)) = Hx(G,2)/H™G, 2).

Hence the assertion of the present proposition follows. To check the claimed surjec-
tivity it suffices, by induction with respect to m, to show that

Y (ker(@m © ym)) € Im(H3°(G, 7Z) — H(G/G™, 7).

We know from the property (b) in the list at the beginning of this section that
G0 /G & G/GD is the free Z / p" Z-module generated by

E_m+j,ié(m) R Ek+1,k(_;(1) forl<i<d-mandl <k <d—1.

By the commutation relation (18) the image under §,, o y;, of this generator is equal
Lo

Empiic1GUD ifi =k 41,
—Em+i+1,i(_}(m+1) itm+i =k,

0 otherwise.

It follows that the kernel of 8, o yy, is the free Z/p"Z-module generated by the
elements

Emtit1it1G™ @ Eiy1,GV 4+ EppiiG™ @ Epyiv1mei GV
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forl <i<d-m-—1,and
EntiiG™ @ Epp1 1 GV

forl <i<d-ml<k<d-landk#i—-1m+4i.

In the latter case Em+j1j and Ek+1,k commute in G so that Em“,l-(_}(m) A
Ery1..G™ € H®(G/GY™,7) obviously lifts to H3*(G, 7). To deal with the
former elements we fixal <i <d —m — 1 and abbreviate

Ai=FEptiv1i+1, B =Eiv1i, C:=Epyi;, and D= Epyitimti.

We need to show that AG™ A BGU™ 4+ C G A DGO lifts to H(G, 7). First
of all we note that in the case m = 1 this element actually is equal to zero so that
there is nothing to prove. We therefore assume in the following that m > 1. We have

E = Eptivri =[A. B =[C.D]" e G

and

[4,C| =[A,D]|=|[B,C|=|B,D|=|E. Al =|E,B|=|E.C]|=|E,D|=1.
From this one easily derives that
[A,BD|=E, [C.BD]|=E"' [AC,BD|=1.

The operation A being bi-additive as long as all terms in the respective identities are
defined we compute

ACG™ A BDG™
= AG™ A BDG™ + C A BDG™
= AG'™ 5 BEY 4 AGY  JEYD 4. BGYE 5 BEY 4 G 5 G

and hence

AG™ A BG™ 4+ CG™ A DG™
= ACG™ A BDG™ — AG™ A DG — CG™ A BG™ .

In all three summands on the right-hand side the two group elements already commute
in G. It follows that the right-hand side lifts to H2(G, 7). L

Corollary 4.2. The group G satisfies the hypothesis (SK).
— | n
Proof. We have G = l(inn G(p"). O

Added in proof. Meanwhile we have obtained more general results concerning the
vanishing of SK;(A(G)) in [SV].
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