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Abstract. We complete the Classification by Kodaira dimension of the moduli Space of degree

g line bundles over curves of genus g, for all genera.
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A well-established principle of Mumford asserts that all moduli Spaces of curves of
genus g > 2 (with or without marked points), are varieties of general type, except
a finite number of cases occurring for relatively small genus, when these varieties
tend to be unirational, or at least uniruled, see [HM], [EH1], [FL], [Log], [V] for
illustrations of this fact. In all known cases, the transition from uniruledness to being
of general type is quite sudden. The aim of this paper is to determine the Kodaira
dimension of the universal Jacobian of degree g over <Afg for any genus g, in particular
to highlight the surprising transition cases g 10,11.

Let Cg^ := «Mg,«/©« be the universal Symmetrie produet of degree Since
the fibre of the projection map </9: Cg^ -> JMg over a smooth curve [C] e JMg is

birational to the w-th Symmetrie produet C„, it follows trivially that Ug^ is uniruled
when n > g. The global Abel-Jacobi map

* ^3iCg>

establishes a birational isomorphism between Cg,g and (a compactification of) the

degree g universal Picard variety ofg: ^3icJ -> JMg. For a smooth curve C of

genus g, the map </9~* ([C]) -> Pic^~* (C) factors through Cg: the Abel-Jacobi map
Cg -> Pic^(C) is the blow-up of Pic^(C) along the Fitting ideal corresponding to
the subscheme (C), whereas ^>~*([C]) -> Cg is an iterated blow-up along the

diagonals. Thus, we may regard Cg,g as a global blow-up of $ßic|. Applying the

additivity of Kodaira dimensions for abelian fibrations [U] to the fibre space ofg, we
obtain that /c(^ßicJ) 3g — 3 whenever jVfg is of general type. It is natural to

wonder whether the equality /c($ßic|) /c(jMg) holds for every g. We answer this
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question in the negative. Our most picturesque result, concerns the transition cases

in the birational Classification of universal Jacobians:

Theorem 0.1. 77zc wmvcrsaZ /accfeZan ^Hc}q Zs a vanc/y c/KcdaZra JZracnsZcn zcrc.
77zc KcdaZra JZracnsZcn 0/ ^3ic}} cgwaZs 19.

It is well-known that both eA^io and eA^n are unirational varieties, see [AC2] and

[CR] respectively. We note that when g < 11, these are the only cases when has

non-negative Kodaira dimension. Using the existence of certain MwfazZ racdcZs of the
moduli space of curves of genus g < 10, it easily follows that ^3icJ is unirational for
g < 9. In fact more can be said:

Theorem 0.2. 77zc modwZZ space Zs wraraft'önaZ /er aZZ g < 10 amZ a < g.
Fwr^crmcrc, Zs wrarwZed/ör aZZ a / 10; spacc Zs wra'rwZed/ör aZZ

a 7^ 11.

For higher g, we show that is of the maximal Kodaira dimension it could
possibly have, in view of Iitaka's eayy addZft'on inequality for fibre Spaces

< dim(J^) + /e(<p-i([CD) 3g - 3.

Theorem 0.3. Fbr g > 11, ^Zze KcJaZra JZmensZcn <9/ ^3icJ Zs cgwaZ 3g — 3.

Theorems 0.1, 0.2, 0.3 highlight the fact that ^3icJ does not capture the intri-

cate transition of JMg from uniruledness to general type that occurs in the ränge
17 < g < 21.

We describe the main steps in the proof of Theorems 0.1, 0.2 and 0.3. A key role
is played by the effective divisor

:= {[C, xi,..., Xg] e : Ä°(C,0CC<ci H 1-*0) > 2}.

The class of the closure of £)g inside has been computed, see [Log], Theo-

rem 5.4, or [Fl], Theorem 4.6, for an alternative proof:

i=i i=o rc{i g} ^ '
The divisor £)g is ©g-invariant under the action permuting the marked points, thus

if TT: -> is the quotient map, there exists an effective divisor i)g e

Eff(Cg^) such that £)g 7r*(<0g). Note that £)g is an exceptional divisor of the
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rational Abel-Jacobi map ctg: t?g,g —> ^3icJ, and as such, it is uniruled and an

extremal point of Eff(Cg,g) *.

In Theorem 1.1, we prove that for g > 4 pluri-canonical forms on Cg,g,reg extend

to any desingularization of Cg,g. Thus in order to bound /c(t?g,g) from below, it
suffices to exhibit sufficiently many global sections of To that end, we choose

an effective divisor class Z) aA — Zz;<5; G Eff(AZg) of small slope

.v(D) :=

For composite g + 1, one can take Z) ^ to be the closure of the Brill-Noether
divisor of curves with a where p(g, r, <Z) g — (r + l)(g — <Z + r) —1; there
exists a constant £g,r,z > 0. such that [EH2],

+1 ^:= Cg,^^(g + 3)A-^—«o- XI *'(£-0<5i) £ Pic(AZg),
/=i

where the previous formula is used to define the class bttg proportional to czZZ Brill-
Noether divisors on AZg. In particular 6 + 12/(g + 1). By linear

interpolation, we find an effective divisor £ on t?g,g supported along <Z)g, <p*(Z)) and
the boundary of Cg,g, such that

(l4-2*(D))p*(A) + £.

Whenever s(Z)) < 7 (and such a divisor Z) C AZg can be chosen exactly when

g > 12, see [FV1], Theorem 6.1, for the particularly difficult case g 12), the

following inequality holds:

/c(^) > k(^,(14-2*(D)V(A)) /c(^,A) 3g - 3.

Since the opposite inequality is immediate, this proves Theorem 0.3. We summarize

this discussion by linking t?g,g to the slope s(eAZg) := inf{s(Z)) : Z) e Eff (AZg)} of
the moduli space of curves.

Proposition 0.4. Avswrae tf(eAZg) < 7/or cz g/vezz gezzzzs g. TTzezz /c(t?g,g) 3g — 3.

This highlights that the birational geometry of t?g,g is governed by a linear series

on AZg of slope 7, rather than the canonical linear series, for whichs) 13/2.

We discuss some of the cases g < 11. When 7<g< 9, there exists a birational
contraction of <Z)g under a birational map

/g : AZg,g >

' We recall that if / : X —> F isa birational contraction between Q-factorial normal projective varieties,
the irreducible components of the exceptional locus of / give rise to edges of JVi? * (^0- In the case of the

divisor Z)^ we shall also prove this assertion directly using the geometry of see Proposition 1.2.
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where is a GIT model of <Mg,g emerging from Mukai's constructions of canon-
ical curves as sections of homogeneous varieties [Ml], [M3], [M4]. In genus 11, we
prove a stronger result, concerning the birational type of both and its covering

Theorem 0.5. One Aas /c(jMh,h) /c(t?ii,ii) 19.

Note that dim(eA^n^n) 41, and ^n,n is the first example of a moduli space
with g > 2, having intermediate Kodaira dimension. It is known [Log] that

eA^n^ is uniruled for tz < 10 and of general type for tz > 12. To interpret such

results, for a genus g > 2 we dehne the invariant

£(g) := min{« e Z>o : K(«Ä<g,«) > 0}.

We think of £(g) as measuring the cöm/?Zex/fy of the general curve of genus g. It
is known that the relative dualizing sheaf of the forgetful map «Mg,« -> is

big, see for instance [CHM], p. 19, thus it follows that «Mg,« is of general type for
> £(&")• Then results in [HM], [EH2], [F2] imply that £(g) 0, for g > 22.

From [FP], Proposition 7.5, one obtains the value £(10) 10, whereas Theorem 0.5

implies that £(11) 11. This indicates, in precise terms, that counter-intuitively,
algebraic curves of genus 10 are more complicated than curves of genus 11!

We make a few comments on Theorem 0.5. We note that AT ,7 is an effective
_ ^11,11 _

combination of the pull-back to ^11,11 of the 6-gonal divisor ^ on JMn, the

divisor ©n, and certain boundary classes <5/;g. Then we construct (cf. Proposi-
tion 1.4), rational curves C ^11,11 passing through a general point of ©n, such

that (i) — • <©11 >0 equals precisely the multiplicity of <©11 in the above mentioned
expression of and (ii) is disjoint from all boundary divisors A/;^. There-

fore, /7©n is a hxed component of the pluri-canonical linear series ^ ^
| for

all > 1. The equality /c(jMii,n) 19 is related to the Mukai hbration

#11: ^11,11 —> ©11,

over the 19-dimensional moduli space 1 of polarized K3 surfaces of degree 20. The

mapgn associates to a general dement [C, vi,..., xn] e ^11,11 theuniqueK3 sur-
face iS containing C, see [M2]. According to Mukai, is precisely the Fourier-Mukai
dual K3 surface to the non-abelian Brill-Noether locus corresponding to semistable

vector bundles of rank 2

S* SKc(2,A:c,7) := {£ e SKc(2,ä:c) : A°(C,£) > 7}.

An analysis of the hbration shows that the difference — ©n is essen-

tially the pull-back of an ample class on ©n. Eventually, this leads to the equality
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K"(y^n,n) /c(jKh, bttn) 19, where the last symbol Stands for the Iitaka dimen-
sion of the linear System generated by the Brill-Noether divisors g and eA^ 9

on jMii.
In the final section of this paper we study the uniruledness of «Mg,« when g < 9.

Theorem 0.6. 77z£ space <A^g,« Zs wmrwZecZ/or n < /(g), tvZiere /(g) Zs g/ven zn £Zi£

g 5 7 8 9 10

/Gr) 13 13 12 10 9

Mg) 15 15 14 13 11

New here is the Statement regarding the uniruledness of JMg^- For the sake of
comparison, we have copied from [Log] and [Fl], Theorem 1.10, the bound A(g), for
which eA^g^ is known to be of general type when /i > Zz(g). We note that moreover,
^(^7,14) > 2, thus £(7) 14. Nothing appears to be known about the Kodaira
dimension of ^5,14 and ^8,13, which are the missing cases from the Classification,
when g < 8. The case g 6, where a complete Solution is known, cf. [Log], [CF],
is omitted from the table.

In order to prove Theorem 0.6, it suffices to establish that is not pseudo-
effective and then use [BDPP] (see also [L], Section 11.4.C, for a transparent pre-
sentation), to conclude that «Mg,« is uniruled. The non-effectiveness of K^ ^

is

established by exhibiting one or ftvo otreraaZ wmrwZecZ divisors on JMg^, satisfying
certain numerical properties, see Proposition 5.2.

We close the introduction by pointing out that, shortly after this paper was pub-
lished on arXiv, the paper [BFV] by Bini, Fontanari and Viviani appeared, where the
Kodaira dimension of Caporaso's [C] compactification P^g of the universal Picard

variety ^3iCg is determined for all g > 4 and degrees cZ such that

gcd(J + g- 1,2g-2) 1.

In the case cZ g, the result from [BFV] overlaps with our Theorem 0.3. Their
methods are however quite different from ours. The difference lies in that Ovo

birational models are used to compactify the universal Jacobian. These models are
related via the birational Abel-Jacobi map ctg: t?g,g —> which is a blow-

up of a codimension 2 locus in Pg,g and has <©g as its exceptional divisor. This
also explains the discrepancy between the canonical classes and (cf.
[BFV], Theorem 1.4) respectively. In view of [BFV], we would also like to point
out the existence of our earlier preprint [FV2]. In the second half of [FV2] (which
will not be published having been incorporated in Sections 3-5 of this paper), the
birational Classification of ^3ic^ for g < 11 is carried out to a very large extent. In
particular, the intermediate case g 11 and the connection to the Mukai fibration

#n : ^11,11 —> 3qi, appears already in [FV2], Theorem 0.3.
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1. An extremal effective divisor on «Mg,g

We begin by setting notation and terminology. If M is a Deligne-Mumford Stack we
denote by «M its associated coarse moduli space. Whenever we refer to the Picard

group of one of the moduli Spaces «M £ {«Mg,«, Xg,«}, to keep things simple we
denote Pic(«M) := Pic(«M)Q P1c(M)q for the rational Picard group. This allows
us to make no distinction between divisor classes on the Stack and the associated

coarse moduli space.
Let Ibea complex Q-factorial variety. A Q-Weil divisor Z) on X is said to be

ramvzWe if codim(p|^ Bs|mZ)|, X) > 2, where the intersection is taken over all m
which are sufficiently large and divisible. We say that Z) is ng/<Z if |m D | {m Z)}, for
all m > 1 such that mZ) is an integral Cartier divisor. The Xoda/ra-Z/taAa d/rams/on
of a divisor Z) on X is denotedby/c(X, Z)). Asusual, we set/c(X) := /c(X, Xy). We

say that a curve T C Xisa C6>ven>ig cwry^fora divisor Z) C X, when T deforms in
a family of 1-cycles such that Uzer r, ß.

We recall the notation for boundary divisor classes on the moduli space «Mg,«, cf.
[AC1]. For an integer 0 < i < [g/2] and a set of labels T c {1,we denote

by the closure in «Mg,« of the locus of w-pointed curves [Ci U C2, *i,..., x«],
where Ci and C2 are smooth curves of genera i and g — i respectively, and the
marked points lying on Ci are precisely those labeled by 7\ As usual, we dehne

:= [A,:r] e Pic(^,„). ForO < z < [g/2] andO < c < g, we set

^ •— [^z:c]q ^ Pic(«Mg,«).

#(r)=c

By Convention, <5o:c := 0, for c < 2. If 0: «Mg,« -> «Mg is the morphism forgetting
the marked points, we set A := </>*(A) £ Pic(«Mg,«) and<5irr := 0*(<$irr) £ Pic(«Mg,«),
where <5^ := [Ain-] g Pic(«Mg) denotes the class of the locus of irreducible nodal

curves. Furthermore, 1//« £ Pic(«Mg,«) are the cotangent classes correspond-
ing to the marked points. The canonical class of «Mg,« can be computed by using
Grothendieck-Riemann-Roch for the universal curve over «Mg,«:

13A - 2V + £ ^ - 2 £ «,-:r - «1:0. (1)
z l reo «}

/ >0

On the universal Symmetrie produet Cg,«, we denote by A, <5in-, <5/:c •= [A,;^] G

Pic(Xg,«) the divisor classes corresponding to the same symbols on «Mg,«. The

general point from the Aq:2 corresponds to a marked curve with automorphism group
isomorphic to Z/2Z, therefore <5o:2 [AqUq [Aq,2]/2. Let tt: «Mg,« -> Xg,«
and </9: Xg,« -> «Mg be the quotient and forgetful maps respectively, thus 0 </9 o tt.
Clearly, tt*(A) A, 7T*(<$irr) <5in-, 7T*(<5;:U where the last formula, in the
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case i 0, c 2, takes into account the branching of the map tt along the divisor
Ao:2 C

_
We introduce the tautological line bündle L on Cg,w, having fibre

L[C, xi + • • • + x„] 7^ (C) 0 • • • 0 7^ (C),

over a point [C, xi + • • • + x„] := tt([C, xi, x„]) g Cg^. We set ^ := ci(L),
and let tt; : <Mg,« -> <Mg,i be the morphism forgetting all expect the i-th marked

point. Then

7r*(f) E^^) E(^- E *o:r)
» l i l ierc{l,^77 77

— ^ ] Vfi' ~~ ^ ^ ^0:c ^ Pic(eA^g^).
7 1 c=2

From the Riemann-Hurwitz formula + ^0:2 applied to the

quotient map tt, after observing that the pull-back map tt* : Pic(Gg^) -> Pic(eAfg^)
is injeetive, we obtain the formula:

77

7^ 13Ä-2^ + f-2 £ Ä/:c-3Äi:o-äo:2 + J3(c-2)Äo:c e Pic(^,„).
/ > 1 ,c>() c 3

(/°,c)#(l ,0)

(3)

In order to obtain lower bounds on the Kodaira dimension of Cg^, we need

to eontrol its singularities. We fix a point [C,xi + ••• + x„] G Cg^, and de-

note by Def(C,xi,... x„) the versal deformation space of the w-pointed curve
(C, xi,..., x„), viewed as an open neighborhood of the origin in the tangent space
to the moduli Stack 7[c,jci,...,jc„](Mg^) Ext* (£2^, 0c (—*i *77))- We set

Aut(C,x) := {a e Aut(C) : ct({xi, ,x„}) {xi,... ,x„}}.

An analytic neighbourhood of [C, xi + • • • + x^] G Gg^ is isomorphic to the space

Def(C,xi,..., x„)/Aut(C, x) C 7/®(C, tue ® £2c(*i + *" + x„))^/Aut(C,x),

where the last identification uses Serre duality. To describe the action of Aut(C, x)
on the tangent space of the moduli Stack, we recall the concept of age.

Let (L, p) be a finite dimensional complex representation of a finite group G. If the

eigenvalues of p(g) g GL(L) are exp(2jrir/), where 0 < r; < 1 for i 1,...,
then following [R], we define of the dement g G G as

age(g) := ri + ••• + TV.
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According to the Pe/d-Pa/ cntenon, the singularities of L/ G are canonical, if and

only if for each element g G G which does not act as a quasi-reflection, the inequality
age(g) > 1 holds, cf. [HM], p. 27. Next we show that the singularities of are

no worse that those of <Mg. In particular, one can bound the Kodaira dimension of
by bounding the number of global sections of ^.

Theorem 1.1. P/x mtegers g > 4 and «,/ > 0, ane? Z^e 6: t?g^ -> t?g^ Z?£ any
r^soZnzfon o/ .s/ngnZe/nYzPs. PZzen / -cemomce/Z /orm.s o/Cg^^eg <?xteneZ, z7re/e Zs,

are growp ZsoraorpZzZsras

*. 71/ 0 /<yO ^<8>/ \ ^ /L/ 0 \6 /7 (^Gg ^ j-gg, Ä- J > F/ ^Cg „, A~ J.

Proe>/ Let us choose a point [C,xi + ••• + x„] G t?g^ which violates the

Reid-Tai criterion, that is, there exists an automorphism er G Aut(C, x) which per-
mutes the points xi,..., x^, such that with respect to the action of er on the space

//^(C, &>c (g) £2^ (xi + • • • + x^)), we have that age(cr) < 1. If {C«}« are the nor-
malizations of the components of C and {p«ß}ß are the points on C« whose images
in C are either nodes of C or marked points xi,..., x„, we recall that there exists an

exaet sequence:

0- © Tor^ -> //^(C,a>c (8) £2^(xi + + x„))
/>eSing(C)

(4)

whereTor^ C //^(C,a>c ®£2c(xi H bx„)) is the 1-dimensional space oftorsion
differentials based at /? G Sing(C). It is proved in [HM], p. 34, that Tor^ contributes
at least l/ord(a) to age(cr), for each node /? G Sing(C). We distinguish two cases:

(i) er acts non-trivially only on £x<re/?eZonaZ P of C, which are smooth
rational curves such that #(P D (C — P)) < 2. In other words, er induces the trivial
automorphism on the stable model of C. Let P be an exceptional component, and

for simplicity we assume that P meets the rest of C at only one point. We set

{/?} := P fl C and denote by P C P — {/?} the marked points lying on P. Since
er g Aut(P) has finite order, say /, one finds that er has precisely two fixed points
/? 0, oo G P, and that er (z) £ • z, where £ 7^ 1 is an / -th root of unity. The points
in P — {00} can be grouped in orbits of / elements, and an immediate calculation
shows that the contribution to age(cr) Coming from //^(P, &>f^(p + P)) is at least

(/ — 1)/ / + (*~^). Since as mentioned above, there is a further contribution to age(cr) of
at least 1/Z, Coming from Tor^ (&>c (g)£2^(xi H bx^)), itfollows that age(cr) > 1,

and this case corresponds to a canonical singularity. The case #(P D (C — P)) 2

is analogous, also leading to a canonical singularity.
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(ii) There exists a of C on which er acts non-trivially.
Since age(crc) (with respect to the action on //^(C,o;c ® £2^)) cannot exceed

age(cr) < 1, the analysis from [HM], pp. 34-40, shows that in this case C Ci U £,
Ci fl £ {/?}, where Ci is a smooth curve of genus g — 1 and i? is an elliptic curve.
Moreover o*Ci Idci, ^nd one distinguishes between the cases when ord(a^)
2,4,6. If at least one of the points x; lies on an immediate calculation shows

that age(cr) > 1, thus this case too corresponds to a canonical singularity. When

{xi,..., x„} C Ci — {/?}, then if Z7 C JMg is the analytic neighbourhood of [Ci £]
constructed in [HM], p. 41-43, any pluri-canonical form defined on Cg,w,reg extends

over </9~* (£/). This completes the proof.

We turn to the study of the divisor £)g C Cg,g defined as the closure of the locus
of points [C, xi H b Xg] G Cg,g moving in a pencil. First we note that its class is

given by

—X + T/r —
^ (?)^^ ^ ^

i>l,c>0 ^ ' c=2 ^ '
We construct rational curves £ C Cg,g sweeping-out the divisor £)g! We fix a

curve [C] g JKg, a complete base point free pencil A g ^(C), and defined c Cg,g
as being the closure in moduli of the locus

{[C,xi + • • • + Xg] G t?g,g : A®(C, A(—xi Xg)) > 1} c Cg,g.

Proposition 1.2. One Zins £ • t/t 2g — 2, £ • <5o:2 2g — 1, wZzerens £ Zins

/ntersect/on nnrafeer 0 wzYA nZZ reran/n/ng Standard generatars 0/ Pic(Cg^g). 7^/oZZenvs

dzta £ • £ • £)g — 1. /f/oZZows dzta £)g Zs an extaeraaZ non-raovaZ?Ze dZvZsor

Proa/ Let £ C Cg, be the image of £ under the blow-up map ([C]) -> Cg of the

diagonals. Then, using e.g. [K], Proposition 2.6, we have that £ • ä'q —1. On the

other side, £ • ^ £ • t/t — £ • <5o:2 (one may assume that A g IT* (C)
has only simple ramification points, hence £ • <5o:c 0 for c > 3). Furthermore,
£ • ^o:2 equals the half of the number of ramification points of A, that is, 2g — 1, and

the rest is immediate.

As explained in the Introduction, for g > 12 the estimate s(eMg) < 7 holds, and

from (5) one finds that

^
^ Q>o(^> {^/:c}(/,c)^(0,2)> ^ Eff(eA^g)j. (6)

Coupled with Theorem 1.1, this implies that /c(t?g,g) 3g — 3. Furthermore, we
note that <©g appears with multiplicity 1 in the stable base locus of
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Proposition 1.3. g >11. TZzen | ft£)g + — ft£)g |, /or aZZ

« > 1.

Proo/ The coefficient of i)g in the expression (6) is equal to 1. Since £ C i)g is a

covering curve, such that £ • £ • £)g — 1, whereas £ has intersection number
zero with the remaining classes appearing in (6), the conclusion follows.

We are thus left with the study of <Z)g := 7r*(<0g) C eMg,g, in the ränge g < 11.

Proposition 1.4. Zw 3 < g < 11, ZrraiwcZWe JZvZsor <Z)g Zs^ZZZed wp Zry ra/ZonaZ

cwrves Z? C <zMg,g swcZz ^Zzotf Z? • <Z)g < 0. Z^/oZZmvs ^Zzotf <Z)g G Eff(yMg,g) Zs an
ex/reraaZ rZgZ<Z wZzen g ^ 10, one can awwme ^Zzotf Z? • <5;^ 0

/or ßZZ Z > 0 an<Z T C {1,..., g}.

ZVoo/ We first treat the case g ^ 10, and Start with a general point [C, xi,..., Xg] e

£)g. We assume that the points xi,..., Xg G C are distinct and that

A°(C,tfc(-*i **)) 1.

Let us consider the (g — 2)-dimensional linear space

A := <jci JC^> CP(//"(C^cD P^-
Since 0(£)g) JMg, wemay assume that [C] g JKg is a general curve. In particular,

|0s(C)l
C lies on a K3 surface S < > P% which admits the canonical curve C as

a hyperplane section, cf. [Ml]. We intersect *S with the pencil of hyperplanes
{Z/a (P^)^}agpi such that A C Z/a. Since (i) the locus ofhyperplanes// G (P^)^
such that the intersection S D // is not nodal has codimension 2 in (P^)\ and (ii)
the pencil {Z/aIagpi can be viewed as a general pencil of hyperplanes containing
P(//^(C, Zfc)^) as a member, we may assume that all the curves //a H S are nodal
and that the nodes stay away from the fixed points xi,..., Xg. In this way we obtain
a family in <Mg,g

:= {[Ca := #a n 5, xi,...,**] :Ac//i,le P*},

inducing a fibration /: £ : Bl2g-2(£) -> P\ obtained by blowing-up the base

points of the pencil, together with g sections given by the exceptional divisors Z?^- C
iS corresponding to the base points xi,..., Xg. The numerical parameters of Z? are

computed using, for instance, [FP], Section 2. Precisely, one writes that

Ä-A (0.(Ä)-A)£ g + 1, (<M*Hirr)^ 6g + 18, 0,

(7)
for Z > 0 and T C {1,..., g}. Finally, from the adjunction formula, Z? • 1//7

—(Z^.)g 1 for 1 < Z < g. Thus, Z? • <Z)g —1. Since Z? is a covering curve for
the divisor £)g, it follows that <Z)g is a rigid divisor on <Mg,g.
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We turn to the case g 10, when the previous argument breaks down because the

generalcurve[C] g <MionolongerliesonaK3surface,see[Ml],Theorem0.7. More
generally, we fix a genus g < 11, g 7^ 9 and pick a general point [C, xi,..., Xg] g
£)g. We denote by X := C/y the nodal curve obtained from C by identifying x/ and

xy, where 1 < i < 7 < g. Since [X] g Aq C eAfg+i is a general 1-nodal curve of
genus g + 1, using e.g. [FKPS], there exists a smooth K3 surface containing X.
We denote by v : C -> X c the normalization map and set v(x/) v(xy) /?.
The linear System |0g(X)| embeds in P^+* and v*(0g(X)) £c(+i + +/)•
Let g : := Bl^(iS) -> S be the blow-up of S at /? and £ C 5" the exceptional
divisor. Note that C viewed as an embedded curve in 5" belongs to the linear System

|e*(9s(l)®0,s/(—2£)| andC£ x,+x/. LetZ c 5"thereduced0-dimensional
scheme consisting of marked points of C with support {x;, xy

Since A®(C, 0c (+i + • • • + •%)) 2, we find that Z together with the tangent
plane Ty?(Z) T^(5) span a (g — l)-dimensional linear space A C P^+*. We
obtain a 1-dimensional family in £)g by taking the normalization of the intersection

curves on S with hyperplanes // G (p^+*)v passing through A. Equivalently, we
note that

Ä°(S', Jz/S'(C)) A°(S',Os0 + A°(C, *c(-*t **)) 2,

thatis, | Jz/S'(C) | isapencilof curves onS". We denote by c: S := Bl2g-4(S") -> 5"
the blow-up of 5" at the — 2£)^ 2g — 4 base points of |Iz/S'(C)l> by

/: iS -> P* the induced fibration with (g — 2) sections corresponding to the points of
Z, as well as with a 2-section given by the divisor £ := £"*(£). Since deg(/^) 2,

there are precisely two fibres of /, say Ci and C2, which are tangent to £. We make

a base change or order 2 via the morphism /# : £ -> P\ and consider the fibration

0': r' := 5 Xpi £ -> £.

Thus /?: 7' -> iS is the double cover branched along Ci + C2. Clearly g' admits two
sections £1, £2 C Z' such that /?*(£) £1 + £2 and £1 • £2 2. By direct calcu-
lation, it follows that £j* £f — 3. To separate the sections £1 and £2, we blow-

up the two points of intersection £1 D £2 and we denote by <7: 7 := Bl2(7') -> £
the resulting fibration, which possesses everywhere distinct sections oy : £ —> 7' for
1 < i < g, given by the proper transforms of £1 and £2 as well as the proper trans-
forms of the exceptional divisors corresponding to the points in Z. The numerical
characters of the family T/y := or(0> • • • >^g(0] : ^ £ £} C eMg,g are

computed as follows:

r,y - A 2(g + 1), r,y -5irr 2(6g + 17), 2 for / G {/. / C-

T/y • Vi T/y • V/ ~ +2 5,

r,y -Äo:{/j} 2, for / > 0, £ C {£ y }Z
T,y • Vr 0
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We take the ©g-orbit of the 1-cycle T/y with respect to permuting the marked points,

r := —-—- V* r,-,- e

and note that T • £)g — 1. Each component T/y fills-up £)g, which finishes the

proof.

We keep all the notation from the proof of Proposition 1.4 and set Z? :=
and T := jr*(r) e ZViii(Gg,g). Note that T 7r*(r/y)/2 for all 1 < / < 7 < g.

Corollary 1.5. Z/iters^c/Zo// /VZe/iftY/es 0/1 Gg^g Z/oZd /rwe:

iGA g + 1, ^-^irr 6g + 18, g and 0 /or aZZ pa/rs (Z,c),

f-Ä g + l, f • <5jrr 6g + 17, F-^ g + l* 1- Zor C/.c) # (0.2).
anj r • ^o:2 i, r • o

/^/oZZows
^

2g — 23 and T •

^
2g — 21.

2. The Mukai model of «A{g,g

Having showed that the divisor £)g e Eff(yFg,g) is extremal when g < 11, our next
aim is to construct a "modular" birational contraction of <Afg,g, such that £)g appears

among its exceptional divisors. We achieve this goal for 7 £ g 5 9, using Mukai's
fundamental work on Classification of Fano varieties. We recall that for 6 < g £ 9,

there existsa/ig-dimensional Fano variety Fg C of index /ig— 2 and p(Fg) 1,

where ZVg := g + /ig — 2, such that general 1-dimensional complete intersections
of Fg are canonical curves [C] e JFg with general moduli. One has the following
table, see [Ml] or [M3], p. 256:

£ «*
6 5 9 Quadric section of G(2, 5)

7 10 15 Spinor variety 0G(5,10)
8 8 14 Grassmannian G(2,6)

9 6 13 Symplectic Grassmannian SG(3, 6)

The automorphism group Aut(Fg) acts in a natural way on the product F/ and we
choose the polarization := 0^(1) Kl • • • Kl 0^(1) £ Pic(F/). For 7 < g < 9,

we call the GIT-quotient

an*,* := (K/r(£)//Aut(^)
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the raodeZ of <Mg,g. For g 6, it is not clear that Aut(Fö) is a reductive group
and leave the question of the nature of 90^6,6 aside for further study (We are grateful
to the referee for pointing this issue out to us). When 9, there exists a

birational rational map

/g([C,jei,...,jeg]) := (jei,...,Xg) modAut(Kg).

The inverse map is givenby /g~*(*i> • • • > %) •= K*i> • • • > %) Fl Fg, xi,..., Xg]. It
is not hard to see that /g eontraets all boundary divisors A; ^, where Z > 1. The point
is that a stable curve with a disconnecting node cannot appear as a linear section of
Fg, that is, stable curves from the divisors A; C JFg where Z > 0, correspond to non-
nodal curvilinear sections of Fg. Accordingly, the locus of planes A e G(g, Ag + 1)
such that A D Fg is not an irreducible curve with at worst nodal singularities, has

codimension at least 2 in G(g, Ag + 1) (see also [FV1], Proposition 4.2). From

[Ml], [M4], it also follows that /g also blows-down the pull-back of the unique
Brill-Noether divisor on jFg when g ^ 4, 6 (respectively the Pe/rZ JZvZsor on JF4
and JFö). By comparing Picard numbers, the exceptional divisor Exc(/g) must
contain one extra component:

Proposition 2.1. For 7 < g < 9, ^Zze ra/fonoZ raorpZzZsra /g con/rocfa ^Zze JZvZsor

<©g.

Proo/ It suffices to note that /g blows-down the covering curves P C <£)g C «Mg,g

constructed in the course of proving Proposition 1.4.

We use the existence of the Mukai variety Fg, to establish Theorem 0.2.

Proo/q/TZzeorera 0.2. In the ränge 6 < g < 9,« < g, the unirationality of Gg^
follows from that of JFg^. Indeed, the parameter space

S := {((jci,...,jc„), A) e ^ X G(g,A^ + 1) : *,• G A, for / 1,...,«}

maps dominantly onto ^Fg,« via the map ((xi,..., x„), A) i-> [Fg D A, xi,..., x„].
Since S is a Grassmann bündle over the rational variety F^, the conclusion follows.

It is proved in [FP] that (thus Gg,„ as well), is uniruled for « < 10. Similarly,
jFio,« is uniruled for n < 9, cf. Zoe. cZt.

These results can be improved when g < 6 using plane models of minimal degree:

Proposition 2.2. Gg^ Zs wmra/fonoZ/or oZZ g < 6 omZ« > 0.

Proo/ One used the representation of the general curve [C] e JFg as a plane model

of degree tZ := [(2g + 8)/3] with 5 := ~~ £" nodes in general position, cf.
[AC2]. We describe the details for the case g tZ 6. We choose general points
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/?i,..., /?4 G and fix an integer / > 3 such that 6/ — 20 < < 6/ — 14. On the
normalization C of a curve T G |0p2(6)(—2 /?/)!> the complete linear series

ATc (/ — 3) is cut out by degree / curves passing through 774. We
define the incidence correspondence

t( :=

{(r, JT/, "") e |öp2(6)( - 2^P.-)| X |öp2(/)( " Z>)| x 0^)®'"®"" :

/ 1 / 1

r • A7 > 2(/7i + • • • + J94) + öl + • • • + Ö6/_8_„|.

We note that W is rational. The residuation map r : W — > "06,« defined by

4 6/—8—«

:= [C,ß], wherer-Z; =2^p,- + £ a,-+ D,
/ 1 / 1

and C -> T is the normalization map, is dominant. Thus is unirational.

3. The Kodaira dimension of <^11,11

On jMii there exist two divisors of Brill-Noether type consisting of curves with
special linear series, namely the closure of the locus of 6-gonal curves

:={[C]G^H:G«!(C)^0}
and the closure of the locus 9 := {[C] G jMh : G|(C) 7^ 0}. The divisors

g and 9 are irreducible, distinct, and their classes are proportional, cf.
[EH2]. Precisely, there are explicit constants ci 1,1,6- <^11,2,9 £ ^>0, such that

l-i 1-9Emu «A<n e «^11 9
<^*11,1,6

' ^-11,2,9

7A - 5o - 55i - 9^2 - 125s - 1454 - 155g e Pic(J*n).

By interpolating, we find the following explicit canonical divisor:

5 11

Akii.II =®ll+2-0*(fc*ll) + I]I>:^' (8)
/'=() c=0

where

+ c — 4 /|c —1| + 1\
ü?o:c for c > 2, ö?i;c 8 + j for c > 1,
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Similarly, at the level of the universal Symmetrie product Cn,n one has the relation

^ i)ll + 2 • p*(6tln) + Ä/:c. (9)

(i,c)#(0,2)

One already knows that multiples of <£>n are non-moving divisors on ^n,n.
We show that <£>n does not move in any multiple of the canonical linear System on

<Vn,n-

Proposition 3.1. Zw eac/z Znteger n > 1, one Zzas an /soraorpfera

/c(jKn4i) /c(yMii,n, <£)n). onKn^n, one

Zzas /c(Ci 141) /c(Ci 141, ^ — <©11).

Proo/ Using the notation and results from Proposition 1.4, we recall that we have

constructed a curve Z? C ^11,11 moving in a family which fills-up the divisor <©n,
such that Ä • £>11 —1 and Ä 0, for all / > 0 and 7" c {1,..., g}. All
points in Z? eorrespond to nodal curves lying on a fixed K3 surface *S, which by the

generality assumptions, can be chosen such that Pic(S) Z. Applying [Laz], all

underlying genus 11 curves corresponding to points in Z? satisfy the Brill-Noether
theorem, in particular Z? • 0*(bttn) 0, that is, Z? • Ä'^ Z? • £>n —1.

It follows that for any effective divisor Zi on eA^n^n such that Zi one

has that Z? • Zi —Moreover, the class Zi — /i£)n is still effective and then
/7<©n + ^

— /7<©n|. The proof in the case of Cn,n is

similar. One uses that 7r*(<©n) £>n, hence Z? • £>n Z? • <©n — 1, as well as

Z? • — 1. The rest of the argument is identical.

We are in a position to complete the proof of Theorem 0.5:

Theorem 3.2. We Zzave

*(«^11,11, 2-0*(E>mi) + 53^'* '^'4
z,c

^"(^11,11» 2 • <^*(fmn) + ö?z:c • <5/:c) 19.

(i,c)#(0,2)

/ZybZZöwv ^ZzöT Ä9(Zß/ra <Z/raens/e>n o/ZwZz cMn,n egwaZs 19.
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Proo/ To simplify the proof, we define a few divisors classes on n,n:
11

^ := 2-0*(E>nn) + ^ <5,:c
^ -Äi and X := <So:c,

z>0,c c=2

as well as, 7? := bttn + 4^3 + 7^4 + 8^5 G Pic(Jl7n).
We claim that for all integers n > 1, one has isomorphisms,

Indeed, we fix a set of labels T c {1,..., 11} such that #(T) > 2 and consider a

pencil

of (12 — #(r))-pointed curves of genus 11 on a general K3 surface 5, with marked

points being labeled by elements in 7^ as well by another label /?(0- The pencil
is induced by a fibration obtained from a Lefschetz pencil of genus 11 curves on S,
with regulär sections given by (12 — #(7)) of the exceptional divisors obtained by
blowing-up iS at the (2g — 2) base points of the pencil. To each element in this pencil,
we attach at the marked point labeled by /?(0> a fixed copy of P* together with fixed
marked points x; G P* — {00}, for i G 7\ The gluing identifies the point /?(£) G C*

with 00 G P^. If 7^ C eA^ 1141 denotes the resulting family, we compute

7^ • A g + 1, 7^ • 6(g + 3), 7^ • ~1
>

* 07 1 for i G 7^,

• 07 0 for * £ 7.

Moreover, 7^ is disjoint from all remaining boundary divisors of 11,11. One finds
that 7^ • 0*(bttn) 0. Thus for any effective divisor 7 C ^7n,n such that

7 /i A, we find that 7^ • 7 —

Since for all 7, the pencil 7^ fills-up the divisor Ao:r, we can deform the curves

7^ C Ao:7% to find that 7 — ^^2 ^o:c * <5o:c is still an effective class, that is,

11

Ml • Ao:c + M'|,
c=2

which proves the claim. Next, by direct calculation we observe that the class A' —

20* (7?) is effective. Zariski's Main Theorem gives that 0*0*0(5) 0^^ (5),
thus

> K(J<ii,ii,^*(fi)) k(.£II,Ä) 19.

The last equality comes from [FP], Proposition 6.2: The class 7? contains the pull-back
of an ample class under the Mukai map [M2]

#11 : ^11,11 —> Tn, [C,xi,..., xn] 1-^ [S D C, 0^(C)],
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to a compactification of the moduli space of polarized K3 surfaces of degree 20.

On the other hand, since 0*(<$/) <$/:$ for 1 < / < 5, there is a divisor class

on eA^n of type 2?' := 2 • bttn + J]f=i ^ Pievit), with fli > 0, such that
— zl' is an effective divisor. It follows that

k(<Vii,H, V) < /c(<Vn,n, </>*(£')) *(«£„, 5')-

If 7^11 C JKi i is the family corresponding to a Lefschetz pencil of curves of genus 11

on a fixed K3 surface, then i?n • 2?' 0. The pencil 2?n moves in a 11-dimensional

family inside JlZn which is contracted to a point by any linear series |fl2?'| on JlZn
with/i > 1 (in fact a general curve is zZ/v/ö/zzZ from the base locus of |fl2?'|). One
finds that /c(J^n, 2F) <19, which completes the proof. The case of Cn,n proceeds
with obvious modifications.

4. The Kodaira dimension of fio,io

The geometry of JlZ io is governed to a large extent by the divisor JCio of curves lying
on K3 surfaces. It is shown in [FP] that JCio is an irreducible divisor of class

JCio s= 7A - So - 5<5i - 9^ - I2S3 - 14^ - Ms e Pic(^io),

where £5 > 6. Furthermore, ^(Xio) 7 is the minimal slope of an effective
divisor on «Mio- The irreducible divisor JC10 is rigid. Indeed, if T^io C <26io is

the covering family obtained by blowing-up the base points of a pencil of curves of
genus 10 on a fixed K3 surface, then 2?io • TCm —1 (see [FP] Lemma 2.1). Since

^10 * 0 for 1 < i <5, this argument proves that any divisor Z) e Eff(jMio)
with s(©) ^(JCio), is rigid as well.

Comparing the expression of [JC10] with that of we obtain the formula

^^10 10 ^ 2 • («7C10) ^ (10)

0»THO,2)

where remarkably, the coefficients <2;^ have exactly the same values as in formula
(10) for 1 < i < 4, while 2/75 — 2 + ('^~2 "*"*)» ^ 0 < c < 10. We point out

that the coefficient <Zo:2 of <5o:2 in formula (10), equals 0.

Theorem 4.1. Fbr eac/z n > 1, zs an fsoraorp/z/sra o/growps

Proo/ We use Corollary 1.5. Through a general point of the divisor <©10 on JMio,io
there passes a curve T c tno,io such that T -©io T ^ — 1 andT 0

for(z,c) 7^ (0,2). One obtains that | n©io + — «©io|.
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£>z<Z o/proo/o/TT^orera 0.1 wZien g 10. We define the following divisor classes

on Cio,io*

10

A 2-<^ («Xlo)~l~ ^ ^ ^?0:c $0:c •

(»»#(0,2)
'

c=3

We Claim that tf® (£10,10. 0^«.10^) ^"(^10.10. <^10.10 ^ ^ " - *•

Indeed, we fix a set of labels T C {1,..., 10} with c := #(7) > 3, as well as two
indexes Z,y G 7^ and consider the 1-cycle T/y C ^10,11-c constructed in Propo-
sition 1.4. We label by {/?(z),x/(z) : £ G P*}/e7» the sections of the family. We
obtain a covering curve • for the divisor Ao:r C AZio,io, by attaching along the
section /?(z) a fixed (c + l)-pointed rational curve to each of the curves in T/y, in
a way that the marked points labeled by 7 are precisely those lying on the rational

component. Then fo:c := 7r*(r^) C ^io,io is a covering curve for Ao:c. From

Corollary 1.5, To:c • <5o:c < 0 and To:c has intersection number 0 with all the compo-
nents of supp(A) — Ao:c (Note that Aq:2 does not appear among these components).
We repeat this argument for all divisors Ao:c, where 3 < c < g, and the claim
becomes obvious. We finish the proof by using the same argument as at the end of
the proof of Theorem 3.1: There exists an effective class 2?' g Eff(AZio) such that

5' — JCio is effective, s(2F) s(^io) 7, and such that <^*(2F) — A' is effective.
Then/c(^io,io) k(£io,ioM') < /c(£io,io^*(ß')) *(^10. 5') 0.

5. The uniruledness of

We formulate two general principles which we use in proving the uniruledness of
some moduli Spaces We begin with the following consequence of [BDPP]:

Proposition 5.1. Ikß norraaZ prq/ecZzve Q-/actonaZ vane/y i) C la/i
zVredwcz&Ze d/v/sor^ZZed-wp Zry cwrves T Cl, swcZz zZiaZ T • Z) > 0 T • Zf^ < 0.

TTzen X zs wmrwZ^d.

Proo/ First note that Zfjr is not pseudo-effective. Assume that on the contrary, Zfjr
lies in the closure Eff(X) of the effective cone of X, set

a := sup{Z G Q>o : Zf^ — ZZ) g Eff(X)},

and write A := Zf^ — aZ) G Eff(X). The curve T deforms in a family filling-up Z),

so because of the maximality of a, one has T • A > 0 and T • Zf^ aT • Z) + T • A > 0,

which is a contradiction. Thus Zf^ ^ Eff(X) and we claim that this implies that X
is uniruled. Indeed, let us consider a resolution /x: X' -> X of X. It is enough to

prove that X' is uniruled and according to [BDPP] this is equivalent to showing that
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Zf^/ is not pseudo-effective. But Zf^/ /x*(Zfx) + JA where a/ G Q and

the divisors £)• C X' are the components of the exceptional locus Exc(/x). Since the
divisors £)• are /x-exceptional and Zf^ is not pseudo-effective, we find that no divisor
of the form /x*(Zfx) + J]; where > 0, can be pseudo-effective either. In
particular, Zf^/ is not pseudo-effective, hence X' is uniruled.

We can extend this principle to the case of several divisors as follows:

Proposition 5.2. I ö norraaZ prq/ecrfve Q-/act6>rZ<2Z vane/y xwppoxe
Z^i» Z>2 C X are Zrre<ZwcZZ?Z£ ejffecft've Q-dZvZxarx xwcZz £Zza£ ^Zzere evZx/xaverZng cwrvex
T; C Z);, vwYA T; • Z); < 0/or Z 1,2 (Zn par/fcwZar Z?6tfZz Z); G Eff(X) are nan-
raavafeZe <ZZvZxare). Avsarae/ar^rraare £Zza£

O -£>i

rz-ßi
ri-r>2
T2 ' Z>2

<o, rv
ry

Ti
Tz

öi
öl < 0. (11)

X Zx amraZ^d.

Proa/ According to [BDPP], it suffices to prove that Zf^ is not pseudo-effective. By
contradiction, we choose a, /3 G M>o maximal such that Zf^ — aZ)i —/3Z>2 G Eff (X).
Then we can write down the inequalities

Ti • > a(ri • öi) + jÖ(Fi • öa) and Tz • • öj) + £(1^ • Ö2).

Eliminating a, the resulting inequality contradicts the assumption /3 > 0.

We turn our attention to the proof of Theorem 0.6 which we split in three parts:

Theorem 5.3. Zx wmrwZ^d/or a <13.

Proa/ A general 2-pointed curve [C,x, y] G ^5,2 carries a finite number of lin-

ear series L g JE^(C), such that if : C T C is the induced plane
model, then v^(v) v/,(y) pi. Note that T has nodes, say pi,... P5, and

dim|0p2(r)(-2Ef=i^)l 12.

We pick general points and {/7y }y=1 C P^, then consider the pencil of
sextics passing with multiplicity 1 through and having nodes (only) at

Pi,... ,/?5. The pencil induces a fibration /': S —> P*, where S := Bl2i(P^) is

obtained from P^ by blowing-up pi,..., 775, xi,...,xn, as well as the remaining
unassigned base points of the pencil. The exceptional divisors C provide
11 sections of /'. The exceptional divisor induces a 2-section. Making a base

change via the map P*, the 2-section splits into two sections

P* and P^ meeting at 2 points. Blowing these points up, we arrive at a fibration

/: 7 -* carrying 13 everywhere disjoint sections, P*, Pj, P*i, • • •,
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where C 7 denotes the inverse image of and Dy denote the proper
transforms of and Dy respectively. This induces a family of pointed stable curves

r := {[Ca := /-1(A), A • Ou A • Ol, A> • Q,..., An • Ol] : A e Ai}
c ^5,13-

We compute the numerical characters of T (see also the proof of Proposition 1.4):

r • A deg(/^ )0KO 0s) + g -1) 10,

r • A deg(/^ )(C2(5) + 4g - 4) 80,

r * Vg r • V+ 5, f • i/Aq • • • r • VGn =2, r • <5o:xj 2,

whereas T is disjoint from the remaining boundary divisors. One finds, T •

^
—2, which completes the proof.

Remark 5.4. It is known that ^5,15 is of general type, [Fl], p. 865. Using the fact
that 12 general points in determine a canonical curve of genus 5, it is proved in
[CF] that ^5,« is rational when « < 12. Hence Theorem 5.3 settles the cases ^5,13.

Theorem 5.5. JMs,« A wmrw/oJ/or « < 12.

Proo/ We apply Proposition 5.2 when Di is a suitable multiple of the Brill-Noether
divisor on jMg consisting of curves with a c^, that is,

2-oDi 2-bns := g 7 s= 22A - 3So — 14«i — 24^ - 30^ - 32^ e Pic(Afg).
^8,2,7

WealsosetD2 := g Eff^g,«)- To construct a covering curve Ti c Di, welift
toJVfg,« a Lefschetz pencil of 7-nodal plane septics. Thefibration / : Bl2g(P^) -> P*

obtained by blowing-up the 21+7 base points of a general pencil of 7-nodal plane
septics, induces a covering curve m: P* -> JMg for the irreducible divisor jMg 7. The
numerical invariants of this pencil are

m*(A) /(5,0s) + g - 1 8 and m*(<5o) C2OS) + 4(g - 1) 59,

while m *(<$/) 0 for i 1,..., 4. Moreover, for « as above, / carries « sections

given by the exceptional divisors corresponding to « of the unassigned base points.
If Ti C «Mg,« denotes the resulting, then

rVA 0*(Fi)-A 8, ri-4r 0*(Fi)-Sirr 59, 1 for/ 1,...,«,

andri-<$/;7* 0. ItfollowsthatTrDi —1, Ti-AT^ ^
— 14andTi-D2 59.
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We construct a covering curve T2 C D2 and Start with a general pointed curve
[C, xi,..., Xh+i] G ^7,«+i. We identify x^+i with a moving point j G C, that is,
take

It is easy to compute that T2 • A 0, T2 • <$in- —2g(C) —14, T2 • <$1:0 1,

1^2*^1 1, for Z 1,..., h, and 1^ • 5/:7- 0 for (7, T) 7^ (1, 0). Therefore
T2 • Di =28 and T2 •

^
25 + n. The assumptions of Proposition 5.2 are

Remark 5.6. The results of Theorem 5.5 are almost optimal. The space «Mg,14 is

of general type, [Log]. Note that it was already known [Log], [CF], that eAZg,** is

unirational for « < 11, thus the improvement here is the case eAZg,i2-

Proposition 5.7. ^9^ zs wmrwZed/cr < 10 (m/act wmra/fcmzZ/cr « < 9).

ZVcc/ We apply Proposition 5.1, when Z) := ^*(^9 5) is the pull-back of the 5-

gonal locus inside JIZ9. If [C] g JIZ9 5 is a general 5-gonal curve and A g IL5 (C),
then there exists an effective divisor D G C3, such that A®(C, A 0 0c (Z))) > 3, cf.
[AC2]. In particular, A 0 0c (Z)) G JT^(C) induces a plane model of C having a

3-fold point, such that |A| can be retrieved by projecting from this point.
To obtain a covering curve for Z), we Start with general points /?o > ZT > • • • > Z>9 £

and consider the surface c: aS := Blp^...,^^) -> together with the line bündle

£ := <?*0p2(8) 0<9s(-3£jo ~Ef=i £/»,•) ^ Pic(5). Note that dim |£| 11. We
fix 10 general points xi,..., xio G *S, hence the pencil |<Z{jci,...,jcio}/s ® ^1 induces

a curve T c ^9,10- Standard calculations yield that T • A 9, T • <5^ 64 and

T • t/t/ 1 for Z 1,..., 10. Therefore T • Zf^ ^ —1, while T • ^*(^9 5) > 0.

Since T C ^*(^9 5) is a covering curve, this finishes the proof.

Finally, we turn to the case of genus 7. In order to establish the uniruledness of
we consider the following effective divisors on eAZ^:

Di := {[C,jci,...,jc„] e «Vt,« : 3L e Wf (C) with A°(C,L(-xi -X2)) > 1},

and D2 := 15A - 2So - 9<5j - 15^ - I8Ä3 G Pic(^y) is (a
-^7,1,4 '

rational multiple of) the divisor of 4-gonal curves on JIZ7. Before Computing the
class [<Z)i], we need a calculation, which may be of independent interest:

Proposition 5.8. g 1 mod 3 Z?£ a^Zx^d Znteger set <Z := (2g + 7)/3, sc
^ZzöT ^r/ZZ—p(g, 2, <Z) 1. 0n£ ccnsZders ejffecrfve <ZZvZscr c/
ncdes c/pZcne cwrvcs

31obeg := {[C, x, j] g : 3L G W£(C) sncA fÄaf A°(C, L(-x - j)) > 2}.

satisfied when<12.
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77z£ cZass o/Zfa c/oswre Zn «Mg,2 Zs gZven fry ^/orraw/a

5Kobeg Cg ^(g + 4)A + ^-^—(V^l+V^2) — —<5irr~gÄ):{l,2} ^ Pic(eA^g^)»

24(g-2)!
^ (#" ~~ ^ + 5)! (g — <i + 3)! (g — <7 + 1)!

Proo/ Wedenoteby^i: «Mg,2 -> ^g,i the morphism forgetting the second marked

point. The divisor Gug := (0i)*(97obeg • <$o:{i,2}) coincides with the cusp locus

in «Mg,i, that is, the locus of pointed curves [C,x] g ^g,i, such that there exists

L e W^(C) with A®(C, L(-2x)) > 2.

In order to compute its class, we fix a general elliptic curve [£\ x] G «Mi,i and

consider the map 7 : 7Vfg,i -> TVfg+i, givenby 7*([C, x]) := [C U* £]. Then

where ^ is the Brill-Noether divisor on «Mg+i consisting of curves with a

Since the class G Pic(yVfg+i) is known, cf. [EH2], and 7 *(A) A,

7 *(<5irr) ^irr, 7 *(^i) ~+ <5g-i:i> we find the following expression:

2 _
GUg Cg^(g + 4)A + gT/r — —<$irr — ^0 + !)(&" ~ 0<5/:l) G Pic(eAfg,i).

/ 1

Using the formulas

(<Al)*(A • <5o:{1,2}) OAl)* (^0:{1,2}) ~ (<Al)*(<5irr * ^0:{1,2}) ^irr

and

(0l)* (Vi • ^0:{l,2}) 0 for / 1,2,

one finds that the 5o:{i,2}-coefficient of 97obeg equals the iAi-coefficient of Gug,
while the A, <5in-coefficients coincide.

One still has to determine the iAi-coefficient in [97obeg]. To this end, we fix a

general point [C,g] G eA^g^ and consider the test curve C2 := {[C,g,y] : y g C} c
7Mg,2. Then, C2 • Vd 1» C2 • V2 2g — 1 and obviously C2 • <$o:{i,2} 1- On

the other hand, C2 • 97obeg equals the number of points y G C, such that for some

(necessarily complete and base point free) L G kF^(C), the morphism

/(L,j):L^^//°(C,Lr
fails to be injective. The map /(L, y) globalizes to a morphism of vector bundles over
C x kF^(C), and the number in question is the Chern number of the top degeneracy
locus of / and is computed using [HT]. We omit the details.
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Proposition 5.9. 77z£ c/ass o/z/ze c/oswre 6>/©i Zn ^7,« Zs gZven fry Z/^/orraw/a

<©1 44A +6(0i +^2)—6^in-—285o:{i,2}~6^^(5o:{i,y}+5o:{2,y}) ^ Pic(^7,«)-
7=3

Proo/ Wedenoteby 0i2: ^7,« -> ^7,2 themorphismretainingthefirsttwomarked
points. Then ©1 0{2(92obe7), and the conclusion follows from Proposition 5.8

using thepull-backformulas for generators ofPicfyW^), seee.g. [Log], Theorem2.3.

Theorem 5.10. «Ä<7,„ Zs <13.

Proo/ We Start by constructing a covering curve for ©1. Choose general points

/?i,..., /?8> *3> • • • > *12 ^ and a general line / cPl Then consider the pencil of
plane septics of geometric genus 7 passing through X3,..., X12 and having nodes at

/?i,..., /7g- Blowing-up the nodes as well as the base points of the pencil, we obtain
a fibration / : S -> P\ where S := Bl25(P^). We observe that / has sections

.,12, given by the respective exceptional divisors, a 2-section given by
and a 7-section induced by the proper transform of /. We make base changes of order
2 and 7 respectively, to arrive at the 1-cycle

Pl •= {[Q, Xi(z), *13(z)] : Z G P*} C ^7,13>

where vi (Z) and *2(0 map to the fixed node /?i G P^, whereas the image of Xi3(z)
lies on the line /. One finds that

Ti • A 14 • g 98, Ti-^i Ti-^2 35,

Ti • 03 * * * Ti • 0i2 14, Ti • 0i3 22.

Furthermore, Ti • <$o:{i,2} 14, Ti • <5^ 14 • 52 728, and finally Ti • <5/:^ 0

for all pairs (7, ©) 7^ (0, {1,2}). Clearly Ti is a covering curve for ©1.

Next, we construct a covering curve for ©2 and use that if [C] G JlT) 4 and

^4 G IL4 (C) is the corresponding pencil, then there exists a divisor © G C3 such

that ^4 (8) Oc(ö) £ W^(C). One fixes general points /?, {/?;}f=i, {at_/ }y=i £ P^ and

considers the pencil of genus 7 septics with a 3-fold point at /?, nodes at /?i,..., 775

and passing through vi,..., X13. This induces a covering curve T2 C 0* (yM* 4) with
the following invariants:

IVA 7, r2-<5jn- 53, r2-Vi=l for/ 1 13,

and

• Vr 0 for all (/, T).
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Thus, Ti • —28, T2 • Z>2 — 1, Ti • L>2 14, T2 • <£>i 2, as well as

Ti • 22 and T2 • —2. The assumptions of Proposition 5.2 are

thus fulfilled.
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