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Un critere d’indépendance pour une famille de représentations
£-adiques

Jean-Pierre Serre

Résumé. We give a criterion for the independence of a family of ¢-adic Galois representations
of a number field.

Classification mathématique par sujets (2010). 14 F.

Mots-clefs. Galois representations, cohomology, independence.
Introduction

Soit k un corps de nombres, de cloture algébrique k, et soit A une variété abélienne sur
k, de dimension 4. Comme on sait, de telles données définissent, pour tout nombre
premier £, une représentation £-adique

pe: Iy — Aut(Ty(A)) = GLy4(Zy),

ouly = GM(E/k), et Ty(A) est le £-iéme module de Tate de A sur k. La famille des
py¢ §’identifie a un homomorphisme continu

p: T — [T Au(Te(A)) = [, GLza(Zy).

Lorsqu’on s’intéresse au sous-groupe p(I'y) de [ [, GL,4(Zy), il est commode
de savoir que p(I';) est le produit direct des py(I'x), autrement dit, que les py sont
“indépendants”. Bien entendu ce n’est pas toujours vrai, mais on peut démontrer (cf.
[Se 86]) que cela le devient aprés une extension finie convenable de k ; autrement dit,
les p; sont “presque indépendants”.

Je me propose de reprendre cette question en mettant en évidence les propriétés
des p¢ qui entrainent la presque indépendance. Comme on le verra au §2, ce sont
des propriétés de ramification, analogues a ce que 1’on appelle la “semi-stabilité” ;
curieusement, les éléments de Frobenius, si utiles en d’autres circonstances, ne jouent
ici aucun role.

L’intérét de cette axiomatisation est qu’on peut I’appliquer a des situations plus
générales que celle des variétés abéliennes, par exemple a la cohomologie £-adique
des variét€s algébriques sur un corps de nombres, cf. §3.2. Un résultat trés voisin
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avait d’ailleurs été obtenu il y a une quinzaine d’années par M. J. Larsen et R. Pink
dans des lettres (datées du 23/5/95 et 26/5/95) dont le contenu n’a malheureusement
pas été publié jusqu’a présent.

Ladémonstration du théoréme principal (théoréme 1 du §2) est donnée au §8. Elle
repose sur diverses propri€t€s des corps de nombres et des groupes linéaires (corps
de classes, théoreme de Hermite—Minkowski, théorémes de Jordan et de Nori) ; ces
propriétés font I’objet des §84-7.

Remerciement. Cet article doitbeaucoup a L. Illusie : il m’aencouragé al’écrire, il m’a
fourni de nombreuses références et il m’a communiqué ([I1 10]) une démonstration
d’un résultat auxiliaire essentiel, qui avait été¢ démontré auparavant, sous une forme
un peu différente, par N. Katz et G. Laumon. Je lui en suis trés reconnaissant.

§1. La notion d’indépendance

Soit I' un groupe, et soit p; : I' = G; une famille d’homomorphismes de I' dans des
groupes G; indexé€s par un ensemble /. Cela revient a se donner un homomorphisme

p=1(p): T = [l;c;Gi-
On dit que les p; sont indépendants si la propriété suivante est satisfaite :

(R) po(T) = [T p:(I).

Autrement dit, si y; est une famille quelconque d’éléments de T', il existe y € T tel
que pi(¥) = pi(yi) pour tout i.

Il y a une propriété plus faible que I’on peut considérer :

(RO) p(I") est un sous-groupe d’indice fini de [ | p; (T).

A partir de maintenant, on suppose que I' est un groupe profini, que les G; sont
localement compacts, et que les p; sont continus (de sorte que les p; (") sont des
groupes profinis). On s’intéresse a la propriété :

(PR) Il existe un sous-groupe ouvert I'’ de T tel que les restrictions des p; a I'
vérifient (R). [Noter que T est d’indice fini dans T, puisque T est compact.]

On dit alors que les p; sont presque indépendants.

On a (R) = (RO) = (PR) : c’est clair pour (R) = (RO), et ce n’est pas difficile
pour (RO) = (PR).

Remarque. On peut aussi exprimer (R) comme une propriété des noyaux N; des p;.
Si I’on pose N/ = ) ;2 Nj, la condition (R) est équivalente a chacune des deux
conditions suivantes :

(R1) T' = N;.N/ pour tout 7.

(R2) T est engendré (topologiquement) par les N/.
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[Lorsque [ est fini, cela se démontre par récurrence sur le nombre d’éléments de [ ;
le cas général s’en déduit par passage a la limite, en utilisant la compacité de I'.]

On peut préciser (R2) : si ’on note I'” le plus petit sous-groupe fermé de '
contenant les N/, alors I' est le plus grand sous-groupe fermé de I" sur lequel les p;
sont indépendants.

§2. Enoncé du théoréme

Il y a trois données :

a) k est un corps de nombres de cléture algébrique k ; on note T le groupe de
Galois Gal(k/ k).

b) L est un ensemble de nombres premiers.

¢) Pour tout £ € L, Gy est un groupe de Lie £-adique localement compact!, et
pi: I'y — Gy est un homomorphisme continu.

On fait deux sortes d’hypothéses :

2.1. On suppose que la famille des py(I'x) est bornée , i.e. qu’elle satisfait a la
condition suivante :

(B) 1l existe un entier n = 0 tel que, pour tout £ € L, pe(T'y) soit isomorphe a un
sous-quotient de GL,(Z;).

[Rappelons qu’un “sous-quotient” d’un groupe A estun quotient d’un sous-groupe
de A. Bien s0r, il s’agit ici de sous-groupes fermés.]

Les cas particuliers les plus intéressants sont ceux ot 'ona G; = GL,,(Z;), ou
G¢ = GL,,(F;), avec des ny bornés (par exemple constants).

2.2, On fait une hypothese du genre “semi-stabilité¢ ” sur la famille des p;. Pour
I’énoncer, notons Vj I’ensemble des places non archimédiennes de k. Si v € Vg,
notons k, le complété de k& en v, notons p, la caractéristique résiduelle de v et
choisissons un prolongement # de v 4 k. Notons I; le groupe d’inertie correspondant
a v ; c’est un sous-groupe fermé de I'; ; a conjugaison pres, il ne dépend que de v.

Avec ces notations, [’hypotheése dont on a besoin s’énonce de la maniere suivante :
(ST) Il existe un sous-ensemble fini S de Vi tel que :

(ST1) Siv ¢ S et £ # py, alors pe(I3) = 1, i.e. py est non ramifié en v.
(ST2) Siv e S etl # py, alors pg({3) est un pro-£-groupe.
[Noter que I’on ne fait aucune hypothese sur les pg({3) lorsque £ = p,,.]

Lorsque Gy = GL,(Z;), la condition (ST2) est moins restrictive que la condition
habituelle de semi-stabilité, oil’ on exige que p; (I ) soit formé d’éléments unipotents.
I est commeode d’introduire une notion analogue a la potentielle semi-stabilité

10n ne perdrait rien si 1’on supposait que les G¢ sont compacts, vu que 1’on peut supposer que les pg sont
surjectifs.
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(PST) Il existe une extension finie de k pour laquelle (ST) est satisfaite. [Plus expli-
citement : il existe une sous-extension finie ky de k telle que la famille des ¢\ Tk,
satisfasse a (ST).]

Noter que, dés que (ST) est satisfaite pour une extension & de &, elle ’est aussi
pour toute extension finie de k contenant k1.

2.3. Le théoréme que nous avons en vue dit que les propriétés (B) et (PST) entrainent
la propriété (PR) du §1. Autrement dit :

Théoréme 1. Si la famille des p(Ty) est bornée au sens de (B), et si la condi-
tion (PST) est satisfaite, il existe une extension finie de k sur laquelle les py sont
indépendants.

On peut reformuler cet €noncé en termes d’extensions de & : notons Ny le noyau
de pg et ky le sous-corps de k fixé par N ; posons N; = [y Ny et notons kj le
corps fixé par N, autrement dit le corps engendré par les kg avec £ # £. Le corps
kind = (M) k; correspond, par la théorie de Galois, au plus petit sous-groupe fermé de
[y contenant les N}. Avec ces notations, le théoréme 1 est équivalent a :

Théoréme 1'. 5i les conditions (B) et (PST) sont satisfaites, le corps k™ = (), k;
défini ci-dessus est une extension finie de k.

De plus, k™ est la plus petite extension de k sur laquelle les py sont indépendants ;
on peut I’appeler le “corps d’indépendance” des py.

La démonstration des théorémes 1 et 1’ sera donnée au §8.

§3. Exemples et contre-exemples

Dans chacun des exemples ci-dessous, I’ensemble L est I’ensemble de tous les
nombres premiers, et Gy est isomorphe a GL,(Qy), avec n fixe. Cette derniere hy-
pothése entraine que le groupe pg(I'x) est isomorphe & un sous-groupe fermé de
GL,(Z;), de sorte que la condition (B) est satisfaite.

3.1. Variétés abéliennes et quasi-abéliennes. Si A est une variété abélienne de di-
mension  sur k, les modules de Tate 7 ( 4) fournissent des représentations £-adiques
de dimension 24 de Iy qui satisfont & (PST) en vertu du théoréme de Grothendieck
et Mumford sur la semi-stabilit€ des modeles de Néron ([SGA 7 I], exposé IX, voir
aussi [BLR 90], §7.4).

D’apres le théoréme 1, ces représentations sont presque indépendantes : on re-
trouve ainsi un résultat démontré un peu différemment dans [Se 86]. Noter qu’ici les
corps ky ont une interprétation simple : kg est le corps de rationalité des points de
A(k) d”ordre une puissance de £, et k; est le corps de rationalité des points de A(k)
d’ordre fini premier a £.
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Ces résultats s’appliquent aussi au cas des schémas en groupes quasi-abéliens ;
ce cas a été utilisé par Hrushovski, cf. [Bo 00].

3.2. Cohomologie £ -adique. Plus généralement, si X est un schéma séparé de type
fini sur k, la condition (PST) est satisfaite par les représentations £-adiques associ€es
aux groupes de cohomologie A support propre (X, Qy), ainsi que par les groupes
de cohomologie 77 (X, Q) a support quelconque. En effet :

a) La condition (ST1) est satisfaite d’aprés les théorémes d’existence de “stratifi-
cations” dus a N. Katz et G. Laumon [KL 86], th. 3.1.2 et th. 3.3.2.

b) Si .S estchoisi comme dans (ST1), il résulte d’un théoréme de Berthelot [ Be 96],
prop. 6.3.2, que, pour tout v € S, il existe un sous-groupe ouvert normal Uz de {5 qui
opere de facon unipotente sur les H: (X, Q) etles H' (X, Qy), pourvu que £ # p,.
[L.a démonstration de Berthelot est basée sur la théorie des altérations de de Jong,
cf. [Jo 96].] Choisissons une extension galoisienne k; du corps local k,, telle que
Iy NIy C U . Un argument d’approximation bien connu montre qu’il existe une
extension galoisienne finie k; de k& dont les complétés locaux aux places au-dessus
de S contiennent les k). On a alors Ty, N I3 C U pour tout v € S, ce qui montre
que la condition (ST2) est satisfaite sur k.

Probléme (ct. [Se 91], 10.1 7). Au lieu de supposer, comme nous venons de le faire,
que k est un corps de nombres, supposons seulement que X est une extension de
type fini de Q. Comme ci-dessus, soit X un schéma séparé de type fini sur k. Est-il
encore vrai que les représentations {-adiques de T’ fournies par les H (X.Qy) etles
H(X,Q,) sont presque indépendantes ?°

3.3. Mariage “carpe-lapin”. On peut partir de deux familles de p; satisfaisant aux
hypotheses (B) et (PST), et pour chaque £ choisirau hasard’un des deux py ; on obtient
encore une famille presque indépendante. Exemple : pour £ = 1 (mod 4) prendre la
représentation £-adique associée a la fonction de Ramanujan, et pour les autres £ la
représentation £-adique associée a la courbe elliptique d’équation y? —y = x> — x2.
3.4. Exemple montrant que la condition (PST) ne peut pas étre entiérement
supprimée. Soit £ = Q. Choisissons un nombre premier p > 2, ainsi qu’une suite
infinie £; < £, < --- de nombres premiers tels que £; = 1 (mod p'). Soit L. =
{€1,€2,...}. Soit pg, : Ty — Z‘Z un homomorphisme non ramifi€¢ en dehors de p
dont I'image est cyclique d’ordre p!. La famille des P, satisfait a la condition (B)
avec n = 1 et a la condition (ST1) avec S = {p}; elle ne posséde cependant pas la
propri€te (PR) car son corps d’indépendance est I'unique Z,-extension de Q, qui est
de degré infini sur Q.

“Note ajoutée sur épreuves. Ce probléme vient d’étre résolu par W. Gadja et S. Petersen : Independence of
{£-adic representations over function fields, Compositio Mathemarica, A paraitre.
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§4. Un théoréme de finitude sur les corps de nombres

Soit d un entier > 0, et soit G un groupe fini. Considérons la condition :

(Jorg) Il existe un sous-groupe abélien normal A de G tel que (G : A) < d.

Théoréme 2. Pour tout d > 0 il n’existe qu’un nombre fini de sous-extensions galoi-
siennes K/ k de k/k qui sont partout non ramifiées et dont le groupe de Galois a la
propriété (Jorg) ci-dessus.

Démonstration. On sait (Hermite—Minkowski) qu’il n’existe qu'un nombre fini de
sous-extensions de k de degré < d qui soient partout non ramifiées (cela provient
de ce que leurs discriminants sont bornés en valeur absolue, cf. par exemple [Se 81],
§1.4). On peut donc trouver une sous-extension finie k; de k contenant toutes ces
extensions. Soit k» la plus grande extension abélienne non ramifiée de k; contenue
dans k ; d’apres la théorie du corps de classes, k> est une extension finie de &y, donc
aussi de k. Soit maintenant K/ k une extension galoisienne dont le groupe de Galois
G a la propriété de I’énoncé, et soit K’ le sous-corps de K fixé par un sous-groupe
abélien normal A d’indice < d. Ona|K': k] < (G : A) < d et K’ est non ramifiée
sur k. Cela montre que K’ est contenu dans k. Comme K /K’ est abélienne et non
ramifiée, il en est de méme de K.ky/k; et cela entraine que K.k est contenu dans
ko, d’ou K C k3, ce qui prouve la finitude cherchée.

[Ce théoreme utilise deux des propriétés les plus importantes des corps de nombres :
a) finitude des extensions de Q de degré et discriminant bornés> ;
b) finitude des extensions abéliennes non ramifiées (corps de classes).]

§5. Groupes linéaires d’ordre premier a la caractéristique

5.1. Le théoreme de Jordan classique. Sous sa forme originelle ([Jo 78]), ce théo-
réme §’énonce comme Suit :

Théoréme 3. Pour tout entier n = 0 il existe un entier d = d(n) tel que tout sous-
groupe fini de GL, (C) ait la propriété (Jorg) du §4.

[Autrement dit, un sous-groupe fini de GL, (C) ne peut étre “gros” que s’il contient
un gros sous-groupe abélien.]

On trouvera dans [Fr 11] une démonstration simple de ce résultat. Cette démons-
tration donne une valeur de d(n) telle que

d(n) < (V81 + 1),

On connait maintenant la valeur optimale de d(7), qui est bien inférieure a celle-1a ;
ainsi, pourn = 71, ona d(n) = (n + 1)!, d’aprés M. J. Collins [Co 07], améliorant

¥En fait discriminant borné entraine degré borné, mais cela ne joue aucun rdle ici.
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des résultats de B. Weisfeiler et de W. Feit . Nous n’en aurons pas besoin. Dans ce
qui suit, nous noterons d(7) n’importe quel entier 4 pour lequel le théoréme 3 est
valable.

5.2. Le théoréme de Jordan sur un corps quelconque

Théoreme 3. Soient n un entier = 0, F un corps, H un sous-groupe fini de GL,(F)
et G un quotient de H. On suppose que |G| est premier a la caractéristique de F si
celle-ci est # 0. Alors G ala propriété (Jor 4,)) du §4.

Démonstration. Elle se fait en trois étapes :

5.2.1. Le cas ot car(F) = 0. On peut supposer F de type fini sur Q, donc plongeable
dans C. Le théoréme 3 montre alors que f7 a la propricté (Jory(,)) etil en est donc
de méme de .

522. Le cas ot car(F) = p > 0, avec |H| premier ¢ p. On peut supposer que
I est parfait. Soit W 1’anneau des vecteurs de Witt a coefficients dans F. On a un
homomorphisme surjectif GL,, (W) — GL,,(F). Comme | I | est premier a p, H se
reléve en un sous-groupe de GL,, (W), et 'on applique 5.2.1 au corps des fractions
de W.

523 . lecasoucar(F) = p > 0. Soit I lenoyaude H — G, etsoit P un p-Sylow
de [ ; c’est aussi un p-Sylow de H, puisque (I : I) est premier a p. Soit Ny (P)
le normalisateur de I dans H. On sait (Frattini) que Ng(P) — G est surjectif”.
D’autre part, la suite exacte

l— P — Ny(P)— Ny(P)/P =1

est scindée car les ordres de P et de Ny (P)/ P sont premiers entre eux. Il existe
donc un sous-groupe H' de Ny (P), d’ordre premier a p, tel que Ng(P) = P.H'.
Orl'image de P dans G est triviale, puisque P est contenu dans /. On en déduit que
G est un quotient de H', et I’on conclut en appliquant 5.2.2 4 H'.

§6. Groupes linéaires engendrés par des éléments d’ordre égal a la
caractéristique

Dans ce qui suit, £ désigne un nombre premier = 5.

6.1. Les groupes simples finis de caractéristique £ : la famille X,. Rappelons
comment on définit les groupes simples “du type de Lie” en caractéristique £ = 5 (pour
les propriétés utilisées ici, voir par exemple [GLS 98], §2.2, — noter que I"hypothése

“Les démonstrations de Weisfeiler, Feit et Collins dépendent de la classification des groupes finis simples.
51 argument dit “de Frattini” est le suivant:sih € H, hPh~—! estun p-Sylowde I, doncs’écritx P x~! avec
x € I,d’ou x—'h € Nz (P), ce qui montre que A appartient 3 I.Ngr(P). Onadonc bien H = I.Ng (P).
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£ = 5 élimine les cas particuliers exceptionnels que I’on rencontre en caractéristique
2 et 3, ainsi que les formes tordues a la Suzuki—Ree).

On se donne un groupe algébrique lisse connexe f surun corpsfini I” dont’ordre
estune puissance de £. On suppose que H est géométriquement simple et simplement
connexe, et I’on désigne par H ¥ le quotient de H par son centre. L'image Hr de
I’homomorphisme H(F) — H™i(F) est alors un groupe fini simple non abélien.

Remarque. On aurait aussi pu définir 7y comme le quotient de 7 (F") par son centre,
ou bien comme le sous-groupe de H*Y(F) engendré par les £-Sylow de H*(F).
L’équivalence de ces diverses définitions provient de ce que H(F) est engendré par
ses éléments unipotents d’apres un théoreme de Steinberg [St 68], th. 12.4.

Nous noterons Xy I’ensemble des classes d’isomorphisme de groupes finis simples
qui sont, soit du type Hr ci-dessus (pourun & etun F convenables®), soit isomorphe
au groupe cyclique Z/£Z..

6.2. Un lemme

Lemme 1. Soit G un groupe algébrique linéaire connexe sur ¥y et soit G = G(F;) le
groupe de ses points rationnels. Tout quotient simple d’une suite de Jordan—Hélder
de G appartient” & 3¢ ou est cyclique d’ordre # {.

Démonstration. Un argument de dévissage permet de supposer que G est, soit un
groupe unipotent, soit un tore, soit un groupe semi-simple. Les deux premiers cas
sont immédiats. On peut donc supposer que G est semi-simple. Soit é le revétement
universel de G et soit G*¥ son groupe adjoint. Soient G et G Jes groupes de points
F-rationnels de ces groupes algébriques. On a des homomorphismes naturels

G - G — G

Comme é est simplement connexe, c’est un produit de groupes du type Rp, H,

ou H et F sont comme dans 6.1 ci-dessus, et le symbole Rp/p, désigne le foncteur
“restriction des scalaires” a la Weil (celui que Grothendieck note [ [ /¥, )» cl. par

exemple [KMRT 98], th. 26.8. On a donc G = [] H(F). Les homomorphismes
G > G —> GY

ont des noyaux et conoyaux qui sont commutatifs d’ordre premier a £. De plus, I'image
de G dans G*¥ est un produit de groupes simples appartenant 2 X;. Le lemme en
résulte.

611 y a unicité : un groupe simple n’est isomorphe 3 H z que pour au plus un couple { A, F ),  isomorphisme
prés.
"Dans ce qui suit, on dit qu'un groupe simple “appartient” & X, lorsqu’il est isomorphe 3 un élément de Tg.
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6.3. Un théoréme de Nori

Théoréme 4. Pour tout n = 0, il existe un entier c(n) tel que, si £ > c(n), tout
sous-quotient fini simple de GL,,(Zy) d’ordre divisible par £ appartient & %y.

Démonstration. Prenons c(n) = sup(3,ca2(n)), ot c2(n) a les propriétés énoncées
dans [No 87], Theorem B. Nous allons voir que cet entier convient.

Supposons que £ > c(n) et soit // un sous-quotient fini simple de GL.,(Zy)
d’ordre divisible par £. Comme I est simple, cette derniére propriété entraine que
H est engendré par ses £-Sylow.

L’homomorphisme naturel GL,,(Z;) — GL,(Fy) est surjectif, et son noyau est
un pro-£-groupe. Il en résulte que 1 est, soit cyclique d’ordre £, soit isomorphe a un
sous-quotient de GL,,(Fy). Dans le premier cas, H appartient & X;. Dans le second
cas,ona H = G/I,avec G C GL,(Fy) et I normal dans G ; on peut évidemment
supposer que & est engendré par ses £-Sylow. D’apres [No 87], Theorem B, il existe
un Fy-sous-groupe algébrique connexe ¢ de GL., tel que G soit contenu dans G(Fy)
et soit engendré par les £-Sylow de ce groupe®. Le groupe H est un quotient d’une
suite de Jordan—Holder de G, donc aussi de G (Fy). D’apres le lemme 1, ceci entraine
que H est, soit cyclique d’ordre premier a £ (ce qui est exclu), soit isomorphe a un
élément de ;. D’ot le théoréme.

6.4. Un théoréeme d’Artin. Le résultat suivant est essentiellement di 4 E. Artin
([Ar 55], complété par [KLST 907) :

Théoreme 5. Si { est premier = 5 et distinct de £, ona Yy N Xy = @.

La démonstration donne méme un résultat plus fort : si G appartient a ¥, et G/
appartient & X/, leurs ordres |G| et |G| sont distincts.

FExemples. Pour £ = 5, les ordres des éléments de Xy, rangés par taille croissante,
sont {5, 60, 7800, 126000, 372000, 976500, . . .}.
Pour £ = 7, ce sont {7, 168, 58800, 1876896, 5663616, 20176632, .. .}.

§7. Deux critéres d’indépendance

7.1. Un critére élémentaire. Revenons aux notations du §1, et soit p;: I' — Gy,
i € I,unefamille d’homomorphismes, les groupes I' et G; étant des groupes profinis,
et les p; €tant continus.

Lemme 2. Supposons que les groupes pi(I') C Gy aient la propriété suivante :

(D) Sii # j, aucun quotient fini simple de p;(I') n’est isomorphe a un quotient de
p;i(I).

8 La définition de G donnée par Nori est trés simple : c’est le plus petit sous-groupe algébrique de GLj
contenant les groupes a 1 paramatre ¢ — u®, oil u parcourt les éléments d’ordre £ de G. Dans la terminologie
de [Se 94], §4, c’est le saturé de G.
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Alors les p; sont indépendants.

Démonstration. On peut évidemment supposer que les p; sont surjectifs, i.e. G; =
pi([') pour tout 7.

Considérons d’abord le cas ou / est un ensemble a deux éléments, par exemple
I =1{1,2}.Si p: ' — G1 x Gy n’est pas surjectif, le classique lemme de Goursat
montre qu’il existe un groupe profini non trivial A et des homomorphismes surjectifs
fi: Gi — Atelsque f; o p1 = f2 0 py. Comme A est non trivial, il a un quotient
qui est un groupe simple fini, et ce groupe est quotient a la fois de Gy et de G2,
contrairement a I’ hypothese (D).

Le cas ou { est fini se déduit par récurrence sur |/ | du cas ol |I| = 2, et le cas
ou |/ | est infini se déduit par passage a la limite du cas ou |[| est fini.

7.2. Un autre critére. Soit I" un groupe profini et soit £ un ensemble de nombres
premiers. Pour tout £ € 1., soit py: ' — G un homomorphisme continu de T" dans
un groupe de Lie £-adique compact Gy.

Lemme 3. Supposons qu’il existe une partie finie I de L telle que la famille (pg)oer—1
ait la propriété (PR) du §1. Alors il en est de méme de la famille (pg)eey -

[Autrement dit, pour prouver (PR), on a le droit de supprimer un nombre fini
d’éléments de L.]

Démonstration. On peut supposer que / est réduit a un seul élément, que I’on notera
p : le cas général en résultera par récurrence sur |/|. Quitte a remplacer I" par un
sous-groupe ouvert, on peut supposer que les py sont indépendants pour £ # p; on
peut aussi supposer que tous les py sont surjectifs. Nous allons alors démontrer un
peu mieux que (PR), a savoir :

(*) La famille des pg posséde la propriété (RO) du §1.

Autrement dit, I'image de T" par ’homomorphisme

p=(p): T — Gpx ng#p Gy
est ouverte dans [ [, Gy.

Les deux projections p(I') — G, et p(I') — HE# p O sont surjectives par
hypotheése. On se trouve donc dans la situation du lemme de Goursat. Autrement
dit, si I’on identifie G, au facteur G, x 1 de G, x []; 4 p Ge. le groupe quotient
C = G, /(p(I")NGp) estun quotient de Hf#p (r¢. Dire que p(T") est ouvert équivaut
a dire que C est fini. C’est ce que nous allons démontrer.

Observons d’abord que C est un groupe de Lie p-adique compact (puisque c’est
un quotient de G) ; il contient donc un sous-groupe ouvert normal U qui est un pro-
p-groupe sans torsion (cf. par exemple [Se 65], 11, §1V.9, th. 5, [Bo 72], Chap. III,
§7, ou [DSMS 99], th. 8.32). Si J est une partie finie de 1. — { p}, notons Cy I'image
de I’homomorphisme

[lees Ge = [lgz, Ge = C.
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Les p-Sylow des Gy sont finis si £ € J ; il en est donc de méme de ceux de Cjy.
Comme U est sans torsion, cela montre que U NCy = 1;do0 |Cy| < (C : U).
Cela donne une borne uniforme pour ['ordre de Cy, ce qui entraine qu’il existe un
C s qui contient tous les autres. Mais la réunion des Cy est dense dans C. D’ou le
fait que C est fini.

§8. Démonstration du théoréme 1
Revenons a la situation du théoréme 1, relative a un homomorphisme

p=(pe): Tk = [lper Ge

satisfaisant aux conditions (B) et (PST). Pour prouver que p a la propriété (PR), nous
procéderons en plusieurs €tapes.

8.1. Réductions. Quitte a remplacer k par une extension finie, on peut supposer que
la condition de semi-stabilité (ST) est satisfaite. On peut aussi supposer que les pyg
sont surjectifs. D’apres (B), on peut choisir un entier # = 0 tel que, pour tout £ € L,
le groupe G soit un sous-quotient de GL,, (Z;). D aprés le lemme 3, on peut aussi
supposer que tous les £ € L sont > sup(3, c(n)) ou c(n) a la propriété énoncée dans
le théoréme 4. Pour la méme raison, on peut aussi supposer que 'ona £ # p, pour
toute place v de I’ensemble fini S intervenant dans (ST).

8.2. Lesgroupes A,. Si£ € L, notons I'; ¢ le plus petit sous-groupe normal fermé de
Iy contenant les groupes d’inertie /; correspondant aux places v telles que p, = £.
D’apres (ST1), on a pg(Tx¢) = 1 pour tout £ # £. L'image du groupe T’y ¢ par
p: T — [] G¢ est donc contenue dans le £-iéme facteur de [ | G¢. Notons Ay cette
image ; c’est un sous-groupe fermé normal de Gy. Le plus petit sous-groupe fermé
de [ | G¢ contenant tous les Ay n’est autre que le produit [ | A;. En particulier, on a :

Lemme 4. Le sous-groupe p(IT'y) de [ | G¢ contient [] A,.

8.3. Les groupes G;'. Sif e L, notons G;‘ le sous-groupe de G¢ engendré par ses

£-Sylow ; ¢’est un sous-groupe ouvert normal de G,. Posons Iy = G;/G;‘ JAgjcest
un groupe fini d’ordre premier a £.

Lemme 5. a) .’ homomorphisme 'y, — Gy — Hy est partout non ramifié.
b) Le groupe Hy jouit de la propriété Jorg(,y des §§4-5.

Démonstration. Soit v € Vi, et soit U une place de k prolongeant v. Si p, = £,ona
pe(I5) C Ay par définition de Ay ;1'image de [; dans H est donc triviale. Si p,, # £,
le groupe py(I5) est un pro-£-groupe d’aprés (ST); il est donc contenu dans Gz' et
son image dans f1; est triviale. Cela démontre a).

Quant a b), il résulte du fait que I’ordre de H; est premier & £, ce qui permet de
lui appliquer le théoréme 3'.
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8.4. Changement de corps. D’apres le lemme 5, les homomorphismes I'y — Hj sont
non ramifiés. Comme les Hy ont la propriété Jorz(,), on peut appliquer le théoréme 2.
On en déduit qu’il existe une extension finie non ramifiée k' de & telle que, pour tout
£ € L, I'image de p;(I'y) dans H; soit triviale. Choisissons une telle extension.
On a alors py(Iy/) C G;’ .Ay¢ pour tout £. Nous allons maintenant prendre & comme
corps de base ; nous poserons Gy = p¢(I'y/), el nous noterons Gf,z"' et A} les groupes
correspondant a Gz' et a Ay ; par exemple, Gé"‘ est le sous-groupe de G, engendré
par les £-Sylow de G,

Lemme 6. 5i £ > [k’ : k], ona G;¥ = Gf, A, = 4y et G, = G;*. 4.

Démonstration. L'hypothese faite sur £ entraine que ’indice de G} dans Gy est < £,
d’ ot le fait que tout £-Sylow de Gy est contenu dans G, ce qui entraine G;{" = G;‘.
L'égalité A}, = Ag résulte de ce que les groupes d’inertie /5 sont les mémes pour K
et pour k, puisque k' est non ramifi€ sur k. Enfin, I’égalit€ G, = GE"‘.A’E résulte de
ce que G, = py(T) est contenu dans G;‘.Ag.

8.5. Fin de la démonstration. D’apres le lemme 3, on peut supposer que 'on a
£ > [k": k] pourtout £ € L. Le lemme 6 montre que I’on a alors G, = Gé"'. » pour
tout £. D’aprés le théoreéme 4, tout quotient simple de GE"’ appartient a I’ensemble
3¢ défini aun® 6.1. Il en est donc de méme des quotients simples de G,/ A},. Comme
les 3y sont deux a deux disjoints (théoreme 5), on peut appliquer le lemme 2 a la
famille des homomorphismes Iyr — G}/ A}. On en conclut que I"’homomorphisme
Ly — [1 G}/ A} est surjectif. Sil’on pose X' = p(I'ys) et A" = [] 4, cela revient
a dire que X'.A" = []G;. Mais le lemme 4, appliqué au corps k', montre que X’
contient A’. On a donc X’ = [] G}, ce qui achéve la démonstration.
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