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Hydra groups

Will Dison and Timothy R. Riley

Abstract. We give examples of CAT(0), biautomatic, free-by-cyclic, one-relator groups which
have finite-rank free subgroups of huge (Ackermannian) distortion. This leads to elementary
examples of groups whose Dehn functions are similarly extravagant. This behaviour originates
in manifestations of Hercules-versus-the-hydra battles in string-rewriting.

Mathematics Subject Classification (2010). 20F65, 20F 10, 20F67.
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1. Introduction

1.1. Hercules versus the hydra. Hercules’ second labour was to fight the Lernaean
hydra, a beast with multiple serpentine heads enjoying magical regenerative powers:
whenever a head was severed, two grew in its place. Hercules succeeded with the
help of his nephew, lolaus, who stopped the regrowth by searing the stumps with a
burning torch after each decapitation. The extraordinarily fast-growing functions we
will encounter in this article stem from a re-imagining of this battle.

For us, a hydra will be a finite-length positive word on the alphabet ay, az,as, . ..
— that is, it includes no inverse letters @', a,~ ', a3~!, .. .. Hercules fights a hydra
by striking off its first letter. The hydra then regenerates as follows: each remaining
letter @;, where i > 1, becomes a;a;—1 and the a; are unchanged. This process —
removal of the first letter and then regeneration — repeats, with Hercules victorious
when (not if !) the hydra is reduced to the empty word &.

For example, Hercules defeats the hydra a>asa; in five strikes:

daddzd] — dzdad] — dad1d1 — d1d1 —> d1 — &.
(Each arrow represents the removal of the first letter and then regeneration.)

Proposition 1.1. Hercules defeats all hydra.

Proof. When fighting a hydra in which the highest index present is k, no a; with
i > k will ever appear, and nor will any new aj. The prefix before the first ay is itself
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a hydra, which, by induction, we can assume Hercules defeats. Hercules will then
remove that a;, decreasing the total number of a; present. It follows that Hercules
eventually wins. L

However these battles are of extreme duration. Define # (w) to be the number
of strikes it takes Hercules to vanquish the hydra w, and for integers k > 1,n > 0,
define Hy (n) := H(ay"). We call the J¢; hyvdra functions. Here are some values of
Hi(n).

1 2 3 4 e
[t 2 3 4 7
201 3 7 15 2]
311 4 46 3(2%) -2

k|1 k+1

To see that #,(n) = 2" — 1 for all n, note that
I (a" ) = H (a2") + H(a2a:172") = 23 (a2") + 1.

And F3(n) is essentially an n-fold iterated exponential function because, for all
n > 0,
H3(n + 1) = 3(2%3™) —2,

by the calculations
e5“'-J(ffl3n+1) = H(as")+ 1+ J(?(azm ara,* ... azal’%(“?'n)),
H(azayazal® ... azay™) =3Q2™) —m = 3.

Extending this line of reasoning, we will derive relationships (15) and (19) in
Section 3 from which it will follow, for example, that

((”))

Hi3) =32 —L

So these functions are extremely wild. The reason behind the fast growth is a nested
recursion. What we have is a variation on Ackermann’s functions Az : N — N,
defined for integers k,n > O by

Ag(n)y =n+2 forn >0,

0 fork =1,

A0 = {1 ford = 0,
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and
Arsr1(n+ 1) = Ag(Ag1(n)) fork,n = 0.

So, in particular, A1(n) = 2n, Az(n) = 2" and As(n) = expgn)(l), the n-fold iter-
ated power of 2. (Definitions of Ackermann’s functions occur with minor variations
in the literature.) Ackermann’s functions are representatives of the successive levels
of the Grzegorczyk hierarchy, which is a grading of all primitive recursive functions
— see, for example, [37].

We will prove the following relationship in Section 3. Our notation in this propo-
sition and henceforth is that for f,g: N — N, we write f < g when there exists
C > 0 such that for all # we have f(n) < Cg(Cn 4+ C) + Cn + C. This gives an
equivalence relation capturing qualitative agreement of growth rates: f ~ g if and

onlyif f <gandg =< f.
Proposition 1.2. Forallk > 1, #; = Ag.

Other hydra dwell in the mathematical literature, particularly in the context of
results concerning independence from Peano arithmetic and other logical systems.
The hydra of Kirby and Paris [27], based on finite rooted trees, are particularly
celebrated. Similar, but yet more extreme hydra were later constructed by Buchholz
[14]. And creatures that, like ours, are finite strings that regenerate on decapitation
were defined by Hamano and Okada [25] and then independently by Beklemishev [7].
They go by the name of worms, are descended from Buchholz’s hydra, involve more
complex regeneration rules, and withstand Hercules even longer.

1.2. Wild subgroup distortion. The distortion function Distg: N — N for a
subgroup /7 with finite generating set 7" inside a group GG with finite generating set
S compares the intrinsic word metric dr on A with the extrinsic word metric dg:

Dist% (n) := max {dr(l,g) | ¢ € H withds(l,g) <n}.

Up to =~ it is does not depend on the particular finite generating sets used.
A manifestation of our Hercules-versus-the-hydra battle leads to the result that
even for apparently benign G and H, distortion can be wild.

Theorem 1.3. For each integer k > 1, there is a finitely generated group Gy, that
* is free-by-cyclic,
* can be presented with only one defining relator;
« is CAT(0),

e and is biautomatic,
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and yet has a rank-k free subgroup Hy that is distorted like the k-th of Ackermann’s
[functions — that is, Distg’; =~ Ag.

This distortion of a free subgroup of a CAT(0) group stands in stark contrast to
that of any abelian subgroup — they are always quasi-isometrically embedded (see
Theorem 4.10 of Chapter IIL.I" in [13], for example) and so no more than linearly
distorted.

The distortion we achieve exceeds that found in the hyperbolic groups of Mitra [32]
and the subsequent 2-dimensional CAT(—1) groups of Barnard, Brady and Dani [2].
They give families of groups that have free subgroups distorted like the iterated
exponential function exp®)(x), and examples with faster growing distortion like
exp{lg+ 2D (1), Their approach is to iterate the exponential distortion of the subgroup
F 1in certain free-by-cyclic groups F x Z.

In contrast to those of Mitra and of Barnard, Brady and Dani, our examples contain
72 subgroups and so are not hyperbolic. However, in a subsequent article [10] with
N. Brady we will give an elaboration of Gy that is hyperbolic and has a free subgroup
distorted > Ag.

Explicitly, our examples here are

Gr = {ay,...,ax, ! | t7lait = ay, t7'a;t = a;ja;_q (foralli > L) (1)

and their subgroups
H = (alt, . ..,akt).

So Gy is the free-by-cyclic group F(ay,...,ax) X Z where Z = (1) and 1 acts by
the automorphism of F(ay, ..., ay) that is the restriction of the automorphism 0 of
F(ay,az,...) defined by

8(a;) = {‘“’ £ =% @)

didi_1, i > 1.

This automorphism of F(ay, ..., ay) is polynomial growing and of the type studied
by Bestvina, Feighn and Handel in [9]. Indeed, our technique in Section 6 and
following of using pieces to analyze its affect on words is also employed in [9].

For i = j, the canonical homomorphism G; — Gj; is an inclusion as the free-
by-cyclic normal forms of an element of G; and its image in G; are the same. So the
direct limit of the G; under these inclusions is

G ={t,ay,az,...| Tlayt = ay, Tt = ajai—q (foralli > 1)).

Also, the subgroup H := {at,ast,...)of Gislim H; and Hy = G, N H.
b

Our convention is that [a, b] = a~ !5~ 'ab. By re-expressing the original relations
as [ay,¢t] = l and @;_y = [a;,t] fori > 1 and then eliminating a,...,ax—; and
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defining ¢ := ay, one can present G with one relation, a nested commutator, known
as an Fngel relation:

Gr = {a, t||a,t,....¢] =1).
o, e’
k

That is, the relation is vy = 1 where vy is the word defined recursively by vy = @
and v+, = [v;,¢] fori = 0.

Recursively define a family of words by 11y = @ and ;1 = u; " Vsu; fori > 0.
By inducting on i, one can verify that after substituting r*! for every s T! in u;, the
words ¢~ Dy, ¢! and v; become freely equal for all i > 1. So the relation vy = 1
can be replaced by u; = s to give an alternative one-relator presentation for Gy:

a

&
Gk§<a,s‘s" :s>.
S —

k

That the groups Gy are CAT(0) was proved by Samuelson: setx = linLemma5.2
of [38]. We explain the result by re-expressing the presentation via «; := u;_; for
1 <i<kas

Gr = lay, ..., 0, s | oy tsay =5, o lsa; = g (i > 1)).

By checking the link condition (see, for example, [13], 11.5.24) one finds that the
Cayley 2-complex of this presentation (that is, the universal cover of the associated
presentation 2-complex), metrized so that each 2-cell is a Euclidean square, is CAT(0).
Gersten & Short [23] proved that all such groups are automatic, and later Niblo &
Reeves [33] proved that a more general class of groups, those acting geometrically
on CAT(0) cube complexes, are biautomatic.

The groups Gy are well-behaved in a couple of senses not mentioned in Theo-
rem 1.3. They are residually torsion-free nilpotent by Baumslag [4]' and enjoy the
property of rapid decay by Jolissaint [26], Corollary 2.1.10. We thank Gilbert Baum-
slag and Indira Chatterji, respectively, for these observations.

We remark that a corollary of our recursive upper bound on Distg’;c is that the
membership problem for Hy in Gy is decidable.

The family (i have received attention elsewhere. From a geometric point-of-
view, it is natural to see Gy as the fundamental group of a mapping torus, and indeed
G2 is a 3-manifold group. In [22] Gersten showed the group G2 to be CAT(0)
with quadratic divergence function. He gave the free-by-cyclic, the one-relator, and
the CAT(0) presentations of (G, we have described. In [30] Macura shows G5 to
be CAT(0) and proves that an associated CAT(0) complex has a cubic divergence

'Added in proof: Baumslag adds that Mikhailov should also be credited for this result and a proof is in their
recent article On residual properties of generalized Hydra groups, arXiv:1301.4629 [math.GR].
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function. Results in [30] imply that the divergence function of the universal cover of
the mapping torus associated to the free-by-cyclic presentation of Gy is polynomial
of degree k (up to ) and in [28] Macura proves the same result for CAT(0) spaces
associated to each Gy. Macura also mentions G; and G3 in [29] as examples in the
context of Kolchin maps and quadratic isoperimetric functions, and she and Cashen
use (rr as examples in [15] when studying novel quasi-isometry invariants they call
line patterns. It is stated in Example 4 of [5] that G5 is biautomatic. Bridson uses
Gy in [12] as a starting point to construct free-by-free groups with Dehn functions
that are polynomial of degree & + 1 and he shows them to be subgroups of Out(F;;)
for suitable n. Additionally, he shows his examples are asynchronously automatic
via normal forms which have length ~ 7%, but by no shorter normal form. En route
he shows (Section 4.1 (3)) that free-by-cyclic Fy % Z groups, such as Gy, embed in
Aut( Fr).

Examples of yet more extreme distortion are known, even for subgroups of hy-
perbolic groups. Arzhantseva & Osin [1], §3.4, and Pittet [35] explain an argument
attributed to Sela in §3, 3. K} of [24]: the Rips construction, applied to a finitely pre-
sentable group with unsolvable word problem yields a hyperbolic (indeed, C'(1/6)
small-cancellation) group G with a finitely generated subgroup N such that Dist]‘f/r 18
not bounded above by any recursive function. The reason is that when A is a finitely
generated normal subgroup of a finitely presented group (., there is an upper bound
for the Dehn function of G/ N in terms of the Dehn function of G and the distortion
of N in G - see Corollary 8.2 in [19], [35]. Ol'shanskii & Sapir in [34], Theorem 2,
provide another source of extreme examples — using Mikhailova’s construction as
their starting point, they show that the set of distortion functions of finitely generated
subgroups of I, x F, coincides (up to =) with the set of Dehn functions of finitely
presented groups. As for finitely presented subgroups, Baumslag, Bridson, Miller
and Short [6] explain how to construct groups I" that are both CAT(0) and hyperbolic
and yet such that I' x I" has a finitely presented subgroup whose distortion is not
bounded above by any recursive function.

We are not aware of any systematic study of subgroup distortion in one-relator
groups. It seems natural to ask whether our examples are best-possible — that is,
whether there is a one-relator group with a finite-rank free subgroup of distortion
> Ay for every k.

1.3. Extreme Dehn functions. The Dehn function Area(n) of a finitely presented
group {A | R) is related to the group’s word problem in that Area(n) is the minimal
N such that given any word w of length at most # that represents the identity, w freely
equals some product Hf\i (i triu; of N' < N conjugates of relators r; € RE!, or,
equivalently, one can reduce w to the empty word by applying defining relations at
most N times and removing or inserting inverse pairs of letters. At the same time,
the Dehn function is a natural geomeitric invariant (in fact, a quasi-isometry invariant
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up to ~~) of a group: Area(n) is the minimal N such that any edge-loop of length at
most # in the Cayley 2-complex of {4 | R) can be spanned by a combinatorial filling
disc (a van Kampen diagram) with area (that is, number of 2-cells) at most N. This
geometric perspective 1s related to the classical notion of an isoperimetric function
in Riemannian geometry in that if {4 | R) is the fundamental group of a closed
Riemannian manifold M, then its Dehn function is ~=-equivalent to the minimal
isoperimetric function of the universal cover of M.

Theorem 1.3 leads to strikingly simple examples of finitely presented groups with
huge Dehn functions, namely the HNN-extensions of G with stable letter commuting
with all elements of the subgroup 7.

Theorem 1.4. Fork > 2, the Dehn function of the group

lalt = d1, t_la,-t = d;d;1 (i > 1),

[p,ait] =1 >0)).

Fk :: (al""’ak’ I’p|l_

is ~-equivalent to Ay.

So, together with T'y, which has Dehn function ~-equivalent to #n +— n? (see
Proposition 9.1), these groups have Dehn functions that are representative of each
graduation of the Grzegorczyk hierarchy of primitive recursive functions. Details of
the proof are in Section 9.

These are not the only such examples (but we believe they are the first that are
explicit and elementary): Cohen, Madlener and Otto [17], [18], [31] embedded al-
gorithms (modular Turing machines, in fact) with running times like n +— Az (#n) in
groups so that the running of the algorithm is displayed in van Kampen diagrams so
as to make the Dehn function reflect the time-complexity of the algorithms. They
state that their techniques produce yet more extreme examples as they also apply to
an algorithm with running time like n +— A, (n), and so yield a group with Dehn
function that is recursive but not primitive recursive. More extreme still, any finitely
presentable group with undecidable word problem is not bounded above by any re-
cursive function.

Elementary examples of groups with large Dehn function are described by Gromov
in [24], §4, but their behaviour is not so extreme. There is the family

(xo, e s Xk | xf+1_1xl-xl-+1 = xiz (i < k)),

which has Dehn function ~-equivalent to n > exp,®(n). [We write exp,(n) to
denote 2”.] And Baumslag’s group [3]

la,b | (b a7 'b)a (b7 ab) = a?), (3)

which contains {xg,...,xx | Xi41 ' XiXiy1 = x;2 (i > 0)) as a normal sub-
group, was shown by Platonov [36] to have Dehn function ~-equivalent to n
exp(UogZ nD(1). (Prior partial results in this direction are in [8], [20], [21].)
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1.4. The organisation of the article. We believe the most compelling assertion
of Theorem 1.3 to be the existence of groups H; and Gy with Hy free of rank
k, Gy enjoying the bulleted list of properties, and Distg’; bounded below by Ag.

In particular, this shows that there is no uniform upper bound on the level in the

Grzegorczyk hierarchy at which the functions Distgi‘c appear. The reader who is
primarily interested in these components of Theorem 1.3 need only read up to the
end of Section 5. In Section 2 we derive a collection of elementary properties of the
Ackermann functions that will be used elsewhere in the paper. Section 3 contains a
proof of Proposition 1.2 comparing the hydra functions to Ackermann’s functions.
In Section 4 we prove that the subgroups Hj are free. And in Section 5 we prove
that each function Distg’; is bounded below by Jf; — combining this result with
Proposition 1.2 gives the lower bound Ay.

Our proof that each function Distgi lies in the same ~-equivalence class of

functions as Ay —i.e. that Az is an upper bound for Distg,ﬁ‘C —is considerably more
involved than that of the lower bound and occupies most of the second half of the
article: Sections 6, 7 and 8. In deriving the upper bound, a key notion will be that
of passing a power of ¢ through a word w on the letters a;. We explain this idea in
Section 6, where we also identify recursive structure that will be crucial in facilitating
an inductive analysis. In Section 7 we focus on the situation where w is of the form
6" (ar*") and derive preliminary result that will feed into the main proof, presented
in Section 8, that Distg’;‘c < Ag.

Finally, in Section 9, we prove Theorem 1.4, which gives the Dehn functions of
the groups I';.

We illustrate some of our arguments using van Kampen diagrams, particularly
observing their corridors (also known as bands). For an introduction see, for example,
I.8A.4 and the proof of Proposition 6.16 in III.I" of [13].

We denote the length of a word w by £(w). We write w = w(ay, ..., dx) when

wisawordona T, ..., a;*L.

1.5. Acknowledgements. We are grateful to Martin Bridson for a number of conver-
sations on this work, to Volker Diekert for a discussion of Ackermann’s functions, to
Arye Juhasz for background on one-relator groups, and to John McCammond for help
with some computer explorations of Hercules’ battle with the hydra. We also thank an

anonymous referee for a careful reading, for bringing to our attention the connections
between this work and [9], and for simplifying our proof of Proposition 5.2.

2. Ackermann’s functions

Throughout this article we will frequently compare functions to Ackermann’s func-
tions and will find the following relationships useful.
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Lemma 2.1. For integers k, |, m, n, the following relations hold within the given

domains:
Ap(Ag41(1) = Agpr(n + 1), kon 20, 4)
Ap(l) =2, k=1, (5)
Ar(2) = 4, k=0, (6)
Ar(n) = Agyr(n), k=1l:in=0. (7)
Ap(n) < Ap(n + 1), k,n =0, (8)
n = Ag(n), k.n =0, 9)

(with equality holding in (9) if and only if (k,n) = (1,0))

mAg(n) < Ap(nm), k.n>=1,m=>0, (10)
mA O ) < A0,  k=1;1,mn >0, (11)
Ag(n) + Ag(m) = Ag(n +m),  kn,m=>1, (12)
Ar(n) + m < Ar(n + m), k.n,m=>0, (13)
(Ax(n))" < Ax(nm), k=2 n,mz=>0. (14)

Proof. Equation (4) follows immediately from the definition of the Ackermann func-
tions. Equations (5) and (6) follow from (4) by an easy induction on £.

Before proving (7), (8) and (9), we first prove that non-strict versions of these
inequalities hold. The proof is by induction on & and n. It is easy to check that
(M holdsif k = lorif # = 0 and that (8) and (9) hold it k = 0, it k = 1 orif
n = 0. Nowlet &’ > 1 and n” > 0 and suppose, as an inductive hypothesis, that
(7), (8) and (9) hold (not necessarily strictly) if kK < k" orif k = k" and n < n’".
We prove that the inequalities hold if £ = k" and n = »’. For (7), we calculate that
Apr(n') = A1 (Apr (0" = 1)) < Apr—1(Agr1 (' — 1)) £ Ap(Agr11(n’ = 1)) =
Agry1(n”), where we have applied (4) and the inductive hypothesis versions of (7) and
(8). For (8), we calculate that Ay (n") < Ap_ (A (n")) = Ap:(n" + 1), where we
have used (4) and the inductive hypothesis version of (9). For (9), we calculate that
n' <2n" = A1(n") < Ap/(n"), where we have used the inductive hypothesis version
of (7). This completes the proof that (7), (8) and (9) hold in non-strict form. Now
observe that equality in (9) at (k,n) = (k', n’) requires n’ = 2n’, whence n’ = 0.
Since Ax(0) = 1 forall k£ > 2, equality in (9) holds if and only if (k,n) = (1,0). It
follows that equality in (8) at (k,n) = (k’,n") would require that Az/(n") = 0 and
k"—1 =1, whence A>(n") = 0. But A,(n) = 2" > 0 forall # and so the inequality
(8) is strict.

We now prove inequality (10). This clearly holds if m# = 0, so suppose that
m > 1. The proof is by induction on k& and #n. It is clear that (10) holds it £ = 1.
The inequality also holds if # = 1 since, applying (5) and (7), we calculate that
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mA(l) =2m = Ay(m) < Ax(m). Now letk’,n’ > 1 and suppose, as an inductive
hypothesis, that (10) holds if k < k" orif k = k" and n < n’. We calculate that

mAp(n') = mAp1(Ag(n’ — 1)) < Ap—y(mAg(n" — 1))
< Apr—1 (A (mn’ —m)) = Ap—1(Ag (mn’ — 1)) = Ag/(mn'),

where we have used (4) and (8). Thus the inequality holds if (k,n) = (k',n’),
completing the proof of (10).

For inequality (11) observe that, by (9), mAk(l)(n) < Ak+1(m)Ak(l)(n) =
A1) 4, D (). Tt also follows from (9) that A, @ (1) > 1 foralli > 0. We
can thus apply (10), together with (8), to show that

A WAL () < AL (AP () = 4T ().

We prove (12) by induction on k. We will make repeated use of the identity
Ar(m) = Ag—"P(1). It is clear that the inequality holds if & = 1, so suppose that
k > 1 and that the result is true for smaller values of k. Without loss of generality
suppose that n < m. It follows from (9) that Ak_l(i) > 1foralli > 0, and so we
can apply the induction hypothesis to calculate that A (n) + Ay (m) = Ag_q ™1y +
A1 (D) = A DA+ A4 7)) = AP (14 Ax (m—n)). Applying (8)
gives that this quantity is at most Az _q D (Ar(m—n+1)) = Ap(m+1) < Ax(m+n).

We now prove inequality (13). This clearly holds if k = 0,k = lorm = 0. If
k>2andn = 0,then Ap(n) + m = m+ 1 < Ap(m) = Ap(n + m) by (9). It
remains to prove (13)ifk,n,m > 1. Butinthiscase Ag(n)+m < Ax(n)+ Ax(m) <
Ag(n + m) by (9) and (12).

Finally, we prove (14) by induction on k. It is clear that the inequality holds if
k = 2, so suppose that k& > 3 and that the result holds for smaller values of k. It
is also clear that the inequality holds if » = 0 orif m = 0; suppose that n,m > 1.
Applying the induction hypothesis, together with (4), we calculate that Ag(n)" =
Ap—1(Ag(n — 1)) < Ap_(mAr(n — 1)). Applying (4), (8) and (10), we see that
this quantity is at most Ax_1(Ax(nm—m)) < Ag_1(Ax(nm—1)) = Ag(nm). O

3. Comparing the hydra functions to Ackermann’s functions

In this section we prove Proposition 1.2 comparing Ackermann’s functions to the
hydra functions. The proof will proceed via a third family of functions ¢y. In this
section ¢y (1) will be defined for n > 0; subsequently we will give a more general
definition with an expanded domain.

For integers k > | and n > 0, define ¢y (n) := H (8" (ar)). The functions H}
satisly

Hie(n + 1) = Hi(n) + i (Hi(n)) (15)
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since after # (n) strikes the word az" 1! has become 6%« () (q;). We will need the
following elementary properties of the functions ¢

Lemma 3.1. For integers k > | andn > 0,

¢ (0) =1, (16)
Pa(n) =n + 1, (17)
¢r(n) = 1, (18)
Prr1(n + 1) = ¢dp11(n) + dp(Pr+1(n) + n). (19)

Forintegers k > 2 andn = 0,

Pr(n) < ¢p(n + 1), (20)
br(n) = n. 21)

Proof. Assertions (16), (17), (18) are straightforward. For (19), note that, by induc-
tiononn, " W az11) = axy1ar9(ay) . .. 8" (ay) and hence

9n+1(¢1k+1) = 0"(ar+1)0" (ar).
Thus, after ¢y (n) strikes, 8”1 (a; 1) has become
9¢k+1(n)(9n (ap)) = 9¢k+1(n)+n(ak).

Inequality (20) follows immediately from (18) and (19) and inequality (21) follows
from (18) and (20). L

Itis easy to check that ¢p; >~ Agand ¢> >~ Ay. As such, the nextresultis sufficient
to establish that ¢p >~ Ap_q fork > 1.

Lemma 3.2. (i) For integers kK > 3andn > 0, ¢p.(n) = Ap_1(n).
(ii) For integers k > 2 andn > 0, ¢p(n) < Ap_1(n + k) —n—k.

Proof. We prove (i) by simultaneous induction on k& and ». Itis immediate from (16)
that the inequality holds if # = 0. By (17) and (19), ¢3(n) = 2¢3(n — 1) + n, which,
combined with (16), gives ¢3(n) = 3(2") —n — 2. Since A,(n) = 2", it is easy to
check that (i) holds if k = 3. Now let & > 3 and #” > 0 and suppose, as an inductive
hypothesis, that the result is trueif k < k' orifk = k" and n < n". Applying (4), (18)
and (20), we calculate that ¢ (n") = ¢pr(n' — 1) + ¢pr—_1 (et — 1)+ 0" = 1) =
Prr—1(Prr (' — 1)) = ppr—1(Ap—1(n" — 1)) = Ap—2(Apr—1(n = 1)) = Apr—1(n).
Thus the result holds at (k,n) = (k', n"), completing the proof of (i).
We now make the following claim: forallk > 2,7 > 0and ¢ > £,

Pr(n) = Ag—1(n+c)—n+k—2c (22)



518 W. Dison and T. R. Riley CMH

Assertion (ii) will follow by setting ¢ = k. The proof of this inequality is by simul-
taneous induction on k and #n. Since A;(n) = 2n and, by (17), ¢2(n) = n + 1, it is
straightforward to check that (22) holds if ¢ = 2. The inequality also holds forn = 0
since, by (7) and (16), ¢ (0) = 1 <k = Ay(e) + k —2¢ < Ap_1(c) + k — 2c.
Now let ¢ = k' > 2 and n’ > 0 and suppose, as an induction hypothesis, that (22)
holds if k < k" orifk = k" and n < n’. We calculate that

b (') = (' = 1) + 1 (P (' = 1) + 0" = 1) by (19)
< 0 — 1) + Ao — 1) + 7'+ — 1)
—pn' —1)—n"+ k" —2¢
= Ao — D) +n'" +c—-1)—n"+ k' —-2¢
< Apr—o( A" +c—1)+k'—c)—n"+k"—2¢ by (8)

< Ap—o(Ap_ 10 +c-1) =0+ k' - 2¢ by (8)
= A0 +¢)—n" + k' - 2c. by (4)
Thus the inequality holds if (k,n) = (k’, n), completing the proof of (22). O

Since A(n) = 2n, #H1(n) = n, Ay(n) = 2" and H,(n) = 2" — 1, the next result
is sufficient to establish Proposition 1.2.

Proposition 3.3. (i) For integers k > 3 andn > 2, Hi(n) = Ap(n).
(ii) For integers k > L andn = 0, Hp(n) < Apr(n + k).

Proof. We prove (1) by induction on . The inequality certainly holds forn = 2 since,
by (6), Hr(2) = Harap—1ar—10k—2) = 4 = Ar(2). Now let n’ > 2 and suppose
that (i) holds for n < n’. Applying (4), (15) and (20), together with Lemma 3.2 (i),
we calculate that H;(n) = Hi(n' — 1) + ¢p(Hp(n' — 1)) = dp(Hp(n' — 1)) =
Gr(Ar(n'—1)) = Ap_1(Ap(n'—1)) = Ax(n’). Thus the inequality holds forn = n’,
completing the proof of (i).

For (ii), we prove the stronger claim that, forall k > 1, n > 0,

Hy(n) < Ag(n+k)— k. (23)

The proof is by simultaneous induction on k& and n. Since A;(n) = 2n and
H1(n) = n, it is straightforward to check that (23) holds if £ = 1. The inequality
holds if n = 0 since, by (7), #1(0) = 0 <k = A1(k) —k < Ax(k) — k. Now let
k' > 1 and n’ > 0 and suppose, as an inductive hypothesis, that (23) holds if &k < &k’
orif k = k" and n < n’. We calculate that

Hyr(n') = Hp (' — 1) + g (Hpe (0 — 1)) by (15)

< Hyr(n" — 1) + Apr(Hpe (' = 1) + k)
— (' — 1) =k’ by Lemma 3.2 (ii)
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= A (Hp (' =) + &) =k’

< Ap_ (A (n + K = 1) =K by (8)
= A (0" + kY -k’ by (4).
Thus the inequality holds if (k,n) = (k’, n), completing the proof of (23). O

4. Freeness of the subgroups H and H

In this section we prove:

Proposition 4.1. The subgroup Hy of Gy is free with free basis aqt, ..., ayt, and
the subgroup H of G is free with free basis ayt,ast, .. ..

To facilitate an induction argument, we will prove the following more elaborate
proposition. Proposition 4.1 will follow because if w = w(ayf,...,axt) is freely
reduced and represents 1 in Gy (or, equivalently, in G), then w = ¢ by conclusion
(1), and so ayf,. .., axt are each not the identity and satisfy no non-trivial relations.

Proposition 4.2. Let u = ulayt,...,axt) be a freely reduced word with free-by-
cyclic normal form vt —that is, u = vt" in Gy, v = v(ay, ..., ay) is reduced, and
r e Z.

(1) Ifv =2¢,thenu = &.
(i) If v = O(arq1 "0 " (agq1) in Flar, az, .. ), thenu = &.

(i) If v is positive, then u is positive.

We emphasise that we are considering u as a word on the a;f —it is freely reduced
if and only if it contains no subword (a;1)*!(a;1)TL.

Proof of Proposition 4.2. We first show that for all fixed & > 1, if (iii) holds, then so
do (i) and (ii).

For (i), note that if ¥ = ¢” in G, then ¥~! = r="_ Thus (iii) implies that both of
the freely reduced words 1 and u~! are positive. Hence u = &.

For (ii), we will separately consider the cases r = 0,r < O,andr > 0. If r = 0,
thenu = lin G andhenceu = eby (i). Ifr < O,then1—7 > landso 01" (ap4q) =
apyrarw in Flay,as,...) for some positive word w = w(ay,...,ax). It follows
that v 1s positive and therefore (ii1) implies that u is positive. Thus r > 0, giving
a contradiction. If » > 0, one calculates that v=1 = 70" (@341 D0(agr41) =
Hags1 DO (@p41)t™" in F(ay,az,...). Since 1 4+ r > 1, the reduced form
of O(ar+1~ DO (ar4q) is positive, and so (iii) implies that ! is positive. Thus
—r > 0, giving a contradiction.
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We now prove (iii) by induction on k. Since G, is free abelian with basis
ay,t, it is easy to check that (iii) holds in the case £ = 1. As an inductive hy-
pothesis, assume that assertions (i), (ii) and (iii) all hold for smaller values of k.

If % contains no occurrence of an (axf)*!, then we are done. Otherwise, write
u = oolagt)'oy(agt)2 ... (agt)™o,,, where each o; = o;(aqt,...,ap_1¢) and
cach ¢; € {£13}.

Each o; has free-by-cyclic normal form t;£% for some 7; = t;{(ay, ..., a%—1) and

some §; € Z. Direct calculation of the normal form of # — moving all the %! to the
right-hand end and applying the automorphism 67! whenever a 1 %! is moved past a
letter a; — gives that v freely equals

o = 1o OF (@) 041 (1) 0%2(ag2) . 0P (@) 04 (1),
where

o —(so+...+sic1+er+...+e—q1) ife =1,
l —(So+...+sic1 e+ ...+ €) ife; = —1,

Hi=—(Sso+...+8i—1+e1+...+¢€).

We claim that ¢; = 1 for all /. For a contradiction, suppose otherwise. Ob-
serve that, for each s € Z, there are words ws = ws(ay,...,a;5—1) and w), =
wilay.....ax—1) such that 8%(ar) = apw, and 5(a,™1) = w;ak_l. Since v is
positive, there must be a subword a; %!y a; ¥! in v’ which freely equals the empty
word and in which y = y(ay,...,ax—1). The way this subword must arise is that

for some i, either
(a) ¢, = —1,¢;41 =1land 8%i(7;) = 1, 01
(b) € =1, €41 = —1 and 8% (ag) 0% (1;) H4i+1(a;~1) = 1.

In the first case 7; = 1 and hence the induction hypothesis (assertion (1)) gives
that o; = &. But this contradicts the supposition that u is freely reduced. In the
second case, one calculates that A; — p; = land A;41 —u; =1 —s;,andso ; =
O(ar =101 % (ay). The induction hypothesis (assertion (ii)) implies that o; = &, but
again this contradicts the supposition that u is freely reduced.

To complete our proof of (iii), we will show that all the o; are positive. Since
v is positive and each €; = 1, we have that 7o is positive and each 6% (ay) 8% (z;)
is positive. The inductive hypothesis (assertion (iii)) immediately gives that oy is
positive. Suppose we have shown that oy, ...,0;—1 are positive, for some j. It
follows that sy, ...,s;—1 = 0, whence A; < 0. Note thatif w = w(ay,...,ag) is
positive and s > 0, then 69 (w) is positive. Hence a6~/ (rj) = a0~ Yz;) is
positive. Since 67(z;) is a word on a £, ... ap_EL, it follows that 671(z;) is
positive, and hence that t; is positive. Applying the induction hypothesis (assertion
(ii1)) gives that o; is positive. L
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5. A lower bound on the distortion of Hj, in Gy,

In the following lemma we see the battle between Hercules and the hydra manifest
in Gy.

Lemma 5.1. Forall k,n > 1, there is a positive word uyg , = ug z(ail, ..., agl) of
length Ky (n) that equals a;" 1% in Gy.

Proof. Consider the following calculation in which successive / are moved to the
front and paired off with the ;. [We illustrate the calculation in the case k¥ > 3 and
n = 2 —for k = 2, the letters az_, would not appear and for k = 1, neither would
the az_1.]

akntﬂk (n) _ (akt) I_lakn_ll Ig%’k (n)—1

= (art) (apag—y)" ! #em1

—1 -2
= (art) (apt) 1 ag—1(arar—1)" "t

= (art) (axt) ap—1ar—2(axar—1ar—1a5x—2

IJC’;( (n)—2

)n—2 / FHi(n)—2

A van Kampen diagram displaying this calculation in the case k = 2 and n = 4 is
shown in Figure 1.

ado z

25

as \ \ !
) NN \\\ !

t
o 0o IN ay [ ap ™ aay ar i adYas ™ arf a;‘\ah\ U s Ay

Figure 1. A van Kampen diagram showing that ax*s!®

a2f asf a1t ast (alf)3 a21i (a1I)7.

= uz 4 in Go where us 4 =

One sees the Hercules-versus-the-hydra battle

ak” — (akak_l)”_l — ak—lak—Z(akak—lak—lak—z)n_z e
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being played out in this calculation. The pairing off of a / with an @; corresponds to a
decapitation, and the conjugation by ¢ that moves that 7 into place from the right-hand
end causes a hydra-regeneration for the intervening subword. So by Proposition 1.1,
after #y(n) steps we have a positive word on ug,, = ug,(aif, ..., agt), and its
length is JHy (n). O

Our next proposition establishes that Distgi > JHy forall £ > 2. The case
k = 1 is straightforward: H; = Z is undistorted in G| = Z? and #(n) = n. The
calculation in the proof of the proposition is illustrated by a van Kampen diagram in
Figure 2 in the case £k = 2 and n = 4 — the idea is that a copy of the diagram from
Figure 1 fits together with its mirror image along intervening @1- and a>-corridors
to make a diagram demonstrating the equality of a freely reduced word of extreme
length on ayf, ..., apt with a short word on aq,...,ax, 1.

Proposition 5.2. For all k > 2 and n > 1, there is a reduced word of length
2Hr(n) + 3 on the free basis ait, ..., axt for Hy which, in Gy, equals a word of
length2n +4onay,...,ag,t.

Proof. Ast commutes with aq in Gy, it also commutes with astara; L. So
17D g taia, T ) = aaraiar Tt = (ant) (aqf) (axt)

and then by Lemma 5.1,

n —1

apay tay ay lap " = Uk p (a21) (art) (azt)™! U n

The word on the left has length 2n + 4. The word on the right, viewed as a word on
ait,...,agt, is freely reduced and has length 24, (n) + 3, since uy , is a positive
word. L]

az —_— o

]
e )
: e

“ e — i’
o
-, N
:\:\\\\ g " . ’#: ,l:
e < U i N N * a“‘-.. : A v >
2f Taq " a2

—_— -—
p———""U2 4 Hpg——n 7

;

A
\\

Figure 2. A van Kampen diagram demonstrating the equality as* astajar'as 4 =

uz 4 (azxt)(at) (agt)71u2,4*1 in G».
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6. Recursive structure of words

This section contains preliminaries that will feed into the proof, presented in Section 8,
that Distg’; =< Ay. Here is an outline of how we will bound the distortion of Hy in
Gy. We will first suppose u = u(f,ay, ..., ay) represents an element of Hy. We will
shuffle all the /£ in u to the start, with the effect of applying %1 (o each a; *! they
pass. After freely reducing, we will have a word " w where w = w(ay, ..., ax).
We will then look to carry the #” back through w from left to right, converting all
it passes to a word on a1/, ..., axf. Estimating the length of this word will give an
upper bound on Distgi.

For convenience, we work with the group & and its subgroup /7 defined in Sec-
tion 1.2.

When carrying the power of 7 through w we will face the problem of whether a
word /7w, where w = w(ay,a,,...), represents an element of a coset H¢® in G for
some s € 7. We will see that the answer is not always affirmative — these cosets do
not cover . However, if t"w = o¢® forsome 0 = o(af,azf,...) and some s € Z,
then o is unique up to Iree-equivalence since H 1is free (Proposition 4.1) and s is
unique by our next lemma. Indeed, we learn that H¢*' and H1*2 are equal precisely
when s1 = $5.

Lemma 6.1. If{ € Z and 1" € H, then £ = 0.

Proof. Were t* € H for some integer { # 0, then Z? = {a¢,t%) would be a
subgroup of 7 contrary to the freeness of /7 established in Proposition 4.1. (]

Our next lemma will be the crux of our method for establishing an upper bound
on distortion. It identifies recursive structure that will allow us to analyse the process
of passing a power of ¢ through a word w = w(ay, a,...), so as to leave behind a
word on aqf, ast, . ...

For a non-empty freely-reduced word w = w(ay, as,...), define the rank of w
to be the highest k such that a; T occurs in w. We define the empty word to have
rank 0. For an integer & > 1, define a piece of rank k to be a freely-reduced word
ap'mwag~ 2 where w = mw(ay,...,a,—1) and €1, €, € {0, 1}. Notice that a piece of
rank k& will always also be a piece of rank k£ 4 1 and that the empty word is a piece
of rank k for every k.

For a non-empty freely-reduced word w of rank k, define the number of pieces in
w to be the least integer 2 such that w can be expressed as a concatenation wy . .. Wy,
of subwords w; each of which is a piece of rank £. (We say the empty word is
composed of } pieces.) Observe that

1in w is the first or last letter of some w;, respectively;

1

(1) each ay and a;~
(i) fori = 1,...,m — 1, either the final letter of w; is a; ™" or the first of w; 18

day, but never both; and
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(iii) if @z~ 'yay is a subword of w and ¥ = x(ay,...,ar_1), then y = w; for
some i.

In particular, wq, ..., Wy, are uniquely determined by the locations of the eIl inw,

and so we call the list of subwords w1, ..., wy, the partition of w into pieces.

For example, w := as Yayazazar 'aza; 'as ! has rank 3 and its partition
into pieces is w = wiwwswyg where wy = a3~ wy = ajas, wy = asa,” !, and
Wq = a3a1_1a3_

Lemma 6.2. Suppose w = w(ay,...,ay) is a non-empty freely-reduced word of
rank k and r and s are integers such that t"w € Ht*. Let w = wy ... wy be the
partition of w into pieces. Then there exist integersr = rg, ¥, ...,y = § such that
twiyy € H'+1 foreachi.

Proof. Ast"w € Hr?, there is some reduced word v = v(aif, ..., axt) such that

t"w = vt*. Form the analogue of a partition into pieces for v — that is, express v as
a concatenation vy . . . vy, of subwords v; each of the form (az ) © (agt)” > where
T = t{ait,...,ap_1t) and €1, €5 € {0, 1} and m is minimal.

Note that v is non-empty as otherwise w would equal #*~" in G and so be the
empty word by the free-by-cyclic structure of . Note also that no v; 1s the empty
word since m 1s minimal.

One can obtain " w from vt* by carrying all the 7% to the left and freely reducing.
More particularly, the £° at the end of v£* and all the £ in v, can be collected
immediately to the left of v,,, and then those t*1 and the r*! in v,,—; can be carried

to the left of vy—1, and so on. Accordingly, inductively define w),, ..., w] and
Tm,...,To by setting ry, = s and then, fori = m,..., 1, taking r,_; and wl’. =
wi{ay, ..., ax) tobe the unique integer and reduced word such that v;1" = ("i—1w].

Then ry = r and w is (a priori) the freely reduced form of w] ... w,,. We claim that,
in fact, wi ... w), is the partition of w into pieces of rank k — that is, m = » and
w; = w; for all i. This will suffice to establish the lemma.

To prove this claim, we will show that for all i, if v; = (agf)®' T (agt)™ > where
T = t(ait,...,ar—1t)and €1, €2 € {0, 1}, then w is a reduced word a; ! 7 a;~?
for some n = mw(ay,...,ax—1). Moreover, if € = €; = 0, then 7 is not the empty
word. In particular, no w; is the empty word.

Well, v;t™ = ("i—1w]. Consider the process of carrying each (T in v;17 to the
front of the word, applying %! to each a ; they pass and then freely reducing, to give
t"i=tw!. Throughout this process, no new a*! are produced and, such is 4, no a;
appears to the left of the a; in v; (if present) or to the right of the a b GE present) —
see (2) and Lemma 7.1. This means that the only way w; could fail to be a reduced
word of the form a5 ' wa; ™2 where m = w(ay, ..., ar—1), would be for €7 and ¢,
to both be 1 and 7 be the empty word. But in that case, w] would be the empty word
and so v; would equal "/=17"/ in Gy and r;—y — r; would be 0 by Lemma 6.1. But
then v; would be the empty word by Proposition 4.1 which, as we observed, 1s not the
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case. Likewise, when €; = €, = 0, it cannot be the case that 7 = w] is the empty
word, as otherwise v; would again be the empty word.

So properties (i), (ii) and (iii) all apply to w1, ..., w;, as they are inherited the
corresponding properties for vy, ..., vy. It follows from these properties together
with the fact that each w] is reduced, that w] ... wy, is reduced and is the partition of
w into pieces of rank k. 0

7. Passing powers of ¢ through 8" (a;*!)

The words 67 (a; ') will play a crucial role in our proof that Distg’;fC = Ay. The next
lemma reveals their recursive structure. The first part is proved by an induction on 7.
The second part is then an immediate consequence.

Lemma 7.1.

ag 0°(ar—1) 0 (ak—1) ... 0" Nar—1). n >0,
Qn(ak) = ak’ n= O’
ai 07 Yag—1™" 072 (ag—1"") ... 0" (ak—1 ), 1 <0,

0" Hag—1"") 0" 2 (ag—1"") ... 0% @1 D at, n>0,
0 ar~") = Jax !, n =0,
0" (ag—1) 0" N ar—1) ... 0" Yax—1) ax ™", n <0

When attempting to carry a power of f through a word w = w(ay,as,...), we
will frequently be faced with the special case where w is of the form 6% (a; *1). We
now focus on this situation.

Definition 7.2. Define _
A=\ Jm
For each integer k > 1, define
Sk =4{neZ : 8%a) € A}
and define the function ¢y : Sy — Z by setting ¢ (n) to be the unique integer
satisfying

6" (ap)t®™ e H.

Note that this extends the previous definition of the functions ¢ given in Section 3
since ¢ (n) = H (0" (ay)) forn > 0.
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Lemma 7.3. (1) S1 = Z and ¢1(n) = 1 foralln € Sy.
(i) S2 = Z and po(n) = n + 1 foralln € S,.
(iii) If k = 3, then S; = N.

Proof. 1t is easy to check that Sy = 82 = Z, ¢1(n) = 1, ¢2(n) = n + | and that
N C S forall k.

Letk > 3 and suppose thatn < Oliesin Sy. Since 7 (az )%+ ™ liesin H, so does
()10 ()t = qp 1710 Yag_1™Y) ... 07 (g~ D191 and hence,
by Lemma 6.2, az_;~! lies in ITt" for some r. It follows that =" (ap_q)t" € H

and so 7 = ¢p_1(—r). If & = 3, this is a contradiction, since it implies r = —r + 1.
If £ > 3, then —r € Si_1, and so, by the induction hypothesis, # < 0. But then
¢r—1(—7) = 1, by (18), and hence r > 1, a contradiction. O

Let dpy denote the word metric on H with respect to the generating setaq ¢, af, . . ..
Lemma 7.4. Ifn € Sy and h = 6" (@)t then dg (1. h) = ¢p(|n)).

Proof. If k = 1, then the result is obvious. If k = 2, then 2 = aya,""*! =
(axt)(ar8)? sodp(1,h) =1+ |n| = ¢p(|n]). If £ = 3, then n > 0. Thus the word
8" (ay ) 1s positive and hence dy (1, h) = ¢r(n) = dr(|n|). O

Lemma 7.5, (i) Let h = t7 0" (ap)t™5. Then h € H if and only if i — r € S and
s=r—¢p(i —r).

(i) Let h = "0 (a5, Then h € H ifand only ifi —s € Sy and r =
s — (i —3).

Proof. For (i), note that & = 8*~"(az)t" ™ and apply Definition 7.2. For (ii), note
that h=! = 156*(az )t~ and apply (i). O

Lemma 7.6. Ifk > 3 and "0 (apy™") € A, thenr < i.

Proof. Tf 70*(a;,~') € Ht*, then Lemmas 7.3 and 7.5 give that i — s > 0 and
s—r=¢p(i —s) = 1. Thusi —r > 1. O

The exceptional nature of §7 and $ highlighted by L.emma 7.3 means that small
values of k£ will have to be treated separately in our proof. This motivates the inclusion
of the following result, a special case of Lemma 7.5. Note in particular that (ii) implies
that £"0*(a,~1) € A if and only if » + 7 is odd.

Lemma 7.7. (i) Let h = t"0*(a)t 5. Then h € H if and only if s = 2r —i — 1.
(i) Let h = 1" 6" (a;~")t™5. Then h € H if and only if s = 1(r +i + 1).
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Proof. This follows immediately from Lemma 7.5 and the fact, given in Lemma 7.3,
that ¢p(n) = n + 1. L

The following result concerns passing a power of / through a sequence of terms of
the form 8 (a,*"). The statement is made neater by the use of the following formula,
which is a consequence of Lemma 7.1:

0%(as) ... 0" Yay), a < b,
9“@3_1)9‘5(“3) =41 a=h,
09 Yay,™ V) ... 0%(a>Y), a > b.

Lemma7.8. Let o = t"0%as V)08 (a3) and s = 22=%(r —a —2) + b + 2 for some
integers r, a, b. Then o € A if and only if s is an integer. Furthermore, in this case,
o€ Htb.

Proof. We split the proof into two claims. The first claim is that if o € HS for
some integer s, then s = §’. In particular, this implies that if ¢ € A, then s is an
integer. If ¢« = b, then clearly s’ = r = s. If a < b, then 8%(az;~1)0%(a3) =
8% (asz) ... Qb_l(az). By the Lemma 6.2, there exist integers r = rg, 71, ..., p—g =
s’ such that t7i 0% (a,) € H"i+1. By Lemma 7.7, 7,41 = 2r; —a —i — 1, which
solves (o give r; = 2/(r —a—2)+i +a+2. Substituting i = b—a givess’ = 5. On
the other hand, suppose that @ > b. Note that t” 8% (a5~ 185 (a3) € Ht% implies that
15 0% (a3~ 10%(as) € Ht". Since b < a, we can substitute into the above solution to
obtain 7 = 297(s’ — b —2) + a + 2, which rearranges to give s’ = s. This completes
the proof of our first claim.

The second claim is that if s is an integer, then o € Ht5. If a = b, then this
clearly holds. Suppose that @ < b. Then ¢ = (" 0%(a,) ... 9%~ (a;), so certainly
o € A since all the letters a,*1 that appear are positive. Therefore 0 € H(* by
the first claim. Now suppose that @ > b. Since s is an integer, we can define
T = £50%(a37)0%as) = t°0%(a,) ... 0% 1 (ay). Then certainly r € A — say
T e Hi". By the first claim, 7’ = 2 ?(s — b — 2) + a + 2 = r. Therefore
156%(a571)0%(as) € 17, whence 17 6% (as~1)0%(as) € H*, and the second claim is
proved. (]

8. An upper bound on the distortion of Hy, in Gy

Next we turn to estimates associated with pushing a power of ¢ from left to right

through a word w = w(ay, ..., a;) or through a piece of w, so as to leave a word on
ait,...,axt times a power of . We will need to keep track of both the length of that
word on the a7, ..., ayf and the power of f that emerges to its right. Accordingly,

let us define four families of functions, ¥ ;(n), W1 ,(n), ki 1(n), Ky p(n) for
integers k > land /, p,n = 0.
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* Y (n)istheleastinteger N suchthatif 2 € H isrepresented by aword (" m¢~*
with 7 a piece of rank k, with £(7) </, and with |r| < n, thendg(1,h) < N.

e W1 p(n) is the least integer N such that if # € I is represented by a word
tfwr=s with w = w(ay,...,ar) a word of at most p pieces, with £{w) < [,
and with |r| < n, then dg(l,h) < N.

* ki,1(n) is the least integer N such that if 7 is a piece of rank k with £() </
and 7 is an integer with |r| <n and "7 € A, then t" 7 € H¢* for some s with

|s| < N.

* Kj 1. p(n)isthe leastinteger N such that if w is a word of rank at most k& with at
most p pieces and with £(w) < [ and r is an integer with |r| <nand "w € A,
then t"w € H¢® for some s with |s| < N.

We will frequently make use, without further comment, of the fact that each of
these functions is increasing in k, /, p and n.

The main technical result of this section is the following proposition. In the
corollary that follows it we explain how the upper bound it gives on Wy ; ,,(n) leads

to our desired bound Distg’; < Ag.

Proposition 8.1. For all k = 1, there exist integers Cy > 1 such that for all
l,p,n=0,
K 1(n) < Ag—1(Crn + Cil),
Ki1.p(n) < Ao P(Con + Cil),

Yrr(n) < Ap_1(Ckn + Cil),
Wi p(n) < A1 CP(Cren + Crl).

Corollary 8.2. Forall k > 1, the distortion function of Hy in Gy satisfies
Distgfc < Ay

Proof of Corollary 8.2. Since Gy = Z? and Hy = 7, H; is undistorted in G; and
Distgi = Ay. Now suppose that k > 2 and that ¥ = u(ay,...,ax,!) is a word of
length at most # representing an element of 7. By carrying each ¢! to the front,
we see that u is equal in G to ¢" w for some integer 7 and some freely reduced word
w = w(ay....az). These satisfy || < n and £(w) < Crn* for some integer C > 0
depending only on k — see, for example, Section 3.3 of [12].

We first show that the number of pieces of w 1s atmostz+1. Indeed, the process of
carrying each %! to the front of u has the effect of applying #%! to each 4; it passes.
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The form of the automorphism £ ensures that no new a; =1 are created by this process.
The number of occurrences of @, =1 in w, which we denote by £; (w), is therefore at
most7n. Letw = wy ... wp, be the partition of w into pieces. Say w; = a3 mia;
wheree;, 6;'+ €{0,1}and r; = mw;(ay,...,ar—1). Observe that, foreach i, precisely
one of 6;'+ and € 1 is equal to 1. Indeed, if 6;'+ =€, = 0, then the pieces w; and
w; 41 could be concatenated to form a single piece, contradicting the minimality of
p.and if el.+ = €;,, = 1, then w would not be freely reduced. So

P p—1
)= (§ +eHN =+ (F+ep)+el =g +p-1+¢,
i=1 i=1
whence p < £p(w)+ 1 <n+ L
Now,

dg(Lu) =dg(1,t"w) < Y o) p7]) < Vi ok nr1(®),

which is at most
Ap G E(CLCR* + Cin)

by Proposition 8.1. Choose an integer N large enough that n* < 2" forn > N.
Then, for n > max{N, 1},

da(Lu) < Ag_B"P(CCA(n) + Crn) by (8)
< A "I (CLCAk () + Cen) by (1), (8)
< A1 OV (AL (CCn) + Cxn) by (8), (10)
< A1 "I (A((CRC + Crm)) by (8), (13)
= A ((Cr C + Cr. + 3)n + 3) by (4). O

Proposition 8.1 will follow from the relationships between vy ; (1), Wi (1),
Ki1(n) and Ky 7 ,(n) set out in the next proposition. Of its claims, (26) and (29) are
the most challenging to establish; we postpone their proof to Proposition 8.4, which
itself will draw on Lemmas 8.5, 8.6 and 8.7.

Proposition 8.3. Forintegersk > 1l andl, p,n = 0,

kig(n) <n+1, (24)

Kt pn) < max iy C kg, (kg (1)) .04, (25)
h+..Hg=l

Kieg1,0(n) = 2K 1 12pr41(n)), (26)

Yan) = 1, (27)

Wir,p(n) = p¥ri(Ki1.p(n), (28)

Vit 1.0(n) < 3Kg 112k +1(n)) + Vi 11 2r+1(n)). (29)
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Proof. We first establish (24) and (27). Consideration of the empty word gives that
K o(n) = n and ¥y o = 0. Now suppose that/ > 1 and note that the only pieces of
rank 1 are a1 If b = t"a,; Tt~ lies in H, then dgy(1,h) = land r — s = =+1,
whence |s| < |r| + 1. Thusky s(n) <n + 1and ¥ s(n) = L.

For (25) and (28), let # = t"w¢™* where w = w(ay,...,ay) is a word of length
at most / with at most p pieces and |r| < n. Let w = wy ... w, be the partition of w
into pieces, where ¢ < p. If h € H, then Lemma 6.2 implies that there exist integers
r = 710.7.....7g = s and elements Ay,..., k4 in H such that 1"—'w; = h;t".
Thus |7;| < &k,¢0w;)(|7i-1]), whence

5| < ke (- - K ep(7D) - ) = Kkep - K gn (@) - ..)

and we obtain inequality (25). For inequality (28), note that

17i] < Kiewyoow)i (7)) = Kip p(n),

whence

q q
dg(l,h) = ZdH(th) < ZW,E(%)UH—H) < Vi (Ky p(n)).
i=1

i=1 s

Finally, (26) and (29) will follow from Proposition 8.4. L
We now derive Proposition 8.1 from Proposition 8.3. We first use (24), (25) and
(26) to obtain bounds on xi ;(n) and Ky ; ,(n) in terms of Ackermann’s functions.

We then derive bounds on . ; (1) and Wy ; ,(n) from (27), (28) and (29), having fed
in our bounds on « ;(n) and Ky 7 ,(n).

Proof of Proposition 8.1. We will need the inequality, established in Lemma 3.2, that
forn > 0and k > 2,

Pr(n) = Ag—1(n + k). (30)
We first prove that there exist integers D > 1 such that

Kie,1(n) = Ag—1(Dgn + Dil), (31)

Ki,p(n) < Ag1 P (Dgn + Dyil). (32)

Inequalities (24) and (25) together imply that Ky ,(n) < n + p. Thus (31) and
(32) hold in the case k = | with Dy = 1. Now suppose that k& > 2 and that (31)

and (32) hold for smaller values of £. If / = 0, then, using (9), we calculate that
Krp(n) =n < Ag_q(n). If [ = 1, then

Ki(n) < 2Ki—1.11Q2dr(n)) by (26)
< 2Kp—111Q2Ar_1(n + k) by (30)
< 245,V @Dp_1 Ay_1(n + k) + Dy_11)
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< 243>V (A5 1 @Dg_1n + D1l +2Dx_1k)) by (8), (10), (13)
= 2Ax1(2Dg—1n + (Dy—1 + DI +2Dp k) by (4)

< Ap_1(4Dp_1n + 2(Dp—g + V) + 4Dp_1k) by (10)

< A1 (4Dp_qn + [2(Dg—q1 + 1) + 4D _1k]l) by (8).

Taking Dy = max{2(Dy_1 + 1) + 4Dy _1k, 1}, we obtain (31).
For (32) we calculate that

Kig,pn) = 0 e C kg, (K, (1) )} by (25)

Nt tlg <l

= max A1 Ag—1(Ag—1(Dgn + Dily) + Dlg—1) .. )}
h+..+lg=I by (8)

q

= mx {4 @D+ D YL} by@.ay
..+l <l =

< max {41 D (Den + DeD} by (8)

< A1V (Din + Dyl by (9).

Next, we combine (27), (28) and (29) with (31) and (32) to deduce that there exist
integers £y, Fy = 1 such that

Yri(n) < Agp_((Exn + Eil), (33)
Vs () <= A (CP(Fen + Fil). (34)

It follows from (27) and (28) that Wy ; ,(n) < p. Thus (33) and (34) hold in the case
k = 1 with £ = F;, = 1. Now suppose that £ > 2 and that (33) and (34) hold for
smaller values of k. If / = 0, then ¥ ;(n) = 0 < Ax_1(0). If/ > 1, then

Vi (n) = 3Kp1,10 Qe () + Vg1 1,1 2pp (1)) by (29)
< 3Kj—1,0,0Q2A;—1(n + k) + Yi1,1,1 (2451 (n + k)) by (30)
< 34 D@D Aj_1(n + k) + Di—yl)
+ Ae2CD @ Py Ax_in + k) + Feal) by (32)
< 3452 D41 2Dk 1 (n 4+ k) + Dal))
+ Ak (Ar 1 QFi_1(n + k) + Fial)) by (8, (10),

(13)



532 W. Dison and T. R. Riley CMH

= 34k1(2Dp—1(n + k) + (D1 + D)

+ A1 QF_i(n + k) + (Fr—y + 3)1) by (4)
< Ap—1(6Dp_1(n + k) + 3(Dy— + D)
+ Ap1QF_1(n + k) + (Fe—y + 3D by (10)

< Ap12(3Dj—1 + Fr—1)n + k) + 3Dg—q1 + Fr—1 + 1) by (12)
< A1 23D s—y + Fr_)n + 32k + DDy + 2k + 1) Fo—yg + D).

Taking £ = 3(2k + 1) Dp—y + 2k + 1) Fr— + 4, we obtain (33).
If p = Oorl = 0, then, using (9), we calculate that W ; ,(n) = 0 < Ak_1(3p)(0).
If/, p = 1, then

W 1.p(1) = pYie (K1, p(n)) by (28)
< Pk (A1 P (Din + Dyl)) by (32)
< pAp—1(Ex Ak—1 P (Dgn + Drl) + Exl)
< A1 YD Egn + (D + DERD) by (8),(9), (10), (13)
< A PPTVDREgn + (D + DE) by (1),
< A1 B2 (D Exn + (Dy + D Egl) by (9).

Taking I = (Di + 1) Ey, we obtain (34).
Finally, the proof is completed by taking Cy = max{Dy, Ej., F;} and apply-
ing (8). L]

The remainder of this section is devoted to establishing (26) and (29). This is
done in Proposition 8.4, which draws on LLemmas 8.5, 8.6 and 8.7 that follow. We
now outline our strategy.

Suppose that "ap ' wa;72¢7%, where r,s € Z, €1, € {01} and w =
wldy, ...,ax—1), represents an element # € H. Our approach will be to find el-
ements i1, i, € H, integers r', 5" and a word w’ = w'(ay, ..., ar—1) such that & is
represented by hyt” w't™* hy. The functions Ky 5 and Wi_y , , will then control
the behaviour of the subword " w’t = . Together with estimates for dg (1, k;), |r'],
|| and £(w"), this will allow us to derive bounds on |s| and dg (1, /).

As indicated by Lemma 7.3, the case & = 2 is exceptional and so will be treated
separately. For k > 3, the 711, b, ¥/, 8" and w will be produced by Lemma 8.5. This
lemma takes integers &k, # and €, with £ > 3 and € € {0, 1}, and gives an integer »n’,
an element 2 € H and a word 4 = u(aq....,ar_1) such that ("a;® = ht"uinG.
Applying Lemma 8.5 to &k, r and €; will produce r’, 7y and a word 1. Applying
Lemma 8.5 to k, s and €, will produce s, hz_l and a word #,. The word w’ will
then be defined to be the free reduction of & 1= uywu, 1.

The relationship between the input and output of Lemma 8.5 is determined by
which of the following holds:
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(i) € =0,

(ii) e =landn <0, or
(i) € = landn > 0.
A priori, this would lead to us having to consider nine distinct cases, depending on
the values of €1 and €, and the signs of r and 5. To streamline the process, Lemma 8.5
packages (1) and (i1) together: it considers the cases that either ne < 0 orne > 0. As
such, we need now only consider four cases, depending on the signs of re; and se,.

The form of w will depend on which of (i), (ii) or (iii) applies to r and €1 and to s

ande,. Lemmas 8.6 and 8.7 will be brought to bear to ensure that enough cancellation
occurs to obtain a sufficiently strong bound on £(w’).

Proposition 8.4. let h = t"ap'way = 2175 where k = 2, €1,6, € {0,1}, and
w = wlay,...,ax—1). Letn and!l be integers with |r| < nand £(w) < [. Ifh € H,
then
|s| < 2Ky—1,0,0 2pr (1)),
dg(1,h) = 3Kk—1,1,12¢x (1)) + Yr—1.1,1(2¢x (n)).

Proof. We claim that there exist 2y, € H,7',8' € Z and w’' = w'(ay,...,a5-1)
such that i = h1t" w't=%'h, in G and

7’| < 2¢(n), (35)

|s| < |s"| + L, (36)
da (L hy) < || + 1, (37)
du(Lhy) = |s'| + L, (38)
') < 1. (39)

The result follows from the claim by direct calculation. Indeed, since the number
of pieces of a word is bounded by its length,

|s"] < Ki—1.000m).200n (7] (40)
dp (Lt w't™") < Yoy eqn,ean(r'D). (41)

We will also need the inequality
Kigpn) = n, (42)

which follows immediately from consideration of the empty word. We can now
calculate that

|s| = |s'] +1 by (36)
< K10 000 (7)) + 1 by (40)
< K112 (n)) + 1 by (35), (39)
< 2Kj—1,1.1(2¢x(n)) by (18), (42)
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< du(Lhy) + dg (L7 w4+ dy (1, hy)
<"+ 1+ Vg pnyeqan(l]) + 18] + 1 by (37), (38), (41)
< 2¢r(n) + 1+ Wiy 17 Qi (1) + K1 euny.eon(lr’) + 1

by (35), (39), (40)
< Adgp(n) + V120 2¢r (7)) + Ki—1,1,:(2¢x(n)) by (18), (35), (39)
< 3Kk—1,11C2¢r (1)) + Wi—1.112Pr (1)) by (42).

We first prove the claim for k = 2. Since 19a, = (a»t){aq1)™41%471, we can
take w’ to be w and define 11, 1o, ¥’ and 5" by

15 61 = 0, T', El = 0’
h’l = i"’ —

(azt)(art)™", €1 =1, 2r—1, €1 =1,
k _ 1; 62 — 0, S! . S’ 62 — 0’
’ (alf)_s(azl)_l, €2 =1, 2s — 1, e =1.

Inequalities (36) and (39) are immediate. For (35), use the fact, from Lemma 7.3, that
¢Pp(n) = n+1. Inequality (37) is immediate ife; = 0. Ife; = 1, thenr = %(r’—I— 1),
whence |r| < %(|r’|—|—1). Butr’ # 0,s0|r| < |r'|anddy (1, k1) = |r|+1 < |r|+1.
Inequality (38) is derived similarly.

We now prove the claim for & > 3. First apply Lemma 8.5 to k, 7, €; to produce
r’, Iy and a word uq. Then apply it to k, s, €2 to produce s/, hz_l and a word 5.
Defining i := uywiu, "L, we have that 4 is represented by hlt’”’ﬁ)t_s’hz and hence
that "' Wt~ € H. It is immediate from the bounds given in Lemma 8.5 that (35)—
(38) hold. Finally, we define w’ to be the free reduction of w. To establish (39), we
consider four cases.

Case re; < 0, s¢5 < 0. We have that & = w and so it is immediate that
fw) < {(w).

Case req > 0, se; < 0. We have that w = 0" Wap_;7)...0%ar_1 Hw.
Sincet” 8" 1(ar_,~1) does not licin A, applying Lemma 6.2 to " 15~ shows that,
when 10 is freely reduced, each az_; ! in 0"~ (az_,71) ... 0%az_,~") cancels into
w. It follows from Lemma 8.7 that £{w") < £(w).

Case re; < 0, se; > 0. We have that @ = w8%az—_;)... 05 (ax_y). Since
1505~ (ar_1~") does not lie in A, applying Lemma 6.2 to * &'t~ € H shows
that, when 10 is freely reduced, each a;_; in 0%(az_;)...0° (ar_;) cancels into
w. It follows from Lemma 8.7 that £{w") < £(w).

Case req > 0, se5 > 0. We have that

@ = 0" Yap_1™Y) .. 0%ap_y Hwh(ap_y) . .. 85 Wag_y).
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Neither 7' 8" Y(ag_; V) nor 1% 8* Yap_1~1) lies in A, so we are in a position to ap-
ply Lemma 8.6. If case (i) of LLemma 8.6 occurs, then, when w is freely reduced, each
Ap—1 Vin " YWap_171) ... 0%agr—~Y) and each ap_y in 8% ap—y) ... 05 Yar_y)
cancels into w. Applying Lemma 8.7 gives that {(w’) < £(w). On the other
hand, suppose that case (ii) of Lemma 8.6 occurs, so w' is the free reduction of
0" Wap_1~H0* Yap_1). We will show that » = s, whence w’ is the empty word
and trivially £(w’) < 1. If k = 3, then t" w’t = = " 10" V(a5 Vap)t 1% =
"7*a1°~" in G. Since this element liesin H,r —s = s — r, whence r = 5. If
k = 4, then " w't = is freely equal to t" 16" =1 (a3~ 1)85 1(as)t 1. Since this lies
in H, applying Lemma 7.8 and solving the resulting equation gives r = 5. Finally,
suppose that & > 4. Lemma 7.1 gives that

O NWag_s) . 05 2 (ap_p)t "8, o W
Pult™ = i, r=s,

O a5 W ap_y DT, o> s,

By Lemma 7.6, neither 1"~ 107" %(az_,~") nor 571657 2(az_,") lies in A, since
k —2 = 3. Thus, by Lemma 6.2, both » < s and s > r lead to a contradiction. Hence
r = § as required. L

Lemma 8.5. Given integersk,n, e, withk = 3 ande € {0, 1}, there exists an integer

n', an element h € H and a word u = u(a,...,ai_y) such that t"a® = he
in G,

n] =1 < |n| < 2¢(|n]) and dp(1,h) < max{|a’|, 1}.
Furthermore,

(1) ifne <0, then u is the empty word;

(ii) ifne > 0, thenn' =n — 1,

u=6"Yap_1™"...0%_1™") and 0" N ap_1"") ¢ A.

Proof. We consider three cases.

Case ¢ = 0. We trivially obtain an instance of conclusion (i) by taking n" = n,
h = 1 and u to be the empty word. The upper bound on |»’| follows from (18)
and (21).

Case € = 1 and n < 0. Following the calculation

t"ay = 07" ap" = 07" (ak)lrﬁk(ln\)ln—rﬁk(ln\),

we obtain an instance of conclusion (i) by taking ' = n—¢y (|n]), b = 67" (ay )¢ < (7D
and u to be the empty word. It follows immediately from the definition of the function
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¢y that # € H and from Lemma 7.4 that di (1, h) = ¢r(|n]). By (18), ¢dx(|n|) is
positive whence |#'| = |n| + ¢r(|n]) and dp(1, h) < |n|. Applying (18) and (21)
gives [n] + 1 < n'] < 2x(|n]).

Case € = 1 and n > 0. Following the calculation

"ay = apap t"ar = apt™0™ (ar Dar = (@) Yap_1 ™D . 0%apH
we obtain an instance of conclusion (ii) by taking n’ =n — 1, h = (axt) and
u=0"Yar_1™H...0%ar_17Y).

The upper bound on |n’| follows from (18) and (21). The fact that P on—(g,_1™1)
does not lie in A follows from Lemmas 7.6 and 7.7. [

Lemma 8.6. Let 0 = t70%a;~ 1) ... 0%ar~Dwdar) ... 0% (ar) ™ where w =
wlay,...,ay) is freely reduced and a, b > 0. Suppose o represents an element of
Hbut t"8%ar™") ¢ A and 1°6%(a;.™") & A. Then either

(i) w has aprefix 0%ay) ... 09 Way)ay and suffixay = 02 War ™) ... 6%ar ™),
or

(i) w=0%ag)...09 Y ap) 0P Yar™) ... 0%ar ™).

Proof. Write /; for the letter a;~! of the term 6%(a;~"!) of o and write /, for the
letter ay, of the term 0% (a;) of o. Lemma 6.2 implies that, when o is freely reduced,
both /{ and /5 cancel. Let !/’ be the letter aj that cancels with /4

If /" lies in w, then /, must cancel with a letter to the right of /" in w, and we have
case (i).

On the other hand, suppose that / lies in the subword 8°%(ay) ... 8% (ay). If 1’ is
distinct from /,, then /, must cancel with an a; ~! lying to the right of /”. But this is
a contradiction, since all the occurrences of a;*! in 8%(ay) ... 0% (ay) are positive.
Thus I’ = 5. Now 09 Y(ar™Y) ... 0%a;~Hwo®(ay) . .. 057 (ay) must be freely
trivial and we have case (i1). L

Lemma8.7. Letw = 8%ay) ... 0" (ay) where v = 0. Let | be the last ay, appearing
in w and partition w as w = uv where u is the prefix of w ending with | and v is the

suffix of w coming after I. Then £{u) = £(v).

Proof. Note that u = 0%(ay) ... 0" Yag)ay, and v = 0%(az_q) ... 07 Yaz_1) by
Lemma 7.1. It thus suffices to prove that £(8'(az)) = £(8'(ax—1)) fori = 0. But
this follows by an easy induction on k from the structures of 8% (az) and 6* (az_1)
respectively given by Lemma 7.1. L
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9. Groups with Ackermannian Dehn functions

Recall that ', is the HNN extension of G over Hy in which the stable letter commutes
with all elements of Hy:

Ty i={ay,...,ar, 1, p| t_lalt =dq, t_la,-t =a;aj—1 (i > 1),
[p.ait] =1 > 0)).

Proposition 9.1. The group Ty has Dehn function ~-equivalent to n — n>.

Proof. Making the substitution & = a1/ shows that I' 1s a right-angled Artin group
with presentation {«, ¢, p | [¢, @, [p.«]). It follows that I'y is CAT(0) [16] whence
it has Dehn function ~-equivalent to #2 by [13], Proposition 1.6.11LT. L

Proposition 9.2. Forall k = 2, the group Ty has Dehn function >~-equivalent to Ay.

Proof. Letk > 2. The Dehn function of a CAT(0) group is either linear or quadratic
[11], Theorem 6.2.1, with the linear case occurring precisely when the group is
hyperbolic [11], Theorem 6.1.5. By Theorem 1.3, the group Gy, is CAT(0). However,
since it contains an embedded copy of Z?2 it is not hyperbolic [11], Theorem 6.1.10.
The Dehn function of Gy is therefore quadratic. By Theorem 1.3, the distortion
function of H; in Gy is ~=-equivalent to Ay. Plugging these two functions into
Theorem 6.20.1ILT" of [13] gives lower and upper bounds for the Dehn function of
Ty of max{n?, nAr(n)} and n A (n)? respectively, up to ~-equivalence. So, by (9),
the Dehn function of Ty is between Ay (n) and A (). But (14) implies that, for
any C > 1, the function n > Ay (n)€ is ~-equivalent to Ay. O

The ideas behind [13], Theorem 6.20.111.T", used here are most transparent via the
tools of van Kampen diagrams and corridors. For example, towards the lower bound,
consider the words

Vo 1= @i a3 A a5 g

of Section 5, which equal

Wen = Ukn (a2t) (all) (GZI)_I uk,n_l

in Gi. Observe that [vg ,. p] = 1 in I’y and that in any van Kampen diagram for
[V n. p|, there must be a p-corridor connecting the two boundary edges labelled
by p. (Figure 3 is an example of such a diagram when & = 2 and n = 4.) The word
on aif,...,ayt written along each side of this corridor must equal v, in Gy and
so freely equals wy, ,,. It follows that any van Kampen diagram for [vg ,, p] has area
at least the length of wy 5, which is 2J€; (1) + 3. So, as the length of [vs,, p] is
4n + 10, this leads to a lower bound of A (n) >~ Jf; on the Dehn function of Gy,.
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Figure 3. A van Kampen diagram for [v2 4, p] — an example of a word which represents the
identity in 'y but can only be filled by a large area diagram.
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