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Grids with dense values

Uri Shapira*

Abstract. Given a continuous function from Euclidean Space to the real line, we analyze (under
some natural assumption on the function), the set of values it takes on translates of lattices. Our
results are of the flavor: For almost any translate the set of values is dense in the set of possible
values. The results are then applied to a variety of concrete examples obtaining new information
in classical discussions in different areas in mathematics; in particular, Minkowski's conjecture
regarding products of inhomogeneous forms and inhomogeneous Diophantine approximations.

Mathematics Subject Classification (2010). llJxx, 37Axx, 37Bxx.
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1. Introduction

Given a continuous function F: R, it is a natural question in number theory
to try and analyze the set of values F takes on points of a lattice in R^. Up to a

linear change of variable this question is of course equivalent to analyzing the values

F takes at integer points. We shall be interested in an inhomogeneous variant of this
discussion; we try to analyze the set of values F takes on grids, that is on translated
lattices. We approach this discussion from a dynamical point of view which leads

us to impose some natural assumptions on the function F under consideration. We

present a variety of concrete examples in §2 and applications to classical discussions
in Diophantine approximations and the geometry of numbers in §3. The main tools

we develop to derive our results are the mixing and the coset lemmas appearing in §4.

The discussion in §4 is concerned with closures of certain random sequences on the
J-torus. It is independent of the rest of this paper and may be of independent interest

on its own.

1.1. Basic notions. The basic objects we shall work with are lattices and grids. As

we wish to exploit dynamical methods it is most convenient to present Spaces the

points of which are lattices and grids. We set G SL^(R), T SL^(Z), and let

*The author acknowledges the partial support of ISF grant number 1157/08.
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G/ r. A point gT G will be denoted by g. The space can be identified
with the space of unimodular (i.e. of covolume 1) lattices in R^. The identification
is defined by associating to g G the lattice spanned by the columns of g. We let

(G x R^)/(T x Z^). The space 7^ is identified with the space of unimodular
gnVF in R^, where by a grid we mean a set of the form g + x> {u; + x> : u; G g}.
Points of are denoted by g + u where g G G and u G R^. We endow 7^ with
the quotient topology induced from the usual topology on G and G x R^ respectively.
In fact, 7^ are smooth manifolds and inherit a complete Riemannian metric from
the corresponding group. It will be convenient to interchangeably think of the points
of 7^ as subsets of R^ or as points in the corresponding manifold. We shall
denote points of by lower case letters x, xi, y, y' etc. It is a good exercise

for the reader who is not familiar with the topologies introduced above, to work out
the meaning of two lattices (resp. grids) being close to each other when thinking of
them as subsets in R^. This boils down to saying that in a very large box, centered
at the origin, the corresponding two sets are close in the usual sense.

There is an obvious projection tt : 7^ -> given by jr(g + v) g. The über
tt~*(x) for x G is naturally identified with the torus R^/x. Note also that

naturally embeds in For a continuous function F: R^ -^Rwe define for each

y G the va/we

KFCf) {^(0 : v e j}. (1.1)

In general, it is of interest to analyze for a fixed grid y G 7^ the value set k> (y). In
particular, one would like to answer questions such as: Is the value set dense, discrete,

or does it contain zero in its closure. We make the following definition which will be

of most interest to us in this paper.

Definition 1.1. Let F: R^ -> R be a function.

(1) A grid y G is DV77 (dense values) if the value set k>(y) is dense in the

image F(R^).

(2) A lattice x G Ij is grid-DV77 if all the grids x + v, t g R^ are DV77.

(3) Given a lattice x G ^ and a probability measure /x on the torus tt~*(x), we
say that x is /x-almost surely grid-DV77 if /x-almost any grid y G tt~*(x) is

DV77 (we sometimes express this by saying that x is almost surely grid-DV77
with respect to /x)

In general, it is a hard problem to decide for a specific function F whether or
not there exist grid-DV77 lattices (although in some concrete examples the answer is

known, see §2). On the other hand, the existence of almost surely grid-DV77 lattices

(with respect to some natural family of measures) is guaranteed once some reasonable

assumptions on F are imposed. In this paper we find sufficient conditions for a lattice

x G to be almost surely grid-DV77 with respect to some measures which we now
turn to describe.
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1.2. Haar measures of subtori. Let x G be given. We say that a subspace

[/ < R^ is rational with respect to x, if x D [/ is a lattice in [/. The rational
subspaces are in one to one correspondence with the closed connected subgroups of
the torus tt"* (x). We refer to these as swfeton and denote the subtorus corresponding
to a rational subspace [/ by [/ + x. The Haar probability measure on such a subtorus
is denoted by At/. For and a subtorus [/ + x we denote by z; + ([/ + x) the

coset of z; with respect to the subtorus. The translation of the Haar measure At/ by
v, supported on the coset, is denoted by A^+t/. When [/ R^ we sometimes refer
to Ar/ as Lebesgue measure.

1.3. The invariance group. Let

Hf {g e G : F ° g F},
and

//p the connected component of the identity in Hp.

The group //p will be referred to as the zVzvarzance growp of F. It is a closed subgroup
of G and in most interesting cases it is the connected component of the identity of an

algebraic group. This happens when F is a polynomial but also in some other cases

too. We say that F is noncorapact if //p is noncompact. We shall only discuss the

noncompact case as we wish to exploit dynamical properties of the //p-action on

X^, which are not present in the compact case.

The group G acts naturally by left translation on X^, These actions commute
with TT. When thinking of the points of X^, 7^ as subsets of R^ these actions are
induced by the linear action of G on R^. The importance of the invariance group
to our discussion is that it leaves the value sets invariant; for any y £ 7^ and any
Zz £ //p,

Ff 00 ^ (/ry). (1.2)

The following lemma illustrates how dynamics comes into the game. The reader
should deduce it from equation (1.2), the continuity of F, and the topology of 7^:

Lemma 1.2 (Inheritance). y, yo ^ ^c/z ^Zzotf yo £ F/p 7 T/z^n Lp(yo) C

Lp (y). /n par/zcz/Zar, z/yo zs DVp ^Zzezz w y. Tjf y Zzas d/screte v<zZz/£ ^Zzezz so

Joes yo-

As SLj (Z) is a lattice in SL^ (R), the space Xcarries a G-invariant probability
measure. Similarly, 7^ carries aGixR^-invariant probability measure. We shall refer
to both these measures as the Haar measures. It is not hard to show that the Haar mea-
sure on disintegrates to the Lebesgue measures on the fibers {tt~* (x) : x £ X^}
with respect to the Haar measure on Xj.
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Moore's theorem [19] (see also Theorem 2.2.19 in [24]) asserts that the ergodicity
of the G-action on 7^ with respect to the Haar measure, implies the ergodicity of the
action of any noncompact subgroup of G. As we assume that #77 is noncompact it
acts ergodically on 7^. It follows in particular, that for almost any grid j G Fj, 7/77y
is dense in This gives us the following immediate corollary of the inheritance
lemma

Corollary 1.3. AZrao^ any y £ A DV77. 7n ctfAer hwzZs, aZrao^ any Zßtfzce

x G zs aZrao^ swrdy gn'FDV77 w/^A respect ^Ae LeAesgwe raeaswre q/GAe/AZZ

torws TT~*(X).

In this paper we wish to point out a fairly general connection between the dynam-
ical behavior of a lattice x e under the action of the invariance group, and the
value set ^(y) along a über tt~*(x). Our aim is to sharpen Corollary 1.3 and to
develop better understanding of the set of almost surely grid-DV77 lattices.

Before ending this introduction let us make the following definitions which we
need in order to State our results. We say that a sequence in a topological space is

cZZvergen/^ if it has no converging subsequences. An orbit 7/77 x is said to be cZZvergen/^

if for any divergent sequence A„ G #77 the sequence A„x is divergent in (i.e. if
the orbit map A 1-^ Ax is proper).

Definition 1.4. A continuous function F: R^ R is noncZegenerate if for any
subspace {0} 7^ G < R^ and any grid y G one has

{F(w + v) : w e £/,u e j} (1.3)

A typical example of a degenerate function, which we wish to avoid, is a poly-
nomial with coefficients in Z which does not depend on one of the variables (the
simplest example is F: R^ -> R given by F(zq, ^2) ^i). In this case, choosing
the grid to be simply Z^ and G to be the line corresponding to the variable that does

not appear in F, we see that the set in (1.3) is discrete.

Definition 1.5. A sequence A„ g G is said to be <zZrae>s/^m7e with respect to a

subspace G < R^ if there exist a sequence G G with -> e (e being the identity
dement in G), such that the set of restrictions |c/} is finite.

Note that any diverging sequence A„ is not almost finite with respect to R^. Also,
if Aft are diagonalizable and the eigenvalues approach either 0 or 00, then A„ is not
almost finite with respect to any nontrivial subspace.
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2. Examples and results

2.1. Main theorem. The following theorem is a simplified version of our main
result. This version is sufficiently strong for most of our applications.

Theorem 2.1. L^Z F : R^ -> R Z?£ ftOftzZ^g^ft^raZe onzZ ftOftcoftzpocZ. L^Z x E Z?£

o ZoZZzce wzYZz o ftOftdzverg^ftZ 7/77-orZftZ oft<7 Z^Z A Z?£ zZze L^Z^gz/e raeaswre o/zZze/z/ZZ

Zorz/s tt~* (x). FZz^ft x Zs A-oZftzosZ sz/reZy gnVZ-DV^.

Theorem 2.1 follows from the following theorem which is the main result in this

paper. It is proved in §5.

Theorem 2.2. L^Z F: R^ -> R Z?£ ftOft<i£g£ft£raZ£ oft<7 ftOftcoftzpocZ. L^Z x E X</ Z?£

<2 ZoZZ/ce w/zZz <2 ftOftdzverg^ftZ 7/77-orZftZ. L^Z 1/ < R^ Z?£ <2 sftZ^poce, raZzoftoZ w/^/z

respecZ Zo x, <2ft<i u; E R^. F/ftoZZy, Z^Z A^+t/ Z?£ zZze ZransZoZzoft o/zZze TZoor ftz^ftsz/re

sz/pporZed oft zZze sftZ?Zorfts 1/ + x Zry u;. FZz^ft, z/zZzere exZsZs <2 dzverg^ftZ segz/eftce
Zz^ E //t? sz/cZz zZzoZ Zz^x coftV£rg£s oftzZ Zz^ zs zzoZ oZftzos/^ftz'te w/zZz respecZ Zo [/, Z/z^ft

x zs A^+c/-ftZftzo^ sz/reZy grzVZ-DV^.

In some examples (as will be seen below) the fact that the sequence Zz„ is not
almost finite follows automatically from properties of the invariance group. We now
turn to apply these results to a variety of concrete examples.

2.2. Rank one. The following family of examples is particularly relevant to Dio-
phantineapproximations(see§3.2). Letftz, ft be positive integers such thatftz+ft <7.

Let us write vectors in R^ as column vectors (x, j)' (here Z Stands for transpose),
where x E R",y E R"\ Let F„^: R^ R be defined by F„^(x,y)
11x H2 ||y H2 (where we denote here by || • ||2 the Euclidean norm on the corresponding
space). Denoting the invariance group of F„^ by 7/«,, the reader should verify that

#n,m SO(h) x SO(m) x {a„,m(0}<eR, where

a„,„(0 diag(^,...,^,e-^,...,g-"q. (2.1)

« m

The reader should verify that F„^ is nondegenerate and noncompact. Hence, Theo-

rem 2.2 applies. In fact, we have the following theorem.

Theorem 2.3. L^Z x E Z?£ <2 ZoZZzce w/Z/z <2 ftozftZzverg^ftZ 7/„^-orZ?z'Z. FZz^ft/or

ftfty sz/Fs-poce {0} 7^ 1/ < R^, raZzoftftZ w/Z/z respecZ Zo x, oftzZ ony u; E R^, x Zs

Aw+tz-ftZzftosZ swreZy grzTZ-DV^ ^.

Froo/ Let A^+c/ be a measure as in the Statement. As the orbit 7/„^x is nondiver-

gent, there exists a diverging sequence Zz„ E 7/^ such that Zz^x converges. In fact,
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as //^,ra is the product of a compact group with the one parameter group a„^ (0, we

may assume that for some Z„ —±00. As the eigenvalues of a„^(Z„)
approach 0 or 00, it follows that is not almost finite with respect to [/. Theorem 2.2

applies and we conclude that x is A^+cz-almost surely grid-DV^ ^.
In §3.2 we apply Theorem 2.3 to Diophantine approximations and in particular,

to derive new results on nonsingular forms. We also remark here that for any lattice
1 G ^ there always exist grids which are not DV^ ^; that is, there are no grid-
DV^ ^ lattices in this case. This result was proved by Davenport [9] for the case
d 2, n, m 1 and by Einsiedler and Tseng for general d,n d — l,m l
[10]. In fact, in [10] it is shown that the set of grids which are not DVp„ ^ is of füll
Hausdorff dimension (and moreover, a winning set for Schmidt's game). See also [5]
for generalizations. The reason behind this phenomenon seems to be the fact that the
invariance group does not contain any unipotents and is of real rank 1.

2.3. The product of linear forms. Let A: E be the function A(x)
Hi We denote the invariance group 77# by A. It is the group of diagonal
matrices with positive diagonal entries in G. The reader should verify that A is

nondegenerate and noncompact. Hence, Theorem 2.2 and Theorem 2.1 apply and

we know that any lattice with a nondivergent A-orbit is almost surely grid-DV# with
respect to the Haar measure of the füll torus. We shall see in the next section that this
result has significant implications towards Minkowki's conjecture. It is worth noting
here that a Classification of the divergent A-orbits, due to Margulis, is given in [22].
It is proved there that Ax is divergent if and only if there exists 0 Gi, such that the
lattice ax is contained in Q^. There are many extra assumptions one can impose on
a lattice x to ensure that x is almost surely grid-DV# with respect to any nontrivial
measure of the form A^+c/. The following two corollaries are examples of such. The
first is proved in §5.

Corollary 2.4. LeZ x £ A</ Z?e <2 ZaZZZce w/n'c/z Joes noZ conZaZn any vector ZyZng on
Z/ze Zzyperp/anes o/z/ze axes (z/zaZ Zs Z/ze Zzyperp/anes orZ/zogona/ Zo Z/ze Standard Z?asZs

vectors). 77zen/or any snfespace {0} 7^ G < R^, raZZona/ wZz/z respect ta x, and/or
any u; £ R^, x Zs A^+cz-ß/nzosZ snre/y grZd-DV#.

Corollary 2.5. LeZ x £ A</ Z?e a ZaZZZce snc/z Z/zaZ Z/zere exZsZs a segnence

a„ diag(A\...,A) eX
snc/z Z/zaZ a^x converges and/or any 1 < Z < d, Z- dZverges. 77zen x Zs a/raosZ

snre/y grZd-DV# wZz/z respect Zo any nonZrZvZa/ raeasnre A^+c/

Proo/ This follows immediately from Theorem 2.2 as under our assumptions the

sequence a„ is not almost finite with respect to any nontrivial subspace.
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Thanks to the Classification of divergent A-orbits we have the following theorem
which shows what happens for lattices with divergent orbits.

Theorem 2.6. x E a ZatfZce a <i/v£rg£n£ A-orfoY. TTzen Fv(y) Zs

d/screte (ßnJ kA (y) JA(y))/or an}; gnYZ y E tt~* (x).

Proo/ As the value set does not change along the orbit we conclude from the classi-
fication of divergent A-orbits mentioned above, that we may assume that x C Q^. In
fact, the reader could verify that the validity of the theorem is stable under commen-
surability; that is, if x, x' are commensurable lattices (i.e. x D x' is of finite index in
both), then the sets JA (y) are discrete for any y E tt~* (x) if and only if the same is

true for any y E tt"* (x'). This enables us to assume that x ZA So, we are left to
verify that for any vector u E R^, the set

JA(v + Z') { nf Oh' + F') • ^

is discrete. To prove this, let nf + F') be a converging sequence of elements of

JAA + Z^) and assume by way or contradiction that its elements are distinct (this

rules out the possibility of having 0 for more than one £). For each Z,

the sequence + i>/) is discrete. Then we are able to take a subsequence so that

for each Z, along the subsequence, either (A^ + i>/) is constant and nonzero or it
diverges. As we assume the original sequence is converging, we must have that the

subsequence is constant from some point which contradicts our assumption.

In contrast to the Situation presented in the previous subsection (Theorem 2.3),
where nondivergence of the orbit of a lattice under the invariance group was sufficient
to ensure that the lattice is almost surely grid-DV>„^ with respect to any measure
of the form A^+c/, we work out the following example which shows the existence

of a lattice x e A3, with a nondivergent A-orbit, and a nontrivial subspace [/ < R^,
rational with respect to x, such that x is not Ac/-almost surely grid-DV#. In fact, we
shall see that the value set JA(x + w) is discrete for any w E C/

Example 2.7. In this example, as we will mix the dimensions, we denote our function
A and its invariance group A in dimension A by A</ and Aj respectively. Let

go £ SL2(R) be such that the lattice go has a compact orbit in A2 under the action of
the group A2 {diag(A, It is well known that this is equivalent to saying that

the value set Fv2(go)is discrete and does not containzero. Letg (J^) E SLs(R)
(here the zeros stand for the corresponding row and column zero vector in R^), and

let 1/ {(*, 0,0)' E R^}. Then it is clear that for any grid y g + w,w E 1/ the
value set L^Cy) is discrete. Indeed, if w (a, 0,0)', then

+ w) {(« + a)A^2(w) : « e Z, ui e go},
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which is clearly discrete as (go) is.

To see how this fits with Theorem 2.2 note that if
x X«) X«) X«Kx

a„ diag(X «X'i +'2 >)

is a sequence in A3, satisfying that converges in X3, then it quickly follows that
(Vz)

Z{ must converge and so the sequence is almost finite with respect to [/.

We remark here that for <7 > 3, the fact that the invariance group is of higher
rank, enabled the author of the present paper to prove [21] the existence of grid-

DV^ lattices. In this case such lattices are also known as GDP lattices (grid-dense-
products).

2.4. Indefinite quadratic forms. Let/?,g > 0 be integers such that <7 /? + # > 3.

Let F be the indefinite quadratic form given by F(x) x? — ^ this

case //t? SOO,#). It is not hard to see that F is nondegenerate (in the sense

of Definition 1.4) and noncompact. Hence, Theorem 2.2 applies. In fact, as T/p- is

generated by unipotents, it follows from [16] that T/p- has no divergent orbits and so

the theorem applies for any lattice.
The fact that T/p- is generated by unipotents allows one to obtain much sharper

results than Theorem 2.2. In fact, one has the following theorem and corollary which
follow from Ratner's orbit closure theorem and Lemma 1.2. We do not elaborate on
the arguments as this case is well understood and sharper results than those stated
here are available (see for example [17]).

Theorem 2.8. j G fe gZven. orfezY T/p-y Zs cZosed vaZwe

Lp (y) w JZscreto, 6tfZz£rwZs£ vaZwe Zs dense.

It is not hard to see that in this case a grid y G 7^ has a closed T/p--orbit if and

only if tt(x) g Vj has a closed orbit and y is ratZonaZ; that is to say y x + u for
u G SpanQ x. So we have a füll underStanding:

Corollary 2.9. x G Z?£ gZven. 7/*^^ 6>rZ?Z£ T/p-x Zs nctf cZosed ^Zz^n x Zs grZ<7-

DV77. orto //p-x Zs cZ<9S£<7 ^Zz^n ratZon^Z grZ<7s Zzave JZscreto vaZwe wAZZe

Zrato'cwßZ grZ<7.s are DV77. 7n any c<xre, x Z.s aZm<xst swreZy grZFDV77 wZzTz re.s/recf to

any nontrZvZaZ raeaswre A^+c/.

3. Applications

We now apply some of the above theorems. In §3.1 we apply Theorem 2.1 to derive

new Information towards Minkowskis conjecture. In §3.2 we apply Theorem 2.3

to generalize some results on inhomogeneous approximations and provide a partial
answer to a problem posed in [23].
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3.1. Minkowskis conjecture. We shall use the notation of §2.3. The following
conjecture is usually attributed to Minkowski and hence named after him. It has

remained open for over a Century.

Conjecture 3.1 (Minkowski). Let J > 2 and let TV: -> R be the function

ZV(x) nf Then, for any j G Fj one has LaK)0 PI [—2~^, 2~^] 7^ 0.

To this date Minkowskis conjecture is verified up to dimension 7. For more in-
formation about the interesting history and recent developments we refer the reader

to the recent papers [18] and [12], where it is proved for dimensions 6 and 7. We

say that <2 Zatfz'ce, x E sa/zS/Zes M/n/xnvsA/S con/ec/wre, if any one of its grids
satisfies it. In [3] Bombieri proved that for d > 5, for any lattice 1 G the set

{y E tt~*(x) : y satisfies Minkowskis conjecture} has Lebesgue measure > 2 ~.
The results of Narzullaev [20] allows one to strengthen Bombieri's result, still ob-

taining a poor lower bound. We strengthen this estimate to the best possible from the

measure theoretic point of view and prove

Theorem 3.2. iw any > 2 and any Zaftzce x E sef

{y E tt~* (x) : y Joes s<zftS/y M/n/xnvsA/S con/ec/wre} (3.1)

zS tf/LeAesgwe raeaswre

Proo/ Let x E be given. We divide the argument into cases. If the orbit ^4x of
the invariance group is nondivergent, Theorem 2.1 implies that almost any grid y of
x is DV#. In particular, Fat 00 PI [—2~^,2~^] 7^ 0 and the claim follows. If the

orbit ^4x is divergent, then thanks to the characterization of divergent orbits given
in [22] we see that there exists 0 E i such that the lattice ax has a basis consisting
of vectors with rational coordinates. We refer to such lattices as ra/fonaZ. It is well
known, (see [15]), that rational lattices satisfy Minkowskis conjecture and therefor,
the set in (3.1) is in fact empty.

We note here that ifwe impose on the lattice x the further assumptions of Corollar-
ies 2.4, 2.5 then the above theorem can be strengthened to say that the set of possible
counterexamples to Minkowskis conjecture in the torus tt~*(x), has measure zero
with respect to any measure of the form A^+c/.

3.2. Inhomogeneous approximations and nonsingular forms. In this section we
apply Theorem 2.3 to deduce some new results about nonsingular forms. We fix
some positive integers «, m and consider a matrix ^4 E Mat^xmW- In Diophantine
approximations ^4 is usually regarded as defining a System of « linear forms in m
variables, hence we shall refer to such a matrix as a/orra. In first reading it might be
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useful to take m 1 and « arbitrary, hence i Gl" Stands for a column vector, or
even « m 1 and then A Stands for a real number.

For any dimension let (•) denote the distance from Z^ in R*y i.e. for r g R*y

(v) min {||v — ?H2 : e Z^}.

Note that for i> g R*y (v) can be thought of as the distance in the torus R^/Z^
from i> to 0. Here and in the sequel we abuse notation freely and denote points on the
Ä;-torus the same as their representatives in R^.

Definition 3.3. A form A g Mat^xm (®0 is singwZ<zr if for any 5 > 0, for any large
enough A G N one can find <7 G Z such that

0 < II? II2 —
and M?) < —sr- (3.2)

Ai«

By applying Theorem 2.3 we shall deduce some results about nonsingular forms.
We shall prove Theorem 3.7 but for the meantime let us formulate a restricted version
of it in the form of the following theorem:

Theorem 3.4. Lef A G Mat^xm(^) o nonsZngwZor /orra. 77*en, /or
oZrao^ ony xgP ^/oZZowZng Zs dense Zn [0, oo),

{||f||?(,4f+ *>":* er}. (3.3)

7n por/fcwZo?; ^/oZZowZng ZzoZds:

m
For LeFeygwe oZrao^ony xgF, liminf ||</||2 (Fi</ + *) =0- (3.4)

Remarks 3.5. (1) It follows from the main theorem in [6] that for any nonsingular
form A G Mat„xmW the following Statement holds.

ForLeFesgwe oZrao^ony xGl", liminf ||</||2 + x)
|0 foruxf,
(oo form > f.

(3.5)
The innovation in Theorem 3.4 is that the liminf in the critical exponent ^ equals

zero (and in fact much more, the set in (3.3) is dense).

(2) The above theorem generalizes a series of results. When one takes « m 1

the number A is nonsingular if and only if it is irrational. In this case Kim [13] proved
the validity of (3.4) (generalizing a result of Kurzweil [14]). Tseng reproved Kim's
result [23] and raised the following question aiming to generalize Kim's result to
higher dimensions:
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Question (Tseng). For m 1, hence A g R" is a column vector, is it true that if A
does not lie in a rational hyperplane then (3.4) holds.

Galatolo and Peteriongo [11] constructed a (singular) vector in R^ giving a neg-
ative answer to Tseng's question. Nevertheless, Theorem 3.4 teils us that the answer
to Tseng's question is positive for nonsingular vectors.

(3) Following Baker [1], we say that the form A is A/gAZy singwZ<zr if there exists

6 > 0 such that for all large enough #eN one can find </ g Z such that

It is clear that a highly singular form is singular. We remark here that any vector
4 e E" which does not lie in a rational hyperplane such that the transposed form
A* is highly singular provides a negative answer to the above question. To see this
note that from the main result in [6] it follows that in this case the value of the lim inf
in (3.4) equals oo for almost any x.

We turn now to the Statement and proof of Theorem 3.7. This theorem implies
Theorem 3.4 when applied with respect to Lebesgue measure but is in fact consid-

erably stronger. Nevertheless, it is a simple application of Theorem 2.3. In order
to State this theorem we need to link the above discussion with the discussion of
§2.2, namely the discussion of values of forms on grids. Let J « + m and

recall the notation of §2.2: We write vectors in R^ as (x,y)', where x £ R"
and y g R"\ We let R^ -> R be the function given by P«,m(x,y)
II* II2 ' IIJII2 >

änd denote the invariance group of it by Recall also that

#n,m SO„(M) X SO„,(R) X {ön,m(0},eR» where is given by (2.1). For a

form A g Mat„xmW we write

where /„, denote the identity matrices of the corresponding dimensions and 0 the

zero matrix in Mat^xw(R)- We denote the lattice G spanned by the columns
of by x^. The following result of Dani is well known (see Theorem 2.14 in [7])
and furnishes the link between the nondivergence condition in Theorem 2.3 and the

nonsingularity property.

Lemma 3.6. A/orra A G Mat^xm(^) Zs smgz/Zar, z/and ozz/y Z£ orfezY Zs

d/vergerc/- z>z

Before stating Theorem 3.7 we introduce some more notation. We denote for a

subspace C/ < R^ and a vector wo R^ by A^o+t/ the natural 1/-invariant measure
supported on the affine subspace wo + t/. In relation to the notation introduced in

||tf||2<W and (v4?)<Ar (3.6)

(3.7)
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§1.2, we note that when [/ is rational with respect to a lattice x, then the measure

^wo+t/ supported on the coset wo + (t/ + x), is obtained from A^o+t/ by restricting
it to a suitable 'fundamental domain' (which is identified with the coset) and rescaling
it to be a probability measure. In particular, a set in the torus tt"* (x) is A ^+£7-null
if and only if the corresponding set in R^ is A^o+t/-null. Finally, let /?: R^ -> R"
be the projection p(x,y) x.

Theorem 3.7. For ony nonsZngwZor/orra A G Mat^xm (®0 ßnzZ/or ony raeoswre o/zZze

/orra /x /?*(Awo+£/)> wZzere 1/ 7^ {0} Zs o swZrs-poce 0/ R^, roZZonoZ r^pecZ
to zZze ZoZZZce x^, onzZ Wo Zs orfeZZrory, /or /x-oZraosZ ony x G R"

zZze s^Z {II# II (A</ + *)" • # £ Z} Zs zZense Zn [0, 00). (3.8)

Proo/ Theorem 2.3 together with Lemma 3.6 imply that x^ is A^o+tz-a.s. grid-

DV^ ^. This means that for A^Q+c/-almost any u; (x, y)' G R^ the grid x^ + u;

is DV/»„ ^. Calculating the value set we get

0*A + w) {||</ + y || || A</ + x + /?||2 : p £ Z",<7 G Z} (3.9)

Given u; (x,y)' such that x^ + u; is DVp„^, for any y g [0, 00) there are

appropriate sequences p/, <// satisfying lim/ ||#/ + y || || A<// + x + p/H2 y
(and the convergence is not trivial; i.e. there are arbitrarily large Z's with y 7^

II#/ + T II2* M#i + * + P/ II2)- Then, ||<// H2 must go to infinity which in turn im-
pliesthat ||A<// + x + 7112 -> 0 and in particular, ||A<// + x + 7112 (A<// + *).
It follows that lim/ ||<//|| (A<// + x)" y as well. We conclude that

p~* ({x G R" : (3.8) does not hold})

C {w (x, j)' e R** : the grid + u> is not }.

As the right hand side is A^o+tz-null the left hand side is A^o+tz-null too and by
definition, for p*(Awo+t/)-almost any x (3.8) holds.

The above theorem, when applied with 1/ R^, gives Theorem 3.4 as mentioned
earlier. Let us demonstrate the strength of Theorem 3.7 with the following

Corollary 3.8. m 1 onzZ « orZ?ZZrory. For ony nonsZngwZor Victor r G R"
onzZ/or oZraosZ ony Z G R zZze s^Z

{kl ((9 + 0^)" : <7 e Z}

Zs zZmse Zn [0, 00).

Proo/ Apply Theorem 3.7 with u;o 0 and 1/ being the one dimensional subspace

£/ {*(;) gR"+* :f GR}.
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4. The mixing and the coset lemma

In this section we study the following question. Given a sequence of endomorphisms
of the J-torus y^: -> and a Haar measure Ac/ of a subtorus (see the notation
of §1.2), what can one say about the closure {y^i; :n G N} for Ac/-almost any point
i; g TT**. We shall see in the coset lemma below, that unless an obvious obstacle is

present this closure must contain a coset of a nontrivial subtorus. In the course of
proving the coset lemma, which is the goal of this section, we shall prove the mixing
lemma, stated below, which is of independent interest on its own. Both the coset and

the mixing lemma are stated in somewhat greater generality than we actually need in
practice. This is dictated by the argument we use to derive the coset lemma which is

inductive, hence we need to let the dimensions of the tori to be arbitrary.
Given a compact metric space X, the space of Borel probability measures on it,

<^(X), is compact with respect to the weak* topology. When considering measures

we shall only refer to the weak* topology. If y: X -> 7 is a measurable map
between compact metric spaces, it defines a map y*: <P(X) -> <P(7), given by
y*(y/)(^4) ?7(y~*04)) for any Borel measurable ^4 c 7 and 77 e <P(X). The

following definition is new as far as we know.

Definition 4.1. Given two probability measures 77 e <P(X), v e «^(7) and a se-

quence of measurable maps y„: X -> 7, we say that y„ m/xes 77 to v if for any
probability measure 77' which is absolutely continuous with respect to 77, one has

(y«)*77' -> v weak*. In this case we sometimes say that (y«)*T7 converges mixingly
to v.

Note that the above definition is equivalent to the requirement that for any g e
7^(77), and any continuous / e C(7) one has

f /(yn(*))s(*)d»?C0 f f (4.1)

To explain the terminology, recall that given v G^(I) and a sequence of measurable

maps y„: X -> X preserving v, the sequence y„ is said to be a mixing sequence
with respect to v if for any two measurable sets ^4, 5 C X, onehas v(y„(yl) f! 2?) ->
v(^4)v(2?). This is easily seen to be equivalent to the fact that y„ mixes v to itself
using the terminology introduced above.

We note here that the fact that y„ mixes 77 to v is much stronger than the fact
that (y«)*77 -> v. In particular, one consequence that we will be interested in is the

following simple lemma.

Lemma 4.2. 7/*y„ : X -> 7 mixes 77 to v, 77-0/7770^^ <27zy x E X cZoswre

{y„x : 71 G N} c<977to777s supp(v).
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Proo/ Assume that the conclusion is false. Then, there must exist a bump function

/ G C(Y) (i.e. 0 < / < 1) with /z/v > 0 and a measurable set £2 C X
with 77(£2) > 0 such that for any x G £2, the sequence y„x never visits [/
{y G 7 : /(y) > 0}. Let g G L* (77) be the characteristic function of £2. We now see

that the left hand side of (4.1) is constantly zero white the right hand side is positive
which is the desired contradiction.

Lemma 4.3 (Mixing lemma). [/ < ß swfepace ra/fomzZ w/z/z respect
to Z^L <2 0/ /zoraoraorp/zAras Znz/wcez/ Z?y rfie

y„ G Mat^x^O^)- ^ (y«)*Ac/ wzzA* to

/x G <P(T^). ex/sfa <2 swZxs-pace L < R^/ ra/fonzzZ w/Z/z respect to Z^/
swc/z £/z<2£ /x A j/. MoreoveT; ^ segwence y^ ra/xes Ar/ to A j/ z/anz/ onZy z/^/zere zzre

zzo z/ztoger Victors ra G Z^ 0 7^ A: G Z7 szz/A/yz>zg y^ra + A: G f/^/or zzz/zzzz'toZy

razz/zy zz'5.

Before turning to the proof we make some clarifying remarks and work out some

examples. First, the fact that /x is a Haar measure is not the essence of the lemma.
It is an exercise to prove that any weak* limit of Haar measures of subtori is again a

Haar measure of a subtorus (this fact is implicitly used in the proof below). The true
content of the lemma is the fact that in the absence of the obvious obstacle to mixing
- the existence of ra, A; 7^ 0 such that y^ra + A; G [/-*- infinitely often - y„ actually
mixes Ar/ to Aj/, which is significantly stronger than the convergence of (y«)*At/ to
Aj/. Second, note that given any sequence y„ : of homomorphisms and

a Haar measure A^ of a subtorus Z7 + Z^ C T^, one can always assume, after

passing to a subsequence, that (y«)*At/ converges by the compactness of <P(T^).
Third, note that one could rephrase the condition ensuring mixing as saying that for
any m G Z^A either y^ m is eventually in or the distance from y^ra to [/-*-

goes to 00. Finally we note that when z/i z/2 2, Z7 R^, and the y/s are

automorphisms, the lemma is proved in [2] Lemma 2.2.

Example 4.4. Let y G GL^(Z) (z/ > 2) be an automorphism of the z/-torus which
has an irreducible characteristic polynomial all of whose roots are real. Then for any
subtorus Z7 + Z/ the sequence y* A^ converges mixingly to the Haar measure of the

füll z/-torus. In particular, for Ar/ almost any point ugT^ the orbit {y"v} is dense

in T^.
We split the argument into two parts. In the first we show that if a subsequence

y*'Ar/ converges to some Aj/, then L R^, which proves that y* A^ converges to
A^<z. In the second we show that the convergence is mixing. We rely on the following
two properties of y (resp. y'):

(1) y (resp. y') is diagonalizable over R with all eigenvalues distinct and of absolute
value 7^ 1. Hence, for any v G R^, y"v converges projectively to a one
dimensional eigenspace of y.
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(2) Any y-invariant (resp. y* -invariant) subspace (which is necessarily a direct sum
of eigenspaces) is not a subspace of any proper rational subspace (this follows
from the irreducibility of the characteristic polynomial).

F/rstf step. If is such that y*'At/ converges to some Aj/, then in particular, for
any t? E C/, any projective limit of y"' u is a line in F. But from (1) it follows that
such a line is an eigenspace of y and property (2) implies that F, which is a rational
subspace, must equal R^.

Second step. We need to show that there could not exist integer vectors m e Z<*,0 ^
A; E [/ such that (y*)"ra + A; E [/-*- for infinitely many «'s. From property (1)
we deduce that (y*)"ra converges projectively to a 1-dimensional eigenspace of y*
which is contained in [/-*- (as A; is fixed and (y*)"ra must diverge) which is a rational

proper subspace (as [/ 7^ {0}). This contradicts property (2).

Example 4.5. Let y« (^ i). If C/ {(x,x) E : x E R}, then although
(y«)*^t/ converges to the Haar measure of the füll 2-torus, y„ does not mix A^ to
A^2. This is because, if we choose m (1,0)* then m is a fixed point of y^ and is

not in [/"*", so we see that y^ra is not eventually in and its distance from [/-*- does

not diverge. Indeed, Lemma 4.2 does not apply and for Ac/-almost any u e the
closure {y^u} equals a coset of a lower dimensional subtorus.

Proo/q/TAe mämg Zerara«. For any J and m E Z^, let ->
C. Note that in our notation there is no reference to the dimension and the reader
should understand from the context what is the domain of the character In
particular, there will be times in which in one equation two dimensions will be mixed.
We need to find a rational subspace F < R^ such that (4.1) holds for any / E

C(T^),g £ L*(At/). A Standard argument shows that it is enough to verify the

validity of (4.1) when / and g are chosen from sets spanning dense subspaces of
C(T^) and L^(Ac/) respectively. From the Stone-Weierstrass theorem it follows
that : m e spans a dense subspace of C(T^). Also, the set je# : A; e Z7}

spans a dense subspace in L* (Ac/). This is because it forms an orthonormal basis to
L^(Ac/), which is dense in L* (Ac/) by the Cauchy-Schwarz inequality.

We conclude that we need to find a rational subspace F < R^ such that the

following convergence holds.
For any m E Z^F A; E [/,

(4.2)

T^2
(4.3)
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Given a rational subspace F < and a corresponding Haar measure Aj/, a short
calculation shows that for any m g Z^ we have

(* (4.4)
J 10 otherwise.

Working with equation (4.4), we conclude that for any choice of F the values

in (4.2), (4.3) satisfy

(l if Firn + A; g [/-*-, (l if m G F^ and A; 0,
(4.2) { (4.3) {

10 otherwise; 10 otherwise.

We conclude that given the sequence y„ mixes Ac/ to A j/ if and only if the values

of (4.2) and (4.3) agree for all large enough «'s. This implies immediately the only if
part of the lemma; if there exist m eZ^,0/i g [/ such that y^ra + A: G [/-*- for
infinitely many «'s, then for these values of « the value of (4.2) is 1 while the value
of (4.3) is 0.

We are left to prove the ifpart. Assume then that for any ra andO ^ A G [/,
y^ra + A; is eventually outside I/F We shall conclude the proof by showing that
for any subsequence of y„ there exists yet another subsequence y„ and a subspace

F, such that y„ mixes Ar/ to Aj/. To see why this concludes the proof note first that
this implies that /x Aj/, as we assume that (y«)*Ac/ converges to /x, hence any
subsequence of it converges to /x as well. In particular, this shows that F does not
depend on the initial subsequence. Second, if y„ does not mix A^ to Aj/, then the
above discussion shows that there must exist integer vectors m G Z^ andA; G 1/ such

that for infinitely many «'s the value in (4.2) is different from the value in (4.3); we
obtain a contradiction once we take as the initial subsequence those y^'s for which
the values in (4.2) and (4.3) do not agree, seeing that there could not be a subsequence

y„ of that subsequence which mixes Ar/ to Aj/.
To this end, let a subsequence of y„ be given. By a Standard diagonal argument

it has a subsequence y„ such that for any m g Z^F either y^ra G [/-*- for all but

finitely many «'s, or y^ra ^ [/-*- for all but finitely many «'s. Define

span {»i e ; y'm e for all large «'s!" ' (4.5)
span {«z G Z ^ ; y^/n g C/ for infinitely many «'s }.

We remark that the above set of integer vectors spanning F^ is clearly a group and

in fact it is the intersection of F^ with Z^; that is, if m G F^ is an integer vector,
then y^ra g [/-*- for all large enough «'s.

We now check that along the subsequence y„ the values of (4.2), (4.3) agree for
all large enough «'s, hence concluding that y„ mixes Ar/ to Aj/ as desired. There are

two cases in which the values in (4.2), (4.3) do not agree (with y„ replaced by y„).
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(1) Either y^ra + A; ^ [/-*- and A; 0 and m G F-*-, or

(2) y^ra + A; G [/-*- but either A; 7^ 0 or ra ^ F~k

It follows from the remark made after the definition of F\ that (1) cannot happen

infinitely many times. Assume (2) holds for infinitely many «'s. It cannot be that
A; 7^ 0 because of our assumption that y^ra + A; is eventually outside [/-*- for any
m and nonzero A;. On the other hand, it cannot be that A; 0 by our construction
of y„ and the definition of F^, as it would mean that eventually y^ra G [/-*-, hence

m G F~k In any case we arrive to a contradiction as desired.

We now use the mixing lemma to prove another lemma which serves as the main
tool used to prove Theorem 2.2. As in the case of the mixing lemma this lemma is of
independent interest on its own.

Lemma 4.6 (Coset lemma). Lef [/ < Z?£ <2 rarionaZ wzY/z respec/- to
Lef y„ : T^ T ^ ^ <2 segwence zndwced Zry ffce «zdtfnces'

y^ G Mat^ x^2 (^) ^ res/Wct/ons y^ | £/ /orm <2« Zn^n/to 77z£«

emfa <2 s«Z?st?<2C£ {0} 7^ F < ra/ton^Z w/Z/z respect to Z^A s«c/z

Ac/-«Zm6>^ <2«y u G ^ cZoswre {y„v : i G N} conto/ns <2 o/TAe s«Z?tor«s

F +

Note that in the above lemma the subtorus F + Z^ is fixed while its coset depend
on the initial point.

Proo/ Along the argument we will take subsequences a large number of times. We

will abuse notation and continue to denote the subsequences by the same Symbols.
The proof goes by induction on J2 but we first make some general observations. First,
by taking a subsequence we may assume that the restrictions y„|c/ are distinct and

that (y«)*At/ converges. If there are no integer vectors m G Z^F 0 7^ A; G 1/ such

that y^ra + A: G [/-*- for infinitely many «'s, then the mixing lemma implies that y„
mixes Ar/ to some Aj/. Of course F 7^ {0} as equality would imply that 1/ {0}
which contradicts our assumption that the restrictions y„ |c/ are distinct. Lemma 4.2

now teils us that for Ac/-almost any i> G T^, the closure {y^u} actually contains
the subtorus F + Z^ and the lemma follows with the additional information that
the coset we gain in the closure does not depend on the initial point. Assume now
that there exits integer vectors m G Z^, 0 / i G [/ such that y^ra + A; G [/-*- for
infinitely many «'s. By passing to a subsequence we may assume this happens for
all«. Note that the validity of the lemma is stable under a change of variable, that is if
A G (Z), i? G SL^ (Z) are two automorphisms of T^', then the lemma is true
for Z7, y„ if and only if it is true for A~* Z7, i?y„ A. It follows that we might assume
that 1/ is the Standard embedding of IF in for some 1 < r < (i.e. 1/ is the

subspace corresponding to the first r coordinates) and that A; G 1/ is collinear to ei, i.e.
there exists an integer £ such that A; —£^1 (—£,0,..., 0)' G Z^i. This is done
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by choosing A properly. By choosing i? properly we see that we may assume that

m ei. Indeed, ra was chosen tobe an integer vector satisfying y^ra+Ä; G [/-*-. Any
choice of i? results in replacing the original m by Choosing i? properly,
we can guarantee that m is an integer multiple of ei, but as it can be chosen to be

primitive, we may assume it actually equals ei. To summarize, if we assume that y^
does not mix Ar/ to some Aj/, we may assume we are in the following position:

(1) The space [/ equals the Standard copy of R** in R^*.

(2) The matrices y^ satisfy y^i — G [/"*". This means that the first row of the
matrix y„ is of the form (7,0,..., 0, * • • • *).

^
V '
r

The particular shape of the first row of the y„ 's is what enables us to have a reduction
to a lower dimension and invoke the inductive hypothesis. We now describe the proof
by induction.

77*e ö?2 1. We prove this case by induction on Ji. Note that in this case there
is just one possibility for F and only one coset; this means that we need to prove that
for Ac/-almost any i> g T^, the sequence y^u is dense in T*. For 1, y„ are

simply integer numbers and [/ R. The fact that we assume that y„ are all distinct
imply that y„ always mixes A^ to itself and we are done as explained above. Assume

we know the lemma for J and ö?2 1. If 7« mixes A^ then we are done as

explained above. If not, then we may assume after a change of variable, as explained
above, that the first coordinate of the matrix y„ (which is a row vector) is fixed and

equals to some integer 7. In particular, this forces the dimension of 1/ to be > 2, as

we assume that the restrictions y„ |c/ are all distinct. The lemma now clearly follows
from the inductive hypothesis as given a vector u (iq,..., iv, 0 0)' G [/, we
know that for almost any F (i>2,..., iv, 0 0)' the sequence y^F is dense in
T * (here y^ are the y„'s after we erase the first coordinate). But then we see that for
Ac/-almost any u G (/ the sequence y„u iq + y^F is dense in T*. This finishes
the case ö?2 1 which is the base of our induction.

77z£ /ndwcft've step. Assume we know the lemma when the dimension of the image
torus is less than ö?2- If 7« mixes Aj/ then we are done as explained above. If not,
then after a change of variable we may assume that the y„ 's are of the form

where is a column vector, ^ (0,..., 0, * • • • *), and are matrices of the

r — 1

appropriate dimension. Let us denote by y^ the matrices obtained from y„ by erasing
the first row. We view them as homomorphisms from T ^ to T The restrictions
of y^ to 1/ (which is the copy of in R^*) must all be distinct as we know this
for the y^'s and their first row is identical as far as 1/ is concerned. From the
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inductive hypothesis we conclude that there exists a nontrivial subtorus F +
in T^-i such that for Ac/-almost any t? E the closure {y^u} contains a coset

where E R^-i conclude that for such v's the closure

{y«zz} contains the coset + (F + Z^), where is obtained from by adding
to it as a first coordinate This concludes the proof.

We work out a few examples to develop a feeling about the null set of points which
corresponds to closures which do not contain a nontrivial coset. A first example is

given in Example 4.5, where the points r> (x,x)^ E [/ for which the closure of
the sequence y^z; (x, (zz + l)x) in does not contain a coset of the subtorus

corresponding to the second coordinate are exactly those with x E Q which clearly
form a Ac/-null set. As a slightly more complicated example we have

Example 4.7. Let y„ ®), and [/ R^. Then for u (x, y)' the closure of the

sequence y^z; (x, zz(x + y)) equals a coset of the subtorus corresponding to the
second coordinate if and only if z; does not lie on a line of the form {z;:x + y g}
for some g E Q. This countable collection of lines is clearly a Ac/-null set but still a

dense set of dimension 1.

Example 4.8. Let Mbea diagonalizable epimorphism of the d-torus. When we
apply the coset lemma to the case where y„ AP, it follows that for Lebesgue
almost any z; the sequence APv contains in its closure a füll coset of some nontrivial
subtorus. Recently it was proved in [5] (see also [4]) that for any given u;, the set

jz; E : inf„ d(APz;, u;) > 0} is dense and of füll dimension. In fact, it is shown
that this set is a winning set for Schmidt's game (this generalizes Dani's work [8]). In
particular, the set of points z; E which violate the conclusion of the coset lemma,
although is null, is still large from other perspectives.

5. Proofs of Theorem 2.2 and Corollary 2.4

We begin by rephrasing the coset lemma when we let the lattice vary. We shall use
the following notation: For a grid y x + u; E and z; E R^ we denote by y + z;

the grid x + (u; + v). Given a subspace F < R^ we let y + F {y + z; : z; E F} C

(x). Thus y + F is simply the coset of F passing through the grid y in the torus
tt~*(X).

Lemma 5.1. Xi, X2 E Ovo Zo/tZc^s onJ G G sz/cZz ^Zzotf Zz^xi —X2-
17 < R^ o ra/fonoZ wzYZz respect to Xi onJ tu G R^ fe gZven. Assz/rae

^Zzotf Zz^ Zs oZmos/^mto wZz/z respect to 1/ (Zn ^Zze smse o/D^nzYZon 1.5). TTzen,

^Zzere exZstfs o {0} 7^ F < R^, ra/fonoZ wzYZz respect to X2, szzc/z ^Zzotf/or

Aw+t/-ßZrao^ ony gnTZ y E tt~*(xi) ^Zze cZosz/re {/z^y : zz G N} contozVzs <2

z_y + F /or z_y E tt~* (X2).



504 U. Shapira CMH

Proo/ Firstnote that afterpassing to a subsequence we may assume that /z„(u; + xi)
converges to some grid in tt"* (X2). This clearly reduces the lemma to the case where

we are dealing with a Haar measure of a subtorus rather than a translate of it
^iü + C/ •

Let g, G G be such that x; g; T for z 1,2. There exists a sequence G G

with -> e such that e^/z^xi X2, or in other words, y^ g2 *£«^gi ^ r.
Let CF gj~*t/. Then CF is rational with respect to Z^. The fact that is not
almost finite with respect to [/ translates to the fact that the restrictions y„ | £// form an

infinite set. Hence, the coset lemma applies and gives us the existence of a subspace

{0} 7^ L' < rational with respect to Z^, such that for Ac//-almost any grid y' of
Z^ the closure of the sequence y^y' contains a coset of the subtorus L' + Z^. This
translates to the fact that for L g2L' and Ac/-almost any grid y G tt~*(xi), the
closure of the sequence e«/z«y, contains a coset of the subtorus L + *2. This implies
the same Statement for the sequence Zz^y, as 6^ -> e, and the lemma follows.

Before turning to the proof of Theorem 2.2 we note that in the terminology intro-
duced at the beginning of this section, we have that a continuous function F: -> R
is nondegenerate in the sense of Definition 1.4 if and only if for any grid y G Tj and

any subspace {0} 7^ L < onehas F^(y') F(R^).

Proq/F/ PZzeörera 2.2. Let F, x, [/, u;, and Zz„ be as in the Statement. Let x xi and

lim/z^xi X2. Lemma 5.1 implies that there exists a nontrivial subspace L <
such that for A^+c/-almost any y G tt~*(xi) the closure //^y contains a füll coset

z_y + L, for z_y G tt~*(x2). The inheritance lemma (Lemma 1.2) implies now that
such a grid satisfies

Mj) 3 IW,+f}W) ^),
which concludes the proof.

Proq/F/CoroZZary 2.4. Let x, Z7, and u; be as in the Statement. From the classifi-
cation of divergent //t?-orbits (see [22] and §2) we see that as x does not contain

any vectors on the axes, it has a nondivergent //t?-orbit. Let Zz„ G //t? be a diverg-
ing sequence such that Zz^x converges. We only need to argue why the sequence
/Zft cannot be almost finite with respect to C7. Indeed, assume that Zz„ is almost
finite with respect to Z7. After passing to a subsequence and possibly permuting
the coordinates (which we ignore in order to ease our notation) we can assume that

Zz„ diag (eh eh* where for some 1 < r < J we have that diverge for
z < r and converge for z > r. It follows that as Zz^ is almost finite with respect to Z7,

we must have 1/ < {(0, ...,(),*•••*)' G R^}. This leads to a contradiction as 1/ is

r
rational with respect to x and we assumed that x does not contain any point on the

hyperplanes of the axes.
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