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Hypersurfaces with degenerate duals and the Geometrie
Complexity Theory Program

Joseph M. Landsberg, Laurent Manivel and Nicolas Ressayre*

Abstract. Wedetermineset-theoreticdefiningequations forthe varietyDzia/
of hypersurfaces of degree J in that have dual variety of dimension at most k. We apply

2
these equations to the Mulmuley-Sohoni variety GL,,2 • [det„] C showing it is an

2
irreducible component of the variety of hypersurfaces of degree /1 in C " with dual of dimension
at most 2/i — 2. We establish additional geometric properties of the Mulmuley-Sohoni variety
and prove a quadratic lower bound for the determinantal border-complexity of the permanent.

Mathematics Subject Classification (2010). 68Q17, 14N05, 20G05, 14L30.

Keywords. Dual variety, geometric complexity theory, determinant, permanent.

1. Introduction

1.1. The GCT program. A classical problem in linear algebra is to determine or
bound the smallest integer /1 such that the permanent of an m x m matrix may be

realized as an affine linear projection of the determinant of an /1 x /1 matrix. L. Valiant
[7] proposed using this problem as an algebraic analog of the problem of comparing
the complexity classes P and WP. Denote this value of /1 by dc(perm^). He
conjectured that dc(perm^) grows faster than any polynomial in m. The best known

2
lower bound is dc(perm^) > which was proved in [3].

The definition of dc(perm^) may be rephrased as follows: let £ be a linear co-
ordinate on C, let C © c M„(C)* be any linear inclusion, where M„(C)
denotes the space of complex /1 x /1 matrices; then dc(perm^) is the smallest /1

such that perm,„ e End(M„(C)) • det„. Here n £ End(M„(C)) acts by
(w • det„)(M) := det„(w(M)).

K. Mulmuley and M. Sohoni (see [4], [5]) have proposed to study the funetion
dc(perm^), which is the smallest /1 such that perm^J is contained in the orbit
closure GL„2 • [det„] C P(S"(M„(C))*). Here S"(M„(C))* denotes the homo-

* Landsberg supported by NSF grant DMS-0805782. NR supported by the French National Research Agency
(ANR-09-JCJC-0102-01).
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geneous polynomials of degree « on M„(C). The best known lower bound on this
function had been linear. Note that dc(perm^) < dc(perm^), the potential differ-

ence being the added flexibility of limiting polynomials in GL„2 • [det„] that are not
in End(M„(C)) • [dey ]. Our main result about dc(perm^) is the following quadratic
bound.

Theorem 1.1.1. de (penn,,,) >

Consider the ideal of regulär funetions on S"(M„(C)*) that are zero on

GL„2 • [det„]. We construct an explicit sub-GL„2-module in this ideal which
has the following properties.

Theorem 1.1.2. (1) 77z£ GL„2 -raorMe conta/ns an /rraiwc/We raorMe tf/A/gAest
we/gA^

2/r(/r — l)(/r — 2)oq + (2/^ — 4/7 — l)^ + 2&>2«+i

rznrZ L« Zs ß swAspace o/TAe space q/* Aoraogeneows' poZynora/aZs o/rZ^gree /r(/r — 1)

onS"(M„(C))*.
(2) PAe vane/y GL„2 • [det„] Zs an Zrra/wcZAZe ö/*Ae Zocws <©„

o/r„.

Theorem 1.1.2 provides the first explicit module of equations in the ideal of
GL„2 • [det„]. However,thedimensiondim(£)„) growsexponentially with/i, whereas

dim(GL„2 • [det„]) is on the order of tz*. In particular, <£)„ has other irreducible com-
ponents, one of which is described in §4. A more precise Statement than Theorem 1.1.2

is Theorem 3.1.1, which implies that our equations provide a füll set of local equations
of GL„2 • [detft] around [det„].

1.2. Dual varieties. One can similarly dehne dc(P), dc(P) for an arbitrary poly-
nomial P of degree « in ZV variables. Such a polynomial, if nonzero, dehnes a

hypersurface Z(P) C P^~*. If P is reduced, the Zariski closure of the set of tan-

gent hyperplanes to this hypersurface is a subvariety Z(P)* of the dual projective
space, called the rZwaZ vane/y of Z(P). For general such P, Z(P)* is a hypersurface.

Theorem 1.2.1. Por rzny ZrredwcZAZe poZynom/rzZ P,

—, dimZ(P)* + l
dc(p) > —y—.

Theorem 1.2.1 is obtained by partially solving a question in classical algebraic ge-
ometry (Theorem 2.3.1): find set-theoretic dehning equations for the variety
Ph/aZ^^Tv C P(iS^C^) of hypersurfaces of degree rZ in CP^~* whose dual variety
has dimension at most A. Usually one only discusses dual varieties of irreducible va-
rieties, in fact there are several possible dehnitions of the dual of a reducible variety.
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Thus it would be more precise to say our equations describe Ph/aZ^^N locally on the
set of irreducible hypersurfaces.

While it was generally understood that End(M„(C)) • [det„] C GL„2 • [det„] was
a proper inclusion, it had not been known if the difference was potentially signifi-
cant. Proposition 3.5.1 exhibits an explicit codimension one GL„2(C)-orbit that is

2
contained in the boundary of GL„2 • [det„] but not contained in End(C" • det„, at

least when « is odd. In particular, we exhibit an explicit sequence of polynomials P^
with dc(P^) < dc(P^).

2. Hypersurfaces with degenerate dual varieties

2.1. B. Segre's dimension formula. Let IE be a complex vector space of dimension
Af, and P S^IE* a homogeneous polynomial of degree d. Let Z(P) C PIE
denote the hypersurface defined by P. If P is irreducible, then Z(P) and its dual

variety Z(P)*, the Zariski closure of the set of tangent hyperplanes to Z(P), are
both irreducible. The Segre dimension formula [2] states that

dim Z(P)* rank(//p^) — 2,

where //p,^ denotes the Hessian of P at u;, a general point of the affine cone over
Z(P). Recall that the Hessian can be defined, once a coordinate System on IE has

been chosen, as the Symmetrie matrix of second partial derivatives of P. Intrinsically,
it is just the quadratic form constructed from P by polarization:

Segre's formula implies that Z(P)* has dimension less or equal to if and only
if, for any u; e IE such that P(u;) 0, and any (P + 3)-dimensional subspace P
of W,

det(77/>,u, |f) 0.

Equivalently (assuming P is irreducible), for any such subspace P, the polynomial
P must divide det(//p |^), a polynomial of degree (P + 3)(J — 2).

Note that for polynomials in AP < TV variables, the maximum rank of the Hessian
is AE so in particular the determinant of the Hessian will vanish on any P of dimension
TV' + 1.

2.2. Pairs of polynomials such that one divides the other. Consider two homo-

geneous polynomials P, 2 on IE C^, of respective degrees J, e. We determine

equations on their coefficients that are implied by the condition that P divides 2.
There is an obvious Solution in the slightly different Situation where P and 2

are (non-homogeneous) polynomials in a Single variable: one simply performs the



472 J. M. Landsberg, L. Manivel and N. Ressayre CMH

Euclidian division of 2 by P and requires that the remainder P be zero. The ideal
defined by this condition is described in [6].

In our Situation, we can first restrict P and <2 to some plane L in IE, and choose
coordinates x, y on L. The restricted polynomials P^ and 2^ are then binary forms in
these coordinates. Then set y 1 and perform a Euclidean division on the resulting
polynomials in x. After rehomogenization, we obtain

öl(XjO ^L(X, (i)

where Pl(x, y) is homogeneous of degree <Z — 1. The condition P^ 0 depends on
the choice of the coordinates x and y, but up to scale, the coefficient Pl,</-i of x^~*
only depends on the choice of the coordinate y. That is, the condition Pl,</-i 0.

considered as a polynomial equation in the coefficients of P and 2 > only depends on
the choice of L and of the line Z) in L defined by the equation y 0.

To make the connection with [6], write

ÖL(*,j)
/ =0 £=1

7=0 /=1

Divide equation (1) by P^(x, y) and set x 1. We get an identity between power
series in y, to which contributes only up to degree e — <Z. We conclude that

^L,d-i/Pd is equal to the coefficient of in

^.(i. j) ^ n?=i(i - ^/) ^ ib
where the last equality can be taken as a definition of the Symmetrie functions
^m(jß — of). The condition that Pl,</-i 0 is thus equivalent to the condition
that

*e-4 + l(|ß -«) 0.

In order to get a polynomial equation in the coefficients of 2l and Pl, we modify
the expression slightly. Write

j) Sl(1. J)
A/(l + TT 00) w ^ '

whereTr(y) yA Therefore, the coefficient ofy^~^ + * can be expressed
as

*(ß>^):= —X> E
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In that sum the maximal value of r is e — <Z + 1, so we make it a polynomial by
multiplying by We conclude that 0 is equivalent to the condition
that

53 (—ii "•/></—= o- (2)
y'i H hy'r=—^ + l+i

This condition is linear in the coefficients of <2l, and of degree e — <Z + 1 in those

of Pl- It depends, as we have seen, on the choice of a preferred coordinate on L, in
particular, on the choice of the line Z) defined by this coordinate.

Note the following behavior under rescaling:

j?(aß(x,A>0,/3P(ji;,A>0) J>). (3)

2.3. Equations for hypersurfaces with degenerate duals. We apply the results

of the preceding section to the case where <2 det(ZZ/> |f), whose degree equals
e (Z + 3)(<Z — 2). Recall that F c fk is a subspace of dimension Z + 3. Once

F has been chosen, we obtain a family of equations depending, up to scale, only on
the choice of a plane L in IT and a line Z) in L. In particular, if F contains L we
get an equation depending only on the partial flag DcLcF. This equation must
therefore be a highest weight vector in some module of polynomials on S" JE*, and

its highest weight must be of the form + Za;2 + £6^+3 •

Consider a basis adapted to Z) C F C F and let (x, y, z, u;) (x, y, z*, uF)
denote its dual basis. Consider a diagonal matrix F := FuIdwyiO-
Under rescaling

(r.p)(x, j.o.o) C(-^*F^o>o). (4)

Moreover, the matrix of ZZ^^Iy? is obtained from that of ZZ^Iy? by Substitut-

ing (x, y, z, u;) by (Z~*x, £~*y, £J*z, £~*u;) and multiplying the first row and col-

umn by the second row and column by and the other rows and columns

by It follows that det (ZZr.|t?) is obtained from det(ZZp|77) by substituting
(7~V £~*y> £J*z, w) in for (x, y, z, u;) and by multiplying the result by

.-2.-2.-2(^+ 1)
U ^ u

In summary,

det(//r./>|^)(^, J,0,0) (5)

From equations (3), (4) and (5), the vector of exponents of the action of F on our
equation is:

2 + e + (<Z — l)(e — <Z + 1)\
6? — 7/ 4" 3 I

2(* + 1) /
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This vector should be

(ö
+ Z) + c\
6 + c

+ 1) /
We deduce

a —e + 3rZ — 2 + rZe — rZ^ (rZ — l)(rZ — 2)(£ + 2),
Z? e — rZ + 1 rZ(Z: + 2) — 2/: — 5,

c 2.

Notethata+2Z) + (/:+3)c rZ(rZ —1)(£+2) so this module occurs in
Dehne DwaZ^^# C P(S^ JF*) as the Zariski closure of the set of irreducible

hypersurfaces of degree rZ in PfL ~ P^~\ whose dual variety has dimension at

most

Theorem 2.3.1. 77z£ v<zne/y Ph/ßZ^^N O P(*S^(C^)*) Zzas g/ven Zry <2

co/ry SL^-morZ^ WZYA Zz/gZz£s£ we/g/tf

£2(/:, rZ) (rZ — l)(rZ — 2)(£ + 2)oq + (rZ(Z: + 2) — 2/: — 5)&>2 + 2^+3-

PZzese £gw<2/7<ms Zzave rZ^gree (/: + 2)(rZ — 1).

Note that when we constructed our equations, we did not suppose that L was
contained in F. This indicates that the module generated by these equations should
in fact be larger than the Single module with highest weight £2(/:, rZ).

Set theoretically, these equations sufhce to dehne DwaZ^^# locally, at least on
the open subset parametrizing irreducible hypersurfaces Z(P) C P(fL). Indeed,
once the plane L is hxed, by varying the line Z) one obtains a family of equations
expressing the condition that P^ divides 2l> respectively the restrictions to L of
the polynomials P and 2 det(//p l^r). But P divides 2 if and only if restricted
to each plane P divides 2> so our conditions imply that the dual variety of the
irreducible hypersurface Z(P) has dimension at most Z. On the other hand, if P is

not reduced, then these equations can vanish even if the dual of Pred is non-degenerate.
For example, if P P^ where P is a quadratic polynomial of rank 2s, then det(//p)
is a multiple of P^.

2.4. Polynomials of the form

Lemma 2.4.1. Le? t/ and L C, fef G Zze z'zredzzczWe, e L*
Z?^ ZefC/*©L* C IT* Z?^ ß ZZn^ßr ZncZws/on, arnZZ^P f^~^P G

7/*[P] G Dw<zZK,m,Af rmrZ [P] ^ [P] G Ph/<2Z^,Ar [^] ^
Ö"Ö^-I,cZ,AZ.
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Froo/ Choose abasis wi,..., v, wm+2, • • •» of VT so that

([/*)-- (u>m+2, •••,«>#)
and

Letc (d — m) (d — m — 1). Inthesecoordinates, wehavethematrixinthefollowing
(M, 1, W — M — 1) x (M, 1, W - M - 1)-block form:

0 0\
0 0

V o 0 0/

First note that det^+i (#p |f) for any F C^+*is either zero or a multiple of
F. IfdimZ(F)* Af — 2 (the expected dimension), then for a general F
detM(^pl^) will not be a multiple of F, and more generally if dimZ(F)* /c,

then for a general F C*~^, det^+2(^p If) will not be a multiple of F but for any
F C*~^, det^+3(//p |ir) will be a multiple of F.

3. The orbit of the determinant

3.1. Statement of the mainresult. LetfF M„(C), the space of complex matrices
of size /i. Its dimension is TV The hypersurface in PfF defined by the
determinant is dual to the variety of rank one matrices, the Segre prexF/ct P"~* x
pw—1 p^V —1

Intuitively, a deformation of the determinant hypersurface, subject to the condi-
tion that its dual remains of dimension 2« — 2, should have a deformation of the Segre
as its dual variety. But the Segre is rigid, its only deformations in PfF* are trans-
lates by projective automorphisms. Hence the only deformations of the determinant
hypersurface, with duals of the same dimension, should be translates by projective
automorphisms as well.

The problem with this intuitive argument is that the dual map can be highly discon-
tinuous, especially in the presence of singularities, and the determinant hypersurface
is very singular. Nevertheless, the conclusion turns out to be correct:

Fvery mö/I q/T/ze Zzyperewr/hce, hFZz <F/ßZ v<zr/e/y q/TZze

«FmerLs/on, fs <2 fry <2 prq/eczfve ßwtoraorpZz/sra.

We will prove a more precise Statement. For a polynomial F of degree « on
IT, and a Z:-dimensional subspace F of IT, we have expressed the condition that
F divides det(F//> |^) in terms of polynomial equations of degree (F + 2)(F — 1).
These equations dehne a subscheme <£>w<zZfc^# C PS" IT*, supported on the variety
Dw<zZfc^# and possibly other reducible hypersurfaces.
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Theorem 3.1.1. PZzp scZzp/t/p £)wß/2„_2 « «2 z's sraoctfZz [det„], a/7<i ^Zzp PGL^2-6>zF/£
cZosz/rp 0/ [detft] zs an Zzrpdz/c/FZp o/£)wßZ2„_2,«,«2.

In particular, Theorem 3.1.1 implies that the SL(IF)-module of highest weight
£2(2/r — 2, //) given by Theorem 2.3.1 gives local equations at [det„] of GL„2 • [det„],
of degree 2/t(/t — 1). Since Dw<zZfc^# always contains the variety of degree /7 hyper-
surfaces which are cones over a linear space of dimension iV — Ä: — 1, the zero set of
the equations is strictly larger than GL„2 • [det^]. The so-called swfosptfce var/p/y of
cones has dimension + (£ + 2)(X — /c — 2) — 1. For P 2/7 — 2, TV /z^,

this dimension is bigger than the dimension of the orbit of [det„], and therefore

T)//ßZ2„_2,«,«2 is not irreducible. We have not yet been able to find equations that

separate the orbit of [det„] from the other components of P>z/<2Z2„_2,^2.

3.2. Consequences regarding Kronecker coefflcients. A copy of the module with

highest weight 2/7 (/7 — 1)(/7—2)o;i + (2/7^—4/7 —l)a/2 + 2a/2«+i in S^("-i)(S"C^)
is in the ideal of GL(fF) • [det„],

The program suggested in [5] was to separate the determinant and permanent by
finding SL(!F)-modules in the ideal of GL„2 • [det„] such that their entire isotypic
component was in the ideal. (Also see [1] for explicit Statements regarding Kronecker
coefflcients needed to carry out the program.) This does not occur for the module
with highest weight 2/7(zz — l)(/7 — 2)&>i + (2/z^ — 4/7 — 1)0/2 + 2ö/2w+i-

For example, when zz 3, the module with highest weight 12o/i + 5&>2 + 20/7

occurs with multiplicity six in S^(S^C^), but only one copy of it is in the ideal.

3.3. Computing the Zariski tangent space. We differentiate the condition that
P divides det(///>17^) for each F. That is, write det(7//»|ir) PQf for some

polynomial <2^, and consider a curve P«, P + e/r + + O(e^), inducing a

curve Öf + + O(^). Up to O(e^), //p becomes //p + and we
deduce the identity

det(f/p,...,tfp,f/OlF + Pß'f. (6)

To exploit (6), let [u/] be a general point of the hypersurface Z(P), so the rank
of the quadratic form //p,w is exactly P + 2. Let X belong to the kernet of //p,w
Let F' be a (P + 2)-dimensional subspace of IT, transverse to the kernet of
and let F F' 0 CI. Now compute det(//p,..., //p, //jt)|f at u/. In terms of
bases adapted to the flag F' c F C IT, the matrix of //p,^ has zeros in its last row
and column, since they correspond to X, which belongs to the kernet. Removing
this row and column yields an invertible matrix, corresponding to //p,^ |fl as F' is

transverse to the kernet.

Now, det (//p,..., //p, F/^) | f evaluated at u; is the sum of the P + 3 determinants
obtained by considering the matrix of //p,w|f and replacing one column by the
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corresponding column of 7/^^ |/r. If this column is not the last one, this determinant
remains with a zero column, hence equals zero. In case the replaced column is the last

one, since the last row of the matrix of //p,^ |f vanishes, the resulting determinant
is equal to the determinant of the upper-left block, det(7/p^ |f')> multiplied by the

lower-right entry of 7/^^ that is, 77^ ^ (X) u;, X, X). Equation (6)
becomes

(7)

Note that <2 f (w) depends on both u; and X (since F depends on X), but det (77/>^ I F')
only depends on u;.

Now specialize (7) to the case P det„. Then u; must be a matrix of rank exactly
n — 1. Write IE F (8) F*, and as such, it is naturally self-dual via the involution
c (8) 0 i-^ 0 (8) c. For u; E IE, write io* g7*(8>7 IE* for the image of u; under
the involution.

Lemma 3.3.1. Kjfeß o/ran£ pvoctZy n — 1. PZzpn ^Zzp s/ngnZor Zocns o/
qnßdra/fc/orm T7det„,u;> (7/det„,u;)sing *£ o/n x n X sncZz rfnzf:

1) X(£) c u>(£), P(£*)ci»(£*), 3) w*(T) 0.

Proo/ Write u; /i (8) £i H b /«-i 0 e«-i, for some collection ei,..., of
independent vectors in F C, and some collection /i,..., /«-i of independent
linear forms. We complete these collections into bases by adding a vector and a

linear form Consider an endomorphism X ® £/. An easy
computation yields

«—i

tfdet„,u>00 det(u;,..., u>, X, X) ^3
/'=1

Taking the exterior derivative shows that the Singular locus of the quadratic form
77det„,u; isdefinedbytheconditions= Oforl < Z < n, and x// 0.

The first identities are equivalent to the conditions Im(X) C Im(u;) and Ker(X) D

Ker(u;). The third one is the condition w*(X) 0.

We summarize our analysis:

Lemma 3.3.2. Snpposp tt e S"IE* Z?£Zongs ^Zzp o/?np Zansfo' tangpn^ spocp
^[det„]<®"^2w-2 w «2- PZzpn/orony rao/r/v u; o/ran£n — 1, ondony X E (7/det„,u;)sing>

77^,u;(X) Cx,u;7r(w0,

/or scoZor ^Zzotf <7ops no£ Jpppnd on tt.



478 J. M. Landsberg, L. Manivel and N. Ressayre CMH

3.4. Immanants. Recall that each partition A of defines an irreducible represen-
tation [A] of the Symmetrie group hence a character The immanant IM^ is

the degree polynomial on defined by the formula

IMa(X) T! /A(o")^iff(D •••
(J

For example, [«] is the trivial representation and IM(„) is the permanent; [1"] is the

sign representation and IM(i«) is the determinant.
Write M„(C) ^4* (8) 5 for two copies ^4, 2? of C". Since [det„] is preserved by

the action of GL(^4) x GL(i?) by left-right multiplication, this is also the case of the
Zariski tangent space at [det„] of the GL„2-invariant scheme <0w<z/2w-2,w,w2. But as

a GL(^4) x GL(i?)-module,

s"04* (8 5)* 0 Sa^4 0 SaS*,
A

where the sum is over all partitions of /i. Since this decomposition is multiplicity
free, the submodule 7"[det„]<®w<^2w-2,w,w2 must be the direct sum of sorae of the

components:

r[det„]<ÖM^2«-2,«,«2 0 SAß*,
AeP„

for some set of partitions to be determined. Note that IM^ is contained in the

component Therefore A belongs to if and only if IM^ belongs to

We apply Lemma 3.3.2 as follows. Start with a matrix u; of rank tz — 1, which we
write as c* ® G. There is a dependence relation between ci,..., which we

can suppose to be of the form Then u; (e* + /G £*) (8) G.
By Lemma 3.3.1, (#det„,u;)sing can then be described as the set of all

«—i «—i

* I>f +WO®(£?/<7)>
/' 1 7 1

where £? 0. In bases, the first w — 1 columns cj,..., ^ of X are linear

combinations of the columns of u;, and is then given by the same
linear combination as for the last column of u;. We can thus write the entries of X as

4 X>4-
7 1 ?' 1

Substituting these expressions into //ima,u;(X) IMa(w,..., u;, X, X) yields a

polynomial u/, /x) which is quadratic in the and of degree « in the coeffi-
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cients Wy, y < «, of the first« — 1 columns of u;, denoted by u/. Explicitly,

IMa(£,U>»

EEfi"?J(E • • • u£^> • • • «vi" »<«)
i<7 XN# £,cr

+ EE<f?/(E /f/XAO)«^^ • • • ^u£(">).
i,y ^>4 er

On the other hand, expressing the last column of u; in terms of the first ones, IM^ (u;)
becomes a polynomial IM;l(u/, /x), of degree « in u/:

&,cr

By Lemma 3.3.2, for each choice of /x, the vanishing of IM;t(u/,/x) implies the

vanishing of u/, /x). Since they are both homogeneous of degree m in u/,
they must be proportional.

This gives many relations, one for each quadratic monomial in the £'s (but recall
the relation £? 0). We will need only a small subset of them:

Lemma 3.4.1. Swppose eZzae IM^ ieZongs ^[det„]<®"^2w-2,w,w2. TZzen/or any
perrawtotfZew er, ane? any /rzpZe ö/eZZs/xnct Zntegers Z, /?, g sraaZZer eZzan one Zzas eZze

rde/zfo/xs

XI XAOO 0.

*e(0»,(<?«))

Here ((Z/?), (#«)) denotes the group of permutations generated by the two simple
transpositions (Z/?) and (#ft). This group has order four, hence we get a collection of
four term relations between the values of the character Observe also that since
the characters are class funetions, Z/?#/? can be replaced by any four-tuple of distinet
integers.

Pre>e>/ Consider the coefficient of £? in IM^(£, u/, /x). It is

X • • • u£<'> • • • u£<*> • • • u;^ • • • u£<«> • • • u£<">.
er

The monomials in that sum do not appear in IM;l(u/, /x), so this sum must be zero.
Our condition is then just that the coefficient of each monomial is equal to zero,
since the monomial to which a permutation er contributes does not change when we
compose it on the right with some dement of ((Z/?), (#«)).
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We conclude:

Proposition 3.4.2. F„ {1", 21"~^}.

Froo/ We know that both partitions are contained in F„, since the first one corre-
sponds to the determinant itself, and the second one to the tangent space to the orbit
of its projectivization. Therefore, by Lemma 3.4.1, it is enough to check that the

vector space of class functions Lon such that

F(crr) 0 for all er and all z, y, A, /,
re0y)(£/)

is at most two-dimensional. We prove that F e is completely determined by its
values on permutations of cycle type (1") or (21"~^). Recall that the value of a class

funetion F on a permutation er only depends on its cycle type, which is encoded by a

partition A. We will thus write F (A) rather than F (er). Apply induetion on the number
of fixed points in er. Suppose that er has at least two nontrivial cycles. Choose i and
A in these two cycles and let y er (7), / cr(A), then the three permutations cr(7y),

cr(A/), <r(iy )(£/) have more fixed points than er. If er has a cycle of length at least

four, take i in this cycle and let y a(i), A cr(y), / cr(A), to obtain the same
conclusion. Finally, if er is of cycle type 31"~^, say with a nontrivial cycle (123),
choose (/A/ 1234. This gives the relation 2F(31"~^) + F(41"~*) + F(21"~^)
0. On the other hand, when er has cycle type 41"~*, with nontrivial cycle (1234),
let (/F/ 1324, which yields the relation F(41"~*) + F(221"~^) 0. And if er

has cycle type 221""^, with nontrivial cycles (12)(34), letting iy A/ 1234 gives the
relation F(221"~^) + 2F(21"~^) + F(l") 0. These three identities altogether
imply that F(31"~^) is determined by F(21"~^) and F(l"), and then the induetion

argument shows that F is completely determined by these two values.

Our discussion implies

^Idet«] 2,W,W2 F[^^]PGL(M^).[det^].

Theorem 3.1.1 immediately follows.

3.5. On the boundary of the orbit of the determinant. Decompose a matrix Af
into its Symmetrie and skew-Symmetrie parts and A. Define a polynomial Fa g

S"(M„(C))*by letting

Pa(M) det„04,...,X,S).
This is easily seen to be zero for /r even so we suppose «to be odd. More explicitly, Fa
can be expressed as follows. Let Pf / (A) denote the Pfaffian of the skew-Symmetrie
matrix, of even size, obtained from A by suppressing its i -th row and column. Then

^a(M) y>,pr,M)prA4).
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Proposition 3.5.1. 77z£poZynoraZ^Z Pa Z^Zongs to £Zz£ <9rZ?Z£ cZoswre q/YZze detorraZnant

Moreover, GL(fE) • Pa ZsßnZrredwcZWectfdZmensZtfntfnectfmptfnenttf/tAe&öwndßTy

o/ GL(IE) • [det„], nctf confa/ned Zn End(fE) • [det„]. /npar/fcwZßr dc(PA,m) m <
dc(PA,m)-

Proo/ The first assertion is clear: for / 0, one can dehne an invertible endo-

morphism w* of M„(C) by w*(A + S) A + ZS, where A and S are the skew-

Symmetrie and Symmetrie parts of a matrix Af in M„(C). Since the determinant of
a skew-Symmetrie matrix of odd size vanishes,

(wj • det,j)(M) det„(A + ZS) «Z det„(A,..., A, S) + O(Z^),

and therefore • [det„] converges to [Pa] when Z goes to zero.
To prove the second assertion, we compute the stabilizer of Pa inside GL(M„ (C)).

The easiest way to make this computation uses the decomposition C ® C
0 S^C" of the space of matrices into skew-Symmetrie and Symmetrie ones.

The action of GL„(C) on M„(C) by Af i-> gMg' preserves Pa up to scale, and the
Lie algebra of the stabilizer of [Pa] is a GL„(C) submodule of End(M„(C)). We
have the decomposition into GL„ (C)-modules:

End(M„(<C)) End(A^ © S*)

End(A^) © End(5^) © Hom(A^, S*) © Hom(5^, A^).

Moreover, End(A^) 0 PA and End(S^) 0 PS, where PA and PS
are distinct irreducible GL„(C)-modules. Similarly, Hom(A^, S^) 0 PAS
and Hom(S^, A^) 0 PSA, where PAS and PSA are irreducible, pairwise
distinct and different from PA and PS. Then one can check that the modules PA,
PS, PAS, PSA are not contained in the stabilizer, and that the contribution of
the remaining terms is isomorphic with 0 In particular it has dimension
2/^, which is one more than the dimension of the stabilizer of [det^]. This implies
GL(IE) • Pa has codimension one in GL(IE) • [det^]. Since it is not contained in the

orbit of the determinant, it must be an irreducible component of its boundary. Since
the zero set is not a cone (i.e., the equation involves all the variables), Pa cannot be

in End(fE) • det„ which consists of GL(fE) • det„ plus cones.

The hypersurface defined by Pa has interesting properties.

Proposition 3.5.2. PZze <P/ßZ varZ^/y Zzy/?£rsw//ßC£ Z(Pa) Zs ZsomoTpAZc to
Z<zrZs&Z cZo.sw£ o/

P{v* 0 v a t® e S*C" © A^C", t>, u; e C"} c P(M„(C)).

As expected, Z(Pa)* is close to being a Segre product P"~* x P"~*. It can
be defined as the image of the projective bündle tt: P(P) -> P"~*, where P



482 J. M. Landsberg, L. Manivel and N. Ressayre CMH

0(— 1) 0 2 is the sum of the tautological and quotient bundles on P"~*, by a sub-

linear System of 0^(1) ® tt*0(1). This sub-linear System contracts the divisor
P(<2) C P(P) to the Grassmannian G(2,/r) C PA^C".

4. A large irreducible component of

Let W*) be the projectivization of

{P e S"*IL* | dim(£/*) ifc + 2, and Pe S<*IP* forsome £/* c IL*}

the swAs-pac*? of hypersurfaces of degree rZ in P IF that are cones over some
C P^+* cPJf. The reduced, irreducible variety is of dimen-

sion P + 1 + (P + 2)(ZV — (P + 2)) and its ideal is generated in degree P + 3 (see

[8], §7.2).

If [P] e SMfejfc+2(5^W^*), then Z(P) cPIFisa cone with an (PV - £ - 1)-
dimensional vertex Plf/*)-*-, and Z(P)* c PI/*. In particular dim(Z(P)*) < A.

Proposition 4.1.1. SwZ?£+2(£^C^) <2 rerZwcerZ, zVredwcZ&Ze 0/

Proo/ Let IT* and let P g .S'n/^+il^ IL*) be a general point. Write
P G S**[/*. It follows from the Kempf-Weyman desingularization described in
§7.2 of [8] that

f[P]5n^+2(5^IL*) S^* + {(«jf)oa|MP,ß6 IL*).

If we choose a complement F* to £/* in IF* we may write

f[P]5n^+2(S^IL*) © ((w J P) o a | 1/ £ P, a £ L*}.

We must show

f[P]Ä)iia/jfc,«/,tf c f[p]5n^+2(5^IL*) C S^f/*©S"*~if/*(g>L* C S"*(L/*©L*).

Following the notation and discussion of §3.3, for P g SwZ?£+2(£^ JT*) in equa-
tion (7) we have 2^=0' since the determinant of the Hessian on any /: + 3-plane
vanishes, and we conclude that (X) 0 for all [u;] G Z(P) and for aZZ I G f.
This says the degree rZ — 2 hypersurface Z(//^_(X)) is contained in the ZrrerZwc/W*?

degree rZ hypersurface Z(P), which implies tt(X, X, 0 for all

lef, i.e., P[/>]Ä)Ma/yt^.iv >S^t/* © S^~*£/* ® L*. To obtain the restrictions
on the term in 0 F* we must consider the term of order two in 6 in the

expansion of det(///^ |^r) P«, With our choice of Splitting we may identify
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[/ (V*)-*- C VT and take F' [/. (In other words, the choice of F' is equivalent
to choosing the Splitting.) Note the order 6 term also implies in this case that 2 77 =0.

The terms on the left hand side that potentially could contribute to the coefficient
are in

det
1 ^~r ^ ;9w/9w/ 9w/9w/ 3M/3X
3^tt 3^TT

i 2 3^T
v

* a«, ax * (3at)2 * (3AT)2

^2
The actual contribution is the sum of det^+2 (#p 1£/) (^2 and terms substituting two

entries from g^-f^ for two of the columns of //p |c/ 9^-^-7. The right hand side

is zero.
Choose [u;] G Z(F) D Z(det£+2(^P |t/))> and note that we can take a basis of

elements of IT of this form, so the first term is zero. We conclude that the column
vector is a linear combination of the columns of g

which implies |f- is a

linear combination of the |^, i.e. that a j F for some w G C/ which is what

we needed to prove.
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