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Hypersurfaces with degenerate duals and the Geometric
Complexity Theory Program

Joseph M. Landsberg, Laurent Manivel and Nicolas Ressayre*

Abstract. We determine set-theoretic defining equations for the variety Dualy 4 n CIP(SZCH)
of hypersurfaces of degree o in C*V that have dual variety of dimension at most k. We apply

these equations to the Mulmuley—Sohoni variety GL,,> - [det,] C P(S ”an), showing it is an

irreducible component of the variety of hypersurfaces of degree n in C” with dual of dimension
at most 2n — 2. We establish additional geometric properties of the Mulmuley—Sohoni variety
and prove a quadratic lower bound for the determinantal border-complexity of the permanent.

Mathematics Subject Classification (2010). 68Q17. 14N05, 20G05, 141.30.

Keywords. Dual variety, geometric complexity theory, determinant, permanent.

1. Introduction

1.1. The GCT program. A classical problem in linear algebra is to determine or
bound the smallest integer # such that the permanent of an m X m matrix may be
realized as an affine linear projection of the determinant of an 7 X n# matrix. L. Valiant
[7] proposed using this problem as an algebraic analog of the problem of comparing
the complexity classes P and NP. Denote this value of n by dc(perm,,). He
conjectured that de(perm,,,) grows faster than any polynomial in 7. The best known
lower bound is de(perm,,,) > mTZ, which was proved in [3].

The definition of dc(perm,,) may be rephrased as follows: let £ be a linear co-
ordinate on C, let C & M,,(C)* € M, (C)* be any linear inclusion, where M, (C)
denotes the space of complex n x n matrices; then dc(perm,,) is the smallest n
such that £"7" perm,, € End(M,(C)) - det,. Here u € End(M,(C)) acts by
(u - det,, ) (M) := det, (u(M)).

K. Mulmuley and M. Sohoni (see [4], [5]) have proposed to study the function
dc(perm,,,), which is the smallest 7 such that [£"~" perm,,,] is contained in the orbit

closure GL,2 - [det,] € P(S"(M,(C))*"). Here S"(M,(C))* denotes the homo-

*Landsberg supported by NSF grant DMS-0805782. NR supported by the French National Research Agency
(ANR-09-JCJC-0102-01}.
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geneous polynomials of degree n on M, (C). The best known lower bound on this
function had been linear. Note that de(perm,,) < dc(perm,,), the potential differ-

ence being the added flexibility of limiting polynomials in GL,,2 - [det,| that are not
in End(M,,(C)) - [det,]. Our main result about de(perm,,,) is the following quadratic
bound.

Theorem 1.1.1. dc(perm,,) = mT2

Consider the ideal of regular functions on S"(M,(C)*) that are zero on
GL,2 - [det,]. We construct an explicit sub-GL,2-module V;, in this ideal which
has the following properties.

Theorem 1.1.2. (1) The GL ,2-module V,, contains an irreducible module of highest
weight
2n(n — D(n — w1 + 2n* —4n — Daws + 202n41

and V,, is a subspace of the space of homogeneous polynomials of degree n(n — 1)
on S"(M,(C)H*.

(2) The variety GL,,» - [det,| is an irreducible component of the zero locus D,
of V.

Theorem 1.1.2 provides the first explicit module of equations in the ideal of
GL,,2 - [det,|. However, the dimension dim(D;, ) grows exponentially withn, whereas
dim(GL,,2 - [det,]) is on the order of #*. In particular, £, has other irreducible com-
ponents, one of whichis described in §4. A more precise statement than Theorem 1.1.2
is Theorem 3.1.1, which implies that our equations provide a full set of local equations
of GL, 2 - |det,,]| around [det,, |.

1.2. Dual varieties. One can similarly define dc(P), dc(P) for an arbitrary poly-
nomial P of degree n in N variables. Such a polynomial, if nonzero, defines a
hypersurface Z(P) C PVY=1. If P is reduced, the Zariski closure of the set of tan-
gent hyperplanes to this hypersurface is a subvariety Z(P)* of the dual projective
space, called the dual variety of Z(P). For general such P, Z(P)* is a hypersurface.

Theorem 1.2.1. For any irreducible polynomial P,

dim Z(P)* + 1
. .

de(P) >

Theorem 1.2.1 is obtained by partially solving a question in classical algebraic ge-
ometry (Theorem 2.3.1): find set-theoretic defining equations for the variety
Dualy g v CTP(S 4Ny of hypersurfaces of degree d in CPV~1 whose dual variety
has dimension at most k. Usually one only discusses dual varieties of irreducible va-
rieties, in fact there are several possible definitions of the dual of a reducible variety.



Vol. 88 (2013) Dual varieties and GCT 471

Thus it would be more precise to say our equations describe Dualy z y locally on the
set of irreducible hypersurfaces.

While it was generally understood that End(M,, (C)) - [det,, ] C GL,,2 - [det, | was
a proper inclusion, it had not been known if the difference was potentially signifi-
cant. Proposition 3.5.1 exhibits an explicit codimension one GL,,2 (C)-orbit that is
contained in the boundary of GL,,2 - [det,| but not contained in End(C ”2) - det,,, at
least when # is odd. In particular, we exhibit an explicit sequence of polynomials Py,
with dc(Py) < de(Pp).

2. Hypersurfaces with degenerate dual varieties

2.1. B. Segre’s dimension formula. Let W be a complex vector space of dimension
N,and P € SYW* a homogeneous polynomial of degree d. Let Z(P) € PW
denote the hypersurface defined by P. If P is irreducible, then Z( ) and its dual
variety Z(P)”, the Zariski closure of the set of tangent hyperplanes to Z(P), are
both irreducible. The Segre dimension formula [2] states that

dim Z(P)* = rank(Hp ) — 2,

where Hp ,, denotes the Hessian of P at w, a general point of the affine cone over
Z(P). Recall that the Hessian can be defined, once a coordinate system on W has
been chosen, as the symmetric matrix of second partial derivatives of P. Intrinsically,
it is just the quadratic form constructed from P by polarization:

Hp (X)) =Pw,...,w, X, X).

Segre’s formula implies that Z(P)* has dimension less or equal to & if and only
if, for any w € W such that P(w) = 0, and any (k + 3)-dimensional subspace F
of W,
det(Hp w|F) = 0.

Equivalently (assuming P isirreducible), for any such subspace F, the polynomial
P must divide det(Hp|F ), a polynomial of degree (k + 3)(d — 2).
Note that for polynomials in N < N variables, the maximum rank of the Hessian

is N’ soin particular the determinant of the Hessian will vanish on any F of dimension
N+ 1.

2.2. Pairs of polynomials such that one divides the other. Consider two homo-
geneous polynomials P, Q on W = CV, of respective degrees d, e. We determine
equations on their coefficients that are implied by the condition that P divides Q.
There 1s an obvious solution in the slightly different sitvation where P and Q
are (non-homogeneous) polynomials in a single variable: one simply performs the



472 J. M. Landsberg, 1.. Manivel and N. Ressayre CMH

Euclidian division of ¢ by P and requires that the remainder R be zero. The ideal
defined by this condition is described in [6].

In our situation, we can first restrict P and ) to some plane L. in W, and choose
coordinates x, y on L. Therestricted polynomials £; and Q;, are then binary forms in
these coordinates. Then set y = | and perform a Euclidean division on the resulting
polynomials in x. After rehomogenization, we obtain

Qr(x,y) = PL(x,»)Dr(x,y) + ¥y 4T R (x, ), (1)

where Ry (x, v) is homogeneous of degree d — 1. The condition R; = 0 depends on
the choice of the coordinates x and y, but up to scale, the coefficient Ry 41 of P
only depends on the choice of the coordinate y. That is, the condition Ry 41 = 0,
considered as a polynomial equation in the coefficients of P and (J, only depends on
the choice of 1. and of the line D in L defined by the equation y = 0.

To make the connection with [6], write

e e
Qr(x.y) =Y qix'y " =g | [(x = yar).
=0 k=1

d d
Pr(x.y) =Y pix!y* = pa | [(x - ¥80).
=0 b=
Divide equation (1) by Pr(x, y) and set x = 1. We get an identity between power

series in y, to which Dy contributes only up to degree ¢ — d. We conclude that
Ry 4—1/paq is equal to the coefficient of ye—d+1ip

Or(Ly) _ gelleoid—ver) _ ge o
PLLy)  paTI (1—yf)  Pd n;)sm(ﬁ )y™,

where the last equality can be taken as a definition of the symmeiric functions
sm(B — «). The condition that R; 41 = 0 is thus equivalent to the condition
that

Sed1(B — ) = 0.

In order to get a polynomial equation in the coefficients of (J; and Pj, we modify
the expression slightly. Write

Qrl.y)  0ry)  Quly)
Pr(l,y)  pa(l+7(y)) Pd

> =Dma(n)™,

m=>0

where 7 (y) = Zle % ¥/ . Therefore, the coefficient of ye_d *1 canbe expressed
as

- 1 & o ipg
R(Q,P) c— _qu Z (_1)rpd J1 rpd Jr.

Pd ;20 jitet jym—d+1+i Pa
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In that sum the maximal value of r is ¢ — d + 1, so we make it a polynomial by
multiplying by p;—d+2_ We conclude that Ry 51 = O 1s equivalent to the condition
that
> (1) gi pa—jy =+ pa—j, P = 0. (2)
Jiteet jr=—d +1+i

This condition is linear in the coefficients of O, and of degree e — d + 1 in those
of Pyr. It depends, as we have seen, on the choice of a preferred coordinate on L, in
particular, on the choice of the line D defined by this coordinate.

Note the following behavior under rescaling:

R(aQ(x. Ay), BP(x. 1)) = afc~4F1e=d+1R(0, P). (3)

2.3. Equations for hypersurfaces with degenerate duals. We apply the results
of the preceding section to the case where Q = det(Hp|r), whose degree equals
e = (k + 3)(d — 2). Recall that F C W is a subspace of dimension & 4+ 3. Once
F has been chosen, we obtain a family of equations depending, up to scale, only on
the choice of a plane L in W and a line D in L. In particular, if F contains . we
get an equation depending only on the partial flag D C 1. C F. This equation must
therefore be a highest weight vector in some module of polynomials on $” W*, and
its highest weight must be of the form aw, + bwa + cwy .

Consider a basis adapted to D € L C F and let (x,y,z,w) = (x,y,z", w®)
denote its dual basis. Consider a diagonal matrix T := (ix. 1, tId /., twldw/F).
Under rescaling

(T.P)(x,y,0,0) = 17" P(x, 1x£;'y,0,0). (4)

Moreover, the matrix of Hy p|Fp is obtained from that of Hp|r by substitut-
ing (x,y,z,w) by (Ix_lx,ly_ly, 7'z, 1 w) and multiplying the first row and col-
umn by 771, the second row and column by = 1 and the other rows and columns
by {1 1 1t follows that det(Hr p |F) is obtained from det(Hp|r) by substituting
(17 x, ty_ly, 7'zt 'w) in for (x, y, z, w) and by multiplying the result by

—2,—2,—2(k+1)
2 e

f

In summary,
det(Hr.p|p)(x,y,0,0) = (72,272 % D 7¢ det(Hp | ) (x, 115 5,0,0). (5)

From equations (3), (4) and (5), the vector of exponents of the action of 7" on our
equation is:
24 e+ (d—-1)e—d +1)
e—d+3
2(k+ 1)
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This vector should be
a+b+ec
b+c¢
clk+1)

We deduce

=—e+3d-24+de—d?*=(d-1)d-2)(k+2),
—d +1=d(k +2)—2k -5,

Note that a+2b+(k+3)c = d(d—1)(k+2) sothis module occurs in W #4(d—1Dk+2),

Define Dualy g n C P(S dW*) as the Zariski closure of the set of irreducible
hypersurfaces of degree d in PW ~ PV~! whose dual variety has dimension at
most k.

Theorem 2.3.1. The variety Dualy 4 n C P(SY(CN)*) has equations given by a
copy of the SL y -module with highest weight

Qlk,d) =(d — D){d —2)(k + 2)w + (d(k +2) -2k — S)a)g + 2wp 4 3.
These equations have degree (k + 2)(d — 1).

Note that when we constructed our equations, we did not suppose that L was
contained in F. This indicates that the module generated by these equations should
in fact be larger than the single module with highest weight Q(k, d).

Set theoretically, these equations suffice to define Dualy 4 n locally, at least on
the open subset parametrizing irreducible hypersurfaces Z(P) C P(W). Indeed,
once the plane L is fixed, by varying the line D one obtains a family of equations
expressing the condition that P7 divides (7, respectively the restrictions to L of
the polynomials P and 0 = det(Hp|r). But P divides @ if and only if restricted
to each plane P divides (), so our conditions imply that the dual variety of the
irreducible hypersurface Z( P) has dimension at most k. On the other hand, if P is
notreduced, then these equations can vanish even if the dual of P4 is non-degenerate.
For example, if P = R? where R is a quadratic polynomial of rank 2s, then det(Hp)
is a multiple of R?*.

2.4. Polynomials of the form £~ R

Lemma 2.4.1. Let U = CM and L. = C, let R € S™U™* be irreducible, let £ € L*
be nonzero, let U* & L* C W* be alinear inclusion, andlet P = {4 ™R ¢ S4W*.

If [R] € Dualim ym and [R] € Dualy_1 m m, then |P] € Dual, 4 ny and [P] &
Dual,_y 4N
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Proof. Choose abasis uy,...,Up, U, Wag42,..., wy of W so that
(U = (wp42, .-, wn)

and
(L*)J_ — (ul,,_,,uM,'lUM+2,...,wN).

Lete = (d —m)(d —m—1). Inthese coordinates, we have the matrix in the following
(M, IL,N—-M —1)x(M,1,N — M — 1)-block form:

¢ai-m g 0 0
Hp = 0 ctd—m=2p
0 0 0

First note that detpys 1 (Hp|f) forany F = C M+1 g either zero or a multiple of
P. IfdimZ(R)* = M —2 (the expected dimension), then for a general F = CM+1,
detyr (Hp |F) will not be a multiple of P, and more generally if dimZ(R)* = «,
then for a general F = C**2, det, . ,(Hp|r) will not be a multiple of P but for any
F = C*T3 deteqz(Hp|F) will be a multiple of P. O

3. The orbit of the determinant

3.1. Statementofthemainresult. Let W = M, (C), the space of complex matrices
of size n. Its dimension is N = n?. The hypersurface in PW defined by the
determinant is dual to the variety of rank one matrices, the Segre product P! x
Pn—l c PN —1.

Intuitively, a deformation of the determinant hypersurface, subject to the condi-
tion that its dual remains of dimension 27 — 2, should have a deformation of the Segre
as its dual variety. But the Segre is rigid, its only deformations in P W™ are trans-
lates by projective automorphisms. Hence the only deformations of the determinant
hypersurface, with duals of the same dimension, should be translates by projective
automorphisms as well.

The problem with this intuitive argument is that the dual map can be highly discon-
tinuous, especially in the presence of singularities, and the determinant hypersurface
is very singular. Nevertheless, the conclusion turns out to be correct:

Every small deformation of the determinant hypersurface, with dual variety of the
same dimension, is a translate by a projective automorphism.

We will prove a more precise statement. For a polynomial £ of degree n on
W, and a k-dimensional subspace I of W, we have expressed the condition that
P divides det(Hp |F) in terms of polynomial equations of degree (k + 2)(n — 1).
These equations define a subscheme Dualy ,, v C PS"W?*, supported on the variety
Dualy , n and possibly other reducible hypersurfaces.
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Theorem 3.1.1. The scheme Dual,,_, , ,2 is smooth at [det, ], and the PGL,2-orbit
closure of [det,| is an irreducible component of Dualy,_; , ,2.

In particular, Theorem 3.1.1 implies that the SL.(W)-module of highest weight
Q(2n —2,n) given by Theorem 2.3.1 gives local equations at [det,| of GL,,2 - [det;]|,
of degree 2n(n — 1). Since Dualy. , n always contains the variety of degree n hyper-
surfaces which are cones over a linear space of dimension N — k — 1, the zero set of
the equations is strictly larger than GL,2 - [det,]. The so-called subspace variety of
cones has dimension (k+z+1) +(k+2)(N—-k—-2)—1.Fork =2n—-2.N = n?,
this dimension is bigger than the dimension of the orbit of [det, |, and therefore
Dualy,_5 , ,2 18 not irreducible. We have not yet been able to find equations that

separate the orbit of [det,,] from the other components of Dual,,_5 , 2.

3.2. Consequences regarding Kronecker coefficients. A copy of the module with
highest weight 2n(n— 1) (n—2)w; + 212 —4n— 1)@ + 2wy 41 in S22V (2 Cn%)
is in the ideal of GL(W) - [det,].

The program suggested in [5] was to separate the determinant and permanent by
finding SL(W )-modules in the ideal of GL,,2 - [det,] such that their entire isotypic
component was in the ideal. (Alsosee [1] for explicit statements regarding Kronecker
coefficients needed to carry out the program.) This does not occur for the module
with highest weight 2n(n — 1)(n — 2)w; + 2n% —4n — Dws + 202,41

For example, when n = 3, the module with highest weight 12w + 5@, 4+ 2a4
occurs with multiplicity six in S12(S3C?), but only one copy of it is in the ideal.

3.3. Computing the Zariski tangent space. We differentiate the condition that
P divides det(Hp|p) for each F. That is, write det(Hp|r) = PQF for some
polynomial Q , and consider a curve P = P + e + €°t + O(e?), inducing a
curve Qpe = QF +€Q% + O(e?). Upto O(e?), Hp becomes Hp + eI, and we
deduce the identity

det(Hp,...,Hp, Hy)|lr = 7nQF + PO%. (6)

To exploit (6), let [w] be a general point of the hypersurface Z(P), so the rank
of the quadratic form Hp 4, is exactly k 4+ 2. Let X belong to the kemel of Hp 4.
Let F" be a (k 4+ 2)-dimensional subspace of W, transverse to the kernel of Hp 4,
andlet F = F' @ CX. Now compute det(Hp, ..., Hp, H)|r at w. In terms of
bases adapted to the flag F' € F C W, the matrix of Hp,, has zeros in its last row
and column, since they correspond to X, which belongs to the kernel. Removing
this row and column yields an invertible matrix, corresponding to Hp | F’, as F' is
transverse to the kernel.

Now,det(Hp, ..., Hp, H;)|F evaluated at w is the sum of the k + 3 determinants
obtained by considering the matrix of Hp,,|r and replacing one column by the
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corresponding column of H, ,,| . If this column is not the last one, this determinant
remains with a zero column, hence equals zero. In case the replaced column is the last
one, since the last row of the matrix of Hp , |F vanishes, the resulting determinant
is equal to the determinant of the upper-left block, det(Hp | F), multiplied by the
lower-right entry of Hy |F, thatis, H, ,,(X) = m(w,...,w, X, X). Equation (6)
becomes

det(HP,wlF’)Hfr,w (X) =m(w)Qr(w). (7)

Note that Q r (w) depends on both w and X (since F dependson X ), butdet(Hp | F)
only depends on w.

Now specialize (7) to the case P = det,,. Then w must be a matrix of rank exactly
n—1. Write W = E ® E*, and as such, it is naturally self-dual via the involution
eRPr> P Re Forwe W, write w* € E* @ £ = W?* for the image of w under
the involution.

Lemma 3.3.1. Let w be a matrix of rank exactly n — 1. Then the singular locus of
the quadratic form Hge,, v, (Hdet,,,w )sing 15 the space of n X n matrices X such that:

D X(E) cw(E), 2) X(E")cw(E™), 3)w*(X)=0.

Proof. Writew = ¢y ®e1 + -+ + ¢p—1 @ e5—1, for some collection ey, . . . ,e,—1 of
independent vectors in £ = C”, and some collection ¢y, . .., ¢,— of independent
linear forms. We complete these collections into bases by adding a vector ¢, and a
linear form ¢,,. Consider an endomorphism X = >, =i j<n XijPi @ ;. An easy
computation yields

n—1

Hyy, w(X) =det(w,...,w, X, X) = Z(xnnx” — XpiXin).
i=1

Taking the exterior derivative shows that the singular locus of the quadratic form

Het,, w 18 defined by the conditions x,; = x;, = Oforl <7 <n,and Z::ll X = &
The first identities are equivalent to the conditions Im(X) C Im(w) and Ker(X) DO
Ker(w). The third one is the condition w*(X) = 0. L

We summarize our analysis:

Lemma 3.3.2. Suppose that w € S "W belongs to the affine Zariski tangent space
Tlget,1Dual 3,5 4 2. Then for any matrixw of rankn—1, andany X € (Haet,, w )sing,

Hmw (X) = CX,wT[(w)a

for some scalar cx o, that does not depend on .
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3.4. Immanants. Recall that each partition A of n defines an irreducible represen-
tation |A] of the symmetric group ©,,, hence a character y;. The immanant IM} is
the degree n polynomial on M,, defined by the formula

IMA(X) = Z X/l(o')xla(l) * Xano(n)-

O'EGH

For example, [n] is the trivial representation and IM,) is the permanent; [1"] is the
sign representation and IMq»y is the determinant.

Write M, (C) = A* ® B for two copies A, B of C". Since |det, | is preserved by
the action of GL.(A4) x GL(B) by left-right multiplication, this is also the case of the
Zariski tangent space at [det,] of the GL,2-invariant scheme Dual,,_, , ,2. Butas
a GL(A) x GL(B)-module, .

SMA* @ B) = P SrA® Sy B,
A

where the sum is over all partitions of #. Since this decomposition is multiplicity
free, the submodule Ti4e,Dualy,  , ,2 must be the direct sum of some of the
components:
T[detn]‘i)ualZn—Z,n,nz = @ $)A® SAB*s
AelPy,

for some set of partitions P, to be determined. Note that IM; is contained in the
component S3 A ® §; B*. Therefore A belongs to P, if and only if IM; belongs to
T[detn]o{[)ualzn_zgn’rIZ.

We apply Lemma 3.3.2 as follows. Start with a matrix w of rank 7 — 1, which we

write as Z?:l e;“ ® c;. There is a dependence relation between ¢y, .. ., ¢,, which we
n—1

can suppose to be of the form ¢,, = Z::ll pici. Thenw = > /" (e] + piey) @ c;.
By Lemma 3.3.1, (H e, )sing can then be described as the set of all

n—1 n—1
X =) (e +me)® e,
F=1

i=1

where Y71 ¢! = 0. In bases, the first # — 1 columns ¢/, ..., ¢},_, of X are linear

combinations of the columns of w, and ¢;, = Z::ll pic] is then given by the same
linear combination as for the last column of w. We can thus write the entries of X as

n—1 n—1
k ok k k
xi:E é’ijwj,z<n, Ko = E Hix; .
=1 =1

Substituting these expressions into Hm, w(X) = IMj(w,..., w, X, X) yields a
polynomial IM;; (¢, w’, ) which is quadratic in the ¢/ and of degree n in the coeffi-
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cients wj’r.‘ ., J < n, of the first 7 — 1 columns of w, denoted by w’. Explicitly,

HIM;L,U)(X)
= M, (¢, w’, )
= ZZ@??}I(ZMM(JM‘{(D---wg(f)---wg(f)---w,ff'ﬁ_l)w,f(”))
i<j p.gq k.o
1 - ' i
TS (Tt g ),
i,j P4 o

On the other hand, expressing the last column of w in terms of the first ones, IM; (w)
becomes a polynomial IM, (w’, ), of degree n in w”:

IM; (w) = IM (w', u) = Zﬂkm (U)wf(l)"'w;f(k)“‘w3£n1_1)wz(n)'
k.o

By Lemma 3.3.2, for each choice of w, the vanishing of IM; (w’, ) implies the
vanishing of IM; ({, w’, u). Since they are both homogeneous of degree m in w’,
they must be proportional.

This gives many relations, one for each quadratic monomial in the {’s (but recall

n—1

the relation » ;" é': = (). We will need only a small subset of them:

Lemma 3.4.1. Suppose that 1M, belongs to ?[detn]i)ualm—z,n,nl Then for any
permutation o, and any triple of distinct integers i, p, ¢ smaller than n, one has the
relations

Z xilor) =0.

te((ip).(gn)}

Here {(i p), (gn)) denotes the group of permutations generated by the two simple
transpositions (i p) and (gn). This group has order four, hence we get a collection of
four term relations between the values of the character y;. Observe also that since
the characters are class functions, i pgn can be replaced by any four-tuple of distinct
integers.

Proof. Consider the coefficient of é’f é’f in IM (¢, w', i). Itis

ZM:‘XA(U)W?(I) . wg(i) ... wg(p) ... w;_’-f(i) _— wg(q) o wg(n)_
ag
The monomials in that sum do not appear in IM; (w’, 1), so this sum must be zero.
Our condition is then just that the coefficient of each monomial is equal to zero,
since the monomial to which a permutation o contributes does not change when we
compose it on the right with some element of ((i p), (gn)). O
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We conclude:
Proposition 3.4.2. P, = {17, 21772},

Proof. We know that both partitions are contained in P, since the first one corre-
sponds to the determinant itself, and the second one to the tangent space to the orbit
of its projectivization. Therefore, by Lemma 3.4.1, it is enough to check that the
vector space C, of class functions F on &,,, such that

Z Flor) =0 foralloandalli, j, k, !/,
re(if)k!)
is at most two-dimensional. We prove that F € C, is completely determined by its
values on permutations of cycle type (1) or (21772). Recall that the value of a class
function F on a permutation o only depends on its cycle type, which i1s encoded by a
partition A. We will thus write F(4) rather than (o). Apply induction on the number
of fixed points in ¢. Suppose that ¢ has at least two nontrivial cycles. Choose 7 and
k in these two cycles and let j = o(i), ! = o(k), then the three permutations o (7 ),
o(kl), o(ij)(k!) have more fixed points than ¢. If ¢ has a cycle of length at least
four, take 7 in this cycleand let j = o(i), k = o(j),! = o(k), to obtain the same
conclusion. Finally, if ¢ is of cycle type 31"~3, say with a nontrivial cycle (123),
choose ijk! = 1234. This gives the relation 2F(31"73) 4+ F(41"™H) 4+ F(21"2) =
0. On the other hand, when o has cycle type 417~*, with nontrivial cycle (1234),
let ijkl = 1324, which yields the relation F(41"*) + F(221"%) = 0. Andif o
has cycle type 2217~4, with nontrivial cycles (12)(34), letting ijk! = 1234 gives the
relation F(221"~%) 4+ 2F(21"72) 4+ F(1*) = 0. These three identities altogether
imply that F(31%73) is determined by F(21%72) and F(1"), and then the induction
argument shows that F 1s completely determined by these two values. U

Our discussion implies
Tt Dutalyy_3 w2 = Tiaer,)PGLIM,,) [det,,].

Theorem 3.1.1 immediately follows.

3.5. On the boundary of the orbit of the determinant. Decompose a matrix M
into its symmetric and skew-symmetric parts S and A. Define a polynomial Py €
S™(M,(C))* by letting

Pa(M) = dety(A,.... A, S).

This is easily seen to be zero for n even so we suppose 7 to be odd. More explicitly, P
can be expressed as follows. Let Pf; (A) denote the Pfaffian of the skew-symmetric
matrix, of even size, obtained from A by suppressing its 7-th row and column. Then

Pa(M) =) si;Pfi(A) PE; (A).
LJj
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Proposition 3.5.1. The polynomial Py belongstothe orbit closure of the determinant.
Moreover, GL(W) - Pa is anirreducible codimension one component of the boundary
of GL(W)-|det,], not contained in End(W) - [det,,|. In particular dc(Pp ) = m <
dC(PA’m).

Proof. The first assertion is clear: for 1 # 0, one can define an invertible endo-
morphism u; of M, (C) by u,(A + §) = A + 1§, where A and § are the skew-
symmetric and symmetric parts of a matrix M in M,,(C). Since the determinant of
a skew-symmetric matrix of odd size vanishes,

(1 - det,) (M) = det, (A + £tS) = ntdet,(A, ..., A, 85) + O(?),

and therefore u; - [det, | converges to [ Pa| when ¢ goes to zero.

To prove the second assertion, we compute the stabilizer of Py inside GL(M, (C)).
The easiest way to make this computation uses the decomposition C" @ C" =
A?C" @ S2C" of the space of matrices into skew-symmetric and symmetric ones.
The action of GL,,(C) on M,,(C) by M > gM g’ preserves P, up to scale, and the
Lie algebra of the stabilizer of [ Pp] is a GL,(C) submodule of End(M,(C)). We
have the decomposition into GL,, (C)-modules:

End(M,,(C)) = End(A? & S§?)
= End(A?) @ End(S?) & Hom(A?, §%) & Hom(S?, A?).

Moreover, End(A2?) = gl, @ EA and End(S?) = g, ® ES, where EA and ES
are distinct irreducible GL, (C)-modules. Similarly, Hom(AZ?, §%) = sl,, & EAS
and Hom(S?2, A?) = sl,, & ESA, where EAS and E SA are irreducible, pairwise
distinct and different from £A4 and £S. Then one can check that the modules £ A,
ES, EAS, ESA are not contained in the stabilizer, and that the contribution of
the remaining terms is isomorphic with gl,, & gl,,. In particular it has dimension
2n?, which is one more than the dimension of the stabilizer of [det,]. This implies
GL(W) - P has codimension one in GL(W) - [det,]. Since itis not contained in the
orbit of the determinant, it must be an irreducible component of its boundary. Since
the zero set is not a cone (i.e., the equation involves all the variables), Pj cannot be
in End(W) - det, which consists of GL{W) - det,, plus cones. O

The hypersurface defined by £ has interesting properties.

Proposition 3.5.2. The dual variety of the hypersurface Z{ Pp ) is isomorphic to the
Zariski closure of

Piv? v Awe S’C" P A*C", v,w € C"} € P(M,(C)).

As expected, Z(P4)* is close to being a Segre product P"~! x P"~1. It can
be defined as the image of the projective bundle 7 : P(E) — P""!, where £ =
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O(—1) & Q is the sum of the tautological and quotient bundles on P”~1, by a sub-
linear system of Qg (1) @ #*@(1). This sub-linear system contracts the divisor
P(Q) C P(E) to the Grassmannian G(2,n) C PA2C".

4. A large irreducible component of Dualy 4 N
Let Suby 4, (SYW*) be the projectivization of
(P eSiW* | dim(U*) =k +2, and P e STU* for some U* C W*}

the subspace variety of hypersurtaces of degree d in PW that are cones over some
Zk ¢ P+l ¢ PW. The reduced, irreducible variety Subg42(S¢W*) is of dimen-
sionk + 1 4+ (kK + 2)(N — (k + 2)) and its ideal is generated in degree k + 3 (see
[8], §7.2).

If [P| € Subj2(S¢W*), then Z(P) C PW is a cone with an (N — k — 1)-
dimensional vertex P(I/*)~, and Z(P)* C PU*. In particular dim(Z(P)*) < k.

Proposition 4.1.1. Subp>(SYCN) is a reduced, irreducible component of
Dualy 4 N.

Proof. Let W* = C¥ and let P € Subj,(S?W*) be a general point. Write
P e §4U*. Tt follows from the Kempf—Weyman desingularization described in
§7.2 of [8] that

Tip1Suby2(SYW*) = SYU* + (2 P)oa|ue U, a e W*).
If we choose a complement V* to U* in W* we may write
Tip1Subg12(SEW*) = SIU* @ {(u I P)oa|uelU, ae V*).
We must show
Tip1Dudly an C TipySube2(STW*) € SAU* @S ' U@V ¢ SYU* V™).

Following the notation and discussion of §3.3, for P € Subj1,(SYW*) in equa-
tion (7) we have Q r = 0, since the determinant of the Hessian on any & + 3-plane
vanishes, and we conclude that H, ,,(X) = Oforall [w] € Z(P)andforall X € V.
This says the degree d — 2 hypersurface Z(H, (X)) is contained in the irreducible

3z

degree d hypersurface Z( P), which implies 7(X, X,-,...,:) = X2 = 0 for all

X eV, ie, Tjp1Dualy gy € SYU* @ S9~1U* ® V*. To obtain the restrictions
on the term in S71U* @ V* we must consider the term of order two in € in the
expansion of det(Hp, |r) = P Q. p. With our choice of splitting we may identify
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U = (V*)* C W and take F' = U. (In other words, the choice of F’ is equivalent
to choosing the splitting.) Note the order € term also implies in this case that Q' = 0.

The terms on the left hand side that potentially could contribute to the €2 coefficient
are in

2P 2 2
det du;du +€8u_,;8uj Gau X
2 2 .
€ [ 1 + 62 <t
ou; 0X (BX)2 (0X)2

; y . 2 W
The actual contribution is the sum of detz 1> (Hp|r7) ((‘?X_I)Z and terms substituting two

entries from 882 3¢ for two of the columns of Hp |y = 8 . The right hand side

is zero.
Choose [w]| € Z(P) N Z(detg+2(Hp|r7)), and note that we can take a basis of
elements of W of this form, so the first term is zero. We conclude that the column

Pz . e 2P o
vector 5 = is a linear combination of the columns of T oL which implies 7% isa
linear combination of the , l.e. that =% a” = u | P for some u € U which is what
we needed to prove. (]
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