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Remarks on the Lefschetz standard conjecture and hyperkiihler
varieties

Frangois Charles

Abstract. We study the Lefschetz standard conjecture on a smooth complex projective variety
X . Indegree 2, we reduce it to a local statement concerning local deformations of vector bundles
on X. When X is hyperkdhler, we show that the existence of nontrivial deformations of stable
hyperholomorphic bundles implies the Lefschetz standard conjecture in codimension 2.
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1. Introduction

In the fundamental paper [9] of 1968, Grothendieck states a series of conjectures
concerning the existence of certain algebraic cycles on smooth projective algebraic
varieties over an algebraically closed ground fields. Those are known as the standard
conjectures. In particular, given such a variety X of dimension n, the Lefschetz
standard conjecture predicts the existence of self-correspondences on X that give an
inverse to the operations

o5 x) — " *(x)

given by the cup-product n — k times with a hyperplane section for all £ < n. Here
H*(X) stands for any Weil cohomology theory on X, e.g. singular cohomology if
X is defined over C, or /-adic étale cohomology in characteristic ditferent from /. It
we can invert the morphism H*(X) — H?"%(X) using self-correspondences on
X, we say that the Lefschetz conjecture holds in degree k.

Let us now, and for the rest of the paper, work over C. The Lefschetz standard
conjecture then implies the other ones and has strong theoretical consequences. For
instance, it implies that numerical and homological equivalence coincide, and that
the category of pure motives for homological equivalence is semisimple. We refer to
[13] and [14] for more detailed discussions. The Lefschetz standard conjecture for
varieties which are fibered in abelian varieties over a smooth curve also implies the
Hodge conjecture for abelian varieties as shown by Yves André in [1]. Grothendieck
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actually writes in the aforementioned paper that “alongside the resolution of singu-
larities, the proof of the standard conjectures seems to [him] to be the most urgent
task in algebraic geometry”.

Though the motivic picture has tremendously developed since Grothendieck’s
statement of the standard conjectures, very little progress has been made in their
direction. The Lefschetz standard conjecture is known for abelian varieties, see [13]
and in degree 1 where it reduces to the Hodge conjecture for divisors. Aside from
examples obtained by taking products and hyperplane sections, those seem to be the
only two cases where a proof is known.

In this paper, we want to investigate further the geometrical content of the Lef-
schetz standard conjecture, and try to give insight into the specific case of hyperkihler
varieties. The original form of the Lefschetz standard conjecture for a variety X pre-
dicts the existence of specific algebraic cycles in the product X' x X. Those cycles
can be considered as family of cycles on X parametrized by X itself. Our first remark
is that the conjecture actually reduces to a general statement about the existence of
large families of algebraic cycles in X parameirized by any smooth quasi-projective
base. For this, we use Hodge theory on X.

It turns out that for those families to give a positive answer to the conjecture, it
is enough to control the local variation of the family of cycles considered. Let us
give a precise statement. Let X be a smooth projective variety, S a smooth quasi-
projective variety, and let Z € CH*(X x §) be a family of codimension k cycles in
X parametrized by §. Let Fs be the tangent sheaf of S. Using the Leray spectral
sequence for the projection onto § and constructions from Griffiths and Voisin in [8],
[25], we construct a map

k
¢z: /\Ts — H*(X,0x) & Os.

We then get the following result, which we state here only in degree 2 for simplicity,
but see Section 2.

Theorem 1. Let X be a smooth projective variety. Then the Lefschetz conjecture is
true in degree 2 for X if and only if there exists a smooth quasi-projective variety S,
a codimension 2 cycle Z in CH*(X x 8) and a point s € S such that the morphism

2
qbz_‘sf ATS,S — HZ(X, (9}(),

considered above for k = 2, is surjective.

This variational approach to the existence of algebraic cycles can be compared to
the study of semi-regularity maps as in [5].

In the following section, we give an explicit formula for ¢z in case the cycle Z
is given by the Chern classes of a family of vector bundles & on X x S. In this
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situation, we show that ¢z is expressed very simply in terms of the Kodaira—Spencer
map. Indeed, 75 ; maps to the space Ext! (&, €;). We then have a Yoneda product

Ext! (&, &) x Ext!(&;, &) — Ext?(&,, &)

and a trace map
Ext?(&s, &) — H?(X, Oy).

We show that we can express ¢z s in terms of the composition

B
$2(8): N\ Ts.s > H*(X,0x)
of those two maps, and we get the following theorem.

Theorem 2. Let X be a smooth projective variety. Then the Lefschetz conjecture is
true in degree 2 for X if there exists a smooth quasi-projective variety S, a vector
bundle & over X X S, and a point s € S such that the morphism

v,
$2(6)s: \ Ts.s > H*(X.Ox) (1)
induced by the composition above is surjective.

The main interest of this theorem is that it makes it possible to only use first-
order computations to check the Lefschetz standard conjecture, which is global in
nature, thus replacing it by a local statement on deformations of &. Of course,
when one wants to ensure that there exists a vector bundle over X that has a positive-
dimensional family of deformations, the computation of obstructions is needed, which
involves higher-order computations. However, once a family of vector bundles is
given, checking the surjectivity condition of the theorem involves only first-order
deformations.

The last part of the paper is devoted to applications of the previous results to
hyperkihler varieties. We will recall general properties of those and their hyperholo-
morphic bundles in Section 4. Those varieties have 42" = 1, which makes the last
criterion easier to check. In the case of 2-dimensional hyperkihler varieties, that is,
in the case of K3 surfaces, Mukai has investigated in [17] the 2-form on the moduli
space of some stable sheaves given by (1) and showed that it is nondegenerate. In
particular, it is nonzero. Of course, the case of surfaces is irrelevant in our work, but
we will use Verbitsky’s theory of hyperholomorphic bundles on hyperholomorphic
varieties as presented in [23]. In his work, Verbitsky extends the work of Mukai to
higher dimensions and shows results implying the nondegeneracy of the form (1)
in some cases. Using those, we are able to show that the existence of nonrigid hy-
perholomorphic bundles on a hyperkihler variety is enough to prove the Lefschetz
standard conjecture in degree 2. Indeed, we get the following.
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Theorem 3. Let X be a projective irreducible hyperkéhler variety, and let & be a
stable hyperholomorphic bundle on X. Assume that & has a nontrivial positive-
dimensional family of deformations. Then the Lefschetz conjecture is true in degree 2

for X.

In a slightly different direction, recall that the only known hyperkihler varieties,
except in dimension 6 and 10, are the two families constructed by Beauville in [4]
which are the small deformations of Hilbert schemes of points on a K3 surface or of
generalized Kummer varieties. For those, the Lefschetz standard conjecture is easy —
see [2] for a general discussion — as their cohomology comes from that of a surface.
We get the following.

Theorem 4. let n be a positive integer. Assume that for every K3 surface S, there ex-
ists a stable hyperholomorphic sheaf & with a nontrivial positive-dimensional family
of deformations on the Hilbert scheme S parametrizing subschemes of S of lengthn.
Then the Lefschetz conjecture is true in degree 2 for any projective deformation of
SUL. The same result holds for generalized Kummer varieties.

Both those results could be applied taking & to be the tangent sheat of the variety
considered, in case it has nontrivial deformations.

Those results fit well in the — mostly conjectural — work of Verbitsky as exposed
in [24] predicting the existence of large moduli spaces of hyperholomorphic bundles.
Unfortunately, we were not able to exhibit bundles satisfying the hypotheses of the
theorems.

Varieties are defined to be reduced and irreducible. All varieties and schemes are
over the field of complex numbers.

Acknowledgements. It is a great pleasure to thank Claire Voisin for her help and
support, as well as many enlightening discussions during the writing of this paper. I
am grateful to Eyal Markman for kindly explaining to me the results of [16]. I would
also like to thank Daniel Huybrechts for pointing out the relevance of Verbitsky’s
results and for the interesting discussions we had around the manuscript during his
nice invitation to the university of Bonn, as well as Burt Totaro and the referee for
many useful comments.

2. General remarks on the Lefschetz standard conjecture

This section is devoted to some general remarks on the Lefschetz standard conjec-
ture. Although some are well known to specialists, we include them here for ease of
reference. Let us first recall the statement of the conjecture.

Let X be a smooth projective variety of dimension# over C. Let§ € H?(X, Q)be
the cohomology class of a hyperplane section of X. According to the hard Lefschetz
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theorem, see for instance [27], Chapter 13, for all £ € {0, ..., n}, cup-product with
£"* induces an isomorphism

UE"TR L HNX, Q) — HP R X, Q).

The Lefschetz standard conjecture was first stated in [9], conjecture B(X). Itis
the following.

Conjecture 5. Let X and & be as above. Then for all k € {0, ..., n}, there exists an
algebraic cycle Z of codimension k inthe product X x X such that the correspondence

1Z]+: H* (X, Q) -» H*(X,Q)
is the inverse of wE" K,

If this conjecture holds for some specific £ on X, we will say the Lefschetz
conjecture holds in degree &k for the variety X.

Let us recall the following easy lemma, see [14], Theorem 4.1, which shows in
particular that the Lefschetz conjecture does not depend on the choice of a polariza-
tion.

Lemma 6. et X and £ be as above. Then the Lefschetz conjecture holds in degree k
for X if and only if there exists an algebraic cycle Z of codimension k in the product
X X X such that the correspondence

[Z]e: B H(X. Q) - HY(X. Q)
is bijective.
Proof. Let Z be as in the lemma. The morphism
(Z]s o (ug" o [Z]0)7": B H(X, Q) — HN(X. Q)

is the inverse of UE" % - H¥ (X, Q) — H?*"*(X, Q). Now by the Cayley—Hamilton
theorem, the automorphism (UE" % o [Z],)7! of H?"%(X,Q) is a polynomial
in (UE"F o [Z]4). As such, it is defined by an algebraic comrespondence. By
composition, the morphism [Z], o (UE"™* o [Z],)™! is defined by an algebraic
correspondence, which concludes the proof. (]

For the next results, we will need to work with primitive cohomology classes. Let
us recall some notation. Let S be a smooth polarized projective variety of dimension
[. Let L denote cup-product with the cohomology class of a hyperplane section. For
any integer k& in {0, ..., 1}, let HFk (S, Q)prim denote the primitive part of Hk(S, ),
that is, the kernel of

Ll—k+1: Hk(S,Q) —>H21_k+2(S,Q).
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The cohomology groups of S in degrees less than / then admit a Lefschetz decom-
position

HYS,Q) = P L H* (S, Q)prim-

i=0

The following lemma is well known, but we include it here for ease of reference as
well as to keep track of the degrees for which we have to use the Lefschetz standard
conjecture.

Lemma 7. Let k be an integer, and let §' be a smooth projective scheme of dimension
| = k. Consider the Lefschetz decomposition

H5(5,Q) = P L' H** (S, Q)prim,

i>0

where L is the cup-product by the class of a hyperplane section. Assume that the
Lefschetz conjecture holds for S in degrees up to k — 2. Then the projections
H*(S,Q) = LI HF2(S, Q)prim are induced by algebraic correspondences.

Proof. By induction, it is enough to prove that the projection
H*(5.Q) — LH*(5.Q)

is induced by an algebraic correspondence. Let Z C S X § be an algebraic cycle
such that

|Z],: H?7542(5,Q) — H*2(S5,Q)

is the inverse of L!=%+2_ Then the composition L o [Z], o L'7**1 is the desired

projection since Hk(S, @Q)prim 18 the kernel of LIk 4y Hk(S, Q). O

The next result is the starting point of our paper. It shows that the Lefschetz
standard conjecture in degree k on X is equivalent to the existence of a sufficiently
big family of codimension k algebraic cycles in X, and allows us to work on the
product of X with any variety.

Proposition 8. Let X be a smooth projective variety of dimension n, and let k < n
be an integer. Then the Lefschetz conjecture is true in degree k for X if and only if
there exists a smooth projective scheme S of dimension | > k satisfying the Lefschetz
conjecture in degrees up to k — 2 and a codimension k cycle Z in X x S such that
the morphism

[Z]+: HY7%(S,Q) > H*(X,Q)

induced by the correspondence 7 is surjective.
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Proof. Taking § = X, the "only if” part is obvious. For the other statement, fix
a polarization on §, and let 1. be the cup-product with the class of a hyperplane
section of S. Consider the morphism s: H*(S, Q) — H*(S, Q) which is given by
multiplication by (—1)! on L H¥=2(§, Q) prim. By the Hodge index theorem, the
pairing

ox(§,C)® H*S,C) > C, a®p H[auL""(s(ﬁ))
S

turns H%(S, Q) into a polarized Hodge structure. Furthermore, Lemma 7 shows that
s 1s induced by an algebraic correspondence.

We have a morphism [Z],: H¥7%(§,Q) — H¥*(X,Q) which is surjective. Its
dual [Z]*: H?"%(X,Q) — H*(S,Q) is injective, where # is the dimension of X .
Let us consider the composition

[Z]« 0o L' % oso[Z]*: H™*(X,Q) — H*(X, Q).

It is defined by an algebraic correspondence, and it is enough to show that it is a
bijection. Since H2"~*(X, Q) and H*(X, Q) have the same dimension, we only
have to prove it is injective.

Let « € H2"%(X Q) lie in the kernel of the composition. For any f €
H2> k(X Q), we get

(Z]*B) v (L' o 9)([Z]*)) = 0.

Since [Z]* (H2"~%(X, Q)) is a sub-Hodge structure of the polarized Hodge structure
H¥*(S,Q), the restriction of the polarization

(u,v) = / uu (Lo 5)(w)
S

on H*(S, Q) to this subspace is nondegenerate, which shows that « is zero. O

Remark 9. Using the weak Lefschetz theorem, one can always reduce to the case
where § is of dimension k.

Corollary 10. let X be a smooth projective variety of dimension n, and let k < n
be an integer. Assume the Lefschetz conjecture for all varieties in degrees up to 'k —2
and that the generalized Hodge conjecture is true for H*(X, Q).

Then the Lefschetz conjecture is true in degree k for X if and only if there exists
a smooth projective scheme S, of dimension [, and a codimension k cycle 7Z in

CH*(X x S) such that the morphism

HY(S, Q%) - H* (X, 0x) (2)
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induced by the morphism of Hodge structures

[Z]+: H¥%(S,C) = H*(X,C)
Is surjective.

Remark 11. Note that this corollary is unconditional for & = 2 since the generalized
Hodge conjecture is just the Hodge conjecture for divisors, and the Lefschetz standard
conjecture is obvious in degree 0.

Proof. Let X, § and Z be as in the statement of the corollary. Let /7 be the image of
H2=k(5,Q)by|Z],. By (2), wehave H*® = H*(X, Ox). Let II' be a sub-Hodge
structure of H* (X, Q) suchthat H*(X, Q) = H & H'. Then H*° = 0. As H’' has
no part of type (k,0), the generalized Hodge conjecture then predicts that there exists
a smooth projective variety X’ of dimension n — 1, together with a proper morphism
f+ X’ — X suchthat H' is contained in f, H¥=2(X', Q).

If the Lefschetz conjecture is true in degree k — 2, then it is true for H*~2(X’, Q).
As a consequence, we get a cycle Z’ of codimension £ — 2 in X’ x X’ such that
[Z/]4: H2XP—D=k+2(X' Q) — H*2(X’, Q) is surjective. Consider the composi-
tion

HZ(H—1)+2—]C(XI w Pl, Q) — H2(n—1)—k+2(Xf’ Q)
— H2(X'.Q) - HY(X,Q),

the first map being the pullback by any of the immersions X’ — X'xP!, x" > (x’, x),
the second one being [Z'], and the last one f,. This composition is induced by an
algebraic correspondence Z” < X’xP!x X, andis surjective onto fx H*~2(X’, Q).
It is easy to assume, after taking products with projective spaces, that § and X’ x P!
have the same dimension. Now since the subspaces H and f, H*=2(X’, Q) generate
H*(X,Q), the correspondence induced by the cycle Z + Z” in (S [ (X' xP1))x X
satisfies the hypotheses of Proposition 8. (]

With the notations of the previous corollary, in case, Z is flat over X, we have a
family of codimension &k algebraic cycles in X parametrized by S. The next theorem
shows that the map (2), which is the one we have to study in order to prove the
Lefschetz conjecture in degree k for X, does not depend on the global geometry of S,
and can be computed locally on S. This will allow us to give an explicit description
of the map (2) in terms of the deformation theory of the family Z in the next section.

Let us first recall a general cohomological invariant for families of algebraic
cycles. We follow [27], 19.2.2, see also [8], [25] for related discussions. In the
previous setting, Z, X and S being as before, the algebraic cycle Z has a class

[Z] e HF(X x S, Q% ).
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Using the Kiinneth formula, this last group maps to
HO(S. Q) @ H'(X. Ox).

which means that the cohomology class [ Z] gives rise to a morphism of sheaves on §

k
¢z: [\ Ts — H"(X,0%) ® Os, (3)

where T is the tangent sheaf of S. If s is a complex point of §, let ¢z 5 be the

morphism /\k Tss — Hk(X, Oy ) coming from ¢z .
Note that the definition of ¢z 5 is local on §. Indeed, the map

HYX x 5,05, ) — HYS. Q%) @ HF (X, 0x)
factors through the restriction map
HY(X x 8, Q% o) — H°(S, RFp. Q% o),

where p is the projection from X x .§ to §, corresponding to the restriction of a
cohomology class to the fibers of p. Actually, it can be shown that it only depends
on the first order deformation Z§ of Z; in X, see [27], Remarque 19.12, under rather
weak assumptions. We will recover this result in the next section by giving an explicit
formula for ¢z 5. This fact is the one that allows us to reduce the Lefschetz standard
conjecture to a variational statement.

The next theorem shows, using the map ¢z s, that the Lefschetz conjecture can
be reduced to the existence of local deformations of algebraic cycles in X.

Theorem 12. et X be a smooth projective variety. Assume as in Corollary 10 that
the generalized Hodge conjecture is true for H* (X, Q) and the Lefschetz conjecture
holds for smooth projective varieties in degree k — 2.

Then the Lefschetz conjecture is true in degree k for X if and only if there exist a
smooth quasi-projective scheme S, a codimension k cycle Z in CH*(X x ) and a
point s € S such that the morphism

k
¢z.s: [\ Ts.s > H* (X, 0x) 4)

Is surjective.

Proof. Assume the hypothesis of the theorem holds. Up to taking a smooth projective
compactification of .S and taking the adherence of Z, we can assume S is smooth
projective. The morphism of sheaves

k
¢z: [\Ts - H*(X.0x) ® Os
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that we constructed earlier corresponds to an element of the group

k
Homo, ( /\ 75, H*(X.0x) ® Os) = H(Q% ® H*(X. 0x)).

which in turn using Serre duality corresponds to a morphism
m'(s.Q57%) » H (X, 0x),

where / is the dimension of S.

By the definition of ¢z, this morphism is actually the morphism (2) of Corol-
lary 10. Indeed, this last morphism was constructed using the Kiinneth formula for
X x §, Poincaré duality and taking components of the Hodge decomposition, which
is the way ¢z 1s defined, since Serre duality is compatible with Poincaré duality.

Moreover, by construction, if ¢ z ¢ is surjective, then H! (S, Qfg_k) — Hk (X,0x)
is. As for the converse, if (S, Qfg_k) — H*(X,0y) is surjective, then we can
find points sy,...,s, of s such that the images of the ¢z 5, generate Hk(X, Ox).
Replacing S by S”, the cycle Z by the disjoint union of the Z; = p/Z, where
pit ST x X — § x X is the projection on the product of the i-th factor, and s by
(s1,-..,S,), this concludes the proof by Corollary 10. ]

The important part of this theorem is that it does not depend on the global geometry
of S, butonly on the local variation of the family Z. As such, itmakesit possible to use
deformation theory and moduli spaces to study the Lefschetz conjecture, especially
in degree 2 where Theorem 12 is unconditional by Remark 11.

3. A local computation

Let X be a smooth variety and S a smooth scheme, X being projective and S quasi-
projective. Let Z be a cycle of codimension & in the product X X §. As we saw
earlier, for any point s € ., the correspondence defined by Z induces a map

k
¢z.s: J\ Ts.s —> H* (X, 0x)

The goal of this section is to compute this map in terms of the deformation theory of
the family /Z of cycles on X parametrized by S. We will formulate this result when
the class of Z in the Chow group of X x S is given by the codimension & part chy (&)
of the Chern character of a vector bundle & over X x S. It is well known that we
obtain all the rational equivalence classes of algebraic cycles as linear combinations
of those.

Let us now recall general facts about the deformation theory of vector bun-
dles and their Atiyah class. Given a vector bundle & over X x S, and p being
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the projection of X x S to §, let er}, (&, &) be the sheafification of the presheat
U ExtéxXU (E|lxxv. & xxy) on S. The deformation of vector bundles deter-
mined by & is described by the Kodaira—Spencer map. This is a map of sheaves

p: Ts — 8xt},(8,8),

where Ty is the tangent sheaf to §. Let s be a complex point of S. The Kodaira—
Spencer map at s is given by the composition

ps: Tss — er;,(g, €)s — Ext!(&;, &),

the last one being the canonical one.

In the next section, we will use results of Verbitsky which allow us to produce
unobstructed elements of Ext!(&;, &) in the hyperholomorphic setting.

Associated to & as well are the images in H*(X x §, Q;X ) of the Chern classes
of &, which we will denote by ¢ (&) with a slight abuse of notation. We also have
the images chy (&) € H¥(X x S, Q;‘( «s) of the Chern character.

The link between Chern classes and the Kodaira—Spencer map is given by the
Atiyah class. It is well known that the Chern classes of ¥ can be computed from its
Atiyah class A(F) € Ext/(F, F ® Q}), see [3], [11], Chapter 10:

Proposition 13. For k a positive integer, let oy, € H*(Y, Q’;‘?) be the trace of the
element A(F)* € Ext"(F, F & Q’TIC,) by the trace map. Then

o — k!Chk(fF).

Now in the relative situation with our previous notation, the vector bundle &€ has
an Atiyah class A(&) with value in Ext'(€, €& ® Q}.s). The latter group maps to
the group H°(S, Sxt}, (€.€ ® Q1. ¢)), which contains

H®(S. €x1,(€,6) ® Qi) = Hom(Tg — Ex1,(€.€))
as a direct factor. We thus get a morphism of sheaves
71 Ts — &xt) (€, 6).
For the following well-known computation, see [11] or [12], Chapter V.

Proposition 14. The map 1 induced by the Atiyah class of & is equal to the Kodaira—
Spencer map p.

Those two results make it possible to give an explicit description of the map ¢z
of last section in case the image of Z in the Chow group of X x § is given by the
codimension k part chy (&) of the Chern character of a vector bundle € over X x S.
First introduce a map of sheaves coming from the Kodaira—Spencer map.
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For k a positive integer, let

k
¢ (8): \Ts — H*(X.0x) ® Os
be the composition of the k-th alternate product of the Kodaira—Spencer map with

the map
k

N\ Ext)(€.€) > Exif(€.6) > H*(X.0x) ® O,

the first arrow being the Yoneda product and the second being the trace map.

Lemma 15. We have
$r(E) = k! g (6)
where ¢o, (g) Is the map appearing in (3).

Proof. We have the following commutative diagram:

Ext! (6,6 @ QL ¥ — = Fxtk (6,6 @ Q) ——— HK(X x 85,94 )

HO(S,8x1(8,8 @ QL N®F — HO(S, 6x%(E,8 @ Q% . o)) —— HOS,R¥p, Q% o)

HOS, Qs ® Ext (€, £))®k —— HO(S,S2§ ® erfg(&, &) —= HY(S, Qg ® HX(X,0x)),

where the horizontal maps on the left are given by the Yoneda product, the horizontal
maps on the right side are the trace maps, the upper vertical maps come from the
Leray exact sequence associated to p, and the lower vertical maps come from the
projection Qs ¢ — p*QL.

By definition, and using Proposition 14, A(€)®* € Ext' (€. & ® 2}, ¢)®* maps
to

k
¢r(€) € Hom( /\ 75, H*(X, 0x) ® Os) = H(S, Q% @ H*(X. 0x)),

following the left side, then the lower side of the diagram. On the other hand,
Proposition 13 shows that it also maps to k! ¢, (g), following the upper side, then
the right side of the diagram. This concludes the proof. 0

As an immediate consequence, we get the following criterion.

Theorem 16. Let X be a smooth projective variety, and assume the same hypotheses
as in Theorem 12. Then the Lefschetz conjecture is true in degree k for X if there
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exists a smooth quasi-projective scheme S, a vector bundle & over X X S, and a point
s € 8 such that the morphism

k
¢ (€)s: [\ Ts.s = H*(X,0x) (5)

induced by ¢ (&) is surjective.

Remark 17. Since Chern classes of vector bundles generate the Chow groups of
smooth varieties, we can get a converse to the preceding statement by stating the
theorem for complexes of vector bundles — or of coherent sheaves. The statement
would be entirely similar. As we will not use it in that form, we keep the preceding
formulation.

Example. Let Abeapolarized complex abelian variety of dimension g. The tangent
bundle of A is canonically isomorphic to (A, O4)®0,4. The trivial line bundle O 4
on A admits a family of deformations parametrized by A itself such that the Kodaira—
Spencer map T4.0 — H (A, ©4)is the identity under the above identification. Now
the induced deformation of ¥4 & 4 parametrized by A x A satisfies the criterion
of Theorem 16, since the map /\2 H1(A,04) — H?*(A,9,) given by cup-product
is surjective and identifies with the map (5). Of course, the Lefschetz conjecture for
abelian varieties is well known, see [15], Theorem 3.

4. The case of hyperkiihler varieties

In this section, we describe how Verbitsky’s theory of hyperholomorphic bundles
on hyperkihler varieties as developed in [23] and [24] makes those a promising
source of examples for Theorem 16. Unfortunately, we were not able to provide
examples, as it appears some computations of dimensions of moduli spaces in [24]
were incorrect, but we will show how the existence of nontrivial examples of moduli
spaces of hyperholomorphic bundles on hyperkihler varieties as conjectured in [24]
implies the Lefschetz standard conjecture in degree 2.

4.1. Hyperholomorphic bundles on hyperkiihler varieties. We refer to [4] for
general definitions and results. An irreducible hyperkihler variety is a simply con-
nected Kéhler manifold which admits a closed everywhere non-degenerate two-form
which is unique up to a factor. As such, an irreducible hyperkihler variety X has
H?%(X,0x) = C, and Theorem 16 takes the following simpler form in degree 2.

Theorem 18. Let X be an irreducible projective hyperkéhler variety. The Lefschetz
conjecture is true in degree 2 for X if there exists a smooth quasi-projective variety
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S, avector bundle & over X X S, and a point s € S such that the morphism

2
$2(6)s: N\ Ts.s — H*(X. Ox), 6)

induced by the Kodaira—Spencer map and the trace map, is nonzero.

In the paper [4], Beauville constructs two families of projective irreducible hy-
perkihler varieties in dimension 2# for every integer n. Those are the n-th punctual
Hilbert scheme S [*] of a projective K3 surface § and the generalized Kummer variety
K, which is the fiber at the origin of the Albanese map from A"+ 0 A, where A
is an abelian surface and A"+ is the n 4 1-st punctual Hilbert scheme of A.

The Bogomolov—Tian—Todorov theorem, see [6], [20], [21], states that the local
moduli space of deformations of an irreducible hyperkihler variety is unobstructed.
Small deformations of a hyperkihler variety remain hyperkihler, and in the local mod-
uli space of S and K,,, the projective hyperkiihler varieties form a dense countable
union of hypersurfaces. The varicties S™! and K, have Picard number at least 2,
whereas a very general projective irreducible hyperkihler variety has Picard num-
ber 1, hence 1s not of this form. Except in dimension 6 and 10, where O’Grady
constructs in [18] and [19] new examples, all the known hyperkihler varieties are
deformations of S or K,,.

The Lefschetz standard conjecture is easy to prove in degree 2 for S (resp.
K), using the tautological correspondence with the K3 surface (resp. the abelian
surface), see [2], Corollary 7.5. In terms of Theorem 16, one can show that the
tautological sheaf on S (resp. K,) associated to the tangent sheaf of S has enough
deformations to prove the Lefschetz conjecture in degree 2. Since the tautological
correspondence between § and ST gives an isomorphism between H29(S) and
H20(S]), checking that the criterion is satisfied amounts to the following.

Proposition 19. et S be a projective K3 surface. Then there exists a smooth quasi-
projective variety M with a distinguished point O parametrizing deformations of Ts
and a vector bundle & over M x M such that &;oxs5y > Ts, such that the map

2
$2(8)o: [\ Tm.o = H*(S,0s)

induced by the Kodaira—Spencer map and the trace map, is nonzero.

Proof. This is proved by Mukai in [17]. A Riemann—Roch computation proves that
the moduli space of deformations of the tangent bundle of a K3 surface is smooth of
dimension 90. O

This last proof is of course very specific to Hilbert schemes and does not apply
as such to other hyperkihler varieties. We feel nonetheless that it exhibits general
facts about hyperkéhler varieties which seem to give strong evidence to the Lefschetz
conjecture in degree 2.
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4.2. Consequences of the existence of a hyperkiihler structure on the moduli
space of stable hyperholomorphic bundles. In his paper [17], Mukai studies the
moduli spaces of some stable vector bundles on K3 surfaces and endows them with
a symplectic structure by showing that the holomorphic two-form induced by (5) on
the moduli space is nondegenerate. Of course, this result is not directly useful when
dealing with the Lefschetz standard conjecture in degree 2 as it is trivial for surfaces.
Nevertheless, Verbitsky shows in [23] that it is possible to extend Mukai’s result to
the case of higher-dimensional hyperkihler varieties.

Before describing Verbitsky’s results, let us recall some general facts from linear
algebra around quaternionic actions and symplectic forms. This is all well known,
and described for instance in [4], Example 3, and [23], Section 6. Let I denote the
quaternions, and let IV be a real vector space endowed with an action of Il and a
euclidean metric (, ).

Let I € H be a quaternion such that /2 = —1. The action of / on V gives a
complex structure on V. We say that V' is quaternionic hermitian if the metric on V' is
hermitian for all such complex structures /. Fix such an 7, and choose J and K in 1
satisfying the quaternionic relations 72 = J? = K? = —Id, IJ = —JI = K. We
can define on V a real symplectic form 5 such that n(x, y) = (x,Jy) + i(x, Ky).
This symplectic form does not depend on the choice of J and K. Furthermore, 7 is
C-bilinear for the complex structure induced by 7. Now given such 7 and yon V,
it is straightforward to reconstruct a quaternionic action on V' by taking the real and
complex parts of 7.

Taking V' to be the tangent space to a complex variety, we can globalize the
previous computations to get the following. Let X be an irreducible hyperkihler
variety with given Kihler class w. Then the manifold X is endowed with a canonical
hypercomplex structure, that is, three complex structures I, J, K which satisty the
quaternionic relations /2 = J? = K2 = —Id,IJ = —JI = K. Itisindeed possible
to check that J and K obtained as before are actually integrable. Conversely, the
holomorphic symplectic form on X can be recovered from 7, J, K and a Kéhler form
on X with class w.

It & is a complex hermitian vector bundle on X with a hermitian connection 8, we
say that £ is hyperholomorphic it & is compatible with the three complex structures
I, J and K. In case &€ is stable, this is equivalent to the first two Chern classes of
& being Hodge classes for the Hodge structures induced by 7, J and K, see [23],
Theorem 2.5. This implies that any stable deformation of a stable hyperholomorphic
bundle is hyperholomorphic. It is a consequence of Yau’s theorem, see [28] that the
tangent bundle of X is a stable hyperholomorphic bundle.

Let &€ be a stable hyperholomorphic vector bundle on X, and let § = Spl(&, X)
be the reduction of the coarse moduli space of stable deformations of & on X. For
s a complex point of S, let &; be the hyperholomorphic bundle corresponding to a
complex point s in §. The Zariski tangent space to S at s maps to Ext!(&;, &) using
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the map from § to the coarse moduli space of stable deformations of £. We can now
define a global section ng of Hom(Ts @ Ts,Os), where Ty is the tangent sheaf to
S, by the composition

2
Ts.s @ To.s = [\ Ext!(Es, &) — Ext?(&;. &) — H*(X,0x) = C

as in the preceding section. The following is due to Verbitsky, see part (iv) of the
proof in Section 9 of [23] for the second statement.

Theorem 20 ([23], Theorem 6.3). Let Spl(&€, X ) be the reduction of the coarse moduli
space of stable deformations of € on X. Then § = Spl(€, X) is endowed with a
canonical hyperkdhler structure. The holomorphic section of Hom(Ts @ Ts,Us)
induced by this hyperkihler structure is 5.

In this theorem, S does not have to be smooth. We use Verbitsky’s definition of a
singular hyperkiihler variety as in [23], Definition 6.4.
We can now prove Theorem 3.

Proof of Theorem 3. Let X be a smooth projective irreducible hyperkihler variety,
and let & be a stable hyperholomorphic bundle on X. Assume that & has a non-
trivial positive-dimensional family of deformations, and let s be a smooth point of
S = Spl(&€, X) such that T is positive dimensional. We can choose a smooth
quasi-projective variety S’ with a complex point s” and a family &g of stable hyper-
holomorphic deformations of & on X parametrized by S’ such that the moduli map
S" — S maps s’ to s and is étale at s”. Since ng induces a symplectic form on 7 ,
the map

2
$2(Es);: N\ Tsry — HX(X,0x) = C

is surjective as it identifies with 5, under the isomorphism 7/ ;v = s . The
result now follows from Theorem 16. L]

In order to prove Theorem 4, we need to recall some well-known results on defor-
mations of hyperkihler varieties. Everything is contained in [4], Section 8 and [23],
Section 1. See also [10], Section 1 for a similar discussion. Let X be an irreducible
hyperkihler variety with given Kéhler class w. Let n be a holomorphic everywhere
non-degenerate 2-form on X. Let g be the Beauville—-Bogomolov quadratic form on
H?(X,Z), and consider the complex projective plane P in P(H?(X, C)) generated
by 71, 7 and w. There exists a quadric ¢ of deformations of X given the elements
o € P suchthat g(o) = O and g{a + &) > 0.

Recalling that the tangent bundle of X comes with an action of the groups of
quaternions of norm 1 given by the three complex structures [, J, K, which satisfy
the quaternionic relations /2 = J? = K? = —Id, IJ = —JI = K, this quadric
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Q) of deformations of X corresponds to the complex structures on X of the form
al + bJ + cK with a, b, ¢ being three real numbers such that a? + 5% + ¢? = 1
— those complex structures are always integrable. The quadric Q is called a twistor
line.

In this setting, let d be the cohomology class of a divisor in H?(X, C), and let
a be in Q. This corresponds to a deformation X, of X. The cohomology class ¢
corresponds to a rational cohomology class in H?(X,,, C), and it is the cohomology
class of a divisor if and only if it is of type (1, 1), that s, if and only if g(«, d) = 0,
where by ¢ we also denote the bilinear form induced by ¢. Indeed, ¢ is a real
cohomology class, so if g(a,d) = 0, then g(&,d) = 0 and 4 is of type (1,1).
It follows from this computation that ¢ remains the class of a divisor for all the
deformations of X parametrized by Q if and only if g(n,.d) = g(w,d) = 0.

We will work with the varieties S, the case of generalized Kummer varieties
being completely similar. Let us start with a K3 surface S, projective or not, and let
us consider the irreducible hyperkiihler variety X = Sl given by the Douady space
of n points in § — this is Kihler by [22]. In the moduli space M of deformations
of X, the varicties of the type §'"] form a countable union of smooth hypersurfaces
H;. On the other hand, the hyperkihler variety admits deformations parametrized by
a twistor line, and those cannot be included in any of the H;. Indeed, if that were the
case, the class e of the exceptional divisor of X = S would remain algebraic in
all the deformations parametrized by the twistor line. But this is impossible, as e is a
class of an effective divisor, which implies that g{w, e) > 0, @ being a Kahler class,
see [10], 1.11 and 1.17.

This computation actually shows that the twistor lines are transverse to the hy-
persurfaces H;. Now the preceding definition of the twistor line parametrizing de-
formations of an irreducible hyperkihler X shows that it moves continuously with
deformations of X. Counting dimensions, this implies that the union of the twistor
lines parametrizing deformations of Douady spaces of # points on K3 surfaces cover
a neighborhood of the H; in M. We thus get the following.

Lemma 21. Let n be a positive integer, and let X be a small projective deformation
of the Douady space of n points on a K3 surface. Then there exists a K3 surface S
and a twistor line Q parametrizing deformations of S such that X is a deformation

of S along Q.

The next result of Verbitsky is the main remaining ingredient we need to prove
Theorem 4. Recall first thatif & is a hyperholomorphic vector bundle on an irreducible
hyperkiihler variety X, then by definition the bundle € deforms as X deforms along
the twistor line.

Theorem 22 (23], Corollary 10.1). Let X be an irreducible hyperkiihler variety,
and let € be a stable hyperholomorphic vector bundle on X, and let SpI(&, X)) be
the reduction of the coarse moduli space of stable deformations of € on X.
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Then the canonical hyperkihler structure on SpI(E, X)) is such that if Q is the
twistor line parametrizing deformations of X, Q is a twistor line parametrizing

deformations of Spl(&, X ) such that ifa € Q, then Spl(&, X ), = Spl(&€,, Xy).

This implies that the deformations of a hyperholomorphic bundle on X actually
deform as the complex structure of X moves along a twistor line. We can now prove
our last result.

Proof of Theorem 4. Let X be an irreducible projective hyperkihler variety that is
a deformation of the Douady space of n points on some K3 surface. By a standard
Hilbert scheme argument, in order to prove the Lefschetz conjecture for X, it is
enough to prove it for an open set of the moduli space of projective deformations of
X. By Lemma 21, we can thus assume that X is a deformation of some S along a
twistor line O, where S is a K3 surface. Let & on S be a sheaf as in the statement
of the theorem. By Theorems 22 and 3, we get a bundle &” which still satisfies the
hypothesis of Theorem 16. This concludes the proof. 0

One can use this theorem with the tangent bundle of §™, which is stable by
Yau’s theorem and hyperholomorphic since its first two Chern classes are Hodge
classes for all the complex structures induced by the hyperkihler structure of S,
Unfortunately, while Verbitsky announces in [24], after the proof of Corollary 10.24,
that those have some unobstructed deformations for # = 2 and n = 3,it seems that
if n = 2, the tangent bundle might be actually rigid. However, we get the following
result by applying the last theorem to the tangent bundle.

Corollary 23. et n be a positive integer. Assume that for every K3 surface S, the
tangent bundle Tgin) of SP has a nontrivial positive-dimensional family of deforma-
tions. Then the Lefschetz conjecture is true in degree 2 for any projective deformation
of the Douady space of n points on a K3 surface.

Remark 24. The conditions of the corollary might be actually not so difficult to
check. Indeed, Verbitsky’s Theorem 6.2 of [23] which computes the obstruction to
extending first-order deformations implies easily that the obstruction to deform T
actually lies in H2(S], Qé[n] ), where we see this group as a subgroup of

Ex? Ty Ton) = 1S, 985

1

Slnl-

Now the dimension of H2(S [, Qém) does not depend on # for large », see for
instance [7], Theorem 2. As a consequence, the hypothesis of the Corollary would
be satisfied for large # as soon as the dimension of Ext! (Fgin1, Tgin1) goes to infinity

with 7.

under the isomorphism T = Q2
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Remark 25. Of course, our results might be apply to different sheaves. In the recent
preprint [16], Markman announces the construction of — possibly twisted — sheaves
that, combined with our results, proves the Lefschetz standard conjecture in degree
2 for deformations of Hilbert schemes of K3 surfaces.

Remark 26. The use of nonprojective Kihler varieties in these results dealing with
the standard conjectures can be a little surprising. Indeed, results like those of Voisin
in [26] show that there can be very few algebraic cycles, whether coming from
subvarieties or even from Chern classes of coherent sheaves, on general nonprojective
Kihler varieties.
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