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Detecting linear dependence on an abelian variety via
reduction maps

Peter Jossen

Abstract. Let A be a geometrically simple abelian variety over a number field &, let X be a
subgroup of A(k) and let P € A(k) be arational point. We prove that if 7 belongs to X modulo
almost all primes of k& then P already belongs to X .
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Introduction

Let A be an abelian variety over a number field &, let X be a subgroup of the Mordell—-
Weil group A(k) and let P € A(k) be a rational point. We want to “decide” whether
P belongs to X or not. To do so, we choose a model of A over an open subscheme
U of spec O, where Oy denotes the ring of integers of k. Because A is proper, P
and all points in X extend to {/-points. For closed points p € U/ we can consider the
reduction map

red,: A(U) — Alky)

where «p = O /p denotes the residue field at p. A necessary condition for P
belonging to X is then that for all closed points p € U the reduction of P modulo p
belongs to the reduction of X modulo p. Wojciech Gajda asked in 2002 whether this
condition is also sufficient. This problem was named the problem of detecting linear
dependence.

In a joint work with Antonella Perucca ([JP09]) we have shown that the answer
to Gajda’s question is negative in general by giving an explicit counterexample (Ba-
naszak and Krason have found independently such a counterexample). The abelian
variety in our counterexample is a power of an elliptic curve. Our main result in this
note is:

Main Theorem. Let A be a geometrically simple abelian variety over a number field
k, let X be a subgroup of A(k) and let P € A(k) be a rational point. If the set of
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places p of k for which red,(P) belongs to redy(X) has natural density 1, then P
belongs to X.

By saying that A is geometrically simple we mean that 4 has no other abelian
subvariety other than 0 and itself defined over an algebraic closure k of k. The
statement of the theorem is new even in the case where A is an elliptic curve. However,
many partial results in this direction have already been obtained, let us mention a
few of them. The earliest result on this problem is due to Schinzel ([Sch75]), who
showed the analogue of our Main Theorem for the multiplicative group in place of
an abelian variety. Weston has shown that for an abelian variety with a commutative
endomorphism ring the statement of our theorem holds up to a torsion ambiguity
([Wes03]), and Kowalski has shown the statement of our theorem to hold for an
elliptic curve and a cyclic subgroup ([Kow03]). Banaszak, Gajda, Gérnisiewicz and
Krason have proven similar statements under various technical assumptions on the
abelian variety and the subgroup ([BGKO05], [GGO09], [BK09]), and Perucca has some
similar results for products of tort and abelian varieties ([Per08]).

Here is a quick overview on the main ideas of the proof. Let U be an open
subscheme of spec @y, where (J; is the ring of integers of the number field k. A
1-motive over U is a morphism of fppf sheaves

M=[u:Y — G]

over I/ where Y i1s étale locally constant, locally isomorphic to a finitely generated
free group, and where G 1s a semiabelian scheme over {/. By a semiabelian scheme
over U/ we understand in this paper an extension over U/ of an abelian scheme by a
torus. Inthecase Y is constantdefined by a finitely generated free group which we still
denote by Y, morphisms of fppf-sheaves ¥ — G are the same as homomorphisms of
groups ¥ — G(U). Given a semiabelian scheme G over U and a finitely generated
subgroup X of G(U) we can choose a 1-motive [Y — ] over U where Y is a
constant sheaf defined by a finitely generated free group, such that u(Y) = X. In
the case X is torsion free one can just take ¥ = X and for u the inclusion.

With any l-motive M over U and prime number { invertible on U is associated
a locally constant £-adic sheat T;M on U, which can also be viewed as a finitely
generated free 7Zy-module equipped with a continuous action of the absolute Galois
group of k which is unramified in UU. For a set § of closed points of I/ of density 1
we consider the group

HI(U, T, M) = ker (Hl (U, TeM) — [ ] HI(KD,TEM))
peS

where k, = O /p denotes the residue field at p. Using Kummer theory we will
show that the vanishing of the groups H (U, T;M) for all { is the obstruction for
the local-global principle of the Main Theorem to hold. As observed by Serre and



Vol. 88 (2013)  Detecting linear dependence on an abelian variety via reduction maps 325

Tate it is essentially a consequence of Chebotarev’s Density Theorem that the group
H 51 (U, T¢M) is isomorphic to the group

HILM T, M) = ker (Hl(LM,TgM) - T Hl(C,TgM))
C<LM

where LM denotes the image of the Galois group Gal(k|k) in the group of automor-
phisms of Ty M and where the product ranges over all subgroups C of LM topolog-
ically generated by one element. In the case where (7 is an abelian variety we will
determine the group LM up to commensurability, and modulo the Mumford—Tate
conjecture. This will allow us then, in the case where A is geometrically simple, to
gain sufficient control on 77 1(L™ T, M) in order to prove the Main Theorem.

A comment about our use of 1-motives is in order. Classical 1-motives and
Galois-modules attached to them are an effective tool for studying the arithmetic of
semiabelian varieties over number fields. We will use them only as such a tool. In
principle, everything could be done in terms of appropriately defined GGalois modules,
without referring to 1-motives at all.

Acknowledgment. Large parts of this article are taken from my Ph.D. thesis directed
by Tamdas Szamuely. I wish to thank him for his help, encouragement and support
during this work. Many thanks go to Antonella Perucca who considerably helped to
simplify some of the arguments. I am grateful to GG. Banaszak and W. Gajda for very
useful correspondence and to G. Banaszak and P. Krason for pointing out a mistake
in an earlier version of this text. I acknowledge financial support provided by the
DFG-Forschergruppe “Algebraische Zykel und L-Funktionen”, Regensburg.

1. On 1-motives and Galois representations

In this section I recall what 1-motives are and how to attach £-adic Galois representa-
tions to them. Then I show how these representations are linked with the local-global
problem of detecting linear dependence.

1.1. Let S be a noetherian regular scheme. A l-motive M over § is ([Del74],
Section 10) a two-term complex of Ippf-sheaves over S, concentrated in degrees —1
and O

M=V -5 G

where Y is étale locally isomorphic to a finitely generated free Z-module and where
(7 is representable by a semiabelian scheme over S. A morphism of 1-motives is a
morphism of complexes of fppf-sheaves. One can view M as an object of the derived
category of fppf-sheaves on S. Applying the derived global section functor RI'(.S, —)
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and taking homology vields the flat cohomology groups H*(.S, M). There is a long
exact sequence relating the cohomology of G and ¥ with that of M starting with

0— HYS.M)— H°S.,Y)— H*S,G) - H*S,M) > H'(S.Y) — --- .

One can also view M as an object of the derived category of €tale sheaves and obtain
étale cohomology groups. However, since (¢ and Y are both smooth over §, these
are canonically isomorphic.

1.2. Notation. Fora commutative group C, a prime number £ and an integer i > 0,
we introduce the following notation: C[£'] denotes the group of elements of C of
order £/, and C [¢£*°] denotes the group of elements of C of order any power of {. We
write
C®Zy:=lmC/f'C and T¢C :=lmC[{']
=0 =0

for the £-adic completion and the £-adic Tate module of C. These groups have a
natural Zg-module structure. There is a canonical morphism C — C ® 7, whose
kernel is the intersection of the groups £/C overi > 0. Remark that if C is finitely
generated, we may identify the £-adic completion C ® Z, with the tensor product
C @z 7 viathe mentioned canonical morphism.

1.3. Following Deligne (loc.cit.) we now construct the £-adic Tate module associated
with (or £-adic realisation of) a 1-motive M = [u : ¥ — G| over S, where { is any
prime number invertible on S. We shall consider the derived tensor product M @
Z /€' Z, or alternatively (that amounts to the same) the cone of the multiplication-by-
% map on the complex M. The homology of M @ Z /€' Z is concentrated in degree
—1 because Y is torsion free and (r is divisible as a sheaf. The homology group

Tyiz(M) = H (M " 2/¢'2)

is a finite flat group scheme over S annihilated by ¢/, and because we suppose that { is
invertible on S it is locally constant. We have a natural morphism 7Ty i +17(M) —

T7,/4i 7 (M) induced by the map Z/€T1Z — Z/£' Z for all i > 0. The formal limit
with respect to these maps

TeM := lim T74:7,(M)

is a locally constant £-adic sheaf on §, called the £-adic Tate module of M . This con-
struction is functorial in M so we look at Ty(—) as being a functor from the category
of 1-motives over S to the category of {-adic sheaves over §. The cohomology of
T¢M over § is then defined accordingly as

H'(S.T¢M) :=lim H™YS. M “2/0'7).
iz
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These cohomology groups have anatural Z;-module structure. There are natural short
exact sequences as follows. The exact “Kummer” triangle M — M — M QY7 /(7
induces a long exact sequence of cohomology groups from where we can cut out the
piece

0— HYWS, MY/ H ™S, M) — H™YS, M Q- 7/1'7)
— H'(S, M)[#] = 0.

Taking limits over/ and observing that the left hand limit system satisfies the Mittag—
Leffler condition, we find a short exact sequence of Z-modules

0— H Y S MyRZ;— H' (S5, TeM) — TeH™ (S, M) — 0.
Naturality in M and S is clear from the construction.

1.4. For the rest of this section we fix a number field k with algebraic closure k and
absolute Galois group I' := Gal(k|k), a nonempty open subscheme U of spec Oy
where Oy denotes the ring of integers of k, and a prime number £ invertible on
7. We write ky for the maximal subextension of l€|k unramified in {/, and set
'y := Gal(ky |k). In other words, 'y = 71 (U, u) is the étale fundamental group
of U with respect to the base point u = spec k.

1.5. By Grothendieck’s theory of the fundamental group (see for example [Sza09],
Theorem 5.4.2), there is an equivalence of categories

locally constant Z-con- finitely generated
«— § ..
structible sheaves on U discrete I'yy-modules

given by the functor that sends such a sheaf F on U to the Ty-module F(k). In
particular, to give alocally constant sheaf ¥ locally isomorphic to a finitely generated
free group is the same, via this equivalence of categories, as to give a finitely generated
free group Y together with a continuous action of I'yy. Continuity means that the
stabiliser of ¥ in I'yy is an open subgroup of finite index. As a consequence, a 1-
motive over U/ is given by the following data: A finitely generated free group Y
together with a continuous action of 'y, a semiabelian scheme G over U and a
morphism of T'y-modules u: ¥ — G(ky).

1.6. The equivalence of categories given in 1.5 also explains why £-adic sheaves on
U are essentially the same as £-adic representations of k& unramified in I/. Indeed,
this equivalence of categories induces an equivalence

locally constant £-adic finitely generated 7 ;-modules
sheaves on U/ with continuous I'f7-action
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given by the functor that sends a locally constant £-adic sheaf on U, given by a formal
limit system (7;){° to the Zy-module lim 7; (k). A quasi inverse to this functor is
can be defined as follows: Given a finitely generated Z ¢-module T with continuous
I'yy-action, one associates with it the formal limit system (7;){° , where T; is the
locally constant sheat on U/ corresponding to the finite I';y-module T/£ T .

1.7. Using the equivalence of categories introduced in 1.6, we can give an explicit
description of the Tate module of a 1-motive M = [u: ¥ — G] over U in terms of
Galois representations. For all i > 0 we have finite Galois modules

{3, P)eY xGk)|u(y)=£P}
{(fy.u(y)|yet}

which are unramified in &/. The limit overi of these finite Galois modules is then the
Tate module of M seen as a Galois module. Explicitly, an element x € Ty M is given
by a sequence (y;, P;);°, where the y;’s are elements of Y, the P;’s are elements of

Ty i (M)(k) =

G(IE), and where it is required that
u(y;) =P, (P—Pi_y=u(z) and y, —yi1 ="z

for some elements z; € Y. Two sequences (y;., P;)7°, and (y,, P/){°, represent
the same element if and only if for each i > 0, there exists a z; € Y such that
£z; =y —y;and u(z;) = P; — P].

Proposition 1.8. Let T = (T;)7°, be a locally constant £-adic sheaf on U corre-
sponding via the above equivalence to a Z.y-module with continuous 'ty -action (also
denoted by T). Forr = 0,1, the natural maps

H' (Ty, Ty — H' (U, T)
are isomorphisms, where H" (Uy, T') is defined by means of continuous cocycles.

Proof. From Proposition 11.2.9 of [MilO8] we know that if F is a finite locally
constant sheaf of order a power of £ on U, then we have canonical isomorphisms
H"(U, F)= H"(I'y, F)forallr = 0. Cohomology of {£-adic sheaves over U com-
mutes with limits by definition. It remains to prove that if T is a finitely generated
Z.p-module with I'yy-action, then the natural map

H Ty, T) — l_ins H'(Ty,T/6'T)
i>
is an isomorphism for r = 0, 1. For r = 0 this is trivial, and for r = 1 this follows

from the well known fact that continuous H'! commutes with limits of compact
modules (see Proposition 7 of [Ser64]). ]
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Proposition 1.9. let M = [u: Y — G| be a l-motive over k. There is a canonical
isomorphism (TyM)T = ker(YT — G(k)) @ Zy.

Proof. Let U be an open subscheme of spec ¢y such that there is a model of M over
U, which we still denote by M. We have a short exact sequence

0—-HYWWU.M)&7Z; — H (U, T;M) = T,HY U M) = 0

as introduced in 1.3. The group H®(U, M) is finitely generated (this follows by
dévissage from the Mordell-Weil theorem, Dirichlet’s unit theorem and the finiteness
of HYW(U,Y), see [HSz05], Lemma 3.2) hence T, H(U, M) is trivial. We remain
with an isomorphism

HYU.M)® Z; — HY(U, T M),

but now observe that =1 (U, M) = ker(YT — G(k)) and that H°(U, T, M)
(TEM)F.

11

Definition 1.10. Let 7 be an £-adic sheaf on U and let S be a set of closed points of
U. For each p € S let ky, be the residue field at p and denote still by T the pull-back
of 7' to spec kp. We define

HYU.T) := ker (HI(U, T) — [ H' s, T)).
pesS

Alternatively, in terms of Galois cohomology, let I'iy be the Galois group of the
maximal extension of k unramified in ¥/ and let D, be a decomposition group of p

in I'y . For every finitely generated free 7 y-module with continuous I'yy-action 7" we
define

HXTy,T) := ker (HI(I‘U, T) — [ YD, T)).
pes

Observe that the choice of decomposition groups D, is unimportant since all de-
composition groups over p are conjugate, and a cocycle ¢: I'yy — T restricts to a
coboundary on D, if and only if it restricts to a coboundary on some conjugate of D,.

Proposition 1.11. et k be a number field, let G be a semiabelian scheme over U
and let X be a subgroup of G(U). Let S be a set of closed points of U of density 1
and write

X :={P € G(U) | redp(P) € redy(X) forallp € S}.

Let M = [u: Y — G| be al-motive over U where Y is constant and such that u(Y')
is equal to X. For every prime number { invertible on U there exists a canonical,

Zg-linear injection (X | X) ® 7. — H; (T'y, T¢M).
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Proof. We have chosen a 1-motive M = [u: Y — (] over U with constant Y,
such that the image of ¥ — G(U) is X. The image of ¥ — G{(kyp) is then X, the
reduction of X modulo p. So, if p is any element of S, then every point P € X maps
to zero in H (i, M) in the following diagram with exact rows:

Y GU)——H% U, M)——0=H'(U,Y)

L

Y — Glky) — H%kpy, M) —=0 = H'(k,, ¥).

Denote by [P] the class of P € X in H%(U, M) = G(U)/X. We have seen that
| P] ® 1 belongs to the kernel of the map o in the diagram

0— HYNUM)RZy— HY (U, T M) —=T,HY U, M) —=0

.

0 — = HHO(KIUM)®Z'E% HHI(KpaTEM)A; HTEHl(KI’s M) — 0

The rows are those introduced in 1.3 and the products range over p € S. The £-adic
completions are here just ordinary tensor products because the involved groups are
all finitely generated ([HSz05], Lemma 3.2). We have natural injections

(X/X)® Zy Ckeray Cker By = Hg(U, TyM)
hence the claim. O

Remark 1.12. The injection whose existence we claim in Proposition 1.11 is ex-
plicitly given as follows. Let P be an element of_)? , and denote by [P] its class in
X /X . Choose a sequence of points (P;){C,in G(k) such that Py = P and such that
£Piy1 = P;foralli = 0. The image of [P] ® 1 in H,: (Cyr, TeM ) via the injection
under consideration is the class of the cocycle cp: I'y — T¢M given by

cp: o (0P, — P2,

This makes sense since indeed each oF; — P; is a point in G(IE) of order £!, and
together these points form a compatible system representing an element of the Tate
module Ty G, which is a submodule of T, M.

Remark 1.13. Let G be any semiabelian variety over k, let X be a finitely generated
subgroup of G(k) and let £ be any prime number. It is always possible to find an
open subscheme U of spec Oy such that G has a model over U, such that all points
in X extend to U-points, and such that £ is invertible on UU. Also observe that
G (U) is finitely generated, as a direct consequence of the Mordell-Weil theorem and
Dirichlet’s unit theorem.
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1.14. For a l-motive M over U we may regard the £-adic sheaf T;M as a finitely
generated free 7 p-module with continuous I'y-action, as we have explained, 'y
being the Galois group of the maximal extension of k unramified in /. The following
definition goes back to an idea of Tate and Serre: For a Hausdorlf topological group
I' and a continuous I'-module 7" we write

HNT.T) = ker(Hl(r, T —[[H'(C. T))
C=TI

the product running over monogenous subgroups C of I', cohomology being defined
by means of continuous cochains. A subgroup of a topological group is called mono-
geneous 11 it is topologically generated by one element, that is, if it is the closure
of a subgroup generated by one element. The following two propositions ([Ser64],
Proposition 8 and Proposition 6) explain why the group H 1 (T'y, T, M) is interesting.

Proposition 1.15. Let T be a finitely generated 7 y-module with a continuous I'y; -
action and let § be a set of closed points of U of density 1. The subgroups H; Ty, T)
and HY(Ty.T) of HY(T'y, T) are equal.

Proof. 1t is enough to show that the proposition holds for finite Galois modules of
order a power of £. Indeed, T can be written as a limit of such and the general case
follows then because H! commutes with limits of finite modules, and formation of
limits 1s left exact and commutes with products.

So let F be a finite I'y module of order a power of £. Letc: Ty — F be a
continuous cocycle representing an element of 5} (T'y7, F) and let o be an element
of I'y. We have to show that the restriction of ¢ to the monogeneous subgroup of 'y
generated by o is a coboundary, that is, we have to show that there exists an element
x € F suchthat c(0) = ox — x.

Because F is finite there exists an open subgroup N of I';y on which ¢ 1s zero. We
may suppose that & 1s normal and acts trivially on £. Denote by o the class of ¢ in
I'y /N. By Chebotarev’s density theorem (see for example [Neu99] Theorem 13.4),
there exists a valuation v of k£ corresponding to an element p € § and an extension w
of v to kg7 such that decomposition group of w in 'y / NV equals the group generated by
on . Since the restriction of ¢ to the decomposition group £J,, € I'yy is a coboundary,
there exists a x € I’ such that

c(t)=tx—x forallt € Dy.

As N acts trivially on F, the same holds for all t € D, N, and in particular for
7 = ¢. This shows that H;(FU, F) is contained in I} (Ty, F). That H(Ty, F)
is contained in f7 51 (T'y, F) is clear, since every decomposition group in 'y corre-
sponding to a place in S 1s monogenous, topologically generated by the Frobenius
element. (]
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Proposition 1.16. Let I' be a Hausdorff topological group and let T' be a continuous
U-module. Let N be a normal closed subgroup of 1" acting trivially on T. The
inflation map HY(T'/N,T) — HYT, T) induces an isomorphism H}(T/N, T) =
HNT,T).

Proof. This is straightforward to check, see [Ser64], Proposition 6. ([

1.17. This has the following interesting consequence: Let us denote by L™ be the
image of 'y in GL(T¢M). Together, Propositions 1.15 and 1.16 yield a canonical
isomorphism

HYLM T M)~ HY Ty, TyM).

Since I'y is compact this image LM is a closed subgroup of GL(T; M ), hence has the
structure of an £-adic Lie group ([Bou72], Ch.III, §2, no.2, théoréme 2). We therefore
can apply the machinery of £-adic Lie theory, and if we have sufficient knowledge of
this Lie group and its Lie algebra, there might be a chance of effectively computing
HNLM TyM), hence H! (T'y;, T¢M). In the next section we will determine 2™ as
far as we need.

2. The image of Galois

Let k be a number field contained in C, denote by k the algebraic closure of k in C,
and let M = [Y — G| be a l-motive over k. To M and every prime number £ we
have associated a finitely generated free Z,-module with a continuous Galois action
T, M. We define

VeM :=T¢M @z, Qu

so Ve M is a finite dimensional (Q;-vector space, and we have a continuous group
homomorphism
¢ : Gal(k|k) — GL(V,M).

We have already noted that the image L™ of the map p; is a compact £-adic Lie
subgroup of GL(V, M ). We write [¥ C End(Vy M) for the corresponding Lie algebra.
The aim of this section is to say something halfway useful about the Lie algebra [ .
We restrict ourselves to 1-motives of the form M = [Y — A| where A is an abelian
variety (rather than a semiabelian variety).

Definition 2.1. let M = [Y — A| be a 1-motive over £ where A is an abelian
variety. We write Tz (M) for the pull-back of ¥ and Lie A(C) over A(C) (in the
category ol commutative groups) explicitly given by

Tz(M) := {(x,y) € Lie A(C) X Y | exp(x) = u(y)}
and define VoM = Tz(M) @ Q.



Vol. 88 (2013)  Detecting linear dependence on an abelian variety via reduction maps 333

2.2. The kernel of the exponential map exp: Lie A(C) — A(C) is a finitely gener-
ated free group of rank twice the dimension of 4. We have a commutative diagram

0 — ker(exp) —— Tz (M) Y 0

\ |k

exp

(0 — ker(exp) —— Lie A(C) —— A(C) ——-0

showing that Tz (M ) is a finitely generated free group of rank 2 dim A + rank V. The
@-vector space VoM has therefore finite dimension 2 dim A + rank Y. The C-vector
space VoM ® C carries a Hodge decomposition of type (0, 0), (0, 1), (1,0) ([Del74],
Lemme 10.1.3.2), hence VoM is a rational mixed Hodge structure. It is called the
rational Hodge realisation of M. By construction we have a short exact sequence

0 —=VoAd—-> VoM - Y RQ —0

and there is a canonical lift | : keru ® ¢ — VoM of the inclusion of keru ® ) C
Y @ Q. The next proposition is Deligne’s construction 10.1.6 of loc.cit.

Proposition 2.3. Forevery prime number £ there is a canonical and natural isomor-
phism of Qg-vector spaces VoM @ Qp = V; M.

Proof. We show that there is even a natural isomorphism of Zg-modules Tz(M) ®
Ly = Ty M. To do so, we must show that there are natural and compatible isomor-
phisms of finite groups

(T2 (M) /T2(M) — Ty 7 (M) (k).

Indeed, elements of Tz (M) are pairs (y,x) € Y x Lie A(C) such that u(y) =
exp(x). Hence elements of £~ Tz (M) are pairs (v, x) € £7'Y x Lie A(C) such that
£'u(y) = £ exp(x). Using the expression for TZ/EI:Z(M)(IE) introduced in 1.7, we
must show that there are natural isomorphisms

{(y.x) € £7'Y x Lie A(C) [ £'u(y) = £ exp(x)}
{(y.x) € ¥ xLie A(C) | u(y) = exp(x)}

= {0 P) €Y xAK) |u(y) = £'P}
{Wy.u(y)|yeYk)y
The isomorphisms we are looking for are given by (y, x) — (£'y, exp(x)). Com-

patibility is straightforward to check and naturality is clear from the construction.
O
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24. Let M = [Y — A] be a 1-motive over & where A is an abelian variety. There
are obvious morphisms of 1-motives

Al0] - M — Y[l]

where A|0] denotes the 1-motive [0 — A] and ¥[1] denotes the 1-motive [¥ — 0.
These morphisms induce a short exact sequence of Galois representations as well as
a short exact sequence of rational Hodge structures

0>V A—-VM->YRQ, —0 and 0> Vod—-> VoM Y @Q — 0.

These exact sequences are compatible in the sense that the underlying exact sequence
of (@¢-vector spaces of the £-adic realisations is canonically isomorphic to the un-
derlying exact sequence of (Q-vector spaces of the Hodge realisation tensored with
Q¢. This follows from Proposition 2.3. Observe that Vg A4 is the usual £-adic Ga-
lois representation associated with A, obtained by tensoring the £-adic Tate module
lim A(k)[¢}] with Qp, and that Vg A is canonically isomorphic to the singular homol-
ogy group H,(A(C), Q), which also is a rational Hodge structure of pure weight 1.

25, Let M = [Y — A] be a l-motive over k where A is an abelian variety and
set I' := Gal(k|k). We write LM and L4 for the image of T in the group of
Q¢-linear automorphisms of VM and V; A respectively, and we denote by Lj}ll the
stabiliser of VyA in LM . We have thus a short exact sequence of {-adic Lie groups
0 — Lﬁ’! — LM _ [4 5 1 and associated with it is a short exact sequence of
Lie algebras

0—>I£4—>IM—>IA—>O.

The Lie algebra Ij}ll acts trivially on ¥ ® ; and on V; A. Hence it is commutative and
may be identified with a Q;-linear subspace of Hom(Y ® Q, VyA). To determine
[M amounts to determine the Lie algebras [ and Iﬁl and to determine how [ is an
extension of [ by Iﬁl . We can now formulate the main results of this section.

Definition 2.6. For every a l-motive M = [u: ¥ — A|, where A is an abelian
variety, we write f)ﬁ"' for the Q-linear subspace of Hom(Y ® Q, VpA) consisting
of those homomorphisms f such that ¥y f(y1) + -+ + ¥y f(yn) = O whenever
Y; € Endg A and y; € Y are such that yyu(yy) + -+ + ¥uu(y,) = 0.

Theorem 2.7. Let M = [u: Y — A| be a 1-motive over k where A is an abelian
variety. The equality f);}"' ®Qp = Iﬁl holds for all prime numbers £. In particular
the dimension of[ﬁ"’ is independent of £.

The result is not really new, it essentially is a reformulation of a theorem of Ribet
[Rib76] (see also [Hin88], Appendix 2). While the inclusion f)ﬁl ®Qy D Iﬁl is
elementary to show, the inclusion in the other direction uses Faltings’s theorem on
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homomorphisms of abelian varieties over number fields ([Fal83]) as well as Bogo-
molov’s theorem on the image of the Galois group in the automorphisms of the Tate
module of an abelian variety (|Bog81]).

2.8. We will moreover construct a Lie subalgebra §™ of End(Vy M) with the follow-
ing properties. The Lie algebra h™ leaves V, 4 invariant and acts trivially on ¥ ®@ Q.
The stabiliser of VoA in ¥ is the Lie algebra f)ﬁl defined in 2.6. So there is a short
exact sequence

O—>5£4—>5M—>[)A—>1

where h4 is the image of M in the endomorphisms of Vo A. The Lie algebra b4 is
chosen in such a way that H™ ® Q is contained in I, and in the case where the
equality h ® Q; = [4 holds, the equality h ® Q; = I holds as well. We would
of course like to take for §# a Lie algebra such that for every prime number £ the
equality

h4 @ Qp = 14

holds. The Mumford—Tate conjecture states that such a Lie algebra exists and that it
is the Lie algebra associated with the Mumford-Tate group of A. We do not want to
assume this conjecture here.

2.9. Notation. For a nontrivial abelian variety A over k and every prime number
£ we let B4 = f)flg) denote any Lie subalgebra of End(VpA) having the following
properties.

(1) As an h-module VoA is semisimple.

(2) The Lie algebra h4 is contained in the commutator of End;(A) in End(Vy 4).
(3) The identity endomorphism of VA belongs to h.

(4) The Lie algebra [4 contains h4 @ Q.

Such a Lie algebra indeed exists, we could just take h to be the commutative 1-
dimensional Lie algebra ¥ acting as scalar multiplication on Vp A, independently
of £. A theorem of Bogomolov (|[Bog81], Theorem 3) asserts that the Lie algebra
[4 contains the scalars. Bogomolov’s Theorem even assures that we can take h
such that the equality [4 = h4 ® Q; holds, but then § might depend on £. If the
Mumford—Tate conjecture holds for A we can take h* to be the Lie algebra of the
Mumford—Tate group of A.

2.10. Wenow come to the proof of Theorem 2.7, which we split up in several lemmas.
We start with three preliminary remarks.

(a) In proving Theorem 2.7 we can without loss of generality replace k by a finite
extension of k. Indeed, if we do so the group LM gets replaced by a subgroup of
finite index, which has then the same Lie algebra as L . In particular, we can and
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will assume from now on that } is constant and that all endomorphisms of 4 are
defined over £.

(b) The fppf-sheaf Hom(Y, A) on speck is representable by a power of A. The
morphism #: ¥ — A is a k-rational point on Hom(Y, A), and we denote by B the
connected component of the smallest algebraic subgroup of Hom(Y, A) containing
u. In proving Theorem 2.7 we can without loss of generality suppose that i belongs
to B. Indeed, the smallest algebraic subgroup of Hom(Y, A) containing u has only
finitely many connected components because Hom(Y, A) is proper, hence for some
m > 0 the point mu belongs to B. The morphism of 1-motives

u (m,id) mu

¥ Al Y Al

induces isomorphisms under the realisation functors Vp(—) and Vy(—), so we may
replace u by mu.

(c) Let us write £ := End; A ® Q and denote by R the Q-linear subspace of
E ®Y generated by the elements Y1 ® y1 + -+ ¥ & y» € End; A ® Y such that
Yriu(y1) + -+ Yuu(yy) = 0in A(k). The subspace R of £ ® Y is obviously an
F-submodule. We have a canonical pairing

{(—. =) (FE®Y)xHom(Y @ Q,VoAd) — VpA

defined by (¥ @ y, f} = ¢f(y). By definition f)ﬁ"' is the annihilator of R in this
pairing.

Lemma 2.11. There is a canonical and natural isomorphism of I£-modules
VoHom(Y, A) = Hom(Y ® Q,VpA).

Under this isomorphism Vg B C Vodtom(Y, A) and f)ﬁl C Hom(Y ® Q,VpA) cor-

respond to each other.

Proof. We choose a Z-basis y1,...,y, of ¥ so that we can identify ¥ with Z" and
hence the abelian varieties #Hom(Y, A) and A”. This identification is natural in A,
and the point u# of Hom(Y, A) corresponds to the point (#(y1),...,u(y,)) of A”. We
get isomorphisms of /Z-modules

Vodom(Y, A) = Vo(A") = (Vod) = Hom(Y ® @, VyA4)

whose composition is independent of the choice of the basis of Y. An element x
of Vo(A") C Lie A"(C) belongs to Vp B if and only if the one parameter subgroup
exp(Rx) of A"(C) is contained in B(C). It follows from Poincaré’s Reducibility
Theorem ([Mum70] IV.19, Theorem 1) that a connected subgroup of A”(C) is con-
tained in B if and only if it is contained in ker ¥ for every morphism y: A" — A
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such that (B) = 0. By minimality of B we have y(B) = Oifand onlyif ¥/ (u) = 0,
hence we find

x € VoB < y(exp(Rx)) =0 forall ¥ € Hom(A", A) such that ¥+ (u) = 0.

But now observe that ¢ (exp(Rx)) = exp(IRyrx) and that to say that exp{Ryrx) = 0

is the same as to say that ¥vx = 0. If we denote by ¥y, ..., ¥ the components of
Y € Hom( A", A), we therefore have

X €EVoB <= yYyx=0foralyy,....,¢¥, €End A
with yqu(y1) + - + Yruly,) = 0.

If we now look at x € Vy(A") as being a homomorphism ¥ ® @ — VyA via the
isomorphism we have introduced, the condition that ¥x = 0 for all y» means that x
belongs to f)f. O

Lemma 2.12. Let M = [Y — A| be a l-motive over k where A is an abelian variety,
and let £ be a prime number. The Lie algebra [ﬁ"’ is contained in f);}"’ ® Qp.

Proof. Letr = Y1 @ y1 + - + ¥, @ y, be an element of R and let us show that
we have (r, x) = 0 for every x € Ij}f . Replacing r by some multiple of r we may
suppose that the y; are actual endomorphisms of 4. We must show that for every
o€ Lj}ll we have (r,logo) = 0. We have logo = ¢ — 1, so what we have to show is
that for all ¢ € Gal(k|k) acting trivially on Ty A we have {r,o — 1) = 0. For every
Vi, let v; be an element of Ty M mapping to y; ® 1 in ¥ ® Z,. Using our explicit
description of the Tate module T;M given in 1.7 we may write these preimages as
sequences v; = (P, y,-)J?o:0 where the P;; € A(k) are points such that P;y = u(y;)
and £P; ;41 = P;; forall j > 0. Now we compute

n n
(r.o—1) = Z%(UUI' —v) = ZW:‘(UPU‘ = Pij)ito
i=1 i=1

=a Z(wf Pij)72o — Z(Wf Pij)72,.
-

By definition of R we have ¥y P1g + -+ + ¥, Ppo = Ohence Y1 Py + - + ¥, Py
is an element of order ¢/ in A(k). But by hypothesis ¢ acts trivially on Ty A, hence
on all £/ -torsion points of A(k). Therefore, the right hand side of the above equality
is zero. O

Lemma 2.13. Let M = [Y — A| be a l-motive over k where A is an abelian variety,
and let £ be a prime number. There is a canonical isomorphism HY(LM 'V, A) =

Hom;j 4 (Lﬁ"',VgA).
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Proof. The Hochschild—Serre spectral sequence furnishes an exact sequence in low
degrees

0 — HYW(LA, Vv, A) — HY(LM v, A)

B, B (LY N A)) — HA(LAV,A).

By Bogomolov’s theorem ([Bog81] Theorem 3) there exists an element in LA which
acts as multiplication by a scalar # 1 on V;A. Thus, by Sah’s Lemma the first
and last term in the above exact sequence vanish, and so the map labelled (*) is an
isomorphism. Since Lff acts trivially on Vy A by definition, we have

HO(LA, HY(LY Vv, A)) = Homp 4 (LY Vv, A). O
Lemma 2.14. There is a canonical, injective Z.p-linear map
Hom (B, A) ® Z; — HYW(LM T, M).

Proof. Letus write kps for the field extension of & whose Galois group is the quotient
LM of T' = Gal(k|k). By our explicit description of the Tate module of M (1.7), this
ks is the smallest field extension of &k such that for all y € ¥ all £-division points
of u(y) are defined over kps. In other words, kps is the smallest extension of & such
that all elements of #(}') become £-divisible in A(kps). Any point P € A(k) which
is an Endy A-linear combination of points in 1 (Y ) becomes then divisible in A(kaz)
as well. We consider now the following diagram:

Homg (B, A) @ Zy

e
-

- 1

et 2)

0 K A(k) @ Zg ——— A(kp)  Zy¢

l €Y &) l (6)

0 —— HYLM TyA) — H (k. TeA) — 2 Hl(kpy, Ty A).

Let me explain the maps. First, the map (1) is induced by the map Homy (B, A) —
A(k) sending a homomorphism ¢ to the rational point ¢ (). The maps (2) and (3)
are induced by the inclusion of fields & C kps. We use here that A(k) is finitely
generated, so A(k) ® Z; is the same as A(k) ® Z;. The vertical maps (5) and (6)
are the maps in the Kummer sequences introduced in 1.3 (fori = 1), so they are both
injective. We define K to be the kernel of (2). From the Hochschild—Serre spectral
sequence we see that the kernel of (3) is HH LWIM T, A). The map (4) is then the
restriction of (5) so that the diagram commutes. Since (5) is injective, (4) is injective
as well.
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Having this diagram, all that remains to show 1s that the dashed arrow exists and
that it is injective. In other words, we have to show that (1) is injective and that
the composition of (1) and (2) is zero. The map (1) is injective because Zy is a flat
Z-module and because already the map Homy (B, A) — A(k) is injective. Indeed,
let ¢: B — A be a morphism of abelian varieties such that ¢(u#) = 0 € A(k). The
kernel of ¢ is then an algebraic subgroup of B containing u, hence equal to B by
minimality of B, and so ¢ is zero. The composition of (1) and (2) is zero. Indeed, for
every homomorphism ¢: B — A the point ¢(u) is an End; A-linear combination of
points in #(Y ), hence ¢(u) is £-divisible in A(kys), and hence the class of ¢(u) in
Alkyr) & 7y is trivial. [

Remark 2.15. Explicitly, the map whose existence we claim in the lemma is the
following. Given a homomorphism ¢: B — A, it sends ¢ & 1 to the class of the
cocycle

Cp: 0 (0P — P;)°, eT A

where ( P;)7° , is a sequence of points in A(k) such that Py = @(u) and £ P4 = P;.
As we shall see in a moment, this map has a finite cokernel. It is then not hard to
see that the points of P € A(k) which become divisible in A(kys) are precisely
those points such that for some integer m > 0 the point m£ is an End; A-linear
combination of points in #(¥"). This relates Theorem 2.7 with Ribet’s Main Theorem
in [Rib76] on dividing points on abelian varieties.

Proof of Theorem 2.77. By Faltings’s theorem on homomorphisms of abelian varieties
over number fields, and because we suppose that all endomorphisms of A are defined
over k, we have a canonical isomorphism

Homy (B, A) ® Q¢ = Hompa(Vy B, Vi A).
By LLemma 2.13 we have a canonical isomorphism
HY (LM vy A) = Homy 4 (LY v, A).
Together with Lemma 2.14 this yields an injection
Homypa (Ve B,V A) = Homg (B, A) ® Q¢ — Homya ([ﬁl,VgA).

We have seen in LLemma 2.12 that the inclusion Iﬁ"' - f)ﬁ"' QQr=VoBRQ = VB
holds. Let us then consider the restriction map

Homa(V;B,V;A) — Hom (Iﬁl Ve A).

Because Vp A, Vy B and Iﬁl are all semisimple [-modules by Faltings’s results, this
map is surjective and it is injective if and only if the equality Iﬁ"' = V¢ B holds. This
is indeed the case, for dimension reasons. ]
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2.16. We now come to the construction of the Lie algebra B C End(Vy M) which
will be an extension of b4 by f)ﬁ"' as announced in 2.8. Let M = [u: ¥ — A|bea
1-motive over &k where A is an abelian variety, and consider the 1-motive

M+:[M+f End];A®Y—>A]

givenby v, (¥ @ y) = Yu(y). There is a canonical morphism of 1-motives M —
M inducing a diagram

0 Vod — = VoM — .7 ®Q 0
0 VoA VoMy 27 End; A®Y @ Q — >0
<
\
keru, @ Q.

Because the map u4 is a map of End; A-modules, the maps in the lower exact
sequence as well as the canonical lift fj (cf. 2.2) are maps of £ := End; 4 ® Q-
modules. Because F is a semisimple Q-algebra ([Mum70], IV.19 Theorem 1) we
can choose an -module section s4 of py extending f. Denote by s the restriction
of s4 to ¥ ® Q. This s takes values in Vo M and is therefore a section of p. We now
give the definition of h™ and proceed then with checking that this definition makes
sense.

Definition 2.17. Let s be a section of the canonical projection VoM — ¥V @ Q
such as constructed in 2.16. We define h™ to be the Lie subalgebra of End(Vy M)
consisting of those endomorphisms which are of the form

(e, fls:v+s(y)r—ev+ f(y) foralveVoACT VoM, yetY @Q

for some e € h* and some f € 5:34 C Hom(Y ® Q, Vo A).

Proposition 2.18. The set of endomorphisms Y™ of VoM defined in 2.17 is indeed
a Lie subalgebra of End(VyM). Moreover, B does not depend on the choice of the
section s.

Proof. The set B™ is a linear subspace of End(VyM). In order to show that b isa
Lie subalgebra we must show that B is closed under taking commutators. Indeed,
the formula [(e, f);.(e', f')s] = ([e.€'],ec f'—e'o f)s; holds,and eo f'—¢’o fis
again an element of f)j}f because the compositionof f € [ ﬁ"' with any endomorphism
of Vo A again belongsto b f by definition of f)ﬁl . We now show that b isindependent
of s. Consider again the diagram of 2.16, let s; and /4 be £-module sections of p
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extending ] and write s and / for their restrictions to ¥ ® €. We claim that the
difference d := s —1: ¥ @ @ — VpA belongs to f)ﬁ"' . Indeed, observe that the
objects introduced in 2.10.c reappear in the diagram of 2.16, namely

End; A®Y@Q=E®Y and keruy ® Q =R.

Wehave (d,r) = Oforall r € Rbecause s4+ and {4 are E-module maps that coincide
on R, and that means by definition that  belongsto b f . From this we can deduce that
the Lie algebras constructed as in the definition 2.17 from s and from ¢ respectively
are the same. Indeed, the equalities

(e, f)s=(e,f—ecd) and (e, f)=(e, [ +ecd)s

hold for all e € h4 and all f € f)ﬁ"' C Hom(Y ® Q, VpA). We have seen that d
belongs to 5:34 hence sodo f —eod and f + e o d. That does it. O

Corollary 2.19 (to Theorem 2.7). let M = |u: Y — A| be a 1-motive over k
where A is an abelian variety and let £ be a prime number. The Lie algebra 1M
contains B @ Qy, and the equality ™M = §M @ Q holds if and only if the equality
11 =4 @ Q; holds.

Proof. Define M, and choose s, as in 2.16, and construct the Lie algebra b as in
Definition 2.17 from this data. We still denote by s+ and by s the (;-linear extensions
of 54 and s, so we have a split short exact sequence of {)¢-vector spaces

N
-

0 Vid ———ViM =Y @ @y

0.

The [4-module Iﬁ"' can be identified with a submodule of Hom(Y & Qg, VeA) =
VA", Since V; A is asemisimple [4-module by Faltings’s results, [ is isomorphic as
an [4-module to a direct factor of a power of V; A. Bogomolov’s Theorem ([Bog81],
Theorem 3) and Sah’s Lemma imply that

H' (14, V;4) =0, H'(I4, Hom(Y ® Qu.Ved) =0 and H' (4, M)y =0

for all i > 0. The vanishing of H Z(IA,I;}"' ) implies that the Lie algebra extension
given in 2.5 is split ([Wei94], theorem 7.6.3), we can therefore choose a splitting ¢
of the projection map 7 as indicated.

o
M - P
0 Iy M —

14 0.

Using the splittings s and o we fabricate a map c¢: 4 — Hom(¥Y @ Q,VyA) by
setting
c(x)(v) = o(x)s(v) forallx e 4 v e ¥ & Q.
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This map is a cocycle, hence a coboundary because H1({4, Hom(Y ® Q. VyA))
vanishes. So, there exists a Qy-linearmap f: ¥ @ Qy — Vy A such that

o(e)s(v) = e. f(y) foralleel? y eV @ Qy.

We claim that this f belongs to Iﬁl . In order to check this it suffices by Theorem 2.7 to
show that for all y;,...,y, € Y andall yrq,...,%, € End; A such that ¥rju(y1) +
<o+ Yrpu(yy) = 0O we have ¥y f(v1) + -+ + ¥ f(vy) = 0. Indeed, we have

Z% fi) = ZW:‘U(X)S(%) = cr(x).s+(zwf ® yl-).

i=1 =1 i=1
Here we have used that the ¥; commute with elements of [# and End; A-linearity of

$+. By hypothesis s sends elements of keru ® Qg to (V;M )[M, hence the right
hand side of the above equation is zero. The map [4 — [ givenby x > o(x)—x. f
is therefore another section of 7. Letus replace o by this new section. By construction
we have now o(e)s(y) = Oforalle € [4 andall y € ¥ ® Qy, hence

(c(e)+ f).(v+s(y)) = ev+ f(y) foralleeI? feI™ v evd,y e Y®Q,.

Since [4 contains b4 ® Q, and Iff is equal to f)j}f ® Qy, this shows that [™ contains
HM ® Qg, and that the equality [¥ = §™ ® Q holds if and only if the equality
11 = p4 ® Q@ holds. O

Remark 2.20. We have left two important things undiscussed. First, we have only
worked with 1-motives whose semiabelian part is an abelian variety. The benefit we
had from this was Poincaré’s Reducibility Theorem and semisimplicity of various
objects associated with the abelian variety. It would of course be desirable to have a
statement as Corollary 2.19 for general 1-motives. Secondly, we have given the Lie
algebra h™ by an ad hoc construction. This construction should be compared with
the Mumford-Tate group associated with the mixed Hodge structure VoM, which
one may define directly in terms of Tannakian formalism.

3. Some linear algebra

The 1-motives we are working with in this section are of the form M = [Y — A]
where A is a geometrically simple abelian variety over k. I recall that this means
that A has no abelian subvariety defined over k other than 0 and itself. Our goal is to
prove the following technical result.

Proposition 3.1. Let M = [Y — A] be a l-motive over k where A is a geometrically
simple abelian variety, and let £ be a prime number. The image of the bilinear map

ap: (Ve M)* x M —s (VeM)*
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given by ay(m, x) = 7 o x consists precisely of those linear forms on V¢ M which are

zero on the subspace keru @ Qp of Vi M. In particular, the image of oy is a linear
subspace of (Vy M)*.

3.2. Here is the setup for this section. We {ix a finite dimensional division algebra
E over @, a nontrivial £-module V; of finite rank and a {}-vector space of finite
dimension Vy. There is a canonical pairing

(—, —) 5 (E & Vo) X HOI‘[](V(), V]) —_— Vl

givenby (¢ ® v, f) = ¥ f(y). Furthermore, we fix an £-submodule R of £ ® )
and define hg € Hom( 1V}, V;) tobe the annihilator of R in this pairing. The following
proposition remains valid if one replaces £ by a finite product of division algebras
over {Q — the price to pay are more indices.

Proposition 3.3. In the situation of 3.2, let @ be a nonzero linear form on Vi and let
v be an element of Vy. The equality w( f(v)) = 0 holds for all f € hg if and only if
lg ® v belongs to R.

Proof. It 1 @ v belongs to R then f(v) = Oforall f € hy by definition, so the if
part is obvious. To prove the converse, let us fix an element v € Vj such that

7f(v) =0 forall f € bhg.

We must show that 1 g @ v belongs to R. Let us choose a Q0-basis of 1 as follows.
We begin by choosing elements yq,...,y, € Vogsuchthat lp @ y1,...,1g ® v,
form an E-basis of (£ @ Vy)/R. These elements are (J-linearly independent, hence
we can choose elements zq, . . ., z; of V completing v, ..., y, tobasis of V. There
exist unique elements v;; of £ such that forall 1 < j <3

rpi=lp®@z; — (Y1 ®@y1 + -+ ¥ © yr)

belongs to R. We claim that a homomorphism f: Vp — V) belongs to b if and
only if the relations

fE)=vnfo+--+ ¥, fly,) foralll =j <s

hold. In other words we claim that f belongs to hg if and only if {r;, /) = 0 holds
for 1 < j < s. Indeed, since r; € R, every f € hg must satisfy (f, rj) = 0 by
definition. On the other hand, we must show that if (rj, f ) =O0Oholdsforl < j <y,
then we have (r, f) = 0 forall r € R. This is the case because R is FE-lincarly
generated by 71,...,7s. Indeed, we can write every r € Rasr = Y @ y1 +--- +
Yrj @ ¥r + 1 @ 21 + -+ - + @5 ® Z5. Alter subtracting ¢171 + -+ + @575 from r we
remain with an element v’ € R of the form r’ = W{j @y +--+ W,’,j ® y,. But
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this element can only be zero because the 1p ® yq,...,1g ® y, are an £-basis of
(F 2 Vy)/R.

In summary, if we want to give an element f € h € Hom(1V,, V), we may
freely choose the values f(v1),..., f(y,) € Vi, and must then follow the rules
fzj) = f(y1) + -+ + ¥, f(¥,) to determine the value of f on the remaining
basis elements zq, ..., Zs.

Let us write v = aqyy1 + --- + o, ¥, + B121 + --- + Bz, for scalars «; and
B; € Q, and define elements py, ..., py of E by

pi 1= o;lg +ﬁ1w1i Fresss = +ﬁs1ﬁsi

for 1 < < r. Using these definitions, the relation 7 ( f(v)) = 0 becomes
F s
0=n(Y o0+ 1)
i=1 ji=1

=7( D fO) + 2 Y Bivii )
i=1

i—1j=1
Is
=7 pifOi).
i—1

Forevery 1l <i < randevery x € Vj thereexistsan f € hg suchthat f(y;) = x and
f(yx) = O for k # i. The above relation shows thus in particular that 7(p; (x)) = 0
for all x € Vq, thatis, w o p; = . Since 7 is nonzero, this means that p; is not
invertible, and since 7 is a division algebra, we find p; = 0. Thus, the equality

0= lE®@y: + B1¥1i @yi+ -+ Bs¥si @ yi

holdsin £ @ Vp forall | <7 < r. Summing over all i yields then
F 5 P
0=> wle®yi+Y B> Vu® i
i=1 j=1 i=1

F § §
=) ol ®yi+ ) Bile®z— ) Biry.
i=1 j=1 j=1

1z@vu

Hence lg ® v = Byry + --- + Bs7s belongs to R, and that is what we wanted to
show. O

Proposition 3.4. Let M = [u: Y — A] be a l-motive over k where A is a simple
abelian variety. The image of the bilinear map

ap: (VoM)* x hM — (VyM)*
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given by ay(m, x) = m o X consists precisely of those linear forms on Vg M which are

zero on the subspace keru @ Q of VoM . In particular, the image of ay is a linear
subspace of (VoM )*.

Proof. Letus fix a linear section s: (¥ ® Q) — VpM such as in the construction of
hM, so that every element of § is of the form

(e, fls:v+s(y)r—ev+ f(y) foralveVyd, yet @Q

for some e € h and some f € f)ﬁ"' . Using this section, every linear form 7 on Vo M
can be uniquely written as w = (w4, 7y ), Where 4 is a form on VA and ny is a
form on ¥ ® . With this notation, the map g in the proposition becomes

ao: ((ma.my). (e, f)s) > (mace mao f)

For every linear form (74, 7y) on VoM, every element (e, f)s of 5™ and every
vy ekeru ® Q wehave (mgoe,myq0 f)s(0,5(y)) = f(y) = O0by definition of f)f,
so all forms in the image of &y annihilate ker ¥ ® (). On the other hand, let (774, ny)
be a linear form on Vg M such that ny(y) = O for all y € ker u. Let us define

(74, 9) if g # 0,
(4,0) forsome my £0 ifny =0

&1&M¢Q {
] and (my,ny) ;=

0 ifny =0,

In order to make use of Proposition 3.3, we specialise the objects introduced in 3.2
as follows. We take £ to be the Q-algebra End; (4) ® Q, which is a division algebra
according to [Mum70], IV.19 Corollary 2 to Theorem 1. Then V; := VpA is an
E-module of finite rank, and we specialise Vy := ¥ ® Q. Finally we let R be the
FE-submodule of £ ® (¥ @ Q) introduced in 2.10.c, so that according to Definition
2.6 we have hy = f)j}f . Proposition 3.3 states that the image of the /inear map
f)f — (Y ® Q)" given by f +— m4 o f is equal to the annihilator of the subspace
keru @ Q of Y ® Q. In particular there exists an element f € f)ﬁl such that
74 o f = ny. With this choice of f we have

ao((a. 7y ), (e, f)s) = (mace,mac f) = (14, 7v)

in both cases, 14 = 0 and 4 # 0. This proves the proposition. 0

3.5. It follows from Theorem 2.7 (or rather its Corollary 2.19) that the (Q,-bilinear
map in Proposition 3.1 is obtained from the (@-bilinear map of Proposition 3.4 by
extension of scalars. However, it is not clear whether or not the property of a bilinear
map to be surjective is invariant under scalar extension. Let £.|K be an extension
of fields. Given finite dimensional K-vector spaces U, V, W and a K-bilinear map
Br: U xV — W, denote by f; the L-bilinear map obtained from Sg. Which of
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the following implications is true (for a fixed field extension L |K and all K-bilinear
maps Sx between finite dimensional K-vector spaces) ?

; - 9 b ; G
Bk is surjective <= = P is surjective

We were unable to find a satisfying answer to this general problem. Our next propo-
sition shows that the implication b) holds for the extension Q¢ |(Q, and that is all we
need.

Aside 3.6. There exist Q-bilinear maps f: U x V — W which are not surjective,
but which become surjective after base change to any completion of Q. For instance
the bilinear map g: Q3 x Q3 — Q% given by

B(uq.uz.u3). (V1,v2.V3)) = (M1V1, Uz, Uz V3, (U1 + Uy + u3) (V1 + V2 + V3))

has this property. This example is due to Bjorn Poonen.

Proposition 3.7. let V., V' and W be Q-vector spaces andleta: V x V' — W be a
bilinear map. Let K be either the field of real numbers or the field of £-adic numbers
for some prime number £. Ifthe image of o is a linear subspace of W, then the image
of the induced K-bilinear map

o (VRK)x(VR®K)—->W®K
is a linear subspace of W @ K, and the equality imoag = ima @ K holds.

Proof. To ease notation let us define Vg := V ® K and analogously V- and Wg.
The image of ag 1s certainly contained in the K-linear subspace imo ® K. We may
thus, replacing W by im &, suppose without loss of generality that « is surjective.
We have to show that ax is surjective as well. We consider the projective spaces

PV = (V\{0})/Q* and PVg := (Vg \ {0})/K".

Because {Q is dense in K, the subset PV is dense in PP Vg, and again the same goes
for V" and W in place of V. The map « induces well defined maps

a:PVxPV' — PW and ag: PVg x PVy — PWk.

Considering PV x PV’ as a subset of P Vg x P V¢, the map & extends to &g, hence in
particular the image of @ contains the dense subset PW of P Wx. On the other hand,
the topological spaces P Vg and PVy, are compact, hence so is their product, and the
map og is continuous. Thus, the image of g must be compact, hence closed, and
therefore consist of all of P Wx. But then, surjectivity of ax immediately follows
from surjectivity of k. L
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Proof of Proposition 3.1. On one hand, let 7 be a linear form on V; M and let x be
an element of [™ . For every v € keru @ Q; € V; M we have x.v = 0 and hence
m(x.v) = (. On the other hand, let 5 be a linear form on Vy; M which is trivial on
keru ® Qg. By Corollary 2.19 the Lie algebra [™ contains b ® @y, hence it is
enough to show that the image of the bilinear map

(VeM)* x (0™ @ Q) — (Ve M)*

contains all linear forms on VM = VoM @ QQ; which are trivial on keru @ Q.
Indeed, that follows from Proposition 3.4 and Proposition 3.7. U

4. Proof of the Main Theorem

For this section we prove our main theorem as announced in the introduction. Our
strategy is as follows: Given a geometrically simple abelian variety A over the number
field & and a subgroup X of k, we consider the group

X :={P € A(k)| red,(P) € red,(X) forall p € S}

where S is any fixed set of places of k of density 1 where A has good reduction. The
main theorem states that for all X and all S the equality X = X holds. A simple
argument will show that in order to prove this equality, it suffices to prove that the
quotient group X /X is torsion free. Since X /X is finitely generated, it is enough
to show that for all primes £ the group (X /X) ® Z; is torsion free. But then, using
Propositions 1.11 and 1.16 this amounts to show that the group H (LM T, M) is
torsion free for a suitable 1-motive M. Our program consists now of establishing a
general condition ensuring that H! (L, T) is torsion free for an £-adic Lie group L
acting on a finitely generated free 7 ,-module 7', and then to show that LM acting on
Ty M meets this condition.

Key Lemma 4.1. Let T be a finitely generated free 7.p-module, let 1. be a Lie
subgroup of GL(T') with Lie algebra l and set V := T @ Q. Suppose that

(1) theset {mox|x el,m € V*}isalinear subspace of V¥,
(2) the equality VI = V' holds.
Then the group H} (L, T) is torsion free.
4.2. The proof needs some preparation. Let us introduce the following ambulant

terminology: Given a finitely generated free Zy-module 7" and a Lie subgroup [. C
GLAT) as in the lemma, we say that 1. acts tightly if the equality

(Y(T+Vve)=T+ V"
gel
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holds, where V := T @ (Q;. The inclusion 2 always trivially holds. More generally,
if V5 is another {Q¢-vector space we say that a family of linear maps ® € Hom(V, V)
is right if the equality

ﬂ(T + kerp) =T + mkerqa (%)

ped ped

holds. Again the inclusion 2 is trivial. So, L acts tightly on V' if and only if for
Vo = V the family {(g — lv) | g € L} is tight. The following lemma shows how this
is related with the torsion of H (L, T).

Lemma 4.3. Let T be a finitely generated free Z.g-module, let L be a Lie subgroup
of GL(T) with Lie algebral and set V := T Q@ Qq. If L acts tightly on V then the
group HY(L,T) is torsion free.

Proof. Letc: L — T be a cocycle representing an element of H!(L, T)[£], and let
us show that ¢ is a coboundary. As £c is a coboundary, ¢ is a coboundary in H (L, V)
and there exists an element v € V such that c(g) = gv — v forall g € L. To say
that the cohomology class of ¢ belongs to the subgroup H (L, T) of HY(L,T) is to
say that for all g € L, there exists a f; € T such that ¢(g) = gfg — I5. We find that

(g—1lv)tg =(g—1v)v forallgelL,

or, in other words, v —#, € ker(g — 1y ), thatis tosay v € T+ V#. This is true for
all g € L and since L acts tightly this implies that v = ¢ 4+ vy for some ¢ € T and
some vg € V. Hencec(g) = gt — 1 isa coboundary as needed. L

Lemma 4.4. Let V and V, be (Yy-vector spaces with linear duals V* and V' let O
be a linear subspace of Hom(V, V). Iftheset ¥V := {mog|p e O, m € V] }isa
linear subspace of V>, then ® is tight.

Proof. In (), the inclusion 2 holds trivially, we have to show that the inclusion C
holds as well. We have

m (T—I—ker(p) C m (T —|—ker1,h) and mker(p = m ker .

ped wew ped Prew

Hence, it is enough to show that the lemma holds in the case where V, = @y and
® = W. Write W for the intersection of the kernels ker ¢, so that
W ={veV]|p)==0forall ¢ € ®}
and
d={pelV”|g(w)=0foralwe W}
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Here we use that ® = W is a linear subspace of V*. Because T/(T N W) is
torsion free the submodule W M T is a direct factor of T (every finitely generated
torsion free Zy-module is free, hence projective), hence we can choose a Zg-basis
€1s...,€5,...,€, 08 T suchthateq,...,e; makeupa Zy-basisof W N T. Letv be
an element of V' that is contained in 7" + ker ¢ for all ¢ € ®. We can write v as

v ::Alel‘F"'+'Ases‘kls+les+l'+"'+'Arer
ew

where the A; are scalars in (J;. Taking for ¢ the projection onto the 7-th component
fors <i <rshowsthatA; € Zyfors <i <r. Hence Agyq1e541+--+ Arer €T,
and we find that v € W 4 T as required. L

Proof of Lemma 4.1. Let H be an open subgroup of L such that the logarithm map
is defined on H . Such a subgroup always exists, and the exponential of log /2 is then
also defined and one has explogh = h forall 2~ € H (|[Bou72], Ch.Il, §8, no4,
proposition 4). The Lie algebra of I is also [. Let & be an element of /7 and set
@ = logh, so that 1 = expg. We claim that equality V" = ker ¢ holds. On one
hand if Av = v, then the series

132
w+---+(_l)

¢(v) = logh(v) = (h— 1)(v) - 80

is zero, whence V7’ C ker ¢. On the other hand, if ¢(v) = 0, then the series

¢*(v) ¢" (v)
g T

h(v) = expe(v) = ly(v) + ¢(v) + + e

is trivial except for its first term which is 1y (v) = v, whence the inclusion in the other
direction. The Lie algebra [ is a linear subspace of End V satistying the hypothesis
of Lemma 4.4. Using this lemma and the hypothesis (2) we find

T +vE) c (\T+kerg) ¥ T+ = T4 12
gel pel

hence L acts tightly on V. By Lemma 4.3 this implies that 71} (L, T) is torsion free
as claimed. Mind that in the second intersection it does not matter whether we take
the intersection over ¢ € | or ¢ € log(H ), because every element of [ is a scalar
multiple of an element in log( H ). O

Corollary 4.5. Let M = [u: Y — A] be a 1-motive over a number field k where Y is
constant and A is a geometrically simple abelian variety. The group H] (LM T, M)
is forsion free.



350 P Jossen CMH

Proof. We check that the two conditions of Lemma 4.1 are satisfied. The first con-
dition holds by Proposition 3.1. To check the second condition, we have to show
that for every subgroup N of LM of finite index the equality (VM )" M= (Ve MY
holds. It is enough to show this for normal subgroups, so let us fix a normal sub-
group N of LM and denote by &’ the subfield of k fixed by the preimage TV of N in
T := Gal(k|k). So k' is a finite Galois extension of k, and what we have to show is
that the inclusion
(TeM)T < (Ted)™

is an equality. Indeed, by Proposition 1.9 and because Y is constant both of these
submodules of T, M are equal to (keru) ® Z;. L

Proof of the Main Theorem. We fix a geomeitrically simple abelian variety A over a
number field k with algebraic closure k. We also choose a model of A over an open
subscheme U of spec Oy, which we still denote by 4, and we fix a set S of closed
points of U of density 1. For every subgroup X of A(k) we define

X :={P € A(U) | red,(P) € red,(X) forall p € S}.

Qur aim is to show that for all X C A(k) the equality X = X holds.

Claim. It suffices to prove that for all subgroups X € A(k) the group X | X is torsion

free.
Indeed, let X be a subgroup of A(k), and let X’ be any subgroup of finite index

of A(k) containing X. Because X is contained in X’ the group X is contained in
X’. Moreover X’ is of finite index in X', so if X'/ X" is torsion free we must have
equality X’ = X'. Hence, as X' was arbitrary, X is contained in every subgroup of
finite index of A(k) which contains X. This in turn implies that the equality X = X
holds, because A(k) is finitely generated.

We now fix a subgroup X of A(k) and a prime number £, and we show that X /X
contains no £-torsion, or equivalently that (X /X) ® Z; is torsion free. Replacing U
by a smaller open subscheme " € U and deleting some finitely many elements from
§ we may suppose without loss of generality that £ is invertible on U. Let us then
choose a I-motive M = [u: ¥ — A| over U such that ¥ is constant and such that
u(Y) = X. From the propositions 1.11, 1.15 and 1.16 we get a canonical Z;-linear
injections

— i i 115 1 1.16 Lo M
X/ Xy®2y — HI'y. TiM) — H,(I'y, T(M) — H, (L™ T M).
It is therefore enough to show that H (L™ T, M) is torsion free. But this is guar-
anteed by Lemma 4.1 and the hypothesis that A is geometrically simple. 0

Remark 4.6. In the proof we only used information on the torsion of H! (L™ ,TeM)
because of the trick that permitted us to suppose that X is of finite index in X. One
can show that the group H) (LM, T;M) is in fact trivial for such 1-motives.
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Question 1. Let G be a semiabelian variety over a number field &, let X be a finitely
generated subgroup of G(k) and let P € G(U) be a point. Suppose that for all
finite places v of k, the point P belongs to the closure of X in G(k,). Does then P
belong to X ? Here, &k, denotes the completion of & at v, and we equip G (k) with the
topology induced by the topology of k. If G has good reduction at v and if X and
P are integral at v (so this concerns all but finitely many places) then to say that P is
in the closure of X in G(k,) is equivalent with saying that P belongs to X modulo
v, essentially by Hensel’s Lemma.

Question 2. Let A be an abelian variety over a number field k, let X € A(k)be a
subgroup of the group of rational points and let P € A(k) be a rational point. What
can one say about the density of the set of places p of k with the property thatred,,( P)
belongs to red,(X)?
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