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Degenerate singularities of one dimensional foliations

Viviana Ferrer and Israel Vainsencher™*

Abstract. We give formulas for the degrees of the spaces of holomorphic foliations in the
complex projective plane with a dicritical singularity of prescribed order. Blowing up such
singularity induces, generically, a foliation with only finitely many leaves tangent to the excep-
tional line; we find the degree of the locus defined by imposing a leaf of total contact with the
exceptional line.

Mathematics Subject Classification (2010). Primary 14C17, 14N99, 37F75; Secondary
32M25, 32865.
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Introduction

Holomorphic foliations of degree d on the complex projective plane P? are de-
fined by nonzero twisted 1-forms, @ = »_ a;dz;, with homogeneous polynomials
a;(zg, 21, z2) of degree d + 1, up to scalar multiples, satisfying > a;z; = 0. The
parameter space of foliations of degree d is a projective space PV (cf. (2)).

The purpose of this work is to compute the dimensions and degrees of the sub-
varieties of PV corresponding to foliations displaying certain degenerate singular-
ities. Given an integer & > 2 we study the locus, My C PN , of foliations with
a singularity of order > k. These are foliations defined in local coordinates by a
holomorphic 1-form that can be written as @ = axdx + brdy + higher order terms,
with ag(x, v¥), br(x, y) homogeneous polynomials of degree k. It turns out that My
is the birational image of an explicit projective bundle over P2, This enables us to
find a formula for the degree of M.

Another interesting type of non-generic foliation presents a so called dicritical
singularity of order k: require @z x + by to vanish. This defines a closed subset
Dy C M.

A characteristic feature of a foliation with a dicritical singularity is best phrased in
terms of the foliation induced on the blowup of P2 at the singular point: through all but
finitely many points on the exceptional line, the leaf is transversal. We say a foliation

*The authors were partially supported by CNPQ.
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with such a singularity has the property of maximal contact (MC for short) if some
leaf of the induced foliation has a contact of order k& with the exceptional line. Thus
we may consider the subvariety Cy C Dy consisting of dicritical foliations with MC.

Requiring a leaf of a foliation to be tangent to a line at a given point defines a
hyperplane in the parameter space PY. Therefore, the degree of each of the loci
Cr C Dy C My c P canbe rephrased loosely as the number of foliations with
a singularity of the specified type and further tangent to the appropriate number of
flags (point, line) in P2. It turns out that the degrees of Cy, Dy, M}, are expressed as
explicit polynomials in &, d.

This fits into the tradition of classical enumerative geometry: answers to questions
such as determining the number of plane algebraic curves that have singularities of
prescribed orders, besides passing through an appropriate number of points in general
position, are often given by “node” polynomials. There is also a wealth of results
and conjectures on generating functions for counting suitably singular members of
linear systems of curves on surfaces, cf. Gotsche [5], Kleiman and Piene [11]. We
hope similar results can be formulated in the setting of foliations.

1. The space of foliations

The main reference for this material is Jouanolou [8]. A projective 1-form of degree
d in P? is a global section of Qg (d + 2), for some d > 0.

We denote by Sy the space Sym,(C?)" of homogeneous polynomials of degree
d in the variables zg, z1, zo. We write d; = 3/dz;, thought of as a vector field basis
for C3. The dual basis will also be written as dzq, dz;, dz, whenever we think of
differential forms. Recalling the Euler sequence

0= Qp(d+2) = Op2(d + 1) ® S1 — Opa(d +2) = 0 (1)
and taking global sections we get the exact sequence
0— H(P2,QL(d +2)) — Sit1 ® St — Sa42 — 0

where 1g() a;dz;) = > a;z; is the contraction by the radial vector field. Thus a
I-form w € HO(P2, Q ulﬂ (d + 2)) can be written in homogeneous coordinates as

w = agdzo + aydzy + a,dz,
where the a;’s are homogeneous polynomials of degree d + 1 satistying
dozZo + a121 + arz, = 0.
The space of foliations of degree d in P is the projective space

PY = P(H*(Qp2(d +2))) (2)
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of dimension
N=3")-("-1=d2+4d +2.

We have Q}Pz(d + 2) = Hom(T P?, Op2(d + 2)). Any nonzero
w: TP? — Op2(d +2) (3)

induces a (singular, integrable) distribution of dimension one subspaces given by
p > kerw,. A nonzero multiple of w yields the same distribution.

1.1. Singularities. Twisting (3) by Op2(—d — 2) we get a map
W X id@[PZ(_d_z)f T[Pz(—d — 2) — O|P2.

The singular scheme of @ is defined by the ideal sheaf image of the above map. If
finite, it consists of

fzcz(szul,z(d +2)=d*+d+1
P

points counted with multiplicity. In local coordinates, say around 0 = [0, 0, 1] € P2,
writing @ = adx + bdy the singular scheme of @ is given by the ideal (a, b). We
say 0 is a nondegenerate singularity if the jacobian determinant |d(a, b)/d(x, y)| is
nonzero. A generic 1-form has only nondegenerate (hence isolated) singularities;
see [8], p.87. The order of the singularity 0 is vo(@) = min{orderg(a), orderg(h)}.
It can easily be checked that this is independent of the choice of coordinates.

In fact, if I is the ideal sheaf of the singular scheme, then for each p € P? there

is a unique nonnegative integer k such that the stalk at p satisfies I, C m’; and
I, ¢ m’;"‘l, where m denotes the ideal sheaf of p. Thus, setting & = Qulaz (d +2),
we see that the order of the singularity p is at least £ if and only if f the image of @

' . k .
in the quotient & /mt € is zero.

1.2. Jet bundles. The preceding discussion entices us to recall the notion of jet
bundles associated to a vector bundle, cf. 16.7 in [6] or [13]. Let & be a vector bundle
over a smooth projective variety X. For k > 0 the kth-jet bundle associated to &,
denoted P*(&), is a fiber bundle over X with fiber over x € X given by

PHE)x = (0x/mET) ® &

where m, 1s the maximal ideal of the point x.
For each £ > 0 we have exact sequences

0 — Symg,, QfF ® &€ — PF(E) —» PKE) - 0. (4)
Consider the evaluation map

ev: X x HY(X.8) — &
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given by ev(x,s) = (x,s(x)). The map ev lifts to natural maps fitting into the
following commutative diagram:

X x HO(X, &) —% pk(g)

PLE) .

We think of evg () as the Taylor expansion of s truncated at order k£ 4 1. We include
for the reader’s convenience the following

1.3. Lemma (Global generation). Notation as in (5) above, given k, replacing &
by a sufficiently high twist & @ £™ (where L is an ample line bundle) we have the
following:

(1) The map evy is surjective.

(i) Set Wy = {s € HY(X, &) | (evi_1)x(s) = O}. Then

(evi)x (W) = (Symy Qf ® €)s.

Proof. Let g be the ideal of the diagonal of X x X. Consider the projection maps
pi: X xX — X.,i=1,2. We have the exact sequence of sheaves over X x X,

5(1(:+1 PE— gk+1
gk« © ©/g* (6)

gk/gk+1 € O/g(k+1 e O/gk
Tensoring by p3& ® £™ and taking (p), yields the diagram

(Pl)*(élk“i?;@ ® £7) = (pl)*(éf"“g;@ ® £L™)

(P (FFp3E ® £7) = (pD)+(PFE ® £™) == (p1). (0/45) ® p3€ © £™)

Sym; QL ® E® £"—— PR ® £ Pl E £™).
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The vertical central arrow above fits into the exact sequence

(PD(P3€ ® £™) —> Pk(E @ £™) — (R p1)(FFH1ps€ @ £™)
I
X x HY(X, 6 @ £™).

Surjectivity of evy now follows upon killing (R! p1). (45 +! p3 & ® £™). This is
possible for m > 0 because £ is ample (cf. [7], Chapter III, Theorem 8.8, p. 252).
Similarly, (ii) follows from the identification W, = (p1).(g* p3ERL™),. Theright
hand side is the fiber of ker evy_; at x due to exactness of the middle row together
with cohomology and base change (see [7], Theorem 12.11, p. 290). O

1.4. Singularities of order k. We apply the previous lemma to & = Qu132 and
£ = Op2(1). In order to simplify the notation we set for short in the sequel

Q:=Q, and V:=H%Q +2).
1.5. Remark. Fix k& < d + 1. It follows from the explicit calculation of
HY(P?, Q(d +2)
(Bott’s formula [1], [12], p. 8) that the conclusions of the previous lemma hold for
m = d + 2. Hence

(1) evy is surjective fork < d + 1, and
(2) evi(ker(evi—1)) = Sym; Q ® Q(d + 2).

The lemma below is included for lack of a convenient reference.

1.6. Lemma. et X be a projective variety of dimensionm. Let & be a vector subbun-
dle of the trivial bundle X x C"t!. Let Z C P" be the image of the projectivization
F(&) C X x P" under the projection map q: X x P* — [P". Assume P(E) s 7

generically injective. Then the degree of Z is equal to the degree of the Segre class
Sm&.

Proof. Write e := rank &, 4 1= dim Z = m 4+ ¢ — 1. Set i = hyperplane class of
[P and likewise H = ¢10g(l). WehavedegZ = [ h* N[Z] = [ h* N q.[P(E)].
By the projection formula, we get deg Z = [ H* N [P(&)]. Pushing forward to X
the assertion follows from [4], §3.1, p. 47. L]

We describe now the locus My C PV of foliations of given degree d that have
some singularity of order > k.
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1.7. Proposition. For 1 <k < d + 1, denote by
My = {[w] € PV | [w] has a singularity of order at least k.

Then we have

codpy My =k(k+1)-2
and

deg(My) = / ) e (PFHQ +2)).
P
Proof. Define
My = ker(evi—i: P2 x V — PF1(Q(d +2))).

In view of the previous remark, we see that M, is a vector subbundle of V' of co-rank
equal to rank P*~1(Q(d + 2)). By construction, the projective bundle associated to
My is the incidence variety,

P(My) = {(p.[@]) € P2 x P¥ | pis a singularity of [w] and vp(w) = ki

Let g: P(My) — PV denote the projection on the second factor. We have M) =
g ([P (My)). Itis easytocheck that g is generically injective. It follows from the lemma
justabove that deg(My) = [ s2(Mz)N[P?]. Since s( M) = c2(PF1(Qd +2))),
the assertions now follow from (4). [

Using the proposition we may now derive an explicit formula for the degree of
M; C P¥. See also the scriptin § 5. We find

1.8. Corollary. The degree of My is given by
Skl + D[(k2 +k = 1)(d? — 2k —3)d) + 2(4k* =8k = 7k* + 21k — 6)]. O

2. Dicritical singularities

If o € HO(P?, Q(d + 2)) and p is a singularity of @, we say that p is dicritical if
the local expression of @ is

wp = ardx + brdy + ho.l.

with agx + by = 0. Inthe case k = 1, we say that p is a radial singularity.
Observe that this condition is equivalent to

wp = f(x,y)(ydx —xdy) + ho.t.

for some homogeneous polynomial f of degree &k — 1.
The main result of this section is the following.
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2.1. Proposition. Foralll <k < d there exists a subbundle Dy, of My — P? such
that the following holds:

(i) P(Dy) = {(p.[@]) € P2 x PN | pis a dicritical singularity
of |w] with vp(w) = k}.
(ii) Set Dy = q(P(Dy)). Then the codimension of Dy in PV is k(k + 2).
(i) The degree of Dy is the coefficient of the degree two part of

(PFHQU + 2))e(Symyyy @ ® Opa(d + 2)).

2.2. Remark. Before proceeding to the proof of the proposition, we explain an
invariant way of expressing the condition that a singularity be dicritical. Suppose
that & is a vector bundle of rank 2. Then for all £ > 1 we have the following exact
sequence (e.g., see Appendix 2, A2.6.1, in [3]),

0 E®Sym;_; & > Sym,. E R E ic>Symk_|_1£$—>0,
where the first map is given by
(anb@c)— (ac @ b)— (bc ®a)
and the second by multiplication, i.e.,
a @b ab.

Say x, y form a local basis for &. Then for ay, by € Sym;, &, we have that apx +
bry = 0in Sym;_ & if and only if f there is some ¢ € Sym;_; & such that
ar @ x + by ® yisequal tothe imageof x Ay @ ¢, towit, xc ® vy — yc ® X.

2.3. Construction of Dj;. We have the following diagram:
Sym; Q ® Q(d + 2)
Ji

PEQUd + 2))

ev

My |4 PE1Q + 2)).

The map Ji defined in the previous diagram is surjective in view of Remark 1.5. We
obtain the surjective map

My =2 Sym, Q @ Q(d +2) —> Symyy, Qd +2). )

Ty
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Explicitly, on the fiber over p € P2 the map is as follows:

Ti(p,w) = (p,agx + bry)

where
wp = ardx + brdy + ho.l.

is the local expression of @ in a neighborhood of p. Set
T,
Dy 1= ker ( My —=Sym,, Qd +2)). (8)

Thus Dy is a vector bundle of rank = rank(.M) — (kK + 2). Recalling 2.2, we
see that the projective bundle associated to Dy, is the incidence variety

P (D) = {(p,[w]) € P2 x P¥ | p is a dicritical singularity of [w] with vplw) = k.

It can be shown that g is generically injective. Using 1.6, we see that the degree of
Dy is given by f s2(Dy) N [P?]. This finishes the proof of Proposition 2.1. O

A formula for the degree of Dy can be made explicit.

2.4. Corollary. The degree of Dy is given by
k+D?[3*+ k> =2k +2) - (K + k> + k- Dd + 2> + 2k +2)d*]. O

2.5. Remarks. (i) We have by construction the following diagram:

2
/d/ Symk_l QLRIAL® O[Pz(d + 2)
Ik

Dy My Sym; Q @ Q(d + 2)

Ty
Py

Symy; Q ® Op2(d + 2).

By definition of £} we obtain a map

2
dp: Dy — Symy_; L@ A Q@ Opa2(d + 2)

givenin the fibers by dp (p, w) = f(x, y)dx Ady where f is a polynomial of degree
k—1.

(ii) In the case k = 1 we have

w = A(ydx — xdy) + h.o.L
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with A € C i.e, a radial singularity. Thus 2.1 and 2.4 give formulas for the codi-
mension and degree of the space of foliations with a radial singularity:

codpy D1 = 3;

deg D1 = 10d% — 8d + 4.
For d = | we find deg Dy = 6. Looking at Jouanolou’s classification, [8], p. 14,
presently we have N = 7 and D; must coincide with the (projection of a) Segre

image of reducible foliations, F2 x P2 — [P7. In fact, up to a projective change of
coordinates we have w = z(xdy — ydx).

(iii) Inthe case k = d + 1 the map Jz41: Mgy1 — Symy,, Qulaz R Q(d +2)1s

no longer surjective: its image is Sym, Q& /2\ Qul,z ® Op2(d + 2). Indeed, suppose
that w is a form of degree d + 1 which has p as singularity of order 4 + 1. Then a
local expression of w is

wp = dg41dx + bg1dy.

However, this form defines a projective form of degree d + 1 in P2 if and only if
agy1X +ba1y =0,

i.e., if pisadicritical singularity. Therefore we can write w, = f(x, y)(ydx —xdy)

for some homogeneous polynomial f of degree 4. Thatis, w, € Symy Q},@ /2\ Q},.
Hence T4 (see (7)) is the zero map. This shows that My = Dyyq . Summa-
rizing, for a foliation of degree , any singularity of order 4 4 1 is automatically
dicritical.

3. Maximal contact

Consider a degree d form w € H°(P?, Q(d + 2)) with a dicritical singularity at
p =10:0:1]of order k = 2. Denote by

7 C2 = C?
the blowup of C? at p. Write w in local coordinates (x, y) around 0 € C? as

d+1

w = Zajdx + b;dy
j=k

where a;, b; are homogeneous polynomials of degree j. The blowup of C2 at (0,0),

C2 ={(x,y).[s:1] | tx = sy} € C? x P,
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is covered by the usual two charts

Vo={((x,y),[1:¢]) | tx =y} = {(x,0) | £,x € C},
Vi={(x,y)[s: 1D |x=sy} = {(s.y) | s,y € C}.

Over Vy we have dy = tdx + xdt. Thus

d+1
7 (w)(x, 1) = Z aj(x,ix)dx + b;(x,tx)(tdx + xdt)
j=k
d+1
= > (a;(x,1x) + 1b; (x,tx))dx + xb; (x, tx)d1
j=k
d+1 _
= x* > " xI T [(a; (L 1) + 1b; (1, 0)dx + xby (1,0)d!1].
i=k

Since p = (0, 0) is a dicritical singularity we have
w = f(x,y){(ydx —xdy) + h.o.t.

where f is a polynomial of degree k — 1;s0ar = vf(x,v), by = —xf(x, y).
Hence we may write

¥ (w)(x,1) = xF(xbp (1, 0)dt + xa) = x* Y= (1, 0)dt + o)
where « is a 1-form. The strict transform of @ is
& = — f(L 1)1 + (@1 + thrpr)dx + xoy 0

for some 1-form o1. Over V the exceptional divisor is given by x = 0, and by (9)
we have

wANdx =—f(L,0)dt ndx + xoq A dx.

The leaves of @ passing through each point (0, 79) with f(1, 7p) # 0 are transverse to
the exceptional divisor. On the other hand, the points (0, #y) such that f(1,#) = 0
but aren’t singularities of @ are exactly the points of tangency of leaves of @ with the
exceptional divisor.

Next, we study the relationship between the multiplicity of 7o as a zero of f(1,¢)
and the order of tangency of the leaf of @ with the exceptional divisor at (0, #p).

3.1. Lemma. The intersection multiplicity of a leaf of @ with the exceptional divisor
at a point (0, ty) is the multiplicity of ty as zero of f(1,1) plus one.
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Proof. We may assume fy = 0. By (9) we have that @ has the following form
@ = (= f(L1) + xF(x,1))dr + (g(1) + xG(x, 1))dx

with f(1,0) = 0. Observe that g(0) # 0 because we are assuming that p := (0,0) is
a nonsingular point of @. Let ~(x, y) = 0 be a local equation for a leaf of & through
(0, 0), where 4 is a non constant holomorphic function. We have

(@ A dh)(p) = —g(0)32(p)dt A dx = 0.

Hence %—I:( By =10 £ g—z ( p). Therefore, we can find a local analytic parameterization
of i = 0 of the form y = ¢, x = y(¢) defined in a neighborhood of 1 = 0 such that

y(0) =0,
v'0) =5 (p)/ 5 (p) =0.

Since (y(¢), t) parameterizes a leaf of @ we find that

FLD) + y(OF (@), 1) + y'(0)(g) + y()G(y (). 1)) = 0.

Hence, repeatedly differentiating with respect to ¢ yields

_ 27(1,0)
y0) =0forall j <7 — Uy = L~

g
Now, y has intersection multiplicity #n with x = 0 at (0, 0) if the first non-vanishing
derivative of x(y(¢).1) = y(t) at 0 is precisely n. Thus the intersection multiplicity
ofh =0withx =0isnifandonlyif r = 0 isazeroofordern—1of f(1,7). U

From the above lemma we have that if @ € Dy, then the order of tangency of the
leaves of @ with the exceptional divisor is < k, and is equal to k& precisely in the case
that f = /%~ where / is a polynomial of degree one.

3.2. Degree of the MC locus. Recall that we say that a form @ has the MC property
if it has a dicritical singularity p of order & such that the strict transform of @ under
the blowup of p has aleaf with maximal order of contact with the exceptional divisor
of the blowup.

Consider a form with a dicritical singularity of order k,

w = f(x,v)(yvdx —xdy) + h.o.t.

(i.e. f is a polynomial of degree & — 1). Then @ has the MC property if and only if
F(Lo) = —t) or f(s,1) = (s —s0)* 7, ie,,

fix,y) = (ax + by)*=1  forsome a.b € C.
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Therefore we can parameterize the set of forms that has the MC property as
follows. The Veronese-type map 2 — Sym,_; €2 induces an embedding

Vi P(Q® A Q @ Opa(d +2)) — P(Sym;_; Q@ A Q ® Opa(d + 2))
which is locally given by v (p.1 ® (vdx — xdy)) = (p,1*"1 @ (ydx — xdy)). In

order to simplify the notation set

;)
& =00 AQ&0p2Ad +2)
and
;)
Er 1= Sym;_; Q@ A Q @ Opz2(d + 2).
Define
Vi :=vi(P(&)) C P(&g).
3.3. Lemma. The codimension of Vi in P(&Ey) is k — 2 and its cycle class is
[Vi] = wHF 2 4 oh HES 4 wh®HF 4 N P(&)

where Hy, (resp. h) denotes the relative hyperplane class of P(&y) (resp. P?) and

u=(k—1),
v=—2(k — )k —2)3k + 2d - 5),

w = 2(k —2)(k — 1)*(9k* — 47k + 72 + (12k — 60)d + 12d?).

Proof. 1t is clear that cod(Vy) = dim P(&;) — dim P(&) = k& — 2. Recalling that
the Chow ring A4 (P(&y)) is generated by Hj and & (see [4], Theorem 3.3, p. 64) we
can express

[Vl = uH ™2 + oh HF 3 1 wh>HE 4 0P (&), (10)

With this notation, the relative hyperplane class of P (&) is H;, and we have
vi(Hy) = (k — 1) H,. Consider the following diagram:

P(&) —%s P(&)
P=.
To find the coefficient # we multiply by /22 Hy, both sides of (10) to obtain:

W2 Hp N vie(P(8)) = uh> HE 1 NP (&).
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By the projection formula we have
W2 (k= D H, NP(E)) = ulh® HE1 N P(&).
Applying 7, to this last equation we find
(k — D2 0 pu(Ho 0 p*P?) = ub®mo (HF ' N 2* P?),
(k — Dh* Nsp(&) NP = uh® Nso(E) NP2
Hence u = k — 1. Next, multiplying (10) by A H If we get
WHZ N (P(€)) = uh HE N P(&;) + vh2Hf ™' N P(&).
Again the projection formula yields
h(k — 12 N v (H2 N P(8)) = uhHF NP (&) + vh2HF 1 N P(&).
Applying 7, we obtain
h(k — 1) pu (HZ N P(E)) = uhm(HF N 2*P?) 4 vhmu (HF' 0 2*P?),
(k — 1)?hs1(€) N P? = ((k — Dhs1(Ex) + vhs0(Ex)) N P2,

hence v = (k — 1)%s51(8) — (k — 1)s1(Er).
Similarly we obtain w = [(k — 1)352(&) — us2(8r) — vhs1(E1)] N [P2].
The lemma follows from the calculation of the Segre classes of & and &;. Observe

7
that A Q = Op2(—3),sothat & = Q(d — 1) and & = Symy_; @ R Op2(d — 1).
These classes can be computed with SCHUBERT [9]. [

By Remark 2.5 we have a rational map ¥ as in the diagram

Vit P(Dg) — — = P(&)

-

Y (V) V -
SetI'y := lﬁk_l(\/k) C P(Dy). Thus

Iy ={(p.[e]) | wp = lk_l(ydx — xdy) + h.o.t. forsome/ € Q,}.

The image
Cr :=q(ly) C Y

parameterizes the space of foliations with the MC property.
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3.4. Lemma. We have:
(i) COd[p(i)k) Fk = COd[p(gk) Vk =k-2
(il) Let Z C P(Dy) denote the indeterminacy locus of Y. Then

COd[P(i)k)(Z) = k.

Proof. Since i (cl. diagram (11)) is induced by a surjective map of vector bun-
dles, its fibers have the same dimension n#. Therefore dim [y, = dim V; + n, and
dim P(Dy) = dim P(&;) + n. Hence the equality for the codimension follows:

2
codp(p)(Z) = rank(Sym;_, Q® A Q(d +2)) = k. 0

We may now find the degree of the locus of dicritical foliations with maximal
contact with the exceptional line.

3.5. Proposition. (i) The codimension of Cy, in PV is
codpy Cp = k2 + 3k — 2.
(i1) The degree of Cy. is given by the formula

(k — 1) 3] 2(4k® 4 20k° — 15k* — 66k> + 211k% — 218k + 112)
— (2> + Tk* + 2k 4 24k2% — 49k + 44)d
4 (k* 4 2k% 410K + k + 16)d2].

Proof. First of all, the restriction g|r, is generically injective. For instance, it can be
checked that the 1-form

@ = (zg_(k_l)(zo + 21)’1‘:_1 + zg + Z‘f)(zldzo — zgdz1)

has p = [0: 0 : 1] as its unique singularity with order k£ and p is a reduced point of
the fiber (¢r, )~ 1([@]). To compute the codimension observe that

codpny Cx = codpy Dy + codpp,) Ck
=ktk+2)+k—-2=k*+3k-2.

Put n = dim ;. By Lemma 3.4 (ii) we have that dim Z < #n, hence A4,(Z) = 0.
Using the excision exact sequence (cf. [4], Proposition 1.8, p.21)

Ap(Z) = An(F(Dy)) = Ap(P(Dp) \ Z) — 0,

we deduce that

Ap(P(Dg)) = An(P(Dy) \ Z).
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Therefore, using that the class ¥ [Vg] is known in P (Dy) \ Z, we can do the com-

putations in A, (P(Dy)). Recalling (11), ¥4 is a linear projection, we have that
Y Hy = H := c1(Opp,)(1)). Therefore

deg Cy = degq. [
- [H” M [Tg]
= /H” Ny [ Vel
= / (uH" 72 L oh H 3 4 wh? HP 0 [P(Dy)] (Lemma 3.3)
_ [(uH”‘H 4 uhH' 4 whH™Y 0 [P(DL)],

where r = rank Dy. Applying p1+ and using the definition of Segre class [4], §3.1,
p- 47, we see that what we are calculating is

[ (us2(Dy) + vs1 (D) + wso(Dg) N [P2].

From Lemma 3.3 we know the values of 1, v, w. The classes s1(Dy ) and s, (Dy ) are
known from (8) and the beginning of the proof of 1.7. We finish using SCHUBERT [9].
LJ

4. Concluding remarks

It is worth mentioning that for foliations of degree d > 2, the scheme of singularities
completely determines the foliation. Moreover, the schemes of 42 + d + 1 points that
can occur as singular scheme of a foliation are known, cf. [2]. It would be nice to work
out the enumerative geometry of the loci of foliations with scheme of singularities
subject to collisions in the spirit of [10].

The reader is invited to check that formulas similar to 1.8, 2.4 and 3.5 can be
written down for an arbitrary surface. Precisely, given a smooth, projective surface
X, we may fix an ample divisor class /# and look at the space of foliations PV =
P (HO(Q}( ® O((d + 2)h))) for d > 0. The degree of M can be written as

Skk + D[(k — D(k + 2)(4k> + 4k + 3)c]
+ 122k + Dk + k — 1)(d + 2hey
+ 6(k% + k + dex + 36(k* + k — 1)(d + 2)°h?]

where we set for short¢; = ¢; 2 )1( Substituting in the Chern numbers for P2 (k2 = L
c1h = =3, ¢ = 3) reproduces 1.8. We include a script below.
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5. SCHUBERT/MAPLE SCRIPT

with{schubert): DIM:=2; omega:=bundle(2,c);
f:=expand (Symm (k, cmega) } ;

g:=convert (%, list}); s0:=sum(l, ‘3'=0..k-1}: sO:=factor(%):
sl:=sum(’3’', '3'=0..k-1}: sl:=factor(%); s2:=sum(’'3J"2', "3'=0..k-1):
sZ2:=factor(%); s3:=sum(’'373’, '3'=0..k-1): s3:=factor(%):

G:=g;l:=[ ]: for 1 to nops(g) do 1f has(gl[i].k"3)then print(i):

l:=[op(ly,1]: gl[i]l:=subsik”™3=s3,g[1]) fi od:g:

G:=g;:;l;for 1 to nops(g) do 1if not 1 in 1 then

1f has(gl[i].k"2)then print(i):l:=[op(l},1]1: gli]:=subsi(k™2=s2,gl1]}
fi fi od;g; G:=g;l:for 1 to nopsi(g) do

if not 1 in 1 then 1if has(g[i].k) then printi{i}:

l:=[op(l)y,1]: gl[i]l:=subsi{k=sl,gl[i1]) f1i f1 od; g;1l; gl2] :=s0;
collect (converti{g,*+'),t);: omega*o((d+2)*h); mtaylor (%%*%,t,3};
chern(2,%); factor(%}); #P2:cl1”2=9*h"2,c2=3*h"2,cl=-3*h2

subs (cl”2=9%h"2, %) ; subs(c2=3+h"2,%); subs(cl=-3*h,%):
vrint(indets (%)) ; factor(%); subs(h=1,%); collect(%.d};

Acknowledgment. We thank the referee for kindly pointing out several suggestions
and corrections.
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