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Topology of hypersurface singularities with 3-dimensional
critical set

Javier Fernändez de Bobadilla and Miguel Marco-Buzunäriz*

Abstract. In this paper, we prove that the Milnor fibre of a singularity over an isolated complete
intersection singularity (i.c.i.s.) of dimension 3 has the homotopy type of a bouquet of spheres,

provided that the function that defines the singularity has finite extended codimension with
respect to the ideal that defines the i.c.i.s.
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1. Introduction

In [13] Milnor introduced the Milnor fibration for any holomorphic germ

/: (C, O) -» C

and proved that the Milnor fibre is always a CW-complex of dimension at most (n — 1).
In the case in which / has an isolated singularity at the origin he also proved that the
Milnor fibre is homotopy equivalent to a bouquet of (« — 1)-spheres. The number
of spheres is equal to the Milnor number /x, which can be easily computed from the

equation. If / has non-isolated singularities at the origin the Situation is much more
complicated. Up to now, the only general result is the Kato-Matsumoto bound [10]
which asserts that the Milnor fibre is (s — 2)-connected, where s is the codimension of
the Singular locus in C". The homotopy type of the Milnor fibre of a general function

germ can be very complicated. In fact, by a recent result of the first author [6], for any
local analytic set in C there is a function whose Milnor fibre is homotopy equivalent
to the complement of the set in a sufficiently small ball. The class of such spaces
is very rieh (contains for example the class of complements of hyperplane and line
arrangements) and there is a whole theory dedicated to its study. Hence we may not
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expect to find a simple description of the homotopy type of the Milnor fibre of a

general function germ.
It is very interesting to find classes of non-isolated hypersurface singularities for

which the homotopy type of the Milnor fibre admits an understandable description
from the equation. This paper contributes to a program in this direction. Let / C
0<C" ,o be an ideal defining a 3-dimensional i.c.i.s. Ho and let / be a function of finite
extended codimension with respect to / (see Section 2 for a definition). Our main
results are the following:

(1) We prove that the Milnor fibre of / is homotopic to a bouquet of spheres of
different dimensions (see Theorem 11.2).

(2) We also compute the number of spheres appearing in terms of the equation (see

Theorem 10.1).

Similar results for the cases in which Ho is of dimension 1 and 2 were produced by
the work of Siersma (see [18] and [19]), Zaharia [23] and Nemethi [15]. II' E is a

hypersurface the result was proved by Shubladze [17] and Nemethi [14].
Actually we formulate the following:

Conjecture. 77z£ o/ <2 /nnczfon extemfed cod/rams/on wzYA re-

spect an Z.c./.s. Zzas Zzoraoto/ry <9/<2 Z?<9wgw££ q/ApZzeras.

Functions of finite extended codimension with respect to an i.c.i.s. are a particular
case of 7-isolated singularities as defined and studied in [4]. There it was given a

bouquet theorem decomposing homotopically the Milnor fibre in a bouquet of several

(/i — l)-spheres and an unknown space ([4], Theorem 9.3). The results of this paper
identify the homotopy type of that space. It would be interesting to generalise this

paper to other 7-isolated singularities.
Other bouquet theorems in the context of Singular ambient Spaces were proved by

Siersma [21] andTibar [22],
Let us end with a description of some applications of this kind of results. The

class of singularities studied in this paper shows very surprising phenomena from
the equisingularity viewpoint. It has been used in [4] in order to disprove several

old equisingularity questions. At the moment of writing the paper [4] some of the
Betti number formula contained in this paper were known to the first author. It was
this knowledge which lead him to guess the counterexamples contained in [4] (see
Section 12 for more details). We hope that a systematic Solution to our conjecture
would lead to interesting examples showing other topological phenomena in non-
isolated singularities yet unknown to us.

The structure of this paper is inspired in the classical Picard-Lefschetz theory of
isolated singularities and Sierma's generalisation for non-isolated singularities. In
this theory, a function is perturbed to split a Singular point into several Morse-type
singularities (this process is usually referred to as Morsification). Then it is shown that
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the homology of the Milnor fibre of the original function can be recovered from the

Milnor fibres of each Morse-type singularity. Finally, these homologies are computed
by a local study of the Morse-type singularities.

In Section 2 we use the results of [3] to prove that in our case we can do a process
analogous to the Morsification, but instead of obtaining only Morse-type singularities,
we will also obtain a non-isolated singularity over the Milnor fibre of the i.c.i.s. £.
More precisely, we define a certain unfolding

F:C"xß->C

of the function / inside the ideal / and a positive codimensional analytic subset

A C i? such that for any i G 5 \ A the function := F(., Z>) has as critical set

the union of the Milnor fibre of the i.c.i.s. £ and finitely many Morse points. The
non-isolated part of the critical set is stratified (in three pieces) according with the

analytic type of the local singularity at each point. In this section we prove also some

properties of the monodromy of this stratification around A which will be important
for the rest of the paper.

In Section 3 we show that, as in the isolated case, the homology of the original
Milnor fibre can be recovered from the pieces of the Milnor fibres contained in small

neighbourhoods of the singularities obtained after the deformation. The procedure
follows an idea of Siersma and is called homology Splitting.

In Section 4 we study the topology of the local Milnor fibres of the singularity
types that can appear in the generic deformation of / within the ideal /.

Having done that, the hardest part of the paper is to study the part of the Milnor
fibre contained in a tubulär neighbourhood of the non-isolated singularity obtained
after the deformation. Let us call this part of the Milnor fibre JM. This study is carried,
roughly speaking decomposing in pieces, studying their homology separately and

gluing using Mayer-Vietoris sequences. It is hard to study the integral homology of
the pieces directly, since non-orientable sphere-fibrations appear. This forces us to
study first homology with coefficients in Z2 first, and lift to integral coefficients later.

The decomposition of is based in the decomposition of the Milnor fibre of £
(the non-isolated part of the critical set of the deformation of /) by analytic type
of the local singularity. In Section 5 these decompositions are described, and it is

shown that each piece of fibers naturally over the corresponding Stratum of the

Milnor fibre of £ with fibre a homotopy sphere.

In Section 6 we study the topology of a particular Stratum of the stratification of
the Milnor fibre of £. The study is somewhat involved, but it is a key Step for the

computation of the homology of the Milnor fibre of /.
In Sections 7 we study the homology of the part of the Milnor fibre corresponding

to the Stratum studied in the previous section. In Section 8 we use Mayer-Vietoris
for a first time in order to study the homology of the union of two of the three pieces
Of eAf.
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In Section 9 we complete the computation of the integral homology of JM. The
first idea to run a Mayer-Vietoris sequence that glues the homology computed in
the previous section with the homology of the remaining piece However, as this
seems complicated, we prove a key reduction, which allows to glue, instead of the

remaining piece of JM, a collection of products of topological balls with spheres. This
allows to determine the homology of up to torsion and up to a direct summand

isomorphic to Z in Z). We prove, using a differential form, that the direct
summand appears or not depending on the value of a certain invariant of /. Finally
we prove that the homology is torsion-free.

We end the paper Computing in Sections 10 and 11 the homology and the homotopy
type of the Milnor fibre of /. In particular we prove our conjecture for the case of
3-dimensional critical set.

The last section describes a distinguished family of functions belonging to the
class studied in this paper which already had striking applications in topological
equisingularity.

1.1. Terminology. If X is a subspace of a topological space 7 we denote by X the

interior points of X, and by 3X the boundary points of X in 7. Given two topological
spaces X any 7 we denote that they have the same homotopy type by X ~ 7. We
will denote by D# the closed disc of radius 3 in the complex plane and by i?«, the
closed ball of radius 6 in a complex affine space. The centers of the discs and balls
will be clear from the context unless they are explicitly mentioned in the text or in
the notation (by i?(x, e)). Denote by a sphere of dimension The zero set of
an ideal / will be denoted by 7(7), and F(/i,..., //) will denote the zero set of the
ideal generated by the polynomials/i. The origin of C* will be denoted by
O, being the dimension i clear from the context. Given any finite set X denote by
Aut(X) its permutation group.

2. Unfoldings

In this section we will see how we can deform our function /, with critical locus Ho,
into another one that has as Singular locus the Milnor fibre H of Ho, plus a certain
number of isolated Morse points. We will also define a natural decomposition of H

that will be useful later.

Let / := (gi,...,grc-3) C 0(C«,o be an ideal defining a 3-dimensional i.c.i.s.
Ho in (C, O). Denote by 0/^ the germs of vector fields tangent to the i.c.i.s., that
is, the germs X of vector fields such that X(7) is included in /. A function-germ

/: (C, O) -> C is Singular at H if and only if it belongs to 7^. As in [16] we define
the evtemfed cod/rae/moft 0// wzY/z respect / as

c/,e := dim<c(/V©/,<?(/))>
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where ©/,<?(/) is the ideal whose elements are X(/) for X e ©/,<?. From the de-

formation viewpoint, functions with finite extended codimension play the same role
in the space of functions Singular in So than isolated singularities in the space of
all function-germs. A geometric characterisation of germs of finite extended codi-
mension was given in [23] (see [4] for another proof and generalisations): these are

germs in which outside the origin only have either isolated Ai singularities or
singularities of type Z)(3, /?), with /? e {0,1,2}.

The singularity D(£, /?) has the following normal form (see [16]):

S + S ^

where {*i,y }i<i<y</? U is an independent System of linear forms in C".
Given a germ / e we can express it as a matrix product

/ (gl,---,gn-3)(Ä/j)(gl,...,g*-3)'

with (A/j) a Symmetrie matrix of holomorphic germs of size « — 3. An easy compu-
tation shows that the restriction (A/j)|do only depends on /.

Let

Gi,, G„_3: C"-3

be the semiuniversal unfolding of the i.c.i.s. (gi,..., gw-3). Its base ^ is a germ of
complex manifold [11]. Given any ÄGß denote by

(GI,a,...,G„_3,*): C"

the mapping corresponding to the parameter value A. In the space SM(« — 3) of
Symmetrie matrices with complex entries we consider the stratification

«—3

SM(n-3) U SM(n-3,0,
/'=()

where SM («—3, i) is the set of matrices of corank equal to z. Notice that SM (« — 3,i)
consists of the set of matrices defined by the vanishing of the minors of size « — 2 — i.
It is easy to check that SM(« — 3, /) is of codimension i (7 + l)/2 in SM(« — 3). We
consider the unfolding

F: C" x fi x SM(« - 3) -» C

of the function / defined by

Xft A, (G,y •— (^1,&' • • • ' 3,&) (A/,y "F (^1,& > • • • > 3,&) •

(i)
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Notation 2.1. Denote by i? x SM(p — 3) the base of the unfolding. Consider

I] := F(Gi,..., G„_3) C C" x S. Given any 5 (Z>, (c/j)) G S we denote by
: C" -> C the function corresponding to the parameter value by the locus

K(Gi,6,...,G„_3,i) and by

(F): £ -» SM(« - 3)

the mapping defined by //(F)(x, (c/j)) := (Zz/j (x) + c/j). Consider

//(/,) := tf(F)|s,.

Define £[i] := f/(F)-i(SM(« - 3,i)) and £[i], := #(/,)"'(SM(n - 3,i)).
Figure 1 shows a schematic view of these sets.

Figure 1. The deformation of the i.c.i.s. and the stratifieation.

The function /o coincides with /, where 0 £ is the origin of the base of the

unfolding.
Let 6 and 5 be radii for a Milnor fibration of /, that is radii such that

(1) the central fibre /~*(0) meets 32?^/ transversely in the stratified sense for any
<?' < e,

(2) for any £ £ D# \ {0}, the fibre /~*(0 meets 32?«, transversely,

(3) the only critical value of /|^ is 0.

From [3] and [4] we obtain:

Theorem 2.2. TTzere emfa <2 proper cZosed onoZy/fc swZ?se£ A 0/ S, <2 Z?oZZ 2?^

cen/re<2 <2/^ 0 £ £ swcZz ^Zzo^/or ony ^ £ \ A w Zzove



Vol. 88 (2013) Topology of hypersurface singularities with 3-dimensional critical set 259

(1) /or<my e Zntexs^czfon o/* wZf/z 32?^ Z.s zX<msv£xsz/Z (m s£ra£Z/Ze<2

Z/T 0).

(2) cnYZcaZ sef ö/YZ^/hnctZon Zs wmon o/I]^ D 5^ vwYA nwraZ?£r

<9/Morse /ype sZngwZonYZes, wZzose cnYZcoZ voZwes ore poZnvZse <2zj(/eren£ on<2

TZ/ferenf/rom 0.

(3) ^Zze se£ Sj f! Zs sraoetfZz (<z MZZnor/ZZ?re o/TZze Z.c.Z.s. (So, 0)) on<2 ^Zze raoppZng

#(/,) |s,n*< SM(n - 3) (2)

Zs /ronsversoZ ^Zze sfrafZ/ZcdtfZon o/SM(« — 3) Zry coranL 2n por/fcwZor S[Z]^
Zs <2 raonZ/bZT o/codZraensZon Z (Z + l)/2 Zn ^Zze 3-TZraensZ<9mzZ corapZex raonZ/bZT

fl 5g. TTzere/ore ^Zze cnYZcoZpoZnfa o//^ Zn S^ ore o//ype Z)(3, 0), D(3,1)
orD(3,2).

Denote Zry X on<2 <© ^Zze cnYZcoZ se£ on<2 ^Zze TZscrZraZnon^ o/TZze raoppZng

(F, prj): C'xß,->Cxß,, (3)

wZzere pr2 Tenors ^Zze pro/ectZon <9/ C* x 2?^ fo ^Zze second/octor TTzen z2ze reszxZczfon

(F.prj): (Fe x 5,) n (F.prj)"^^ x F,) \ <£>) -> (D« xF,)\S
Zs <2 ZocoZZy zxZvZoZ/ZZ^rafion wZz2z/ZZ?re TZ/feoraorpZzZc to z2ze MZZnor^Zfere o/ /.

The set A is the subset of *S consisting of points 5 where the critical set of /^ is

not as in (2).

Lemma 2.3. rAesef £[l]o F(det(//(/)), gi,..., gw-3) Zso2MZraensZon<2ZZ.c.Z.s.

Proo/ For any s G *S the set of points of S^ D 2?^ where //(/?) has corank at least
1 coincides with F(det(//(/y)). Denote by c/^.^((/j)jc) the extended codimension
of the germ at x with respect to the ideal 2* defining the germ (IT, x). In [3] it is

shown that the set of points such that //(/?) is not transversal to the stratification of
SM(tz — 3) by corank coincides precisely with the set of points at which ((/$)*)
is non-zero.

Choose representatives Xi,..., X& of the vector Heids generating 0/^ defined

on an open neighbourhood IT of the origin in C. Then c/^(/) is the dimension, as

a complex vector space, of the stalk of the coherent sheaf of ideals in 0c» generated
by Xi(/),..., Xfc(/). Since this dimension is finite the origin is an isolated point
in the support of the coherent sheaf of ideals. Consequently, the only point at which

//(/) is not transversal to the corank stratification is the origin if we take 6 small

enough.
Thus at any x G So \ {0} the germ /* is of type Z)(3,0) if det(//(/)(x) 7^ 0

and of type Z)(3,1) if det(//(/) (x) 0. Inspecting the normal form of the Z)(3,1)
singularity we find that F(det(//(/)),gi,...,gw-3) has an isolated singularity at

the origin.
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Now we study the deformation E[l]^ := L(det(//(/y)), G^,..., G„_3^) D 5^
as we move in S. Choose s e \ A. Since //(/?) is transversal to the stratification
by corank there is a finite set of points S[2]^ in S[l]^ of type Z)(3, 2) and the rest of
the points are of type Z)(3,1). The normal form of the Z)(3,2) singularity gives that

S[l]j has an ^41-type singularity at any point in E[2]^. Let a denote the cardinality
of E^ [2]. In the next Lemma we show that a is independent on s.

Lemma 2.4. TAe r^strZcAon

Zs ß topoZogZcßZ ZocßZZy £rZvZ<zZ /zArazfon o/ £rZ/?Zes swcA £A<zt E^ Zs ^Ae MZZnor

o/tAe Z.c.Z.s. Eo, ^ E[l]j Zs ß o/ E[l]o AßvZng precZseZy a

singwZßnTzes' o/^4i-/yp^ Zn E[2]^. fAe restfrZctZon

Zs ß cov^rZng and E [2] D pr2
* (S \ A) Zs connected.

Proo/ The topological triviality Statements are easy to check from the normal forms
of the Z)(3, /?) singularities.

The space E is smooth since it is the product of the total space V of the versal de-

formation of the i.c.i.s. L(gi,..., gw-3) (which is smooth) with the space SM(n — 3).
For any matrix Af e SM(n — 3) the fibre 7/(F)~* (Af) is diffeomorphic to V, being
the diffeomorphism 0m : V -> 7/(F)~* (Af) defined by

This shows that//(F): E -> SM(n —3) isa trivial fibration. The set E [2] is connected
since it is aZariski dense open subset in the analytic manifold 7/(F)~* (SM(n — 3,2)),
which is diffeomorphic to the product VxSM(n—3,2), being SM(n—3,2) irreducible.

We summarise for further reference the main invariants introduced for the func-
tion /.
Definition 2.5. Dehne /xo and /xi to be the Milnor numbers at the origin of the i.c.i.s.
Eo and E[l]o- For ^ £ S \ A close to the origin we dehne et to be the cardinality of
E[2]j and #^4i to be the number of Morse points of /^.

2.1. The corank 2 case. We will need an slightly larger unfolding of / in the

particular case in which corank(//(/)(0)) is precisely equal to 2. In that case, after

possibly changing the generators of the i.c.i.s we can assume that / is of the form

pr,: (E,E[l],E[2])npr^(S\A)->S\A

pr2: E [2] fl p^
* (5 \ A) -> *S \ A (4)

feW := (x,M - (ä,,_,(*)).

(5)
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When c/^(/) is finite, the mapping

i/(/): £->SM(2)
is transverse to the corank stratification outside the origin. Hence the origin is an iso-
lated point of the locus where corank(//(/)) is at least 2. Since in this case the corank
2 locus is defined by the vanishing of the « functions Ai,i, Ai,2, ^2,2» gl> • • •»gw-3,
we have that £[2]o is a 0-dimensional i.c.i.s. concentrated at the origin. Let a be its

length as 0-dimensional scheme. Let

be the versal deformation of the i.c.i.s. L(Ai,i, Ai,2, ^2,2, ^1, • • •, £"«-3)- Any fibre

S[2]j is a 0-dimensional scheme of length a. The discriminant A C is the set of
Parameters where S[2]^ is non-reduced. By versality the discriminant is irreducible
and reduced (Corollary 4.11 and Proposition 6.11 of [11]), and its smooth locus Ä
is the set of parameters such that S[2]^ has exactly a fat point of length 2 and is

otherwise reduced (Lemma 4.9 of [11]).

Definition 2.6. Fix a base point £ S \ A. Any path y: [0,1] -> such that

y(0) £0, y([0,1)) is included in S \ A and y(l) is a smooth point of A induces a

deformation {S[2]^}^[o,i] along y such that precisely two points {/?o, Ah} in E[2]o
S[2]^q collapse to the same point in £[2]i. The varasA/ng cycZe m £[2]^ assoc/atod

to y is, by definition, the pair {/?o> Ah}-

Lemma 2.7. AZZ ^Ae po/nto 0/ £[2]^ are ^Ae egw/vaZence cZass Ay ^Ae egw/v-
aZence reZaAon generatod Ay ^Ae v<zrasAzng cycZ^s.

Proo/ The base of the versal unfolding

f: £[2] -» 5

of the 0-dimensional i.c.i.s. £[2]o can be identified with a neighbourhood Z7 of the

origin in C^. We choose a straight line Z through such that Z meets A transversely
at smooth points. The neighbourhood and the line can be chosen so that (Z H Z7)

is the Milnor fibre of a 1-dimensional i.c.i.s. Therefore ^~*(Z D Z7) is connected

([11], Chapter 5). Choose a System of paths {y/ }fii joining with each one of the

points of Z PlA, without seif intersections and not intersecting pairwise except at ^o-
Since the space (Z D Z7) is homotopy equivalent to the result of attaching a 1-cell
at each one of the vanishing cycles associated to the paths {y;}fii, the Connectivity
of (Z n t/) proves the lemma.

Consider Sym^ (£ [2]^) the second Symmetrie product of £ [2]^; and denote by 5)
its diagonal. Then Sym^(£[2]^) \ 5) is the set of subsets of cardinality precisely 2.

The monodromy action

p: jti(S \ A,äo) Aut(£[2k„)
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induces a monodromy action

P2: ^1(5 \ A,so) Aut(Sym^(S[2]^) \ £>.

The set of vanishing cycles is a subset of Sym^(X![2]^) \ 5).

Lemma 2.8. TAe raonodroray actZon P2 ^Ae 0/ vamsAZng cycZ^s and
acta fransirfveZy on Zt 7n Aer wötzZs, ^Ae 0/ vamsAZng cycZ^s Zs an orAZ^ Ay ^Ae

raonodroray actZon.

Proo/ A vanishing cycle induced by a path y is transformed by an element [a] e

tti (iS \ A, ^0) to the vanishing cycles induced by the concatenation path a y. The

transitivity is a classical consequence of the irreducibility of the discriminant ([1],
Chapter 3).

We enlarge the unfolding of / defined in (1) by considering the following one
instead of it:

F: C x 5 -* C

given by
«—3

F := (Gi, G2)(///j)(<ji, G2)' + y^G?. (6)
1=3

The Statements of Theorem 2.2 and Lemma 2.3 clearly remain true for this un-
folding.

3. Homology Splitting

In this section we will follow a general method of Siersma [18], [19], [20] to see that
the Milnor fibre of the previous unfolding has the same homology than the Milnor fibre
of the original function /. We will also see that the computation of this homology
can be reduced to the computation of the homology of the part of the Milnor fibre
that lies in a small neighbourhood of £.

We have chosen radii 6 and 5 for a Milnor fibration of /. In that Situation the total

space Xo := 2?^ D /"^(Z)#) of the representative

/:
is contractible.

Consider the versal unfolding F: C x S -> C defined in the previous section.
Choose a direction in S such that the line Z through the origin O of in this direction
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has O as an isolated point of A. Let Z)^ be a disc in / around O only meeting A in
O. Consider the associated 1-parameter unfolding

F: C" x C.

Denote by the function /?(x) := D(x,s). By Ehresmann fibration theorem
X? := D«, D /^(D^) is diffeomorphic to Xo and hence it is contractible. If s 7^ 0

the function

is a locally trivial fibration over D# \ {0, i>i,..., iv}, where {0, i>i,..., iv} are the
critical values of /?. Each ^ 7^ 0 is the image of precisely one Singular point of type
^4i of /?. The fibre of over any point u; not in {0, i>i,..., iv} is diffeomorphic
to the Milnor fibre of /. Therefore we are interested in the reduced homology
Z/fc (/^~* (w); Z), which is isomorphic to 7/*;+1 (X?, (u;); Z) by the contractibility
of*,.

Consider Do, Di,..., D,. a System of disjoint small disks inside D# centered in
0, i>i,... respectively. Choose points 6 £ 3A» and disjoint paths joining
with 6. We can take u; Z). Define

G := U "1 U U A-
/=1 /=0

It is clear that G is a deformation retract of D#, and since is a locally trivial fibration
outside G, we have that

#*(*„/,->)) /r>)).
By excision,

tf*(/r'(G)./r'(uO) © ^(/rHA),/r'o.)).
/ =o

It is classical from Picard-Lefschetz theory that for any i > 0 we have

^(/-^(A),/r'a.)) z

and

/,"*('.)) o

if Z 7^

Now let D be a tubulär neighbourhood of We can take for example D :=
(G^,..., G„_3,,)"*(£) for D a small ball around the origin in C"~^. Taking D

small enough and Do small in comparison with D we can assume that (Y) meets
the boundary 3D transversely for any £ © Do. We define

:= /-©o) n r. (7)
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By this tranversality, and because of the fact that has no critical points in
/y~i(Do) \ 7\ the part of the space /^(Do) that lives outside T can be retracted
to (Zo). This means that the pair (/^~* (^o), (Zo)) is homotopy equivalent to
the pair (/^~* (Zo) U T, (^o))- By excision we have

i/frt/r*(A>), /rVo)) /-i(?o) nr)
We summarise what we have obtained:

Proposition 3.1. Ttenote zAe MZZnor ^ZAre <9/ / Ay Fy. L^Z r Ae zAe nwraAer o/^4i
poZnZs zAaZ Aas Zn i?e/ar ^ ^ £ \ A cZase Za zAe orZgZn o/AS. TAen

f/„_i(F/;Z) tf„(7\.M;Z)®Z'\
i/*(F/;Z) s ^+i(r,Jl6;Z)

/Ar 1 < A < a — 2. ßy cannecZZvZZy

7/o(F/;Z) s z.

By construction, T is homotopic to Hy, which is the Milnor fibre of Ho. We will
spend a large part of this paper Computing the homology of eM.

4. The Milnor fibre of the Z>(A;, p) singularity

We dedicate this section to study the local topology of a certain type of Singular-
ities that will appear later. We collect the following proposition, which follows
from [5] and [7]. We reprove it here since the proof is crucial for the understanding
of this paper.

Proposition 4.1. TAe MZZnar/ZAre a/zAe Z)(A,/?) sZngwZan'Zy Zn C Zs AaraaZapy-

egwZvtfZent Za zAe spAere

Proo/ Since the singularity Z)(A, /?) is quasi-homogeneous its Milnor fibre is diffeo-
morphic to the global hypersurface IcC" defined by

H + H J? r
l<i <./</> />+l </<«-£

where }i<i<y</? U {y/}i</<«-A: is an independent System of linear forms in C".

Hence X is homotopic to the (a —/? —A)-suspension of the hypersurface 7 C C 2

defined by

H 1-
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The projection
ct: r -» C*\{0}

defined by er (x; j, y/) : y/ is a locally trivial fibration with fibre an affine hyperplane

in C ^ and hence contractible. We conclude that 7 is homotopy equivalent to
the unit sphere in C^. Consequently X is homotopic to the sphere

Lemma 4.2. GZven ^ Z)(l, 1) sZngwZan7y

/ •= + 3^3 + * * * + Jw • O) ^ C

Zn C" Zto restfncft'on

ZI/?,: #i -»C

to eAe Ayperp/ane //i efe^Zned Ay Xi 1 Z^ ß Morse sZngw/ßrZ/y orZgZn.

T/ze poZr o/MZZnor^Z?res (/~*(Z), (/|#i)~*(0) ^ Aoraotopy egwZvß/eto^ to poZr
(S"~*, S"~2) emAeJJee? Zn os ^Ae e^wotor

Proo/ By Suspension it is enough to consider tz 2, and in this case it is obvious,
since the Milnor fibre of xi yf projects to the double cover of C \ { O } by the projection
pr(x, y) x and the Milnor fibre of /is a fibre of this projection.

It is necessary for the rest of the paper to collect further geometric facts about the
Milnor fibration of the Z)(3,2) singularity and its interaction with the Milnor fibration
of the transversal singularities through points of its critical set which are close to the

origin. Such transversal singularities are of type Z)(l, 1) at the points different from
the origin where det(//(/) vanishes and of Morse type at the generic points. We do

this in the what follows.
Consider the Z)(3, 2) singularity

/ := X1J1 + 2X2J1J2 + X3jf + jf H b J^_3: (C, 0) -> C

inC.
Recall from Notation 2.1 the definition of S[Z]. As here we are considering no

unfolding we have the equality I] So. The restriction of / to any (« — 3)-
dimensional transversal to S[0] is a Morse type singularity in C"~^. The restriction
of / to any (« — 2)-dimensional transversal to S[l] is a Z)(l, 1) singularity in C"~^.

The Stratum S[l] is equal to F(det(//(/)) \ {0} and hence is homotopic to its
link L«, := S[l] D S«, at the origin. Since the singularity is homogeneous we can
take 6 1 and denote L«, by L. This link is diffeomorphic to RP^, since the surface

S[l] is defined by det(//(/))(xi, X2, X3) X1X3 — xf 0 in S ^ C^. Hence its
fundamental group is isomorphic to Z2.
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Let

JV(C,£) -* £
and

«i: tf(C,£[l]) -> £[1]

be the holomorphic normal bundles of £ and £[1] in C respectively. We have the
inclusion of restrictions

t:^(C",£)|s[i]^^(C",£[l]), (8)

compatible with the bündle maps.
Observe that, since in this case £ is a 3-dimensional coordinate subspace, the first

bündle is trivial with fibre C"~^. Notice that, as L is compact, there is a positive p
such that the p-neighbourhood of the zero section of the restriction

ki|l: tf(C,£[l])L->L
embeds in C holomorphically on each fibre. We denote by A^(C\ £[1])|l this

p-neighbourhood, and by

W(C,£[1])|l

its embedding; its fibre is a complex (« — 2)-dimensional ball.
For any y e L the restriction of / to the fibre of the embedded normal bündle

/Iiv/>(C»,Z[1])„ : (W, £[%, J) -> C

is a Z)(l, 1) singularity with critical set the line Crit(y) := A^(C\ £[l])_y H £.
Since the restriction of the function det(//(/)) to Crit(y) is non-singular at the

point y for any y e L, for w small enough the intersection Crit(y) D det(//(/))~* (w)
is a unique point for any y e L, and hence

3„ := det(^(/))-'(M) n £ n W(C, £[1])|l

defines a cross-section of the embedded normal bündle, and the restriction

is a diffeomorphism.
Let

K': W(C,£)|e„ -* 3„
be a holomorphic embedding of a p-neighbourhood of the zero section of the re-
striction to of the normal bündle of £ in C. It is a trivial bündle with fibre a
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complex (/i — 3)-dimensional ball. For any i G Sy the restriction of / to the fibre

(A^(C\ is a Morse type singularity.
If p and w are chosen small enough we may assume that, for any x e S„,we have

an inclusion of fibres

(tf>(C",E)|s„)* C (Z(C",£[1])l)^^.
Now we study the restrictions of the bündle maps kF and to a fibre of /"* (5)

for small Define

a := ff|/-i(a)nAT"(C",s[i])|i, • / *(^) ^ W(C, S[1])|L

£ := <|s„ o kVi(W(C",E)|s„ : /"'(«) n >(C, E)|s„ - L.
We have

Lemma 4.3. For 5 smaZZ ^nowgZz mappZng

(a,/3): (/-*(«) n jV(C, S[1])|l, Z"H«) n A^(C\ S)|b„ -* L
Zs ß ZocoZZy /rZvZaZyZfera/zon o/po/r^ wZ^Zz^Zfere Zzoraotop/c S"~*), w/^/z

^mfe^zZzZ^zZ Zn as on egwator onzZ wZz<9S£ monozZromy Zs ZsofopZc £Zz£ ZdenftTy Zn

onzZ Zf Zs ^Zz£ re/Zecrfon ov^r £Zz£ egwator Zn S"~^.

Proo/ The Statement of the homotopy type of the fibre is just Lemma 4.2.
The circle y(0) := (0,0, e^*^) parametrises a generator of the fundamental

group of L. The normal bündle A^(C\ £[1])|/, can be chosen so that for any 0 the
line Crit(y(0)) is equal to L(x2, X3 — ^ ^ Jw-3) and the cross-section
is defined by S^(y(0)) 0, 0,..., 0).

For any 0 e [0, 2tt] the pair of fibres (a~* (y(0)), (y ($))) is homotopic to the

pair of varieties (X#, T#) defined by

Zö := n*2, *!>>? + + jf + • • • + j2_3),

7Ö := + jf H |-}^_3,xi
The family of diffeomorphism

<£>0: C" —C
defined by

^ö(Xi,X2,X3, J1, ,J„-3) := (e~^'®Xi,X2,X3,^'®Ji,e~'"®j2,3'3, • •• ,J«-3)

induces a diffeomorphism from (Xo, To) to (X#, T#) for any 0 g [0, 2tt]. Therefore
a geometric monodromy is given by

<Pi: (Zo,ro)^(Zi,7i) (Zo,ro).

The pair (Xo, To) is homotopic to (S"~^, S"~^) and it is easy to check that <pi

preserves the orientation in and reverses it in S"~^.
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5. A decomposition of

In this section we will define a decomposition of Af in several pieces. This decom-

Position is defined after the stratification of X,y defined in Section 2. The topology of
each piece, and the gluing of them will be studied in the following sections.

In Proposition 3.1 it has become clear that in order to understand the homology
of the Milnor fibre of / we need to compute the homology of the intersection Af
/-i(*o) ^ with s £ £ \ A small enough and (o / 0 small enough. The tubulär
neighbourhood T is the total space of a trivial fibration

with fibre an (« — 3)-complex dimensional ball. If i? is a subspace of X,y we denote

Tr-i(ß) by
By Theorem 2.2, for a generic parameter s close to the origin of the base S of

the unfolding of /, the maximal corank of //(/y)(x) is two for any x £ X^. Recall
that the set of points where the corank is at least 1 is the surface S[l]^ defined by
the vanishing of det(//(/y)). The Singular points X[2]^ {/?i,..., /^} of X[l]^
are of Morse type and coincide precisely with the points where the corank of //(/?)
equals 2.

For each point let 5/ (£) be a ball of radius £ around in C such that |#. (£)
is biholomorphic to the restriction of the singularity Z)(3,2) to the unit ball of C.
Taking £ small enough we can assume that the balls are mutually disjoint and that the
intersections A; (£) := 5/ (£) n X^. are balls in X^. centered in each of the points
Taking 7\ £, and small enough the space

is diffeomorphic to the Milnor fibre of at for any z, and hence homotopy
equivalent to (see Lemma 4.1).

Now we choose the following parameters:

• We take £ small enough so that 3A; (£0 is transverse to X [1]^ for any 0 <?'<?•
• We choose £o < £ sufficiently close to £ so that the inclusion

«A{ fl 7r~'(A(£')) C A
is a homotopy equivalence for any £o < £' < £.

• Choose £ > 0 small enough so that det(//(/y))~* (w) meets 3A; (£0 transversely
for any w and £o < £' < £.

Consider A; (£o) the interior of A; (£o) and define

TT: T —> X^. (9)

A := /TVo) n 7T-1 (A(0) ^ n ^(ACO) (10)

ß := det(//(/,))-Höt) \ Ü Ä'M,
/'=1



Vol. 88 (2013) Topology of hypersurface singularities with 3-dimensional critical set 269

:= det(W,))"»(«) \ U Ä'M-
/' 1

A schematic picture of this decomposition can be seen in Figure 2.

/ 5o

Figure 2. The decomposition of

The space i? is a tubulär neighbourhood of i?o in \ (U (£o))- The mapping

det(i/(/,)): 5 -*
is a trivial fibration. Therefore there is a product structure i? i?o x and the

protection

p: ß -» ßo

to the first factor induces a diffeomorphism

*o

for any
The restriction

P ° Jr|rg : 7g 7?o
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is a locally trivial fibration with fibre a polycylinder of complex dimension « — 2.

Define
J8 := X n Tß,

the piece of falling over iL Taking 7\ £ and sufficiently small we have that the

restriction

po?r|s: .£ -> 5o (U)

is a locally trivial fibration with fibre diffeomorphic to the Milnor fibre of the Z)(l, 1)

in and hence homotopy equivalent to (see Lemma 4.3).
For any £' > 0 we define

^ := E,\det(tf(/i))-*(%).
;= 7T~H^r) n

the complement of a tube around S[l]^ in and the piece of lying over it. For
T and small enough, the restriction

is a locally trivial fibration with fibre diffeomorphic to the Milnor fibre of the Morse

singularity in C"~^, and hence homotopic to (see Lemma 4.3).
We fix a positive £o smaller and close to £ and define

t/ := t/fo,

t( :=

The restriction

(12)

is locally trivial with fibre homotopic to S"~^.
Fix a point w in 3D^. Define

:= 7T~*(ß„) n «Af.

The mapping

p|ß„ : ^

is a diffeomorphism. Hence the mapping

((p|ß„)~* °P°7r|s.^ls„): C£>-£u) (13)

is a locally trivial fibration of pairs with fibre the pair (§""*,§""*), being
embedded as an equator of S"~^.
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6. The topology of 2?o

In this section we study the topology of which will be used later to study the

homology of <S.

6.1. The fundamental group of 2?o« The space SM(A) of Symmetrie matrices of
size A with complex coefficients is a complex vector space of dimension A(A + 1) /2.
The smooth locally closed algebraic subset SM(A, /) has codimension /(/ + l)/2,
and we have seen that its Zariski closure SM(A, /) is defined by the vanishing of all
/ x / minors. It is easy to check that SM(A, /) is far to be, in general, a complete
intersection.

Dehne MM(fc x (A — 1)) to be the set of (A x (A — 1)) matrices of maximal rank.

Lemma 6.1. 7Ae /wmfaraefttaZ growp o/ MM(A x (A — 1)) fs Zr/v/zxZ.

Proo/ The set of matrices A x (A — 1) which are not of maximal rank is an algebraic
subvariety of codimension at least 2.

The mapping
ex* : MM(Jfc x (Jfc - 1)) -> SM(Jfc, 1)

given by
a*(M) := MM'

is a locally trivial hbration (by homogeneity of the action of the general linear group).
Denote by the hbre over the matrix ^4 (a^y), where a^y unless i y
A, in which case, 0.

Lemma 6.2. Aas Ovo connected coraponente.

Proo/ We will work by induetion over A > 2. For A 2, it is a direct computation.
Now let us compute the hbre Consider the following matricial equation:

(^1,7)~ O^o)-

Let c* be the vector in given by the i-th row of (m^y). Denote by Re(Tj) and

Im(^) its real and imaginary parts respectively.
Now the previous matricial equation becomes the following System of vector

equations: if (Z,y) 7^ (A,A) then

Re(u,) • Re(uy) Sy + Im(u,) • Im(u,),

Re(Tj) • Im(Ty) 0,

and

Re(vfc) • Re(ufc) lm(i>0 • Im(ufc),
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Re(vfc) • ImO*;) 0,

where u • u; denotes the Standard scalar product in
Consider the projection MM(A x (A — 1)) C -> to the first row.

Let be the image of under this projection. Using the homogeneity of the action
of the complex orthogonal group, it is easy to check that the restriction

^
is a locally trivial fibration.

Obviously ^ is the set of vectors ig satisfying the above System of equations
for Z 7 1. The vector ig belongs to ^ if and only if ||Re(iq)|p is one unit
longer than ||Im(iq)|p and both vectors are orthogonal. That is, the vector Re(iq)
can be anywhere except in the interior of the unit sphere in If ||Re(iq)|p
equals 1 then the vector Im (ig) is zero. In any other case, the vector Im(iq) lies in
the (A — 2)-sphereof radius ^ 1 — ||Re(iq) |p in the hyperplane orthogonal to Re(iq).
It is easy to show that ^ admits the unit sphere in R^~* embedded in the real part
of as a deformation retract.

The über r^*((l, 0,..., 0)) is formed by the (A —l)-tuples (i>2,..., V&) of vectors
that satisfy the previous System of vector equations, and lie inside the subspace of
vectors with a zero in the first coordinate. This is equal to the über i^-i of df£_i
over ^4' where zl' is the result of deleting the first row and the first column in A

We have constructed a fibration of over a space with the homotopy type of
8^-2 wimse fibre is Ffc_i. If has two connected components and A > 4, the

homotopy exact sequence of the fibrations gives the result. For A 3 we have to
check that the monodromy of the fibration does not interchange the two connected

components of F2, but this is direct computation.

Proposition 6.3. rAe/wraZ<zmenfaZ growp 0/ SM(A, 1) Zs ZsoraorpA/c Z2.

Proo/ This is just the homotopy exact sequence of the fibration a^, together with
Lemmas 6.1 and 6.2.

Proposition 6.4. TAe/hmZaraentaZ growp ö/2?o Zs ZsoraorpA/c Z2.

Proo/ The unfolding

/s (gl -Äi,...,g„-3 -Ä„-3)(m,j +i/j)(gl -Si,...,g„-3 -^-3)',
with Ä <= <C"-3 X SM(« — 3) can be obtained by pullback from the unfoldings (1) and

(6) of / that we considered in Section 2 both in the corank(//(/)(0)) 2 and

corank(//(/)(0)) 7^ 2 cases. In both cases a generic parameter

5 e C"~* x SM(w - 3)
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maps to a parameter outside the discriminant A. Thus we can use this unfolding in
order to compute the topology of i?o-

The mapping

a: C x SM(« - 3) -> SM(« - 3)

defined by a(x, C?;j)) := (m;j(x) + s;j) is obviously a submersion wherever it is

defined. Dehne

Zj := cT*(SM(« -3,i)).
Since SM(« — 3, z) is a cone for any z, and the fundamental group of SM(« — 3,1) is

isomorphic to Z2, we have that the local fundamental group of the germ SM(« — 3,1)
at the origin is Z2. Since the mapping a is a submersion, the local fundamental group
of (Zi \ Z2) at the origin is Z2.

Fix a positive 6 and a generic

(*?, ,Ä®_3, (^y)l<i<y<«-3) e C"-3 X SM(« - 3)

sufhciently close to the origin. Consider set of functions {gilfrj* U {^,y}i</<y<w-3
in 0c« xSM(«—3) • Applying Hamm-Le Theorem (Main Theorem in [8], II. 1.4) repeat-
edly for the above set of functions, and using the relative homotopy exact sequence
we get that the fundamental group of

Ä, n (Zi \ Z2) n f! nsi - *?) n n
/ 1 1 </ < / </7 —3

is isomorphic to Z2. But it is clear that the above space is homotopic to 2?o.

6.2. Homology of 2?o« We will now compute the homology of which coincides
with the homology of i?. Given the function

det(Z7(/,)):

we use the Mayer-Vietoris sequence of the decomposition of det(//(/y))~*(Z)|:) as

the union of (J ^4/ (£) and i? given in Section 5.

The space det(//(/y))~* (Z)^) is homotopy equivalent to det(//(/y))~* (0), which
is homotopic to a bouquet of (/xi — et) 2-spheres (see Definition 2.5). This is because

det(//(/y))~i (0) is a deformation of det(//(/))~* (0), which is an i.c.i.s. with Milnor
number /xi, and det(7/(/y))~*(0) has only et Morse-points as singularities.

On the other hand, the intersection of each space ^4; (£) with i? is the link RP^ of
a Morse type singularity, and the Spaces A / (£) are contractible.

Summarising, we have the following:

• //i(UX0nß;Z)=Z5.
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• ff,-(IM (0 n 5;Z) s Ofori £ {0,1,3},
• ff2(det(ff(/,))"Hfff);Z) Z^-*.
• ff/(det(ff (/,))"*(ff*); Z) o for i £ {0,2},

• ffi(5;Z) =* Z2.

These data allow us to compute the following Mayer-Vietoris sequence:

0 -ff3(lM(£) n 5;Z) v^3(5;Z) ff3(det(ff (/,))-! (fft);Z)
eil eil en

z* z° 0

n 5;Z) ^ffa(5;Z) ffa (det(ff(/,))-'(fff);Z)
eil en en

0 Z"i~" Z^i~"

«1—^-ffi(LM(f) n 5;Z) —U.ffi(5;Z) ffi(det(ff(/,))"'(fff); Z)
eil en en

z° Z2 0

(14)

Remark 6.5. The restriction of the mapping oq to //i(^4/ (£) H i?; Z) is an isomor-

phism onto //i (i?; Z) for any i.

Proo/ The space i? is homotopy equivalent to i?o- In Proposition 6.4 it is proved
that the fundamental group of i?o is isomorphic to Z2, and hence the same holds for
its first homology group.

The group //1 (U ^ ^^ ^ direct sum of the groups //1 (^4; (£) fl 2?; Z)
for i varying. Each of these groups is isomorphic to Z2, and is generated by a

homology class [y;]. Since the exact sequence above shows that aq is surjective, at

least one [y;] has non-zero image by aq in //1 (5; Z).
Lemma 2.4 implies shows that there are isomorphism of i?o interchanging each

two classes [y,]. This ends the proof.

The homology of i? with coefficients in Z2 can be computed either in a similar

way than the integral one, or by using the universal coefficient theorem. We obtain

• ff4(ff;Z2) o,

• ff3(ff;Z2) z°,
• ff2(5;Z2) Z2®Z^~",
• //1 (i?; Z2) Z2.
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Remark 6.6. Note that the generators of //2(det(//(/^))~^(Z)^); Z) can be mter-
preted as follows. The Milnor fibre of det(ZZ(/o))~*(0) has /xi 2-spheres as gen-
erators of lts homology. Out of these spheres there are a of them which corre-
spond to the vamshmg cycles of the a Morse points of det(//(/^))~^ (0). The space
det(//(/y))~* (Z)^) is homotopic to det(//(/y))~* (0), which m turn is homotopic to
the result of collapsmg these a spheres m the Milnor fibre of det(ZZ(/o))~* (0). The

remammg spheres give nse to the /xi — a generators of //2(det(//(/y))~* (Z)^); Z).

7. Homology of («S, «S«)

In this section we will compute the homology of the spaces <S and and also the

one of the pair (<S, <S^). We will do so by studymg their fibrations over • This way
we will obtam the homology with integer coefficients of and (<S, <S^); but for <S

we can only compute lt with coefficients m Z2, because the associated fibration is

not onentable. At the end of the section we will use these three homologies, together
with the universal coefficients theorem to recover the long exact sequence of the pair
with integer coefficients, and thus obtam the integer homology of <S.

There are several sphere fibrations mvolved m the computation of the homology
of the Milnor fibre, and we will need to deal with the correspondmg Gysm sequences.
These are greatly simplified lf we are m the case zz > 8. The homology of the Milnor
fibre can be always deduced (by Suspension) from the homology of the Milnor fibre
of a function /: (C, O) -> C with zz > 8. We will assume m zz > 8 whenever is
needed.

Consider the fibration -> Aswehaveseenpreviously, ltisa fibration, with
über homotopically equivalent to S"~^. This fibration can be extended to
which is simply connected, and hence, the fibration is onentable. Its Gysm exact

sequence leads to the isomorphisms

tf,(£„;Z) #,(Ä„;Z) (15)

for z 0,1,2, 3. The rest of the homology groups of vanish.
Consider the projection S ^ As we have seen before, lt is a fibration with

fibre homotopically equivalent to §""*, and the monodromy reverses the onentation.
Smce the fibration is not onentable, we can only consider its Gysm sequence with
coefficients m Z2, which gives the followmg isomorphisms:

i/,(5„;Z2)^i/„_3+,(3;Z2), tf,(3;Z2)^i/,(£„;Z2) (16)

for z 0,1,2, 3. The rest of the homology groups of <S with coefficients m Z2
vanish.

The fibration of pairs (<S, <S^) —5^ has as fibre the pair (§"~^, §"~^) with
embedded as the equator of S"~^. Its monodromy acts tnvially on and reverses
the hemispheres of along the only non-tnvial class of tti (<S^) Z^.
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In order to compute the homology of the pair (<S, <S^) we can simultaneously
thicken the equator of each fibre to a small collar x [— 77,77] in §"""3. By
excision we can remove fibrewise the interior of the collar. We obtain a fibration over
7?^ with fibre two (« — 3)-disks relative to their boundary, such that the monodromy
interchanges them.

Since tti (7?^) ^2, its universal cover

O" •

is the only connected double cover. The fibration of pairs is then homologically
equivalent to the composition of an orientable fibration

<p: 2/ ->

of (« — 3)-spheres over 7?^ with the covering map er. The Gysin sequence of the
fibration </9 gives

77* (3,-SB«; Z) =* 77* (3/; Z) =* 77*_(„_3)(5„;Z)

if Ä: > n — 3 and zero otherwise.
Denote by V the double cover of S[l]^ branched over its a Singular points. The

space 7?^ is homotopically equivalent to V minus the preimage by the covering
map of these et points. The space V is a 2-dimensional Stein space (for being a

branched cover of the 2-dimensional Stein space S [1 ]^), and hence it has the homotopy
type of a 2-dimensional CW-complex. Therefore, 7/2 (V; Z) is free and 7/3(V; Z)
vanishes. Since the singularities of 7?o are of Morse type, and the 2-dimensional
Morse singularity is the quotient of by the action of the group of two elements,
the space V is smooth. Hence 7?^ is the result of deleting from V small balls around
the a preimages by the double cover of the Singular points of £ [1]^. Using the Mayer-
Vietoris sequence we see that such deletion leaves unchanged the homology except
in dimension 3, where we obtain a copy of Z for each deleted point. Summarising,
we get that

• //3(ß„;Z) Z"
• #2 (7?w; Z) Z^ for a certain

• 7/i (7?w; Z) 0, since it is the universal cover of 7?^

• 7/o(7?w; Z) Z, for it is connected.

Since the Euler characteristic of 7?^ is twice the one of 2?^, ä; must be equal to
2/xi — 3a 1.

It is is easy to check that the following diagram is commutative:

#,+»-3(2B,S„;Z) ff,+„-4(£„;Z)

77, (5„; Z) 77, (7?„; Z)
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for any z, where <5/+^_3 is the connecting homomorphism of the long exact sequence
of the pair (3, 3^), the mapping er: 3^ -> 3^ is the covering map and the vertical
arrows are the isomorphisms Coming from the Gysin sequences.

Notice that the generators of 7/3 (3^ 5 2) are 3-spheres bounding balls in 3o around
the inverse image of the singularities of 3o. The generators of 7/3 (3^ 5 2) are precisely
the classes [A/ (77) D 3^]. Each of them is diffeomorphic to PP^ and doubly covered

by one of the 3-spheres. This shows that

7T*: #3(i?„;Z) -> ^3(5„;Z),
and hence also <5^, is multiplication by 2.

For being er a covering there is a well defined pull-back mapping in homology

ct*: -» #,•(£„ ;Z).

It is clear that the map er*er* : 77/ (3^; Z) -> 77/ (3^; Z) is multiplication by 2 (the
degree of the covering). This, together with the previous commutative diagram,
implies that 277/_i (3^; Z) is always in the image of 5/ for any i. In view of this and

of the long exact sequence of the pair (<3, 3^) we obtain that 77„_2(3, Z) can not
have /7-torsion for /? 7^ 2.

By the above diagram and the connectedness of 3^ we have that <5^-3 is an

isomorphism.
These facts, together with the previous computations of 77.(3^; Z), 77.(3; Z2)

and 77.(3, 3^; Z), plus the universal coefficients theorem allow us to completely
determine the long integral homology exact sequence of the pair (3, 3^), (equa-
tion (17)).

The non-zero lower homology groups are isomorphic to those of 3^, which
coincide with those of 3.

8. Homology of %

This section is devoted to the computation of the homology of X. In a first Step we
will compute it with coefficients in Z2 using the Mayer-Vietoris sequence. Then we
will lift it to the integers using the universal coefficients theorem.

Let X be the union of U^=i A' and 3. We will now consider the Mayer-
Vietoris sequence of this union with coefficients in Z2. To do so, we need to compute
the groups T7.(A/;Z2) and 77. (A/ n 3;Z2), since 77.(3; Z2) has already been

computed.
The space A/ is the Milnor über of the singularity 7)(3,2), and hence, it has the

homotopy type of the sphere S"~^.
To study the homology of A/ H 3, we can use the Gysin sequence of the fibration

TT: «Aj n £ -* n ß ~ 904; n det(tf(/,))"* (0))
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tf„(l8„;Z) #„(e8;Z) Z)
eil eil eil

o o z°

tf„_i(3„;Z) i/„-i(3;Z) Z)
eil eil eil

Z" Z5©Z"l-2"+l ^2/ii-3a+l

//„_2(S„;Z) ^ 7/„_2(S;Z) //„_2 (£,£„; Z) (17)
eil eil eil

z^~° o o

#«-3C®„;Z) s- 77„-3(e8;Z) ^ 7/„_3(e8,l8„;Z)
eil eil eil

Z2 ^2 ^

7/„-4(e8„; Z) > 77„-4(e8;Z) >- //„_4(e8, S„; Z)
eil eil eil

z o o

with fibre S" The groups //; (RP^; Z2) are Z2 for / 0,1, 2, 3, and zero other-
wise. We obtain that

n S,Z2)
| Z2 for i 0,1, 2, 3, h — 3,« — 2,« — 1, tz,

10 otherwise.

To study the maps ^ : 0^ (A; fl <S; Z2) -> #£ (<S; Z2) induced by inclusion,
we will see them as the Gysin lift of the maps 0; /// (A/ D i?; Z2) -> fl) (2?; Z2)
for 7 ä: or 7 ä: — n + 3. Using the version of the Mayer Vietoris sequence (14)
with coefficients in Z2, we get easily that

• ^ and £3 are isomorphisms,

• is a monomorphism,

• ^_2 and ^-3 are epimorphisms,

• £1 is an epimorphism,

• *2 is a monomorphism.

We need also the following lemma, whose proof we postpone to page 290:

Lemma 8.1. 77z£ map £2 • 2/„_2 (A; D <S; Z2) -> //«-2 (A /; Z2) fry zncZwsion

Zs an /soraorpfera.
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With all these facts, we can compute the corresponding Mayer-Vietoris sequence
(equation (18)).

nS;Z2) C _ ©fÄ„(A;Z2)©ffi.(Ä;Z2) ff»(%;Z2)
dl dl dl dl

Z* 0 Z£ 0

r
(A nS;Z2) —» ®,.ff„_i(^,-;Z2)©ff„-i(Ä;Z2) —v //,,_i(X;Z2)

eil en en en

Z£ 0 Z2®Z^'~" z^~^+i

r
©/7/^-2(^4)/n <S; Z2) —^ ©/^«-2(A';^2)0^«-2(<®;^2) —^ 27„_2(X;Z2)

dl dl dl dl

Z£ Z* Z2 Z2©Z£-'

r
©^»-3(4 nS;Z2) —>- ©^,I_3(«A/;Z2)0^I-3(«S;Z2) —7/„_3(X;Z2)

dl dl dl dl

z£ 0 Z2 0

(18)

We omit the lower part of the sequence. The non-vanishing remaining homology
groups of X are

#2(X; Z2) Z2 ^o(X; Z2) Z2.

8.1. A basis of 7/,i_2(X; Z2). Fix a base point xi e Ai(£) D 2?^. Choose paths

y/: [0,1] -> 2?^ such that yi is a generator of the fundamental group of Ai (£) fl 2?^,

and y/ connects xi with some point x; G A/(£) PI 2?^. We choose chains G; C
<S such that the natural projection tt|g, is a locally trivial fibration over y; with
fibre diffeomorphic to a generating the homology of the corresponding fibre of
(p|^)~* ° P ° TT|s- Since yi is closed, the chain Gi is closed with coefficients in Z2.
For each i, we choose an (« — 2)-sphere generating //„_2(A;; Z). Take a hemisphere
L) of such sphere; its boundary 3L; is an (L — 3)-sphere in A;. The boundary 3G;
consists of two (L — 3)-spheres Li and L/, being L; contained in A;. Since A; is

homotopic to there exists a chain

WS: [0,1] X S"-^ -> A
such that 3WS 3A + A-
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The generators of //„_2(X; Z2) are represented by the Z2-closed chains Zi :=
Gi and Z; := + ITi + G; + IT/ + 2G- Notice that since the coefficients are
in Z2 we have + Ci + Wi + Gi, and so the way of defining the

generators is the same for all indices. To check that these are really generators we
observe that Z2,..., Z^ are sent by the connecting homomorphism of the Mayer-
Vietoris sequence (18) to the kernel of the first mapping of the (« — 3)rd row, and

that Zi generates the cokernel of the first mapping of the (« — 2)nd row.

Lemma 8.2. )/: [0,1] —>

x- po/nfa zn Ai (£) fl 2? A; (£) PI 2? respecft'veZy. As aZwve we can asscc/ate wzYA

y- an eZeraen^ [Z-] G //„_2(X; Z2). We Zzave egnaZZ/y

[Zj] [Z,]+m[Zi]

/er a cezta/n m G Z2.

Proa/ Let 07- be a path joining xy and xj for 7 1,Z. The product of paths

y;. af/. (y/)~*. (aq)~* is a loop based in xi. Since the fundamental group tti (2?^, xi)
is isomorphic to Z2 and generated by yi, the loop y; .07 .(y/)~* (aq)~* is homotopic
to (yi) for a certain m. After this, the above equality follows easily from the
construction of the chains Z;.

8.2. A system ofgenerators of 2/^-2 (X; Z). To lift the computation to coefficients
in Z, we need to compute the integer homology of <A>; D <S. We can do so by Computing
the long exact sequence of the pair (<A>; n <S, «A/ H <S^) using the same arguments
used to compute the long exact sequence of the pair (<S, <3^). We obtain:

i(«^z* (3 S;Z) Z2,

i/„_3(A n£;Z) =* Z2,

Z/3(cAi n£;Z)^ z,
//i(<A>; nS;Z)^ Z2,

#o(A n £;Z) ^ z,

and zero otherwise.
With these data, and the universal coefficients theorem, we can compute the

Mayer-Vietoris sequence (18) with coefficients in Z, which is shown in equation (19).
The non-zero lower homology groups are isomorphic to those of S[l]^.
We give a system of generators of //«-2 (X; Z). For any Z choose an (n —2)-sphere

S/ in <A>; generating //„_2(A>;; Z). Choosing the orientations of the summands of Z;
appropriately it turns out that we have a Z-closed chain. It is clear that [Z2],..., [Z^]
generate the kernel of the first homomorphism of the (n — 3)rd row of the Mayer-
Vietoris sequence. The image of the second morphism of the (n — 2)nd row is

obviously generated by the (n — 2)-spheres *S).
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©; nS;Z) c ^ ©,//„(A;Z)©77„(£;Z) ^ //«(X;Z)
dl dl dl dl

0 0 0 0

/
^

dl dl dl dl

Z£ 0 Z2©Z^l-2«+l £Ml-2a+l

r
©,.//„_2(A-nS;Z) —» ©,.//„_2(A-;Z)®//„_2(S;Z) —» tf„_2(X;Z)

dl dl dl dl

0 Z" 0 z®

r
0^-3(«A/n S;Z) —^ ;Z)0//^_3(S;Z) —^ //^_3(X;Z)

dl dl dl dl

Z£ 0 Z2 0

(19)

9. Homology of «At

Now we will compute the homology of eAC First we will see that to recover the

homotopy type of we only need to glue to X the preimage by tt of some disks in

Sj (the so-called Lefschetz thimbles). Then we will proceed as before, Computing the
associated Mayer-Vietoris sequence with coefficients in Z2 and then doing a detailed

study of the topology in order to lift it to integral coefficients. In this process, we
will find some ambiguity: there are two possible values for the homology of eAC We

prove directly when these two cases will hold. In the final Step of this section, we

prove that the homology of is torsion free. The argument needs the beginning of
Classification of the singularities treated in this paper, and then a case-by-case study.

9.1. Coefficients in Z2. Recall that X^. is the Milnor fibre of X, and has the homo-

topy type of a bouquet of /xo spheres. The functions gi,..., g„_3, det(//(/)) define
a 2-dimensional i.c.i.s. X[2]o with Milnor number /xi (see Definition 2.5). We may
assume that the ball i?«, that we are using to compute the Milnor fibre of / is also a

Milnor ball for the i.c.i.s.
We need to remind some classical results of i.c.i.s., in particular the definition

of Lefschetz thimbles (see Chapter 5 in [11] and [2] for details). There is a disk
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Z)# of centered at the origin of C such that X^. is homotopy equivalent to X^. D

(det(//( /v))P' (D#) and that the restriction

tfr := det(^(/,))ls,n(detW/,)))-i(D,): ^ n (det(tf (/,)))-* (£>5)

has precisely isolated critical points with Milnor numbers adding precisely /xo + /xi.
The number a counts the number of critical points in the 0-fibre of the mapping above.

They are all of Morse-type.
Take 77 so small that the disk Z)^ only contains 0 as critical value of the restriction

to V~*(Z>/7). Let * be a point at the boundary of this disc. Draw a System of non-
intersecting paths {y;}; joining * with each of the critical values of the mapping t/t.
Each path corresponds to a vanishing cycle of t/t, which is an embedded in (*),
and that can be continued along the path y; until it collapses to the corresponding
critical point of t/t. The Lefschetz thimble Q along the path y; is defined to be the
union of the continuations of the vanishing cycle along y, until it collapses to a point.
It is homeomorphic to a 3-dimensional disk, with boundary the vanishing cycle.

The space X^ is homotopy equivalent to the result of attaching to

(det(tf(/n)iz,r*(ß„)

the Lefschetz thimbles associated to the critical points of det(ZZ(/y))|^ not con-
tained in the zero level. There are exactly /xo + /xi — a such Lefschetz thimbles
(see [11]). Since the Lefschetz thimbles are 3-disks they are attached along 2-

spheres to the boundary of (det(ZZ(/^)) (Z)^), which is 5-dimensional. Hence,
a transversality argument ensures that all the attaching spheres are disjoint. Denote

by Ci,..., the attached Lefschetz thimbles. We have found a homotopy
equivalence

Mo+Mi-a
M':=(det(W,))|s,r*(A,)u( U Q)(20)/ 1

which in fact (since we are working with C IL-complexes) is a deformation retract.
Since we have a locally trivial fibration

TT : \ 7r-i(det(tf (/,))-* (0)) -> S, \ det(tf(/,))-* (0) (21)

we can lift the deformation retract (20) to a deformation retract

«A{' := ^ (22)

We will compute the homology of JlL using a Mayer-Vietoris sequence. By
the previous deformation retract we identify the homology of JlL and JlZ. Denote
tt~* (Q) by £?/. Since Q is contractible the fibration over it is trivial, and, hence, "C;
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and TT"* (3Q) are homotopy equivalent to C/ x and 3Q x ^ x S"~*.
Decompose as

Mo+Mi-a
^' xu( U £.•)• (23)

/ 1

The associated Mayer-Vietoris sequence (with coefficients in Z2) is what equa-
tion (24) shows, for some e e N. Recall that only the last column was unknown.

dl dl dl dl

Q q ^/xi—2a+l ^/xq+2/xi —4a+l+e

r
®;//„_2(^-i(3Q);Z2) "V ®;//„-2(^;Z2)®//„-2(X;Z2) —* ff„_2(^;Z2>

31 31 31 31

^o+M.i-a 0 Z2®Z°-1

©iff„-3(w-»(9Cj);Z2) W„-3(e,;Z2)®W„-3(X;Z2) > ff„_3(^<;Z2)
dl dl dl dl

0 0 0 0

©j ^»-4(^ *(3Qfi^2) -> ©j #»-4 0%; Z2)®i/»-4(3C; ^2) ^ //«_4(eA^; Z2)
dl dl dl dl

^/xo+/xi—a ^/xo+/xi—a q Q

(24)

The fact that 0^ //„_4(tt~1(9C;); Z2) -> 0/ 7/^-4 (£?/; Z2) is an isomorphism
determines //„_3(yl7; Z2) and //„_4(yVf; Z2). Given e, //„_4(yVf; Z2) is determined

by Euler characteristic.
We will find out what are the possible values for e. We have given a basis {Z; ^

of //„_2(X; Z2) in Subsection 8.1.

Lemma 9.1. 77*e coraposzY/on

r: ©//„_2(7r"i(aQ);Z2) Z/„_2(X;Z2) -> iW*; Z2)/([Zi])

LS SWrj£C/fV£.
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Proo/ Foreachoneofthea Singularpoints ofdet(//(/^))~^(0) thereisavanishing
cycle £) which is a embedded 2-sphere in det(//(/?))~i(w). The parameters
w, £ (see Section 5) can be chosen so that det(//(/y))~i(w) D A/(£) is a tubulär
neighbourhood of £) in det(//(/^))~^(w).

The sphere 3Q can be chosen to be embedded in det(//(/y))~i(w) and, after a

perturbation, transverse to £) for any /. Let

tfc : 3Q det(//(/s))~'(w)

denote the embedding. Let Z?^ the number of intersection points of 9C& and £).
Choosing the tubulär neighbourhoods of £) small enough we find that (A; (£)) is a

disjoint union of disks 7 with 7 G {1,..., }»and the boundary of each of them

represents the generator of //1 ; 2). By Remark 6.5 the number Z>£ := Z?^ is

even: otherwise the image in //1 5 2) of the boundary

3(C*\(U Afc,.\/))

would be a non-zero homology class. We claim the following equality

a

r([7r-i(3Q)]) y]^[Z,]. (25)
/ 1

Let us finish the proof assuming this claim.

AnyLefschetzthimbleC^ givesrisetoaclass [3C^] G //2(det(//(/y))~i(Z)|:); Z).
It is easy to check that its image by the connecting homomorphism $2 is equal to

a a

^2([3Q]) ~ ^6)
/=1 i=2

where ^ is a generator of //i(9A;(£) fl 2?; Z) for any L The first equality is by
construction of the connecting homomorphism and the second is true because JL Z^/
is even and, hence we have the equality Z^i X^=2 ^£4 in ^2-

Let aq be the first mapping of the Ist row of the sequence (14). Define the

isomorphism
0: i/„_2(XZ2)/([Zi]) ^ker(«i)

given by 0([Z,-]) := [^;] - [iAi]- Any element [Z'] e //„_2(X; Z2VGZ1]) cor-
responds to an element in ker(aq), which is the image by $2 of a class [7] G

//2(det(//(/y))~*(D|r); Z). Such a class can be expressed as a sum

Mo+Mi-a

[7]= £ /»*[3Cjfc].

/:=!
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The coincidence of the coefficients in the last terms of equations (25) and (26) give
the equality r([7]) [Z'].

Now we prove the claim. Choose a point xo 3C^ \ ^ D^yj and choose a

disk Do around it in 3C^ disjoint to the disks D^yj. Deform the immersion ^|i>o
so that the embedding of its boundary remains fixed, it meets Di transversely pre-
cisely at points, all different from xo, and it is disjoint from Dy for any j / 1.

After this deformation the intersection 0t 1^*041(£)) consists of ^ disjoint disks

{D^ /} (we choose the indexing to make it easy to make a bi-
jection with the disks D^yj).

Choose non-intersecting paths in Do \ (U; y ^ / y) *o with a point

y G 3D^ Choose non-intersecting paths

ßfc,W : [0,1] -* 9Cjfc \ U «*,/,; ([0,1]) u • U

joining 3D^ with 3D^yj. For a schematic picture, see Figure 3.

y

Figure 3. The System of paths in 9C^.

The complement of (J/yj (Auj([0>1]) U ([0,1]) U U Z>£,;,y) is a

topological disk G. Since G is contained in we can restrict the fibration (13) to
G and obtain a trivial fibration of pairs with fibre homotopic to with
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§w-4 embedded as an equator. Consider a mapping

ct: G x §"-3 jg

such that cr({g} x §"~^) generates the (« — 3)-homology of the fibre ovem(g) by the
fibration (13). Denote by 77+ one hemisphere of S"~^. The restriction

i/f: G x //+ -^ScX
defines a Singular chain in X.

Let be the chain associated to ßfcyj by the procedure given in 8.1. Adding
and subtracting §"~^-hemispheres and for any z, y (see the procedure
in 8.1), the chain 3t^ + 3^ is shown to be equal to a sum

IX+ E*
^7 /' 1

where 7/ is a closed chain contained in «A;.

The (/i — 2)nd row of the sequence (18) shows that, for any z, any class in

//„_2(X; Z2) supported by a chain contained in «A; is a multiple of [Zi]. On the
other hand, by Lemma 8.2 there exists c;j e Z2 such that [Z^ [Z/] + c;j [Zi].
This proves the claim.

This means that the only possible values for e are 0 and 1. We will now characterize
the cases in which each value is obtained.

Lemma 9.2. 7/*corank(//[/o](0)) > 3, e 0.

Proo/ Consider the unfolding

F"(xi, X^, Z), (c/,y)) (Gi^, G^_3^)(/z/^y + C/,y)(Gi^, G^_3^)
(27)

given in (1). If corank(//[/o](0)) > 3 there exists a parameter and a point
x G such that the germ at x is right-equivalent to a germ of the form

/l /2

/2 /4

^3 ^5

(3

^5

0 w /

J2

J3

• /
where the /; 's are generic linear forms and the y; 's are variables. The Milnor fibre of
such germ function is the Suspension of the Milnor fibre Af of

^1 ^2 ^3

(jl> J2, J3) ' p2 (4 (5

^5 ^6
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and this one can be computed by projecting to the variables (yi, y>2, J3). This pro-
jection is a fibration over \ {0} ^ whose fibre is contractible since it is the set

of Solutions of a System of linear equations. So Af has the homotopy type of and

7/4 (M) 0. The general case is a Suspension of this one. Hence the Milnor fibre of
the germ at x is homotopic to and its (« — 2)-homology vanishes.

Since is smooth at x its versal deformation is trivial. Hence the unfolding
given by (1) for the germ (/^)x is of the form:

^(xi, ,X^, (c/,y)) •= Gft—3,5o)(^/,7 "f" Q,y)(^l,ÄO' * * * ' G«—3,sq)

(28)
with (c/j) G SM(« — 3). Observe that this unfolding can be obtained from the

unfolding (27) by pullback and localisation near x. Let i?(x, 60) be a Milnor ball for
C/so)* contained in the Milnor ball 2?^ of /. If 5 is generic and very close to and
£ is small enough then

t: /-1 (0 n eo) ^ /r'(0 n ß, (29)

is an inclusion of the Milnor fibre of (/^o)x into the Milnor fibre of /.
Since corank(//(/so))(x) > 2, if 5 is close to there exists at least a point
of £[2]5 contained in i?(x,eo). If e 7^ 0, that is, if 7/,j_2(Af; Z2) 7^ 0 then,

by Proposition 3.1 with coefficients in Z2 there is an in A; C ^
representing a non-trivial homology class in the Milnor fibre of /. But this is

impossible: the space A; is contained in (7) fl 2?(x, 60) and the (« — 2)-homology
of this space is trivial. Then there is a chain in (7) D i?(x, 60) whose boundary
is equal to the candidate S"~^. The chain is then contained in (7) D 5^, and this
shows that the homology class represented by the candidate is in fact trivial.

Now we will see that, in the case where corank(//[/o](0)) 2, the number e

turns out to be 1. Recall that A; is homotopic to S"~^, denote by Z the generator
of 7/„_2(A/; Z). Since we have an inclusion /: A; ^ Af, we need to check that

i.(Z) ^0.

Lemma 9.3. 7/* / /s

&)•&)•
z*(Z) 7^ 0

Proo/ Let ö) be a closed differential form defined in \ {0} such that /g3 7^ 0

for a sphere around the origin in C^. Consider the map

0: C" -» C*

defined by <^> := (gi,g2).
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Then £2 := </>*&> is a closed differential form defined over the Milnor fibre of /.
The change of variables formula gives the inequality </>*&> 7^ 0

Now let us generalize this argument for the case where the corank is two, but the
dimension is higher:

Lemma 9.4. 7/* corank(//[/o](0)) 2, e 1.

Proo/ We may assume (see 2.1) that / is of the form

'='*••«>• (*!:! fe) • («)+«=+- •+«»-'•

We consider the unfolding F defined in (6). Clearly there are parameters s such

that the functions (Ai,i,j, ^2,2,5» G^,..., G^_3^) vanish at the origin and

form a holomorphic coordinate System around it. In this case the local Milnor fibre
of the deformed function 2^ at the origin has the homotopy type of a (« — 2)-sphere.

Let 6 and 5 be radii for the Milnor fibration of /. Let e' and <5' be radii for the
Milnor fibration of at the origin. By Theorem 2.2 we have that 2^~ *(<$') PI 2?^ is

diffeomorphic to the Milnor fibre of /. Let Z be a cycle in the local Milnor fibre
*(<$') fl 2V generating the (« — 2)-homology group. In order to show that e 1

it is enough to show that the homology class [Z] is nonzero considered in the bigger
space (5') fl 2?«,. For this it suffices to find a closed (« — 2)-differential form £2,

defined in 2^~ *(<$') PI 2?^ such that £2 7^ 0.

In order to define such a form, choose a positive function jß: C c C such

that >8 |z>(o,77/2) 0 and /3|c\d(o,77) 1 for a sufficiently small radius 77. Now take

a closed 3-form in \ {0} that generates the de Rham cohomology in degree 3.

We have the function

V: C \ K(Gi,„G2,,) -> C* \{0}, x (Gi,S(*),G2,,W).

Define

£2 := A jß(Gf^ + • • • + G^_3 ^
— <5')<2G3^ A • • • A <2G^_3^.

Let us check that £2 is defined in all 2^~* (5') P 2?^: the form 7/^*0; is only defined
in C" \ L(Gi^, G2^), but the factor jö(Gf ^ ^«-3 5

~~ ^0 is identically zero

when Gf ^«-3 5
~~ is small enough.

In order to check that £2 is closed notice that since is closed, so is Hence
it is sufficient to show that

ß(^3,s + * * * + ^/i-3,* ~~ ^0^G3,J A ••• A <2G„_3^
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is closed. A chain rule argument shows the equality

^(^3,* H 1- - <0 G«-3.s)
/ 3

which means that

r\ yO ^ 3

A + • • • + G£_3, - «')( 53
/ 3

A A • • • A Ö?G^_3^5 0.

Finally we will check that the form £2 integrated against the cycle Z gives a non-
zero result. We Start by giving an explicit description of Z. Let Z' be the cycle that

generates the 3-homology of

{(<J1,S. G2,S)' 5'} fl ßf'.
Dehne the family of mappings

a[<5]: C* —^C3 ^, (Xi,X2,X3,X4,X5) l-> X2, X3, X4, X5)

which depend on a parameter The cycle Z admits the following parametrisation:
since the functions

^2,2,5» Gi,5, G„_3^)

form a holomorphic coordinate System at the origin the vanishing of the hrst 5 of
them dehnes a germ (Af, O) of (« — 5)-dimensional complex manifold at the origin.
Let i?(0, denote the ball of radius centered at the origin of R"~^, being
R"~^ the real locus of (Af, O). The parametrisation is given by

Z' x ß(0, VA -» z,
(JA J3, • • • Jn-3) l"> (<*[<$' - jf .A3KA j3, • • • Jn-3).

We compute £2 in what follows. The hrst equality is due to the change of
variables formula, the second follows from Fubini's theorem, and the third is because

of Lemma 9.3.

/ £2 / A ß(G^ + • • • + G^_3 ^
— <5')Ö?G3^ A • • • A G^_3,5

,/Z «/Z'x£(0,VSÖ

JBCO.V^)

• / Of[G|^ + • • • + G^_3 ^
— 5']*T/r*ö)JG3,5 A • • • A fifG„_3^

./Z'

— /* ß(Gf 5 + • • • + G^_3 — (5')tf?G3^ A • • • A <iG^_3^
JB(0,v^)

which is nonzero.
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Now we can easily prove Lemma 8.1 using an example:

Proa/a/Lemma 8.1. Since we are with coefficients in Z2, if the mapping is not an

isomorphism then it is identically zero.
The function / : -> C given by

/-(—)-(s
has finite extended codimension with respect to (xi, *2): the critical set is precisely
L(xi, X2) and away from the origin it has singularities of type Z)(3, /?), which are of
extended codimension equal to 0.

By a procedure similar to the one we have used to compute the homotopy type
of the Milnor fibre of the D(3,2) singularity, in [5] we have proven that the Milnor
fibre of / at the origin is homotopy equivalent to S^.

An easy computation shows that if we take a generic parameter 5 of the unfolding
F associated to / in Section 2 then F? has no Morse points outside So,
there are precisely 2 points of type D(3,2), and the Milnor number of the i.c.i.s.
So fl {det(//(/)) 0} is equal to 3. Let us assume that the mapping in the Statement

of Lemma 8.1 is identically zero. In this case the previous long exact sequences can
be used to compute the homology of the Milnor fibre of /, and they give that the

4-homology group is non-zero. This gives a contradiction.

9.2. Integral coefficients. Now we compute the integral homology of JlL Af-
ter the previous computation of the homology with coefficients in Z2 this amounts

essentially to compute the torsion. We will prove that the homology is torsion-
free. The arguments are somewhat intrincate and we need to consider the cases of
corank(//(/)(0)) > 3 and of corank(//(/)(0)) 2 in a separate way.

From the integer homology of X, it is easy to see by the Mayer-Vietoris sequence

thattf*(«^;Z) #£ (X; Z) for £
On the other hand, the group Z) is torsion free since is a (F — 1)-

dimensional Stein space. By the Universal Coefficients Theorem and our computation
of homology with coefficients in Z2, it is easily obtained that //„_2(«M; Z) has no
2-torsion: as we have seen in the proofof Lemma 9.4, when^ 1, theZ2 component
of 7/„_2(eM; Z2) is represented by a torsion free class (its integral against a closed
form is non-zero), and hence it comes from a Z component in //„_2(Wf; Z).

Summarising, the Mayer-Vietoris sequence with coefficients in Z is as shown in
equation (30), where F is a torsion group without 2-torsion. We prove now that F 0.

We have to deal separately with the cases corank(//(/)) > 3 andcorank(//(/)) 2.

Proposition 9.5. 7/*corank(//(/)(0)) > 3, F 0.
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dl dl dl dl

Q Q ^/xi-2a+l ^/xo+2/xi-4a+l+e

®i»»-2(w-i(3Cj);Z) ®jff„_2(ej;Z)®ff„_2(X;Z) » //„-2GAOZ)
dl dl dl dl

2^o+/ii-<* o z" z|®r

r
©,./f„-3(jt-'(3Q);Z) -v ®^„_3(^;Z)®^„_3(X;Z) ^ i/„_3(jW;Z)

dl dl dl dl

0 0 0 0

®,ff«-4(w-i0Cj);Z) ®;//„-4(^;Z)®//„_4(X;Z) » ff„^(.W;Z)
dl dl dl dl

^Mo+Mi-a ^/xo+/xi-a Q Q

(30)

Proo/ Let F: C" x S -> C be the unfolding associated with / in Section 2. By
Theorem 2.2 there is a monodromy representation

p: tti(S \ A) —> Aut(tf„_2(F"i(Ä) n ß,; Z)).

By Lemma 2.4, if one of the generators of the form S/ of //„_2(X; Z) maps to zero
in //„_2(Fy~i(<5) fl 2?e; Z), then every other generator of the form S/ maps to zero
too. In the proof Lemma 9.2 we have seen that this is the case. By homology Splitting
we conclude that any S/ is zero in 7/„_2(eM; Z).

Now let z g //„_2(eM; Z) be a /7-torsion element with ^ 2. Then /?z 0,

which means that, considered with coefficients in Z2 its class [z] g //„_2(«M; Z2)
must be also zero. This implies that z is homologous to z' JL 2a/ Z/.

Consider the exact sequence

0 ^ © #„_2(A-; z) -> z) -> © i/„-3(9A-; z) -> i/„_3(3; z) -> 0.
i i

The images of the generators of ^_2(eA/;Z) in //„_2(X;Z) have been denoted
before by £/, and the Z/ 's correspond to the generators of the kernel of

©tf„_3(9A-;Z)-> tf„_3(S;Z)
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which is isomorphic to Z®~*. The exactness of the sequence implies that 2Z; can be

expressed as a linear combination of the 's, but as we have seen before, all of them
are zero in //«-2 (eM; Z).

Proposition 9.6. 7/*corank(//(/)(0)) 2, z/7^/7 r 0.

Proo/ Let z g Z) be a /7-torsion element with /? 7^ 2. Then we have the

following equality with coefficients in Z2:

0 [z] e Z/„_2(^;Z2).

As before, this means that homologically, z can be expressed as z JA o;
Assume that all are equal in //„_2(«M; Z). We would have that, integrating against
the form £2 of Lemma 9.3 and Lemma 9.4 (normalizing it if necessary) we get

/" a /" £2 a/
«Zz • «/S; •

which, by the hypothesis of z being of /7-torsion, means that JA o; 0, and, hence,
that [z] 0.

We only need to prove that and Sy represent the same class in //„_2(yVf; Z) for
any /,./.

If the functions
Ai,2,^2,2»g"i> • • • >^"«-3} (31)

form an i.c.i.s at the origin of Milnor number 0 (that is they are smooth and transverse)
then there is only one sphere and the result is proved. Let us assume that they
form an i.c.i.s at the origin of Milnor number at least 1.

Given a point so £ S \ A there is a 1 — 1 correspondence between points of
E[2]^ and spheres as above. To a vanishing cycle {/?;, /?y} (recall Definition 2.6)
corresponds a pair of spheres {S/, Sy}. By Lemmas 2.7 and 2.8 in order to prove that
iS) and Sy represent the same class in //„_2GM; Z) for any Z, 7 it is enough to show
that there exists a vanishing cycle {/?;, 777 } such that and S7 represent the same
class in //„_2(«M; Z). This reduces the proof to the case in which the Milnor number
of the i.c.i.s. defined by (31) at the origin is 1.

The fact that the functions (31) have Milnor number 1 at the origin implies that at

least Tz — 1 of them must be linearly independent variables (after a suitable change of
coordinates). Depending on which one of the functions is not a variable, there are four
possible cases, that will be analysed below. In this analysis we will use repeatedly
the following fundamental Lemma:

Lemma 9.7. 77ze ZzoraoZogy 0/ ^Zze M/Znor ^ZZ?re 0/ 77 gerra / onZy e?e/?ene?s on ^Zze

nnrafeer 0/ Morse po/nfa oppeonng Zn o generZc voZne 0/ s 0/ ^Zze Z?ose spoce 0/
^Zze versoZ de/orran/fon one? on ^Zze fopoZogy o/TZze /rZpZe (£y, Z[l]^, Z[2]^). 77ze
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ZzornoZogy 0/ JK onZy depends on zZze fopoZogy 0/ zZze ZnpZe. 77z£ ZzornoZogy 0/ zZze

M/Znor^Z?r^ Zz^s forsion z/ßmZ 0nZy z/zZze ZzomoZo^y 0/Zz^s tors/<m

/V00/ The first and third Statements of the Lemma are true by homology Splitting.
For the second recall that in Section 5 the Spaces and £^ are decomposed in

three pieces. Each piece of is a fibration of spheres over a piece of £^. The topology
of the pieces of £y, the dimensions of the fibre spheres and the Gysin sequence of
the fibrations only depend on the topology of the triple (£y, £[1]^, £[2]^). Thus
the homology of each of the pieces of is determined. The Mayer-Vietoris exact

sequences needed to recover the homology of in terms of the homology of the

pieces are also determined by the topology of the triple.

We continue with the proof of the proposition. The list of cases is the following:
Case 1. Suppose / (gi,£2) • (§4 fs) * (§2) with gi,g2,g3,g4 independent

variables (note that the role of £3 and £5 can be interchanged, and hence this case
also studies the case where gi, g2, £4, &"5 are independent variables). In this case, we
can take coordinates such that g, x; for Z 1,..., 4, and g-5 0x3 + &xf + 0,
being 0 a sum of higher order terms.

Consider the following family of functions:

It is clear that /1 /. For any £ the Singular set £ is smooth, the set £ [1] is the surface

given by the Suspension of two smooth branches with intersection multiplicity equal
to 2, and the set £[2] is just the origin. After a perturbation the triple (£, £[1], E[2])
becomes a triple which has the topology of

(<tX K(zi(zi + zf — 1) + zf, K(zi,z| - 1,Z3))

independently of Z. Moreover in the generic perturbation there are no Ai points
appearing outside £ for any Z. Therefore, by Lemma 9.7 in order to compute the

homology of the Milnor fibre we may assume Z 0.

Write /o x^X3 +2x1X2X4 + 0X3x| + Z?xfx| (x^ + öx|)x3 + (2xiX2)x4 +
Z?x|x|. Since it is quasi-homogenous, we can take infinite Milnor radius and we are
reduced to compute the homology of:

(Xj + ÖX|)X3 + (2XIX2)X4 + fexfxf 1.

Projecting to (xi,X2), we see that there exists a preimage if and only if (xj +
axf, X1X2, Z>xf) 7^ (0,0,0), that is,everywhereexcept in the point (xi,X2) (0,0).
It can be easily checked that the fibre over each point is contractible, and hence the

Milnor fibre has the homotopy type of \ {0} ^ S^.
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Case 2. Suppose

/ (gi, £2)
/g3 /AA
\^g4 g57 V^2/

with gi, g2> g3 g5 independent variables. We can write

/ (Xi,X2)
/x3 <^y AA

4 *5y y2y '

where g4 axi + /7X2 + X4 + 0, being 0 again a sum of higher order terms. After
an appropriate change of basis in xi and X2 we get

/. _ x x / V3 ÖXi + &X2 + X4 + <A /xA
2-*

\^Xj + 6x2 + X^ + 0 X5 y \X2/

_ _ x y X3 ÖXi + &X2 + X3 + X4 + (A
yöxi H- /7X2 + X3 + X4 + 0 2öxi + 2/7x2 + X3 + X5 y

/xi - X2\

A *2 y

(X2,Xl -X2)
2öXi + 2/7x2 + X3 + X5 0X1 + /7X2 + X3 + X4 + <A

ÖXi + Z7X2 + X3 + X4 + 0 X3

c * i
\Xi - X2y

which falls into the previous case.
C<2S£ 3. Suppose / (gi, g2) * (§4 fs) * (§2) with gi and g2 are not linearly

independent variables. After a change of base, we may assume that / is of the form

/ (*1,4)
/X3 X4\ Al\
\x4 V5J yy

where g has a Taylor development starting by a generic quadric. Like in Case 1, using
Lemma 9.7 and an appropriate family /^, we may reduce the to the case in which

^ Xj + x^ + x| + X4 + x^.
The triple (E, E[1], E[2]) andits deformations (E^, E[1]^, E[2]5) when we move

x in the base S of the unfolding are always contained in the hyperplane xi 0. We
restrict to this hyperplane and forget the variable xi for the rest of the analysis of this
case.

In this hyperplane, the i.c.i.s. E is given the hypersurface g 0, and the Singular
locus of det X3 • X5 — X4 is the X2-axis. When we consider the Milnor fibre (x),
it intersects the X2 axis in two points. These two points correspond to two vanishing
cycles 1S1, $2 in the Milnor fibre 5^ of E[1] L(xi, g, det). Each vanishing cycle
S/ corresponds to a point e E [2]^, which gives a class S; in //3(jM;Z). We
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need to prove that the classes Si and S2 are equal. Running in this particular case
the geometric considerations made for the proof of Equality (25) in the proof of
Lemma 9.1, we observe that if we find a vanishing cycle S3 in ,!F meeting each Si
and $2 transversely at a point, we can use it and the fibrations above it, in order to

express the chain Si — S2 as a boundary.
The critical locus of the germ (g, det): C* -> consists of four linear com-

ponents, whose parametrisations are given by (f, 0,0, 0), (0, 0, £), (0, f, 0, —£) and

(0, 0, L 0) respectively. The corresponding components of the discriminant are para-
metrised as follows: (f, 0), (2/^, /^), (2/^, — /^) and (/^, —/^). Since we are working
on the Milnor fibre of g, we are looking at the preimage of the set {(x, y) £ |

x 1}. In that line, the point (1,0) correspond to the values where we want to
look for the vanishing cycle touching the two critical points, which are (1,0,0, 0) and

(—1,0, 0,0). In order to track how this cycle vanishes, we will consider the interval
(1,6), where 6 ranges from 0 to f. We will consider the expansion of g and det based

at the point (0, 0, -^):

^ xf + a/2x3 + xf + xf + a/2x5 + xf + 1,

11 ^ 2det - + ^(*3 + *5) + *3*5 - *4.

For a fixed 6 £ [0, ^], the fibre over the point (1,6) is given by

-u;^ + V2u; + xf + -z^ + xf 0,
2 ^ 2 *

xf + 3X4 + Z^ 1 — 26

where u; (X3 + X5), z X3 — X5.
The real Solutions of xf + 3xf + z^ 1 — 26 are a Single point if 6 | and

a 2-sphere if 6 £ [0, ^). Fixed X2, X4 and z, there are two possible choices for u;,

except when the discriminant of + \/2u; + xf + |z^ + xf vanishes, that is,

when xf + |z^ + xf 1. But this condition, together with xf + 3xf + z^ 1—26

implies 4xf + z^ —46, which does not have real Solutions if 6 > 0. Since is

simply connected, the only possible double cover over it is two copies of S^. That is,

we have two copies of over each point between (1,0) and (1, f); this two spheres

collapse when we go to (1, ^), and they intersect in two different points at (1,0).
This two points of intersection are precisely (1,0,0,0) and (—1,0, 0,0), which are
the Singular points of det at g 1. Any of this two spheres is a vanishing cycle as

we are looking for.
Case 4. If / is of the form

(X3
X4 o\ /xA

X4 X5 0 • X2

0 0 l) VW
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with the linear part of g6 linearly dependent with xi, X2, X3, X4, X5, the configura-
tions (H, H[l], H[2]) and its deformations (£y, H[l]^, H[2]^) are easily checked to
be suspensions of those in the previous case. Since all the method depends on this

configuration, this case can be treated in the same way as the previous one.

9.3. The case of corank(//(/)(0)) 1. Let us compute the homology of in
the special case in which corank(//(/)(0)) 1. If one recalls the decomposition
of given in Section 5 we observe the equalities i?o det(7/(/i))~*(0) and

X <S. Moreover i?o is smooth and diffeomorphic to the Milnor fibre of the i.c.i.s.
det(//(/o))~* (0), and hence we have the homotopy equivalence

ßo « V^-
Mi

The space <S fibres over i?o with fibre homotopic to §""*, and fibres over i?o

with fibre S"~^. Since i?o is simply connected, both fibrations are orientable. Using
the Gysin sequence of these fibrations we get that Z) ^ Z for — 3, 0,

Z) Z^i for /: « — 1,2, and 0 otherwise. Adding the Lefschetz thimbles
as in Subsection 9.2, we obtain that

f/„_i(.M;Z) ^ Z^i+^o,

=* Z,

#2(^;Z) ^ Z"°,

//o(«M;Z) =* Z,

and the rest of the homology groups are trivial.

10. The homology of the Milnor fibre

Once we have computed the homology of we can use Proposition 3.1 to compute
the homology of the Milnor fibre of /.

Since the tubulär neighbourhood Z is homotopy equivalent to the Milnor fibre of
of the 3-dimensional i.c.i.s. Ho we have

#o(T;Z) ^ z,

#3(7;Z) =* Z^°,

tf/(7-;Z) 0

for any other i.
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Runnmg the Mayer-Vietons exact sequences used m order to compute the higher
homology of we obtam easily that the mclusion of m Z gives clearly an

isomorphism m the when /i > 7 and i <3. Hence we have the vanishmg
(!T, eM; Z) 0 for 1 < / < 4, and the isomorphism //^ + i (Z, ; Z) //* (yVZ; Z)

for i > 4.

We have obtamed:

Theorem 10.1. /xo ßnJ /xi Z?£ M/Znor ni/wZ^rs o/rfie /.c./.s. (gi,..., gw-3)
ßnJ (det(//(/)), gi,..., gw-3). ZiomoZogy q/7Zi£ zs ^/oZZmvmg:

• 7/*corank(//(/)(0) > 3:

7/„_i(F/;Z) ^ ^Mo+2/ii-4a+i+#A^

i/*(F,;Z) 0

1 < Zc < /7 — 2,

//o(F/;Z) =* Z.

• 7/corank(//(/)(0) 2:

i/„_i(F/;Z) ^ z"o+^i-4a+2+#^i^

7/„-2(F/;Z) ^Z,
77*(F/;Z) 0

z/1 < /c < /7 — 3,

i/o(F/;Z) ^ Z.

• 7/*corank(//(/)(0) 1:

f/„_i(F/;Z) ^ Z"°+^i,

Z/„-3(F/;Z) ^Z,
77*(F/;Z) 0

i/Z: /i — 2 anJ 1 < A; < n — 4,

i/o(F/;Z) ^ Z.

• 7/corank(/7(/)(0) 0:

7/„_i(F/;Z) ^Z"<\

tf„_4(F/;Z) ^Z,
77*(F/;Z) 0

z/Z: /i — 2, /i — 3 <xzz<i 1 < Zc < /7 — 4,

7/o(F/;Z) =* Z.
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Prcc/ Our computations workforthecasecorank(//(/)(0)) > 0, if /i > 8. In order
to remove this restrictions we notice that by Thom-Sebastiani theorem the Milnor
fibre of / + z^ with z a new variable is the Suspension of the original Milnor fibre,
and that the case corank(//(/)(0)) 0 was proved by Nemethi in [15].

11. The homotopy type of the Milnor fibre

Once we have computed the homology of the Milnor fibre, we will use it to recover
its homotopy type.

Proposition 11.1. 77zc M/Zncr^zferc F/ zs s/rap/y connected z/ corank(/z;j(0)) 7^ 0.

Proo/ Since the critical set is of dimension 3, the Kato-Matsumoto bound [10] teils
us that the Milnor fibre is (n — 5)-connected. Thus, if n > 6 we have that the Milnor
fibre Fy is simply connected. For the case where n 5, we will need the following
reasoning.

Let Zi,..., Z#^ be representatives of the vanishing cycles of Fy corresponding
to the ^4i points that appear outside X^. in a generic deformation. Let C(Z;) denote
the cone over Z;. Let C(tt) be the cylinder of the mapping

TT : eAf —> X^.

The space C(tt) is simply connected because it admits the simply connected space
as a deformation retract.

By construction we have that

F, U C(tt) U C(Z/)
/ 1

is homotopy equivalent to the contractible space X? (see Section 3). Since each Z; is

homeomorphic to §*, by Seifert-Van Kampen theorem, the gluing of the C(Z;) has

no effect over the fundamental group, since both tti (C(S*)) and tti (§*) are trivial.
The same reasoning teils us that, if tti (jVf) is trivial, so must be tti (F/).

The space JK is obtained from X by gluing the preimage by tt of several Lefschetz
thimbles. These pieces are topologically Z)^x§^ glued along §^x§^. By Seifert-
Van Kampen theorem, if tti (X) is trivial, the aditios of these pieces does not change
the fundamental group. So, to prove that tti (eM) 0 it is enough to prove that

7Ti(X) 0.

We may compute tti (X) using Seifert-Van Kampen with the decomposition

X Su^iU'-u4.
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In Section 5 it is shown that each of the pieces of the above decomposition is, up to
homotopy, a fibration over the corresponding piece of the following decomposition:

n det(//(F,))"i(0) U ^i(?) U U ^(?).
The fibres are always spheres of dimension at least 2. Using this it is easy to see

that the computation of tti (X) by Seifert-Van Kampen mimics the computation of

tti (£y fl det(//(Fy))~i (0)), but this space is simply connected (in fact a bouquet of
2-spheres).

We now have all the necessary ingredients to prove our Bouquet Theorem.

Theorem 11.2. 77z£ o/a smgwZan/y over a 3-JZm^n^ZonßZ Z.c./.s. wzY/z

./rate extended cod/raens/on Zzas Zzoraofo/ry Ö/<z o/sy/zeras- ö/nwm&er
and d/raens/ans as Zn 10.1.

Proo/ From Proposition 11.1 we know that the Milnor fibre is simply connected.

In the case where corank //(/)(0) > 2 (that is, a ^ 0) we have computed the

integer homology, getting that //^_i(Fy; Z)) and //^_2(Fy; Z) are free and finitely
generated and //; (Fy; Z) ^ 0 otherwise. In this Situation, since the Milnor fibre has

the homotopy type of a (n — l)-complex, we can apply [15], 2.2, and [15], 2.3, and

we get the result.

If corank(//(/)(0) 0 the result is covered by Theorem 4.1 of [15].
We are left with the case in which corank(//(/)(0) 1. By Criterion 2.2 in

[15], we only need to represent each generator of the non-zero homology groups by
a chain modelled in a sphere. When corank(//(/)(0) 1, in the decomposition
of given in Section 5 we have that <S coincides with X, that is diffeomorphic
to £o, which are Milnor fibres of the 2-dimensional i.c.i.s. So H F(det(//(/))) and

that the fibration (11) becomes a homotopy S"~^-fibration

<o:5C^5o S«. (32)

The generator of 7/„_3(Fy;Z) is the Gysin lift of the generator of //o(i?;Z),
and hence it is represented by a sphere. By homology Splitting, the generators of

(Fy; Z) come from two different places:

• those Coming from the ^41-singularities of outside £y, which are clearly
represented by spheres (the vanishing cycles of the ^41-singularities).

• Those Coming from //^-i (JM; Z), which come in turn from two different places:

(1) the ones Coming from the image of //„_i(X; Z) in Z), which
are Gysin-liftings over the vanishing cycles of of the fibration (32).

(2) Those Coming from the addition to X of the Spaces (see the decom-

Position formula (23)). Recall that each is the product of a Lefschetz
thimble associated to a vanishing cycle of {det(//(/y) n} H

with the homotopy-sphere S"~*, which is the fibre of the fibration (21).
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In the rest of the proof we will represent the cycles of types (1) and (2) by spheres.
In order to Start we claim that the fibration of (« — 3)-spheres over i?o is trivial.

Let us prove the claim. Since i?o is a bouquet of 2-spheres given by vanishing
cycles it is enough to prove that the fibration, restricted to each of the vanishing
cycles of i?o is trivial. Choose a vanishing cycle Q. Move the parameter s so that s is

very close to a parameter in which D L(det ((/?))) acquires an ^4i singularity to
which the vanishing cycle C/ collapses. In this Situation a local change of coordinates
shows that to prove that the fibration is trivial over Q is equivalent to prove that the
fibration of (« — 3)-spheres associated to the function

/ (Xj + xf + xf)X4 + y^xf
/ =5

is trivial over the vanishing cycle of the restriction of + xf + to L(x4,..., x„).
Proving this is an easy local computation.

Let us represent the generators of type (1). By the claim the group //«-i (X; Z)
is generated by chains of the form

t: x S"~3 -^Xc-Mc F/,

where r (S^ x §"~^) is a Gysin lift of a vanishing cycle C/ of i?o by the fibration (32).
Choose a section s of this fibration such that s(Q) is inside r(S^ x pgr

« 5, the sphere s(S^) is trivial in //2(X; Z), since this group is generated by the
fibre. This implies that it is also zero in #2(F/; Z), and, by Hurewicz's Theorem,
it is also trivial in tt^CF/). For « > 5 the triviality of s(S^) in ^(F*) holds by
the Connectivity of the Milnor fibre. This means that x zh£}) can be killed
by a 3-disc inside F/. By Lemma 4.5 of [15], we have that the homology class

[t(S^ x Q^n be represented by a sphere of dimension (« — 1).

We deal now with cycles of type (2). The space is the product of a Lefschetz
thimble L; associated to a vanishing cycle C/ of with the sphere S"~*, which
is the homotopy-fibre of the fibration (21). Recall that over we have in fact a

fibration of pairs with fibre homotopic to (S"~-*, S"~^) being embedded as the

equator of S"~^. Consider a collar ^ 3L; x [0,1] of 3L; in the 3-cell L/. We
deform continuously the chain given by the embedding of L x ^ ^ q^t
fibrewise is the equator of over any point of the internal boundary of the

collar and so that is collapsed to the north pole of at the external boundary
3L; of the collar. The resulting chain is called

<p: Li x S"-* ->F/.

The mapping

s:3Li^Xc F/
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which assigns to a point of 3L; the north pole of the fibre has been seen before
to be the trivial element in ^(F/). Therefore there exists a 3-disk Z/ bounding 3L;
and an extension

L' -> F;

of The identification L Uaz,; along their common boundary is a 3-sphere. A
representative of our homology class is given by the chain

V: (L; U L') x §"-4 -» f,
3L,

defined by ^ Ilx§»-4 •= ^ and ^ lz/x§»-4 := s' o pr^, where pr^ is the projection of
Z/ x to the first factor. Notice that the source of ^ is a product of spheres, which
we view as a trivial fibration of over L Uaz,, ^nd ^t factorises

through the result of collapsing to a point the fibre over any point of Z/. Again
Lemma 4.5 in [15] represents the homology class by a sphere.

12. Examples

Despite the apparent simplicity of the homotopy type of the Milnor fibre of the class

singularities considered in this paper, it is possible to find among them unexpected
topological behaviours which at the moment have not been observed in singularities
with smaller critical set. As an illustration of this we summarise here the properties of
a family of examples, which fall in the general class studied in this paper, and which
was used in [5] to produce counterexamples to several old equisingularity questions.

Example 12.1. Let </9 a possibly identical to 0 convergent power series in a variable vi.
Define

/„: (C*,0)->C

by

Ate,:= / (>,. »)• J ' (£)•

If (/9 is not identical to 0 the function is of finite codimension with respect to
the ideal Z (jq, J2). The critical set £ L(ji, J2) is 3-dimensional and smooth.

It is easily checked that the Z-unfolding

ord(<p)—2

LV := /p + ^2
/'=()

(33)
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where ord(^) denotes the order of the series </9 in xi, is the versal /-unfolding of in
the sense of [16] and [4]. Hence we can obtain all /-unfoldings of by considering
deformations of the form

ord(<p)—2

<?+ 53
/=ü

Notice that the determinant

det //(/<?) *3(<Kxi) ~~ *3) ~~ *2 • (E, O) —C

has a singularity at the origin of type ^2ord(<p)-i- An easy computation shows that if
(/^)s is a generic deformation of in its versal /-unfolding, the cardinality of the
set X![2]s of points where //(/2) has corank precisely 2 is equal to ord(^).

It is also easy to check that for any s in the base of the versal / unfolding the

critical set of is equal to X! F(yi, 42)- Hence there are no Ai points popping
out of £ in a generic /-unfolding of /^.

Noticing that corank(//(/^))(0) 2 we may apply Theorem 10.1 to show that
the Milnor fibre is 2-connected, with third Betti number equal to 1 and fourth Betti
number equal to

/Xo + 2/xi — 4a -f- 2 4~ 0 4- 2(2 ord((^>) — 1) — 4 ord((^>) 4~ 2 4~ 0 0,

which, surprisingly, is independent of </9. By Theorem 11.2 we conclude that the

Milnor fibre of is homotopy equivalent to a 3-sphere. The remarkable fact is that
the homotopy type of the Milnor fibre is independent on </9 and at the same time the

topology of the pair of germs

((E,0),(E[1]„0)) (34)

depends heavily on the value 5 in the base of the versal unfolding.
In [5] it is shown that in fact the diffeomorphism type of the Milnor fibration

of the germ and the generic Le-numbers are independent of </9. Using that the

topology of the pair (34) depends on 5 it is also proven that the topology of the
abstract link of does depend on </9. This kind of examples and their stabilisations
are at the moment the only known families of examples with constant Le numbers
and constant Milnor fibration and changing topological type. They answer negatively
a question of D. Massey in [12]. In [5] modifications of these examples are also used

to give the first known counterexample of Zariski's Question B of [24]. Also in [5]
these examples were used to construct a family of reduced projective hypersurfaces
with constant homotopy type and changing topological type (therefore most classical

algebro-topological invariants cannot detect the change in topology).



Vol. 88 (2013) Topology of hypersurface singularities with 3-dimensional critical set 303

References

[1] V. I. Arnold, S. M. Gusein-Zade and A. N. Yarchenko, SzngzdarzdLs a/dzjf^rendadfe nza/?s.
Va/. //. Manadranzy and asynz/tfadcs 0/ zntegra/s. Monogr. Math. 83, Birkhäuser, Basel
1988. Zbl 0659.58002 MR 0966191

[2] W. Ebeling, 7Vze manadranzy grazz/zs 0/ zsa/ated szngzdandLs 0/ canz/zd/y znters^cdans.
Lecture Notes in Math. 1293, Springer-Verlag, Berlin, 1987. Zbl 0683.32001 MR 0923114

[3] J. Fernändez de Bobadilla, Approximations of non-isolated singularities of finite codimen-
sion with respect to an isolated complete intersection singularity. 7?zd/. London Madz. Soc.

35 (2003), 812-816. Zbl 1043.32015 MR 2000028

[4] J. Fernändez de Bobadilla, Relative morsification theory. 7a/za/agy 43 (2004), 925-982.
Zbl 1052.32025 MR 2061213

[5] J. Fernändez de Bobadilla, Answers to some equisingularity questions. 7nv<?nt. Madz. 161,

(2005), 657-675. Zbl 1082.32019 MR 2061213

[6] J. Fernändez de Bobadilla, On homotopy types of complements of analytic sets and Milnor
fibres. In 7a/za/agy 0/ a/gedra/c vanLd^s and szngzdarzdes, Contemp. Math. 538, Amer.
Math. Soc., Providence, RI; Real Sociedad Matemätica Espanola, Madrid 2011, 363-367.
Zbl 1214.14005 MR 2777829

[7] T. Gaffney, Invariants of D(g, /?) singularities. InTtea/andcazzz/z/<*xszngzdarzdLs, Contemp.
Math. 459, Amer. Math. Soc., Providence, RI, 2008,13-22. Zbl 1157.32025 MR 2444390

[8] H. Hamm and Le Dung Trang, Local generalisations of Lefschetz-Zariski theorems. L
7tezm> Ang^w. Madz. 389 (1988), 157-189. Zbl 0646.14012 MR 0953670

[9] T. de Jong, Some classes of line singularities. Madz. Z. 198 (1998), 493-517.
Zbl 0628.32028 MR 0950580

[10] M. Kato and Y. Matsumoto, On the Connectivity of the Milnor fiber of a holomorphic
function at a critical point. In Mam/a/ds-7aLya 7973 (Proc. Internat. Conf., Tokyo, 1973),

University of Tokyo Press, Tokyo 1975, 131-136. Zbl 0309.32008 MR 0372880

[11] E. Looijenga, /sa/ated szngzdar /zaznts an can2/?fete znters^cdans. London Math. Soc.
Lecture Note Ser. 77, Cambridge University Press, Cambridge 1984. Zbl 0552.14002
MR 0747303

[12] D. Massey, The Le varieties II. /nv^nt. Ma/7z. 104 (1991), 113-148. Zbl 0727.32015
MR 1094048

[13] J. Milnor, Szngzdar /zazn/x a/canz/zfex /zy/z^rszzz/ac^s. Ann. of Math. Stud. 61, Princeton

University Press, Princeton NJ, 1968. Zbl 0184.48405 MR 0239612

[14] A. Nemethi, The Milnor fiber and the zeta function of the singularities of type / P (d, g).
Canz/zaszdd Madz. 79 (1991), 63-97. Zbl 0724.32020 MR 1112280

[15] A. Nemethi, Hypersurface singularities with 2-dimensional critical locus. L Landan Madz.
Sac. 59 (1999), 922-938. Zbl 0949.32012 MR 1709088

[16] R. Pellikaan, Finite determinacy of functions with non-isolated singularities. Prac. Landan
Madz. Sac. (3) 57 (1988), no. 2, 357-382. Zbl 0621.32019 MR 0950595

[17] M. Shubladze, Isolated hypersurface singularities of the transversal type Ai. Pzd/. G<?ar-

gz'an Acad. Scz. 153, (1996), no. 1, 7-10. Zbl 0881.32016 MR 1651960



304 J. Fernändez de Bobadilla and M. Marco-Buzunäriz CMH

[18] D. Siersma, Isolated line singularities. In Smgw/anY/es, Part 2 (Arcata, Calif., 1981),
Proc. Sympos. Pure Math. 40, Amer. Math. Soc., Providence, RI, 1983, 485-496.
Zbl 0514.32007 MR 0713274

[19] D. Siersma, wzY/z smgw/ar /ocws acwrv^ and transversa/ ty/^ Ai. In
S/ngn/ar/t/es (Warsaw, 1985), Banach Center Publ. 20, PWN, Warsaw, 1988, 397-410.
Zbl 0662.32011 MR 1101856

[20] D. Siersma, The vanishing topology of non isolated singularities. In Aew deve/a/?nzents /n

s/ngn/ar/ty t/zeary (Cambridge, 2000), NATO Sei. Ser. II Math. Phys. Chem. 21, Kluwer
Academic Publishers, Dordrecht 2001, 447-472. Zbl 1011.32021 MR 1849319

[21] D. Siersma, bouquet theorem for the Milnor fibre. /. A/ge/?ra/c Geanz. 4 (1995), 51-66.
Zbl 0817.32015 MR 1299004

[22] M. Tibar, Bouquet decomposition of the Milnor fibre. 7a/?a/agy 35 (1996), no. 1, 227-241.
Zbl 0848.32031 MR 1367282

[23] A. Zaharia, Topological properties of certain singularities with critical locus a 2-di-
mensional complete intersection. 7a/?a/agy A/?/?/. 60 (1994), 153-171. Zbl 0812.32017
MR 1302470

[24] O. Zariski, Open questions in the theory of singularities. Z?n//. Anzer Afe/z. Soc. 77 (1971),
481-489. Zbl 0236.14002 MR 0277533

Received February 19, 2010

Javier Fernändez de Bobadilla, Universidad Autönoma de Madrid, Instituto de Ciencias
Matemäticas, Campus Cantoblanco, UAM, c/ Nicolas Cabrera, 13-15, Spain

E-mail: javierbobadilla73 @ gmail.com

Miguel Marco-Buzunäriz, Universidad Autönoma de Madrid, Instituto de Ciencias
Matemäticas, Campus Cantoblanco, UAM, c/ Nicoläs Cabrera, 13-15, Spain

E-mail: mmarco@unizar.es


	Topology of hypersurface singularities with 3-dimensonial critical set

