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Topology of hypersurface singularities with 3-dimensional
critical set

Javier Fernidndez de Bobadilla and Miguel Marco-Buzundriz*

Abstract. In this paper, we prove that the Milnor fibre of a singularity over an isolated complete
intersection singularity (i.c.i.s.) of dimension 3 has the homotopy type of a bouquet of spheres,
provided that the function that defines the singularity has finite extended codimension with
respect to the ideal that defines the i.c.i.s.

Mathematics Subject Classification (2010). 14J17, 32525.

Keywords. Non-isolated singularities, Milnor fibration, morsification, bouquet theorems, de-
formations.

1. Introduction

In [13] Milnor introduced the Milnor fibration for any holomorphic germ
f:(C", 0)—C

and proved that the Milnor fibre is always a CW-complex of dimension at most (7 —1).
In the case in which f has an isolated singularity at the origin he also proved that the
Milnor fibre is homotopy equivalent to a bouquet of (7 — 1)-spheres. The number
of spheres is equal to the Milnor number z£, which can be easily computed from the
equation. If f has non-isolated singularities at the origin the situation is much more
complicated. Up to now, the only general result is the Kato—Matsumoto bound [10]
which asserts that the Milnor fibre is (s — 2)-connected, where s is the codimension of
the singular locus in C”. The homotopy type of the Milnor fibre of a general function
germ can be very complicated. In fact, by arecent result of the first author [6], for any
local analytic setin C" there is a function whose Milnor fibre is homotopy equivalent
to the complement of the set in a sufficiently small ball. The class of such spaces
is very rich (contains for example the class of complements of hyperplane and line
arrangements) and there is a whole theory dedicated to its study. Hence we may not
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expect to find a simple description of the homotopy type of the Milnor fibre of a
general function germ.

It is very interesting to find classes of non-isolated hypersurface singularities for
which the homotopy type of the Milnor fibre admits an understandable description
from the equation. This paper contributes to a program in this direction. Let [ C
O¢n, o be anideal defining a 3-dimensional i.c.i.s. 2 and let f be a function of finite
extended codimension with respect to / (see Section 2 for a definition). Our main
results are the following:

(1) We prove that the Milnor fibre of f is homotopic to a bouquet of spheres of
different dimensions (see Theorem 11.2).

(2) We also compute the number of spheres appearing in terms of the equation (see
Theorem 10.1).

Similar results for the cases in which g is of dimension 1 and 2 were produced by
the work of Siersma (see [18] and [19]), Zaharia [23] and Némethi [15]. If ¥ is a
hypersurface the result was proved by Shubladze [17] and Némethi [14].

Actually we formulate the following:

Conjecture. The Milnor fibre of a function of finite extended codimension with re-
spect to an i.c.i.s. has the homotopy type of a bouquet of spheres.

Functions of finite extended codimension with respect to an i.c.i.s. are a particular
case of /-isolated singularities as defined and studied in [4]. There it was given a
bouquet theorem decomposing homotopically the Milnor fibre in a bouquet of several
(n — 1)-spheres and an unknown space ([4], Theorem 9.3). The results of this paper
identify the homotopy type of that space. It would be interesting to generalise this
paper to other /-isolated singularities.

Other bouquet theorems in the context of singular ambient spaces were proved by
Siersma [21] and Tibar [22].

Let us end with a description of some applications of this kind of results. The
class of singularities studied in this paper shows very surprising phenomena from
the equisingularity viewpoint. It has been used in [4] in order to disprove several
old equisingularity questions. At the moment of writing the paper [4] some of the
Betti number formula contained in this paper were known to the first author. It was
this knowledge which lead him to guess the counterexamples contained in [4] (see
Section 12 for more details). We hope that a systematic solution to our conjecture
would lead to interesting examples showing other topological phenomena in non-
isolated singularities yet unknown to us.

The structure of this paper is inspired in the classical Picard—Lefschetz theory of
isolated singularities and Sierma’s generalisation for non-isolated singularities. In
this theory, a function 1s perturbed to split a singular point into several Morse-type
singularities (this process is usually referred to as Morsification). Thenitis shown that
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the homology of the Milnor fibre of the original function can be recovered from the
Milnor fibres of each Morse-type singularity. Finally, these homologies are computed
by a local study of the Morse-type singularities.

In Section 2 we use the results of [3] to prove that in our case we can do a process
analogous to the Morsification, butinstead of obtaining only Morse-type singularities,
we will also obtain a non-isolated singularity over the Milnor fibre of the i.c.i.s. .
More precisely, we define a certain unfolding

F:C"x B—C

of the function f inside the ideal / and a positive codimensional analytic subset
A C B such that for any b € B \ A the function fp := F(., b) has as critical set
the union of the Milnor fibre of the i.c.i.s. 2 and finitely many Morse points. The
non-isolated part of the critical set is stratified (in three pieces) according with the
analytic type of the local singularity at each point. In this section we prove also some
properties of the monodromy of this stratification around A which will be important
for the rest of the paper.

In Section 3 we show that, as in the isolated case, the homology of the original
Milnor fibre can be recovered from the pieces of the Milnor fibres contained in small
neighbourhoods of the singularities obtained after the deformation. The procedure
follows an idea of Siersma and is called homology splitting.

In Section 4 we study the topology of the local Milnor fibres of the singularity
types that can appear in the generic deformation of f within the ideal 7.

Having done that, the hardest part of the paper is to study the part of the Milnor
fibre contained in a tubular neighbourhood of the non-isolated singularity obtained
after the deformation. Letus call this part of the Milnor fibre M. This study is carried,
roughly speaking decomposing M in pieces, studying their homology separately and
gluing using Mayer—Vietoris sequences. It is hard to study the integral homology of
the pieces directly, since non-orientable sphere-fibrations appear. This forces us to
study first homology with coefficients in Z, first, and lift to integral coefficients later.

The decomposition of M is based in the decomposition of the Milnor fibre of X
(the non-isolated part of the critical set of the deformation f; of f) by analytic type
of the local singularity. In Section 5 these decompositions are described, and it is
shown that each piece of M fibers naturally over the corresponding stratum of the
Milnor fibre of % with fibre a homotopy sphere.

In Section 6 we study the topology of a particular stratum of the stratification of
the Milnor fibre of 2. The study 1s somewhat involved, but it is a key step for the
computation of the homology of the Milnor fibre of f.

In Sections 7 we study the homology of the part of the Milnor fibre corresponding
to the stratum studied in the previous section. In Section 8 we use Mayer—Vietoris
for a first time in order to study the homology of the union of two of the three pieces

of M.
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In Section 9 we complete the computation of the integral homology of M. The
first idea to run a Mayer—Vietoris sequence that glues the homology computed in
the previous section with the homology of the remaining piece M. However, as this
seems complicated, we prove a key reduction, which allows to glue, instead of the
remaining piece of M, a collection of products of topological balls with spheres. This
allows to determine the homology of M up to torsion and up to a direct summand
isomorphic to Z in H,_,(M, 7). We prove, using a differential form, that the direct
summand appears or not depending on the value of a certain invariant of f. Finally
we prove that the homology is torsion-free.

We end the paper computing in Sections 10 and 11 the homology and the homotopy
type of the Milnor fibre of f. In particular we prove our conjecture for the case of
3-dimensional critical set.

The last section describes a distinguished family of functions belonging to the
class studied in this paper which already had striking applications in topological
equisingularity.

1.1. Terminology. If X is a subspace of a topological space ¥ we denote by X the
interior points of X, and by d.X the boundary points of X in ¥. Given two topological
spaces X any Y we denote that they have the same homotopy type by X ~ Y. We
will denote by Djy the closed disc of radius § in the complex plane and by B, the
closed ball of radius € in a complex affine space. The centers of the discs and balls
will be clear from the context unless they are explicitly mentioned in the text or in
the notation (by B(x,€)). Denote by S* a sphere of dimension k. The zero set of
an ideal I will be denoted by V({ ), and V{ f1, ..., f;) will denote the zero set of the
ideal generated by the polynomials fi, ..., f;. The origin of C* will be denoted by
(2, being the dimension i clear from the context. Given any finite set K denote by
Aut(K) its permutation group.

2. Unfoldings

In this section we will see how we can deform our function f, with critical locus Xy,
into another one that has as singular locus the Milnor fibre ¥ of X, plus a certain
number of isolated Morse points. We will also define a natural decomposition of X
that will be useful later.

Let 7 :=(g1.....8n—3) C Ocn o be an ideal defining a 3-dimensional i.c.i.s.
2g in (C”", O). Denote by Oy , the germs of vector fields tangent to the i.c.i.s., that
is, the germs X of vector fields such that X(/) is included in /. A function-germ
f:(C", 0) — Cissingular at X if and only if it belongs to /2. Asin [16] we define
the extended codimension of f with respect to I as

Cle -= dimC (IZ/G)I,e(f))a



Vol. 88 (2013)  Topology of hypersurface singularities with 3-dimensional critical set 257

where ©7 . (f) is the ideal whose elements are X(f) for X € ©; .. From the de-
formation viewpoint, functions with finite extended codimension play the same role
in the space of functions singular in %, than isolated singularities in the space of
all function-germs. A geometric characterisation of germs of finite extended codi-
mension was given in [23] (see [4] for another proof and generalisations): these are
germs in 72 which outside the origin only have either isolated Ay singularitics or
singularities of type D(3, p), with p € {0, 1, 2}.
The singularity D(k, p) has the following normal form (see [16]):

5
Z Xi,j¥iyj + Z yi =0,
1=<izj=p pHl<i<n—k
where {x; j }1<i<j<p U{¥i}1<i<n—k 15 an independent system of linear forms in C”.

Given a germ f € I? we can express it as a matrix product

f=A(g1.. . gn—3)hi j)(g1.. ..., Gn—3)"

with (4; ;) a symmetric matrix of holomorphic germs of size 7 — 3. An easy compu-
tation shows that the restriction (/; )|z, only depends on f.
Let
Gi,....Gu—3: C"x B — C#3

be the semiuniversal unfolding of the i.c.i.s. (g1...., gn—3). Its base B is a germ of
complex manifold [11]. Given any 5 € B denote by

(G1ph....Gyezp): C" = C"73

the mapping corresponding to the parameter value 5. In the space SM(n — 3) of
symmetric matrices with complex entries we consider the stratification
n—3

SM(n —3) = SM(n — 3,1).
i=0

where SM(n—3, i) is the set of matrices of corank equal to i . Notice that SM(n — 3,7)
consists of the set of matrices defined by the vanishing of the minors of size n —2 —1.
It is easy to check that SM(n — 3, /) is of codimension i (i + 1)/2 in SM(n — 3). We
consider the unfolding

F:C"xBxSM(n—-3)—C
of the function f defined by

F(x1,... %0, 0,(ci,j)) = (G1ps oo s Gnosp)hij + i, i) (Grps- oy Gnesp).
(1)
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Notation 2.1. Denote by S = B x SM(n — 3) the base of the unfolding. Consider
X i=WV(G1,...,Gu—3) C C" xS, Givenany s = (b, (c; ;) € S we denote by
Jfs: €" — C the function corresponding to the parameter value s, by 3, the locus
V(Gip.....Gy_3p) and by

H(F): ¥ — SM(n —3)
the mapping defined by H(F)(x, b, (c; ;) := (h; j(x) + ¢; ;). Consider
H(fs) = H(F)lz,.

Define X[i] := H(F)"Y(SM(n — 3,i)) and X[i]s := H(f5)" Y (SM(n — 3,1)).
Figure 1 shows a schematic view of these sets.

2

Figure 1. The deformation of the i.c.i.s. and the stratification.

The function fy coincides with f', where 0 € § is the origin of the base of the
unfolding.
Let € and § be radii for a Milnor fibration of f, that is radii such that

(1) the central fibre f~1(0) meets 3B, transversely in the stratified sense for any
€ <e,

(2) forany 1 € Dg \ {0}, the fibre £~!(¢) meets 3B, transversely,
(3) the only critical value of f|p, is 0.
From [3] and [4] we obtain:

Theorem 2.2. There exists a proper closed analytic subset A of S, and a ball B,
centred at 0 € S such that for any s € By \ A we have
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(1) foranyt € Dgtheintersection of fS_l (1) with 0B, istransversal (inthe stratified
sense if t = 0).

(2) the critical set of the function fg|p. is the union of 3 N B, with a finite number
of Morse type singularities, whose critical values are pairwise different and

different from 0.
(3) the set X3 N B is smooth (a Milnor fibre of the i.c.i.s. (Zg, O)) and the mapping

H(fs)|ESﬁBE : 25 N Be — SM(n — 3) (2)

is transversal to the stratification of SM(n — 3) by corank. In particular X[i|;
is a manifold of codimension i (i + 1)/2 in the 3-dimensional complex manifold
35 N Be. Therefore the critical points of fs in Xg are of type D(3,0), D(3,1)
or D(3,2).

Denote by € and D the critical set and the discriminant of the mapping
(F,pry): C" x By — C x By, (3)
where pry denotes the projection of C" x By, to the second factor. Then the restriction
(F.pry): (Be x By) N (F,pry) "(Ds x BH\D) = (D5 x B))\ D
is a locally trivial fibration with fibre diffeomorphic to the Milnor fibre of f.

The set A is the subset of § consisting of points s where the critical set of f; is
not as in (2).

Lemma 2.3. The set %[l]g = V(det(H(f)),g1,-- ., gn—3) is @ 2-dimensionali.c.i.s.

Proof. For any s € S the set of points of 2; N Be where H{( f5) has corank at least
1 coincides with V(det(H ( f;)). Denote by ¢z, (( fs)x) the extended codimension
of the germ f; at x with respect to the ideal 7, defining the germ (X, x). In [3] it is
shown that the set of points such that H( f;) is not transversal to the stratification of
SM(n — 3) by corank coincides precisely with the set of points at which ¢z, o(( f5)x)
is non-zero.

Choose representatives X7y, ..., X of the vector fields generating ®; , defined
on an open neighbourhood W of the origin in C”. Then ¢ .( f) is the dimension, as
a complex vector space, of the stalk of the coherent sheaf of ideals in @¢r generated
by X1(f).....Xr(f). Since this dimension is finite the origin is an isolated point
in the support of the coherent sheaf of ideals. Consequently, the only point at which
H(f) is not transversal to the corank stratification is the origin if we take € small
enough.

Thus at any x € X \ {0} the germ f is of type D(3,0) if det(H(f)(x) # O
and of type D(3, 1) if det(H ( f )(x) = 0. Inspecting the normal form of the D(3,1)
singularity we find that V{(det(H( f)). g1.. .., gn—3) has an isolated singularity at
the origin. (]
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Now we study the deformation m = V{det(H(fs)).G1,5,...,Gno35) N Be
as we move in S. Choose s € § \ A. Since I ( f;) is transversal to the stratification
by corank there is a finite set of points X [2]; in X[1]; of type D(3,2) and the rest of
the points are of type D(3, 1). The normal form of the D(3, 2) singularity gives that
2|1]s has an A;-type singularity at any point in 3[2];. Let a denote the cardinality
of 3;[2]. In the next Lemma we show that a is independent on s.

Lemma 2.4. The restriction
pry: (5, S 2D Npry (S 4 A) - S\ A

is a topological locally trivial fibration of triples such that 3 is the Milnor fibre
of the i.c.i.s. Xy, the surface E|l]s is a deformation of X|l]o having precisely a
singularities of Ay-type in X|2|s. Moreover the restriction

pro: TRl Npry (S A) — S\ A 4)
is a covering and T[2) N pr3 (S \ A) is connected.

Proof. The topological triviality statements are easy to check from the normal forms
of the D(3, p) singularities.

The space X is smooth since it is the product of the total space V of the versal de-
formation of the i.c.i.s. V(g1, ..., gn—3) (which is smooth) with the space SM({n —3).
For any matrix M € SM(n — 3) the fibre H(F)~'(M) is diffeomorphic to 'V, being
the diffeomorphism ¢ps 1 V — H(F) (M) defined by

dm(x) == (x, M — (h ;(x)).

This showsthat H(F): ¥ — SM(n—3)isatrivial fibration. The set ¥|2| is connected
since it is a Zariski dense open subset in the analytic manifold 7 (F)~1(SM(n—3,2)),
which s diffeomorphic to the product VxSM(n—3, 2), being SM(n—3, 2) irreducible.

O

We summarise for further reference the main invariants introduced for the func-
tion f.

Definition 2.5. Define ;44 and 41 to be the Milnor numbers at the origin of thei.c.i.s.
2o and 3[1]o. For s € § \ A close to the origin we define a to be the cardinality of
2|2]s and # A4, to be the number of Morse points of f;.

2.1. The corank = 2 case. We will need an slightly larger unfolding of f in the
particular case in which corank(H ( f )(0)) is precisely equal to 2. In that case, after
possibly changing the generators of the i.c.i.s we can assume that f is of the form

n—3

f=(grg)hi)gg) + ) g (5)

i=3
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When ¢; . ( f) is finite, the mapping
H(f): ¥ — SM(2)

is transverse to the corank stratification outside the origin. Hence the origin is an iso-
lated point of the locus where corank( H( f)) is at least 2. Since in this case the corank
2 locus is defined by the vanishing of the » functions Ay1,1, 21,2, k22,81, - - .. n—3.
we have that X[2] is a O-dimensional i.c.i.s. concentrated at the origin. Let a be its
length as 0-dimensional scheme. Let

Rl =V(Hy 1, Hip, Ha2,G1,...,Gp3) CC"x § —- §

be the versal deformation of the i.ci.s. V{(hy1,h12,h22.81.....8n—3). Any fibre
2[2]s is a O-dimensional scheme of length a. The discriminant A C § is the set of
parameters where X[2]; is non-reduced. By versality the discriminant is irreducible
and reduced (Corollary 4.11 and Proposition 6.11 of [11]), and its smooth locus A
is the set of parameters such that X[2]; has exactly a fat point of length 2 and is
otherwise reduced (Lemma 4.9 of [11]).

Definition 2.6. Fix a base point sy € S \ A. Any path y: [0,1] — S such that
v(0) = 50, ¥(]0, 1)) is included in S\ A and y(1) is a smooth point of A induces a
deformation {X[2]; },¢[0,1] along y such that precisely two points { pg, p1} in X[2]g =
2[2]s, collapse to the same point in X[2];. The vanishing cycle in X[2];, associated
to y is, by definition, the pair { py, p1}.

Lemma 2.7. All the points of Z[2|s, are at the same equivalence class by the equiv-
alence relation generated by the vanishing cycles.

Proof. The base § of the versal unfolding
Y X2l = S

of the 0-dimensional i.c.i.s. 2[2]o can be identified with a neighbourhood U of the
origin in C¥ . We choose a straight line / through s¢ such that / meets A transversely
at smooth points. The neighbourhood and the line can be chosen so that ¥ ~1(/ N /)
is the Milnor fibre of a 1-dimensional i.c.i.s. Therefore w~1(! N U/) is connected
([11], Chapter 5). Choose a system of paths {y; }f‘i | Joining so with each one of the
points of / N A, without self intersections and not intersecting pairwise except at sg.
Since the space ¥~ 1(I NTU) is homotopy equivalent to the result of attaching a 1-cell
at each one of the vanishing cycles associated to the paths {%‘},M: ;» the connectivity
of ¥~1(I N U) proves the lemma. O

Consider Sym?(X[2],,) the second symmetric product of %[2],,; and denote by O
its diagonal. Then Sym?(X[2] so) \ D is the set of subsets of cardinality precisely 2.
The monodromy action

p: (S \ A, s9) = Aut(Z[2],)
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induces a monodromy action

p2: TS\ A, s0) — Aut(Sym2(2[2]so) \ D,
The set of vanishing cycles is a subset of Sym?(X[2] s0) \ O.

Lemma 2.8. The monodromy action p, preserves the set of vanishing cycles and
acts transitively on it. In other words, the set of vanishing cycles is an orbit by the
monodromy action.

Proof. A vanishing cycle induced by a path y is transformed by an element [«] €
71(S \ A, sg) to the vanishing cycles induced by the concatenation path o . . The
transitivity is a classical consequence of the irreducibility of the discriminant ([1],
Chapter 3). (]

We enlarge the unfolding of f defined in (1) by considering the following one
instead of it:

F:C"xS —=C

given by
n—3
F :=(G1,G2)(H; ;)(G1,G2) + ZGf (6)
=3
The statements of Theorem 2.2 and Lemma 2.3 clearly remain true for this un-
folding.

3. Homology splitting

In this section we will follow a general method of Siersma [18], [19], [20] to see that
the Milnor fibre of the previous unfolding has the same homology than the Milnor fibre
of the original function f. We will also see that the computation of this homology
can be reduced to the computation of the homology of the part of the Milnor fibre
that lies in a small neighbourhood of 2.

We have chosen radii € and § for a Milnor fibration of f. In that situation the total
space Xo := B N (D) of the representative

f:X0—>(C

is contractible.
Consider the versal unfolding F: C" x § — C defined in the previous section.
Choose a direction in S such that the line / through the origin O of § in this direction
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has O as an isolated point of A. Let D¢ be a disc in / around O only meeting A in
(. Consider the associated 1-parameter unfolding

F:(C”ng—MC.

Denote by f; the function fs(x) := F(x,s). By Ehresmann fibration theorem
X5 = B N f7Y(Dy) is diffeomorphic to X, and hence it is contractible. If s # 0
the function

fo: Xy — Ds

is a locally trivial fibration over Dy \ {0,vy,...,v,}, where {0, vy, ..., v, } are the
critical values of f;. Each v; # 01is the image of precisely one singular point of type
Ay of fs. The fibre of f; over any point w not in {0, vy, ..., v,} is diffeomorphic
to the Milnor fibre of f. Therefore we are interested in the reduced homology
H, (7' (w); Z), whichisisomorphicto Hy 11 (X5, £, (w); Z) by the contractibility
of X,.

Consider Dy, Dy, ..., D, a system of disjoint small disks inside Dy centered in
0, vy, ... v, respectively. Choose points #; € dD;, and disjoint paths «; joining fg
with ;. We can take w = #y. Define

Itis clear that G is a deformation retract of Dg, and since f; is alocally trivial fibration
outside G, we have that

He(Xs, f7Nw) = He (fTHG), 71 w)).

By excision,

¥
e (f7HG), £ w) = @ He(f7 (Do), £ (1))
i=0
It is classical from Picard—Lefschetz theory that for any i > 0 we have

H,(f7UD). £ ) =7

and
Hk(fs_l(Di)a fs_l(ti)) =0
ifk #£ n.

Now let T" be a tubular neighbourhood of 2;. We can take for example T :=
(Gigr....Gp_zs) Y(B) for B a small ball around the origin in C"~3. Taking T
small enough and Dy small in comparison with 7 we can assume that f,~!(¢) meets
the boundary 97T transversely for any 1 € Dy. We define

M= ) NT. (7)
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By this tranversality, and because of the fact that f; has no critical points in
f7Y(Dy) \ T, the part of the space f,"1(Dy) that lives outside T can be retracted

s

to f,7!(#p). This means that the pair ( £,71(Dy), £, (ty)) is homotopy equivalent to
the pair ( £, 1(t0) U T, £ 1(10)). By excision we have

Hi (f;7 (Do), £ (1)) = Hi(T, £ (t0) N T) = Hy(T. M).

We summarise what we have obtained:

Proposition 3.1. Denote the Milnor fibre of | by ¥y. Let r be the number of Ay
points that f5 has in B, for s € S \ A close to the origin of §. Then

Hyoy (R 2) 2 Hy (T, M: ) & 7,
Hy(Fy; 2) = Hy (T, M Z)
forl <k < n—2. By connectivity

Ho(Fs:Z) = Z.

By construction, 7" is homotopic to g, which is the Milnor fibre of ¥,. We will
spend a large part of this paper computing the homology of M.

4. The Milnor fibre of the D(k, p) singularity

We dedicate this section to study the local topology of a certain type of singular-
ities that will appear later. We collect the following proposition, which follows
from [5] and [7]. We reprove it here since the proof is crucial for the understanding
of this paper.

Proposition 4.1. The Milnor fibre of the D(k, p) singularity in C" is homotopy-
equivalent to the sphere S"TP—k—1,

Proof. Since the singularity D(k, p) is quasi-homogeneous its Milnor fibre is diffeo-
morphic to the global hypersurface X < C” defined by

2
ST oxgyyi+ Y. yi=L
1<i<j<p pHl<i<n—k
where {x; j }1<i<j<p U{¥i}1<i<n—k 15 an independent system of linear forms in C”.

2
Hence X is homotopic to the (n — p—k)-suspension of the hypersurface ¥ € C e

defined by
Y wmgyam=1L

l<i<j<p
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The projection

o: ¥ = C*\ {0}
definedby o (x; ;, y;) := y;isalocally trivial fibration with fibre an affine hyperplane

24
in C*27, and hence contractible. We conclude that Y is homotopy equivalent to

the unit sphere S2¥~1 in C*. Consequently X is homotopic to the sphere §"tk—r=1,
L

Lemma 4.2. Given the D(1, 1) singularity
fr=x1y; +y5+ 4y, (C",0)>C

in C" i1s resiriction

fla,: Hi1 = C

to the hyperplane Hy defined by x1 = 1 is a Morse singularity at the origin.
The pair of Milnor fibres ( f ~1(t), (f |g,)~1(¢)) is homotopy equivalent to the pair
(S"=1, §"72) with S"~2 embedded in "~ as the equator.

Proof. By suspension it is enough to consider 7 = 2, and in this case it is obvious,
since the Milnor fibre of x; y2 projects to the double cover of C\{ O} by the projection
pr(x, y) = x and the Milnor fibre of f|g, is a fibre of this projection. 0

It is necessary for the rest of the paper to collect further geometric facts about the
Milnor fibration of the D(3, 2) singularity and its interaction with the Milnor fibration
of the transversal singularities through points of its critical set which are close to the
origin. Such transversal singularities are of type D(1, 1) at the points different from
the origin where det(#7( /') vanishes and of Morse type at the generic points. We do
this in the what follows.

Consider the D(3,2) singularity

fri=x1yt + 2001y + X3y +y5 + -+ yi_5: (C",0) > C

in C".

Recall from Notation 2.1 the definition of X[i|. As here we are considering no
unfolding we have the equality ¥ = 3. The restriction of f to any (n — 3)-
dimensional transversal to X[0] is a Morse type singularity in C*~3. The restriction
of f toany (n — 2)-dimensional transversal to %[1] is a D(1, 1) singularity in C*~2,

The stratum 3[1] is equal to V(det(H(f)) \ {0} and hence is homotopic to its
link Le := Z[1] N S¢ at the origin. Since the singularity is homogeneous we can
take € = 1 and denote L, by L. This link is diffeomorphic to RIP3, since the surface
2[1] is defined by det(H{ f))(x1., x2, x3) = X1X3 — xg = 0in ¥ = C3. Hence its
fundamental group is isomorphic to Z5.
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Let

K: N(C*"2) = %
and
k1: N(C", Z[1]) — 3[1]

be the holomorphic normal bundles of ¥ and X[1] in C” respectively. We have the
inclusion of restrictions

2 N(CT, B) [y — N(C7 Z[L)), (8)

compatible with the bundle maps.

Observe that, since in this case ¥ is a 3-dimensional coordinate subspace, the first
bundle is trivial with fibre C"~2. Notice that, as L is compact, there is a positive p
such that the p-neighbourhood of the zero section of the restriction

e NC Sz — L

embeds in C” holomorphically on each fibre. We denote by N°(C”", Z[1])|r this
p-neighbourhood, and by

kP NP(C™, S[1])]L — L

its embedding; its fibre is a complex (n — 2)-dimensional ball.
For any y € L the restriction of f to the fibre of the embedded normal bundle

flnen s, (NP(CP E[L])y, y) = C

is a D(1, 1) singularity with critical set the line Crit(y) := N°(C", Z[1]), N Z.

Since the restriction of the function det(H( f)) to Crit(y) is non-singular at the
point y forany y € L, for u small enough the intersection Crit(y) Ndet(H ( £))~! ()
is a unique point for any y € L, and hence

By = det(H() ') n TN NAC", S

defines a cross-section of the embedded normal bundle, and the restriction

Pl .=
Kilz,: By —> L

[x]

is a diffeomorphism.
Let
kK NP(C", )|z, = Bu

be a holomorphic embedding of a p-neighbourhood of the zero section of the re-
striction to E,, of the normal bundle of X% in C”. It is a trivial bundle with fibre a
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complex (n — 3)-dimensional ball. For any x € E,, the restriction of f to the fibre
(NP(C", 2|z, )x is a Morse type singularity.

If p and u are chosen small enough we may assume that, for any x € &,,, we have
an inclusion of fibres

(V™. D)z,)x C (NEC EMDL)ee e, o

Now we study the restrictions of the bundle maps «” and &7 to a fibre of f~!(§)
for small §. Define

@ = &{ | p mavecn s, | f O NNAC B[] — L,

B = «{lz, okl @)nnren e, | ST G NNP(C", D)z, — L.
We have

Lemma 4.3. For § small enough the mapping
(@.8): (SO NNAC" ZDIL, T NNAC", D)z, — L

is a locally trivial fibration of pairs with fibre homotopic to (S"3, §"~4), with §"—*
embedded in S"3 as an equator and whose monodromy is isotopic to the identity in
S™4 and it is the reflection over the equator in 8" 3.

Proof. The statement of the homotopy type of the fibre is just Lemma 4.2.
The circle y(9) := (0,0, e2™%) parametrises a generator of the fundamental
group of L. The normal bundle N°(C", 3[1])|r. can be chosen so that for any & the

line Crit(y(8)) is equal to V(x,, x3 — g2mit V1, ..., ¥n—3) and the cross-section Z,

is defined by B, (y(0)) = (we=271 0,270 ¢, . 0).
Forany 8 € [0, 2x] the pair of fibres (« ™! (y(8)), B~ (¥(#))) is homotopic to the
pair of varieties (Xy, ¥p) defined by
Xg := V(xg, 1y + 097 + y7 + -+ y7_3),
The family of diffeomorphism
pg: C" = C"
defined by

__ (6—2:1'1'9 ™

iGyZ,yS,---:yn—S)

induces a diffeomorphism from (X, ¥y) to (X, Yp) for any 8 € |0, 27]. Therefore
a geometric monodromy 1s given by

¢1: (Xo, Yo) = (X1. Y1) = (X0, Yo).

The pair (Xy, Yp) is homotopic to (§773, §"™%) and it is easy to check that ¢
preserves the orientation in S”~* and reverses it in §773. 0

. Tif -
Yo(Xx1, X2, X3, Y1, ..., Yn—3) : X1,X2,x3,€"7' " y1,€
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5. A decomposition of M

In this section we will define a decomposition of M in several pieces. This decom-
position is defined after the stratification of 2 defined in Section 2. The topology of
each piece, and the gluing of them will be studied in the following sections.

In Proposition 3.1 it has become clear that in order to understand the homology
of the Milnor fibre of f we need to compute the homology of the intersection M =
f o) N T, with s € S\ A small enough and 7y # 0 small enough. The tubular

§
neighbourhood 7 is the total space of a trivial fibration

7T — 3, 9)

with fibre an (n — 3)-complex dimensional ball. If B is a subspace of 3; we denote
7~ 1(B) by Ts.

By Theorem 2.2, for a generic parameter s close to the origin of the base § of
the unfolding of f, the maximal corank of H{( f;)(x) is two for any x € ;. Recall
that the set of points where the corank is at least 1 is the surface Z[1]; defined by
the vanishing of det(H( f;)). The singular points Z[2]; = {p1...., pa} of I[1];
are of Morse type and coincide precisely with the points where the corank of H( f5)
equals 2.

For each point p; let B;({) be aball of radius ¢ around p; in C” such that f;|p, )
is biholomorphic to the restriction of the singularity D(3, 2) to the unit ball of C”.
Taking ¢ small enough we can assume that the balls are mutually disjoint and that the
intersections A;({) := B;({) N X, are balls in ¥ centered in each of the points p;.
Taking T, {, s, and £y small enough the space

A= £ ) N7 HAD) = M N7 (4:(0) (10)

is diffeomorphic to the Milnor fibre of f; at p; for any i, and hence homotopy
equivalent to S"~2 (see Lemma 4.1).
Now we choose the following parameters:

* Wetake { small enough so that 94, (") is transverse to 3[1]; forany 0 < ' < L.

* We choose {y < { sufficiently close to ¢ so that the inclusion
M N7 (A() C A

is a homotopy equivalence for any &y < ¢’ < .
» Choose § > 0small enough so that det(H ( f;)) ™ (1) meets 34; (') transversely
foranyu € Dgand §o < ¢ < (.

Consider A;({o) the interior of 4; (¢) and define

B = det(H ()" (De) \ ( LaJ Ai (o)),

i=1
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But= der(HO)™ 0 (U Aitto).

A schematic picture of this decomposition can be seen in Figure 2.

A; (0)

Figure 2. The decomposition of 3.

The space B is a tubular neighbourhood of By in = \ (| A (¢o)). The mapping
det(H(f5)): B — D¢

is a (rivial fibration. Therefore there is a product structure B = By X D¢ and the
projection
p: B — By

to the first factor induces a diffeomorphism
oy By — Bo

for any u.
The restriction
pOT['TB: Tg — By
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is a locally trivial fibration with fibre a polycylinder of complex dimension n — 2.
Define

B:=MNTg,

the piece of M falling over B. Taking T, & and /, sufficiently small we have that the
restriction

porm|g: B — By (11)

is a locally trivial fibration with fibre diffeomorphic to the Milnor fibre of the D(1, 1)
in €1, and hence homotopy equivalent to S"~ (see Lemma 4.3).
For any &’ > 0 we define

Ug = Z; \ det(H(f) ™ (Dgr),
Ugr = E_I(Ugf) N M,

the complement of a tube around 3[l]; in 3, and the piece of M lying over it. For
T and #y small enough, the restriction

TL’|‘u§,Z ‘uEf — Uzg-;

is a locally trivial fibration with fibre diffeomorphic to the Milnor fibre of the Morse
singularity in C”~3, and hence homotopic to $"™* (see Lemma 4.3).
We fix a positive £y smaller and close to £ and define

U= Us,,
U = ui.-o.
The restriction
Tly: U —-U (12)

is locally trivial with fibre homotopic to $"74.
Fix a point u in dD¢,. Define

By = 7w H(By) N M.

The mapping
,O|Bu . Bu — Bo

is a diffeomorphism. Hence the mapping
(pls,) " o po |z ls,): (B. Bu) > By (13)

is a locally trivial fibration of pairs with fibre the pair (S"73, §"~%), being §"~*
embedded as an equator of "3,
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6. The topology of B

In this section we study the topology of By, which will be used later to study the
homology of 8.

6.1. The fundamental group of By. The space SM(k) of symmetric matrices of
size k with complex coefficients is a complex vector space of dimension k(k + 1)/2.
The smooth locally closed algebraic subset SM(k,/) has codimension /{/ + 1)/2,
and we have seen that its Zariski closure SM(k, /) is defined by the vanishing of all
[ x I minors. It is easy to check that SM(k, /) is far to be, in general, a complete
intersection.

Define MM(k x (k — 1)) to be the set of (k x (kK — 1)) matrices of maximal rank.

Lemma 6.1. The fundamental group of MM(k x (k — 1)) is trivial.

Proof. The set of matrices k x (kK — 1) which are not of maximal rank is an algebraic
subvariety of codimension at least 2. U

The mapping
o MM(k x (k — 1)) = SM(k, 1)

given by
ap(M) = MM’

is alocally trivial fibration (by homogeneity of the action of the general linear group).
Denote by Fy the fibre over the matrix A = (a; j), where a; ; = §;; unlessi = j =
k, in which case, az x = 0.

Lemma 6.2. The fiber Fi. has two connected components.

Proof. We will work by induction over £ > 2. For k& = 2, it is a direct computation.
Now let us compute the fibre Fj. Consider the following matricial equation:

(m; j)mj;) = (a; ;).

Let v; be the vector in C¥~1 given by the i-th row of (m;, ;). Denote by Re(v;) and
Im(wv; ) its real and imaginary parts respectively.

Now the previous maitricial equation becomes the following system of vector
equations: if (7, j) # (k, k) then

Re(v;) - Re(v;) = &;; + Im(v;) - Im(v;),

Re(v;) - Im(v;) = 0,

and
Re(vg) - Re(vg) = Im(vg) - Im(vg),
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Re(vg) - Im(vg) = 0,

where v - w denotes the standard scalar product in R¥—1.

Consider the projection MM(k x (k — 1)) C (C*¥1)k — C*=1 to the first row.
Let By be the image of £y under this projection. Using the homogeneity of the action
of the complex orthogonal group, it is easy to check that the restriction

T - Fk—>Bk

is a locally trivial fibration.

Obviously By is the set of vectors vy satisfying the above system of equations
fori = j = 1. The vector v belongs to By, if and only if ||Re(v)||? is one unit
longer than ||Im(v1)||* and both vectors are orthogonal. That is, the vector Re(v1)
can be anywhere except in the interior of the unit sphere in R¥~1. If |[Re(vy)]|2
equals 1 then the vector Im(v1) is zero. In any other case, the vector Im(vy) lies in
the (k —2)-sphere of radius /1 — ||Re(v;)||? in the hyperplane orthogonal to Re(v1).
It is easy to show that By admits the unit sphere in R*~! embedded in the real part
of C*1 as a deformation retract.

The fiber rk_l ((1,0,...,0))is formed by the (k — 1)-tuples (v,, . . ., vt ) of vectors
that satisfy the previous system of vector equations, and lie inside the subspace of
vectors with a zero in the first coordinate. This is equal to the fiber F_; of ay—q
over A" where A’ is the result of deleting the first row and the first column in A.

We have constructed a fibration of Fy over a space with the homotopy type of
S =2 whose fibre is Fy_;. If Fi_; has two connected components and & > 4, the
homotopy exact sequence of the fibrations gives the result. For & = 3 we have to
check that the monodromy of the fibration does not interchange the two connected
components of £, but this is direct computation. (]

Proposition 6.3. The fundamental group of SM(k, 1) is isomorphic to Z.;.

Proof. This is just the homotopy exact sequence of the fibration oy, together with
Lemmas 6.1 and 6.2. O

Proposition 6.4. The fundamental group of By is isomorphic to 2.
Proof. The unfolding

fo=A(g1 =51, . 8n—3 — Sn—3)(mij + i ;})0&1— $1. - &n—3 — Su—3)",

with s € C"73 x SM(n — 3) can be obtained by pullback from the unfoldings (1) and
(6) of f that we considered in Section 2 both in the corank(H( f)(()) = 2 and
corank( H{ f)(O)) # 2 cases. In both cases a generic parameter

s € C" 3 x SM(n — 3)
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maps to a parameter outside the discriminant A. Thus we can use this unfolding in
order to compute the topology of By.
The mapping
o: C" x SM(n — 3) — SM(n — 3)

defined by a(x, (s; ;) := (m; ;(x) + s;, ;) is obviously a submersion wherever it is
defined. Define
Z;i =" YSM(n — 3,1)).

Since SM(n — 3, i) is a cone for any 7, and the fundamental group of SM(n —3,1) is
isomorphic to Z,, we have that the local fundamental group of the germ SM(n — 3, 1)
at the origin is Z,. Since the mapping « is a submersion, the local fundamental group
of (Z1 \ Z5) at the origin is Z5.

Fix a positive € and a generic

$% = (57, ..., 5p_s, (8 D1<i<j<n—3) € C" > x SM(n — 3)

sufficiently close to the origin. Consider set of functions {g; }/=7 U {s; j }1<i<j<n—3
in Ocnxsmn—3). Applying Hamm-L& Theorem (Main Theorem in [8], I1.1.4) repeat-
edly for the above set of functions, and using the relative homotopy exact sequence
we get that the fundamental group of

n—3
B.NZA\Z)N Vg —sON N Vs, —2))
i=1 I=i<j<n-—3
is isomorphic to Z,. But it is clear that the above space is homotopic to By. 0

6.2. Homology of By. We will now compute the homology of By, which coincides
with the homology of B. Given the function

det(H(£)): Z5 — C

we use the Mayer—Vietoris sequence of the decomposition of det(F ( f;))™! (Dg) as
the union of | ) 4;({) and B given in Section 5.

The space det(H ( f;))~1(D¢) is homotopy equivalent to det( H ( £5))~1(0), which
is homotopic to a bouquet of (141 — a) 2-spheres (see Definition 2.5). This is because
det(H( f5))~'(0) is a deformation of det (Z( /))~'(0), which is ani.c.i.s. with Milnor
number j1, and det(H( £5))~1(0) has only a Morse-points as singularities.

On the other hand, the intersection of each space A4;(¢) with B is the link RP? of
a Morse type singularity, and the spaces A;({) are contractible.

Summarising, we have the following:

« Hy(UAi(O) N B:Z) = 12°,
« Hi(UA(ONBZ) =173,
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« H(UAQ)NB:Z)=0fori ¢ {0,1,3},

. Ha(det(H(f)™(Dg); Z) = 2172,

o H(det(H(f;))"M(Dg): 7) = Ofori ¢ 10,2},
o Hi(B:7) = Zs.

These data allow us to compute the following Mayer—Vietoris sequence:

0— H3 (U 4:(0) N B; Z) — H3(B: Z) — Hs(det(H( )" (D¢); Z)

il il I
z* 7z 0

— H(\J 4:(§) N B Z) — H(B: Z) — Ha(deW(H(f;))™"(D¢): Z)

2ll 2ll 2l
0 Fi1—a Ti1—a

2 B (U A(0) 0 B: Z) —2 Hy(B: Z) —= Hy(det(H(£) " (Dg): 7))
2 2 2l
e Zo 0
(14)

Remark 6.5. The restriction of the mapping «y to H(A;({) N B;Z) is an isomor-
phism onto H(B;7Z) for any i.

Proof. The space B is homotopy equivalent to By. In Proposition 6.4 it is proved
that the fundamental group of By is isomorphic to 7, and hence the same holds for
its first homology group.

The group H; ( A, ()N B; Z) is a direct sum of the groups H{(A; ({) N B; Z)
for i varying. Each of these groups is isomorphic to 7Z,, and is generated by a
homology class [y;]. Since the exact sequence above shows that oy is surjective, at
least one [y;] has non-zero image by oy in H{(B; Z).

Lemma 2.4 implies shows that there are isomorphism of By interchanging each
two classes [y;]. This ends the proof. O

The homology of B with coefficients in Z, can be computed either in a similar
way than the integral one, or by using the universal coefficient theorem. We obtain

* Hy(B;7Z2) =0,

» Hy(B;Z;) = ZS,

o H)(B;Zy) =72 ® L5 7,
 Hi(B;Zz) = Za.
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Remark 6.6. Note that the generators of Hy(det(H( f;))"1(D¢); Z) can be inter-
preted as follows. The Milnor fibre of det(F7( fo))~1(0) has p{ 2-spheres as gen-
erators of its homology. Out of these spheres there are a of them which corre-
spond to the vanishing cycles of the a Morse points of det(H( £;))~'(0). The space
det(H( f,))~1(D¢) is homotopic to det(H( f;))~1(0), which in tumn is homotopic to
the result of collapsing these a spheres in the Milnor fibre of det(F( o))~ (0). The
remaining spheres give rise to the ty — a generators of H, (det(H ( f;))~'(Dg); Z).

7. Homology of (8, 8B,)

In this section we will compute the homology of the spaces B and B, and also the
one of the pair (B, B, ). We will do so by studying their fibrations over B,,. This way
we will obtain the homology with integer coefficients of 8, and (8, 8,); but for B
we can only compute it with coefficients in Z», because the associated fibration is
not orientable. At the end of the section we will use these three homologies, together
with the universal coefficients theorem to recover the long exact sequence of the pair
with integer coefficients, and thus obtain the integer homology of 8.

There are several sphere fibrations involved in the computation of the homology
of the Milnor fibre, and we will need to deal with the corresponding Gysin sequences.
These are greatly simplified if we are in the case # > 8. The homology of the Milnor
fibre can be always deduced (by suspension) from the homology of the Milnor fibre
of a function f: (C"*, Q) — C with n > 8. We will assume in n > 8 whenever is
needed.

Consider the fibration 8,, — B,,. As we have seen previously, itis a fibration, with
fiber homotopically equivalent to §"~4. This fibration can be extended to A5 (u),
which is simply connected, and hence, the fibration is orientable. Its Gysin exact
sequence leads to the isomorphisms

Hi(Bu;Z) o Hn—4+i(£u;z)s Hi (G(BM;Z) = Hi(Bu;Z) (15)

fori = 0, 1,2, 3. The rest of the homology groups of B, vanish.

Consider the projection B8 — B,,. As we have seen before, it is a fibration with
fibre homotopically equivalent to $”~3, and the monodromy reverses the orientation.
Since the fibration is not orientable, we can only consider its Gysin sequence with
coefficients in 7Z,, which gives the following isomorphisms:

Hi(By:Z3) = Hy_34i(B:23), Hi(B:Z>) = Hi(Byu:Z) (16)

fori = 0,1,2,3. The rest of the homology groups of B with coefficients in Z,
vanish.

The fibration of pairs (8, B,) — B, has as fibre the pair (S* 3, §"~4) with §"—4
embedded as the equator of $”~2. Its monodromy acts trivially on $”~* and reverses
the hemispheres of $”~3 along the only non-trivial class of 7{(8,,) = Z>.
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In order to compute the homology of the pair (8, 8,) we can simultaneously
thicken the equator S”~# of each fibre to a small collar §"~* x [—#, 5] in §"~3. By
excision we can remove fibrewise the interior of the collar. We obtain a fibration over
B, with fibre two (n — 3)-disks relative to their boundary, such that the monodromy
interchanges them.

Since 1 (By) = 7Z,, its universal cover

o Eu — B,
is the only connected double cover. The fibration of pairs is then homologically
equivalent to the composition of an orientable fibration

(p:y—>§u

of (n — 3)-spheres over B, with the covering map o. The Gysin sequence of the
fibration ¢ gives

Hi(B. 8 7) = Hi(Y: 2) = Hy_(n_3)(Bu: Z)

if £ > n — 3 and zero otherwise.

Denote by V the double cover of m branched over its a singular points. The
space B, is homotopically equivalent to 'V minus the preimage by the covering
map of these a points. The space V is a 2-dimensional Stein space (for being a
branched cover of the 2-dimensional Stein space %[1];), and hence it has the homotopy
type of a 2-dimensional CW-complex. Therefore, H,('V; Z) is free and H3('V;7Z)
vanishes. Since the singularities of By are of Morse type, and the 2-dimensional
Morse singularity is the quotient of C2 by the action of the group of two elements,
the space 'V is smooth. Hence B, is the result of deleting from V' small balls around
the a preimages by the double cover of the singular points of 2[1]s. Using the Mayer—
Vietoris sequence we see that such deletion leaves unchanged the homology except
in dimension 3, where we obtain a copy of 7 for each deleted point. Summarising,
we get that

¢ H3(§u;Z) = Z°

. Hz(Eu; Z) = 7K for a certain k

« H, (EM; Z) = 0, since it is the universal cover of B,
e Hy(B,:Z) = Z, for it is connected.

Since the Euler characteristic of EM is twice the one of By, k must be equal to
21 — 3a + 1.
It is 1s easy to check that the following diagram is commutative:

8i+n—3

Hiyn3(B, By; Z) Hipna(Bu; Z) ,

- -

Hi(B,: 7) o Hi(By: L)
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for any 7, where §; 4,3 is the connecting homomorphism of the long exact sequence
of the pair (8, B,), the mapping o : B, — By is the covering map and the vertical
arrows are the isomorphisms coming from the Gysin sequences.

Notice that the generators of H5(B,; Z) are 3-spheres bounding balls in By around
theinverse image of the singularities of By. The generators of H3(B,,; Z) are precisely
the classes [4; () N B,]. Each of them is diffeomorphic te RIP3 and doubly covered
by one of the 3-spheres. This shows that

et Ha(By:Z) — Hs(By, 7),

and hence also &, is multiplication by 2.
For being ¢ a covering there is a well defined pull-back mapping in homology

o*: Hi(By;7) — Hi(By: 7).

It is clear that the map o,0*: H;(B,;7) — H;(By;7) is multiplication by 2 (the
degree of the covering). This, together with the previous commutative diagram,
implies that 2H,;_1(8,: Z) is always in the image of §; for any i. In view of this and
of the long exact sequence of the pair (B, 8,,) we obtain that H,,_,(8B, Z) can not
have p-torsion for p # 2.

By the above diagram and the connectedness of EM we have that §,_5 is an
isomorphism.

These facts, together with the previous computations of He(By,: Z), He(B; Z5)
and Hl(B, By; Z), plus the universal coefficients theorem allow us to completely
determine the long integral homology exact sequence of the pair (B, 8,,), (equa-
tion (17)).

The non-zero lower homology groups are isomorphic to those of B,, which
coincide with those of B.

8. Homology of X

This section is devoted to the computation of the homology of X. In a first step we
will compute it with coefficients in Z, using the Mayer—Vietoris sequence. Then we
will lift it to the integers using the universal coefficients theorem.

Let X be the union of | J7_, #; and B. We will now consider the Mayer—
Vietoris sequence of this union with coefficients in Z>. To do so, we need to compute
the groups He(oA;:7Z,) and He(A; N B;Z,), since Ho(B;Z,) has already been
computed.

The space +4; is the Milnor fiber of the singularity D(3,2), and hence, it has the
homotopy type of the sphere $"72.

To study the homology of A; N B, we can use the Gysin sequence of the fibration

A NB — A; N B >~ 3A; Ndet(H(f,))"1(0) = RP3,
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0 — H(By:7) H,(8;7) H,(8B,B,;7)
2l 2l 2l
0 0 "

s Hn—l(c{Bu;Z) — n—1(£;z) — n—1(£a c@u;z)

2l 2l 2ll
A Zg D Zu1—2a+1 Z2u1—3a+1
— Hn—z(d@u; Z) — n—2(£; Z) — n—2(£, d@u; Z) (17)
2l 2l 2l
LHe 0 0

— H, 3(8,:2) — n—3(B:2) — n—3(B, By Z)

I I I
Zp 7y 7
— H, 4(B,; 7)) — n—alB;Z) —— n—a(B, By; 7.)
I I I
Z 0 0

with fibre §"73. The groups H;(RP3: Z,) are Z, fori = 0, 1,2, 3, and zero other-
wise. We obtain that
Zy fori=0,1,2,3,n—-3.n-2n—1.,n,

0 otherwise.

Hi(A; NB,Zy) = {

To study the maps 1y : €p; Hy (A; NB; Zp) — Hy(B: Z,) induced by inclusion,
we will see them as the Gysin lift of the maps 5, H;(A; N B;Z;) — H;(B;Z3)
for j = k or j = k —n + 3. Using the version of the Mayer Vietoris sequence (14)
with coefficients in Z >, we get easily that

* i, and t3 are isomorphisms,

* {,—1 is a monomorphism,

* (,—2 and t,_3 are epimorphisms,
* ¢ 1s an epimorphism,

* (5 IS a monomorphism.

We need also the following lemma, whose proof we postpone to page 290:

Lemma8.1. Themapty: Hy— (A NB; Zo) — Hy_2(A;: Zy) induced by inclusion
is an isomorphism.
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With all these facts, we can compute the corresponding Mayer—Vietoris sequence
(equation (18)).

@j Hy, (A; N B; 7o) > @i Hy (A Z2)D Hy (8, 72) ——— Hy(X;Z2)

2l 2l 2l 2l
z8 0 Vi 0
P

-

B Hy—1(A; N B;Zz) — ; Hy1(A Z2)PHy 1(BZ2) — Hn—l(zﬁC; Z2)
2 2l 2l
78 0 Zo @ 75 0 EiA

; /

B; Hn—a(A; N BiZz) —= P; Hoo(A; Z2)BHy 2(B;72) — Hyp 2(X;7Z2)
2l 2l 2l 2l
Z5 Z5 Z> Zr @ 75!

- J

D; Hn 3(A; NB;Z2) —= B; Hy 3(Aj Zo)DHy 3(B:Z2) —= Hy 3(X:Z2)
2l 2l 2l 2l
Z% 0 Zn 0

(18)

We omit the lower part of the sequence. The non-vanishing remaining homology
groups of X are

Hz(x;ZZ) = Zgl_a, Ho(x; Zz) >~ Fin.

8.1. A basis of H, (X ;Z2). Fix a base point x; € A;({) N B,. Choose paths
vi: [0, 1] — B, such that y is a generator of the fundamental group of 4,() N B,
and y; connects x; with some point x; € A;({) N B,. We choose chains G; C
B such that the natural projection 7|g, is a locally trivial fibration over y; with
fibre diffeomorphic to a §”~3 generating the homology of the corresponding fibre of
(plg,) 'epom|g. Since yy is closed, the chain G is closed with coefficients in Z,.
For each i, we choose an (n —2)-sphere generating H,_»(A;; 7). Take a hemisphere
K; of such sphere; its boundary dK; is an (n — 3)-sphere in A;. The boundary 9G;
consists of two (n — 3)-spheres £.1 and L;, being L; contained in +4A;. Since «A; is
homotopic to $"~2 there exists a chain

W o [0,1] x 8" — A,

such that dW; = 0K; + L;.
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The generators of H,,_,(X;Z,) are represented by the Z,-closed chains Z; :=
Giand Z; := Ky + W1 + G; + W; + K;. Notice that since the coefficients are
in Z, we have K1 + W, + C; + W, + K| = G, and so the way of defining the
generators is the same for all indices. To check that these are really generators we
observe that Z,, ..., Z, are sent by the connecting homomorphism of the Mayer—
Vietoris sequence (18) to the kernel of the first mapping of the (n — 3)rd row, and
that 7 generates the cokernel of the first mapping of the (n — 2)nd row.

Lemma 8.2. Let y/: [0, 1] — B, be any other path joining x| and x|, being x| and
x} points in A1(§) N B and A;({) N B respectively. As above we can associate with
v} an element [Z] € H,_2(X;Z,). We have the equality

[Z]] = [Z:] + m[Z,]
foracertainm € Z,.

Proof. Let a; be a path joining x; and x} for j = 1,i. The product of paths
Yi @i« (y/)7 1. ()71 is aloop based in x;. Since the fundamental group 7y ( By, x1)
is isomorphic to Z, and generated by y1, the loop y; -ai; . (] )~ 1. (at1)~! is homotopic
to (y1)" for a certain m. After this, the above equality follows easily from the
construction of the chains Z;. U]

8.2. A system of generatorsof H,_2(X; Z). Tolift the computation to coefficients
in Z, we need to compute the integer homology of A; N.8. We can do soby computing
the long exact sequence of the pair (A; N B, A; N By) using the same arguments
used to compute the long exact sequence of the pair (8, 8B,,). We obtain:

Hy_ (A N B Z) = Zs,
Hy 3(A; N B 2) = Zs,
Hs(A; N B:7) = 7,
Hi(A; N B 7) = 7,
Ho(i N B:2) =~ Z.

and zero otherwise.

With these data, and the universal coefficients theorem, we can compute the
Mayer—Vietoris sequence (18) with coefficients in Z, which is shown in equation (19).

The non-zero lower homology groups are isomorphic to those of X|1];.

We give asystem of generators of H,_>(X; Z). Foranyi choose an (n—2)-sphere
S; in A; generating H,_»(A;; Z). Choosing the orientations of the summands of Z;
appropriately it turns out that we have a Z-closed chain. Itisclearthat [Z5], ..., [Z4]
generate the kernel of the first homomorphism of the (n — 3)rd row of the Mayer—
Vietoris sequence. The image of the second morphism of the (n — 2)nd row is
obviously generated by the (n — 2)-spheres ;.
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D; Hu(Ai N B 7) —— BiHu(ALZ)DHR (B Z) ——— Hu(X:7)
! 2l ! 2l
0 0 0 0

P
;
P; Ho1(A; NB:2) — @; Hie1 (AT ® Hyey (B 7) —> Hy 1 (X 7)
2

2l 20l 2l
Zg 0 deazul—Za-H Fa1—2a+1

A
y/
@i Hy o2(A; N8B Z) — GBI- Hy o(A ZYOHy2(8,2) — Hy—2(X,7Z)

2 U U U
0 AS 0 AS

e
;
P Hn—3(A; N BZL) — @; Hi3(A; DS Hy—3(BZ) — Hy—3(X:Z)
2

2l 2 2
Zg 0 Zn 0

(19)

9. Homology of M

Now we will compute the homology of M. First we will see that to recover the
homotopy type of M we only need to glue to X the preimage by 7 of some disks in
25 (the so-called Lefschetz thimbles). Then we will proceed as before, computing the
associated Mayer—Vietoris sequence with coefficients in Z, and then doing a detailed
study of the topology in order to lift it to integral coefficients. In this process, we
will find some ambiguity: there are two possible values for the homology of M. We
prove directly when these two cases will hold. In the final step of this section, we
prove that the homology of M is torsion free. The argument needs the beginning of
classification of the singularities treated in this paper, and then a case-by-case study.

9.1. Coefficients in Z,. Recall that ¥ is the Milnor fibre of X, and has the homo-
topy type of a bouquet of (1o spheres. The functions g1, . .., gn—3, det(H( f)) define
a 2-dimensional i.c.i.s. 2[2]p with Milnor number p; (see Definition 2.5). We may
assume that the ball B, that we are using to compute the Milnor fibre of f is alsoa
Milnor ball for the i.c.i.s.

We need to remind some classical results of i.c.i.s., in particular the definition
of Lefschetz thimbles (see Chapter 5 in [11] and [2] for details). There is a disk
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Djs of centered at the origin of € such that % is homotopy equivalent to 33 N
(det(H( f;)))~'(Ds) and that the restriction

Y = det(H ()5, nae @ fn -1 (D) | Ss N ([det(H ()™ (Ds) — Ds

has precisely isolated critical points with Milnor numbers adding precisely g + p41.
The number a counts the number of critical points in the O-fibre of the mapping above.
They are all of Morse-type.

Take 7 so small that the disk 1, only contains 0 as critical value of the restriction
to y~1(D,). Let * be a point at the boundary of this disc. Draw a system of non-
intersecting paths {y; }; joining * with each of the critical values of the mapping .
Each path corresponds to a vanishing cycle of ¥, which is an embedded §2 in ! (x),
and that can be continued along the path y; until it collapses to the corresponding
critical point of yr. The Lefschetz thimble C; along the path y; is defined to be the
union of the continuations of the vanishing cycle along y; until it collapses to a point.
It is homeomorphic to a 3-dimensional disk, with boundary the vanishing cycle.

The space % is homotopy equivalent to the result of attaching to

(det(H(fi)|z,) ™ (Dy)

the Lefschetz thimbles associated to the critical points of det(H( f;))|x, not con-
tained in the zero level. There are exactly po 4+ g1 — a such Lefschetz thimbles
(see [11]). Since the Lefschetz thimbles are 3-disks they are attached along 2-
spheres to the boundary of (det(H( f5))|x,) "' (D), which is 5-dimensional. Hence,
a transversality argument ensures that all the attaching spheres are disjoint. Denote

by Cy. ..., Cygtsq—a the attached Lefschetz thimbles. We have found a homotopy
equivalence
, _q totp1—a
M’ = (det(H(f))Is,) " (PpU( U C) =3, (20)
i=1

which in fact (since we are working with C W -complexes) is a deformation retract.
Since we have a locally trivial fibration

7w M\ 7T (det( H(£5))71(0)) — T \ det(H ()71 (0) 21)
we can lift the deformation retract (20) to a deformation retract
M =7 (M) — M. (22)

We will compute the homology of M’ using a Mayer—Vietoris sequence. By
the previous deformation retract we identify the homology of M’ and M. Denote
7~ 1(C;) by €;. Since C; is contractible the fibration over it is trivial, and, hence, €;
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and 7~1(3C;) are homotopy equivalent to C; x S”"~4, and 9C; x S*=% =~ §2 x §7—4,
Decompose M’ as
Hotpi—a
M=XU( U €). (23)
i=1
The associated Mayer—Vietoris sequence (with coefficients in Z,) is what equa-
tion (24) shows, for some e € N. Recall that only the last column was unknown.

@ He1 (771G Z2) — D Hu—1(€i:22)DHp—1(X:72) —  Hy—1(M;Z3)
2l 2l 2l 2
w1—2a+1 Ho+2p1—4a+1+4e
0 0 Z pho+2m

e J

B; Hn—Z(ﬁgll(aci)QZZ) glusy B; Hn—2(Ci; Z2)PHy_2(X;Z2) — Hp_2(M;Z2)
2 2 2
s 0 Zr®78! VA

- .
P; Hn—3(x~10C;): Za) —= @ Hy3(Ci; 7)Y Hy—3(X;7y) —— Hy_3(M;77)

2 2 2 2
0 0 0 0

/

P; Hr—a(x " 0C; )1 Z2) — @ Hy—a(Ci3 Z2)DHn—a(X:72) —s Hy_a(M:Z2)
2 2 2 2
- ot i1—a
Zgo H1—a ZZD 1 0 0

(24)

The fact that &p; H, _4(x7103C)H:Z2) — D, Hu—4(€i; Z>) is an isomorphism
determines H,_3(M; Z,) and Hy_4(M; 7). Givene, H,_4(M; Z7) is determined
by Euler characteristic.

We will find out what are the possible values for e. We have given abasis {Z;}]_,
of H,_»(X;Z,) in Subsection 8.1.

Lemma 9.1. The composition
T @Hn—z(ﬂ_l(aci)izz) =2, Hy2(X: Z3) = Hy (X Z2)/([Z41])

is surjective.
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Proof. Foreachone of the a singular points p; of det(H( £;))~1(0) thereis a vanishing
cycle E; which is a embedded 2-sphere in det(Z( f;))~!(x). The parameters s,
u, ¢ (see Section 5) can be chosen so that det(H{ f;))~'(u) N A;(¢) is a tubular
neighbourhood of E; in det(H ( f5)) ™ (u).

The sphere 3Cy. can be chosen to be embedded in det(F7( f;))~!(x) and, after a
perturbation, transverse to £; for any i. Let

1t dCr — det(H(£:) 1 (u)

denote the embedding. Let by ; the number of intersection points of dCy and E;.
Choosing the tubular neighbourhoods of E; small enough we find that t;l (A;())isa
disjointunionof disks Dy ; ; with j € {1,..., by ;}, and the boundary of each of them
represents the generator of Hy(By; Z). By Remark 6.5 the number by := >, by ; is
even: otherwise the image in Hy(B,; Z) of the boundary

H(Ce \ (U D j))
L

would be a non-zero homology class. We claim the following equality

(|l OCH) = D beal Zil. (25)

i=1

Let us finish the proof assuming this claim.
Any Lefschetz thimble Cy, givesrise toaclass[0Cy| € Ho(det(H( f;)) ™! (D¢). 7).
It is easy to check that its image by the connecting homomorphism 4, is equal to

5(0Ck]) = > bl = Y brillvu] = [ (26)
i=1 =2

where ¥; is a generator of H,(3dA4;({) N B;7Z) for any i. The first equality is by
construction of the connecting homomorphism and the second is true because > _; by ;
is even and, hence we have the equality by ; = Z?:z by inZ;.
Let oy be the first mapping of the 1st row of the sequence (14). Define the
isomorphism
0: Hy2(X, Z2)/([Z1]) — ker(ay)

given by 8(|Z;]) := |¥i| — [¥1]. Any element |Z'] € H,_o(X; 7Z2)/([Z1]) cor-

responds to an element in ker(cy), which is the image by §, of a class [Y] €
Hy(det(H{(f)™! (D¢): Z). Such a class can be expressed as a sum

ot —a

Y= > mloc].

k=1
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The coincidence of the coefficients in the last terms of equations (25) and (26) give
the equality z([Y]) = [Z/].

Now we prove the claim. Choose a point xg € 3Cy \ Ul-’ i Dy ;.; and choose a
disk D¢ around it in 9Cy, disjoint to the disks Dy ; ;. Deform the immersion i |p,,
so that the embedding of its boundary remains fixed, it meets £, transversely pre-
cisely at by points, all different from xg, and it is disjoint from £; for any j # 1.
After this deformation the intersection tk|5}) (A(C)) consists of by disjoint disks
{D,’C’i’j Yie(l,..a).jell,.. by ;) (We choose the indexing to make it easy to make a bi-
jection with the disks Dy ; ;).

Choose non-intersecting paths g ; ; in Do\ (;, p ' LR j) joining xp with a point
Vi € 9D ;- Choose non-intersecting paths |

Breij 10,1 = 3C \ (U @i ([0, 1)U D}, ;U Dy ;)
k.i.j

joining 3D , ; with 0Dy ;. ;. For a schematic picture, see Figure 3.

Ok i, j

Figure 3. The system of paths in dCy.

The complement of | J;. ; - (Br.i,; ([0, 1)) Uag ; ([0, 1) U D'k ; U Dyy ) isa
topological disk G. Since G 1is contained in B,, we can restrict the fibration (13) to
G and obtain a trivial fibration of pairs with fibre homotopic to (§"73, §"~4), with
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S"—4 embedded as an equator. Consider a mapping
c:GxS"7 - 8

such that o ({g} x §"~3) generates the (n — 3)-homology of the fibre over t(g) by the
fibration (13). Denote by H* one hemisphere of S”73. The restriction

v:GxHT -8cCcX

defines a singular chain in X.
Let Z ifc,i,j be the chain associated to B ; ; by the procedure givenin 8.1. Adding

and subtracting S"~2-hemispheres K ; ; and K Ii:x ; for any i, j (see the procedure
in 8.1), the chain €, + 91 is shown to be equal to a sum

a
Y Zi i+ DT
i i=1

where ¥; is a closed chain contained in ;.

The (n — 2)nd row of the sequence (18) shows that, for any #, any class in
H,_>(X;Z2>) supported by a chain contained in +; is a multiple of [Z]. On the
other hand, by Lemma 8.2 there exists ¢; ; € Z, such that [Z:J] = [Z;] + ¢ ;[Z41])
This proves the claim. L

This means that the only possible values for e are 0 and 1. We will now characterize
the cases in which each value is obtained.

Lemma 9.2. [fcorank(H [ fo|(0)) = 3, thene = 0.

Proof. Consider the unfolding

F(x1,...,xn,b,(ci,7)) == (1. Gposp)(hij + i j)(Grp, ..., Gnozp)
(27)
given in (1). If corank(H | fo](0)) = 3 there exists a parameter so € S and a point
X € X, such that the germ fq, at x is right-equivalent to a germ of the form

h I I3 Ya
12 l4 l5 0 Y2

(¥1,¥2.¥3,...)" Lol e | ys |-
|Id :

0

where the /;’s are generic linear forms and the y;’s are variables. The Milnor fibre of
such germ function is the suspension of the Milnor fibre M of

l] 12 l3 yl
Vi.y2.¥3) - |2 14 Is]-|y2].
l3 15 16 y3
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and this one can be computed by projecting to the variables (yy, ¥, y3). This pro-
jection is a fibration over C3 \ {0} ~ S° whose fibre is contractible since it is the set
of solutions of a system of linear equations. So M has the homotopy type of S° and
H4(M) = 0. The general case is a suspension of this one. Hence the Milnor fibre of
the germ f;, at x is homotopic to S*~! and its (7 — 2)-homology vanishes.

Since X, is smooth at x its versal deformation is trivial. Hence the unfolding
given by (1) for the germ ( f;,) is of the form:

F(x1,.... %0, (¢i,5)) = (G1,s0s -+ > Guossg)(hij + €i i N Gysgs - - -» Grossg)'-
(28)
with (¢; ;) € SM(n — 3). Observe that this unfolding can be obtained from the
unfolding (27) by pullback and localisation near x. Let B(x, €g) be a Milnor ball for
( fso)x contained in the Milnor ball B, of f. If s is generic and very close to sy and
¢ is small enough then

v 7N N B(x,e9) = f71(e) N B (29)

is an inclusion of the Milnor fibre of ( f;,)x into the Milnor fibre of f.

Since corank(H( f5,))(x) = 2, if s is close to s there exists at least a point
pi of X[2|s contained in B(x,€g). If e # 0, that is, if H,,_>(M:7Z;) # 0 then,
by Proposition 3.1 with coefficients in Z, there is an $"~2 in A; C £, (1) N
B¢ representing a non-trivial homology class in the Milnor fibre of f. But this is
impossible: the space -, is contained in £,1(£) N B(x, €p) and the (# —2)-homology
of this space is trivial. Then there is a chain in fs_l (¢) N B(x, ¢y) whose boundary
is equal to the candidate S"~2. The chain is then contained in f,~(£) N B, and this
shows that the homology class represented by the candidate S*~2isin fact trivial. [

Now we will see that, in the case where corank(H | f5](0)) = 2, the number e
turns out to be 1. Recall that +; is homotopic to $”72, denote by Z the generator
of H,_>(A;:Z). Since we have an inclusion i : #A; < M, we need to check that

i (Z) # 0.

Lemma 9.3. If { is of the form
_ hia hia g1
f - (gl:gZ) (quz hzqz) (gz H

Proof. Let o be a closed differential form defined in €2 \ {0} such that fo3 @ # 0
for a sphere S3 around the origin in C2. Consider the map

then ix(Z) # 0

¢$: C" - C2

defined by ¢ := (g1, g2)-
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Then © := ¢*w is a closed ditferential form defined over the Milnor fibre of f.
The change of variables formula gives the inequality fi*(Z) P w #£ 0 0

Now let us generalize this argument for the case where the corank is two, but the
dimension is higher:

Lemma 9.4. If corank(H|[ fo](0)) = 2, thene = L.

Proof. We may assume (see 2.1) that f is of the form

. hig hia 81) 2 5
f_(glag2) (hl,z kz,z) (g2 +g3+ +gn—3'

We consider the unfolding F defined in (6). Clearly there are parameters s such
that the functions (#y15.m12.5.h22.5, G1.5,-.-, Gy—3,5) vanish at the origin and
form a holomorphic coordinate system around it. In this case the local Milnor fibre
of the deformed function F; at the origin has the homotopy type of a (n — 2)-sphere.

Let € and & be radii for the Milnor fibration of f. Let ¢" and §" be radii for the
Milnor fibration of f; at the origin. By Theorem 2.2 we have that F;1(§") N B is
diffeomorphic to the Milnor fibre of f. Let Z be a cycle in the local Milnor fibre
F71(8") N Ber generating the (n — 2)-homology group. In order to show that e = 1
it is enough to show that the homology class [Z] is nonzero considered in the bigger
space F;1(8") N B,. For this it suffices to find a closed (n — 2)-differential form Q,
defined in F;-'(8") N B such that [, Q # 0.

In order to define such a form, choose a positive function §: C + R C C such
that 8|po,5/2) = 0 and B|c\po,y = 1 for a sufficiently small radius 7. Now take
@ a closed 3-form in C2 \ {0} that generates the de Rham cohomology in degree 3.

We have the function

W CP\ V(Gry. Gag) = C2A{0), x> (Grs(x), Gos(x)).
Define
Q=Y oAB(G + -+ G}, —8)dGss N AdGy_ss.

Let us check that Q is defined in all F;71(8") N Be: the form i * w is only defined

in C" \ V(Gy,s. G2,s), but the factor ﬁ(Gis — = G,%_M — §") is identically zero
when Gis ——— G,f_is — &’ is small enough.

In order to check that € is closed notice that since @ is closed, sois ¥*w. Hence
it is sufficient to show that

B(GS, + -+ G§_3J —8YdGas A ANdGy_zyg
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is closed. A chain rule argument shows the equality

8 n—3
dB(G3 s +--+ Gis, —8) = £(G§’S — =GP 5 )Y 2GisdGig,
i=3
which means that
8,6 n—3
dQ =y wA 5= (GRs + -+ Gh s, — 5’)(22Gi,sd(}i,s)
i=3

NdGzg A ANdGy_3,=0.

Finally we will check that the form €2 integrated against the cycle Z gives a non-
zero result. We start by giving an explicit description of Z. Let Z’ be the cycle that
generates the 3-homology of

{(Gl,Ss Gz,s)(ki,j,s)(Gl,Ss G2,S)I — 5’} N BE’-
Define the family of mappings

3
ald]: C° =C°,  (x1,x2, X3, X4, X5) > \/g(xuxz,xs,xmxs)

which depend on a parameter §. The cycle Z admits the following parametrisation:
since the functions

(kl,l,Sa hl,Z,S5 kZ,Z,S5 Gl,Sa roim e Gn—3,5‘)

form a holomorphic coordinate system at the origin the vanishing of the first 5 of
them defines a germ (M, O) of (n — 5)-dimensional complex manifold at the origin.
Let B(0, +/8") denote the ball of radius +/8" centered at the origin of R”~>, being
R"~> the real locus of (M, O). The parametrisation is given by

Z' x B(0,V§) = Z,

(P, V3. Yn—3) > (@8 — y5 — - = ¥2_51(P). V3. - Yn—3)-

We compute [, Q in what follows. The first equality is due to the change of
variables formula, the second follows from Fubini’s theorem, and the third is because
of Lemma 9.3.

[ Q = [ V¥onNPGE ++Gh_y, —8)dGsg A A Grosg
zZ "% B(0,v§7) '

)B(G32,s — Tt Gr%—S,s - 5,)

/B(o,ﬁ)
f @[GE, + 4 G2y — 8 wd Gy A AdGy_s

n—3.s

/ BGE + 4Gl sy —8NdGss A NdGposs
B(0,v/8") ’

which is nonzero. O
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Now we can easily prove Lemma 8.1 using an example:

Proof of Lemma 8.1. Since we are with coefficients in Z,, if the mapping is not an
isomorphism then it is identically zero.
The function f: C> — C given by

X3 X4 X1
e (3 2) ()
has finite extended codimension with respect to (xq, x,): the critical set is precisely
V(x1, x2) and away from the origin it has singularities of type D(3, p), which are of
extended codimension equal to 0.

By a procedure similar to the one we have used to compute the homotopy type
of the Milnor fibre of the D(3, 2) singularity, in [5] we have proven that the Milnor
fibre of f at the origin is homotopy equivalent to §3.

An easy computation shows that if we take a generic parameter s of the unfolding
I’ associated to f in Section 2 then F; has no Morse points outside 3; = X,
there are precisely 2 points of type D(3,2), and the Milnor number of the i.c.i.s.
2o N{det(H(f)) = 0}is equal to 3. Let us assume that the mapping in the statement
of Lemma 8.1 is identically zero. In this case the previous long exact sequences can
be used to compute the homology of the Milnor fibre of f, and they give that the
4-homology group is non-zero. This gives a contradiction. ([

9.2. Integral coefficients. Now we compute the integral homology of M. Af-
ter the previous computation of the homology with coefficients in Z, this amounts
essentially to compute the torsion. We will prove that the homology is torsion-
free. The arguments are somewhat intrincate and we need to consider the cases of
corank( H( f)(Q)) = 3 and of corank(H ( /)(Q)) = 2 in a separate way.

From the integer homology of X, itis easy to see by the Mayer—Vietoris sequence
that Hp(M;7Z) = Hp (X;Z) fork #n—1,n—2.

On the other hand, the group H,_1(M; Z) is torsion free since M isa (n — 1)-
dimensional Stein space. By the Universal Coefficients Theorem and our computation
of homology with coefficients in Z,, it is easily obtained that H,_,(M; Z) has no
2-torsion: as we have seen in the proof of Lemma 9.4, whene = 1, the Z, component
of I,_>(M;7Z>) is represented by a torsion free class (its integral against a closed
form is non-zero), and hence it comes from a Z component in H,,_,(M; Z).

Summarising, the Mayer—Vietoris sequence with coefficients in Z is as shown in
equation (30), where 7'1s a torsion group without 2-torsion. We prove now that7 = 0.
We have to deal separately with the cases corank(H( f)) > 3 and corank(H ( 1)) = 2.

Proposition 9.5. If corank(H{(f)(0)) = 3, then T = Q.
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B; Hi—1(n7HOC ) 7Y > @i Hn—1(Ci: DYPHu—1(X;2) —=  Hp—1(M; L)
2l 2 2l 2
0 0 ZM1—2CI+1 ZMO+2M]—4Q+1+€

E
¢

@;‘ Hn—Z(ﬂ_l(aci); Z) — @;‘ Hn—2(€i§z)@Hn—2(X; Z) — Hpy—2(M; Z)
2l 2l 2l 2l
FHoTHI—0 0 A Zg aT

2
7
@ Ha—3(n~1(0C; ) Z) — @ Hn—3(C LYDHp—3(X;Z) —— Hy—3(MZ)
2l 2 2l 2l
0 0 0 0

/
e
B Huealr™LOC 1 2) — @ Huea(Cs DB Huma (X ) —>  Hya(M: D)

2l 2 2l 2l
FHoTII—0 7ot —a 0 0

(30)

Proof. Let F: C" x § — C be the unfolding associated with f in Section 2. By
Theorem 2.2 there is a monodromy representation

p: w(S \ A) = Aut(Hy—2(F; ' (8) N Be; 7).

By Lemma 2.4, if one of the generators of the form §; of H,,_,(X; Z) maps to zero
in H,,l_z(FS_1 (6) N Be¢; Z), then every other generator of the form S; maps to zero
too. In the proof Lemma 9.2 we have seen that this is the case. By homology splitting
we conclude that any S; is zero in H,,_;(M; 7).

Now let z € H,_2(:M;Z) be a p-torsion element with p # 2. Then pz = 0,
which means that, considered with coefficients in Z, its class [z] € H,—>(M; Z,)
must be also zero. This implies that z is homologous to z" = . 2a; Z;.

Consider the exact sequence

0— @Hn—z(ﬁ%i;z) — Hn—Z(X;Z) — @Hn—3(8Ai;Z) — Hn—3(£;z) ~54),

The images of the generators of H,_,(A;;Z) in H,_»,(X;Z) have been denoted
before by S;, and the Z;’s correspond to the generators of the kemnel of

@ Hn—3 (8%1; Z) - Hn—3(£; Z)
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which is isomorphic to Zg_l. The exactness of the sequence implies that 2Z; can be
expressed as a linear combination of the §;’s, but as we have seen before, all of them
are zero in Hy,_,(M; 7). L

Proposition 9.6. [f corank(H(f)(0)) =2, then T = 0.

Proof. Letz € H,_>(M;Z) be a p-torsion element with p # 2. Then we have the
following equality with coefficients in Z5:

0= [Z] = Hn_z(M,Zz)

As before, this means that homologically, z can be expressed as z = Y . a; ;.
Assume that all §; are equalin H,_,(M; Z). We would have that, integrating against
the form £2 of Lemma 9.3 and Lemma 9.4 (normalizing it if necessary) we get

/;Q:;a,-[giﬂzii:ai

which, by the hypothesis of z being of p-torsion, means that } , @; = 0, and, hence,
that [z] = 0.
We only need to prove that S; and S; represent the same class in Hy,_>(M; Z) for
any i, j.
If the functions
{hi1.h1,2, 02,2, 815+ s Bn—s} (31)

form an i.c.i.s at the origin of Milnor number O (that is they are smooth and transverse)
then there is only one sphere §; and the result is proved. Let us assume that they
form an i.c.1.s at the origin of Milnor number at least 1.

Given a point sp € S \ A there is a | — 1 correspondence between points p; of
>[2]s, and spheres S; as above. To a vanishing cycle { p;, p;} (recall Definition 2.6)
corresponds a pair of spheres {S;, S;}. By Lemmas 2.7 and 2.8 in order to prove that
S; and §; represent the same class in H,_»(-M; Z) for any i, j it is enough to show
that there exists a vanishing cycle {p;, p;} such that S; and S; represent the same
class in H,_5(M; Z). This reduces the proof to the case in which the Milnor number
of the i.c.i.s. defined by (31) at the origin is 1.

The fact that the functions (31) have Milnor number 1 at the origin implies that at
least 7 — 1 of them must be linearly independent variables (after a suitable change of
coordinates). Depending on which one of the functions is not a variable, there are four
possible cases, that will be analysed below. In this analysis we will use repeatedly
the following fundamental Lemma:

Lemma 9.7. The homology of the Milnor fibre of a germ [ only depends on the
number of Morse points appearing in a generic value of s of the base space of
the versal deformation S and on the topology of the triple (25, X[l]s, Z[2]5). The
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homology of M only depends on the topology of the triple. The homology of the
Milnor fibre has torsion if and only if the homology of M has torsion.

Proof. The first and third statements of the LLemma are true by homology splitting.
For the second recall that in Section 5 the spaces M and % are decomposed in
three pieces. Each piece of M is afibration of spheres over apiece of 2. Thetopology
of the pieces of 2, the dimensions of the fibre spheres and the Gysin sequence of
the fibrations only depend on the topology of the triple (X;, X[1];, 2[2];). Thus
the homology of each of the pieces of M is determined. The Mayer—Vietoris exact
sequences needed to recover the homology of M in terms of the homology of the
pieces are also determined by the topology of the triple. (]

We continue with the proof of the proposition. The list of cases is the following:

Case 1. Suppose f = (g1.82) - (52 5%) - (5)) with g1, g2, g3, g4 independent

variables (note that the role of g3 and gs can be interchanged, and hence this case
also studies the case where g1, g2, g4. g5 are independent variables). In this case, we
can take coordinates such that g; = x; fori = 1,...,4,and g5 = ax;z + bx§ + ¢,
being ¢ a sum of higher order terms.

Consider the following family of functions:

_ NE: o (!
Ji = (x1,x2) (x4 axs + bxZ + “b) (xz) .

Itisclearthat f{ = f. Forany the singular set 3 is smooth, the set 2[1] is the surface
given by the suspension of two smooth branches with intersection multiplicity equal
to 2, and the set 3|2] is just the origin. After a perturbation the triple (2, X[1], 2[2])
becomes a triple which has the topology of

((C3, Vi{zi(z1 + Z% -1+ 232, V(zl,z§ —1,z3))

independently of 7. Moreover in the generic perturbation there are no A; points
appearing outside ¥ for any /. Therefore, by Lemma 9.7 in order to compute the
homology of the Milnor fibre we may assume = 0.

Write fo = x7x3 +2x1X2X4 +axsx3 +bxsxZ = (x3 +ax3)xs + (2x1x2)x4 +
bx3x2. Since it is quasi-homogenous, we can take infinite Milnor radius and we are
reduced to compute the homology of:

(x7 + ax2)x; + (2x1x2)x4 + bx3x2 = L.

Projecting to (x1, x2), we see that there exists a preimage if and only if (x¥ +
ax%, xlxz,bxg) £ (0,0, 0), that is, everywhere except in the point (x1, x2) = (0, 0).
It can be easily checked that the fibre over each point is contractible, and hence the

Milnor fibre Fy, has the homotopy type of C2 \ {0} ~ S°.
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Case 2. Suppose
_ (83 &4 (&1
J =1(g1,82) (g4 gs) (gz)
with g1, g2, g3, g5 independent variables. We can write
X3 84 X1
= (X1, x . . ;
e (359 (2)

where g4 = ax1 + bxy + xf + ¢, being ¢ again a sum of higher order terms. After
an appropriate change of basis in x; and x, we get

_ ) X3 ax1+bx2+xﬁ+¢. (x1
Pt (ax1-|-bx2_|_xj_|_¢> Xs X2
= (x1 — : X axi1+bxp+ x5+ x3+ ¢
= (x1 — X2.x2) (ax1+bxz+X3+x‘%+¢ 2ax1 + 2bxy + x5 + x5
Y 2
X2
g xi—xp)- [ 2Tt as b s amtbxztastait

X2
X1 — X2

which falls into the previous case.
Case 3. Suppose [ = (g1.82) - (52 &%) - (§1) with g1 and g, are not linearly
independent variables. After a change of base, we may assume that f is of the form

7= (20 (7)

where g has a Taylor development starting by a generic quadric. Like in Case 1, using
Lemma 9.7 and an appropriate family f;, we may reduce the to the case in which
q :x%—l—x%—l—x%—l—xi—l—xé.

The triple (2, 2[1], £[2]) and its deformations (Xs, X[1]s. 2[2]s) when we move
s in the base ' of the unfolding are always contained in the hyperplane x; = 0. We
restrict to this hyperplane and forget the variable x; for the rest of the analysis of this
case.

In this hyperplane, the 1.c.i.s. 2 is given the hypersurface ¢ = 0, and the singular
locus of det = x3-x5— xf is the x5-axis. When we consider the Milnor fibre q_l (s),
it intersects the x; axis in two points. These two points correspond to two vanishing
cycles S1, S2 in the Milnor fibre ¥ of X[1] = V(x1,q.det). Each vanishing cycle
S; corresponds to a point p; € X[2];, which gives a class §; in Hs(M;Z). We
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need to prove that the classes 81 and 8, are equal. Running in this particular case
the geometric considerations made for the proof of Equality (25) in the proof of
Lemma 9.1, we observe that if we find a vanishing cycle S5 in ¥ meeting each §;
and S, transversely at a point, we can use it and the fibrations above it, in order to
express the chain §; — §; as a boundary.

The critical locus of the germ (g, det): C* — C? consists of four linear com-
ponents, whose parametrisations are given by (£,0,0,0), (0,£,0,1), (0,7,0,—¢) and
(0,0, ¢, 0) respectively. The corresponding components of the discriminant are para-
metrised as follows: (£,0), (2¢2,12), (212, —£?) and (¢2, —£?). Since we are working
on the Milnor fibre of g, we are looking at the preimage of the set {(x, y) € C? |
x = 1}. In that line, the point (1, 0) correspond to the values where we want to
look for the vanishing cycle touching the two critical points, which are (1,0, 0, 0) and
(—1,0,0,0). In order to track how this cycle vanishes, we will consider the interval
(1, €), where € ranges from O to % We will consider the expansion of ¢ and det based
at the point (0, %, 0, %):

g=x2+~2x3 +x2+ 52+ V2xs +x2+1,

1 1
det = — + —(x3 + X5) + x3x5 — xf.

2 V2

For a fixed € € [0, %], the fibre over the point (1, ¢) is given by
| |
§w2+\/§w+x§—|—§zz+xﬁ =0,

x§—|—3xf—|—22 =1-—2¢
where w = (x3 + X5), 2 = X3 — X5.
The real solutions of x7 + 3x7 + z2 = 1 — 2¢ are a single point if € = % and
a 2-sphere if € € [0, l). Fixed x;, x4 and z, there are two possible choices for w,

except when the discriminant of %wz + 2w + x5 + %22 + x7 vanishes, that is,
when x3 + %22 + xZ = 1. But this condition, together with x5 + 3x] +z2 = 1 —2¢
implies 4x + z? = —4e, which does not have real solutions if € > 0. Since S? is
simply connected, the only possible double cover over it is two copies of §2. That is,
we have two copies of S2 over each point between (1, 0) and (1, 1); this two spheres
collapse when we go to (1, 1), and they intersect in two different points at (1, 0).
This two points of intersection are precisely (1, 0,0,0) and (—1, 0,0, 0), which are
the singular points of det at ¢ = 1. Any of this two spheres is a vanishing cycle as
we are looking for.
Case 4. If f is of the form

x3 x4 0O X1

f = (x15x25g6) . x4 xS 0 . x2
o o 1/ \g
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with the linear part of g¢ linearly dependent with x1, x,, x3, x4, x5, the configura-
tions (X, Z[1], ¥|2]) and its deformations (X5, £|1]s, X[2|s) are easily checked to
be suspensions of those in the previous case. Since all the method depends on this
configuration, this case can be treated in the same way as the previous one. U

9.3. The case of corank (H(f)(0)) = 1. Let us compute the homology of M in
the special case in which corank(H( f)((Q)) = 1. If one recalls the decomposition
of M given in Section 5 we observe the equalities By = det(H(f))~1(0) and
X = B. Moreover By is smooth and diffeomorphic to the Milnor fibre of the i.c.i.s.
det(I1( fo))~1(0), and hence we have the homotopy equivalence

Bo ~ \/ SZ.
1

The space B fibres over By with fibre homotopic to 8”3, and B, fibres over By
with fibre S"~*. Since By is simply connected, both fibrations are orientable. Using
the Gysin sequence of these fibrations we get that H(B;7Z) = Z fork = n — 3,0,
H (B;7) = Z" fork = n— 1,2, and 0 otherwise. Adding the Lefschetz thimbles

as in Subsection 9.2, we obtain that
Hy1(M; Z) = 9T Ho,
Hy 3(M;Z) = Z,
Hy(M; 7)) = ZH0,
Ho(M: Z) = Z,

and the rest of the homology groups are trivial.

10. The homology of the Milnor fibre

Once we have computed the homology of M we can use Proposition 3.1 to compute
the homology of the Milnor fibre of f.

Since the tubular neighbourhood 7' is homotopy equivalent to the Milnor fibre of
25 of the 3-dimensional i.c.i.s. 2p we have

Ho(T;7) = Z,
Hs(T:7) = T,
H/(T:Z) =0

for any other 7.
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Running the Mayer—Vietoris exact sequences used in order to compute the higher
homology of M, we obtain easily that the inclusion of M in T gives clearly an
isomorphism in the ff; when n > 7 and i < 3. Hence we have the vanishing
Hi(T,M;Z) = 0forl <i <4, and the isomorphism H; (T, M; Z) = H;(M; Z)
fori > 4.

We have obtained:

Theorem 10.1. Let pg and py be the Milnor numbers of the i.c.i.s. (g1,...,8n—3)
and (det(H(f)), g1.--..8n—3). The homology of the Milnor fibre is the following:

« Ifcorank(H( f)(0) = 3:
Hn—l(Ff; Z) o~ Z,LLO+2,LL1—4CL+1+#A1 ,
i (FrZ) =0

ifl<k<n-2,
Hy¥p:Z)=7.

* Ifcorank(H(f)(0) = 2:
Hn—l(Ffa Z) ~ Z,LL0+2,LL1—4CL+2+#A1 ’
Hy(Fr;Z2) =0

ifl<k<n-3,
Ho(Fy:2) = 7.

* Ifcorank(H(f)(0) = I:
Hyer(Fy 3 2) = 2%,

Hy(Fp;Z2) =0
ifk=n—-2andifl <k <n—4,
Ho(Fp:Z) = 7.

e Ifcorank(H(f)(0) = 0:
Hy (Fp; Z) = 770,
Hy—a(Fp; 7) = 7,
Hi(Fp;Z) =0
ifk=n—-2n—-3andl <k <n-—4
Ho(Fp:Z) = 7.
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Proof. Our computations work for the case corank(H ( f)(0)) > 0,ifn > &. In order
to remove this restrictions we notice that by Thom—Sebastiani theorem the Milnor
fibre of f + z? with z a new variable is the suspension of the original Milnor fibre,
and that the case corank(H( f)(0)) = 0 was proved by Némethi in [15]. O

11. The homotopy type of the Milnor fibre

Once we have computed the homology of the Milnor fibre, we will use it to recover
its homotopy type.

Proposition 11.1. The Milnor fibre ¥y is simply connected if corank(h; ;(0)) # 0.

Proof. Since the critical set is of dimension 3, the Kato—Matsumoto bound [10] tells
us that the Milnor fibre is (7 — 5)-connected. Thus, if # > 6 we have that the Milnor
fibre Fy is simply connected. For the case where n = 5, we will need the following
reasoning.

Let Zq,..., 444, be representatives of the vanishing cycles of F, corresponding
to the A; points that appear outside 2 in a generic deformation. Let C(Z;) denote
the cone over Z;. Let C(x) be the cylinder of the mapping

e M— 2.

The space C(m) is simply connected because it admits the simply connected space
Y5 as a deformation retract.
By construction we have that

#A41
FyUC(m) U C(Z))
i=1

is homotopy equivalent to the contractible space X; (see Section 3). Since each Z; is
homeomorphic to S*#, by Seifert—Van Kampen theorem, the gluing of the C(Z;) has
no effect over the fundamental group, since both 1 (C($*)) and 7{(S*) are trivial.
The same reasoning tells us that, if 3 (M) is trivial, so must be 7y (Fy).

The space M is abtained from X by gluing the preimage by 7 of several Lefschetz
thimbles. These pieces are topologically D3 x S! glued along §2 x §!. By Seifert—
Van Kampen theorem, if 771 (X) is trivial, the aditios of these pieces does not change
the fundamental group. So, to prove that wy(M) = 0 it is enough to prove that
(X)) = 0.

We may compute 71 (X)) using Seifert—Van Kampen with the decomposition

X=BUA U---UA,.
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In Section 5 it is shown that each of the pieces of the above decomposition is, up to
homotopy, a fibration over the corresponding piece of the following decomposition:

%5 Ndet(H(Fy)™H0) = By U A1(£) U--- U A4(0).

The fibres are always spheres of dimension at least 2. Using this it is easy to see
that the computation of 71 (X)) by Seifert—Van Kampen mimics the computation of
71(Zs Ndet(H(F;))~1(0)), but this space is simply connected (in fact a bouquet of
2-spheres). 0

We now have all the necessary ingredients to prove our Bouquet Theorem.

Theorem 11.2. The Milnor fibre of a singularity over a 3-dimensional i.c.i.s. with
Jfinite extended codimension has the homotopy type of a bouquet of spheres of number
and dimensions as in Theorem 10.1.

Proof. From Proposition 11.1 we know that the Milnor fibre 1s simply connected.

In the case where corank H{ /)(Q) = 2 (that is, a # 0) we have computed the
integer homology, getting that H,,_(Fs;Z)) and H,,_,(Fy;Z) are free and finitely
generated and H; (Ff; 7)) = 0 otherwise. In this situation, since the Milnor fibre has
the homotopy type of a (n — 1)-complex, we can apply [15], 2.2, and [15], 2.3, and
we get the result.

If corank (H ( f )(Q) = 0 the result is covered by Theorem 4.1 of [15].

We are left with the case in which corank(H( f)(O) = 1. By Criterion 2.2 in
[15], we only need to represent each generator of the non-zero homology groups by
a chain modelled in a sphere. When corank(H( f)(O) = 1, in the decomposition
of M given in Section 5 we have that B coincides with X, that B,, is diffeomorphic
to By, which are Milnor fibres of the 2-dimensional i.c.i.s. X9 N V(det(H( f))) and
that the fibration (11) becomes a homotopy S"~3-fibration

p: X — By = B,. (32)

The generator of H,—3(Fy:Z) is the Gysin lift of the generator of Ho(B:Z),
and hence it is represented by a sphere. By homology splitting, the generators of
H,_1(Fr;Z) come from two different places:

* those coming from the A-singularities of f; outside X, which are clearly
represented by spheres (the vanishing cycles of the 4-singularities).

* Those coming from H,,_q (M; Z), which come in turn from two different places:
(1) the ones coming from the image of H,_1(X:7Z) in H,_1(M; Z), which
are Gysin-liftings over the vanishing cycles of B, of the fibration (32).

(2) Those coming from the addition to X of the spaces €; (see the decom-
position formula (23)). Recall that each €; is the product of a Lefschetz
thimble associated to a vanishing cycle of B, = {det(H(f;) = u} N X
with the homotopy-sphere $"~#, which is the fibre of the fibration (21).
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In the rest of the proof we will represent the cycles of types (1) and (2) by spheres.
In order to start we claim that the fibration of (n — 3)-spheres over By is trivial.

Let us prove the claim. Since By is a bouquet of 2-spheres given by vanishing
cycles it is enough to prove that the fibration, restricted to each of the vanishing
cycles of By is trivial. Choose a vanishing cycle C;. Move the parameter s so that s is
very close to a parameter sg in which X N V(det(( f;))) acquires an A singularity to
which the vanishing cycle C; collapses. In this situation a local change of coordinates
shows that to prove that the fibration is trivial over C; is equivalent to prove that the
fibration of (n — 3)-spheres associated to the function

n
f=0F+x3 +adxi+ ) xf

=5

is trivial over the vanishing cycle of the restriction of x + x2 + x2 to V(xy4, . .., x,).
Proving this is an easy local computation.

Let us represent the generators of type (1). By the claim the group H,—1(X; Z)
is generated by chains of the form

r:Ssz”_3—>XCMCFf,

where 7(S? x §"73) is a Gysin lift of a vanishing cycle C; of By by the fibration (32).

Choose a section s of this fibration such that s(C;) is inside 7($% x $"3). For
n = 5, the sphere s(S?) is trivial in H,(X; Z), since this group is generated by the
fibre. This implies that it is also zero in H» (Ff : Z.), and, by Hurewicz’s Theorem,
it is also trivial in 7, (Fy). For n > 5 the triviality of s(S?) in 72(F;) holds by
the connectivity of the Milnor fibre. This means that s(S? x {point}) can be killed
by a 3-disc inside Fy. By Lemma 4.5 of [15], we have that the homology class
[2(S? x §"3)] can be represented by a sphere of dimension (17 — 1).

We deal now with cycles of type (2). The space €; is the product of a Lefschetz
thimble I.; associated to a vanishing cycle C; of B, with the sphere §"*. which
is the homotopy-fibre of the fibration (21). Recall that over B,, we have in fact a
fibration of pairs with fibre homotopic to (§"3, §"~*) being S”~* embedded as the
equator of $"73. Consider a collar K = dL; x [0, 1] of L; in the 3-cell L;. We
deform continuously the chain given by the embedding of L x §"™* in M so that
fibrewise S"~# is the equator of "3 over any point of the internal boundary of the
collar and so that S"~* is collapsed to the north pole of $”~3 at the external boundary
dL; of the collar. The resulting chain is called

@: Li x 8" — Fy.

The mapping
s:0L; = X C Fy
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which assigns to a point of dL; the north pole of the fibre $”~3 has been seen before
to be the trivial element in 2 (F¢). Therefore there exists a 3-disk L’ bounding 97;
and an extension

s’ L' — F,

of 5. The identification L | J, L L' along their common boundary is a 3-sphere. A
representative of our homology class is given by the chain

Y (L | L)Yx8"* =5 F
oL;

defined by V| ygn—4 1= @ and Y|/ xgn—4 := 8" o pry, where pry is the projection of
L’ x§"* to the first factor. Notice that the source of  is a product of spheres, which
we view as a trivial fibration of §"~* over L J, L, L= S3, and that  factorises
through the result of collapsing to a point the fibre over any point of /. Again
Lemma 4.5 in [15] represents the homology class by a sphere. U

12. Examples

Despite the apparent simplicity of the homotopy type of the Milnor fibre of the class
singularities considered in this paper, it is possible to find among them unexpected
topological behaviours which at the moment have not been observed in singularities
with smaller critical set. As an illustration of this we summarise here the properties of
a family of examples, which fall in the general class studied in this paper, and which
was used in [5] to produce counterexamples to several old equisingularity questions.

Example 12.1. Let ¢ a possibly identical to 0 convergent power series in a variable x;.
Define

fo: (C°,0)—>C

by

If ¢ is not identical to O the function f,, is of finite codimension with respect to
the ideal I = (y1, y2). The critical set X = V{(yy, y2) is 3-dimensional and smooth.
It is easily checked that the 7-unfolding

ord{g)—2
Fpi=fot+ Y uixiyl, (33)
i=0
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where ord(g) denotes the order of the series ¢ in x4, is the versal /-unfolding of £, in
the sense of [16] and [4]. Hence we can obtain all 7 -unfoldings of f,, by considering
deformations of the form

ord(g)—2

¢+ Z tl-xi.
i=0
Notice that the determinant
det [ ( f,) = x3(p(x1) — x3) —x5: (%, 0) - C

has a singularity at the origin of type A3 q4(p)—1- An easy computation shows that if
( fo)s is a generic deformation of £, in its versal /-unfolding, the cardinality of the
set 2|2|; of points where H ( f2) has corank precisely 2 is equal to ord(g).

It 1s also easy to check that for any s in the base of the versal / unfolding the
critical set of f; is equal to ¥ = V{(yy, y»). Hence there are no A; points popping
out of X in a generic 7/-unfolding of f,.

Noticing that corank(H ( f,))(0) = 2 we may apply Theorem 10.1 to show that
the Milnor fibre is 2-connected, with third Betti number equal to 1 and fourth Betti
number equal to

by = pro+2u1 —4a+2+#41 =04+ 2Qord(¢) — 1) —4ord(p) +2 4+ 0 =0,

which, surprisingly, is independent of ¢. By Theorem 11.2 we conclude that the
Milnor fibre of f,, is homotopy equivalent to a 3-sphere. The remarkable fact is that
the homotopy type of the Milnor fibre is independent on ¢ and at the same time the
topology of the pair of germs

(2, 0), (X[l]s, 0)) (34)

depends heavily on the value s in the base of the versal unfolding.

In [5] it is shown that in fact the diffeomorphism type of the Milnor fibration
of the germ f, and the generic Lé-numbers are independent of ¢. Using that the
topology of the pair (34) depends on s it is also proven that the topology of the
abstract link of f, does depend on ¢. This kind of examples and their stabilisations
are at the moment the only known families of examples with constant L.é numbers
and constant Milnor fibration and changing topological type. They answer negatively
a question of D. Massey in [12]. In [5] modifications of these examples are also used
to give the first known counterexample of Zariski’s Question B of [24]. Also in [5]
these examples were used to construct a family of reduced projective hypersurfaces
with constant homotopy type and changing topological type (therefore most classical
algebro-topological invariants cannot detect the change in topology).
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