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Moduli spaces of hyperbolic 3-manifolds and dynamics
on character varieties

Richard D. Canary and Peter A. Storm*

Abstract. The Space T//(M) of marked hyperbolic 3-manifold homotopy equivalent to a

compact 3-manifold with boundary M sits inside the PSL2(C)-character variety X(M) of
TTi (Af). We study the dynamics of the action of Out(jri (Af)) on both A//(Af) and X(Af). The
nature of the dynamics reflects the topology of Af.

The quotient Af(Af) A//(M)/Out(jri (Af)) may naturally be thought of as the moduli
Space of unmarked hyperbolic 3-manifolds homotopy equivalent to Af and its topology reflects
the dynamics of the action.

Mathematics Subject Classification (2010). 57M50.
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1. Introduction

For a compact, orientable, hyperbolizable 3-manifold Af with boundary, the defor-
mation space A//(Af) of marked hyperbolic 3-manifolds homotopy equivalent to
M is a familiar object of study. This deformation space sits naturally inside the

PSL2(C)-character variety X(Af) and the outer automorphism group Out(7Ti(Af))
acts by homeomorphisms on both A//(Af) and X(Af). The action of Out(7Ti(Af))
on A//(Af) and X(Af) has largely been studied in the case when Af is an interval
bündle over a closed surface (see, for example, [8], [22], [49], [18]) or a handlebody
(see, for example, [43], [54]). In this paper, we initiate a study of this action for
general hyperbolizable 3-manifolds.

We also study the topological quotient

y4/(M) v4tf(M)/Out(7n(M))

which we may think of as the moduli space of unmarked hyperbolic 3-manifolds
homotopy equivalent to Af. The space A//(Af) is a rather pathological topological
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object itself, often failing to even be locally connected (see Bromberg [12] and Magid
[35]). However, since A//(M) is a closed subset of an open submanifold of the
character variety, it does retain many nice topological properties. We will see that the

topology of A/(M) can be significantly more pathological.
The first hint that the dynamics of Out(7Ti (M)) on A//(M) are complicated was

Thurston's [51] proof that if M is homeomorphic to x /, then there are infinite
order elements of Out(7Ti (M)) which have fixed points in A//(M). (These elements

are pseudo-Anosov mapping classes.) One may further show that A/(iS x /) is not
even Ti, see [18] for a closely related result. Recall that a topological space is 7i if
all its points are closed. On the other hand, we show that in all other cases A/(M)
is Ti.

Theorem 1.1. M Z?c a compact ZzypcrZ?oZzzaZ?Zc 3-mam/oZcZ wzYZz zzcm-aZ?cZzazz

/zmc/amczztaZ groz/p. TTzczz ^Zzc moc/z/Zz spacc A/(M) zs 7i z/azzc/ cmZy z/M zs zzctf an
zmftvntccZ mtervaZ ZmmZZc.

We next show that Out(7Ti (M)) does not act properly discontinuously on A//(M)
if M contains a primitive essential annulus. A properly embedded annulus in M is

a primitive essential annulus if it cannot be properly isotoped into the boundary of
M and its core curve generates a maximal abelian subgroup of tti (M). In particular,
if M has compressible boundary and no toroidal boundary components, then M
contains a primitive essential annulus (see Corollary 7.5).

Theorem 1.2. M Z?c a compact ZzypcrZ?aZz'zaZ?Zc 3-mam/oZcZ wzYZz zzcm-aZ?cZzazz/zm-

cZamczztaZ groz/p. 7/*M ccmtams aprzmzYzvc csscn/faZ amzz/Zz/s ^Zzczz Out(jri (M)) cZocs

nof acf propcr/y cZAcanzfmzazcs/y on A//(M). Morcovcr, z/M conPzzn.s a przmztzvc
cvscn/faZ annzzZzz^, ^Zzcn A/(M) zs no£ //azzscZoz/^

On the other hand, if M is acylindrical, i.e. has incompressible boundary and

contains no essential annuli, then Out(jri(M)) is finite (see Johannson [29], Propo-
sition 27.1), so Out(jri(M)) acts properly discontinuously on A//(M) and X(M).
It is easy to see that Out(jri(M)) fails to act properly discontinuously on X(M) if
M is not acylindrical, since it will contain infinite order elements with fixed points
in X(M).

If M is a compact hyperbolizable 3-manifold which is not acylindrical, but does

not contain any primitive essential annuli, then Out(jri(M)) is infinite. However,
if, in addition, M has no toroidal boundary components, we show that Out(jri (M))
acts properly discontinuously on an open neighborhood of A//(M) in X(M). In
particular, we see that A/(M) is Hausdorff in this case.

Theorem 1.3. 7/*M z*5 a compact ZzypcrZ?oZzzaZ?Zc 3-mam/oZcZ wzYZz zza przmzYzvc cvsczz-

ZfaZ amzz/Zz wZzosc Z?azzzzcZary Zzas zza forozcZaZ Z?azzzzcZary compcmczzfa, ^Zzczz ^Zzcrc cvzsfa
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an open Out(tti (M))-ZnvarZan/meZgZzZ?orZzoocZ IL(M) o/AZ/(M) Zn X(Af) sncZz £Zza£

Out(jri (Af)) actaproperZy cZZscon/rnnonsZy on IL(M). 7npar/ZcnZar, ^4/(M) Zs//ans-

<for#

If Af is a compact hyperbolizable 3-manifold with no primitive essential annuli
whose boundary has no toroidal boundary components, then Out(jri(M)) is virtu-
ally abelian (see the discussion in Sections 5 and 9). However, we note that the
conclusion of Theorem 1.3 relies crucially on the topology of Af, not just the group
theory of Out(jri(M)). In particular, if Af is a compact hyperbolizable 3-manifold
Af with incompressible boundary, such that every component of its characteristic sub-

manifold is a solid torus, then Out(jri(M)) is always virtually abelian, but Af may
contain primitive essential annuli, in which case Out(jri(M)) does not act properly
discontinuously on AZ/(M).

One may combine Theorems 1.2 and 1.3 to completely characterize when

Out(jri(M)) acts properly discontinuously on AZ/(M) in the case that Af has no
toroidal boundary components.

Corollary 1.4. Le£ Af Z?e a compact ZzyperZ?oZZzaZ?Ze 3-man?/oZcZ wZrfz no toroZcZaZ

Z?onncZary component ancZ non-aZ?cZZan/nncZamcn^aZ gronp. 77ze gronp Out(jri (Af))
acta properZy cZZ.sconPnnon.sZy on 4//(A/) Z/* ancZ onZy Z/* A/ conton.s no prZnn/Zve
essen/raZ annnZZ. Moreove?; A7(M Zs //anscZo/j^z/ancZ onZy z/M confaZns noprZmZ/rve
essen/raZ annnZZ.

It is a consequence of the classical deformation theory of Kleinian groups (see

Bers [5] or Canary and McCullough, Chapter 7 in [17], for a survey of this the-

ory) that Out(jri(M)) acts properly discontinuously on the interior int(AZ/(M)) of
AZ/(M). If //« is the handlebody of genus n > 2, Minsky [43] exhibited an ex-

plicit Out(jri (//^-invariant open subset PS(^) of X(//„) such that int(AZ/(//„))
is a proper subset of P*S(//„) and Out(jri (//„)) acts properly discontinuously on

If Af is a compact hyperbolizable 3-manifold with incompressible boundary and

no toroidal boundary components, which is not an interval bündle, then we find an

open set JL(Af) strictly bigger than int(AZ/(M)) which Out(jri(M)) acts properly
discontinuously on. See Theorem 9.1 and its proof for a more precise description of
fL(M). We further observe, see Lemma 8.1, that JL(Af) PI 9AZ/(Af) is a dense open
subset of 9AZ/(Af) in this setting.

Theorem 1.5. Le£MfeacompactZzyperZ?oZZzaZ?Ze3-mam/oZcZwZz/znonemp/yZncom-
pressZZ?Ze Z?onncZary ancZ no toroZcZaZ Z?onncZary components, wZn'cZz Zs not an ZntervaZ

ZmncZZe. TTzen tZzere evZsts an open Out(tti (M))-ZnvarZant snfeset IL(M) o/X(M)
sncZz tZzat Out(7Ti(M)) acts properZy cZZscontZnnonsZy on IL(M) ancZ int(AZ/(M)) Zs

a proper snfeset o/IL(M).
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It is conjectured that if ZW is an untwisted interval bündle over a closed surface
*S, then int(A//(ZW)) is the maximal open Out(^i(M))-invariant subset of X(ZW)
on which Out(7Ti (ZW)) acts properly discontinuously. One may show that no open
domain of discontinuity can intersect 3A//(*S x /) (see Lee [34]). Further evidence

forthisconjectureisprovidedbyresults ofBowditch [8], Goldman [21], Souto-Storm
[49], Tan-Wong-Zhang [54] and Cantat [19].

Michelle Lee [34] has recently shown that if ZW is an twisted interval bündle over
a closed surface, then there exists an open Out(jri (ZW))-invariant subset IL of X(ZW)
such that Out(jri(M)) acts properly discontinuously on IL and int(A//(ZW)) is a

proper subset of IL. Moreover, IL contains points in 3A//(ZW). As a corollary, she

proves that if ZW has incompressible boundary and no toroidal boundary components,
then there is open Out(jri (ZW))-invariant subset IL of X(ZW) such that Out(jri (ZW))

acts properly discontinuously on IL, int(A//(ZW)) is a proper subset of IL, and

IL f! 3A//(ZW) / 0 if and only if ZW is not an untwisted interval bündle.

Outline of paper. In Section 2, we recall background material from topology and

hyperbolic geometry which will be used in the paper.
In Section 3, we prove Theorem 1.1. The proof that A/(aS x /) is not Li follows

the arguments in [18], Proposition 3.1, closely. We now sketch the proof that A/(ZW)
is Li otherwise. In this case, let TV e A/(ZW) and let A be a compact core for ZV. We
show that ZV is a closed point, by showing that any convergent sequence {p„} in the

pre-image of ZV is eventually constant. For all/z, there exists a homotopy equivalence
/z^ : ZV/ —> ZV such that (/z^)* p«. If G is a graph in ZW carrying tti(ZW), then,
since {p„} is convergent, we can assume that the length of /z«(G) is at most AT, for
all /z and some AT. But, we observe that /z„ (G) cannot lie entirely in the complement
of A, if A is not a compression body. In this case, each /z„(G) lies in the compact
neighborhood of radius AT of A, so there are only finitely many possible homotopy
classes of maps of G. Thus, there are only finitely many possibilities for p„, so {p„ } is

eventually constant. The proof in the case that A is a compression body is somewhat

more complicated and uses the Covering Theorem.
In Section 4, we prove Theorem 1.2. Let 4 be a primitive essential annulus in

ZW. If a is a core curve of A, then the complement ZW of a regulär neighborhood of
a in ZW is hyperbolizable. We consider a geometrically finite hyperbolic manifold ZV

homeomorphic to the interior of ZVf and use the Hyperbolic Dehn Filling Theorem
to produce a convergent sequence {p„} in A//(ZH) and a sequence {<p„} of distinct
elements of Out(jri (ZW)) such that {p„ o^} also converges. Therefore, Out(jri (ZW))
does not act properly discontinuously on A//(ZW). Moreover, we show that {p„}
projects to a sequence in A/(ZW) with two distinct limits, so A/(ZW) is not Hausdorff.

In Section 5 we recall basic facts about the characteristic submanifold and the

mapping class group of compact hyperbolizable 3-manifolds with incompressible
boundary and no toroidal boundary components. We identify a finite index subgroup
/(ZW) of Out(jri (ZW)) and a projection of /(ZW) onto the direct product of mapping
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class groups of the base surfaces whose kernel X(M) is the free abelian subgroup
generated by Dehn twists in frontier annuli of the characteristic submanifold.

In Section 6, we organize the frontier annuli of the characteristic submanifold
into characteristic collections of annuli and describe free subgroups of tti (M) which
register the action of the subgroup of Out(7Ti(M)) generated by Dehn twists in the
annuli in such a collection.

In Section 7, we show that compact hyperbolizable 3-manifolds with compressible
boundary and no toroidal boundary components contain primitive essential annuli.

In Section 8, we introduce a subset (M) of A//(M) which contains all purely
hyperbolic representations. We see that int(A//(M)) is a proper subset of A//„(M)
and that A//„(M) A//(M) if M does not contain any primitive essential annuli.

In Section 9, we prove that if M has incompressible boundary and no toroidal
boundary components, but is not an interval bündle, there is an open neighborhood
JT(M) of in X(M) such that Out(7Ti(M)) preserves and acts properly
discontinuously on fL(M). Theorems 1.3 and 1.5 are immediate corollaries. We

finish the outline by sketching the proof in a special case.

Let X be an acylindrical, compact hyperbolizable 3-manifold and let A be an

incompressible annulus in its boundary. Let L be a solid torus and let {i?i,..., i^}
be a collection of disjoint parallel annuli in 3L whose core curves are homotopic to
the power of the core curve of L where |«| > 2. Let {Mi,..., M„} be copies
of X and let {Ai,..., be copies of A in M;. We form M by attaching each

M; to L by identifying A; and 5/. Then M contains no primitive essential annuli,
is hyperbolizable, and Out(7Ti(M)) has a finite index subgroup /(M) generated by
Dehn twists about {Ai,..., In particular, /(M)

In this case, {^41,..., is the only characteristic collection of annuli. We say
that a group // registers /(M) if it is freely generated by the core curve of L and, for
each z, a curve contained in L U M; which is not homotopic into L. So // i^+i.
There is a natural map r# : X(M) T(//) where T(//) is the PSL2(C)-character
variety of the group //. Notice that /(M) preserves // and injects into Out(//). Let

S„+1 int04tf(tf)) c
denote the space of Schottky representations (i.e. representations which are purely
hyperbolic and geometrically finite.) Since Out(//) acts properly discontinuously on

Sh+i, we see that /(M) acts properly discontinuously on

Wfc =r^(S»+i)
Let fL(M) U IL// where the union is taken over all subgroups which register

/(M). Notice that fL(M) is open and /(M) acts properly discontinuously on fL(M).
One may use a ping pong argument to show that ^4//(M) C fL(M), see Lemma 8.3.

Johannson's Classification Theorem is used to show that fL(M) is invariant under

Out(jri (M)), see Lemma 9.3. (Actually, we define a somewhat larger set, in general,
by using the space of primitive-stable representations in place of Schottky space.)
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2. Preliminaries

As a Convention, the letter Af will denote a compact connected oriented hyperbolizable
3-manifold with boundary. We recall that Af is said to be hyperbolizable if the interior
of Af admits a complete hyperbolic metric. We will use Af to denote a hyperbolic
3-manifold. All hyperbolic 3-manifolds are assumed to be oriented, complete, and

connected.

2.1. The deformation spaces. Recall that PSL2(C) is the group of orientation-
preserving isometries of Given a 3-manifold Af, a discrete, faithful representation

p: tti(M) -> PSL2(C) determines a hyperbolic 3-manifold Afp Et^/p(7Ti(M))
and a homotopy equivalence : Af -> Afp, called the marking of Afp.

We let Z)(M) denote the set of discrete, faithful representations of tti(M) into
PSL2OC). The group PSL2OC) acts by conjugation on Z)(M) and we let

y47/(M) D(M)/PSL2(C).

Elements of A//(M) are hyperbolic 3-manifolds homotopy equivalent to Af equipped
with (homotopy classes of) markings.

The space A//(M) is a closed subset of the character variety

X(M) Homr0ri(M),PSL2(C))//PSL2(C),

which is the Mumford quotient of the space Horner (tti (Af), PSL2(C)) of representa-
tions p: tti (Af) -> PSL2(C) such that p(g) is parabolic if g 7^ id lies in a rank two
free abelian subgroup of tti(M). If Af has no toroidal boundary components, then

Hom^(7Ti(M), PSL2(C)) is simply Hom(7Ti(Af), PSL2(C)). Moreover, each point
in A//(M) is a smooth point of A(M) (see Kapovich [30], Sections 4.3 and 8.8, and

Heusener-Porti [24] for more details on this construction).
The group Aut(jri(Af)) acts naturally on Hom^(7Ti(Af), PSL2(C)) via

(^•p)(y) := p(<?~'(y))-

This descends to an action of Out(jri (Af)) on A//(M) and A(M). This action is not
free, and it often has complex dynamics. Nonetheless, we can dehne the topological
quotient space

.4/(M) v4tf(M)/Out(7n(M)).
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Elements of A/(M) are naturally oriented hyperbolic 3-manifolds homotopy equiv-
alent to Af without a specified marking.

2.2. Topological background. A compact 3-manifold Af is said to have mcom-
prevs/We ZwwmZary if whenever S is a component of 3M, the inclusion map induces

an injection of tti (*S) into tti (Af). In our setting, this is equivalent to tti (Af) being
freely indecomposable. A properly embedded annulus A in Af is said to be essen-
ft'aZ if the inclusion map induces an injection of tti (A) into tti (Af) and A cannot be

properly homotoped into 9M (i.e. there does not exist a homotopy of pairs of the

inclusion (A, 3A) -> (Af, 3M) to a map with image in 3M). An essential annulus A
is said to be pnVraY/ve if the image of tti (A) in tti (Af) is a maximal abelian subgroup.

If Af does not have incompressible boundary, it is said to have compress/iZe
Zwwndary. The fundamental examples of 3-manifolds with compressible boundary
are compression bodies. A cöm/?ress/ön Zwdy is either a handlebody or is formed by
attaching 1-handles to disjoint disks on the boundary surface F x {1} of a 3-manifold
F x [0,1] where F is a closed, but not necessarily connected, surface (see, for example,
Bonahon [6]). The resulting 3-manifold C (assumed to be connected) will have a

Single boundary component 3+C intersecting F x {1}, called the positive (or external)
boundary of C. If C is not an untwisted interval bündle over a closed surface, then

9+C is the unique compressible boundary component of C. Notice that the induced

homomorphism tti(3+C) -> tti(C) is surjective. In fact, a compact irreducible
3-manifold Af is a compression body if and only if there exists a component S of
9M such that tti(S) -> tti(M) is surjective.

Every compact hyperbolizable 3-manifold can be constructed from compression
bodies and manifolds with incompressible boundary. Bonahon [6] and McCullough-
Miller [40] showed that there exists a neighborhood Cm of 3Af, called the cA<zrac-

tensft'c compress/on Zwdy, such that each component of Cm is a compression body
and each component of 3 Cm — 9M is incompressible in M.

Dehn Alling will play a key role in the proof of Theorem 1.2. Let F be a toroidal
boundary component of compact 3-manifold Af and let (m, Z) be a choice of meridian
and longitude for F. Given a pair (/?, g) of relatively prime integers, we may form a

new manifold M(/?, #) by attaching a solid torus F to Af by an orientation-reversing
homeomorphism g: 3F —F so that, if c is the meridian of F, then g(c) is a

(/?, curve on F with respect to the chosen meridian-longitude System. We say that

M(/7, #) is obtained from Af by (/?, ^)-D^An^ZZZng ß/ong F.

2.3. Hyperbolic background. If A M^/T is a hyperbolic 3-manifold, then
T C PSL2(C) acts on C as a group of conformal automorphisms. The doraam

ß(r) is the largest open T-invariant subset of C on which T acts

properly discontinuously. Note that £2(T) may be empty. Its complement A(T)
C — ^ (T) is called the Z/razY The quotient 3^A £2 (T) / T is naturally a Riemann
surface called the con/orm^Z feownJßry.
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Thurston's Hyperbolization theorem, see Morgan [44], Theorem P', guarantees
that if Af is compact and hyperbolizable, then there exists a hyperbolic 3-manifold
TV and a homeomorphism

f: M - -* N U 3^
where denotes the collection of toroidal boundary components of M.

The convex core C (Af) of TV is the smallest convex submanifold whose inclusion
into TV is a homotopy equivalence. More concretely, it is obtained as the quotient, by
T, of the convex hull, in of the limit set A(T). There is a well-defined retraction

r: TV -> C(Af) obtained by taking x to the (unique) point in C(Af) closest to x. The
nearest point retraction r is a homotopy equivalence and is ^^-Lipschitz on the

complement of the neighborhood of radius s of C(Af).
There exists a universal constant /x, called the Margulis constant, such that if

6 < /x, then each component of the c-thin part

Vhin(e) {x G AM inj,v(x) < <?}

(where inj^(x) denotes the injectivity radius of TV at x) is either a metric regulär
neighborhood of a geodesic or is homeomorphic to P x (0, oo) where P is either a

torus or an open annulus (see Benedetti-Petronio [4] for example). The c-thick part
of TV is defined simply to be the complement of the c-thin part

^thick(e) Af A^hin(e )•

It is also useful to consider the manifold Af? obtained from Af by removing the

non-compact components of Afthin(e)-

If Af is a hyperbolic 3-manifold with finitely generated fundamental group, then

it admits a compact core, i.e. a compact submanifold whose inclusion into Af is

a homotopy equivalence (see Scott [48]). More generally, if c < /x, then there
exists a rcZa/fvc compact corc P for Af?, i.e. a compact core which intersects each

component of 9Af? in a compact core for that component (see Kulkarni-Shalen [33]
or McCullough [38]). Let P 9/? — 9Af? and let denote the interior of P.
The Tameness Theorem of Agol [1] and Calegari-Gabai [14] assures us that we may
choose P so that Af? — P is homeomorphic to (9P — P®) x (0, oo). In particular,
the ends of Af? are in one-to-one correspondence with the components of 3P — P®.

(We will blur this distinction and simply regard an end as a component of Af? — P
once we have chosen c and a relative compact core P for Af?.) We say that an end
1/ of Af? is gccrncmca/Zy^mYc if the intersection of C(Af) with 1/ is bounded (i.e.
admits a compact closure). Af is said to be geometrically finite if all the ends of Af?

are geometrically finite.
Thurston [53] showed that if Af is a compact hyperbolizable 3-manifold whose

boundary is a torus P, then all but finitely many Dehn fillings of Af are hyperboliz-
able. Moreover, as the Dehn surgery coefficients approach oo, the resulting hyperbolic



Vol. 87 (2012) Moduli Spaces of hyperbolic 3-manifolds 229

manifolds "converge" to the hyperbolic 3-manifold homeomorphic to int(M). If Af
has other boundary components, then there is a version of this theorem where one
begins with a geometrically finite hyperbolic 3-manifold homeomorphic to int(M)
and one is allowed to perform the Dehn filling while fixing the conformal structure
on the non-toroidal boundary components of Af. The proof uses the cone-manifold
deformation theory developed by Hodgson-Kerckhoff [25] in the finite volume case
and extended to the infinite volume case by Bromberg [11] and Brock-Bromberg
[9]. (The first Statement of a Hyperbolic Dehn Filling Theorem in the infinite volume
setting was given by Bonahon-Otal [7], see also Comar [20].) For a general State-

ment of the Filling Theorem, and a discussion of its derivation from the previously
mentioned work, see Bromberg [12] or Magid [35].

Hyperbolic Dehn Filling Theorem. L^zZH Aeo compact, AyperAoZZzoAZe 3-raom/oZ<i
and Z^Z Ffeß ZoroZdoZ Aonndory coraponenZ <?/M. ZV Ae o AyperAoZZc

3-raom/oAi odraZzzZng an onenZoZZon-preserang AoraeoraorpAZsra /: Af — ->
ZV U 3cZV. L^Z {(/?„, #„)} Ae on Zn/raZe o/dZsZZncZpoZrs o/re/oZZveZy prZme

Zntegers.

TAen, /or o/Z sw/fcZenZZy Zorge n, zAere exZsZs o (non-/oZzA/AZ) represenZoZZon
: T -> PSL2(C) wZzA JZscreZe Zraoge sncA zAoZ

(1) {/^} converges Zo zAe ZdenZZ/y represenZoZZon o/ T, one?

(2) z/Z^ : ZH —> ZVT(/7„, #„) denoZes zAe ZncZwsion raop, zAen/or eocA n, zAere ernZs

on orZenZoZZon-preservZng AoraeoraorpAZsra

Vfiz • M(/>„, — 3^ZH(/7„, —> ZV^ U 9fZV^

sncA ZAoZo Zs conjngoZe Zo (/«)* o (Z„)*, one?zAe resZncZZon o//„ o Z„o

Zo 9c ZV Zs con/orraoZ.

3. Points are usually closed

If iS is a closed orientable surface, we showed in [18] that

AT(S) x /)/Mod+(S)

is not Ti where Mod+(*S) is the group of (isotopy classes of) orientation-preserving
homeomorphisms of S. We recall that a topological space is 7i if all points are closed
sets. Since Mod+(*S) is identified with an index two subgroup of Out(7Ti(S)), one
also expects that

X/(S X /) ^//(5 X 7)/Out(wi(5))

is not 7i.
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In this section, we show that if ZW is an untwisted interval bündle, which also

includes the case that ZW is a handlebody, then AZ(ZW) is not 7i, but that AZ(ZW) is

7i for all other compact, hyperbolizable 3-manifolds.

Theorem 1.1. Lef ZW a compact /zyperfeoZ/zaWe 3-ra<xmybZ<i wzYA non-<zZ?eZ/<zn

/wmZaraenfaZ growp. modw/z space AZ(ZW) Zs 7i z/and onZy z/ZW Zs nxtf an
wnftv/sted ZnterazZ Z?wndZe.

Aroo/ We first show that AZ(ZW) is 7i if ZW is not an untwisted interval bündle. Let

p: AZZ(ZW) -> AZ(ZW) be the quotient map and let ZV be a hyperbolic manifold in
AZ(ZW). We must show that p~*(ZV) is a closed subset of AZZ(ZW). Since AZZ(ZW)
is Hausdorff and second countable, it suffices to show that if {p„} is a convergent
sequence in p~*(ZV), then lim p„ e p~^ (ZV).

An element p e p~*(ZV) is a representation such that ZVp is isometric to ZV. Let
{p^} be a convergent sequence of representations in p~*(ZV). Let G C ZU be a

finite graph such that the inclusion map induces a surjection of tti (G) onto tti (ZW).

Each p,j gives rise to a homotopy equivalence : ZLf —> ZV, and hence to a map
ä,j|g • G -> ZV, both of which are only well-defined up to homotopy. Since

{p^} is convergent, there exists AT such that yVi(G) has length at most AT for all «,
after possibly altering Zz„ by a homotopy.

Let A be a compact core for ZV. Assume first that A is not a compression body.
In this case, if is any component of 3A, then the inclusion map does not induce a

surjection of tti(S) to tti(A) (see the discussion in Section 2). Since y«(G) carries
the fundamental group it cannot lie entirely outside of A. It follows that yVi(G) lies
in the closed neighborhood eAfc(A) of radius AT about A. By compactness, there

are only finitely many homotopy classes of maps of G into eAfc(A) with total length
at most AT. Hence, there are only finitely many different representations among the

Pn, up to conjugacy. The deformation space AZZ(ZW) is Hausdorff, and the sequence
{p„} converges, implying that {p„} is eventually constant. Therefore limp„ lies in
the preimage of ZV, implying that the über p~* (ZV) is closed and that ZV is a closed

point of AZ(ZW).
Next we assume that A is a compression body. If A were an untwisted interval

bündle, then ZW would also have to be a untwisted interval bündle (by Theorems 5.2
and 10.6 in Hempel [23]) which we have disallowed. So A must have at least one

incompressible boundary component and only one compressible boundary compo-
nent 3+A. We are free to assume that ZW is homeomorphic to A, since the definition
of AZ(ZW) depends only on the homotopy type of ZW. Let Z) denote the union of A
and the component of ZV — A bounded by 3+A. Since the fundamental group of a

component of ZV — Z) never surjects onto tti (ZV), with respect to the map induced by
inclusion, we see as above that each yVj(G) must intersect Z), so is contained in the

neighborhood of radius AT of Z).

Recall that there exists ejv > 0 so that the distance from the e^-thin part of ZV to
the /x-thick part of ZV is greater than AT (where /x is the Margulis constant). It follows
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that (G) must be contained in the 6p-thick part of X.
Let F be an incompressible boundary component of Af. Then /z«(F) is homo-

topic to an incompressible boundary component of F (see, for example, the proof of
Proposition 9.2.1 in [17]). As there are finitely many possibilities, we may pass to a

subsequence so that /z„ (F) is homotopic to a fixed boundary component F'. We may
choose G so that there is a proper subgraph Gf C G such that the image of tti (Gp)
in tti(M) (under the inclusion map) is conjugate to tti(F). Let /7p : Xp F be
the covering map associated to tti(F') C tti(X). Then /ViIgp ^ ^ *p of
G 77 into Xp.

Assume first that F is a torus. Then Z« (Gp) must lie in the portion X of Xp with
injectivity radius between 6p and F/2, which is compact. It follows that /„ (G) must
lie in the closed neighborhood of radius F of /7p (X). Since /7p (X) is compact, we

may conclude, as in the general case, that {p„} is eventually constant and hence that

/7~*(X) is closed.
We now suppose that F has genus at least 2. We first establish that there exists L

such that (Gp) must be contained in a neighborhood of radius L of the convex core
C(Xp). It is a consequence of the thick-thin decomposition, that if G' is a graph in
Xp which carries the fundamental group then G' must have length at least /x. We also

recall that the nearest point retraction rp : Xp -> C (Xp) is a homotopy equivalence
which is ^j^-Lipschitz on the complement of the neighborhood of radius 5 of C(X).
Therefore, ifZ„ (Gp) lies outside of X? (C(Xp)), then rp (Z„ (Gp)) has length at most
33^7. It follows that Z„(Gp) must intersect the neighborhood of radius cosh~*(^)
of C(Xp), so we may choose L F + cosh~*(-^).

If Xp is geometrically finite, then X C(Xp) PI Xthick(e^) is compact and /„ (G)
must be contained in the neighborhood of radius L + F of /7p (X) which allows us

to complete the proof as before.

If Xp is not geometrically finite, we will need to invoke the Covering Theorem to
complete the proof. Let F denote the lift of F' to Xp. Then F divides Xp into two
components, one of which, say A_, is mapped homeomorphically to the component
of X - F bounded by F'. Let A+ Xp — A_. We may choose a a relative

compact core Fp for (Xp)° (for some 6 < 6p) so that F is contained in the interior
of Fp. Since /7p is infinite-to-one on each end of (Xp)° which is contained in A+,
the Covering Theorem (see [15] or [53]) implies that all such ends are geometrically
finite. Therefore,

y n C(JVf) n (./ViOthickOjc)

is compact. If we let Z LUF, then we see that Z„(Gp) is contained in the
closed neighborhood of radius L aboutZ (since C(Xp)DXthick(6^) C Z). Therefore,
y'w(G) is contained in the closed (L + F)-neighborhood of

Z) n /7p(z) Z) n /7p(7).

Since Z) D /7p (7) is compact, we conclude, exactly as in the previous cases, that
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p *(Af) is closed. This case completes the proof that A/(Af) is 7i if Af is not an

untwisted interval bündle.

We now deal with the case where Af S x / is an untwisted interval bündle over a

compact surface S. (In the special case that Af is a handlebody of genus 2, we choose
S tobe the puncturedtorus.) In ourprevious paper [18], weconsider the space Aff(S)
of (conjugacy classes of) discrete faithful representations p: tti (S) -> PSL2 (C) such

that if g G tti(S) is peripheral, then p(g) is parabolic. In Proposition 3.1, we use
work of Thurston [51] and McMullen [41] to exhibit a sequence {p„} in Aff(S)
which converges to p e Aff(S) such that A(p) C, A(pi) 7^ C and for alln there
exists G Mod+(S) such that p„ pi o Since Aff(S) C Aff(S x /) and

Mod+ (S) is identified with a subgroup of Out(jri (S)), we see that {p„} is a sequence
in p~*(A^i) which converges to a point outside of p~*(A^). Therefore, Af^ is a

point in A/(S x /) which is not closed.

Remark. One may further show, as in the remark after Proposition 3.1 in [18],
that if ,/V G A/(S x /) is a degenerate hyperbolic 3-manifold with a lower bound

on its injectivity radius, then Af is not a closed point in A/(S x /). We recall that
Af T is degenerate if £2(T) is connected and simply connected and T is finitely
generated.

4. Primitive essential annuli and the failure of proper discontinuity

In this section, we show that if Af contains a primitive essential annulus, then

Out(jri(M)) does not act properly discontinuously on A//(Af). We do so by us-

ing the Hyperbolic Dehn Filling Theorem to produce a convergent sequence {p„} in

A//(Af) and a sequence {<p„} of distinct element of Out(jri (Af)) such that {p„ is

also convergent. The construction is a generalization of a construction of Kerckhoff-
Thurston [31]. One may also think of the argument as a simple version of the "wrap-
ping" construction (see Anderson-Canary [2]) which was also used to show that

components of int(A//(Af)) self-bump whenever Af contains a primitive essential
annulus (see McMullen [42] and Bromberg-Holt [13]).

Theorem 1.2. Af Ac <2 compact ZzypcrAoZ/zaAZc 3-mam/oZcZ w/fA non-aAcZ/an/nn-
cZamcntaZ gronp. Tjf Af confa/ns apnVmY/vc csscn/faZ annwZws ^Acn Out(jri (Af)) cZocs

nct acf propcrZy cZzfsconzPmozcsZy on A//(Af). Aforcovcr, //* Af contoms a pnVmY/vc
csscn/faZ annwZws, ^Acn Af(Af) zs no/^ f/an^cZor^

Proo/ Let A be a primitive essential annulus in Af with core curve of. Let Af Af —

W(af) where W (ar) is an open regulär neighborhoodof a. Lemma 10.2 in [3] observes

that Af is hyperbolizable. Since Af is hyperbolizable, Thurston's Hyperbolization
Theorem implies that there exists a hyperbolic manifold Af and a homeomorphism
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t/t : M — Af U 3^ AL The classical deformation theory of Kleinian groups
(see Bers [5] or [17]) implies that we may choose any conformal structure on 3^ TV.

Let ^4o and ^4i denote the components of ^4 D Af. Let M; be the complement in Af
of a regulär neighborhood of ^4;. Let A;: Af -> Af be an embedding with image M;
whieh agrees with the identity map off of a (somewhat larger) regulär neighborhood
of X.

Let F be the toroidal boundary component of M whieh is the boundary of JV*(a)

in M. Choose a meridian-longitude System for F so that the meridian for F bounds
a disk in Af and the longitude is isotopie to ^4i D F. Lemma 10.3 in [3] implies that

if : Af -> M(l,«) is the inclusion map, then o A;: Af -> M(l, tz) is homotopie
to a homeomorphism for eaeh i 0,1 and all tz G Z. Moreover, we may similarly
check that o Ai is homotopie to o Ao o Z)^ for all where Z)^ denotes a Dehn
twist along A Notice first that Z)^ takes a (1,0)-curve on F to a (1, «)-curve

on F, so extends to a homeomorphism : AZ M(l, 0) M(l, n). Therefore,
since z'o ° Ao and z'o o Ai are homotopie, so are yVi o /q ° Ao and yVi o/qoAi. But,

o /q o Ao is homotopie to o Ao o Z)^ and o /q o Ai o Ai, whieh completes
the proof that ^ o Ai is homotopie to ^ o Ao o for all

Let po ° Ao)* and pi o Ai)*. Since (A/)* induces an injection of
tti(M) into tti(M), p; g A/Z(M). We next observe that one can choose TV so that

TVpo and TV^ are not isometric. Let a/ ^4/ PI (9M — 9^M) and let a* denote

the geodesic representative of in 3cAL Notice that for eaeh z 0,1 there
is a conformal embedding of 9cTV — a* into 3cTVp. such that eaeh component of
the complement of the image of 9^TV — a* is a neighborhood of a cusp. One may
therefore choose the conformal structure on 3^TV so that there is not a conformal
homeomorphism from 9^ TV^ to 9^ TV^. Therefore, TV^ and TV^ are not isometric.

Let {TVh TV^} be the sequence of hyperbolic 3-manifolds provided by the

Hyperbolic Dehn Filling Theorem applied to the sequence {(l,«)}wez+ and let

M(1,tz) — 3^M(l,/i) -> TV„ U 3cTV^} be the homeomorphisms such that
o ^ o conformal on 9cTV. Let

Pw,i — ßw ° Pi

for all« large enough that TV„ and exist. Since o is conjugate to o /„) * (by
applying part (2) of the Hyperbolic Dehn Filling Theorem) and o A; is homotopie
to a homeomorphism, we see that p^; o o A/)* lies in A/Z(Af) for all« and
eaeh L It follows from part (1) of the Hyperbolic Dehn Filling Theorem that {p«,/}
converges to p; for eaeh L Moreover, p^i p^o ° (AO* for all «, since o Ai is

homotopie to o Ao o A] for all Therefore, Out(jri(M)) does not act properly
discontinuously on

Moreover, {p«,o} and {p^,i} project to the same sequence in ^4Z(M) and both
and TV^ are limits of this sequence. Since A/^ and TV^ are distinct manifolds

in ^4Z(M), it follows that ^4Z(M) is not Hausdorff.
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Remark. One can also establish Theorem 1.2 using deformation theory of Kleinian

groups and convergence results ofThurston [52]. This version of the argument follows
the same outline as the proof of Proposition 3.3 in [18].

We provide a brief sketch of this argument. The classical deformation theory of
Kleinian groups (in combination with Thurston's Hyperbolization Theorem) guaran-
tees that there exists a component i? of int(A//(M)) such that if p e i?, then there
exists a homeomorphism A^: Af — -> Ap U and the point p is deter-

mined by the induced conformal structure on 3M — 3^M. Moreover, every possible
conformal structure on 3M — 3^M arises in this manner.

Let ao and öi denote the components of 3A and let and denote Dehn twists
about ao and ai respectively. We choose orientations so that Z)^ induces o ^
on 3Af. We then let p^o £ ^ have associated conformal structure Z^(X) and let

p„4 have associated conformal structure Z^(X) for some conformal structure X
on 3M. Thurston's convergence results [51], [52] can be used to show that there
exists a subsequence {ny } of Z such that {p„. ,o} and {p>j • ,i} both converge. One can

guarantee, roughly as above, that the limiting hyperbolic manifolds are not isometric.
Moreover, p^i p^o ° (A4)* for alln, so we are the same Situation as in the proof
above.

5. The characteristic submanifold and mapping class groups

In order to further analyze the case where Af has incompressible boundary we will
make use of the characteristic submanifold (developed by Jaco-Shalen [27] and Jo-
hannson [29]) and the theory of mapping class groups of 3-manifolds developed by
Johannson [29] and extended by McCullough and his co-authors [39], [26], [17].

We begin by recalling the definition of the characteristic submanifold, specialized
to the hyperbolic setting. In the general setting, the components of the characteristic
submanifold are interval bundles and Seifert fibred Spaces. In the hyperbolic setting,
the only Seifert fibred Spaces which occur are the solid torus and the thickened torus
(see Morgan [44], Section 11, or Canary-McCullough [17], Chapter 5).

Theorem 5.1. Af Ac a compact oncntecZ AypcrAoZ/zaAZc 3-mam/oZcZ wzYA Zncom-

prcss/AZc AonncZary. TAcrc ex/sts a cocZ/mcns/on zcro snAmam/oZcZ I] (Af) c M wzYA

/ronAcr Fr(I](M)) 3£(M) — 3M sa/7s/y*n& ^Ac/oZZow/ng propcr/Zcs:

(1) £acA component £/ o/£(M) Zs czYAcr

(i) an ZntervaZ AnncZZc over a compact ^ar/acc wzYA ncga/Zvc EnZcr cAaracter-
Zst/c wA/cA mtensccP 3M m /P a.s\soc/afccZ 3/-AnncZ/c,

(ii) a ^A/cAcnccZ forns sncA £Aa£ 3M D £/ conta/ns a torns, or

(iii) a soZ/cZ torns.



Vol. 87 (2012) Moduli Spaces of hyperbolic 3-manifolds 235

(2) FA^/ronA^r Fr(£(M)) Zs <2 coZZ^ctZon o/^^^ZßZ annwZZ.

(3) Any essenAaZ nnnnZns or ZncorapressZAZe torns Zn Af Zs properZy ZsotopZc Znto

S(M).

(4) /f X Zs <2 coraponen^ 0/ Af — £(Af), fAen eZAzer tti(X) Zs non-nAeZZnn or
(X,Fr(X)) (S* x [0,1] x [0,1], S* x [0,1] x {0,1}) nnA X ZZes Aeftveen

an ZntorvnZ AnnAZe coraponen^ 0/1] (Af) nnA <2 AzZcAeneA or soZZA torns corapo-
nen/to/£(M).

Moreover, swcA <2 I] (Af) Zs wragwe np to Zsoto/ry, nnA Zs cnZZeA zAe cAßracteraAc
snA/ntfra/oAZ Ö/M

The existence and the uniqueness of the characteristic submanifold in general
follows from The Characteristic Pair Theorem in [27] or Proposition 9.4 and Corol-
lary 10.9 in [29]. Theorem 5.1 (1) follows from Theorem 5.3.4 of [17], part (2)
follows from (1) and the definition of the characteristic submanifold, part (3) follows
from Theorem 12.5 of [29], and part (4) follows from Theorem 2.9.3 of [17].

Johannson's Classification Theorem [29] asserts that every homotopy equivalence
between compact, irreducible 3-manifolds with incompressible boundary may be ho-

motoped so that it preserves the characteristic submanifold and is a homeomorphism
on its complement. Therefore, the study of Out(jri(M)) often reduces to the study
of mapping class groups of interval bundles and Seifert-fibered Spaces.

Johannson's Classification Theorem ([29], Theorem 24.2). Le£ Af nnA 2 Ae Are-
AncZAZe3-ranm/0ZAsH27AZnc0ra/?ressZAZe AonnAnry nnA Ze/F: Af -> 2 Ae <2 Aoraoto/ry
egnZvnZence. FAen A Zs AomotopZc to <2 map g: Af -> 2 ^^A F<2£

(1) g-i(S(ö)) S(M),

(2) g|s(Af) : £(Af) -> £J(Ö) ^ ^ Aoraoto/ry egnZvnZence, nnA

(3) ^I^T^ecm) • ^ ~~ £(Af) 2 ~ ^(ö) ^ ^ AoraeoraorpAZsra.

Moreover, z/A Zs <2 AoraeoraorpAZsra, Fen g Zs <2 AoraeoraorpAZsra.

We let the mapping class group Mod(M) denote the group of isotopy classes of
self-homeomorphisms of M. Since M is irreducible and has (non-empty) incom-
pressible boundary, any two homotopic homeomorphisms are isotopic (see Wald-
hausen [55], Theorem 7.1), so Mod(M) is naturally a subgroup of Out(jri(M)).
For simplicity, we will assume that M is a compact hyperbolizable 3-manifold with
incompressible boundary and no toroidal boundary components. Notice that this im-
plies that £ (M) contains no thickened torus components. Let £ be the characteristic
submanifold of M and denote its components by{£i,...,£^}.

Following McCullough [39], we let Mod(£;,Fr(£;)) denote the group of ho-

motopy classes of homeomorphisms A: £/ -> £; such that A(F) F for each

component F of Fr(£/). We let G(£;,Fr(£;)) denote the subgroup consisting of
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(homotopy classes of) homeomorphisms which have representatives which are the

identity onFr(£;). Define

G(E,Fr(E)) ®f=iG(£/,Fr(Si))-

Notice that using these definitions, the restriction of a Dehn twist along a component
ofFr(E) is trivial in G(£, Fr(£)).

In our case, each £; is either an interval bündle over a compact surface F; with
negative Euler characteristic or a solid torus. If £; is a solid torus, then G(£;, Fr(£;))
is finite (see Lemma 10.3.2 in [17]). If £; is an interval bündle over a compact
surface F;, then G(£;,Fr(£;)) is isomorphic to the group G(F/,3F/) of proper
isotopy classes of self-homeomorphisms of F which are the identity on 3F (see

Proposition 3.2.1 in [39] and Lemma 6.1 in [26]). Moreover, G(£;,Fr(£;)) injects
into Out(;ri (X;)) (seeProposition 5.2.3 in [17] for example). We say that £; is riny if
its base surface F; is either a thrice-punctured sphere or a twice-punctured projective
plane. If £; is not tiny, then F; contains a 2-sided, non-peripheral homotopically
non-trivial simple closed curve, so G(£;,Fr(£;)) is infinite. If £; is tiny, then

G(£;, Fr(S/)) is finite (see Korkmaz [32] for the case when F; is a twice-punctured
projective plane).

Let /(Af) be the subgroup of Mod(M) consisting of classes represented by home-

omorphisms fixing Af — £ pointwise. Lemma 4.2.1 of McCullough [39] implies
that /(Af) has finite index in Mod(M). (Instead of /(M), McCullough writes
JC(M, Ei, S2,..., Eyt).) Lemma 4.2.2 of McCullough [39] implies that the kernel

F(M) of the natural surjective homomorphism

/(M)-»G(Z,Fr(Z))

is abelian and is generated by Dehn twists about the annuli in Fr(£).
We summarize the discussion above in the following Statement.

Theorem 5.2. Mka compact ZzypcrZ?oZZzaZ?Zc 3-mam/oZc/ vwYA ZncomprcvsZWc

feonncZary ancZ no foroZcZaZ feonncZary componcnfa. F/zcn ^Zzcrc Zs a^ZmYc ZncZcv snfegronp

/(M) 0/ Mod(M) ancZ an cvac£ scgncncc

1 — ä:(M) — /(M) G(S,Fr(S)) — 1

snc/z £/za£ F(M) Zs an afecZZan gronp gcncratecZ fry Dc/zn ftvZsts aZ?on£ cvscn/faZ annnZZ

Zn Fr(£).
Snpposc £/za£ £/ Zs a component o/£ (M). //*£; Zs a soZZcZ forns or a /zny ZntervaZ

ZmncZZc, £/zcn G(£;, Fr(£/)) Zs^nZte. O^/zcrwZsc, G(£;, Fr(£/)) Zs Zn/Zm7c ancZ Zn/ccfa
Znfo Out(tti (£/)).
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6. Characteristic collections of annuli

We continue to assume that Af has incompressible boundary and no toroidal boundary
components and that £(Af) is its characteristic submanifold. In this section, we or-
ganize AT(Af) into subgroups generated by collections of annuli with homotopic core

curves, called characteristic collection of annuli, and dehne a class of free subgroups
of tti (Af) which "register" these subgroups of AT(Af).

A cAtfractensf/c coZZecf/on ö/annwZZ for Af is either a) the collection of all frontier
annuli in a solid torus component of £(Af), or b) an annulus in the frontier of an
interval bündle component of £(Af) which is not properly isotopic to a frontier
annulus of a solid torus component of £ (Af).

If Cy is a characteristic collection of annuli for Af, let ATy be the subgroup of
AT(Af) generated by Dehn twists about the annuli in Cy. Notice that AT* D ATy {id}
for / 7, since each element of Afy üxes any curve disjoint from Cy. Then AT(Af)
®JLi ^0 >

since every frontier annulus of £ (Af) is properly isotopic to a component
of some characteristic collection of annuli. Let ^y : AT(Af) -> ATy be the projection
map.

We next introduce free subgroups of jri(Af), called Cy -registering subgroups,
which are preserved by ATy and such that ATy acts effectively on the subgroup.

We hrst suppose that Cy Fr (7}) where 7} is a solid torus component of £ (Af).
Let {Ai,..., A/} denote the components of Fr(7}). For each Z 1,..., / let X* be
the component of Af — (7} U Ci U C2 U U C^) abutting A*. (Notice that each

Xz is either a component of Af — £ (Af) or properly isotopic to the interior of an
interval bündle component of £(Af).) Let a be a core curve for 7} and let xo be a

point on a. We say that a subgroup 7/ of jri(Af, xo) is Cy-regZstenng if it is freely
(and minimally) generated by a and, for each Z 1a loop g* in 7} U X* based

at xo intersecting A* exactly twice. In particular, every Cy-registering subgroup of
tti (Af, xo) is isomorphic to A/+i.

Notice that a Dehn twist A>^ along any A* preserves Af in tti (Af, xo). It acts on
Af by the map which fixes a and g^ for /n/i, and conjugates g* by öA (where the

core curve of A* is homotopic to öA). Let y# : ATy -> Out(Af) be the homomorphism
which takes each Z)^ to /). Simultaneously twisting along all / annuli induces

conjugation by öA, which is an inner automorphism of Af. Moreover, it is easily
checked that y# (Afy) is isomorphic to Z^~* and is generated by {Zi,..., Z/_i}. The
set {a, gi,..., g/} may be extended to a generating set for tti (Af, xo) by appending
curves which intersect Fr(7)) exactly twice, so Z)^ o • • • o acts as conjugation
by öA on all of jri(Af, xo). Therefore, ATy itself is isomorphic to and y# is

injective. (In particular, if Cy is a Single annulus in the boundary of a solid torus

component of £ (Af), then ATy is trivial and we could have omitted Cy.)
Now suppose that Cy {A} is a frontier annulus of an interval bündle component

£z of £ which is not properly isotopic into a solid torus component of £. Let a be a

core curve for A and let xo be a point on a. We say that a subgroup Af of tti (Af, xo)
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is Cy if it is freely (and minimally) generated by a and two loops gi and

g2 based at xo each of whose interiors misses A, and which lie in the two distinct
components of Af — (Ci U C2 U... U C^) abutting A. In this case, // is isomorphic to
F3. Arguing as above, it follows that Fy is an infinite cyclic subgroup of Out(7Ti (Af))
and there is an injection s# : Fy -> Out(//).

In either Situation, if // is a Cy -registering group for a characteristic collection of
annuli Cy, then we may consider the map

r/,: X(M) -*

simply obtainedby taking p to p|#. (Here, F(//) is thePSL2(C)-character variety of
the abstract group //.) One easily checks from the description above that if a g Fy,
then r//(p o a) r# (p) o s# (a) for all p G F(M). Notice that if <p G AT/ and 77^/,
then AT/ acts trivially on //, since each generating curve of // is disjoint from C/.
Therefore,

>'//(p»«) '•//(p) ° 5//(</,(a))

for all p e X(M) and a e
We summarize the key points of this discussion for use later:

Lemma 6.1. Mfea compact ZzypcrZ?oZ/zaZ?Zc 3-mam/oZcZ w/Z/z mcomprcxs/Z?Zc

Z?cmmZary ancZ no foro/cZaZ Z?onncZary componcnfa. Tjf Cy zs a cZzaractens/fc coZZcc/fon

o/annnZ//or Af ancZ // zs a Cy-rcg/stenng snfegronp o/tti(M), ^Zzcn // zs prcscrvccZ
Zry cacZz cZcmcn^ 0/ Fy ancZ ^Zzcrc zs a na/PraZ m/cc/fvc ZzomomorpZzzsm s# : Fy ->
Out(//). Morcovcr, ifa G F(M), ^Zzcn r#(p o a) r#(p) o s# (#y (a))/or aZZ

p G *(M).

7. Primitive essential annuli and manifolds with compressible boundary

In this section we use a result of Johannson [29] to show that every compact hyper-
bolizable 3-manifolds with compressible boundary and no toroidal boundary com-
ponents contains a primitive essential annulus. It then follows from Theorem 1.2

that if Af has compressible boundary and no toroidal boundary components, then

Out(jri(M)) fails to act properly discontinuously on A//(M) and A/(M) is not
Hausdorff.

We first find indivisible curves in the boundary of compact hyperbolizable 3-

manifolds with incompressible boundary and no toroidal boundary components. We
call a curve a in Af zncZzvzszFZc if it generates a maximal cyclic subgroup of tti (Af).

Lemma 7.1. Af Z?c a compact ZzypcrZ?oZz'zaZ?Zc 3-mam/oZcZ wzYZz (non-cmp/y) zn-

comprcsszFZc Z?ozmcZary. FZzcn, z/F zs a componcn^ o/9M, ^Zzcrc exzstfs an zncZzvzszFZc

szmpZc cZosccZ cz/rvc zn F.



Vol. 87 (2012) Moduli Spaces of hyperbolic 3-manifolds 239

Proo/ We use a special case of a result of Johannson [29] (see also Jaco-Shalen [28])
which characterizes divisible simple closed curves in 3Af.

Lemma 7.2 ([29], Lemma 32.1). Af bc a compact ZzypcrboZZzabZc 3-mamybZcZ

w/Z/z ZncomprcvsZbZc bcmmZary. An csscn/7aZ sZmpZc cZosccZ carvc a Zn 3M wAZcA Zs nctf
ZmZZvZsZbZc Z.s eZz/zer ZsofopZc ZnzP a soZZcZ forns ccmpcmcnf o/£(A/) er Z.s ZsofopZc ZP a
feonnzZnry compcmcn^ o/*an csscn/ZaZ MbFZas bancZ Zn an Zn/PrvaZ ZmncZZc compcmcn^

o/S(M).

Therefore, if £ (Af) is not all of Af, then any simple closed curve in F which cannot
be isotoped into a solid torus or interval bündle component of £ (Af) is indivisible.

If £ (Af) Af, then Af is an interval bündle over a closed surface with negative
Euler characteristic and the proof is completed by the following lemma, whose füll
Statement will be used later in the paper.

Lemma 7.3. Lc£ Mfea compact ZzypcrboZZzabZc 3-mam/oZcZ wtYA no toroZcZaZ bcmncZ-

ary component. Lc£ £/ Z?c an Zn/PrvaZ ZmncZZc component o/£ (Af) wAZcA Zs netf ftVry,

^/zen ^Zzcrc Zs a prZmZ/fvc csscn/ZaZ annnZn^ (/br Af) con^aZnccZ Zn £/.

Proo/ Let F; be the base surface of £/. Since £; is not tiny, F; contains a non-
peripheral simple closed curve a which is two-sided and homotopically non-trivial.
Then a is an indivisible curve in F; and hence in M. The sub-interval bündle A over
a is thus a primitive essential annulus.

We are now prepared to prove the main result of the section.

Proposition 7.4. 7/* Af Zs a compact ZzypcrboZZzabZc 3-mam/oZcZ wZp/z comprcvsZbZc

bcmncZary ancZ no toroZcZaZ bonncZary component, ^/zen Af ccmtaZns a prZmZ/Zvc evsen-
/ZaZ annnZn^.

Froo/ We first observe that under our assumptions every maximal abelian subgroup
of tti (Af) is cyclic (since every non-cyclic abelian subgroup of the fundamental group
of a compact hyperbolizable 3-manifold is conjugate into the fundamental group of
a toroidal component of 3Af, see [44], Corollary 6.10). Therefore, in our case an
essential annulus is primitive if and only if its core curve is indivisible.

We first suppose that Af is a compression body. If Af is a handlebody, then it is an

interval bündle, so contains a primitive essential annulus by Lemma 7.3. Otherwise,
Af is formed from F x / by appending 1-handles to F x {1}, where F is a closed,
but not necessarily connected, orientable surface. Let a be an essential simple closed

curve in F x {1} which lies in 3M. Let Z) be a disk in F x {1} — 3M. We may assume
that of intersects 3Z) in exactly one point. Let /3 C (3Af D F x {1}) be a simple
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closed curve homotopic to a * 3Z) (in 3M) and disjoint from a. Then a and /3 bound
an embedded annulus in F x {1}, which may be homotoped to a primitive essential
annulus in Af (by pushing the interior of the annulus into the interior of F x /).

If Af is not a compression body, let Cm be a characteristic compression body
neighborhood of 3M (as discussed in Section 2). Let C be a component of Cm
which has a compressible boundary component 3+C and an incompressible boundary
component F. Let X be the component of Af — Cm which contains F in its boundary
and let of be an essential simple closed curve in F which is indivisible in X (which
exists by Lemma 7.1). Let ar' be a curve in 3+C c 3M which is homotopic to
a. One may then construct as above a primitive essential annulus d in C with
(F as one boundary component. It is clear that A remains essential in M. Since

tti(M) tti(X) * // for some group //, the core curve of A, which is homotopic
to a, is indivisible in tti (M). Therefore, A is our desired primitive essential annulus
in Af.

Remark. The above argument is easily extended to the case where Af is allowed
to have toroidal boundary components (but is still hyperbolizable), unless M is a

compression body all of whose boundary components are tori. In fact, the only
counterexamples in this Situation occur when Af is obtained from one or two untwisted
interval bundles over tori by attaching exactly one 1-handle.

We have thus already established Corollary 1.4 in the case that Af has compressible
boundary.

Corollary 7.5. Tjf Af Zs compact ZzypcrZmZ/zcFZc 3-mam/oZcZ wzYA comprcvszFZc

fecmmZary, no foro/cZaZ fecmmZary compcmcnfa, ancZ ncm-aZ?cZ/an /imcZamcntaZ grcmp,
Out(jri (Af)) cZocs nctf ac£ propcrZy cZZsccm/rVmcmsZy cm A//(M). Morcovcr,

mocZwZZ spacc A/(M) Zs //aw^cZor^

8. The space

In this section, we assume that Af has incompressible boundary and no toroidal
boundary components. We identify a subset A//^(M) of A//(M) which contains
all purely hyperbolic representations in A//(M). We will see later that Out(jri (Af))
acts properly discontinuously on an open neighborhood of A//„(M) in X(Af) if Af
is not an interval bündle.

We dehne A//„(M) to be the set of (conjugacy classes of) representations p e

A//(M) such that

(1) If £ / is a component of the characteristic submanifold which is not a tiny interval
bündle, then p(jri (S/)) is purely hyperbolic (i.e. if g is a non-trivial element of
tti(M) which is conjugate into tti(£/), then p(g) is hyperbolic), and
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(2) if £/ is a tiny interval bündle, then p(jri (Fr(X!;))) is purely hyperbolic.

We observe that int(AZ/(M)) is a proper subset of A7/„ (Af) and that AZ/(M)
AZ/„(M) if and only if Af contains no primitive essential annuli.

Lemma8.1. MköcompactZzyperZwZzzafeZe 3-ra<2zzzybZ<7wzYZzzzozz-erap/y mcom-
prevszPZe Zwz/zzdary azzd no torozTZaZ Z?onnJory compon^n^. PZzezz

(1) ^Zze zzztenor q/* AZ/(M) zs o proper sz/Z?s^ q/* AZ/„ (Af),

(2) AZ/„ (M) cozztazVzs o dmse sz/Z?s^ q/*3AZ/(M), onJ

(3) AZ/„(M) AZ/(M) z/azzd onZy z/M contams no przrazYzve ^55^nft'aZ onnnZZ.

Proo/ Sullivan [50] proved that all representations in int(AZ/(M)) are purely hyper-
bolic (if Af has no toroidal boundary components), so clearly int(AZ/(M)) is con-
tained in AZ/„(M). On the other hand, 3A77(Af) is non-empty (see Lemma 4.1 in
Canary-Hersonsky [16]) and purely hyperbolic representations are dense in 3A77(Af)
(which follows from Lemma 4.2 in [16] and the Density Theorem [9], [10], [45], [47]).
This establishes Claims (1) and (2).

If Af contains a primitive essential annulus A, then there exist p G AZ/(M) such

that p(cif) is parabolic (where a is the core curve of A), so AZ/„(M) is not all of
AZ/(M) in this case (see Ohshika [46]).

Now suppose that Af contains no primitive essential annuli. We first note that

every component of £(M) is a solid torus or tiny interval bündle (by Lemma 7.3).
Moreover, if £/ is a tiny interval bündle component of £(Af), then any component
A of its frontier must be isotopic to a component of the frontier of a solid torus

component of £(M). Otherwise, A would be a primitive essential annulus (by
Lemma 7.2). Therefore, it suffices to prove that p(E/) is purely hyperbolic whenever

£/ is a solid torus component of £(M).
Let P be a solid torus component of £(M). A frontier annulus A of P is an

essential annulus in Af, so it must not be primitive. It follows that the core curve a
of P is not peripheral in Af (see [29], Theorem 32.1).

Let p g AZ/(M) and let 7? be a relative compact core for (ZVp)® (for some 6 < /x).
Let Zz: Af -> 7? be a homotopy equivalence in the homotopy class determined by p.
By Johannson's Classification Theorem ([29], Theorem 24.2) Zz may be homotoped
so that Zz(P) is a component P' of £(7?), A|Fr(r) is an embedding with image Fr(P')
and Zz|^ : (P, Fr(P)) -> (P', Fr(P')) is a homotopy equivalence of pairs. It follows
that Zz(pz) is homotopic to the core curve of P' which is not peripheral in TL

If p(a) were parabolic, then Zz(pz) would be homotopic into a non-compact com-
ponent of (TVp)thin(e) and hence into P P D 3(ZVp)^ C 37?, so Zz(pz) would be

peripheral in 7?. It follows that p(a) is hyperbolic. Since a generates tti (P), we see

that p(tti (P)) is purely hyperbolic. Since P is an arbitrary solid torus component of
E(Af), we see that p g AZ/„(M).
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We next check that the restriction of p £ (ZW) to the fundamental group of an

interval bündle component of E(ZW) (which is not tiny) is Schottky. By definition, a

Schottky group is a free, geometrically finite, purely hyperbolic subgroup ofPSL2(C)
(see Maskit [36] for a discussion of the equivalence of this definition with more
classical definitions).

Lemma 8.2. ZW Ac a compact AypcrAoZZzaAZc 3-mamybZcZ vwYA ZncomprcxsZAZc

AcmmZary vwYA no toroZcZaZ AcmmZary compcmcnfa wAZcA Zs nctf an ZntervaZ Awm/Zc. fjf
E/ Zs an ZntervaZ Anm/Zc compcmcn^ o/1] (ZW) wAZcA Zs nctf /z>ry anc/ p £ (Af),
^Acn p(tti (E/)) Zs a ScAotfAy grcmp.

Proo/ By definition p(jri (E/)) is purely hyperbolic, so it suffices to prove it is free
and geometrically finite. Since E/ is an interval bündle whose base surface F/ has

non-empty boundary, tti (E/) ^ tti (F/) is free. Let tt/ : ZV/ -> ZVp be the cover of ZVp

associated to p(jri (E/)). Since tti (E/) has infinite index in tti (ZW), tt/ : ZV/ —> ZV is

a covering with infinite degree. Let F/ be a compact core for ZV/. Since tti (F/) is free
and F/ isirreducible, F/ is ahandlebody ([23], Theorem5.2). Therefore, ZV/ (ZV/)®

has one end and tt/ is infinite-to-one on this end, so the Covering Theorem (see [15])
implies that this end is geometrically finite, and hence that ZV/ is geometrically finite.
Therefore, p(jri (E/)) is geometrically finite, completing the proof that it is a Schottky

group.

Finally, we check that if p G A//„(ZW) and Cy is a characteristic collection of
annuli, then there exists a Cy -registering subgroup whose image under p is Schottky.

Lemma 8.3. Snpposc P/a£ ZW Zs a compact AypcrAoZZzaAZc 3-mam/oZcZ wzYA Zncom-

prcxsZAZc Acmm/ary amZ no foroZc/aZ AowncZary component amZ Cy Zs a cAaractensAc
coZZcc/Zcm c//rcmficr annw/Z/or ZW. 7/p G A//^ (ZW), fAcn fAcrc cxZ.sPs a Cy-rcgZ.stcrZng

snAgrcmp // o/tti (ZW) sncA £Aa£ p(//) Zs a ScAo/?Ay gremp.

Proo/ We first suppose that Cy {A} is a frontier annulus of an interval bündle

component of E(ZW) (and that A is not properly isotopic to a frontier annulus of a

solid torus component of E (ZW)) and let xo £ A. We identifyjri (ZW) withjri (ZW, xo).
Let Xi and X2 be the (distinet) components of ZW —Fr (E) abutting A. Notice that each

X/ must have non-abelian fundamental group, since it either contains (the interior of)
an interval bündle component of E (ZW) or (the interior of) a component of ZW — E (ZW)

which is not a solid torus lying between an interval bündle component of E (ZW) and

a solid torus component of E (ZW).

Let a be the core curve of A (based at xo). By assumption, p(a) is a hyperbolic
element. Let F be a fundamental domain for the action of (p(a)) on £2 ((p(a))) which
is an annulus in C. Since each p(jri (X/, xo)) is discrete, torsion-free and non-abelian,
hence non-elementary, we may choose hyperbolic elements y/ G p(jri(X/,xo))
whose fixed points lie in the interior of F. There exists 5 > 0 such that one
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may choose (round) disks Z)^ C int(F) about the fixed points of y;, such that

yf (int(Z)r)) C — Z) + and Z) + Z)j~, Z)^ and Z)^~ are disjoint. Then, the Klein
Combination Theorem (commonly referred to as the ping pong lemma), guarantees
that p(a), y^ and y| freely generate a Schottky group, see, for example, Theorem C.2
in Maskit [37]. Then each p~* (y?) is represented by a curve g; in X/ based at xo and

a, gi and g2 generate a Cy -registering subgroup ZZ such that p(ZZ) is Schottky.
Now suppose that Cy {Ai,..., ^4/} is the collection of frontier annuli of a solid

torus component 7) of £ (Af). Let X/ be the component of Af — (7) U Ci U • • • U C^)
abutting A;. Pick xo in 7} and let a be a core curve of 7) passing through xo. Again
each X/ must have non-abelian fundamental group.

Let F be an annular fundamental domain for the action of (p(a)) on the comple-
ment in C of the fixed points of p(a). For each Z, let 7/ X/ U A; U int(Fy) and pick
a hyperbolic element y; in p(jri (7/, xo)) both of whose fixed points lie in the interior
of F. (Notice that even though it could be the case that X/ X^ for Z / Z, we still
have that tti(7;, xo) intersects tti(7^,xo) only in the subgroup generated by a, so

these hyperbolic elements are all distinct.) Then, just as in the previous case, there
exists ^ > 0 such that the elements {p(a), yf,..., y/} freely generate a Schottky
group. Each p~* (y?) can be represented by a loop g; based at xo which lies in 7/ and

intersects A; exactly twice. Therefore, the group ZZ generated by {a, gi,..., g/} is

Cy -registering and p(ZZ) is Schottky.

9. Proper discontinuity on A^(M)
We are finally prepared to prove that Out(jri (Af)) acts properly discontinuously on
an open neighborhood of AZZ„(M) if Af is a compact hyperbolizable 3-manifold
with incompressible boundary and no toroidal boundary components which is not an

interval bündle.

Theorem9.1. MfeacompactZypcrZoZZzaZZc3-mam/oZc/w/Z/znoncmp/yZncom-
prcxsZZZc ZonncZary ancZ no foroZcZaZ ZonncZary component nFZcZ Zs no£ an ZntervaZ

ZmncZZc. F/zcn Fcrc cxZsfa an open Out(tti (M))-ZnvarZan/^ neZgtoorZoocZ fL(M) o/
AZZ„(M) Zn X(Af) snc/z Fa£ Out(7Ti(M)) acta propcrZy cZZ^con/^Znnon^Zy on fL(M).

Notice that Theorem 1.3 is an immediate consequence of Proposition 7.4, Lern-

ma 8.1 and Theorem 9.1. Moreover, Theorem 1.5 is an immediate corollary of
Lemma 8.1 and Theorem 9.1.

We now provide a brief outline of the section. In Section 9.1 we recall Minsky's
work which shows that Out(7Ti(ZZ„)) acts properly discontinuously on the open set

FiS (ZZ„) of primitive-stable representations in X(ZZ„) where ZZ„ is the handlebody of
genus g. In Section 9.2, we consider the set Z(Af) C X(Af) such that if p e Z(M)
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and Cy is a characteristic collection of annuli, then there exists a Cy-registering
subgroup // of tti(M) such that p|# is primitive stable. We use Minsky's work to
show that X(M) acts properly discontinuously on Z(M). In Section 9.3, we consider
the set L(M) of all representation such that is primitive-stable whenever £/
is an interval bündle component of £(M) which is not tiny. We show that if {a^}
is a sequence in /(M) such that {ps(a^)} is a sequence of distinct elements and AT

is compact subset of L(M), then {a^(X)} leaves every compact set. In Section 9.4,

we let fL(M) Z(Af) fl L(M) and combine the work in the previous sections to
show that /(M) acts properly discontinuously on fL(M). Since /(M) has finite
index in Out(jri (Af)) (see [17]), this immediately implies Theorem 9.1. Johannson's
Classification Theorem is used to show that /(M) is invariant under Out(jri (Af)).

9.1. Schottky groups and primitive-stable groups. In this section, we recall Mins-
ky's work [43] on primitive-stable representations of the free group X„, where n > 2.

An element of is called przVnzYZve if it is an element of a minimal free generating
set for Let I be a bouquet of n circles with base point Z> and fix a specific
identification of tti (X, Z>) with X„. To a conjugacy class [u;] in one can associated

an infinite geodesic in X which is obtained by concatenating infinitely many copies of
a cyclically reduced representative of u; (here the cyclic reduction is in the generating
set associated to the natural generators of tti (X, Z>)). Let denote the set of infinite
geodesics in the universal cover X of X which project to geodesics associated to
primitive words of

Given a representation p: -> PSL2(C), xeff and a lift & of Z), one obtains
a unique p-equivariant map : X -> which takes to x and maps each

edge of X to a geodesic. A representation p: -> PSL2(C) is pnm/ft've-s'fa&Ze if
there are constants X, 5 > 0 such that takes all the geodesics in to (X, 5)-
quasi-geodesics in We let denote the set of (conjugacy classes) of
primitive-stable representations in X(//„) where //„ is the handlebody of genus n.

We summarize the key points of Minsky's work which we use in the remainder
of the section. We recall that Schottky space c X(//„) is the space of discrete
faithful representations whose image is a Schottky group and that is the interior

Theorem 9.2 (Minsky [43]). 7/*« > 2, /7z<?n

(1) Out(X^) acta properZy dZscon/fnnozzsZy on PaS(//„),

(2) PaS(//„) Zs on open sz/Z?s^ o/X(//„), onJ

(3) ScZzo/t&y spoce ^ Zs o proper sz/Z?s^ O/PaS(//„).

Moreover, z/X Zs ony coznpoct sz/Z?s^ o/P*S(//„), onJ } Zs o ^gz/ence o/JZs/fnct
eZemenfa o/ Out(X^), ^Zzen {a^ (X)} evzTs- every corapoc/AnZ?^o/X(//„) (Z.^./or ony
compactsz/Z?sc£ C o/X(//„) ^Zzcrc cmfa X sz/cZz ^Zzct z/n > X, ^Zzcn (X) D C =0).
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Remark. In order to prove our main theorem it would suffice to use Schottky space
in place of P*S(//„). However, the subset fL(Af) we obtain using is

larger than the one we would obtain using simply

9.2. Characteristic collection of annuli. We will assume for the remainder of the
section that Af is a compact hyperbolizable 3-manifold with incompressible bound-

ary and no toroidal boundary components which is not an interval bündle. Main
Topological Theorem 2 in Canary and McCullough [17] (which is itself an exercise
in applying Johannson's theory) implies that if Af has incompressible boundary and

no toroidal boundary components, then Mod(Af) has finite index in Out(7Ti(Af)).
Therefore, applying Theorem 5.2, we see that /(Af) has finite index in Out(jri (Af)).
In particular, if Af is acylindrical, then /(Af) is trivial and Out(jri (Af)) acts properly
discontinuously on X(Af).

Let Cy be a characteristic collection of annuli in Af. If // is a Cy-registering
subgroup of TTi(Af), then the inclusion of // in jri(Af) induces a natural injection
y# : ATy -> Out(//) such that if a e AT(Af), then

'7/ (p ° a) r// (p) o ,v// («))

where r#(p) p|# (see Lemma 6.1). Let

Zff rp(/>S(//))

where P*S(//) C X(Af) is the set of (conjugacy classes of) primitive-stable repre-
sentations of //. Let

Z(Cy) |JZff
where the union is taken over all Cy-registering subgroups // of tti (Af).

If {Ci,..., C^} is the set of all characteristic collections of annuli for Af, then

we define
m

Z(M) p| Z(C;).
/ 1

If there are no characteristic collection of annuli, then Af is acylindrical and we set

Z(M) X(M).
We use Lemma 8.3, Theorem 9.2, and Johannson's Classification Theorem to

prove:

Lemma 9.3. Af Z?c a compact ZzypcrZ?oZ/zaZ?Zc 3-man?/oZcZ wz/A noncmp/y /ncom-
prcvs/Z?Zc Z?owncZary ancZ no toro/cZaZ Z?onncZary componcnfa. TTzcn

(1) Z(Af) zs an Out(jri (Af))-znvananf opcn nc/gZzZ?orZzoocZ o/(Af) zn X(Af),
ancZ

(2) z/AT C Z(Af) zs compact ancZ {a^} zs a scgncncc o/cZnt/nc£ cZcmcnfa o/AT(Af),
^Zzcn (a^(AT)} cv/fa cvcry compact o/Z(Af).
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Proo/ Lemma8.3implies that (Af) C Z(Cy) for eachy,soA//„(Af) C Z(//).
Moreover, since r# is continuous for all //, each Z(Cy) is open, and hence Z(Af) is

open.
Johannson's Classification Theorem implies that if Cy is a characteristic collection

of annuli for Af and <p g Out(7Ti(Af)), then there exists a homotopy equivalence
A: Af -> Af such that A* <p and A(Cy) is also a characteristic collection of annuli
for Af. Moreover, if 7/ is a Cy-registering subgroup of jri(Af), then <p(//) is a

A(Cy)-registering subgroup of TTi(Af). Therefore, Z(Af) is Out(^i(M))-invariant,
completing the proof of claim (1).

If (2) fails to hold, then there is a compact subset AT of Z(Af), a compact subset

C of X(Af) and a sequence {ayj of distinct elements of F(Af) such that a^(X) D C
is non-empty for all We may pass to a subsequence, still called {ayj, so that
there exists y such that {<y/(c^)} is a sequence of distinct elements. Since X(Af)
is locally compact, for each x G AT, there exists an open neighborhood f/* of x
and a Cy-registering subgroup //* such that the closure IT* is a compact subset of

Z^. Since AT is compact, there exists a finite collection of points {xi,..., x^ } such

that AT C C/jci U • • • U Therefore, again passing to subsequence if necessary,
there must exists x; such that a^(f/^) PI C is non-empty for all Let C/' CT*-

and //' //^. Lemma 6.1 implies that {tfzr(#y(ttw))} ^ ^ sequence of distinct
elements of Out(/F) and that £#'(#y(ar,i))(r#/([/')) G/'(c6*(^0)- Theorem 9.2
then implies that {£#'(#y(a,j))(r#/([/'))} {G/'(c6*(^0)} every compact
subset of Z(//'). Therefore, {a^ ([/')} exits every compact subset of X(Af) which is

a contradiction. We have thus established (2).

9.3. Interval bündle components of £ (M). Let £; be an interval bündle compo-
nent of £ (Af) with base surface 7y and let X(£/) be its associated character variety.
There exists a natural restriction map r;: X(Af) -> X(£/) taking p to p|jri(E/)- Re-
call that G(£;, Fr(£;)) injects into Out(jri (£;)) (by Lemma 5.2), so acts effectively
on X(£;). Moreover, if a G /(Af), then r;(p o a) r;(p) o p;(a) where p; is the

projection of /(Af) onto G(£;, Fr(£;)). If £; is not tiny, we define

K(S/) rp(PS(E/)).

If {£ i,..., £„ } denotes the collection of all interval bündle components of £ (Af)
which are not tiny, then we let

K(M) P| K(E/).
/ 1

If every interval bündle component of £(Af) is tiny, then we let L(Af) X(Af).
We use Lemma 8.2, Theorem 9.2, and Johannson's Classification Theorem to

prove:



Vol. 87 (2012) Moduli Spaces of hyperbolic 3-manifolds 247

Lemma9.4. Mfea compactZzypcrZzoZz'zaZzZc 3-mazzz/oZcZwzYZzzzozzcmp/y zzzcom-

prcvsz'ZzZc ZzcmzzcZary azzcZ zzo forozcZaZ Z?cmzzcZaz7 compozzczzfa wZzzcZz zs zzct an zzztezvaZ

ZmzzcZZc. TZzczz

(1) L(Af) zs an Out(:ti(Af))-zzzvaz7Vm£ opczz zzczgZzZzorZzoocZ o/A//„(Af) zzz X(Af),
azzcZ

(2) z/AT zs a compact sz/Z?sc£ o/L(Af) azzcZ {a^} zs a scgz/czzcc zzz /(Af) sz/cZz £Zza£

{ps(c^)} /s a scgz/czzcc o/cZzs/7zzc£cZcmczzfa o/G(£, Fr(£)), ^Zzczz {a^(AT)} cvz/s-

cvcry compact sz/Z?sc£ o/X(Af).

Proo/ Lemma 8.2 implies that A//„(Af) c L(£;), for each z, and each L(£;) is

open since zy is continuous. Therefore, L(Af) is an open neighborhood of A//„(Af).
Johannson's Classification Theorem implies that if </9 e Out(7Ti(Af)), then there

exists a homotopy equivalence Zz: Af —> Af such that Zz(£(Af)) C £(Af), Zz|pr(£) is a

self-homeomorphism of Fr(£) and Zz induces </9. Therefore, if £; is an interval bündle

component of £(Af), then </9(tti(£;)) is conjugate to tti(£/) where £y is also an

interval bündle component of £ (Af). Moreover, if £; is not tiny, then tti (£/) is also

not tiny (since Zz|xy. : 2/ -> £y isa homotopy equivalence which isahomeomorphism
on the frontier). It follows that L(Af) is invariant under Out(7Ti(Af)), completing
the proof of claim (1).

If (2) fails to hold, then there is a compact subset AT of Z(Af), a compact subset C
of X(Af) and a sequence {a^} of elements of /(Af) such that {ps (c^)} is a sequence
of distinct elements of G(£,Fr(£)) and c^(AT) D C is non-empty for all zz. If a

component £; of £ (Af) is a tiny interval bündle or a solid torus, then G(£;, Fr(£;))
is finite, by Lemma 5.2. So, we may pass to a subsequence, so that there exists

an interval bündle £; which is not tiny such that {p; (a^)} is a sequence of distinct
elements of G(£;,Fr(£;)). Theorem 9.2 then implies that {p;(a^)(zy (AT))} leaves

every compact subset of X(£/). Therefore, since zy(a^(AT)) p;(a^)(zy (AT)) for
all zz, (a^(AT)} leaves every compact subset of X(Af). This contradiction establishes

claim (2).

9.4. Assembly. Let M'(Af) K(A/) n Z(M). Since K(M) and Z(M) are open
Out(jri (Af))-invariant neighborhoods of (Af), so is IL(Af). It remains to prove
that Out(jri(Af)) acts properly discontinuously on IL(Af). Since /(Af) is a finite
index subgroup of Out(jri (Af)), it suffices to prove that /(Af) acts properly discon-

tinuously on IL(Af). We will actually establish the following stronger fact, which
will complete the proof of Theorem 9.1.

Lemma 9.5. //* AT a compact sz/Z?sc£ o/IL(Af) azzcZ {a^} zs a scgz/czzcc o/cZz7tzzzc£

cZcmczzfa o//(Af), ^Zzczz {a^(AT)} Zcavcs cvcry compact sz/Z?sc£ o/X(Af).

Proo/ If our claim fails, then there exists a compact subset AT of IL(Af), a compact
subset C of X(Af) and a sequence {a^} of distinct elements of /(Af) such that
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a^(X) D C is non-empty. We may pass to an infinite subsequence, still called {a^},
such that either {ps(a^)} is a sequence of distinct elements or {ps(a^)} is constant.

If {ps(a^)} is a sequence of distinct elements, Lemma 9.4 immediately implies
that {a^(X)} leaves every compact subset of X(Af) and we obtain the desired con-
tradiction.

If {ps(a^)} is constant, then, by Theorem 5.2, there exists a sequence {/3^} of
distinct elements of LT(AL) such that aq o for alln. Lemma 9.3 implies that

{/3„(X)} exits every compact subset of X(Af). Since aq induces a homeomorphism
of X(Af), it follows that {a^ (AT) aq (/3« (X))} also leaves every compact subset of
X(Af). This contradiction completes the proof.
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