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Moduli spaces of hyperbolic 3-manifolds and dynamics
on character varieties

Richard D. Canary and Peter A. Storm*

Abstract. The space AH(M) of marked hyperbolic 3-manifold homotopy equivalent to a
compact 3-manifold with boundary M sits inside the PSL2(C)-character variety X(M) of
1 (M ). We study the dynamics of the action of Out(zr1(M)) on both AH (M) and X (M ). The
nature of the dynamics reflects the topology of M.

The quotient AI(M) = AH(M )/Out(z|(M)) may naturally be thought of as the moduli
space of unmarked hyperbolic 3-manifolds homotopy equivalent to 34 and its topology reflects
the dynamics of the action.

Mathematics Subject Classification (2010). 57M50.

Keywords. Hyperbolic 3-manifolds, outer automorphism group, character variety, moduli
spaces.

1. Introduction

For a compact, orientable, hyperbolizable 3-manifold M with boundary, the defor-
mation space AH(M ) of marked hyperbolic 3-manifolds homotopy equivalent to
M is a familiar object of study. This deformation space sits naturally inside the
PSL,(C)-character variety X(M ) and the outer automorphism group Out(m;(M))
acts by homeomorphisms on both AH(M ) and X(M). The action of Out(m;(M))
on AH(M) and X(M) has largely been studied in the case when M is an interval
bundle over a closed surface (see, for example, [8], [22], [49], [18]) or a handlebody
(see, for example, [43], [54]). In this paper, we initiate a study of this action for
general hyperbolizable 3-manifolds.
We also study the topological quotient

AI(M) = AH(M)/Out(r1(M))

which we may think of as the moduli space of unmarked hyperbolic 3-manifolds
homotopy equivalent to M. The space AH (M) is a rather pathological topological
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the Roberta and Stanley Bogen Visiting Professorship at Hebrew University.



2022 R. D. Canary and P. A. Storm CMH

objectitself, often failing to even be locally connected (see Bromberg [12] and Magid
[35]). However, since AH(M) is a closed subset of an open submanifold of the
character variety, it does retain many nice topological properties. We will see that the
topology of AI{M) can be significantly more pathological.

The first hint that the dynamics of Out(szr, (M )) on AH(M ) are complicated was
Thurston’s [51] proof that if M is homeomorphic to § x [, then there are infinite
order elements of Out(7r{ (M )) which have fixed points in AH (M ). (These elements
are pseudo-Anosov mapping classes.) One may further show that A7(S x I') is not
even 77, see [18] for a closely related result. Recall that a topological space is 77 if
all its points are closed. On the other hand, we show that in all other cases AI(M)
is Tl-

Theorem 1.1. Let M be a compact hyperbolizable 3-manifold with non-abelian
Jfundamental group. Then the moduli space AI{M) is Ty if and only if M is not an
untwisted interval bundle.

We next show that Out(sr; (M )) does not act properly discontinuously on AH (M)
if M contains a primitive essential annulus. A properly embedded annulus in M is
a primitive essential annulus if it cannot be properly isotoped into the boundary of
M and its core curve generates a maximal abelian subgroup of 71 (M ). In particular,
if M has compressible boundary and no toroidal boundary components, then M
contains a primitive essential annulus (see Corollary 7.5).

Theorem 1.2. Let M be a compact hyperbolizable 3-manifold with non-abelian fun-
damental group. If M contains a primitive essential annulus then Out(m (M )) does
not act properly discontinuously on AH(M ). Moreover, if M contains a primitive
essential annulus, then AI(M) is not Hausdorff.

On the other hand, if M is acylindrical, i.e. has incompressible boundary and
contains no essential annuli, then Out(m; (M )) is finite (see Johannson [29], Propo-
sition 27.1), so Out(m; (M )) acts properly discontinuously on AH(M ) and X(M).
It is easy to see that Out(m;(M)) fails to act properly discontinuously on X(M) if
M is not acylindrical, since it will contain infinite order elements with fixed points
in X(M).

If M is a compact hyperbolizable 3-manifold which is not acylindrical, but does
not contain any primitive essential annuli, then Out(mx,(M)) is infinite. However,
if, in addition, M has no toroidal boundary components, we show that Qut(m;(M))
acts properly discontinuously on an open neighborhood of AH(M) in X(M). In
particular, we see that A7{M ) is Hausdorff in this case.

Theorem 1.3. If M is a compact hyperbolizable 3-manifold with no primitive essen-
tial annuli whose boundary has no toroidal boundary components, then there exists
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an open Out(m (M ))-invariant neighborhood W(M ) of AH(M ) in X(M ) such that
Out(m(M)) acts properly discontinuously on W(M). In particular, AI{M ) is Haus-

dorff.

It M is a compact hyperbolizable 3-manifold with no primitive essential annuli
whose boundary has no toroidal boundary components, then Out(w((M)) is virtu-
ally abelian (see the discussion in Sections 5 and 9). However, we note that the
conclusion of Theorem 1.3 relies crucially on the topology of M, not just the group
theory of Out(m((M)). In particular, if M is a compact hyperbolizable 3-manifold
M with incompressible boundary, such that every component of its characteristic sub-
manifold is a solid torus, then Out(w;(M)) is always virtually abelian, but M may
contain primitive essential annuli, in which case Out(mr; (M )) does not act properly
discontinuously on AH(M ).

One may combine Theorems 1.2 and 1.3 to completely characterize when
Out(my(M)) acts properly discontinuously on AH (M) in the case that M has no
toroidal boundary components.

Corollary 1.4. Let M be a compact hyperbolizable 3-manifold with no toroidal
boundary components and non-abelian fundamental group. The group Out(m(M))
acts properly discontinuously on AH(M ) if and only if M contains no primitive
essential annuli. Moreover, AI{M ) is Hausdorffif and only if M contains no primitive
essential annuli.

It is a consequence of the classical deformation theory of Kleinian groups (see
Bers [5] or Canary and McCullough, Chapter 7 in [17], for a survey of this the-
ory) that Out(m(M)) acts properly discontinuously on the interior int(AH (M )) of
AH(M). If H, is the handlebody of genus n > 2, Minsky [43] exhibited an ex-
plicit Out(m ()}, ))-invariant open subset PS(H,) of X(H},) such thatint{ AH(H,))
is a proper subset of PS(H,) and Out{m,(H,)) acts properly discontinuously on
PS(Hp,).

If M is a compact hyperbolizable 3-manifold with incompressible boundary and
no toroidal boundary components, which is not an interval bundle, then we find an
open set W(M) strictly bigger than int( AH (M )) which Out(w{(M)) acts properly
discontinuously on. See Theorem 9.1 and its proof for a more precise description of
W (M ). We further observe, see Lemma 8.1, that W(M ) N dAH (M) is a dense open
subset of dAH (M) in this setting.

Theorem 1.5. Let M be a compact hyperbolizable 3-manifold with nonempty incom-
pressible boundary and no toroidal boundary components, which is not an interval
bundle. Then there exists an open Out(mw1(M))-invariant subset W{(M) of X(M)
such that Out(mw(M)) acts properly discontinuously on W(M) and int{AH(M)) is
a proper subset of W(M ).
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It is conjectured that if M 1s an untwisted interval bundle over a closed surface
S, then int(AH(M)) is the maximal open Out(m;(M))-invariant subset of X(M)
on which Out(my(M)) acts properly discontinuously. One may show that no open
domain of discontinuity can intersect JAH (S x I) (see Lee [34]). Further evidence
for this conjecture is provided by results of Bowditch [8], Goldman [21], Souto—Storm
[49], Tan—Wong—Zhang [54] and Cantat [19].

Michelle Lee [34] has recently shown that if M 1s an twisted interval bundle over
a closed surface, then there exists an open Out(sr; (M ))-invariant subset W of X (M)
such that Out(z1(M)) acts properly discontinuously on W and int( AH(M)) is a
proper subset of W. Moreover, W contains points in A (M). As a corollary, she
proves that if M has incompressible boundary and no toroidal boundary components,
then there is open Out(my (M ))-invariant subset W of X(M ) such that Out(mz,(M))
acts properly discontinuously on W, int(AH(M)) is a proper subset of W, and
W NoAH(M) # @ if and only if M is not an untwisted interval bundle.

Outline of paper. In Section 2, we recall background material from topology and
hyperbolic geometry which will be used in the paper.

In Section 3, we prove Theorem 1.1. The proof that AI(S x /) is not 77 follows
the arguments in [18], Proposition 3.1, closely. We now sketch the proof that AT(M)
is T otherwise. In this case, let N € AI(M) and let R be a compact core for N. We
show that N is a closed point, by showing that any convergent sequence {p, } in the
pre-image of N is eventually constant. For all z, there exists a homotopy equivalence
hy: M — N such that (h,)s« = p,. If G is a graph in M carrying 7;(M ), then,
since {p,} is convergent, we can assume that the length of /,(G) is at most K, for
all n and some K. But, we observe that /1, (G) cannot lie entirely in the complement
of R, if R is not a compression body. In this case, each /4, (G) lies in the compact
neighborhood of radius K of R, so there are only finitely many possible homotopy
classes of maps of . Thus, there are only finitely many possibilities for p,,, so {p,} is
eventually constant. The proof in the case that R is a compression body is somewhat
more complicated and uses the Covering Theorem.

In Section 4, we prove Theorem 1.2. Let A be a primitive essential annulus in
M . If « is a core curve of A, then the complement M ofa regular neighborhood of
o in M is hyperbolizable. We consider a geometrically finite hyperbolic manifold N
homeomorphic to the interior of M and use the Hyperbolic Dehn Filling Theorem
to produce a convergent sequence {p,} in AH(M) and a sequence {g,} of distinct
elements of Out(mw; (M )) such that {p,, o, } also converges. Therefore, Out(m;(M))
does not act properly discontinuously on AH(M). Moreover, we show that {p,}
projects to a sequence in AI (M) with two distinct limits, so A/ (M) is not Hausdorft.

In Section 5 we recall basic facts about the characteristic submanifold and the
mapping class group of compact hyperbolizable 3-manifolds with incompressible
boundary and no toroidal boundary components. We identity a finite index subgroup
J(M) of Out(my(M)) and a projection of J(M) onto the direct product of mapping
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class groups of the base surfaces whose kermel K(M) is the free abelian subgroup
generated by Dehn twists in frontier annuli of the characteristic submanifold.

In Section 6, we organize the frontier annuli of the characteristic submanifold
into characteristic collections of annuli and describe free subgroups of 771 (M) which
register the action of the subgroup of Out(m;(M)) generated by Dehn twists in the
annuli in such a collection.

In Section 7, we show that compact hyperbolizable 3-manifolds with compressible
boundary and no toroidal boundary components contain primitive essential annuli.

In Section 8, we introduce a subset AH,, (M) of AH (M ) which contains all purely
hyperbolic representations. We see that int( AH (M )) is a proper subset of AH,, (M)
and that AH, (M) = AH(M) if M does not contain any primitive essential annuli.

In Section 9, we prove that if M has incompressible boundary and no toroidal
boundary components, but is not an interval bundle, there is an open neighborhood
W(M) of AH,(M) in X(M) such that Out(m;(M)) preserves and acts properly
discontinuously on W(M). Theorems 1.3 and 1.5 are immediate corollaries. We
finish the outline by sketching the proof in a special case.

Let X be an acylindrical, compact hyperbolizable 3-manifold and let A be an
incompressible annulus in its boundary. Let V be a solid torus and let { By, ..., By}
be a collection of disjoint parallel annuli in 9V whose core curves are homotopic to
the n*" power of the core curve of V where || > 2. Let {M;,.... M,} be copies
of X and let {Ay,..., A,} be copies of A in M;. We form M by attaching each
M; to V by identifying A; and B;. Then M contains no primitive essential annuli,
is hyperbolizable, and Out(m{(M)) has a finite index subgroup J(M) generated by
Dehn twists about { Ay, ..., A, }. In particular, J(M) = 7771

In this case, {Ay, ..., Ap} is the only characteristic collection of annuli. We say
that a group H registers J(M) it itis freely generated by the core curve of V' and, for
each i, a curve contained in V' U M; which is not homotopic into V. So I = F,4.
There is a natural map rgy : X(M) — X(H) where X(#H) is the PSL,(C)-character
variety of the group H . Notice that J(M ) preserves H and injects into Out(# ). Let

Spy1 = int(AH(H)) C X(H)

denote the space of Schottky representations (i.e. representations which are purely
hyperbolic and geometrically finite.) Since Out(H ) acts properly discontinuously on
Su+1, we see that J(M) acts properly discontinuously on

Wr =15 (Snt1)

Let W(M) = |J Wy where the union is taken over all subgroups which register
J(M). Notice that W{(M ) isopen and J(M ) acts properly discontinuously on W(M ).
One may use a ping pong argument to show that AH (M) C W(M), see Lemma 8.3.
Johannson’s Classification Theorem is used to show that W{(M ) is invariant under
Out(m;(M)), see Lemma 9.3. (Actually, we define a somewhat larger set, in general,
by using the space of primitive-stable representations in place of Schottky space.)
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2. Preliminaries

As aconvention, the letter M will denote acompactconnected oriented hyperbolizable
3-manifold with boundary. We recall that M is said to be hyperbolizable if the interior
of M admits a complete hyperbolic metric. We will use N to denote a hyperbolic
3-manifold. All hyperbolic 3-manifolds are assumed to be oriented, complete, and
connected.

2.1. The deformation spaces. Recall that PSL,(C) is the group of orientation-
preserving isometries of [13. Givena 3-manifold M , a discrete, faithful representation
p: w1(M) — PSL(C) determines a hyperbolic 3-manifold N, = H?/p(m1(M))
and a homotopy equivalence m,: M — N,, called the marking of N,.

We let D(M) denote the set of discrete, faithful representations of 71 (M) into
PSL,(C). The group PSL,(C) acts by conjugation on D(M ) and we let

AH(M) = D(M)/PSL,(C).

Elements of AH (M) are hyperbolic 3-manifolds homotopy equivalent to M equipped
with (homotopy classes of) markings.
The space AH(M ) is a closed subset of the character variety

X(M) = Homr (721 (M), PSL2(C)) / PSL2(C),

which is the Mumford quotient of the space Hom7 (71 (M ), PSL,(C)) of representa-
tions p: w1(M) — PSL,(C) such that p(g) is parabolic if g # id lies in a rank two
free abelian subgroup of 7;(M ). If M has no toroidal boundary components, then
Hom7 (1 (M), PSL,(C)) is simply Hom(7; (M), PSL,(C)). Moreover, each point
in AH(M) is a smooth point of X(M ) (see Kapovich [30], Sections 4.3 and 8.8, and
Heusener—Porti [24] for more details on this construction).

The group Aut(m (M )) acts naturally on Hom7 (771 (M), PSL2(C)) via

(@-p)(y) == ple™ ().

This descends to an action of Out(7r (M )) on AH(M ) and X(M). This action is not
free, and it often has complex dynamics. Nonetheless, we can define the topological

quotient space
AI(M) = AH(M)/Out(my(M)).
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Elements of AI(M) are naturally oriented hyperbolic 3-manifolds homotopy equiv-
alent to M without a specified marking.

2.2. Topological background. A compact 3-manifold M is said to have incom-
pressible boundary if whenever § is a component of dM , the inclusion map induces
an injection of 7 (S) into 7w (M ). In our setting, this is equivalent to 71 (M) being
freely indecomposable. A properly embedded annulus A in M is said to be essen-
tial if the inclusion map induces an injection of ;(A) into 71 (M ) and A cannot be
properly homotoped into dM (i.e. there does not exist a homotopy of pairs of the
inclusion (A4, d4) — (M, M) to a map with image in dM ). An essential annulus A
is said to be primitive if the image of 71(A) in 71 (M) is a maximal abelian subgroup.

If M does not have incompressible boundary, it is said to have compressible
boundary. The fundamental examples of 3-manifolds with compressible boundary
are compression bodies. A compression body is either a handlebody or is formed by
attaching 1-handles to disjoint disks on the boundary surface R x {1} of a 3-manifold
Rx[0, 1] where R is aclosed, but not necessarily connected, surface (see, for example,
Bonahon [6]). The resulting 3-manifold C (assumed to be connected) will have a
single boundary component d4 C intersecting R x {1}, called the positive (or external)
boundary of C'. If C is not an untwisted interval bundle over a closed surface, then
d4+C is the unique compressible boundary component of C. Notice that the induced
homomorphism 71(01C) — m1(C) is surjective. In fact, a compact irreducible
3-manifold M is a compression body if and only if there exists a component § of
dM such that 7 (S) — w1(M) is surjective.

Every compact hyperbolizable 3-manifold can be constructed from compression
bodies and manifolds with incompressible boundary. Bonahon [6] and McCullough—
Miller [40] showed that there exists a neighborhood Cyy of dM, called the charac-
teristic compression body, such that each component of Cyy is a compression body
and each component of 3Cys — dM is incompressible in M .

Dehn filling will play a key role in the proof of Theorem 1.2. Let ¥ be a toroidal
boundary component of compact 3-manifold M and let (2, /) be a choice of meridian
and longitude for F. Given a pair (p, ¢g) of relatively prime integers, we may form a
new manifold M(p, g) by attaching a solid torus V to M by an orientation-reversing
homeomorphism g: 9V — F so that, if ¢ is the meridian of V', then g(c) is a
(2, g) curve on I with respect to the chosen meridian-longitude system. We say that
M(p,q) is obtained from M by (p, q)-Dehn filling along F .

2.3. Hyperbolic background. If N = H?/TI is a hyperbolic 3-manifold, then
I' ¢ PSLy(C) acts on C as a group of conformal automorphisms. The domain
of discontinuity Q(T) is the largest open I'-invariant subset of € on which T acts
properly discontinuously. Note that Q(IT") may be empty. Its complement A(T") =
C- Q(T) is called the limit set. The quotient 9. N = Q(I')/ I is naturally a Riemann
surface called the conformal boundary.
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Thurston’s Hyperbolization theorem, see Morgan [44], Theorem B’, guarantees
that if M is compact and hyperbolizable, then there exists a hyperbolic 3-manifold
N and a homeomorphism

WM —3rM — NUJN

where d7 M denotes the collection of toroidal boundary components of M .

The convex core C(N) of N is the smallest convex submanifold whose inclusion
into N is a homotopy equivalence. More concretely, it is obtained as the quotient, by
T, of the convex hull, in TT, of the limit set A(T"). There is a well-defined retraction
r: N — (C(N) obtained by taking x to the (unique) point in C(/N ) closest to x. The
nearest point retraction 7 is a homotopy equivalence and i1s COS%—Lipschitz on the
complement of the neighborhood of radius s of C(N).

There exists a universal constant w, called the Margulis constant, such that if
€ < u, then each component of the e-thin part

Niiney = {x € N |injy(x) < €}

(where inj, (x) denotes the injectivity radius of N at x) is either a metric regular
neighborhood of a geodesic or is homeomorphic to 7 x (0, o) where T is either a
torus or an open annulus (see Benedetti—Petronio [4] for example). The e-thick part
of N is defined simply to be the complement of the e-thin part

Ninick(e) = N — Ninin(e)-

It is also useful to consider the manifold N2 obtained from N by removing the
non-compact components of Nyin(e)-

If N 1s a hyperbolic 3-manifold with finitely generated fundamental group, then
it admits a compact core, i.e. a compact submanifold whose inclusion into M is
a homotopy equivalence (see Scott [48]). More generally, if € < p, then there
exists a relative compact core R for N2, i.e. a compact core which intersects each
component of IN? in a compact core for that component (see Kulkarni—Shalen [33]
or McCullough [38]). Let P = dR — BNGO and let P° denote the interior of P.
The Tameness Theorem of Agol [1] and Calegari—Gabai [14] assures us that we may
choose R so that N2 — R is homeomorphic to (3R — P%) x (0, o0). In particular,
the ends of N are in one-to-one correspondence with the components of dR — P°.
(We will blur this distinction and simply regard an end as a component of N2 — R
once we have chosen € and a relative compact core R for N°.) We say that an end
U of N? is geometrically finite if the intersection of C(N) with U is bounded (i.e.
admits a compact closure). N is said to be geometrically finite if all the ends of N?
are geometrically finite.

Thurston [53] showed that if M is a compact hyperbolizable 3-manifold whose
boundary is a torus ¥, then all but finitely many Dehn fillings of M are hyperboliz-
able. Moreover, as the Dehn surgery coelficients approach oc, the resulting hyperbolic
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manifolds “converge” to the hyperbolic 3-manifold homeomorphic to int(M ). If M
has other boundary components, then there is a version of this theorem where one
begins with a geometrically finite hyperbolic 3-manifold homeomorphic to int(M)
and one is allowed to perform the Dehn filling while {ixing the conformal structure
on the non-toroidal boundary components of M. The proof uses the cone-manifold
deformation theory developed by Hodgson—Kerckhoff [25] in the finite volume case
and extended to the infinite volume case by Bromberg [11] and Brock—Bromberg
[9]. (The first statement of a Hyperbolic Dehn Filling Theorem in the infinite volume
setting was given by Bonahon—Otal [7], see also Comar [20].) For a general state-
ment of the Filling Theorem, and a discussion of its derivation from the previously
mentioned work, see Bromberg [12] or Magid [35].

Hyperbolic Dehn Filling Theorem. [et M be a compact, hyperbolizable 3-manifold
and let F be a toroidal boundary component of M. Let N = H? /T be a hyperbolic
3-manifold admitting an orientation-preserving homeomorphism y: M — 3t M —
N U N. Let {{pn, qgn)} be an infinite sequence of distinct pairs of relatively prime
integers.

Then, for all sufficiently large n, there exists a (non-faithful) representation
Bun: I — PSL,(C) with discrete image such that

(1) {Bn} converges to the identity representation of T, and

(2) ifin: M — M(py, qn) denotes the inclusion map, then for each n, there exists
an orientation-preserving homeomorphism

Vot M(pn. gn) — 0T M(py,qn) — Np, U 0. Ng,

suchthat Bpo Wy is conjugate to (Yrn)«o (in )+, andthe restriction of Yo ino !
to d:N is conformal.

3. Points are usually closed

If § is a closed orientable surface, we showed in [18] that
AL(S) = AH(S x I)/Mod4+(S)

is not Ty where Mod4 () is the group of (isotopy classes of) orientation-preserving
homeomorphisms of .. We recall that a topological spaceis 77 if all points are closed
sets. Since Mod, (5) is identified with an index two subgroup of Out(mw(S)), one
also expects that

AI(S x T) = AH(S x I)/Out(m1(S5))

is not 77.
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In this section, we show that if M is an untwisted interval bundle, which also
includes the case that M is a handlebody, then AI{M) is not 77, but that AT(M) is
T, for all other compact, hyperbolizable 3-manifolds.

Theorem 1.1. et M be a compact hyperbolizable 3-manifold with non-abelian
fundamental group. Then the moduli space AI(M) is Ty if and only if M is not an
untwisted interval bundle.

Proof. We first show that AI(M ) is T} if M is not an untwisted interval bundle. Let
p: AH(M) — AI(M) be the quotient map and let N be a hyperbolic manifold in
AI(M). We must show that p~1(N) is a closed subset of AI/(M). Since AH(M)
is Hausdorff and second countable, it suffices to show that if {p,} is a convergent
sequence in p~ ' (N), then lim p, € p~1(N).

An element p € p~1(N) is a representation such that N, is isometric to N. Let
{pn} be a convergent sequence of representations in p~'(N). Let G C M be a
finite graph such that the inclusion map induces a surjection of 71(G) onto 71 (M ).
Each p, gives rise to a homotopy equivalence i,: M — N, and hence to a map
jn = hule: G — N, both of which are only well-defined up to homotopy. Since
{pn} is convergent, there exists K such that j,(() has length at most K for all #n,
after possibly altering 4, by a homotopy.

Let R be a compact core for N. Assume first that R is not a compression body.
In this case, if § is any component of dR, then the inclusion map does not induce a
surjection of 1(5) to w1 (R) (see the discussion in Section 2). Since j,((G) carries
the fundamental group it cannot lie entirely outside of R. It follows that j,(G) lies
in the closed neighborhood Nk (R) of radius K about R. By compactness, there
are only finitely many homotopy classes of maps of G into N (R) with total length
at most K. Hence, there are only finitely many different representations among the
P, up to conjugacy. The deformation space AH (M) is Hausdorff, and the sequence
{pn} converges, implying that {p,} is eventually constant. Therefore lim p;, lies in
the preimage of N, implying that the fiber p~!(N) is closed and that N is a closed
point of AI(M).

Next we assume that R is a compression body. If R were an untwisted interval
bundle, then M would also have to be a untwisted interval bundle (by Theorems 5.2
and 10.6 in Hempel [23]) which we have disallowed. So R must have at least one
incompressible boundary component and only one compressible boundary compo-
nent d4 R. We are free to assume that M is homeomorphic to R, since the definition
of AI(M) depends only on the homotopy type of M. Let D denote the union of R
and the component of N — R bounded by d4+ R. Since the fundamental group of a
component of N — D never surjects onto 1 (V), with respect to the map induced by
inclusion, we see as above that each j,((G) must intersect D, so is contained in the
neighborhood of radius K of D.

Recall that there exists ex > 0 so that the distance from the €g-thin part of N to
the p-thick part of NV is greater than K (where p 1s the Margulis constant). It follows
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that j,(G) must be contained in the eg-thick part of .

Let I" be an incompressible boundary component of M. Then A, (F) is homo-
topic to an incompressible boundary component of R (see, for example, the proof of
Proposition 9.2.1 in [17]). As there are finitely many possibilities, we may pass to a
subsequence so that 4, (£) is homotopic to a fixed boundary component F’. We may
choose G so that there is a proper subgraph G C G such that the image of 71 (G F)
in 71 (M) (under the inclusion map) is conjugate to 7w (I"). Let pr: Np — N be
the covering map associated to 71 (F') C m1(N). Then j, |, lifts to a map k, of
Gr into Np.

Assume first that F is a torus. Then k, (G F) must lie in the portion X of Ng with
injectivity radius between ex and K /2, which is compact. It follows that j, (&) must
lie in the closed neighborhood of radius K of pr(X). Since pr(X) is compact, we
may conclude, as in the general case, that {p, } is eventually constant and hence that
p~H(N) is closed.

We now suppose that /" has genus at least 2. We first establish that there exists L
such that k,, (G ) must be contained in a neighborhood of radius L of the convex core
C(NpF). Itis a consequence of the thick-thin decomposition, that if G’ is a graph in
NF which carries the fundamental group then G’ must have length at least . We also
recall that the nearest point retraction 7r : Np — C(NF) is a homotopy equivalence
whichis COS%—Lipschitz on the complement of the neighborhood of radius s of C(V).
Therefore, if k,, (G F ) lies outside of N;(C(NF)), then rr (k, (G r)) has length at most

Coﬁ ~. It follows that k, (G ) must intersect the neighborhood of radius cosh™! (%)

of C(NF), so we may choose I. = K + cosh_l(%).

If NF is geometrically finite, then X = C(NF) N Npjck (e ) i compactand 7, (G)
must be contained in the neighborhood of radius L + K of pr (X)) which allows us
to complete the proof as before.

If Nr is not geometrically finite, we will need to invoke the Covering Theorem to
complete the proof. Let F denote the lift of F/ to Ng. Then F divides N into two
components, one of which, say A_, is mapped homeomorphically to the component
of N — R bounded by F'. Let Ay = Np — A_. We may choose a a relative
compact core R for (Np )2 (for some € < €x) so that F is contained in the interior
of Rp. Since pp is infinite-to-one on each end of (N F)g which is contained in A4,
the Covering Theorem (see [15] or [53]) implies that all such ends are geometrically
finite. Therefore,

Y = Ay N C(NF) N (NF)mick(ex)

is compact. If we let Z = A_ U Y, then we see that &, (GF) is contained in the
closed neighborhood of radius L about Z (since C (N )N Nuyjck(ex) C Z). Therefore,
Jjn(G) is contained in the closed (1. + K)-neighborhood of

DN pr(Z) = DN pr(Y).

Since D N pp(Y) is compact, we conclude, exactly as in the previous cases, that
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p~1(N) is closed. This case completes the proof that AI(M) is T; if M is not an
untwisted interval bundle.

We now deal with the case where M = § x [ isanuntwisted interval bundle over a
compact surface S. (In the special case that M is a handlebody of genus 2, we choose
S to be the punctured torus.) In our previous paper [18], we consider the space AH (.S)
of (conjugacy classes of) discrete faithful representations p: w1(S) — PSL2(C) such
that if g € w((S) is peripheral, then p(g) is parabolic. In Proposition 3.1, we use
work of Thurston [51] and McMullen [41] to exhibit a sequence {p,} in AH(S)
which converges to p € AH(S) such that A(p) = C, A(p1) # C and for all 7 there
exists ¢, € Mod4(S) such that p, = p; o ¢,. Since AH(S) C AH(S x I) and
Mod (S) is identified with a subgroup of Out(sr1(S)), we see that {p, } is a sequence
in p~'(N,,) which converges to a point outside of p~1(N,,). Therefore, N, is a
point in AJ(S x /) which is not closed. O

Remark. One may further show, as in the remark after Proposition 3.1 in [18],
that if N e AI(S x I) is a degenerate hyperbolic 3-manifold with a lower bound
on its injectivity radius, then N is not a closed point in AI(S x [). We recall that
N = T3 /T is degenerate if Q(T') is connected and simply connected and T is finitely
generated.

4. Primitive essential annuli and the failure of proper discontinuity

In this section, we show that if M contains a primitive essential annulus, then
Out(m1(M)) does not act properly discontinuously on AH(M ). We do so by us-
ing the Hyperbolic Dehn Filling Theorem to produce a convergent sequence {p,} in
AH (M) and a sequence { ¢, } of distinct element of Out(sr( (M )) such that {p,, o, } is
also convergent. The construction is a generalization of a construction of Kerckhoff-
Thurston [31]. One may also think of the argument as a simple version of the “wrap-
ping” construction (see Anderson—Canary [2]) which was also used to show that
components of int{ AH (M)) self-bump whenever M contains a primitive essential
annulus (see McMullen [42] and Bromberg—Holt [13]).

Theorem 1.2. Let M be a compact hyperbolizable 3-manifold with non-abelian fun-
damental group. If M contains a primitive essential annulus then Out(m (M )) does
not act properly discontinuously on AH(M ). Moreover, if M contains a primitive
essential annulus, then AI(M') is not Hausdorff.

Proof. Let A be a primitive essential annulus in M with core curve «r. Let M=M-
N (o) where N (&) is an open regular neighborhood of &. Lemma 10.2 in [3] observes
that M is hyperbolizable. Since M is hyperbolizable, Thurston’s Hyperbolization
Theorem implies that there exists a hyperbolic manifold N and a homeomorphism
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Y M — 3rM — N U3.N. The classical deformation theory of Kleinian groups
(see Bers [5] or [17]) implies that we may choose any conformal structure on Bcﬁ ;

Let Ag and A denote the components of AN M. Let M; be the complement in M
of a regular neighborhood of A;. Leth;: M — M be an embedding with image M;
which agrees with the identity map off of a (somewhat larger) regular neighborhood
of A.

Let F be the toroidal boundary component of M which is the boundary of N («)
in M. Choose a meridian-longitude system for F so that the meridian for F bounds
a disk in M and the longitude is isotopic to 4; M F. Lemma 10.3 in [3] implies that
itz M — ]lZf(l, n) is the inclusion map, theni, o h; : M — ]lZf(l, n) is homotopic
to a homeomorphism for eachi = 0,1 and all # € Z. Moreover, we may similarly
check that 7, o /1y is homotopic to i, © hg ¢ D for all n, where D4 denotes a Dehn
twist along A. Notice first that j, = Dﬁo takes a (1, 0)-curve on F to a (1, n)-curve

on F, so extends to a homeomorphism j, : M = M (1,0) —» M (1,n). Therefore,
since iy © hg and iy © i1 are homotopic, so are j, o ig c hg and j, cig o 2y1. But,
Jn ©ig © ho is homotopic to i, c hg o D and j, o ig o 11 = iy © h1, which completes
the proof that 7, o iy is homotopic to i, © hg o DY forall n.

Let po = (¥ o ho)s and p; = (i © hy)s. Since (h;)+ induces an injection of
m1(M) into mq (M ), pi € AH(M). We next observe that one can choose N so that
Ny, and N, are not isometric. Let a; = A; N (M — BT]\Z) and let a; denote
the geodesic representative of ¥r(a;) in 3.N. Notice that for each i = 0,1 there
is a conformal embedding of N — a’ into dc Ny, such that each component of

the complement of the image of BN — a} is a neighborhood of a cusp. One may
therefore choose the conformal structure on Bcﬁ so that there is not a conformal
homeomorphism from 9. Ny, to 9. N,, . Therefore, Ny, and N, are not isometric.

Let {N, = Ng,} be the sequence of hyperbolic 3-manifolds provided by the
Hyperbolic Dehn Filling Theorem applied to the sequence {(1,7)},ez, and let
{im: ﬂZf(l,n) — BTﬂZf(l,n) — N, U 3.N,} be the homeomorphisms such that
Yy, o ip o ! is conformal on 9. N. Let

Pni = )Bn © Of

for all n large enough that N, and 1, exist. Since 8, o4 is conjugate to (¥, oip )+ (by
applying part (2) of the Hyperbolic Dehn Filling Theorem) and i,, o 4; is homotopic
to a homeomorphism, we see that p,, ; = (W, 0 iy o ;)4 lies in AH(M ) for all #n and
each /. It follows from part (1) of the Hyperbolic Dehn Filling Theorem that {p,, ; }
converges to p; for each i. Moreover, p,.1 = pn.o © (D4)] forall n, since i, o hy is
homotopic to i, © hg o D7} for all n. Therefore, Out(m; (M )) does not act properly
discontinuously on AH(M ).

Moreover, {pp.0t and {p,.1} project to the same sequence in A7 (M) and both
Ny, and Ny, are limits of this sequence. Since N, and N, are distinct manifolds
in AI(M), it follows that A/(M ) is not Hausdorff. O
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Remark. One can also establish Theorem 1.2 using deformation theory of Kleinian
groups and convergence results of Thurston [52]. This version of the argument follows
the same outline as the proof of Proposition 3.3 in [18].

We provide a brief sketch of this argument. The classical deformation theory of
Kleinian groups (in combination with Thurston’s Hyperbolization Theorem) guaran-
tees that there exists a component B of int{ AH (M )) such that if p € B, then there
exists a homeomorphism f_zp: M —9rM — N, Ud.N, and the point p is deter-
mined by the induced conformal structure on 9M — d7 M. Moreover, every possible
conformal structure on oM — d7 M arises in this manner.

Let ag and a1 denote the components of 4 and let 7,4, and 7,, denote Dehn twists
about ag and a; respectively. We choose orientations so that D4 induces 74, © £,
on M. We then let pp o € B have associated conformal structure £, (X) and let
Pn.1 have associated conformal structure I;O” (X) for some conformal structure X
on dM. Thurston’s convergence results [51], [52] can be used to show that there
exists a subsequence {#; } of Z such that {p,; o} and {p, 1} both converge. One can
guarantee, roughly as above, that the limiting hyperbolic manifolds are not isometric.
Moreover, p,.1 = Pn,0 © (Da)} for all n, so we are the same situation as in the proof
above.

5. The characteristic submanifold and mapping class groups

In order to further analyze the case where M has incompressible boundary we will
make use of the characteristic submanifold (developed by Jaco—Shalen [27] and Jo-
hannson [29]) and the theory of mapping class groups of 3-manifolds developed by
Johannson [29] and extended by McCullough and his co-authors [39], [26], [17].

We begin by recalling the definition of the characteristic submanifold, specialized
to the hyperbolic setting. In the general setting, the components of the characteristic
submanifold are interval bundles and Seifert fibred spaces. In the hyperbolic setting,
the only Seifert fibred spaces which occur are the solid torus and the thickened torus
(see Morgan [44], Section 11, or Canary—McCullough [17], Chapter 5).

Theorem 5.1. Let M be a compact oriented hyperbolizable 3-manifold with incom-

pressible boundary. There exists a codimension zero submanifold X(M) C M with
frontier Fr(X(M)) = X (M) — dM satisfying the following properties:

(1) Each component %; of (M) is either

(1) an interval bundle over a compact surface with negative Euler character-
istic which intersects OM in its associated 91 -bundle,

(i1) a thickened torus such that 0M N X, contains a torus, or

(iil) a solid torus.
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(2) The frontier Fr(%(M)) is a collection of essential annuli.

(3) Any essential annulus or incompressible torus in M is properly isotopic into
2(M).

) If X is a component of M — X(M), then either m1(X) is non-abelian or
(X,Fr(X)) = (ST x [0,1] x [0,1], 8! x [0,1] x {0, 1}) and X lies between
an interval bundle component of X (M) and a thickened or solid torus compo-

nent of Z(M).

Moreover, such a (M) is unique up to isotopy, and is called the characteristic

submanifold of M.

The existence and the uniqueness of the characteristic submanifold in general
follows from The Characteristic Pair Theorem in [27] or Proposition 9.4 and Corol-
lary 10.9 in [29]. Theorem 5.1 (1) follows from Theorem 5.3.4 of [17], part (2)
follows from (1) and the definition of the characteristic submanifold, part (3) follows
from Theorem 12.5 of [29], and part (4) follows from Theorem 2.9.3 of [17].

Johannson’s Classification Theorem [29] asserts that every homotopy equivalence
between compact, irreducible 3-manifolds with incompressible boundary may be ho-
motoped so that it preserves the characteristic submanifold and is a homeomorphism
on its complement. Therefore, the study of Out(z; (M )) often reduces to the study
of mapping class groups of interval bundles and Seifert-fibered spaces.

Johannson’s Classification Theorem ([29], Theorem 24.2). Let M and Q be irre-
ducible 3-manifolds with incompressible boundary andleth: M — Q be a homotopy
equivalence. Then h is homotopic to amap g: M — Q such that

(1) g7 (Z(Q) = Z(M),

(2) glzny: (M) — 2(Q) is a homotopy equivalence, and

(3) g|m): M-—5(M) — Q——Z(Q) is a homeomorphism.
Moreover, if h is a homeomorphism, then g is a homeomorphism.

We let the mapping class group Mod (M) denote the group of isotopy classes of
self-homeomorphisms of M. Since M is irreducible and has (non-empty) incom-
pressible boundary, any two homotopic homeomorphisms are isotopic (see Wald-
hausen [55], Theorem 7.1), so Mod(M ) is naturally a subgroup of Out(mw(M)).
For simplicity, we will assume that M is a compact hyperbolizable 3-manifold with
incompressible boundary and no toroidal boundary components. Notice that this im-
plies that ¥ (M) contains no thickened torus components. Let 2 be the characteristic
submanifold of M and denote its components by {X1,..., Xk}

Following McCullough [39], we let Mod(%;, Fr(%;)) denote the group of ho-
motopy classes of homeomorphisms #: %; — %; such that A(F) = F for each
component F of Fr(3;). We let G(X;,Fr(Z;)) denote the subgroup consisting of
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(homotopy classes of) homeomorphisms which have representatives which are the
identity on Fr(X;). Define

G(Z,Fr(E)) = & G(Z;, Fr(Z))).

Notice that using these definitions, the restriction of a Dehn twist along a component
of Fr(X) is trivial in G(Z, Fr(X)).

In our case, each %; is either an interval bundle over a compact surface I; with
negative Euler characteristic or a solid torus. If %; is a solid torus, then G(X;, Fr(%;))
is finite (see Lemma 10.3.2 in [17]). If %; is an interval bundle over a compact
surface I;, then G(%;,Fr(X;)) is isomorphic to the group G(F;, dF;) of proper
isotopy classes of self-homeomorphisms of F which are the identity on oF (see
Proposition 3.2.1 in [39] and Lemma 6.1 in [26]). Moreover, G(3;, Fr(%;)) injects
into Out(m1(X;)) (see Proposition 5.2.3 in [17] for example). We say that X; is tiny if
its base surface I; is either a thrice-punctured sphere or a twice-punctured projective
plane. If %; is not tiny, then F; contains a 2-sided, non-peripheral homotopically
non-trivial simple closed curve, so G(X;,Fr(%;)) is infinite. If %; is tiny, then
G(%;.Fr(%;)) is finite (see Korkmaz [32] for the case when F; is a twice-punctured
projective plane).

Let J(M ) be the subgroup of Mod (M ) consisting of classes represented by home-
omorphisms fixing M — 3 pointwise. Lemma 4.2.1 of McCullough [39] implies
that J(M) has finite index in Mod(M). (Instead of J(M), McCullough writes
K (M, 3, 3,, ..., %)) Lemma 4.2.2 of McCullough [39] implies that the kernel
K (M) of the natural surjective homomorphism

pe: J(M) = G(Z,Fr(D))

is abelian and is generated by Dehn twists about the annuli in Fr(X).
We summarize the discussion above in the following statement.

Theorem 3.2. Let M be a compact hyperbolizable 3-manifold with incompressible
boundary and no toroidal boundary components. Thenthere is a finite index subgroup

J(M) of Mod(M) and an exact sequence
| — K(M) — J(M) 25 G(2,Fr(T)) — 1

such that K(M) is an abelian group generated by Dehn twists about essential annuli
in Fr(X).

Suppose that 2; is a component of 32(M). If &; is a solid torus or a tiny interval
bundle, then G(%;,Fr(X;)) is finite. Otherwise, G(%;, Fr(X;)) is infinite and injects
into Out(n’l (E,))
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6. Characteristic collections of annuli

We continue to assume that M has incompressible boundary and no toreidal boundary
components and that 3 (M) is its characteristic submanifold. In this section, we or-
ganize K(M ) into subgroups generated by collections of annuli with homotopic core
curves, called characteristic collection of annuli, and define a class of free subgroups
of 71 (M) which “register” these subgroups of K(M).

A characteristic collection of annuli for M 1s either a) the collection of all frontier
annuli in a solid torus component of (M), or b) an annulus in the frontier of an
interval bundle component of 2(M) which is not properly isotopic to a frontier
annulus of a solid torus component of 3 (M ).

If C; is a characteristic collection of annuli for M, let K; be the subgroup of
K(M) generated by Dehn twists about the annuli in C;. Notice that K; N K; = {id}
fori # j,since each element of K; fixes any curve disjoint from C;. Then K(M) =
@}":1 K, since every frontier annulus of ¥ (M) is properly isotopic to a component
of some characteristic collection of annuli. Let ¢; : K(M) — K; be the projection
map.

We next introduce free subgroups of 71(M), called C;-registering subgroups,
which are preserved by K; and such that K; acts effectively on the subgroup.

We first suppose that C; = Fr(7;) where T; is a solid torus component of X (M ).
Let{Ay,..., A} denote the components of Fr(7};). Foreachi = 1,...,/, let X; be
the component of M — (T; U Cy U Cy, U ... U Cy,) abutting 4;. (Notice that each
X, is either a component of M — X (M) or properly isotopic to the interior of an
interval bundle component of X(M).) Let a be a core curve for 7; and let xp be a
point on a. We say that a subgroup H of m((M, xo) is Cj-registering if it is freely
(and minimally) generated by @ and, foreachi = 1,...,/,aloop g; in 7; U X, based
at xg intersecting A; exactly twice. In particular, every C;-registering subgroup of
1(M, xp) is isomorphic to Fy4q.

Notice that a Dehn twist D4, along any A; preserves H in m({M, xp). It acts on
H by the map #; which fixes ¢ and g,,, form # i, and conjugates g; by ¢” (where the
core curve of A; is homotopic to a”). Let sy : K; — Out(H ) be the homomorphism
which takes each Dy, to #;. Simultaneously twisting along all / annuli induces
conjugation by a”, which is an inner automorphism of H. Moreover, it is easily
checked that sg (K ) is isomorphic to 7!~ and is generated by {f;,....#;_1}. The
set {a, g1, ..., g} may be extended to a generating set for 7 (M, xp) by appending
curves which intersect Fr(7;) exactly twice, so Dy, o --- o Dy, acts as conjugation
by a" on all of 71(M, xg). Therefore, K; itself is isomorphic to 711 and sy is
injective. (In particular, if C; is a single annulus in the boundary of a solid torus
component of X (M), then K; is trivial and we could have omitted C;.)

Now suppose that C; = {A} is a frontier annulus of an interval bundle component
2i; of % which is not properly isotopic into a solid torus component of 2. Leta be a
core curve for A and let xy be a point on a. We say that a subgroup H of 71(M, xp)
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is Cj-registering il it is Ireely (and minimally) generated by a and two loops g; and
g- based at xy each of whose interiors misses A, and which lie in the two distinct
components of M —(C;UC,U. . .UC,,) abutting A. In this case, # is isomorphic to
F5. Arguing as above, it follows that K; is an infinite cyclic subgroup of Out(z{(M))
and there is an injection sy : K; — Out(H).

In either situation, if 77 is a C;-registering group for a characteristic collection of
annuli C;, then we may consider the map

rg: X(M) — X(H)

simply obtained by taking pto p|g. (Here, X(H ) is the PSL,(C)-character variety of
the abstract group f7.) One easily checks from the description above thatif o € K,
then rgg(poa) = rpg(p)osy(a) forall p € X(M). Notice thatif ¢ € Kyand j # [,
then K; acts trivially on H, since each generating curve of H 1is disjoint from (7.
Therefore,

rag(poa) =rg(p)osg(g;(a))

forall p e X(M)andao € K(M).
We summarize the key points of this discussion for use later:

Lemma 6.1. et M be a compact hyperbolizable 3-manifold with incompressible
boundary and no toroidal boundary components. If C; is a characteristic collection
of annuli for M and H is a Cj-registering subgroup of mi(M ), then H is preserved
by each element of K; and there is a natural injective homomorphism sg: K; —
Out(H ). Moreover, if « € K(M), then rg(poca) = ru(p) o sulq;(a)) for all
p e X(M).

7. Primitive essential annuli and manifolds with compressible boundary

In this section we use a result of Johannson [29] to show that every compact hyper-
bolizable 3-manifolds with compressible boundary and no toroidal boundary com-
ponents contains a primitive essential annulus. It then follows from Theorem 1.2
that if M has compressible boundary and no toroidal boundary components, then
Out(my(M)) fails to act properly discontinuously on AH(M) and AI(M) is not
Hausdorff.

We first find indivisible curves in the boundary of compact hyperbolizable 3-
manifolds with incompressible boundary and no toroidal boundary components. We
call a curve @ in M indivisible if it generates a maximal cyclic subgroup of 71 (M ).

Lemma 7.1. Let M be a compact hyperbolizable 3-manifold with (non-empty) in-
compressible boundary. Then, if F is a component of dM , there exists an indivisible
simple closed curve in F.
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Proof. We use a special case of aresult of Johannson [29] (see also Jaco—Shalen [28])
which characterizes divisible simple closed curves in dM .

Lemma 7.2 ([29], Lemma 32.1). Let M be a compact hyperbolizable 3-manifold
with incompressible boundary. An essential simple closed curve o in OM which is not
indivisible is either isotopic into a solid torus component of £(M ) or is isotopic to a
boundary component of an essential Mobius band in an interval bundle component

of S(M).

Therefore, if 2 (M ) isnotall of M, then any simple closed curve in I which cannot
be isotoped into a solid torus or interval bundle component of 3 (M) is indivisible.

If Z(M) = M, then M is an interval bundle over a closed surface with negative
Euler characteristic and the proof is completed by the following lemma, whose full
statement will be used later in the paper.

Lemma 7.3. Let M be a compact hyperbolizable 3-manifold with no toroidal bound-
ary components. Let 3; be an interval bundle component of (M) which is not tiny,
then there is a primitive essential annulus (for M) contained in %;.

Proof. Let F; be the base surface of ;. Since ¥; is not tiny, F; contains a non-
peripheral simple closed curve a which is two-sided and homotopically non-trivial.
Then a is an indivisible curve in F; and hence in M. The sub-interval bundle A over
a 1s thus a primitive essential annulus. U

(]

We are now prepared to prove the main result of the section.

Proposition 7.4. If M is a compact hyperbolizable 3-manifold with compressible
boundary and no toroidal boundary components, then M contains a primitive essen-
tial annulus.

Proof. We first observe that under our assumptions every maximal abelian subgroup
of 1 (M) is cyclic (since every non-cyclic abelian subgroup of the fundamental group
of a compact hyperbolizable 3-manifold is conjugate into the fundamental group of
a toroidal component of dM, see [44], Corollary 6.10). Therefore, in our case an
essential annulus is primitive if and only if its core curve is indivisible.

We first suppose that M is a compression body. If M is ahandlebody, thenitisan
interval bundle, so contains a primitive essential annulus by Lemma 7.3. Otherwise,
M is formed from R x I by appending 1-handles to R x {1}, where R is a closed,
but not necessarily connected, orientable surface. Let « be an essential simple closed
curve in R x {1} which lies in M. Let D be adiskin R x {1} —dM . We may assume
that o intersects dD in exactly one point. Let 8 C (M N R x {1}) be a simple
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closed curve homotopic to « * 3D (in dM ) and disjoint from «. Then « and S bound
an embedded annulus in R x {1}, which may be homotoped to a primitive essential
annulus in M (by pushing the interior of the annulus into the interior of R x [).

If M is not a compression body, let Cps be a characteristic compression body
neighborhood of dM (as discussed in Section 2). Let C be a component of Cyy
which has a compressible boundary component d 4 C and an incompressible boundary
component . Let X be the component of M — Cjy which contains ¥ in its boundary
and let o be an essential simple closed curve in /7 which is indivisible in X' (which
exists by Lemma 7.1). Let o' be a curve in 04+ C C 3M which is homotopic to
o. One may then construct as above a primitive essential annulus A in C with
o’ as one boundary component. It is clear that A remains essential in M. Since
m1{M) = m(X) * H for some group H, the core curve of A, which is homotopic
to «, is indivisible in 771 (M). Therefore, A is our desired primitive essential annulus
in M. O

Remark. The above argument is easily extended to the case where M is allowed
to have toroidal boundary components (but is still hyperbolizable), unless M is a
compression body all of whose boundary components are tori. In fact, the only
counterexamples in this situation occur when M is obtained from one or two untwisted
interval bundles over tori by attaching exactly one 1-handle.

We have thus already established Corollary 1.4 in the case that M has compressible
boundary.

Corollary 7.5. If M is a compact hyperbolizable 3-manifold with compressible
boundary, no toroidal boundary components, and non-abelian fundamental group,
then Out(m(M)) does not act properly discontinuously on AH(M ). Moreover, the
moduli space AI(M) is not Hausdorff.

8. The space AH, (M)

In this section, we assume that M has incompressible boundary and no toroidal
boundary components. We identify a subset AH, (M) of AH(M) which contains
all purely hyperbolic representations in AH (M ). We will see later that Out(m;(M))
acts properly discontinuously on an open neighborhood of AH, (M) in X(M) it M
is not an interval bundle.

We define AH, (M) to be the set of (conjugacy classes of) representations p €
AH (M) such that

(1) If ¥; is acomponent of the characteristic submanifold which is not a tiny interval
bundle, then p(m (%;)) is purely hyperbolic (i.e. if g is a non-trivial element of
1(M) which is conjugate into 7 (%; ), then p(g) is hyperbolic), and
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(2) if 3; is a tiny interval bundle, then p(my(Fr(%;))) is purely hyperbolic.

We observe that int( AH (M )) is a proper subset of AH,(M ) and that AH(M ) =
AH, (M) if and only if M contains no primitive essential annuli.

Lemma 8.1. Let M be a compact hyperbolizable 3-manifold with non-empty incom-
pressible boundary and no toroidal boundary components. Then

(1) the interior of AH(M) is a proper subset of AH,(M),
(2) AH, (M) contains a dense subset of )AH(M ), and
(3) AH,(M) = AH(M) if and only if M contains no primitive essential annuli.

Proof. Sullivan [50] proved that all representations in int{ AH (M )) are purely hyper-
bolic (if M has no toroidal boundary components), so clearly int(AH{(M)) is con-
tained in AH, (M ). On the other hand, dAH (M) is non-empty (see Lemma 4.1 in
Canary—Hersonsky [16]) and purely hyperbolic representations are dense in dAH (M)
(which follows from Lemma 4.2 in [ 16] and the Density Theorem [9], [10], [45], [47]).
This establishes claims (1) and (2).

If M contains a primitive essential annulus A, then there exist p € AH (M) such
that p(«) is parabolic (where « is the core curve of A), so AH,(M) is not all of
AH (M) in this case (see Ohshika [46]).

Now suppose that M contains no primitive essential annuli. We first note that
every component of (M) is a solid torus or tiny interval bundle (by Lemma 7.3).
Moreover, if ¥; is a tiny interval bundle component of 3 (M ), then any component
A of its frontier must be isotopic to a component of the frontier of a solid torus
component of 2(M). Otherwise, A would be a primitive essential annulus (by
Lemma 7.2). Therefore, it suffices to prove that p(%;) is purely hyperbolic whenever
2, is a solid torus component of X (M).

Let T be a solid torus component of %(M). A frontier annulus A of 7 is an
essential annulus in M, so it must not be primitive. It follows that the core curve a
of T is not peripheral in M (see [29], Theorem 32.1).

Let p € AH(M) and let R be a relative compact core for (N,)? (for some € < ).
Leth: M — R be a homotopy equivalence in the homotopy class determined by p.
By Johannson’s Classification Theorem (|29], Theorem 24.2) 2 may be homotoped
so that 2(7) is a component 77 of X (R), i|r(7y is an embedding with image Fr(7")
and i|7: (T,Fr(T)) — (T',Fr(T")) is a homotopy equivalence of pairs. It follows
that /(a) is homotopic to the core curve of 77 which is not peripheral in R.

If p(a) were parabolic, then /(a) would be homotopic into a non-compact com-
ponent of (N, )min¢e) and hence into P = RN (N,)? C 3R, so h{a) would be
peripheral in R. It follows that p(a) is hyperbolic. Since a generates 71 (T'), we see
that p(x1(7")) is purely hyperbolic. Since 7 is an arbitrary solid torus component of
(M), we see that p € AH,(M). O
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We next check that the restriction of p € AH, (M) to the fundamental group of an
interval bundle component of % (M) (which is not tiny) is Schottky. By definition, a
Schottky group is a free, geometrically finite, purely hyperbolic subgroup of PSL,(C)
(see Maskit [36] for a discussion of the equivalence of this definition with more
classical definitions).

Lemma 8.2. et M be a compact hyperbolizable 3-manifold with incompressible
boundary with no toroidal boundary components which is not an interval bundle. If
2 is an interval bundle component of (M) which is not tiny and p € AH,(M),
then p(1(2;)) is a Schottky group.

Proof. By definition p(mr1(%;)) is purely hyperbolic, so it suffices to prove it is free
and geometrically finite. Since 2; is an interval bundle whose base surface F; has
non-empty boundary, 71(%;) = w1 (£;)is free. Letw; : N; — N, bethe coverof N,
associated to p(m1(X;)). Since 71 (X;) has infinite index in (M), 7; : N; — N is
a covering with infinite degree. Let R; be a compact core for N;. Since my(R;) is free
and R; isirreducible, R; is ahandlebody ([23], Theorem 5.2). Therefore, N; = (Nl-)g
has one end and 7; is infinite-to-one on this end, so the Covering Theorem (see [15])
implies that this end is geometrically finite, and hence that N; is geometrically finite.
Therefore, p(71(2;)) is geometrically finite, completing the proof that it is a Schottky
group. (|

Finally, we check that if p € AH,(M) and C; is a characteristic collection of
annuli, then there exists a C;-registering subgroup whose image under p is Schottky.

Lemma 8.3. Suppose that M is a compact hyperbolizable 3-manifold with incom-
pressible boundary and no toroidal boundary components and C; is a characteristic
collection of frontier annulifor M. If p € AH, (M), thenthere exists a C;-registering
subgroup H of mi (M) such that p(H) is a Schottky group.

Proof. We first suppose that C; = {A} is a frontier annulus of an interval bundle
component of (M) (and that A is not properly isotopic to a frontier annulus of a
solid torus component of X (M ))andlet xy € A. Weidentify 773 (M ) with 3 (M, xy).
Let X; and X be the (distinct) components of M —Fr(%) abutting A. Notice thateach
X; must have non-abelian fundamental group, since it either contains (the interior of)
an interval bundle component of ¥ (M ) or (the interior of) acomponentof M —% (M)
which is not a solid torus lying between an interval bundle component of 2 (M) and
a solid torus component of 3 (M ).

Let a be the core curve of A (based at xo). By assumption, p(a) is a hyperbolic
element. Let F be a fundamental domain for the action of {p(a)) on Q({p(a))) which
isan annulusin C. Since cach plmy (Z , Xp)) isdiscrete, torsion-free and non-abelian,
hence non-elementary, we may choose hyperbolic elements y; € p(m1(X;, xp))
whose fixed points lie in the interior of F. There exists s > 0 such that one
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may choose (round) disks Dl.jE C int(£) about the fixed points of y;, such that
vl (nt(D)) = C — D;", and Di", 5 D;’ and D are disjoint. Then, the Klein
Combination Theorem (commonly referred to as the ping pong lemma), guarantees
that p(a), vy and y5 freely generate a Schottky group, see, for example, Theorem C.2
in Maskit [37]. Then each p~1 (y})is represented by a curve g; in X, based at xo and
a, g1 and g, generate a C;-registering subgroup 1 such that p( /) is Schottky.

Now suppose that C; = {4y, ..., A} is the collection of frontier annuli of a solid
torus component T; of Z(M). Let X; be the componentof M — (T; UC{ U---U Cp)
abutting A;. Pick xg in 7; and let a be a core curve of 7; passing through xy. Again
each X; must have non-abelian fundamental group.

Let F be an annular fundamental domain for the action of {p(a)) on the comple-
ment in € of the fixed points of p(a). Foreachi,letY; = X; UA; U int(Tj’) and pick
a hyperbolic element y; in p(m1(Y;, x¢)) both of whose fixed points lie in the interior
of F. (Notice that even though it could be the case that X; = Xy fori # k, we still
have that (Y}, xo) intersects (Y, xo) only in the subgroup generated by «, so
these hyperbolic elements are all distinct.) Then, just as in the previous case, there
exists § > 0 such that the elements {p(a),y{,...,y;} freely generate a Schottky
group. Each p~1()¥) can be represented by a loop g; based at xo which lies in ¥; and
intersects A; exactly twice. Therefore, the group H generated by {a,g1,..., g1} is
C;-registering and p(H ) is Schottky. O

9. Proper discontinuity on A H,, (M)

We are finally prepared to prove that Out(z; (M )) acts properly discontinuously on
an open neighborhood of AH,(M) if M is a compact hyperbolizable 3-manifold
with incompressible boundary and no toroidal boundary components which is not an
interval bundle.

Theorem 9.1. Let M be a compact hyperbolizable 3-manifold with nonempty incom-
pressible boundary and no toroidal boundary components which is not an interval
bundle. Then there exists an open Out(my(M))-invariant neighborhood W(M) of
AHp (M) in X(M) such that Out(m1(M)) acts properly discontinuously on W{(M ).

Notice that Theorem 1.3 is an immediate consequence of Proposition 7.4, Lem-
ma 8.1 and Theorem 9.1. Moreover, Theorem 1.5 is an immediate corollary of
Lemma 8.1 and Theorem 9.1.

We now provide a brief outline of the section. In Section 9.1 we recall Minsky’s
work which shows that Out(z(f1,)) acts properly discontinuously on the open set
PS(H,) of primitive-stable representations in X(H, ) where H,, is the handlebody of
genus g. In Section 9.2, we consider the set Z(M) C X(M) such thatif p € Z(M)
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and C; is a characternistic collection of annuli, then there exists a C;-registering
subgroup I of 71(M) such that p|g is primitive stable. We use Minsky’s work to
show that K (M ) acts properly discontinuously on Z{M ). In Section 9.3, we consider
the set V(M) of all representation such that p|, (x,) is primitive-stable whenever ;
is an interval bundle component of X (M) which is not tiny. We show that if {or,}
is a sequence in J(M) such that {px (e, )} is a sequence of distinct elements and K
is compact subset of V (M), then {o,, (K )} leaves every compact set. In Section 9.4,
we let W(M) = Z(M) N V(M) and combine the work in the previous sections to
show that J(M) acts properly discontinuously on W(M). Since J(M) has finite
index in Out(sr; (M)) (see [17]), this immediately implies Theorem 9.1. Johannson’s
Classification Theorem is used to show that J(M ) is invariant under Out(mr{(M)).

9.1. Schottky groups and primitive-stable groups. In this section, we recall Mins-
ky’s work [43] on primitive-stable representations of the free group F,,, wheren > 2.
An element of F, is called primitive if it is an element of a minimal free generating
set for I,,. Let X be a bouquet of n circles with base point » and fix a specific
identification of 7y (X, &) with F,,. To a conjugacy class [w] in F, one can associated
an infinite geodesic in X which is obtained by concatenating infinitely many copies of
a cyclically reduced representative of w (here the cyclic reduction is in the generating
set associated to the natural generators of 7y (X, b)). Let £ denote the set of infinite
geodesics in the universal cover X of X which project to geodesics associated to
primitive words of £,.

Given a representation p: F,, — PSL,(C), x € TI* and a lift b of b, one obtains
a unique p-equivariant map T, x: X — H? which takes b to x and maps each
edge of Xtwa geodesic. A representation p: F;,, — PSL,(C) is primitive-stable if
there are constants K, 5 > 0 such that 7, , takes all the geodesics in & to (K, §)-
quasi-geodesics in T1°. We let PS(J,) denote the set of (conjugacy classes) of
primitive-stable representations in X () where I, is the handlebody of genus #n.

We summarize the key points of Minsky’s work which we use in the remainder
of the section. We recall that Schottky space S, C X(H,) is the space of discrete
faithtul representations whose image is a Schottky group and that §,, is the interior
of AH(H,).

Theorem 9.2 (Minsky [43]). Ifn = 2, then
(1) Out(Fy) acts properly discontinuously on PS(H,),
(2) PS(Hp) is an open subset of X(Hy), and
(3) Schottky space 8, is a proper subset of PS(H,).

Moreover, if K is any compact subset of PS(H,), and {a,} is a sequence of distinct
elements of Out(Fy,), then {o, (K)} exits every compact subset of X(Hy) (i.e. for any
compact subset C of X (H),) there exists N suchthatifn = N, theno,(K)NC = ).
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Remark. In order to prove our main theorem it would suffice to use Schottky space
8, in place of PS(H,). However, the subset W(M) we obtain using PS(H,) is
larger than the one we would obtain using simply §,,.

9.2. Characteristic collection of annuli. We will assume for the remainder of the
section that M is a compact hyperbolizable 3-manifold with incompressible bound-
ary and no toroidal boundary components which is not an interval bundle. Main
Topological Theorem 2 in Canary and McCullough [17] (which is itself an exercise
in applying Johannson’s theory) implies that if M has incompressible boundary and
no toroidal boundary components, then Mod(M ) has finite index in Out(zw;(M)).
Therefore, applying Theorem 5.2, we see that J(M ) has finite index in Out(m (M )).
In particular, if M is acylindrical, then J(M ) is trivial and Out(7r{ (M )) acts properly
discontinuously on X(M).

Let C; be a characteristic collection of annuli in M. If H is a C;-registering
subgroup of 71 (M), then the inclusion of H in 7y (M ) induces a natural injection
sg: K; — Out(H) such that if & € K(M ), then

ra(poa) =ry(p)osulgi(a))
where 7y (p) = p|g (see Lemma 6.1). Let
Zy =rg' (PS(H))

where PS(H) C X(H) is the set of (conjugacy classes of) primitive-stable repre-
sentations of /. Let

z(Cp=\)zZu
where the union is taken over all C;-registering subgroups H of 7{(M).
If {Cq,...,C,} is the set of all characteristic collections of annuli for M, then

we define "
Z(M) = () Z(C)).
i=1

If there are no characteristic collection of annuli, then M is acylindrical and we set
Z(M)=X(M).

We use Lemma 8.3, Theorem 9.2, and Johannson’s Classification Theorem to
prove:

Lemma 9.3. Let M be a compact hyperbolizable 3-manifold with nonempty incom-
pressible boundary and no toroidal boundary components. Then
(1) Z(M) is an Out(m(( M ))-invariant open neighborhood of AH,(M) in X(M),
and

(2) if K C Z(M) is compact and {a, } is a sequence of distinct elements of K(M ),
then {a,, (K)} exits every compact set of X(M ).



246 R. D. Canary and P. A. Storm CMH

Proof. Lemma 8.3 implies that AH, (M) C Z(C;)foreach j,so AH,(M) C Z(H).
Moreover, since rg is continuous for all #7, each Z(C};) is open, and hence Z(M) is
open.

Johannson’s Classification Theorem implies that if C; is acharacteristic collection
of annuli for M and ¢ € Out(mw(M)), then there exists a homotopy equivalence
h: M — M such that 2, = ¢ and 2(C}) is also a characteristic collection of annuli
for M. Moreover, if H is a C;-registering subgroup of 71(M), then ¢(H) is a
h(C;)-registering subgroup of 71(M). Therefore, Z(M) is Out(z( (M ))-invariant,
completing the proof of claim (1).

If (2) fails to hold, then there is a compact subset K of Z(M ), a compact subset
C of X(M) and a sequence {a, } of distinct elements of K(M ) such that o, (K) N C
is non-empty for all n. We may pass to a subsequence, still called {o,}, so that
there exists j such that {g;(c;,)} is a sequence of distinct elements. Since X(M)
is locally compact, for each x € K, there exists an open neighborhood U, of x
and a C;-registering subgroup H, such that the closure U, is a compact subset of
Z ... Since K is compact, there exists a finite collection of points {xy, ..., x,} such
that K C Uy, U---U Uy, . Therefore, again passing to subsequence if necessary,
there must exists x; such that a,,(Uy,) N C is non-empty for all n. Let U’ = U,,
and H" = H, . Lemma 6.1 implies that {sg/(g;(x,))} is a sequence of distinct
elements of Out(H’) and that s (g; (o, ) (re(U")) = 7 (0, (U7)). Theorem 9.2
then implies that {sg/(g; (@) (ra (U} = {ru(a,(U’))} exits every compact
subset of X(H'). Therefore, {o, (U')} exits every compact subset of X(M ) which is
a contradiction. We have thus established (2). L]

9.3. Interval bundle components of X (M). Let 3; be an interval bundle compo-
nent of (M) with base surface F; and let X{( ;) be its associated character variety.
There exists a natural restriction map r; : X(M) — X(X;) taking p to p|,, (z;)- Re-
call that G(X;, Fr(%;)) injects into Out(m(X;)) (by Lemma 5.2), so acts effectively
on X(%;). Moreover, if & € J(M), thenr;(poa) = ri(p) o pi(a) where p; is the
projection of J(M) onto G(X;,Fr(%;)). If %; is not tiny, we define

V(Zi) =, (PS(Z)).

If{%,,.... X} denotes the collection of all interval bundle components of 3 (M)
which are not tiny, then we let

V(M) = [\ V().
i=1

If every interval bundle component of X (M) is tiny, then we let V(M) = X(M).
We use Lemma 8.2, Theorem 9.2, and Johannson’s Classification Theorem to
prove:



Vol. 87 (2012) Moduli spaces of hyperbolic 3-manifolds 247

Lemma 9.4. Let M be a compact hyperbolizable 3-manifold with nonempty incom-
pressible boundary and no toroidal boundary components which is not an interval

bundle. Then
(1) V(M) is an Out{m1 (M ))-invariant open neighborhood of AH,(M) in X(M),
and
(2) if K is a compact subset of V(M) and {a,} is a sequence in J(M) such that

{ps(an )} is a sequence of distinct elements of G(%, Fr(X)), then {a,, (K)} exits
every compact subset of X(M).

Proof. Lemma 8.2 implies that AH,, (M) C V(%;), for each i, and each V(X;) is
open since #; is continuous. Therefore, V(M) is an open neighborhood of AH, (M ).

Johannson’s Classification Theorem implies that if ¢ € Out(m (M )), then there
exists ahomotopy equivalence 7: M — M suchthat h(X(M)) C Z(M), h|p(zyisa
self-homeomorphism of Fr(X) and / induces ¢. Therefore, if 3; is an interval bundle
component of X (M), then ¢(m1(X;)) is conjugate to m1(X;) where X; is also an
interval bundle component of X(M ). Moreover, if ; is not tiny, then 71 (X; ) is also
nottiny (since 2|x; : ¥; — X; is ahomotopy equivalence which is ahomeomorphism
on the frontier). It follows that V(M) is invariant under Out(mw, (M )), completing
the proof of claim (1).

It (2) fails to hold, then there is a compact subset K of Z(M ), acompact subset C
of X(M) and a sequence {w,, } of elements of J(M ) such that { px(«, )} is a sequence
of distinct elements of G(X, Fr(¥)) and «,(K) N C is non-empty for all n. If a
component %; of 3(M) is a tiny interval bundle or a solid torus, then G(Z;, Fr(%;))
is finite, by Lemma 5.2. So, we may pass to a subsequence, so that there exists
an interval bundle ¥; which is not tiny such that { p; (o)} is a sequence of distinct
elements of G(X;, Fr(3;)). Theorem 9.2 then implies that { p; (o, ) (r; (K))} leaves
every compact subset of X(3;). Therefore, since 7; (0« (K)) = pi(o,)(7:i(K)) for
all n, {o, (K)} leaves every compact subset of X (M ). This contradiction establishes
claim (2). L]

9.4. Assembly. Let W(M) = V(M) N Z(M). Since V(M) and Z(M) are open
Out(mq (M ))-invariant neighborhoods of AH, (M), sois W(M ). It remains to prove
that Out(m, (M )) acts properly discontinuously on W(M). Since J(M) is a finite
index subgroup of Out(m;(M)), it suffices to prove that J(M ) acts properly discon-
tinuously on W(M). We will actually establish the following stronger fact, which
will complete the proof of Theorem 9.1.

Lemma 9.5. [f K is a compact subset of W(M ) and {a,} is a sequence of distinct
elements of J(M), then {u,(K)} leaves every compact subset of X(M).

Proof. It our claim fails, then there exists a compact subset K of W(M ), a compact
subset C of X(M) and a sequence {a,} of distinct elements of J(M) such that
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a,(K) N C is non-empty. We may pass to an infinite subsequence, still called {«,, },
such that either { px («,,)} is a sequence of distinct elements or {px(w, )} is constant.

If { px (e, )} is a sequence of distinct elements, Lemma 9.4 immediately implies
that {a,, (K)} leaves every compact subset of X (M) and we obtain the desired con-
tradiction.

If {px(ay)} is constant, then, by Theorem 5.2, there exists a sequence {f,} of
distinct elements of K(M ) such that &, = ¢ o B, for all n. LLemma 9.3 implies that
{8, (K)} exits every compact subset of X(M). Since oy induces a homeomorphism
of X(M), it follows that {&,,(K) = a1(S,(K))} also leaves every compact subset of
X(M). This contradiction completes the proof. 0
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