Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 88 (2013)

Artikel: Gehring-Haymann Theorem for conformal deformations
Autor: Kosela, Pekka / Lammi, Paivi

DOl: https://doi.org/10.5169/seals-515635

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-515635
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helv. 88 (2013), 185-203 Commentarii Mathematici Helvetici
DOI 10.4171/CMH/282 © Swiss Mathematical Society

Gehring—-Hayman Theorem for conformal deformations

Pekka Koskela and Piivi Lammi*

Abstract. We study conformal deformations of a uniform space that satisfies the Ahlfors
Q-regularity condition on balls of Whitney type. We verify the Gehring—-Hayman Theorem
by using a Whitney covering of the space.
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1. Introduction

Given x, y € B%(0, 1), the hyperbolic geodesic [x, y] is essentially the shortest curve
joining x to y in B2(0, 1). More precisely

Ulx. ) = S

whenever y is a path that joins x to y in B2(0, 1). This simple fact is an instance of a
theorem of Gehring and Hayman in [GH]: If 7 : B?(0,1) — Q C C is a conformal
mapping and y is a path joining points x and y, then

f f@)ds < C f (@)l ds. (L1)
[x.¥] Y

where C > 1 is an absolute constant. The density p(z) = | f/(z)| satisfies a Harnack
inequality
p(z)

e < p(w) < Ap(z)

whenever z € B2(0,1) and w € B(z, (1 — |z|)/2). It also satisfies the area growth
estimate
/ p2 dA < 7r?,
Bp(z.r)

*Both authors were supported by the Academy of Finland, grant no. 120972.
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where B, (z, r) refers to the ball with centre z and radius 7 in the path metric

do(x,y) = inffpds,
v
where the infimum is taken over all curves y joining points x and y.

In [BKR] the Gehring—Hayman inequality (1.1) was extended to B*(0, 1), n > 2,
for conformal deformations of the Euclidean metric. By a conformal deformation
(a conformal density) p we mean a continuous function p: B"(0,1) — (0, oo) that
satisfies a Harnack inequality with a constant A > 1,

p(z)

— < p(w) < Ap(z) forall w e B(z,(1 —|z|)/2)and all z € B"(0, 1),

and a volume growth condition with a constant B > 0,
f otdm, < Br" forallz € B"(0,1)and all > 0,
Bo(z.r)

with respect to #-dimensional Lebesgue measure #1,,.

Subsequently, Herron showed in [H1] that B"(0, 1) can be replaced by any uni-
form space (£2,d) of bounded geometry. In this setting conformal densities are
defined by conditions analogous to those given above — see Section 2 for details.
Here uniformity is a substitute for the “roundness” of B"(0,1). The assumption
of bounded geometry includes two conditions. First, it requires that 2 carries a
Borel regular measure p that satisfies the (Ahifors) Q-regularity condition on balls
of Whitney type for some J > 1. That is, there is a constant C'; > 1 such that if
r <d(z,d)/2, then

Cr'r 2 < u(BG,r) < Cir.

Secondly, it requires that balls B(z, d(z, 9€2)/2) allow for nice lower bounds for the
()-modulus (see e.g. [HK], [BHK]). In fact, the (J-regularity condition on balls of
Whitney type 1s not explicitly stated in [H1] but it follows from the other assumptions.
The precise definition of a uniform space is given in Section 2 below. This concept,
introduced in [BHK], generalizes the notion of a uniform domain introduced by Jones
[Jo] and Martio and Sarvas [MaSa], see also [GO]. The volume growth condition for
p then refers to integrals of p¥ with respect to the measure y. For predecessors of
the results in [H1], see [HN], [HR]. For connections to Gromov hyperbolicity, see
[Gr], [BHK] and [BB].

In this paper we show that, surprisingly, lower bounds on the (J-modulus are not
needed to prove the Gehring—Hayman inequality.

Theorem 1.1 (Gehring—Hayman Theorem). Let Q > | and let (2,d, ) be a
non-complete uniform space equipped with a measure that is Q-regular on balls



Vol. 88 (2013) Gehring—Hayman Theorem for conformal deformations 187

of Whitney type. If p: Q — (0,00) is a conformal density on 2, then there is a
constant C = 1 that depends only on the data associated with Q2 and p such that

Eo(lx, y]) = CEu(y),

whenever [x, ] is a quasihyperbolic geodesic and y is a curve joining x to y in .

The definition of a quasihyperbolic geodesic is given in Section 2 and the proof
of the theorem is in Section 4. Especially Subcase D of the proof is the novelty,
that allows us to avoid the use of lower bounds for the (J-modulus. The previous
arguments [BKR], [H1], [HN] and [HR] rely on modulus estimates.

The Gehring—Hayman Theorem was a central tool in [BHR], [BKR], [H1] and
[H2]. We expect that Theorem 1.1 will allow one to remove the use of modulus
bounds in [BHR], [BKR], [H1] and [H2] and thus extend large parts of those papers
to a much more general setting. A very simple example of a space that satisfies the
assumptions of Theorem 1.1 but does not support lower bounds for the J-modulus
is

Q={(x,y) eR*:|y] <|x], -l <x <1}

equipped with the path metric and Lebesgue measure.

2. Preliminaries

Let (2, d) be a metric space. A curve means a continuous map y: [a,b| — Q from
an interval [a,b] C R to 2. We also denote the image set y([a, &]) of y by y. The
length £ 4(y) of y with respect to the metric 4 is defined as

m—1

Caly) = sup ) d(y (), y(ti41)).
i=0

where the supremum is taken over all partitions a = fy < f1 < -+ < t, = b of
the interval [a, b]. If £4(y) < oo, then y is said to be a rectifiable curve. When the
parameter interval is open or half-open, we set

£4(y) = sup Ly (¥lie.a1)

where the supremum is taken over all compact subintervals [c, d]. For a rectifiable
curve y we define the arc length s : [a, b] — [0, o) along y by

s(t) = La(¥l[a1)-

Next, let us assume that p: 2 — [0, o] is a Borel function. For each rectifiable
curve y: |a, b] — Q we define the p-length £,(y) of y by

b
b = [ pds= [ sy dse).
¥y a
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It € is rectifiably connected — that 1s, every pair of points in £2 can be joined by a
rectifiable curve — then p determines a distance function

where the infimum is taken over all rectifiable curves y joining x, y € 2. In general,
the distance function d, need not be a metric. However, it is a metric — called a
p-metric —if p is positive and continuous. If p = 1, then £,(y) = £4(y) is the length
of the curve y with respect to the metric . Furthermore, if £4(y) = d(x, y) for
some curve y joining points x, y € £2, then y is said to be a geodesic. If every pair
of points in €2 can be joined by a geodesic, then (2, d) is called a geodesic space.

Let (2, d) be a locally compact, rectifiably connected and non-complete metric
space and denote by Q its metric completion. Then the boundary 3Q := Q \ Q is
nonempty. We write

d(z) = distg(z,02) = inf{d(z,x) : x € IR}

for z € Q. If we choose ]

p(z) = —Z,

we obtain the quasihyperbolic metric k in 2. In this special case we denote the metric
d, by k and the quasihyperbolic length of the curve y by £3.(y). That £4(y) = £,(y)
is shown in [BHK], Appendix. Moreover, |x, y] refers to a quasihyperbolic geodesic
joining points x and y in £2.

Given a real number D > 1, acurve y: |a,b] — (Q,d) is called a D-uniform
curve 1l it 1S quasiconvex:

La(y) = Dd(y(a),y(D)), (2.1)
and

min{fy (¥ la,0). £a (¥ |,e)} = Dd(y (1)) (2.2)

forevery f € |a, b|. A metric space (2, d) is called a D-uniform space if every pair
of points in it can be joined by a D-uniform curve.

It (2, d) is a uniform space, then by Proposition 2.8 and Theorem 2.10 of [BHK]
the quasihyperbolic space (€2, k) is complete, proper (closed balls are compact), and
geodesic. Furthermore, each quasihyperbolic geodesic [x, y| is a D’'-uniform curve
for every x,y € Q, where D' = D'(D) = 1. Quasihyperbolic geodesics are also
locally D'-uniform curves — that is, every subcurve [u, v] C [x,y] is a D'-uniform
curve —because [u, v] is a quasihyperbolic geodesic as well. We also have an estimate
for a quasihyperbolic distance of every pair of points x and y in the D-uniform space
(2,d) (see [BHK], Lemma 2.13):

k(x,y) <4D?log (1 + dx.y) )

2.3
min{d (x), d(7)} =
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Let us consider a continuous function p: 2 — (0, c0), called a density. The
metric d, is then well defined. We use the subscript p for metric notations which
refer to d,, and similarly for k and d. Forexample, B,(a.r), Br(a.r)and By (a,r)
are open balls with centre ¢ and radius 7 in metrics d,, k and d. Furthermore, we
abbreviate the “Whitney ball” By(z, 2d(z)) to B,.

Let p be a Borel regular measure on (€2, d) with dense support. We call p a
conformal density provided it satisfies both a Harnack type inequality, HI(A), for
some constant 4 > 1:

1 p(x)
— < —==<A forallx,y e B;andall z € €2, HI(A)

A7 p(y)

and a volume growth condition, VG(B), for some constant B > 0:
to(By(z,7)) < Br forallz € Qandr > 0. VG(B)

Here i, 1s the Borel measure on £2 defined by
HolE) = f 02 du foraBorelset E C Q,
E

and Q is a positive real number. Generally ¢ will be the Hausdorff dimension of our
space (Q2,d).

We defined in the introduction the concept of (J-regularity on balls of Whitney
type. The immediate consequence is that the measure u is also doubling on balls of
Whitney type: there exists a constant C» > 1 such that

p(Ba(z,2r)) = Cop(Ba(z,1)) (2.4)

forevery z € Qandevery 0 < r < %d(z).

3. Whitney covering

In this section we assume that (€2, d, p) is a locally compact, rectifiably connected,
and non-complete metric measure space such that the measure y+ is doubling on balls
of Whitney type. Let r(z) = d(z)/50. From the family of balls {B;(z,7(2))};eq
we select a maximal (countable) subfamily {B;(z;, 7(z;)/5)}ies of pairwise disjoint
balls. Let B = {Bj}ie;, where B; = By(z;,ri) and r; = r(z;). We call the
family B the Whitney covering of 2. Let us list a few facts concerning the Whitney
covering. The last property is a consequence of the doubling on balls of Whitney
type property of the measure p. For more properties of the Whitney covering, see
e.g. Theorem III.1.3 of [CW], Lemma 2.9 of [MaSe], Lemma 7 of [HKT], and [BS],
Theorem 5.3 and Lemma 5.5.
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Lemma 3.1. There is N € N such that
(i) the balls Bg(z;, r; /5) are pairwise disjoint,
(i) @ = U;er Ba(zi, i),
(iii) Bg(z;,5r;) C €,
(iv) D72, XBy(z; .50)(X) = N forall x € Q.
The family B has the same kind of properties as the usual Whitney decomposition
W of a domain € C R”" and next we prove a couple of them. In addition to the

assumptions above, we assume that for each pair of pointsin B € B forevery B € B
can be joined by a D-uniform curve in £2.

Lemma 3.2. fet x,y € (2,d,u) and d(x,y) = d(x)/2. There is a constant
C = C(C,, D) > 0 such that

C_IN(X,,V) = k(xzy) = CN(X,y),

where N(x, y) is the number of balls B € ‘B intersecting a quasthyperbolic geodesic
[x: y]

Proof. Letx,y € Qbepointssothatd(x, y) > d(x)/2. Since24 diam4(B) < d(z)
forevery B € B and for every z € B, then the basic estimate (2.3) implies

| diamy(B) ) 2
. By < 4D2] (1 — 4 | =4D?%log —.
lamg(B) < og{l+ 24 diam g (B) > 24
Thus k(x,v)
X,y
N(x, ’

Lemma 3.1 (iv) says that there are only N balls B € B that contain x. Fix one
of them and denote it by By. A neighbour of the ball By is a ball B € B which
intersects the ball 5By = B;(zy,5r) = Bs(z1,d(z1)/10). Because the measure
i is doubling in every ball B(z,r) with radius 0 < r < d(z)/4, the ball By has
a uniformly bounded number of neighbours. Let this number be N/ € N and let
y1 € [x, y] be the first point such that y; does not belong to any neighbour of Bj.
This choice is possible because d(x, y) = d(x)/2. The geodesic [x, y;] intersects at
most N’ balls B € B and

1 10
k(x, y1) =f ds zf ds
[x.y1] 4(2) 5B N[x,y,] 11d(z1)

10 (d(zl) B d(zl)) _ 4
~ 11d(z)\ 10 50 /55

(3.1)
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Let B, € B be a ball such that y; € B, and B, N B # 0 for some neighbour
B € B of By. Again there are only N’ balls B € ‘B which are neighbours of B;. Let
¥2 € |x, y| be the first point so that ¥, does not belong to any neighbour of B,. Then
the geodesic [y1, y2] intersects at most N’ balls B € B and k(y1, y2) > %, by the
same way than in inequality (3.1). We continue this process until we end up with a
ball B,,; whose neighbours contain |y,,—1, y]. This process really ends and m < oo,
because [x, y] is compact. We may start doing this process from every ball B that
contains x. Thus we obtain the upper bound to the number of balls that intersects the

quasihyperbolic geodesic [x, y|:
53

Fix a ball By from the Whitney covering B and let zy be its centre point. For
each B; € B we fix a geodesic [zg, z;]. Furthermore, for each B; € B we set
P(By) ={B € B: B N|zg,z;i] # B} and define the shadow S(B)of aball B € B
by

s = |J B.
B;eB
BeP(B;)

Forn € N we set
B, =4{B; € B:n<k(zp,2z;) <n+1}.

The next two lemmas are metric space analogues of [KL], Lemma 2.1 and
Lemma 2.2.

Lemma 3.3. Let y be a quasihyperbolic geodesic in 2 starting at the point zo. Then
there is a constant C = C(Cy, D) > 0 such that, for each n € N,

#HBeB,: BNy #@ <C.

Proof. Put
ay, '=#{Be€B,: BNy # @} < occ.

Let By, ..., B,, € B, be the balls intersecting y, ordered so that if &£ < /, then there
exists xx € By Ny such that forevery z € By Ny, we have k(zg, xi) < k(zg,z). We
may assume that d(x1, x4,,) > d{(x1)/2, otherwise x,, € By, and we get the result
by doubling on balls of Whitney type. Thus by Lemma 3.2, k(x1, x,4,) > . Since

k(zi, x;) < % < lforalli =1,...,a,, we may compute

a
E” < k(x1, Xq,) = k(zo, Xa,) — k(zo, x1)

S k(zo’zan) + k(zan’xan) - (k(ZD,Z‘l) - k(xl,Z‘l))
<m+1)+1—-n4+1=3.
Hence a,, < 3C. L
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Lemma 3.4. There is a constant C = C(Cy, D) > O such that, for eachn € N,

> xsmx)=C

BeB,

whenever x € §2.

Proof. Let x € €2. The number of balls B € ‘B containing x is bounded, so we may
assume that there is a unique ball, denote it by By, in ‘B such that x € By. Let [z, z{]
be the fixed geodesic joining zy to z. Then x € S(B) for B € B, if and only if
|zo,z1] N B # @. By Lemma 3.3, the number of balls B € B, is bounded by a
constant that is independent of #. L

4. Gehring—Hayman Theorem

We begin with Frostman’s Lemma. First we recall the definitions of the Hausdorff
measure and the weighted Hausdorff measure.
Let (X, d) be a compact metric space. Let} < s < ocand 0 < § < co. We set

As(X) = inf{Zf’il cidiamy(E;)® @ yx <>, cixg,. ¢ > 0, diamy (E;) = 5}.
The weighted Hausdorff s-measure of X is
AN(X) = lim A3(X).
d—0
In the special case, where ¢; = 1 foreveryi = 1,2,..., we set H3(X) = A3 (X),
and we obtain the Hausdorff s-measure
H(X) = lim H5(X).
d—0
The Hausdorff s-content of X is
HE(X) = inf{d"[°, diamy(E;)S : X c U2, Ei}

By Lemma 8.16 of [Ma] we know that H*(X) < 30°A°(X), but in fact from the
proof of that lemma one obtains that

105 (X)) < 30°A5(X) forevery 0 < § < oo.
In particular
HE (X)) <30°A% (X).

The following formulation of Frostman’s Lemma (cf. [Ma], Theorem 8.17, and [BO],
Theorem 2) is suitable for our purposes.
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Theorem 4.1 (Frostman’s Lemma). For any s = 0 there is a Radon measure w on
X such that

(X) = Ao (X)

and
w(E) < diamg(E)® forall E C X.

In particular, when s = 1 and X is connected, we obtain

diamg(X)

1
X)> —HL(X) >
w( )_30 ool X) = <0

In this paper we apply the version of Frostman’s Lemma, where X is connected
ands = L.

For the rest of the paper we assume that (2,4, @) is a locally compact, non-
complete and D-uniform metric measure space such that the measure p is () -regular
on balls of Whitney type for some @ > 1. Let p be a conformal density such that the
number @ in the definition VG(B) coincides with the previous O > 1.

Proof of Theorem 1.1. Let x and y be points in Q and let [x, y] be a quasihyperbolic
geodesic in £ joining points x and y. Because quasihyperbolic geodesics are D'-
uniform curves, [x, ¥] is rectifiable in the metric .

Let y be another rectifiable curve in 2 joining points x and y. Let a € [x, y]
be the point such that £4([x,a]) = £4([a,y]), and write p = d(x,a). Moreover,
foreach j = 0,1,2,..., write 4; = (By(x, 277 p)\ Ba(x, 27UtV p)) N Q. Let
[Xj+1.x;] C [x,a] C [x,y] be a subcurve, where x; 4 is the last point of [x, ¥] in
B(x,27U*D pyand x; is the last point of [x, y] in B(x,277 p), and set yi =y NA;.
We may clearly assume that y; is connected. By summing and symmetry it sulfices
to prove that

Eollxj+1. x5]) = CLo(yy) (4.1)
forevery j =0,1,2,....
Let j =0,1,2,.... From the definition of the curve y; it follows that
taly;)) 227Ut p. (4.2)

From the definition of the quasihyperbolic geodesic [x; 41, x;] and from the local
D’-uniformity of the curve [x, y], we have that

La([xj+1,%;]) < D'd(xj41,%7) < D277+ p, (4.3)

U p < by(x.z]) < D'd() foreveryz € [yyqn. ;). (44)



194 P. Koskela and P. Lammi CMH

and

k(at, ) =f

D .
ds < =27T1 ([xj41.x;]) <4D™.  (45)
[xj_,_l,xj] d(Z) p

The proof consists of two parts: the “easy part”, Case A, and the “hard part”,
Case B. Furthermore, Case B is divided into two parts, Subcase C and Subcase D.
Here Subcase D is the hardest part and the novelty of our proof.

Case A. We first prove that inequality (4.1) holds when the curves [x; 1, x;] and y;
are “close” to each other in the quasihyperbolic metric k. Let

log(4D"7 log(B(2 + A%2/6)2 /c
og( )+1’4D2 og(B(2 + A%/6) /Cl)}’
log2 log2

M > max {4])2

where ¢; > 0 is a sufficiently small constant depending on A, Cy, D and ¢, and
let us assume that distg ([x; 41, x;], ;) = M. Let y; € [x;41,x;] and y; € y; be
points such that k(y;, ¥;) < M. Let us show that we may estimate the p-length of
the quasihyperbolic geodesic [x;41, x;] from above by 277 pp(y;) in the following
way _

€olxj+1, x5]) < A°D'p(y;)27 7+ p, (4.6)

where b = 4c,D'? and c3 = ¢(Cy, D) > O is the constant from Lemma 3.2.
If there exists z € [xj4+1,x;] such that [xj41,x;] C B, = By(z,d(z)/2), we
obtain from HI(A) and (4.3)

Ep([xj-i-l,xj]) = Ap(yf)gd([xj+laxj]) & AD!p(yJ)2—1+1p

Otherwise we may assume that d(x;41,x;) > d(x;41)/2. From Lemma 3.2 and
inequality (4.5), it follows that

N(xj41.x;) <4, D =1 b,

where the constant ¢, = ¢,(Cy, D) > 0Ois the constant from Lemma 3.2. Then by
HI(A), every z € [x;41, x;| satisfies

p(z) = APp(y)).
This with (4.3) gives us inequality (4.6)

%41, X]) < APp(3)Ea([x) 41, X;))
< AP D'p(y; )27/ p.

Next we estimate the p-length of the curve y; from below by 277 pp(y 7). It
[xj+1.x;] N By, # @, we casily get from HI(A) an estimate for £,(y;):

1
Lovi) 2 —gr pP()kaly; N By,)- (4.7)
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Furthermore, for every z € [x;41, x;] N By, , using inequalities (4.2) and (4.4) it
holds that

2-U+p if y; C By,
3d()) 2 3(3d@) = 5527 V*Vp ify; ¢ By,
In this case, combining (4.6), (4.7) and (4.8) we obtain the desired result (4.1)

La(y; N Bs) = { (4.8)

16 ,
L1, 5]) S T AP D2, ().

Therefore we may assume that [x; 41, x; | By, = @. Thisimpliesthatd (y;, y;) =
d(¥;)/2. By Lemma 3.2 there are at most 2 := M ¢, balls in the Whitney covering
B that intersect [y;, ¥;] and hence, by HI(A),

p(v) < A" p(3). (4.9)
On the other hand, by HI(A) and (4.2),
1027V Vp ify; C By,
s 0(7)d (77) if yj ¢ By;.

If y; C By,, again we obtain the desired inequality (4.1) by combining inequalities
(4.6), (4.9) and (4.10). I y; & By, then (4.10) with (4.9) gives

1
£oy) = pG)Ealy; N By,) = { (4.10)

p(y;) < AP+ £5(y7). (4.11)

d(y;)
By elementary inequalities in [GP], Lemma 2.1, and [BHK], Inequality (2.4), we
obtain _

d(y;, ¥i)
min{d (y; ), d(¥;)}

log(l + ) <k(y;.5) <M

and further,
1 eM _ |

= :
d(y;) ~ d(yj. ;)
Moreover, the assumption d(y;, ¥;) = d(¥;)/2 gives us
d(yj) =d(y;. y;) +d(¥;) = 3d(y;. yj).

This, along with inequalities (4.11), (4.12) and (4.4), yields an estimate for the p-
length of y;:

(4.12)

eM |
————4£p(y5)

p) 22471 =Ly <
JS = P\ — d(yj)

d(37.37) Wi

D .
< AT (M — 1)?2«’“6[,(){,-).
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Now combining (4.6) and (4.13) we obtain
€p(lxj+1, ;) < 24eM — DAPHHID2 (y)).

Thus (4.1) is proven when the curves [x; 41, x;] and y; are “close” to each other in
the quasihyperbolic metric.

Case B. By Case A we may assume that distg ([x;41. %], ¥;) > M. Let w; €
[x; 41, x;] satisfy d(x,w;) = 3-27U+2 p_ Letr := £,(y;) and let w € y;. Let us
consider the p-ball B,(w,2r).

Subcase C. If dist; (w;, By(w,2r)) < M, there exists u € By(w,2r) such that
k(w;,u) < M and hence p(w;) < AP p(u) (cf. inequality (4.9)). We may assume
that y; N By = @. Otherwise distg ([x;+1.x;].7;) = M + 1 and replacing M with
M + 1 we obtain the result by the case A. As we have assumed y; N By, = 0,

20,(y;) = 2r > distp(u, y;)

HIi4) 1 J
B e
= 5 Pd )

49 1
= mp(wj)d(u)

(*) 1

= Wp(wj)d(wj)

@4 =G+ p

& e )
2Ah+1DIeM

4.0) 1 ¢

2 8Ab+h+1D”2€M p([xj+1:xj])

(wy)

The inequality (*) above follows from the elementary estimate ([GP], Lemma 2.1,
[BHK], Inequality (2.3))
d(w;)

log TRy @)

<k(wj,u) <M.

Again we find a constant C > 1 such that £,([x; 41, x;]) < C€y(y;). So (4.1)is
satisfied.

Subcase D. By Subcase C we may assume that the p-ball B (w, 2r) is “far away”
from the quasihyperbolic geodesic [x; 1, x;]. More precisely, we may assume that
disty (w;j, Bp(w, 2r)) = M. Our plan is to prove that the volume growth condition
VG(B) does not hold for such a p-ball. This is done by considering subcurves of
p-length r of quasihyperbolic geodesics [z, w;] with z € y; and “averaging over ;"
with respect to a suitable Frostman measure.

Let for every z € y;, [z, w;] be a quasihyperbolic geodesic which joins z and
w;. Cover [z, w;] with balls {B;...., B, )} C B ordered so that if m < n, then
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there exists z,, € By, N [z, w;] such that for every Z € B, N [z, w;], we have
k(z,zm) < k(z,Z). Recall that n(z) < oo.

Let [z, w,| C [z, w;], where w, is the first point which does not belong to
By(w,2r). Thus {,([z,w;]) = 7. Let {B1,...,By,(x)t C {Bi1.....Byz)} be
those balls which cover [z, w,]. So by HI(A4) and by the local D’-uniformity (quasi-
convexity) of quasihyperbolic geodesics we obtain

ny(z)

r<fp(lzwe]) < ) Ap(zi)ba(lz, wz] N Bi)

=1 (4.14)

ny{z)

< AD' ) | p(z;) diamg(By).
i=1

We next provide a tool that will be used to estimate the 1t ,-measure of the p-ball

By(w,2r). Weclaimthatif B € Bintersects B,(w, 2r),then B C By(w, (2+ A?z)r).
To show this, it suffices to prove that if B € B intersects B,(w, 2r) then

AZ
diam,(B) < = (4.15)

Consider such aball B € ‘B. It follows from HI(A) that
: , A
diam,(B) = Ap(zp) diamg (B) = gP(ZB)d(ZB)

for each B € B, where zp is the centre of 5. Hence it actually suffices to prove that
25
plen)dlzr) = ZAn (4.16)

Lety € BN By(w,2r). fw ¢ B
w and y and

zg» then there exists a curve y, which joins points

2r > fp(z)ds = lp(ZB)Ed(y N Bzy)
v

1

1 12
> (5— %)A p(zp)d(zp) = ﬁP(ZB)d(ZB)

and the inequality (4.16) 1s proven.
Let us assume that w € B;,. The elementary estimate (2.3) implies

d(w;,w) )
min{d(w;), d(w)}/

M <k(wj,w) = 4D210g (1 +

Along with the assumption that M > 4D210g1(:gD2 ) 4 1, we sce that

d(w; _
min{d(w;), d(w)} < —M%J)’zw)l < T HI-M-D/4D? (g 7y
e =
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The assumption M > 4D2M + 1 and (4.4) give us

HM-1)/4D?

i ~ P 5=+ _ 5—j+1-(M-1)/4D?
() 2 75 P2y (4.18)

> 2—j+1—(M—1)/4D2p_

Thus it follows from inequality (4.17) that
d(w) < 2~/ H1-M=D/4D? ;, - =G+1)

Hence, from the definition of the curve y; and inequality (4.2) we know that y; cannot
be a subset of B,,. Then by HI(A)

1 1
= ds > — d B — d
= [ perds 2 o) 2 roadta)
and (4.16) is proven.

Now we know that if B € B intersects B,(w, 2r), then B C B,(w, (2 + %Az)r).
Then by HI(A), Lemma 3.1 (iv) and Q-regularity on balls of Whitney type, we have

to(Bo(w, (2 + £A%)r)) = p? du

/Bp(w,(2+%A2)r)

Y e u®)

Bes (4.19)
BNB,(w. 2r)#0

: Qo
Z C3P(ZB)Q(dlam—d(B)) ,

Ben 2
BNBu(w,2r)#0

v

A%

1
where c3 = ———.
NC A9
Let us choose the basepoint zg to be w;. According to Frostman’s Lemma (Theo-

rem 4.1) there is a Radon measure @ supported on y; such that w(y;) > (ﬁam+o(yﬂ
and w(F) < diamy(F) for every E C y;. Then with (4.14) we obtain (a version of

Fubini’s theorem)

ny(z)
o) < AD' [ 3 plei) diama (B,) doo(z)
¥ od=1
4.20
<ap' Y Y pepdamBes@ay. 0
n=—M-—1 BeB,

BNz, w;]£W
ZEY;
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By Holder’s inequality we obtain that

Z > plzp) diamg(B)a(S(B) N y;)

n=M-1 BeBR,
BN[z,w:]#£0
ZEY;
1
(Z > otzp)? diamy(B)2)
n=M-—1 BEBn
BNz, w;]#£0
ZEY;
o\
(Z 3 a)(S(B)ﬂyj)FT) .
n=M-1 BeB,
BN[z,w;]#6
ZEY;

Combining this with (4.20), (4.19) and the assumption dist; (w;, B,(w,2r)) = M
we obtain the estimate

0 L
ot < a0 (Zp(Bafw, @2+ 242)7))”

o—1

(i > esB)nypeT) ©

n=M-—1 BeBR,

BN[z,w;]#0 (4.21)
ZEY;
1
= ca(p(By(w. (2 + 14%) Q( Z 3 w(S(B) Ny)T= 1)
n=M-1 BeB,
BN[z,w;]#£6
ZEYy

1
where ¢y = 24D7c, © = 2(NC1)5A2D’.
In order to estimate the measure of the shadow of the ball B € B,,, let us make
a couple of preliminary estimates. For every v € B N [z, w;], where B € B and
z € y;, we have by uniformity (quasiconvexity) and inequality (4.3) that

d(wj,v) < Lg([w;,v]) < €g([wy,z]) < D'd(wy,z) <27/ pD’.

In the same way as in inequalities (4.17) and (4.18), we obtain from inequality (4.4)

and the assumptionn > M —1 > 4 D2_1°g(4D )

B € B, and z € y;, it holds that

that for every v € BN |z, w;], where

d(v) < 2_j+1_n/4D2pD!.
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Furthermore, for every centre point zg € B € B, such that B N [z, w;]| # @ for
some z € Y}, it holds that

50 " 2 50D/
d < _d < 2—]+1—?1/4D [
(zp) < 49 (v) = P

49 -
Also from the uniformity of the space (€2, d) and inequality (4.22) it follows that
there exist a constant ¢c5 = ¢5(Cy, D) > 1 such that for every B € B,, so that
B Nz, w;] # 0 for some z € y;, it holds

(4.22)

. 50D’
diamy(S(B)) < c5diamy(B) < 2_J+2_”/4D2p054—9. (4.23)

Now for every n > M — 1 it holds by Lemma 3.4, Frostman’s Lemma and
inequality (4.23) that

Y o(S(B) Ny

BeBR,
BN[z,w;]#6
ZEY;
1
=< S(B)Ny;)ye-T S(B)Ny;
< g oSENTT Y wSB)Ny)
BNz.w:]1#£0 n
ZE€Y; Bm[zz’eu;j]#ﬁ

1
< cew(y;) nax w(S(B) Ny;)2T

BN[z,w;]#0
ZEY;

s 1
< cew(y;) nax diamg (S(B) Ny;)@-T

BN[z,w;]#0
ZEY;

1
200D ¢cs o1 . 2 1
< oo 2 ) 7 o T,

where cg = ¢6(Cy, D) is from Lemma 3.4. Furthermore, using this we may compute
that

D I e e

n=M-—1 BeBR,
BN[z,wz]£0
ZEY;

1 00
200D ¢\ 0T i 2 . _1_
506(4—95) w(yy) Z (27747 Yo
n=M-—1

1 —j =M
= prelyyppPrT2Er124R 0D,
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2
1 2402(Q—-1)
where ¢ = 06(200413":5) Q-1 - . Thus with (4.21) we have
2402(0—1) — |

= qa— i
(x)(yj)QrQ < C‘?C7Q I}U‘Lp(Bp(w,(Q,—F %AZ)’,))(U()/J_)Q 12 I=3p2 p.

di ; L
Furthermore w(y;) > %O(y"’), and this gives us

.M
1 2/t
wo(Bo(w, 2 + £4°)1) = 0(y))—5—5= re
Gty P

i1y, 1 2t
>
- 60 cch_l p

¥

M
= 2ap2¢yr 9,

492757 (275%en — 1)97"!

12000cs NC1(242)@ D/@+1c271

This is a contradiction because when M i1s sufficiently big, the volume growth
condition VG(B) will not hold. Consequently, if k([x;4+1.x;]. ;) > M then our p-
ball is in the quasihyperbolic metric k so big that distg (w;, By(w, 2r)) < M. Thus
the conclusion is that £,([x; 41, x;]) < C{€y(y;), where C = C(A, B, C1, D, Q).

L

where ¢1 =

There is nothing special about the constant % in condition HI( A) and the constants
% and 5 in Whitney covering. The only restriction in the Whitney covering is that
if A1Bg(z1,d(z1)/A2) N A1 By(z2,d(z2)/A2) # @, then A1 Bg(zy,d(z1)/A2) must
be included in some ball By(z,,d(z;)/A3) on which the measure u is doubling.
Otherwise one can choose the constants as desired.
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