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The number of constant mean curvature isometric immersions
of a surface

Brian Smyth and Giuseppe Tinaglia

In memoriam Katsumi Nomizu

Abstract. In classical surface theory there are but few known examples of surfaces admitting
nontrivial isometric deformations and fewer still non-simply-connected ones. We consider the
isometric deformability question for an immersion x: M — B3 of an oriented non-simply-
connected surface with constant mean curvature H. We prove that the space of all isometric
immersions of M with constant mean curvature H is, modulo congruences of R3, either finite
or a circle (Theorem 1.1). When it is a circle then, for the immersion x, every cycle in M
has vanishing force and, when H # 0, also vanishing torque. Moreover, we identify closed
vector-valued 1-forms whose periods give the force and torque. Our work generalizes a classical
result for minimal surfaces to constant mean curvature surfaces.

Mathematics Subject Classification (2010). 53A10.

Keywords. Constant mean curvature, minimal surfaces, isometric deformation, rigidity, force,
torque.

1. Introduction

It has long been wondered which smooth surfaces in R* can undergo a nontrivial
isometric deformation and the non-existence of such compact surfaces has been con-
jectured. Even if we allow immersions, non-compactness, non-completeness or all
of these, the occurrence of such deformations for non-simply-connected surfaces still
appears to be rare. Apart from flat surfaces, the only place in classical surface theory
where local isometric deformations overtly present themselves is with surfaces of
constant mean curvature. See also the simply-connected examples of do Carmo-—
Dajczer [16].

Within the class of isometric immersions of simply-connected surfaces, every
one of constant mean curvature which is not part of a plane or a sphere admits a
canonical 2z -periodic isometric deformation — the associate deformation (see §3) —
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through immersions with the same mean curvature; this family also captures (to
within congruences of R, i.e. orientation-preserving isometries of R?) all isometric
immersions of that surface with this constant mean curvature. However, once the
constant mean curvature surface M has topology (i.e. w1 (M) # 0), there is of
necessity a continuum of latent period conditions which must be satisfied for the
canonical deformation, at the level of the universal cover M , to descend to M. Our
purpose here is to give necessary conditions for the associate isometric deformation
to exist on M. To this end, it is important to remark that when the surface is compact,
it 1s known to not admit non-trivial constant mean curvature isometric deformations
[11, [4].

A countable set of invariants associated with a constant mean curvature immersion
x arises from two naturally defined closed vector-valued 1-forms @ and ¢ on M,
introduced in §4, called here the force and the torque forms. Thus their periods over a
cycleyin M, W([y]) = fy wand T([y]) = fy o, depend only on the homology class
of v and are called the force and torque of that class for the immersion x (see also
[19], [20], [22]). Moreover, we show how knowing the first derivative of a constant
mean curvature isometric deformation means in fact knowing the force form while
knowing a combination of first and second derivatives means knowing the torque
form and viceversa.

The main theorem of this paper is the following.

Theorem 1.1. Let x: M — R? be an isometric immersion of a smooth oriented
surface with constant mean curvature H. Then,

1. towithin congruencies, the family of all isometric immersions of M with constant
mean curvature H is either finite or a circle;

2. ifthis family is a circle then for the immersion x every cycle has vanishing force
and, when H # 0, vanishing torque also.

There was already a class of results on the isometric indeformability of minimal
or non-compact constant mean curvature surfaces with topology (see for instance
[8], [20], [26], [28], [32], [34]). Typically, these follow for us from Theorem 1.1 by
exhibiting a cycle with nonzero force. In fact, in §5, we discuss geometric conditions
which guarantee the existence of such a cycle. The central questions remaining are:

Are there non-simply-connected constant mean curvature surfaces satisfy-
ing the vanishing force and torque conditions of Theorem 1.1 and do these
conditions then guarantee the existence of a constant mean curvature iso-
metric deformation?

Both questions are known to be answered affirmatively for minimal surfaces
(see §§4 and 5). In fact in the minimal case, thanks to the harmonicity of the coordi-
nate functions the study of certain properties of a minimal deformation is relatively
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easy. It is well-known and straight-forward to prove that the family of all minimal
isometric immersions is either a circle or a single element; in fact it is a circle if and
only if every cycle has vanishing force. Thus Theorem 1.1 generalizes this classical
result. In regards to the question, for non-simply-connected surfaces we know of no
constant mean curvature isometric deformation when H # 0. Moreover the Wente
cylinders are immersed constant mean curvature cylinders with vanishing force and
non-vanishing torque for which the associate deformation does not exist [37]. Re-
garding item 1 of Theorem 1.1 we note that there exist nodoids for which the family
of all isometric immersions consists of exactly two elements [32].

Among complete Riemannian surfaces (M, g) the flat ones R? and S! x R can
be isometrically immersed in R® with any constant mean curvature H (as circular
cylinders of radius ﬁ). We note that if the metric is not flat and x is an isometric

immersion of (M, g) with constant mean curvature & then H 2 is uniquely determined
by the metric g: —x is an isometric immersion with constant mean curvature —f .

Acknowledgements. We are grateful to Rob Kusner and Bill Meeks for their interest
and remarks on the results of this paper. The second author would like to thank the
Mathematics Department at University of Notre Dame where this work was begun.

2. Isometric deformation of surfaces

Let x: M — R3 be an immersion of a smooth oriented surface. The differential
x4 of x is given by x,(X) = Xx where the right-hand side is the derivative of the
vector-valued function x with respect to X'. The induced metric g is given by

2(X.Y) = (xu(X), x4 (¥)) = (Xx,¥x)

where (, } is the Euclidean metric on R®. Let J denote the complex structure induced
by the orientation of M and let £ be the oriented unit normal field to the immersion x.
The second fundamental form A of x is defined by

XE = —x,(AX)

and half of its trace is the mean curvature,

TrA
H=—.
2

The Gauss equation is
detd = K

where K is the curvature of the metric g and Codazzi’s equation is

(Vx )Y = (Vy )X
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where V is the Levi-Civita connection of the metric g; from now on the metric will
be denoted by (, ). These equations come from differentiating the structure equation

XYx = x.(VxY) + {AX,Y)§. (1)

Now suppose x;: M — R? is a smooth 1-parameter family of immersions each
inducing the same metric {,); this is called an isometric deformation. The unit
normal field and second fundamental form of each immersion x, are denoted by §&;
and A; respectively. From now on prime denotes differentiation with respect to 7.

Since (Xx;, Xx;} is independent of ; we know that (Xx}, Xx;) = 0. Hence
Xx) = k(x)+(JX) + p(X)E& where k is a function on M and p is a 1-form on M,
both dependent on 7.

Since (&, ;) = 1 it follows that §; = (x;)+(Z) where Z is a vector field on M,
dependent on ¢. Since {Xx,, ;) = 0it follows that

(Xxi, &)+ (Xx1,8) =0
and so p(X) = —{X. Z}. Thus
Xx) =k (x1)4(JX) — (X, Z)&:. )

In continuing the computation for the deformation we will drop the subscript #. From
equation (1),

XYx' = X(kxo (JY) = (¥, Z)§)
= X(K)x,(JY) + k[xo (Vx T Y) + (AX, TY)E]
— X{Y, Z)E + (Y, Z)x4(AX)
= X (X(EK)TY + kJVyY + (Y, Z)AX) + (K{AX,JY) — X (Y, Z)E. (3)

Differentiating equation (1) with respect to ¢ and using equation (2) gives

XVx' = VyV(x') + (A’ X, V)E + (AX, V)xu(Z)
= kxo(JVxY) — (VxY, Z)E + (A'X, Y)E + (AX, Y)x4(2)
= X (kJVxY + (AX,Y)Z) + ((A'X.Y) — (VxY. Z))E. (4)

Comparing normal components in equations (3) and (4) we obtain
A'X = —kJAX —Vx 7 (5)
and comparing tangential components
X(k)JY = (AX,Y)Z - (Y, Z)AX

which is equivalent to
Vk=-AJZ. (6)
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Equations (5) and (6) are the integrability conditions of the deformation. Finally
note that
Xx' = (xe(JZ) + k&) x X x; (7)

where x denotes the cross product on R>. The vector-valued function = x4 (JZ)+
k& is called the Drehriss [3] and is used by Burns and Clancy in their recent work [6].

3. The associate surfaces of a constant mean curvature surface

Let x: M — IR3 be an oriented surface with constant mean curvature H then, for
each ¢ € |0, 2], the symmetric tensor field

A, = cos(t)(A— HI) +sin(t)J(A— HI)+ HI (8)

satisfies the Gauss—Codazzi equations with respect to the induced metric (,) and
Trf’ = H. It M is simply-connected then, by the fundamental theorem of surface
theory, we obtain a one-parameter family of 1sometric immersions x; with second
fundamental form A, and therefore constant mean curvature / and xo = x. These
immersions are uniquely determined to within a congruence or rigid motion of R3,
that is, an orientation preserving isometry of R*. Without loss of generality, we may
assume x ( po) = Oforsome py € M and normalize the family x, by requiring that, for
all 7, x;(po) = 0, & (po) = E(poy) and (x;),,:pO = Xy, © Rot,,(—1) where Rot,, (0)
denotes the oriented rotation of the tangent plane T, M (with the induced metric)
through an angle 6. The resulting normalized isometric deformation x,: M — R3,
t € [0,2m] is called the associate deformation here (see also [5], [7], [21]).

For example, let x: M — R3 be an oriented simply-connected minimal surface
and choose the origin of R? on the surface, i.e. x{pg) = 0 for a certain py € M.
Since Ax = 0, where A is the Laplace operator of the induced metric on M, we
have a complex conjugate y: M — R? of x, unique to within a translation of R,
We may therefore assume y(pg) = 0 also. Then

x; = cos(t)x 4+ sin(f) y

is a I-parameter family of minimal isometric immersions of M into R3 with second
fundamental form A, as given in equation (8) above. Since by the Cauchy—Riemann
equations x,(X) = y,.(JX) and x,.(JX) = —y.(X) it is easy to see that £ does
not change with 7 and (x/)+, = x«, o Roty(—1)).

Returning now to the constant mean curvature case, it M is not simply-connected
then we may lift x to X: M — R? and let A; denote the lift of 4, to M. By
the earlier discussion, AI is the second fundamental form of an isometric immersion
Z:: M — R® with constant mean curvature H andis unique to within a motion of IR3.
Fixing py € M and jy € M over py, we may assume %,(fo) = 0, &,(Fo) = E(po)
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and (X I)*ﬁo = 55*!50 oRotp,(—1) forall £. With this normalization we obtain a smooth
isometric deformation

XM >R 0<i<2nm

with constant mean curvature H. Of course Xo projects to x: M — R>. Let
S = {1 €[0,27) | X; projects to x,: M — R3}; this set of immersions of M in R3
will be called the associate family for x: M — R3.

Lemma 3.1. Ifx,,,: M — R3, m = 1,2, are isometric immersions with constant
mean curvature H then x, is congruent to a unique associate of x1.

Thus if x: M — R? is an immersion with constant mean curvature H, all other
isometric immersions of M in R> with the same constant mean curvature occur, to
within congruences, in the family of associates of x.

Proof. Locally on M we may choose positive isothermal coordinates (u, v), i.e.
{-%, 3%} is a positively oriented frame and the metric is of the form {, ) = e??(du? +
dv?). The second fundamental form of x,, with respect to the coordinate frame is

written
4 — H + ayy, B
" :B m H — L]

Now, w,, = (A, aiw, 8%)’ is acomplex function in the coordinate w = u + v, where
aiw = %(8% —i a%), and {, ) and A are extended by complex linearity. Clearly, £2,, =
wmdw? is a well-defined complex quadratic differential on M, the Hopf differential;
a simple computation gives w, = —5e* (B, + iay,). Codazzi’s equation in these
isothermal coordinates reads

1
(wn)w = Eez"Hw

and, since H 1is constant, @y, is holomorphic.
. 3 ; 4 4 i
Since by Gauss’ equation |y, |* = %(ﬁ% +az) = %(H2 — K), the umbilical
points are isolated unless x: M — R” is a round sphere and it follows that the

meromorphic function 2—? is constant and of modulus one. Hence, w, = e @y for
some real number £. It follows easily that

Ay = cos(t)(Ay — HI) + sin(6)J(Ay — HI) + HI.

Hence, by the fundamental theorem of surface theory x> is congruent to an associate
of xq. L]

We now consider the structure of S for a constant mean curvature surface M
with topology. The first and most interesting question is whether .S contains an open
interval. Assume S contains an interval [0, ) then we have the associate deformation

x;:M-)R:S
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for0 <t < &. Since, by (8), A" = J(A— HI)the integrability condition (5) becomes
VxJZ =(k+1)AX — HX. 9)

Replacing Y by J Z in the structure equation (1) and using equation (6) and (9)

Xxu(JZ) = x(Vx JZ) + (AX, T Z)¢
= x.((k + DAX — HX) + (X, AT Z)¢
= x.((k + DAX — HX) — (X, Vk)§
= —X((k + D + Hx)

so that (x;)«(JZ) + (k + 1)§; + Hx; = V; is a constant vector field along each
surface in the variation. From the normalization in the definition of the associate

deformation we obtain Z{ py) = 0 and (x;)x po X = Xuy, © Rotp, (—1)X gives

%(x;)*poX = Xy, (—sin(f) X —cos(f)JX) = —xy,, o Rotp,(—1)JX.
On the other hand, from equation (2),
d
5y X = X () o= K (¥0)apy (T X) = (X, 251 (po)
= f’c(pg)x,kp0 o Roty, (—=1)J X.
Hence k(pg) = —1 and so V;(pg) = 0 and therefore V, = 0, i.e.

(X)«(JZ) + (kK + 1§ + Hx; = 0.

Now
Xx; =((x)+(JZ) + kE) x Xx, = —(Hx, + &) x Xx,

and since (X x;, &) = 0 it follows, also on differentiating with respect to ¢, that
& = —(Hx; + &) x&;.
We collect these facts in the following lemma.

Lemma 3.2. If the associate deformation of x: M — R? exists then
Xx'=—(Hx +§)x Xx,
¢ =—-(Hx+§x&

The next lemma says that except when M is flat, in which case the immersion is a
circular cylinder, the isometric immersion determines the value of the mean curvature.
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Lemma 3.3. Let M be a complete oriented Riemannian 2-manifold and x1 and x,
isometric immersions with constant mean curvature Hy and H>. Either

(1) M is flat and each x; is a circular cylinder of radius ﬁ, or
z

(i) M isnot flat, le = sz and x, is an associate of £x;.

Proof. 1If Hy = +H; then (ii) follows from Lemma 3.1. If H} < H2Z then, since
HY — K > 0on M, H} — K is positive and bounded away from zero on M.

The complete metric go = 1/H22 — Kg on M is flat. This is because if g =

e?P(du? + dv?) and Q, = wodw? are local representation of the metric and the
Hopf differential then g = |w2|(du? + dv?) is the local representations of gg; this
is flat since @, is holomorphic (see §3). The universal cover of (M, gg) is conformally

91 _ YHIK
221 \/ H2—K
constant. Thus K is constant and for conformal reasons it must be zero. It follows
easily that x; is an immersion of R2, or a cylindrical quotient thereof, as a cylinder

. 1 . 3
of radius == in R-. [l
S 3T,

< 1 and therefore

C and g—; is a holomorphic function on C with

4. The force and torque 1-forms on an immersed surface of constant mean
curvature

To motivate the notions of force and torque take an embedded oriented surface
x: M — R

with oriented normal £ and constant mean curvature H > 0 (see also [20]). Imagining
the surface as a liquid membrane in equilibrium under a constant normal pressure
field F, the equilibrium equation is ¥ = —2H £ [36], where 7 is the surface tension
of the membrane. We may assume 7 = 1.

Take a compact domain D in M and along each oriented boundary component y
we insert a smooth embedded cap

k: K — R?,

that is, k(0K) = x(y). The orientation of M determines the orientation of each
connected component of y: in fact, let 7 = Jy be the oriented unit normal to ¥ in
M then § = x,y X x4n. In turns, the orientation of y determines an orientation on
K and we let vg be the oriented unit normal to K (see Figure 1).

Considering the domain > with caps inserted on each boundary component y,
the resulting closed surface is maintained in equilibrium by the application of a total



Vol. 88 (2013) The number of constant mean curvature isometric immersions of a surface 171

Figure 1. Force and torque.

restorative force on each end — to counter the inherent forces due to pressure and
surface tension of that end — which total

2Hf v;cdak—l—/nds
K ¥

where day also denotes the area element in K.
Define W([y]) = 2H [y viday + fy nds as the force of the component y.
Let wg be the 1-formon M definedby wo(X) = Hxxx,(X)thendwy = 2HEda

where da is the area element of M. The corresponding 1-form a)g on K, defined by

a)(’f(X) = Hk x k,(X), satisfies a’wéc = 2Hviday. If w is the 1-form defined on
M by w(X) = (Hx + £) x x4(X) then

fa):/a)o—l—fnds:fwg—kfnds,
¥ y y ¥ y

since a)é‘ = wy along y. By Stokes’ theorem

/a):f da)g—l—fnds:2H/ deak+fnds = W(y). (10)
% K ¥ K I4

Now w 1s easily checked to be a closed 1-form on M for any immersed oriented
surface
x: M — R?

of constant mean curvature H ; we call it the force form. Thus the quantity

Wyl = f,, o
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depends only on the homology class of the cycle y. This will be called the force of
the cycle y for the immersion x.

Returning again to the domain 2 with ends capped as above the torque of the
inherent forces of pressure and surface tension at the end y totals

Zkaxukdak-i—fxxnds.
K Y

Define the torque of y by
T(y)= 2Hf k x vpday + [ x x nds.
K ¥

Define oo(X) = %Hx X (x X x4(X)). We can easily compute dog = 2H x x§da.
The corresponding 1-form o(’f on K defined by o:réC (X) = %Hk X (k xk, (X)) satisfies
dcr(’f = 2Hk x viday. Thus

ZH[kXdeakZ[JgZIUO
K dK ¥
k

since o5 = op along y. Then T(y) = fy oo + fy x xnds = fy o where o is the
1-form defined by

o(X) = %Hxx(xxx*(X))—l—xxx*(JX) = %xx[2(Hx—|—’g‘)><x*(X)—|—x*(JX)].

Againitis easy to check that o is a closed 1-form on any immersed surface of constant
mean curvature and we call it the torque form. Now

T(ly)) = [y o

depends only on the homology class of y and is called the torque of the cycle y for
the immersion x.

Since periods over cycles of an exact form are zero, the next lemma proves the
second part of Theorem 1.1. More precisely, we show how knowing the first derivative
of a constant mean curvature isometric deformation means in fact knowing the force
form while knowing a combination of first and second derivatives means knowing
the torque form and viceversa.

Lemma 4.1. Let x: M — R? be an immersed surface of constant mean curvature
H admitting a nontrivial isometric deformation through surfaces of constant mean
curvature H. Then for the immersion x,

(1) w is exact;
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(il) o is exact if H # 0.

Proof. Consider the associate family x;: M — R> with xp = x then, from the
assumption of the lemma, x; is defined for 0 < ¢ < ¢, for some & > (. As we saw in
§3,

Xx'=—-(Hx+ 6 xXx =—-w(X).

Hence o is exact.
We begin by calculating Xx”. Write P = Hx + &:
Xx'=—(PxXx) =-P' xXx+Px(PxXx)
=—Hx'xXx—&xXx+ Px(PxXx)
= —HX(xX'xx)+ HXx' xx—§xXx+ P x(P xXx)
= —HX(xX'xx)—HP xXx)xx+ (P xExXx+ P x(PxXx),

Xx"+ Hx' xx)=(Hx+ P)x(PxXx)+ (P x&) xXx
=RHx 4+ &6 x(PxXx)—Xxx (P x§)
=2HxX(PXXx)+EX(PxXx)— Xxx(P x§)
=2Hxx(PxXx)— Px(Xxx§)
—Xxx(ExP)—Xxx(Px§)
=2Hxx(PxXx)+ (Hx + &) xx,.(JX).

Thus
X"+ Hx ' xx+x)= Hx x{2P x Xx + x+(JX)} = 3Ho (X).
Hence, when H # 0, o is exact if there exists an isometric deformation of x. ]

To complete the proof of Theorem 1.1 it remains to show:

Lemma 4.2. Let x: M — R3 be an immersion of a smooth oriented surface with
constant mean curvature H. Then either

(1) to within congruences there are only finitely many isometric immersions of con-
stant mean curvature H, or

(i) the associates x;: M — R3 exist for all 1 € [0,27].

Proof. Let M be the universal cover of M with the lifted metric and complex structure
(denoted {, ) and J respectively), 7 : M — M the projection and £ be the group
of deck transformations of this cover which are, of course, orientation preserving
isometries. If A is the lift to M of the second fundamental form A of the immersion
x then U*pg(p)(a*p)_l == /’f(o(p)) forallo € D andall p € M. Thelift A, of

A, =cost(A—HI)+sintJ(A—HI)+ HI
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to the universal cover is the second fundamental form of the associate family
%M — R3

defined in §3. Since each deck transformatiOIL o € O commutes with A and J , 1t
preserves the lifted second fundamental form A,, that is,

0, A1 (p)ow,) " = A0 (p))
forall p € M . Tt follows that ¥ ; o0 and X; have the same second fundamental form

(05,) ' A0 (p))ow, = Ai(p)

at each p. Hence X; c 0 = ®,(0) ¢ X;, where ®,(0) € M the group of motions of
R3. It easy to see that
q)z: D—-M

is a homomorphism for each ¢ € [0, 2] and X, projects to x; : M — R? if and only
it ®,(D) = {I}.

Let § = {r € [0,27] | X; projects to M }. Assuming § is infinite there exists an
infinite sequence of points {/, } of points in .§ which we may assume converges to some
tp € [0,27]. Since @, (o) = I for all # it follows, by continuity, that ®;,(c) = [
forall o € D. Sofy € §. In the corresponding matrices (®,,(0));; = &;; for each
fn and so, by the Mean Value Theorem, (@] (0));; = 0 for a sequence s, converging
to fp. Hence @;0 (0) = 0 forall o € D. Repeating the argument gives that the

derivatives @gg)(a) = Oforallo € D andall integers n > 1. Since, foreacho € D,
®, (o) is an analytic curve in M, it follows that ®,(c) = [ forallf and all 6 € D.
Hence S = [0,2x] if S is infinite. This proves Lemma 4.2. O

Remark 4.3. For minimal immersions the associate x, is in fact —x and thus always
exists. However, if there exists an associate xg, s ¢ {0, 7w}, then they all exist and

X = ;{sin(s —1)x + sin{f)xs}.
sin s

Regarding the finiteness part of Theorem 1.1, we note Meeks’ conjecture that
for a complete isometric embedding x: M — R with constant mean curvature
H there are no other isometric immersions with the same mean curvature H(# 0):
when H = 0 and x(M) is not a helicoid any other minimal isometric immersion is
congruent to —x (see [24]).

As we see in the nextresult the existence of associates of a constant mean curvature
immersion x: M — R? is guaranteed if there are isometries of the induced metric on
M which do not extend under the immersion x to a congruence of R?. However, we
know of no non-simply-connected examples with nonzero constant mean curvature
where an associate exists except for certain nodoids x, i.e. non-embedded Delaunay
surfaces, and then only for x,; for unduloids, i.e. embedded Delaunay surfaces, no
associate exists (see for instance [32]).



Vol. 88 (2013) The number of constant mean curvature isometric immersions of a surface 175

Proposition 4.4. Let x: M — R? be an immersion of a smooth oriented surface
with constant mean curvature H. Let I(M) be the group of orientation preserving
isometries of M and let Io(M) be the subgroup of such isometries extending under x
to a congruence of R3. Then Io(M) extends under each associate x; of x to a group
of isometries of R3. If I(M)\Io(M) is infinite then x is isometrically deformable
through immersions of constant mean curvature. If (M )\ Io(M) is finite of order m
then each of the associates Xoar exists, r =1,...,m.

Proof. It ¢ € Ip(M ) then gb*pAp(gb*p)_l = Ag(p) forall p € M. Since ¢ preserves

the metric and complex structure of M we have ¢, , A; (qb*p)—l = Aib o for all

p € M. Hence ¢ extends under x, to an isometry ® of R3.

Let 0 € I(M). Comparing the isometric immersions x and y = x o ¢ the
respective oriented normals to these maps at pare £(p) and N(p) = E(c(p)). If Bis
the second fundamental form of y then, by its definition, (XN), = —y.,(B(p)X) =
—Xay (04, (B(p)X). But, since N =& o0,

(XN)p = Eayp) (04, X) = =Xu, (,, (A0 (P)) 0, X).

Taken together, these give
B(p) = (04,) ' Ao ()0,

so y has constant mean curvature /. By Lemma 3.1, y = x o ¢ 1s congruent to
a unique associate X,y of x. This defines a map 7: (M) — [0,27). Obviously,
f(o) = 0if and only if 6 € IH(M). To complete the proof of the theorem we must
show that ¢ 1s a homomorphism.

For 0,1t € I{M) let C denote the second fundamental form of x c 0 o 7. As
before,

C(p) = (00 1)s,) A0 0 T)(P))(0 © D),
= (f*p)_l(U*I(p))_lA(U(T(P)))U*I(p) Trp
= (00,) " B (p))ta -

Since x o ¢ is congruent to the associate x,(;) of x we have B = e”(")(A —
HI)+ HI,where e (A — HI) = cost(A— HI)+sintJ(A— HI). Thus

C(p) = "D (z.,) (A — HI)(x(p))ts, + HI(p)
= " (2, ) A(t(p))ra, — HI(p))] + HI(p)
= """ DA — HI)(p)} + HI(p),
since x o T is congruent 0 X, (). Thus
C(p) = VOOV A — HI(p)) + HI(p).

and hence /(0 o 7) = (¢(0) + (7)) mod 27 and the map ¢ defines a homomorphism.
L
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5. Applications

We begin with the observation that there exist complete, immersed minimal surfaces
with genus zero and finitely many ends admitting a nontrivial isometric deformation
through minimal surfaces. First, let us recall the Weierstrass representation theorem,
see for instance [33].

Proposition 5.1. Let x: M — R? be a conformal minimal immersion of a Riemann
surface M. Let g be the stereographic projection of its Gauss map, dh = dxz —
idxs o J; g and dh are holomorphic. Then (up to a translation)

X = Re[q), where (11)

dh dh
b = (B, Dy, by) = (<g—1 - 95 it +g)7,dk). (12)

Conversely, let M be a Riemann surface, g: M — C U oo a meromorphic function
and dh a holomorphic one-form on M. Then, provided that Re [, ® = 0 for all
closed curves o on M, equation (11) and (12) define a conformal minimal mapping of
M into R®, which is regular provided the poles and zeros of g coincide with the zeros
of dh. The holomorphic function g and holomorphic one form dh are the so-called
Weierstrass data.

With Theorem 5.1 in mind, it is easy to check that, for an immersed minimal
surface M, admitting a nontrivial isometric deformation through minimal surfaces
is equivalent to the condition that Im [ ® = 0 for all closed curves & on M. Take
P1s-.-, pn € C and, for any £ € N, consider the following Weierstrass data

n
g = H(z — p,-)Zk and dh =dz.
je=i

One can check that these data yield non-simply-connected, genus zero minimal sur-
faces admitting a nontrivial isometric deformation through minimal surfaces.

There are many results on the isometric indeformability of a constant mean cur-
vature surface with topology (e.g. [8], [20], [26], [28], [32], [34]). In what follows,
we give a criterion guaranteeing the isometric indeformability of a constant mean
curvature surface. In particular this result is a generalization of a rigidity theorem of
Choi—Meeks—White for minimal surfaces, see Theorem 1.2 in [8].

Theorem 5.2. Let x: M — R3 be an isometric immersion of a smooth oriented
surface with constant mean curvature H. Suppose that a plane w intersects x (M)
transversally in a closed unit speed curve y: [0, L] — M then the component of the
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force of y orthogonal to 7 is

L

W), V) = [ (e (T7), V)2 + Hix oy E)}ds,

0 (x*('])'})a V)
where V is a unit vector normal to w. If
L 1 5
o W (), V)T Hix oy, §)ids # 0

-[0 (x*(']y)s V)

then x does not admit a nontrivial isometric deformation through surfaces of con-
stant mean curvature H. In particular, if x is minimal and the plane intersects it
transversally in a closed curve then, to within congruences, M admits only one other
minimal isometric immersion in R3, namely —x.

Proof. We may assume that 7 is the xy-plane and V' = e3. Clearly,

Xoy = {x oy Xx(YNxx(y) + (x oy, XalJPN X (T P) + {x 01, §)E

and, if the origin is chosen in 7,

0={xoyes)=(xopx:(Jy)(xs(Jy), e3) + (x 2y, §)(§, e3).
Since the plane intersects x (M) transversally (x.(Jy),e3) # 0 and consequently
{(x oy, §)(§ e3)
{(x:(J¥), e3)

The decomposition of x o y above yields the following computation for (W ([y]), V')
where W(|y]) is the force form defined in §4.

(xoy, x.(Jy)) = -

L
(WD), V) = (fo -+ Hxoy) x5 ()]
L
= [O (T 9) — H{x 0y, x4 (TPNE + H{x 0y, E)xa(T ), 3)

L
_ [0 (52 (T7), €3)
- HA—{% o7, (T FIVE, 33 + (% © B EWELTH), ex)})
2

— /OL ((x*(J)'/),6’3) + H{xo y,é){% + (x*(J)'/),e3)})

_/L L nUi)es) + Hixop.E)}
~ o (<x*m>),e3> i * )

The formula for (W(|y]), V) in Theorem 5.2 now follows. Thus in the minimal
case the force of y is clearly non-zero and the result follows from Theorem 1.1 and
Remark 4.3. O
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Corollary 5.3. Let x: M — R? be an isometric immersion of a smooth oriented
surface with constant mean curvature H # 0. Suppose that M has a plane of
symmetry w which intersects x(M ) in a closed curve y: [0, L] — M. If x oy lies in
an open disk of radius % then there exists only finitely many isometric immersions
of M with constant mean curvature H.

Proof. We may assume that 7 is the xy-plane and IV = e3. Since m is a plane of
symmetry, we can assume that {x,(Jy),e3) = 1. Therefore Theorem 5.2 gives

I
(W(y]).es) = L+ H fo (x oy, E)ds.

Suppose x o y lies in an open disk of radius % Without loss of generality we

can assume that the disk is centered at the origin. Then |H | ({‘ (x oy, E)ds| < L and
therefore W([y|) # 0. The result now follows from Theorem 1.1. O

Definition 5.4. An embedding x: M — R? has a plane of Alexandrov symmetry
if  is a plane of symmetry for x (M) and x (M )\{x (M ) Nz} consists of two graphs
OVer 7.

For a complete proper surface x: M — R3 with constant mean curvature H ## 0
and a plane of Alexandrov symmetry Meeks—Tinaglia [31] showed thatif sup,, |A| <
oc and M has more then one end then x has no other associates. They show that M
has an end asymptotic to an unduloid (see also [19]). Since for unduloids none of
the associates exists as we remarked in §4, a compactness argument (which we also
use at the end of the next proof) implies that x is the only isometric embedding of M
with constant mean curvature A (see also [20], [32]).

We prove the following theorem.

Theorem 5.5. Let x: M — R3? be a complete proper isometric embedding of a
smooth oriented surface with constant mean curvature H # 0, with a plane of
Alexandrov symmetry. Then

(1) there exists only finitely many isometric immersions of M with constant mean
curvature H, and

(i1) if supyy |A| = oc and M has finite genus then x and possibly X, are the only
isometric embeddings of M with constant mean curvature H.

Proof. We begin by proving item (i). Our goal is to show that there exists a plane
which intersects M transversally in a simple closed curve which is not homologically
trivial. Once this is done, by a result of Korevaar and Kusner (Theorem 1.12 in [18])
the force of such a curve is always nonzero. Thus, by Theorem 1.1 there exist only
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finitely many isometric immersions of M into R? with constant mean curvature H
and (i) will be proved.

Let A be the connected region of & over which x (M )\{x(M) N m} is graphical.
It the boundary of A consists of more then one connected component, select two
components « and . Let 7’ be a plane perpendicular to 7 which intersects both «
and B transversally. Choosing different boundary components of A, if necessary, we
can assume that the intersection of =’ with A contains a line segment connecting «
and . Since x(M) is graphical over A, =’ intersects M transversally in a simple
closed curve y intersecting « and §. Since « and § are different components of dA,
v cannot be homologically trivial in M and thus its force is nonzero by [18].

If 7 intersects M in a single connected curve ) and y is not closed, then M would
have exactly one end and genus zero. However, a result of Meeks says that a properly
embedded surface with nonzero constant mean curvature and finite genus must have
more than one end (see [25]). Thus ¥ must be closed.

If A is the unbounded region of 7 outside y then y is homologically nontrivial.
If A is the compact region of 7 bounded by y then x (M )\{x(M) N 7} consists of
two compact graphs over A and M must be compact. This implies that x (M) is a
round sphere in which case the isometric immersion is always unique. In either case,
whether A is compact or not, there exist only finitely many isometric immersions of
M into R3 with constant mean curvature 71 .

We now prove item (ii). If M has unbounded second fundamental form, then for
any n € N there exists p, € M such that |A|(p,) > n. Recall that for graphs with
constant mean curvature and zero boundary value there exists a constant C depending
only on H such that sup,, |x3||A| < C (see for instance [35]) therefore in our case
|x3(pn)| < \Alfm (here x5 is the third component of the point x). After a sequence
of translations which take x(p,) to the origin, we obtain a sequence of immersions
yn: M — R3, y, := x — x(p,), with constant mean curvature and a plane of
Alexandrov symmetry such that y,(p,) = 0. The distance from the origin to the
plane of symmetry of y,, 1s bounded by %.

Consider the sequence of non-negative functions F,: M — R,

Fa(p) = (ya(p)| = D41 (p)

over the connected component M, of {p € M: |v,(p)| < 1} containing p,. The
function f, is zero on the boundary of M,, and therefore it attains its maximum on
M, at a point in its interior. Let g, be such a point, i.e.

Fulgn) = (yalg)| — D?|AP (gn) = max £y (p) = Fu(pn) = |A*(pa)-

Fix 05, > 0 such that 20, < 1 — |y,(g,)| and

402 A|* (qn) = 4|A1*(pn) = CZ.
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Notice that g, is less than half the distance from y,(g,) to the boundary of the
ball of radius one centered at the origin. Let M, be the connected component of
{p e My |vu(p) — yulgn)| < 0,1} containing gq,. Since F,, achieves its maximum
on M, at q,,

Fa(p)
20 412
sup 0, | 4|7 < supcr
Moy (yn ()| —1)?
402
SUP Fa(p)
= D@ = D2 a
4o

= 3 Fulgn) = 40,7141 (qn)-
(yn(gn)| = D2 " "

For any n, we apply a translation which takes the plane of Alexandrov symmetry to

the xy-plane and y,(g,) on the z-axis, and let z,,: M — R3, z, = yn + vy for

a certain v, € R3, denote this new sequence of immersions. We have obtained the

following:

sup |A|* = 4[4 (gn). 4071417 (gn) = C;. and  [(z)3(qn)] < -
Mo, | A[(gn)

Consider a new sequence of immersions wy,: M — RR? obtained by rescaling
z, by a factor of |A|(g,). w, := |A|(gn)z,. Note that [(w,)s(g,)| < C and that
|| = \T‘l‘l%‘_)’ where H,, denotes the mean curvature of the immersion w,, . Since we
are assuming that the genus of M is finite, a standard compactness argument implies
that this sequence converges in the C? convergence to a non-flat minimal embedding
of a genus zero surface, X : Moo — R?, with bounded second fundamental form and
hence properly embedded (see [13] and also [30]). Since a proper embedding cannot
be contained in a half-space (see [17]), the xy-plane must be a plane of symmetry.
This implies that x, : Mo, — R> mustbe a catenoid (see [27] and [2], [14], [9], [10],
[11], [12], [15], [23], [29] and others). The following compactness argument (see
also [32]) then implies that in either case, x and possibly x, are the only isometric
embeddings of M into R3 with constant mean curvature H .

Let yoo: [0, L] — My denote the shortest closed geodesic on My, and let
vno |0, L,] = M,,, be the sequence of cycles in M,;, such that w,(y,) converges
0 Xoo (Voo ). Suppose that there exists 8 different from zero or 7 such that the asso-
ciate xg: M — IR3 exists then, because of the convergence, (w;,)g(y,) converge to
{(Xoo)p (Voo ). However, while (w;, )g (), ) must be a closed curve, an easy computation
shows that when @ is different from zero or 7, (X )9 (Vo) 18 Not a closed curve. This
contradicts the convergence and proves that x and possibly x, are the only isometric
embeddings of M into R3 with constant mean curvature H . (]
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