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Configuration spaces of rings and wickets

Tara E. Brendle* and Allen Hatcher

Abstract. The main result in this paper is that the Space of all smooth links in isotopic to
the trivial link of components has the same homotopy type as its finite-dimensional subspace
consisting of configurations of unlinked Euclidean circles (the 'rings' in the title). There is also

an analogous result for Spaces of arcs in Upper half-space, with circles replaced by semicircles
(the 'wickets' in the title). A key part of the proofs is a procedure for greatly reducing the

complexity of tangled configurations of rings and wickets. This leads to simple methods for
Computing presentations for the fundamental groups of these Spaces of rings and wickets as well
as various interesting subspaces. The wicket Spaces are also shown to be aspherical.

Mathematics Subject Classification (2010). Primary 20F36; Secondary 57M07.

Keywords. Braid group, Symmetrie automorphism group.

1. Introduction

The classical braid group can be defined as the fundamental group of the space of
all configurations of a distinet points in R^. In this paper we consider a 3-dimensional
analog which we call the rZng growp This is the fundamental group of the space

of all configurations of a disjoint pairwise unlinked circles, or rings, in R-\ where

we mean the word 'circle' in the strict Euclidean sense. It is not immediately apparent
that <7?^ is path-connected, but in Section 2 we recall a simple geometric argument
from [FS] that proves this. In particular, this says that configurations of a pairwise
unlinked circles form the trivial link of a components.

The ring group turns out to be closely related to several other groups that have
been studied before in a variety of contexts under different names. This connection
arises from one of our main technical results:

Theorem 1. TTze ZncZwsZon rnfo space c/aZZ smccfZz /rZvZaZ ZZn£s c/a
coraponenfs Zn R^ Zs a Zzcmcfcpy egwZvaZence.

Thus is isomorphic to the group first studied in the 1962 thesis of Dahm
[D], who identified it with a certain subgroup of the automorphism group of a free

*The first author gratefully acknowledges support from the National Science Foundation.
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group on generators, subsequently called the Symmetrie automorphism group [Mc],
[C]. A finite-index subgroup of this group is the 'braid-permutation group' of [FRR].
Other references are [G], [BL], [R], [BMMM], [JMM], [BWC],

We will show that the group is generated by three families of elements p/,
er;, and 77 defined as follows. If we place the /7 rings in a Standard position in the

yz-plane with centers along the y-axis, then there are two generators p/ and 07 that

permute the ith and (7 + l)st rings by passing the ith ring either through the (7 + l)st
ring or around it, respectively, as in Figure 1.

Z Z -|- 1 Z Z ~h 1 Z

P/ 07 r/

Figure 1. The generators p/, er/, and r/.

The generator r/ reverses the orientation of the ith ring by rotating it 180 degrees
around its vertical axis of symmetry. It is not hard to see that 77 has order two in R„.
We will show that the p/ 's generate a subgroup of R„ isomorphic to the braid group

and the 07 's generate a subgroup isomorphic to the Symmetrie group

Parallel rings. The space has a number of interesting subspaces. The first of
these we Single out is the 'untwisted ring space' consisting of all configurations
of rings lying in planes parallel to a fixed plane, say the yz-plane. The loops of
configurations giving the generators p/ and 07 lie in this subspace. We will show that
the untwisted ring group I/R„ tti is generated by the p/ 's and 07 's, and that
the map I/R„ —R„ induced by the inclusion ^ is injective, so I/R„ can
be identified with the subgroup of R„ generated by the p/ 's and 07 's. We will also see

that f/R^ can be described as the fundamental group of the 2"-sheeted covering space
of consisting of configurations of oriented rings, so f/R^ has index 2" in R„. The

77 's generate a complementary subgroup isomorphic to Z", but neither this subgroup
nor f/R„ is normal in R„.

Intermediate between and is the space of configurations of rings
lying in vertical planes, perpendicular to the xy-plane. The group FR„ tti
is also generated by the p/ 's, 07 's, and 77 's, but the 77 's have infinite order in FR„.

Wickets. Another interesting subspace of consists of configurations of rings,
each of which is vertical and is cut into two equal halves by the xy-plane. The upper
halves of these rings can be thought of as wickets, as in the game of croquet, in
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upper half-space R+, and this subspace of can be identified with the space
of all configurations of « disjoint wickets in R+. The condition of being pairwise
unlinked is automatically satisfied for vertical rings that are bisected by the xy-plane.
In analogy to Theorem 1, one can compare with the space of configurations of

disjoint smooth unknotted and unlinked arcs in R+ with endpoints on 3R+ R^.
Here 'unknotted and unlinked' means 'isotopic to the Standard configuration of «

disjoint wickets'.

Theorem 2. 77z£ mc/wsion 14^ ^ Zs a /zoraofopy egw/va/ence.

In fact, we will prove a common generalization of this result and Theorem 1 that
involves configurations of both rings and wickets.

We call the group tti14^ the w/cto growp It too is generated by the p/'s,
er; 's, and 77 's. The p; 's again generate a subgroup isomorphic to but the 07 's now
generate a subgroup that is isomorphic to 2?^ rather than The r/'s have infinite
order just as they do in There is also an untwisted wicket group
tti where D We show that f/H« is generated by the p/'s
and (j/'s, and that the map f/H« -> induced by inclusion is injective, so f/H«
can be identified with the subgroup of generated by the p; 's and 07 's.

When defining £//?„, and C/JF„ as fundamental groups we did not
mention basepoints, and this is justified by the fact that 14^, and

are all connected, by the same argument that shows that ^ is connected.

Summarizing, we have the following commutative diagram relating the various

ring and wicket groups:

The two vertical maps are injective and correspond to adjoining the generators 77. We
will show that the two maps from the first column to the second column are quotient
maps obtained by adding the relations er? 1, and the lower right horizontal map is

the quotient map adding the relations r? 1.

Presentations. In Section 3, we will derive finite presentations for all live of the

groups in the diagram above, with the p; 's, 07 's, and 77 's as generators. The relations
that hold for all live groups are the usual braid relations among the p/'s and 07's

separately, together with certain braid-like relations combining p; 's and 07 's, and for
the groups in the second row there are relations describing how the 27 's interact with
the other generators. For the three ring groups there are also the relations er? 1,

and in the relations r? 1 are added.
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For the presentation was known previously [FRR], [BWC] using one of the

more classical definitions of this group. A presentation for was derived in [Tl],
using its interpretation as ttM«, after generators had been found earlier in [H4].

Asphericity. The space of configurations of a distinct points in R^ is aspherical,
with trivial higher homotopy groups, but this is no longer true for the ring spaces

and This is because the groups and contain torsion,
the subgroup £„ generated by the 07 's, so any AT(tt, 1) complex for these groups has

to be infinite dimensional, but the spaces and are smooth finite-
dimensional manifolds, hence finite-dimensional CW complexes (as are 14^ and

WTVft). The Situation is better for the wicket spaces:

Theorem 3. 77zc spaces 14^ and are asp/zer/caZ.

In particular, this implies that 1T„ and are torsionfree. The proof of this
theorem in Section 5 is more difficult than the proof of the corresponding result for
configurations of points in R^, as it uses Theorem 2 as well as some results from
3-manifold theory.

Wicket groups as subgroups of braid groups. There is a natural homomorphism
-> £2« induced by the map which associates to each configuration of n wickets

the 2a endpoints of these wickets, a configuration of 2a points in R^. For example,
the generators p; and 07 give rise to the two braids shown in Figure 2.

Z Z ~b 1

z z + 1

Z Z ~h 1

Z Z ~h 1

Figure 2

It is a classical fact, whose proof we recall in Section 5, that this homomorphism
IFrc -> £2« is injective. This gives an alternative way of looking at R^ as 'braids' of
a ribbons, where certain intersections of ribbons are permitted, intersections that are
known in knot theory as ribbon intersections.

Pure versions. Just as the braid group has a pure braid subgroup Pi?«, so do the

live groups in the earlier commutative diagram have 'pure' subgroups, the kernels
of natural homomorphisms to measuring how loops of configurations permute
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the rings or wickets. As in the braid case, these pure ring and wicket groups are the

fundamental groups of the corresponding configuration spaces of ordered w-tuples
of rings or wickets. The füll ring group Z?« is the semidirect product of the pure
untwisted ring group PI/Z?« and the signed permutation group For the wicket

group IT« there is a weaker result, a nonsplit short exact sequence 0 -> PI/IT« ->
IT« -> I]J -> 0 where XlJ is the semidirect product of £« and ZT

Our simple geometric method for finding presentations of the five 'impure' ring
and wicket groups also gives presentations for the pure versions of the ring groups P«,
I/P«, and FP«, but not for the pure wicket groups. In the case of the pure untwisted
ring group P I/P« the presentation was originally found in [Mc]. It has generators 077

in which all rings except the ith ring are stationary and the ith ring is pulled through
the 7 th ring and back to its initial position without passing through any other rings,
for each pair i 7^ 7.

Rings of unequal sizes. The subgroup of PI/P« generated by the 077 with i < 7

has been studied in [CPVW]. We show that this 'upper triangulär pure untwisted
ring group' is the fundamental group of the subspace of W.P« consisting of
configurations of rings of unequal diameters. The sizes of the rings then provide a

canonical ordering of the rings, hence loops in this space give elements of P I/P«, and

we show the resulting homomorphism tti -> Pf/P« is injective with image
the subgroup generated by the 077 with i < 7.

Passing to the 3-sphere. In Section 6, we also obtain similar results for configura-
tions of circles in and wickets in a ball. In the latter case wickets can be viewed
as geodesics in hyperbolic 3-space, and the configuration space of disjoint wickets
is a subspace of the space of configurations of disjoint geodesics, a dense subspace

having the same homotopy type as the larger space. (A pair of disjoint geodesics can
have an endpoint in common, so the two spaces are not identical.)

Complexity of configurations. A key Step in proving these results is a process for
simplifying configurations of rings in <P«. General configurations in <P« can be quite
complicated, with all the rings tightly packed together. This happens already in the

subspace IT« where the unlinking condition is automatic. One can take an arbitrary
finite set of wickets, possibly intersecting in very complicated ways and tightly packed
together, and then with a small random perturbation remove all the intersections to
produce a configuration in IT«. The goal of the simplification process is to produce
configurations in which each circle is surrounded by a region in which it is much

larger than all other circles that intersect the region. This region, or 'microcosm',
is by definition a closed ball of double the radius of the circle, and with the same

center. We define the complexity of a configuration of circles Ci,..., C« of radii

ri,..., r« to be the maximum of the ratios r; / ry < 1 for the pairs of circles Q, C7

whose microcosms intersect. If none of the microcosms intersect, the complexity is
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defined to be 0. If we let ^ be the subspace of consisting of configurations of
complexity less than c, then the simplification process will show that the inclusion of

^ into is a homotopy equivalence for any c > 0.

Configurations of small complexity can be thought of not only on the small scale

of microcosms, but also in large-scale astronomical terms. When the microcosms of
two circles intersect, one can think of the smaller circle as a ring-shaped planet with
the larger circle as its ring-shaped sun. There can be several such planets in each solar

System, each planet can have its own System of moons, the moons can have their own
'moonlets', and so on. The solar Systems can form galaxies, etc.

The process of deforming into is an elaboration on the argument for
showing is path-connected by shrinking all circles simultaneously in a canonical

way. If one Starts with a configuration which is in general position in the sense that no
circle has its center on the disk bounded by another circle, then this shrinking process
produces a configuration of circles lying in disjoint balls. This suffices to show ^
is path-connected, but to capture its füll homotopy type one cannot restrict attention
to configurations that are in general position. We deal with general configurations by
combining shrinking with a pushing process that is realized by extending shrinkings
of circles to ambient isotopies. This is explained in detail in Section 2 of the paper.

Configurations of spheres and disks. The proof of Theorems 1 and 2, that the in-
clusions ^ and ^ are homotopy equivalences, uses the complexity
reduction result described above, and it also involves a shift in focus from codimen-
sion two objects to codimension one objects, embedded spheres and disks, which are

generally more tractable. In Section 4 we use a parametrized disjunction technique to
create the necessary configurations of spheres and disks, then we use the analogs of
Theorems 1 and 2 for spheres and disks to improve configurations of smooth spheres
and disks to round spheres and disks. This relies ultimately on the proof of the Smale

Conjecture in [Hl], as does the final Step of turning smooth circles and arcs into round
circles and arcs. The spheres and disks are introduced to reduce the problem from
configurations of many circles and arcs to configurations of at most one circle or are

in each complementary region of a configuration of spheres and disks.

Dimension. The paper concludes with a brief discussion in Section 7 of some el-

ementary things that can be said about the homological dimension of the ring and

wicket groups.

2. Reducing complexity

One way to define the topology on is in terms of its covering space consisting
of ordered w-tuples of disjoint oriented circles in R^. This covering space can be

identified with an open subset in R^ by assigning to each circle its centerpoint
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together with a vector orthogonal to the plane of the circle, of length equal to the
radius of the circle and oriented according to the orientation of the circle via some
rule like the right-hand rule. Ignoring ordering and orientations of circles amounts to
factoring out the free action of the signed permutation group on this space. Thus we
see that ^ has a finite-sheeted covering space which is an open set in R^, and so

^ itself is an open manifold of dimension 6/7. By similar reasoning one sees that
the subspaces 14^, and W14^ of ^ are submanifolds of dimensions

5«, 4/i, 4/i, and 3/7, respectively.

Let us recall the definition of complexity from the introduction. If C is a con-
figuration in consisting of disjoint circles Ci,..., C„, let 5/ be the closed ball
containing Q having the same center and double the radius. (There is nothing special
about the factor of 2 here, and any other number greater than 1 could be used instead.)
Then the comp/ex/fy of the configuration C is the maximum of the ratios r; / ry < 1

of the radii of the pairs of circles C/, Cy in C such that D 5/ is nonempty, with
the complexity defined to be 0 if no 5/ 's intersect. We remark that complexity, as a

function -> [0,1], is upper semicontinuous, meaning that small perturbations of a

configuration C cannot produce large increases in the complexity. They can however

produce large decreases if two circles Q, Cy whose balls 5/, 2?y intersect in a Single

point are perturbed so that 5/ and 2?y become disjoint.
Define ^ to be the subspace of consisting of configurations of complexity

less than c. This is an open subset of

Theorem 2.1. TTze zricZz/szrin ^ ^ ^ zs a Zzoraofo/ry egz/zva/ence/or eac/z c > 0.

77ze same zs Zrz/e/or rize sz/As-pac^ ^ ^ 14^ ^ 14^,

In preparation for the proof there are some preliminary things to be said. First we
describe the argument from [FS], Lemma 3.2, for showing that is connected. Each

configuration of disjoint circles in R^ bounds a unique configuration of hemispheres
in R+ orthogonal to R^. The claim is that these hemispheres will be disjoint when
each pair of circles is unlinked. To see this, think of R+ as the upper halfspace
model of hyperbolic 4-space, with the hemispheres as hyperbolic planes. If two such

planes intersect, they do so either in a Single point or in a hyperbolic line, but the
latter possibility is ruled out by the disjointness of the original collection of circles.

Switching to the ball model of hyperbolic space, the point of intersection of two
hyperbolic planes can be moved to the center of the ball by a hyperbolic isometry,
so the planes become Euclidean planes through the origin. Any pair of transverse
planes through the origin can be deformed through such planes to be orthogonal.
Once the planes are orthogonal it is obvious that their boundary circles are linked
in the boundary sphere Thus unlinked circles in R^ bound disjoint hemispheres
inR*.
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For a configuration of circles in R^ bounding disjoint hemispheres in R^_, consider
what happens when one intersects the configuration of hemispheres with the hyper-
planes r3 IR3x{w} for w > 0. As w increases, each circle shrinks to its centerpoint
and disappears. Let us call this the canomcaZ sAnn&mg of the configuration.

A given configuration of circles can be perturbed so that no centerpoint of one
circle lies on the disk bounded by another circle. Then if we perform the canonical

shrinking of the configuration, we can stop the shrinking of each circle just before it
shrinks to a point and keep it at a small size so that no other shrinking circles will
bump into it. In this way the given circle configuration can be shrunk until the disks
bounded by the circles are all disjoint. This says that the configuration of circles
forms the trivial link, and it makes clear that the space is path-connected.

When dealing with a /:-parameter family of circle configurations, however, one
cannot avoid configurations where one circle has center lying in the disk bounded by
another circle. If the latter circle is larger than the first, the two circles would then

collide if we stop the shrinking of the smaller circle just before it disappears. Our

strategy to avoid such collisions will still be to stop the canonical shrinking of each

circle just before it disappears, and thereafter shrink it at a slower rate so that it does

not disappear, but we also allow it to be pushed by 'air cushions' surrounding larger
circles as they shrink, so that the smaller circle never intersects the larger circles.

The pushing will be achieved by an inductive process that relies on extending
isotopies of circles to ambient isotopies of R^, so let us recall the Standard procedure
in differential topology for extending isotopies of submanifolds to ambient isotopies.
An isotopy of a submanifold TV of a manifold M is a level-preserving embedding
F: TV / M x /. This has a tangent vector field given by the velocity vectors
of the paths Z i-> F(x, Z). The second coordinate of this vector field is equal to 1,

and we extend it to a vector field on Af x / with the same property by damping
off the first coordinate to 0 as one moves away from F(AZ x /) in a small tubulär
neighborhood of F(W x / Then the flow lines of this extended vector field define the
extended isotopy. This also works with / replaced by [0, oo) as will be the case in our
Situation. The manifold Af will be R^, and we can choose the tubulär neighborhood
of the submanifold F(AZ x [0, oo)) to be an c(Z)-neighborhood of F(AZ x {z}) in each

level R^ x {z}.

2.1. There will be two main steps in the proof. The first will be

to construct the modification of the canonical shrinking of an arbitrary configuration
in The second Step will then be to show how to make this modification depend
continuously on the initial configuration.

Sz^p 1. Z/z£ cßftomcßZ sAnnfa'ng. For a configuration C in consisting
of circles Ci,..., C„, let C* be the union of the largest circles in C, let be
the union of the next-largest circles, and so on. Let w be the time parameter in the
canonical shrinking of C, and let w Wj be the time when the circles of C* shrink
to their centerpoints, soiii > W2 > • • •

• Note that all the circles in C* have distinct
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centerpoints since two circles with the same center and radius must intersect. The
canonical shrinking defines an isotopy O^ (C *) for w w j. Our aim is to truncate this
at a value w slightly less than then extend this truncated isotopy to values

of w greater than The new extended isotopy (C *) will move each circle Cy of
C* through circles parallel to itself, so O^(Cy) will be determined by specifying the

centerpoint Cy (w) and the radius ry (w) of (C,). The center Cy (w) is the centerpoint
of Cy for w since this point does not move during the canonical shrinking, and

we will in fact have Cy (w) equal to this same point for w < rq, not just w For
the function ry (w), the canonical shrinking specifies this for w < wj, and it will be
chosen to be a positive decreasing function of w for w > wj.

The extended isotopy 0^(C*) will be constructed by induction on z. For i 1

and Cy a circle of C* we let Cy (w) be constant for all w, and we let ry (w) be any
decreasing function r*(w) of w for w > Wj where is chosen close enough to wi
so that the microcosms of all the circles of (C*) are disjoint. Such a Wj exists

since the centerpoints of the circles of C * are distinct. The microcosms of the circles
of <t>^(C*) will then remain disjoint for all w > Wj. To finish the first Step of the
induction we extend the isotopy O^(C^) to an ambient isotopy O* : R^ -> R^ by
the general procedure described earlier, with Oq the identity.

For a circle Cy of C^ with centerpoint Cy we let Cy(w) be constant for w <
^2 and then we let it move via the isotopy <t>*. In formulas this means Cy (w)
O* (<t>* )~*(cy). This will in fact be constant for w slightly greater than ^2 as well
as for w < W2- Since <t>* is an ambient isotopy, Cy (w) will be disjoint from 0^(C*)
and from c&(w) for other circles C^ of C^ for all w. This implies that if we choose

^2 close enough to ^2 and we choose the function r^(w) giving the radius of the
circles of (C^) small enough, then these circles will be disjoint from (C *) for
all w and will have disjoint microcosms for w > We cän ^lso make r^(w) small

enough so that the ratio r^(w)/r*(w) goes to 0 with increasing w. The second Step

of the induction is completed by extending the isotopies 0^(C*) and O^(C^) to an

ambient isotopy starting with Oq the identity.

Subsequent induction steps are similar. For example, at the next stage, for a circle
Cy of C^ with centerpoint Cy we let Cy (w) move according to the isotopy <t>^, and we
choose W3 close enough to W3 and r^(w) small enough so that the resulting circles
of O^(C^) are disjoint from 0^(C*) and O^(C^) for all w and the microcosms of
the circles of O^(C^) are disjoint for w > w'3. Also we make r^(w) small enough
so that the ratio r^(w)/r^(w) goes to 0 with increasing w. We can also assume that

r^(w)/r^(w) < r^(w)/r*(w), and inductively that r' + *(w)/r'(w) < r'(w)/r'~*(w)
for all i.

When the induction process is finished we have a path O^(C) in defined
for each C G It is clear that the complexity of O^(C) approaches 0 as w

goes to 00 since the circles of 0^(C*) have disjoint microcosms for large w and the
ratios r* + * (w)/r* (w) approach 0. We claim that the complexity of (C) decreases
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monotonically (in the weak sense) as w increases. To see this, consider two circles of
C, say Ci and C2. If they are in the same C *, they have the same radius throughout the

isotopy and their centers are stationary until w ip, after which their microcosms
remain disjoint, so their contribution to the complexity decreases monotonically,
being either 0 for all worl for a while and then 0. If Ci and C2 belong to different
C* 's, with Ci in Cfo and C2 in for p > *2» the ratio of their radii approaches 0

monotonically, so the only way they could contribute to a non-monotonic complexity
would be for their microcosms to bump into each other at a certain time w after having
been disjoint shortly before this time. For this to happen, both O^(Ci) and 0^(C2)
would have to be within the microcosm of some larger circle 0^(C3) in for
some £3 < z*2. In this case the pair 0^(C2), 0^(C3) would be contributing a larger
number to the complexity than the pair O^(Ci), 0^(C2), so the collision between
the microcosms of the latter pair would not be causing an increase in the overall

complexity.

Step 2. 77z£ process /or p^ram^te/z^J /ara/Z/es. To show that the in-
clusion ^ ^ is a homotopy equivalence for c > 0 it suffices to show that
the relative homotopy groups are zero for all Z, since both spaces are
smooth manifolds and hence CW complexes. Thus it suffices to deform a given a map

i-> C*, through such maps to a map with image in
This would follow if we could add a parameter £ £ Z)^ to our previous construction
of the deformation However, there is a problem with doing this directly because

the relative sizes of the circles in a family of configurations C* e can change
with varying f, so the sequence of induction steps in the construction of the desired
deformation could change with P What we will do instead is concatenate initial
segments of deformations over different regions in Z)^ to produce a new family
of deformations

As a preliminary step, note that choosing an ordering of the circles of the configu-
ration C* for one value of £ gives an ordering for all £ since the parameter domain Z)^

is simply-connected. Thus we can label the circles as C|,..., The radius of C/
varies continuously with f, and we can approximate these radius functions arbitrar-

ily closely by piecewise linear functions of Z, close enough so that they correspond
to a deformation of the family C*, staying in the open set over 3Z)^. Thus we

may assume the radius functions are piecewise linear. This means we can triangulate
£)fc so that the radius functions are linear on simplices. After a subdivision of this

triangulation, we can assume that on the interior of each simplex the ordering of the
circles C/ according to size is constant, and as one passes to faces of a simplex all
that happens to this ordering is that some inequalities among sizes become equalities.

We will construct the final deformations by a second induction, where the

inductive step is to extend from a neighborhood of the p-skeleton of the triangu-
lation of Z)^ to a neighborhood of the (p + l)-skeleton. More specifically, we will
construct continuous functions ^0 5 Vp 5 * * * 5 ^ from Z)^ to [0, 00) such that
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the inductive Step consists of extending from being defined for o < w < v>(0
to being defined for 0 < w < i/^+i(Y). The funetions will satisfy:

(a) ^ 0 outside some neighborhood A/^ of the /7-skeleton.

(b) lies in for w V^(0 when £ lies in a smaller neighborhood A^ of
the /7-skeleton.

(c) V^+1 • • • in

The ordering of the eireles of CY aeeording to size will be preserved during the

deformation
For the induction step of extending over a /?-simplex er, let er' be a slightly

smaller copy of er lying in the interior of er and with boundary in the interior of A^_ ^.
As £ varies over er' the size ordering of the eireles of CY is constant. For each £ in
er' we apply the earlier inductive procedure to construct a deformation starting
with the family VP*k(CY) for w V^-i (0- This can be done continuously in £ e er'

since the various choices in the construction can be made to vary continuously with
These choices are: the numbers (Y) < w, (Y), the radius funetions r' (Y, w), and the

isotopy extensions The construction of works in fact in a neighborhood
of er' in Z)^ by extending the funetions w • (Y) and r' (Y, w) and the isotopy extensions

to nearby £ values. As £ moves off er' the size ordering in CY may vary, as some
size equalities become inequalities, but we still use the same decomposition of CY

into the subsets C/, and we choose the funetions C (Y, w) so that for each £ in the

neighborhood, this size ordering is preserved throughout the deformation To

finish the induction step we choose ^ by requiring ^ to have support in a

neighborhood of er' and to have large enough values in a smaller neighborhood of er'

so that Ota(CY) lies in for £ in this smaller neighborhood and w Then

we extend the previously defined VPfw(Cf) for w G [0, t/^_i(Y)] by defining it to be

equal to <J>,„(C,) for m e [V^-i(0> V^(0]-
This finishes the proof for the inclusion ^ Since the deformations

take eireles to parallel eireles, the proof also applies for the inclusions ^
and ^ For the inclusions ^ and ICW„, observe
that in the case of configurations of wickets, the extended isotopies take the

xy-plane to itself so they take wickets to wickets.

Remarks on the proof of Theorem 2.1. We can strengthen the proof slightly to
give a deformation of the given family C* to a family which not only has small

complexity but has the additional property that the microcosm around each circle is

disjoint from all larger eireles. This can be achieved by choosing the radius funetion

r'(w) sufficiently small at each stage of the construction of the deformations
In the later part of the proof when is constructed from truncated deformations

initial segments of canonical shrinkings are also inserted, and these preserve the
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additional property since smaller circles shrink faster than larger circles during the

canonical shrinking.
The proof also works for the configuration space TVTP,^ consisting of configu-

rations of m wickets and /z rings in R+, all the wickets and rings being disjoint and

pairwise unlinked, and with the rings disjoint from the xy-plane. Thus TVTP^o is

14^, and it is easy to see that TVTPo,« and TP^ are homeomorphic, although they are

not identical since one consists of configurations in R^_ and the other of configura-
tions in R^. Namely, both contain the space of configurations of rings for which the
minimum z-value of all the rings is 1, and TVTPo,« is the product of this subspace with
(0, oo) while TP„ is the product of this subspace with R. In each case the projection
onto the first factor is given by vertically translating configurations to make their
minimum z-value 1, and projection onto the second factor is by taking the minimum
z-value of a configuration.

A further enhancement. A slight Variation on the technique used to prove the
theorem will be used to prove the following result:

Proposition 2.2. 77ze ratfwraZ raaps LP«, zznzZ C/W« -> IL«
Z/zr/wcer/ fry ^ /nc/ws/ons WTP^ ^ TP^, WTP^ ^ VTP^, rz/zr/ ^ 14^ rzre

zVzjecft've.

Proo/ Consider first the case of C/P„ —P„. Let TP WTP„ and TPTP„ be the "pure"
versions of WTP„ and TP„, the covering spaces of WTP„ and TP„ obtained by ordering
the rings, so that WTP^ and TP^ are the quotients of TP WTP^ and TPTP^ with the action
of the Symmetrie group factored out. It will suffice to show injectivity of the map
ttiTPWTP^ —ttiTPTP^ induced by the inclusion TPWTP^ ^ TPTP„.

By associating to each ring in R^ the line through the origin orthogonal to the plane
containing the ring we obtain a map TPTP^ -> (RP^)" whose fibers over points in the

diagonal of (RP^)" are copies of TPWTP^. Let us suppose for the moment that this

map is a fibration. It has a section, obtained by choosing a Standard configuration of
rings lying in disjoint balls and taking all possible rotations of these rings about their
centers. The existence of the section would then imply that the long exact sequence
of homotopy groups breaks up into split short exact sequences, so in particular there
would be a short exact sequence

0 —^ TTi TPWTPft —TTITPTP^ —TTI(RP^)" —0

which would give the desired injectivity.
We will make this into a valid argument by showing the weaker result that the

projection TPTP„ -> (RP^)" is a quasifibration. Recall that a map /?: P -> P is

a quasifibration if /?* : tt* (£\ /?"*(&), e) -> 7Tz(P,Zz) is an isomorphism for each
Zz e P, e e /?~*(Zz), and Z > 0. Thus a quasifibration has a long exact sequence of
homotopy groups just like for a fibration. The Standard argument for showing that a
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map /?: £ -> i? with the homotopy lifting property for maps of disks Z)^, Z > 0, has

an associated long exact sequence of homotopy groups in fact proceeds by showing
that the quasifibration property is satisfied; see for example Theorem 4.41 in [H3].
This argument generalizes easily to a slightly weaker version of the homotopy lifting
property, which asserts the existence of a lift, not of a given homotopy Z)^ x Z -> i?,
but of some reparametrization of this homotopy, obtained by composition with a

map Z)^ x Z —> Z)^ x Z of the form (x,£) i-> (x,g*(0) for a family of maps

g* : (Z, 0,1) -> (Z, 0,1). (Note that g* is canonically homotopic to the identity by
the Standard linear homotopy.) We will use this generalization below.

To show that the projection -> (RP^)" is a quasifibration, the key obser-

vation is that we can enhance the construction of the deformations by not only
shrinking the rings and moving their centers, but also rotating the rings according
to any deformation of the planes that contain them, provided that we delay the Start

of these deformations to the time i/ i/i(Z). At the inductive Step when is

constructed for the rings of C/ for w > w/ (0, these rings lie in microcosms that are

disjoint from each other and from the larger rings for which has already been

constructed, so they can be rotated arbitrarily about their centers, starting at time
w ^i(0-

With this elaboration on the construction of we construct the deformations
as before. First we deform a given map Z)^ -> to make the radii of the rings

piecewise linear functions of the parameter £ e Z)^. Then we proceed by induction
over the skeleta of the triangulation of Z)^. Prior to the induction step of extending
over /7-simplices, the deformation for w < t/^_i(Z) will include some initial
segment of a given deformation of the planes of the rings of C*, reparametrized by
the insertion of pauses. Then we construct as in the preceding paragraph, starting
with VP*k(Q) for w t/^_i(Z). Thus the deformation of the planes containing the

rings pauses for a time before continuing with the given deformation. At the end of
the induction step we choose the function and truncate which can truncate
the deformation of the planes containing the rings, so that they pause once more in
the next stage of the induction. It is no longer necessary to choose large enough
to make lie in for w if ^ is near the /7-skeleton. Instead, we
only need it large enough to allow time to carry out the deformation of the planes of
the rings.

At the end of the induction process we have a deformation such that the planes
of the rings vary by a reparametrization of the given deformation of these planes. The

parameter w varies over an interval [0, VfcCO] but we can rescale to make this [0,1].
This finishes the proof that the projection -> (RP^)" is a quasifibration, and

hence the proof that is injective.
Since the injection factors through F7?„ it follows that £//?„ —F7?„

is also injective. For f/kF„ -> kF„ we can use the same quasifibration argument as

in the first case, the only difference being that (RP^)" is replaced by (RP*)", an

ft-dimensional torus.
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Another result stated in the introduction can be proved using the same method:

Proposition 2.3. 77z£ mz/r/raZ map /rora to £Zz£ covenVzg space <9/ ^
consis/mg o/o/onentozZ nngs /ndwces an Zsoraorp/z/sra TTI ->
7Tl^ +

Proo/ The arguments in the preceding proof work equally well with oriented rings,
the only difference being that MP^ is replaced by Since this is simply-connected,
the previous short exact sequence of fundamental groups for the quasifibration reduces

to an isomorphism tti ->

In the proof of Proposition 2.2 we constructed a short exact sequence

0 -> -> - z» - 0

with a Splitting obtained by rotating the rings within disjoint balls. This sequence
embeds in a larger split short exact sequence

0^ P£/Ä„ -> Ä„ -> E± -+0

where is the signed permutation group, the semidirect product of and The

homomorphism -> assigns to each loop in ^ the permutation of the rings
that it effects, as well as the changes of orientations of the rings. The sequence splits
since is the fundamental group of the subspace of consisting of configurations
of rings contained in disjoint balls. This short exact sequence maps to another split
exact sequence

0 -» -» /?„ -* E„ -» 0

which in turn contains the split exact sequence

0 -» -» t//?„ -» £„ -» 0

where Splittings of these last two sequences can be obtained from the subspaces of
configurations of rings contained in disjoint balls and parallel to a fixed plane.

The same arguments give analogous sequences with in place of and with
the Z2's replaced by Z's and replaced by the semidirect product of £„ and

Z".
For wicket groups there are similar short exact sequences obtained in the same

way, but the only one that splits is the one not involving namely

0 -* -* ph; -* z" -» 0

with the Splitting obtained as before. The sequences involving £„ cannot split because

the wicket groups are torsionfree since the wicket spaces are aspherical, as will be

shown later.
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3. Presentations

In this section we use the results in the preceding section to obtain finite presentations
of ring and wicket groups. First an elementary result:

Proposition 3.1. TAe eZeraenfa cr^ generale <2 swAgrowp ZsoraorpA/c to ^Ae

Ara/d growp 2?n, and so aZsa da dze eZeraento p^.

Praa/ Let us take to be the subspace of 14^ consisting of configurations
of wickets lying in planes perpendicular to the x-axis. Sending each wicket to its

endpoint with larger y-coordinate defines a map -> where is the space of
configurations of n distinct points in R^, so tti^. The restriction of this map
to the subspace oflCW« consisting ofconfigurations of wickets having disjoint
projections to the xy-plane is a homotopy equivalence since wickets in configurations
in ICW^ can be shrunk to be arbitrarily small. The maps TTIV^ ICW„
induce homomorphisms -> kF„ -> whose composition is the identity. The

image of the first homomorphism is generated by the cr^ 's, so this subgroup of kF„ is

isomorphic to
The argument for p/s is similar using the subspace of consisting

of configurations of wickets, each of which is Symmetrie with respect to reflection
across the xz-plane. Wickets with this symmetry property are determined by their
endpoints in the upper half of R^, so can be identified with viewed as the

space of configurations of n points in the upper half of R^.

These arguments do not work with Z7P„ in place of Z7 kF„, but the p^ 's still generate
a copy of in Z7P„ as we will show in Proposition 4.2. The cr^ 's, on the other hand,

generate a copy of £„ in Z7P„ since they have order 2 and satisfy the braid relations,
so the canonical map Z7P„ -> £„ has a section.

Now we determine a presentation for 1/kF„ by a straightforward elaboration of
the Standard procedure for Computing a presentation for using general position
arguments.

Proposition 3.2. TAe granp f/kF^ Aas <2 presentodan wzYA generators tAe eZeraenfa

cr^ and p^ /ar Z 1,..., n — 1 and wzYA tAe/aZZawzng reZadans:

[A > A] > A] [A > A/] 1 1' - y I > 1.

APz + iPz A + iAA +r <hch + ich ^ + + o

Pz rr? +1 Oz Oz +1 Oz Pz +1 > ^z ^z +1A Pz ~+~1 + 1» ^z A ~+~1Pz Pz -1-1 Pz ^z +1 •

Praa/ We again take W to consist of configurations of wickets lying in planes per-
pendicular to the x-axis. Let be the open dense subspace of consisting of
configurations of wickets all lying in distinct planes. This subspace is homeomorphic
to R^\ so it is contractible. The complement of decomposes into a disjoint
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union of connected manifold strata, determined by which subsets of wickets lie in
the same planes and how these wickets are nested in these planes. Each Stratum is

homeomorphic to a Euclidean space of the appropriate dimension. The codimension
one strata are formed by configurations with exactly two wickets lying in the same

plane. These form a codimension one submanifold tEW* of tEW^ defined locally
by equating the x-coordinates of two wickets. The codimension two strata, forming
a codimension two submanifold consist of configurations where either two
disjoint pairs of wickets lie in coinciding planes, or three wickets lie in a Single plane.

To find generators for [/ B^ consider a loop in tEW^. By general position this can
be pushed off all strata of codimension 2 and greater until it lies in tEVV^ U Inland
we may assume it is transverse to tEW*, crossing it finitely many times. Each such

crossing corresponds to a generator p; or 07 or its inverse. Since the strata of tEW*

are contractible, they have trivial normal bundles and we can distinguish between
the directions of crossing these strata. Since tEW° is contractible, it follows that the

given loop in 1EW„ is homotopic to a product of p; 's and 07 's and their inverses, so

these elements generate f/B^.
To find a complete set of relations among these generators, consider a homotopy

in 1EW„ between two loops of the type just considered. General position allows us

to push this homotopy off strata of codimension greater than 2, and we can make it
transverse to strata of tEVV^ and tEW*. Let us examine what happens near points
where the homotopy crosses For strata of tEVV^ where two disjoint pairs of
wickets lie in coinciding planes we just have simple commuting relations: p; and 07

commute with py and 07 if |i — 7 | > 1. More interesting are the relations arising
from three wickets lying in the same plane. Here there are live cases according to
how the projections of the wickets to the xy-plane intersect. The three projections
can be completely disjoint, completely nested, or some combination of disjoint and

nested, as indicated in the first column of Figure 3, where for visual clarity we have

perturbed the overlapping projections of the three wickets so that they appear to be

disjoint.
A small loop around the codimension 2 Stratum crosses codimension 1 strata six

times since the local picture is like the intersection of the three planes x y, x z,
and y z in R^. One can view the resulting relation as an equation between two
ways of going halfway around the codimension 2 Stratum. The starting and ending
points of the two ways are shown in the second column of Figure 3. The relation
itself is written in the next column, and the final column shows the braid picture of
the relation, using the endpoint map f/B^ ^ i?2«.

Proposition 3.3. A presenfat/ön/ör zs pre^nPP/ew/or f/B^
m pr<?c£<i/pg proposfifon Z?y aeWmg reto/orrs er? 1.

Note that the relations p,<t, + i<t, er, + i<r,ft + i and a,rj, + ip, P, + i<t,<t, + | in
the presentation for f/B^ become equivalent if 07 and 07 + 1 have order 2, so either
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'I >1
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>1 'i

I 07^7 + 1^7 — 07 + 1^7^
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l>

l>

Pz Pz 1Pz Pz 1Pz Pz -b1 \i/\\

0"/0"/ + lP/ P/+l^/<7/+l

ö7Pz + lPz =P/ + lP/0"/ + l

Figure 3. Relations in (7IT,,.

K )i
relation can be omitted from the presentation for The geometric explanation
for this is that the third and fourth eonfigurations in Figure 3 are obviously equivalent
when we are dealing with rings rather than wickets.

Proe>/ The argument is similar to that for We take to consist of the

eonfigurations of rings lying in planes parallel to the xz-plane. Strata here are defined

just as for according to the coincidences among these planes. The only essential
difference is that now not all strata are contractible. A codimension one Stratum where

two planes coincide and the two rings in this plane are not nested has the homotopy
type of a circle. Crossing this Stratum corresponds to a generator 07. The normal
bündle of this Stratum is nontrivial, which means that we cannot distinguish between

(j/ and ö7~\ or in other words, we have the relation er? 1. An alternative way to
proeeed would be to subdivide this Stratum into two contractible codimension one
strata separated by a codimension two Stratum, the eonfigurations where the centers
of the two rings in this plane have the same projection to the xy-plane. A small loop
around this codimension two Stratum would give the relation er? 1. Using either
approach we conclude that adding the relations er? 1 to the earlier presentation for
f/lTrc gives a presentation for £//?„.

Next we turn to the pure untwisted ring group Recall the elements 077

passing the ith ring through the 7 th ring and back to its initial position, for / ^ 7.
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Proposition 3.4. PZze gronp PI/F^ Zzos o presento/fon wZtA generators ^Zze eZeraenfa

c^y /or 1 < Z, y < to Z 7^ 7, one? reZo/fons

— G7:£G7y>

wZzere dZstfZnct yyraZ?oZs/or snfescrZpto e?enoto snZ?scrZ/tos £Zz<to ore dZstfZnct

Using the second relation, the third relation can be restated as saying that ay^
commutes with c^o^-

Proo/ The group PZ7F« is the fundamental group of the covering space
of in which the rings are numbered. Let be the subspace of «PUÄ„
consisting of configurations in which no circles are nested within the planes that
contain them. We claim that «PU^ is simply-connected. To see this, consider the

projection of P to the Space of ordered n-tuples of distinct points in R^ sending
a configuration of circles to the configuration of its centerpoints. This projection
has a section, sending a configuration of points to the configuration of circles of
radius equal to one-quarter of the minimum distance between the points. Further,

«PU^ deformation retracts to the image of this section by first shrinking the circles
whose radius is too large, then expanding the circles whose radius is too small.
Since the space of point configurations is simply-connected (by a Standard induction

argument involving fibrations obtained by forgetting one of the points), it follows that

TTl 0.

Let P WP * be obtained from P WPj| by adjoining the codimension-one strata, the

configurationshavingexactly onecirclenestedinsideanother. Themapjri ->
Tri P WP„ is surjective, so we see that P Z7P„ is generated by the elements c^y. To ob-
tain the relations we adjoin the codimension-two strata, where two circles are nested.

If these occur in two different planes we have commutation relations c^y ay^ayy.
If the two occurrences of nested circles occur in the same plane we have either the
second or the fifth configuration in Figure 3. The fifth configuration gives another
commutation relation a^a^. The second configuration gives a relation

This argument does not immediately extend to the groups P since the space
PtFVV^ corresponding to is not simply-connected. Its fundamental group is

the pure braid group PP„, so in principle it should be possible to extend a presentation
for PP„ to a presentation for PZ7fF„ by adjoining the generators c^y corresponding
to the codimension-one strata as before, and then figuring out the relations that cor-
respond to the codimension-two strata.

The argument in the preceding proof does however work to prove the following:

Proposition 3.5. For ^Zze snZrs-poce WP^ 0/WP^ consZs/fng 0/conyZgnra/fons 0/
rZngs o/nnegnoZ sZze, ^Zzere Zs <2 presento/fon/or tti WP^ wZtA generators ^Zze c^y s
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wz'Z/z z < / zz/zd wz'Z/z re/zzZzozzs Z/z<? szzrae rdzzZztf/zs <xs z>z Z/z<? precez/zVzg propos/Zzozz,
r£sZrzcZ£<i Zo Z/z£S£ ge/zeraZors.

Proo/ By ordering rings according to size we obtain an embedding ^
The argument is then similar to the one for A small adjustment is

needed in showing the subspace of unnested eonfigurations has the homotopy type
of the spaee of ordered point eonfigurations; this we leave to the reader.

Proposition 3.6. A pr£S£nZzzZz<9/z/<9r Z/ze grozzp B^ A tfZzZzzzVzezZ/rtfra Z/ze ezzr/Ar pre-
s£/zZzzZz<9/z /or [/ B^ fry zzzM/zg Z/z<? g^/z^raZors 77 /or 1 < z < zz zz/zzZ Z/z<? /oZZowzzzg

rdzzZzo/zs:

[r,,r,] 1 /or/ 7^ 7,

[pz, iy ] 1 zzzzJ [0^,77] 1 /or 7 7^ z, z + 1,

*iV ^\+i ^ ^+1^" *•'? ±i'
P«T,+i ^ g+ift opPrV*«' Z«""® ±1'

^ <+iP,~' /or£ ±1.

The relations in the last three lines are highly redundant. For example, two of the

eight relations in the third-to-last line imply the other six.

Proo/ It is not difficult to verify that the relations listed in the Statement hold. These

relations guarantee that any product of p/s, cr/s, and 77's can be rearranged as a

product zzZ where zz is a product of p^ 's and cr^ 's and Z is a product of 77 's.

To verify that the p^ 's, cr^ 's, and 77 's generate B^ note first that for a given x £ B^
there exists a product 5 of oy's such that sx is in the subgroup PB^. As we saw
at the end of the preceding section, PB^ is a semidirect product of PC/B^ and the

subgroup Z" generated by the 77's. Thus sx zzZ for some zz e PC/B^ and Z a

product of 77 's. Since zz is in PC/B^ it is in Z7B^ and can therefore be written as

a product of p/s and cr/s since we know these generate Z7B^. This implies that

x s~*zzZ is a product of p^ 's, cr^ 's, and 77 's, so these elements generate B^.
To prove that the relations listed (including those for Z7B^) define B^, it will

suffice to show that a word u; in the generators that represents the trivial dement of
B^ can be reduced to the trivial word by applying the relations. To Start, we can use
the relations to rewrite u; in the form zzZ where zz is a product of p^ 's and cr^ 's (thus
zz G Z7B^) and Z is a product of 77's. Since zzZ 1 and the 77's do not permute
the wickets, we see that zz in fact lies in PZ7B^. The relation zzZ 1 implies that
zz 1 and Z 1 in view of the semidirect product structure on P B^. The relations
for f/B^ then suffice to reduce zz to the trivial word, and the commutation relations

among the 77 's allow Z to be reduced to the trivial word since the relation Z 1 holds
in the group Z".
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The same argument works also for and to prove:

Proposition 3.7. Pre^nZaZ/ons/or and V7^ are aZ?Za/n£<i/r6>ra zZze presenZaZ/an

/or B/ Zry a<Zi/ng Z/*£ reZaZ/orrs er? 1 and r? 1 /or or jwsZ er? 1 /or
ra„.

Note that the relations involving the r; 's can be simplified when er; er/*.

4. Rigidifying floppy wickets and rings

Generalizing the Spaces A^ and there is a space of smoothly embedded

configurations of m arcs and n loops in R+ which are unknotted and unlinked, hence

are isotopic to a configuration in We also require the loops to be disjoint
from the xy-plane. Thus AdC^o «Am, and AdCo^ is homeomorphic to by the

same argument that showed that TV<Z?o.« is homeomorphic to <Z?„.

Theorem 4.1. 77z£ ZncZns/on ^ zs a ZzoraoZo/ry egn/vaZencre.

Note that Theorems 1 and 2 in the Introduction follow directly as corollaries of
Theorem 4.1.

Proo/ The space ITis a smooth manifold and hence aCWcomplex, and AdC„^
has the homotopy type of a CW complex, so it will suffice to show that the relative
homotopy groups (AdC^„, vanish. As noted in the remarks following the

proof of Theorem 2.1, the inclusion ^ ^ AV^Z?^^ is a homotopy equivalence

for each c > 0, so it will in fact suffice to deform a given map /: (Z)^, 9Z)^) ->
(AdC„^, through such maps to a map (Z)^, 9Z)^) —> (AV^Z?^^, ^),
for any convenient choice of c > 0.

Denote the family of are and loop Systems /(Z) by A^. We will be interested in
Systems SV consisting of finitely many disjoint smooth disks and spheres embedded
in R^_ — A^ with SV D 9R+ 9SV, such that each component of R+ — *SV contains
at most one component of A^. We call such Systems separaZ/ng yysZeras. We assume
that for each component of SV there is a connected open set in the parameter domain
Z)^ such that the component of S^ varies only by isotopy as Z ranges over this open set,
and outside the open set the component is deleted from S^. If we choose the constant
c in „ to be less than ^ then for Z e 9Z)^ we can choose S^ to consist of at

least one round hemisphere or sphere in the interior of the microcosm of each wicket
or ring of A^, lying outside the wicket or ring, concentric with it, and disjoint from all
other wickets and rings of A^. By the remarks following the proof of Theorem 2.1,

we can assume that microcosms are disjoint from larger circles (and wickets). This

prescription for S^ gives a separating System since each hemisphere or sphere chosen
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separates the corresponding wicket or ring from all other wickets or rings of equal
or larger radius. For nearby £ in 3Z)^ the hemispheres and spheres of the same radii
remain a separating System, so we obtain in this way a family of separating Systems
SV consisting of round hemispheres and spheres for all £ in

There will be three main steps in the proof:

(1) Extend the family of round separating Systems SV over 3Z)^ to smooth separating

Systems SV for £ g

(2) Deform these smooth separating Systems to be round spheres and hemispheres
over all of

(3) Deform so that it consists of round wickets and rings over all of Z)^.

At each step the family over 3Z)^ will be unchanged.

Step 1. Extendmg over dAZ. There is a fibration Diff(R+) -> <A><Z^ that sends

a diffeomorphism to the image of a Standard configuration of arcs and circles under
the diffeomorphism. Using the lifting property of this fibration, we can choose a

separating System for one parameter value £ G Z)^ and extend this to a family of
separating Systems X^ for A^ that varies only by isotopy as £ ranges over all of Z)*V

For £ g 3Z)^ we then have two families of separating Systems SV and X*, and it will
suffice to construct a family (/, w) G 3Z)^ x /, which for each w is a separating

System for A^, such that SVo ^V and SVi X*. We can then place this family
in a collar neighborhood of 3Z)^ in Z)*y after first deforming the family A^ to be

constant on each radial segment in this collar.
First thicken X^ to a family X^ x [—1,1] of parallel separating Systems for A^.

Sard's theorem implies that for each £ G 3Z)^ there is a slice X^ x {s} in this thickening
that is transverse to SV. This slice will remain transverse to SV for all nearby £ as well.
By a compactness argument this means we can choose a finite cover of 3Z)^ by open
sets C/j so that S* is transverse to a slice XV ^V (0 for all £ G ZV.

For a fixed £ G ZV consider the Standard procedure for surgering S* to make it
disjoint from X^. The procedure Starts with a component of S* D X^, either a circle
or an arc, that cuts off a disk Z) in X^ that contains no other components of S* D X^.
Using Z) we then surger S* to eliminate the given component of S* D X^. The process
is then repeated until all components have been eliminated. Note that each surgery
produces a System of disks and spheres that still separates R+ — A^ into components
each containing at most one component of A*.

A convenient way to specify the order in which to perform the sequence of surg-
eries is to imagine the surgeries as taking place during a time interval, and then

surgering an arc or circle at the time given by the area of the disk it cuts off in X^,
normalized by dividing by the area of X^ itself. The only ambiguity inherent in this

prescription occurs if one is surgering the last remaining arc and this arc splits X^

into two disks of equal area. Then one would have to make an arbitrary choice of one
of these disks as the surgery disk.
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We will refine this procedure so that it works more smoothly in our Situation.
Thicken S* to a family Sf X [-1, 1] of nearby parallel Systems, all still transverse to
Ei for £ e C/j. Call this family of parallel Systems S*. For / G f/*, with i fixed for the

moment, we perform surgery on S* by gradually cutting through it in a neighborhood
of E*, as shown in Figure 4. Thus we are producing a family for w G [0,1], where

1 1

1 ll
Figure 4

again we use the areas of the surgery disks in E* to teil when to perform the surgeries.
Notice that is allowed to contain finitely many pairs of spheres or disks that
touch along a common subsurface at the instant when these spheres or disks are being
surgered. To specify the surgeries more completely we choose a small neighborhood
Ej x (—gj, gj) of in x [—1,1], which we rewrite as E* xR, and we let the surgery
on a component surface of produce two parallel copies of the surgery disk in the
slices E* x {=bl/w} of E* x R. Observe that this prescription for constructing Stu

avoids the ambiguity in choosing one of the two equal-area surgery disks mentioned
earlier since we can now surger using both these disks simultaneously.

To convert the thickened family back into an ordinary family consisting
of finitely many disks and spheres for each (Y, w) we replace each family of parallel
disks or spheres in of nonzero thickness by the central disk or sphere in this

family. Thus this central disk or sphere belongs to for an open set of values of
(Y, w).

As £ varies over C/j we now have a family depending on /. To combine
these families for different values of z, letting £ ränge over all of 3Z)^ rather than just
over C/z, we proceed in the following way. For each i choose a continuous function
(£>z: f/j —> [0,1] that takes the value 1 near 3 [/* and the value 0 on an open set F* inside
C/j such that the different F*'s still cover Z)^. Then construct by delaying the
time when each surgery along E* is performed by the value </9(Y). We may assume all
the Systems E* are disjoint for fixed £ and varying i with ^ Gl/,, and the thickenings
E* x (—, £z) are disjoint as well, so the surgeries along different E* 's are completely
independent of each other.

We have constructed the family for (A w) G 3Z)^ x [0,1] such that all the

curves of D E* are surgered away as w goes from 0 to 1 /2 for £ G Fi. We can then

adjoin E* to for (F m) G F, x (1/2,1), deleting the surgered disks and spheres
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of Sjk for w > 3/4. We may assume all the thickenings £/ x (—£;,£;) are disjoint
from the original separating System Then we adjoin to for w > 3/4, so

that for w 1 only remains in This finishes Step 1.

Step 2. /towndzng sraoctf/z dzsZ; and sp/zere yysteras. We will use the following result:

Lemma 4.2. 77*e s/?<zce o/systems o//ZrateZy many dfsycZnf sraoctffe dfsfo and spfeeres

/n R^_, d*£ d/sfe /zav£ d*e/r foonndanes zn 3R^_, de/orraarion refracfa anzri dze

snfepace a/ronnd d/sfe and sp/zeres.

ZVoa/ We show the relative homotopy groups are zero, which is all we need for the

application of the lemma. Thus we are given a family *S/, Z E Z)*y of disjoint smooth
disks and spheres that we wish to isotope to round disks and spheres, staying fixed
over 3Z)^ where 5/ is assumed to already consist of round disks and spheres. We can

assume in fact that 5/ consists of round disks and spheres for £ in a neighborhood
of 3I>*.

First we show how to round the spheres of 5/ by an inductive procedure, starting
with the outermost spheres. We construct families of embeddings of Z)^ in R+ with

images bounded by the outermost spheres, such that near 3Z)^ these embeddings are
rescaled isometric embeddings. This can be done by first applying isotopy extension

to construct families of embeddings without the condition near 9Z)*y then deforming
these embeddings to achieve this extra condition using the fact that the inclusion of
0(3) into Diff(Z)-^) is a homotopy equivalence, which is a consequence of the Smale

conjecture that Diff(Z)^ rel 3Z)^) is contractible, proved in [Hl]. We can also arrange
that the embeddings are rescaled isometric embeddings near the center of Z)^, just by
differentiability. By restricting these embedding to smaller and smaller concentric
spheres in Z)^ we can isotope the outermost spheres to be round over all of Z)*y

damping the isotopy down to the identity near 3Z)^. The non-outermost spheres are

dragged along in this process. Having rounded the outermost spheres in S*, we do a

similar construction for the next-outermost spheres, and so on.

To make the disks round we first make all their boundary circles round following
the same plan as for spheres, using Smale's theorem that Diff(Z)^ rel3Z)^) is con-
tractible. The rounding of the boundary circles can be done by a deformation of the

family 5/ supported in a neighborhood of 9R+. Having the boundary circles round,
we then deform the disks themselves to the round hemispherical disks spanning the
round boundary circles. This is possible since the fibration obtained by restricting the
disks to their boundaries has contractible über, the space of smooth disk Systems in

R+ with given boundary circles. For a Single disk this is one of the equivalent forms
of the Smale conjecture, and for Systems of disks it follows by induction. When we
perform these isotopies of the disks of S/, the spheres of 5/ are to be dragged along,
so the proper way to proceed is first to make all the disks round, then make the spheres
round by the procedure described earlier.
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Now we return to Step 2 of the proof. For each ^ Z)^ the components of SV vary
only by isotopy as £ varies over some neighborhood of Zo- Choose a finite number
of these neighborhoods that cover Z)^, then triangulate Z)^ so that each Z-simplex
of the triangulation lies in one of these neighborhoods. Over each such Z-simplex
we then have the associated set of disks and spheres of SV that vary only by isotopy.
Over a face of the simplex we have the union of the sets of disks for the various Z-

simplices that contain the face. Let us change notation slightly and call these Systems
of surfaces S*. (They are subsets of the Systems *SV constructed in Step 1.)

Suppose inductively that we have isotoped the disks and spheres of SV to be round
for £ in the / -skeleton of the triangulation of Z)^, without changing anything over 3Z)^

where the Systems S^ and are already round. The possibility / —1 is allowed,
which will give the Start of the induction. For the induction step we apply the lemma
to extend the rounding isotopy of S* over each (7 + 1)-simplex in the interior of Z)^

in turn. The arcs and circles of A* are carried along during this deformation of S*,

by isotopy extension. This completes Step 2.

Step 3. /tozmdmg sraoöZZ ßrc and c/rc/e yysteras. Having the components of S^ round

over all of Z)*y we can round the components of A* by an inductive procedure as in
Step 2. Over a simplex er of the triangulation of Z)^ we look at a complementary
region C* of S*. This contains at most one component of A*, and we need only look
at the case when there is exactly one component, say ar*. Consider first the case that
0?^ is an are. The region CV is bounded by the plane together with some round
disks and spheres of S* that can vary by isotopy. Let CV be obtained from C* by
Alling in the boundary spheres with balls. We can then think of CV as a region in the

upper half-space model of hyperbolic 3-space bounded by geodesic planes. There is

always a unique round are in CV having the same endpoints as o^. This means that

the space of round arcs in C* is the same as the space of pairs of endpoints of smooth

arcs. The map sending each unknotted smooth are to its endpoints is a fibration, and

it is a homotopy equivalence since its über, the space of unknotted arcs with fixed
endpoints, is contractible, by another equivalent form of the Smale conjecture. Since
the fibration is a homotopy equivalence, this implies that we can deform the arcs

to round arcs over the simplex er, staying fixed over the boundary of er where they are

already round. We can drag the balls of C* — C* and everything inside them along
during the isotopy that rounds a*. This could destroy the roundness of these balls,
but this problem can be avoided by first shrinking the balls sufficiently small so that

they can stay round during the isotopy.

The other case is that ar* is a circle. There are then two subcases depending on
whether C* is of the same type as in the preceding case or C* is a ball with smaller

disjoint sub-balls removed. In the first subcase the space of round circles in C* has the

homotopy type of RZ^ since such circles bound unique geodesic disks in C* and the

space of such disks has this homotopy type. The space of smooth unknotted circles
in CV also has the homotopy type of RZ^ by the Smale conjecture, so we can deform
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the circles to be round over er as before, after first shrinking the balls of C* — Q.
The other subcase, that C* is a ball with sub-balls removed, is done in the same way,
using the fact that the space of round circles in a ball has the same homotopy type as

the space of smooth circles, namely RP^ again.
This finishes the proof of the theorem.

Further injectivity results. We observed at the beginning of Section 3 that kk„
contains two copies of the braid group one generated by the p/'s and the other

generated by the 07 's. Under the projection kF„ -> the copy of generated by
the 07's becomes a subgroup C and we can now see that the other copy of

remains unchanged:

Proposition 4.3. 77*e map er: -> send/n# Standard generatars Z?ra/d

gronp ta e/emenfa p/ Zs m/eerfve.

Proa/ It suffices to show er is injective on the 'pure' versions of these groups, the
kernels of the natural maps to The pure braid group fits into a well-known split
short exaet sequence

0 —> P/7 — 1 P P/7 P P/7 — 1 0

where P„_i is the free group on/? - 1 generators and the map PP„ -> PP«-i is

obtained by ignoring the last Strand of a pure braid. This short exaet sequence maps
to a similar split short exaet sequence

0 -> -> />/?„ -> P7?„_i -> 0

which is part of the long exaet sequence ofhomotopy groups associated to the fibration
which sends an ordered n-tuple of smooth circles forming the trivial link to the ordered

(n — l)-tuple obtained by ignoring the last circle. The kernel is tti of the über,
the subspace of consisting of configurations with n — 1 of the circles in a fixed
Position and the last circle varying. It suffices by induetion on n to show that the map
of kernels F^-i -> PT« is injective. We do this by constructing a homomorphism
P« —^ Fji-i such that the composition -> -> P„_i is the identity.

The homomorphism -> P„_i is obtained by choosing a point in the nth
circle and taking the path it traces out in the complement of the other n — 1 circles
under a loop in the über. This path may not be a loop, but it can be completed to a

loop by adjoining an arc in the ath circle. Since the circles are unlinked, the choice
of this arc does not affect the resulting dement of P«_i, the fundamental group of
the complement of the first a — 1 circles. This construction gives a homomorphism

such that precomposing with P„_i —is obviously the identity.

The kernel is the produet x Z for the kernel of the projection
Pf/P« —PI/P„_i. It is shown in [P] that is not finitely presented for a > 3,
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although it is finitely generated, with the generators one might expect, and

The lack of finite presentability probably means that these kernels do not have nice

geometric interpretations in terms of configuration spaces of circles.

Proposition 4.4. 77z£ map /s /n/ecft've.

Proo/ Thisis similar to the preceding proof. The map -> thatignores
the smallest ring is a quasifibration, as in Section 1, using the canonical shrinking to
first make the smallest ring point-sized. The fundamental group of the über is F„_i
so we get a split short exact sequence

0 -» F„_1 -» t/Ä* -» -* 0

which maps to the split short exact sequence

0 -> -> -> PÄ„_1 -> 0

from the preceding proof. The rest of the argument is the same.

5. Asphericity

As a warm-up to proving Theorem 3, which states that the spaces and

are aspherical, let us recall a Standard sort of argument for showing that the map
Ikrc -> induced by the map <A>^ -> sending a configuration of arcs to the

configuration of its endpoints is injective. We can view <A>^ as the space of config-
urations of « disjoint smooth unknotted, unlinked arcs in a ball Z)^ with endpoints
in a hemisphere Z)^ of 3Z)^. By restricting diffeomorphisms of Z)^ fixing the other

hemisphere Z)+ to the Standard configuration A of « arcs we obtain a fibration

Diff(/V, ,4 rel D*) Diff(/V rel D*) ^ (i)

where Diff(X, F rel Z) denotes the space of diffeomorphisms of a manifold X that
leave a submanifold F setwise invariant and fix a submanifold Z pointwise. Restrict-

ing everything to Z)^ gives a map from this fibration to the fibration

Diff(Di, rel 9fV) Diff(D* rel D/V) £2« (2)

In each fibration the projection map to the basespace is nullhomotopic by shrink-
ing the support of diffeomorphisms to a smaller ball or disk disjoint from A. Thus
the associated long exact sequences of homotopy groups break up into short exact

sequences. Since TToDiff(Z)^ rel3Z)?.) 0 and jroDiff(Z)^ relZ)+) 0 (the lat-
ter by Cerf's theorem), we obtain isomorphisms «A>„ TToDiff(Z)^, A rel Z)+) and
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^ 7roDiff(D^, 3^4 rel 3Z)?.). The problem is thus reformulated as showing in-

jectivity of the map

7ToDiff(Z)*, ,4 rel -> 7ToDiff(Z)£, 9/1 rel 9Z>£).

This map is induced by the restriction map from the über of the first fibration above

to the über of the second fibration. This restriction map is itself a fibration

Diff(Z>3, /I rel 9Z)*) -> Diff(fl^, X rel Z)*) -> Diff(Z)£, 9/4 rel 9Z>1) (3)

so it suffices to show that tto of the fiber of this fibration is trivial. Note first that a

diffeomorphism / in Diff(Z)A rel 3Z) can be isotoped to be the identity on A, and

/ cannot twist the normal bundles of the arcs of A, as one can see by looking at the
induced map on tti (Z)^ — A). Then / can be isotoped rel A U 3Z)^ to be the identity
in a neighborhood of A, so / can be regarded as a diffeomorphism of a handlebody
fixing the boundary of the handlebody. The space of such diffeomorphisms is path-
connected since any two spanning disks in a handlebody are isotopic rel boundary,
and similarly for collections of disjoint spanning disks, so diffeomorphisms of a

handlebody rel boundary can be isotoped rel boundary to have support in a ball, and

then by Cerf's theorem they can be isotoped to the identity. (With a little more work
the use of Cerf's theorem in this argument could be avoided by factoring out the

image of jroDiff(Z)^ rel 3Z)^) in the various groups.)
Now we prove Theorem 3 by refining this argument to reduce asphericity of

to asphericity of

Proo/ Since is homotopy equivalent to <A„, we can obtain the result for by
showing that is aspherical. The total space in the fibration (2) above is contractible
by a theorem of Smale. The total space in the fibration (1) is also contractible, as one
can see from the fibration

Diff(/V rel 9fV) ^ DiffUV rel Z>+) ^ DiffUV rel 9Z>£)

where the base is contractible by Smale's theorem and the fiber is contractible by the
Smale conjecture [Hl]. The fiber of the fibration (3) is also contractible by the follow-
ing argument. Restricting diffeomorphisms in Diff(Z) ^, A rel 3Z) to normal bundles

of the arcs gives another fibration whose base space is homotopy equivalent to the

space of automorphisms of the normal bundles of these arcs that are the identity at

the endpoints of the arcs. For each are this is the loopspace of *SO(2), which has con-
tractible components. Components other than the identity component can be ignored
since diffeomorphisms in (Z)^, A rel 3Z)^) cannot twist the normal bundles nontriv-
ially, as we saw earlier. Thus from this fibration we can replace (Z)^, A rel3Z)^)
by the subspace of diffeomorphisms that are the identity on a neighborhood of the

arcs. This can be identified with group of diffeomorphisms of a handlebody fixing
its boundary. This diffeomorphism group is path-connected as we observed before,
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and it has contractible path-components by [H2]. (The key point is that the space of
spanning disks with fixed boundary is contractible.)

Thus for i > 2 we have isomorphisms

7i7eA,i ^ 7T;_iDiff(D-\ A relZ)+) ^ 7T/_iDiff(Z)^, 3A rel3Z)^) ^
so asphericity of is reduced to asphericity of which is well-known.

For the case of we can pass to the covering space obtained by
ordering the wickets, and then use the quasifibration T" from
Section 1, where T" is the w-torus. The associated long exact sequence of homotopy
groups shows that is aspherical since and T" are aspherical.

6. Wickets and rings in a sphere

Instead ofwickets in upper halfspace one can consider wickets inside a sphere, circular
arcs in the interior of the sphere that meet the sphere orthogonally at their endpoints.
Configurations of « disjoint wickets of this type form a spherical wicket space S

An equivalent space is the space of configurations of « disjoint line segments in
a ball that meet the boundary sphere in their endpoints. The equivalence between
the two definitions can be seen by considering two of the models for hyperbolic
3-space, the Standard ball model and the projective model. In the ball model the

geodesics are circular arcs orthogonal to the boundary sphere, while in the projective
model they are line segments in the ball with endpoints on the boundary sphere.
The disjointness condition is preserved in going from one model to the other since

intersecting geodesics lie in a common hyperbolic plane in both cases.

The space S is slightly smaller than the space of all configurations of « disjoint
geodesics in hyperbolic 3-space since geodesics do not include their endpoints in the

boundary sphere, so two disjoint geodesics could share a common endpoint on the

boundary sphere. The inclusion of S into this slightly larger space is a homotopy
equivalence, however, as one can see easily in the projective model by shrinking the
ball by a small amount for each configuration (without shrinking the configuration
itself). For example, the ball can be shrunk by one-half of the minimum of the
numbers J;, where is the maximum distance from points on the /th line segment
of a given configuration to the boundary of the ball. Note that this is essentially the

same as the canonical shrinking process considered in Section 1.

Comparing the ball model of hyperbolic 3-space with the upper halfspace model,
we see that can be regarded as the subspace of S consisting of configurations
disjoint from a point oo in the boundary sphere. The configurations in that
contain a line to oo form a codimension 2 submanifold. In terms of the upper halfspace
model, this submanifold is the space of configurations of n — 1 disjoint wickets and

one vertical line disjoint from the wickets. This submanifold is connected, by the
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same argument with canonical shrmkmg used to show that is connected. From
transversality lt follows that the mclusion 14^ ^ S mduces a surjection on tti
with kernet generated by a small loop linkmg the codimension 2 submanifold. This

loop can be represented by takmg the Standard configuration of wickets m the xz-
plane and draggmg the left endpomt of the first wicket around a large circle enclosmg
all the other wickets. It would not be hard to wnte this loop as a word m the generators
Pz, er* and Tz. Thus tti S14^ has a presentation obtamed from the presentation for kk^

by addmg one extra relation.
There is an analogous space S<Azz of configurations of disjomt smooth arcs m

a ball with endpomts on the boundary sphere, all these arcs bemg unknotted and

unlmked.

Proposition 6.1. 77i£ mc/ws/on S 14^ ^ 5 «Azz Zs a Zioraotopy egw/vßZence.

Proo/ This can be reduced to the correspondmg result for 14^ ^ «Azz by considermg
some fibrations. Let be the space of configurations consistmg of disjomt
wickets m a ball together with a basepomt m the boundary sphere disjomt from the
wickets. Projectmg such a configuration onto either the wickets or the basepomt gives
two fibrations F-> STV* -> SX

Here the über F m the first fibration is just with 2/i pomts deleted, the endpomts
of a configuration of wickets. The homotopy liftmg property m the first fibration
follows by extendmg isotopies of configurations of wickets to ambient isotopies then

restnctmg these to the basepomt. The second fibration is actually a über bündle

smce the basepomts m a neighborhood of a given basepomt can be obtamed via a

contmuous family of rotations of applied to the given basepomt, and then these

rotations can be applied to configurations of wickets.

Similarly there are fibrations

F ^ SA* ^ .A*- S.A*- S*.

The über F is the same as before. There are natural maps from the first two fibrations
to the second two fibrations. Applymg the five lemma to the mduced maps of long
exact sequences of homotopy groups, we see that 14^ ^ bemg a homotopy
equivalence implies first that this is true also for S IT* ^ S«A* and then also for

Similar thmgs can be done for rings as well as wickets. Let be the space
of configurations of disjomt pairwise unlmked circles m and let be the

correspondmg analog of the space of smooth /i-component trivial links m

Proposition 6.2. FZie ZncZi/s/on S ^ Zs <2 Zioraotopy egw/vßZence.
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Proo/ This follows the line of argument in the preceding proof by comparing fibra-
tions, using the space S of configurations of circles in with a disjoint basepoint,
and its smooth analog S *.

One can also obtain a presentation for tti S from a presentation for by adding
the same relation as was added to get a presentation for The justification
is the same as before, by using Stereographic projection to identify with the

complement of the codimension 2 submanifold of S consisting of configurations
passing through a given point in

7. Remarks on dimension

It is a classical fact that the general position argument for finding a presentation for
can be refined to build a finite CW complex 1) having a Single 0-cell, a

1-cell for each Standard generator 07, and a 2-cell for each of the Standard relations.
The cells are dual to the strata of the stratification of according to coincidences
of the x-coordinates. Thus the 0-cell corresponds to the unique Stratum of maximum
dimension consisting of configurations with distinct x-coordinates, the 1-cells to the
strata of codimension one where exactly two points in a configuration have the same

x-coordinate, and so on. The same procedure works also for to give a finite
CW complex 1). The dimension of this complex is w — 1, just as for
For there is a Single cell in the top dimension, corresponding to the Stratum of
configurations with all« points on one vertical line, but for there are a number
of different strata consisting of configurations of wickets all lying in one plane, so

there are a number of top-dimensional cells. There cannot exist a AT(f/lT„, 1) of
dimension less than « — 1 since C/has a subgroup Z"~* generated by the elements

a/H for / < h.
For the minimum dimension of a AT(1T„, 1) is 2/i — 1. There is a AT(1T„, 1)

of this dimension since 1T„ is a subgroup of £2«, and there cannot be one of lower
dimension since contains a subgroup Z^~\ generated by the Z"~* above and the

77 's. It seems likely that should have a finite CW complex AT, 1) of minimum
dimension, perhaps constructible by extending the general-position constructions
referred to above.

For the Virtual cohomological dimension is known to be « — 1 by [C], where
a AT(tt, 1) which is a finite CW complex of dimension tz — 1 was constructed for
the finite-index subgroup This AT(tt, 1) can be described as the space of
basepointed graphs consisting of « circles touching in a tree-like pattern, forming a

cactus-shaped object. The dimension « — 1 cannot be reduced since Pf/P„ again
contains a subgroup Z"~* generated by the elements 07^.
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