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Configuration spaces of rings and wickets

Tara E. Brendle* and Allen Hatcher

Abstract. The main result in this paper is that the space of all smooth links in R isotopic to
the trivial link of # components has the same homotopy type as its finite-dimensional subspace
consisting of configurations of # unlinked Euclidean circles (the ‘rings’ in the title). There is also
an analogous result for spaces of arcs in upper half-space, with circles replaced by semicircles
(the ‘wickets’ in the title). A key part of the proofs is a procedure for greatly reducing the
complexity of tangled configurations of rings and wickets. This leads to simple methods for
computing presentations for the fundamental groups of these spaces of rings and wickets as well
as various interesting subspaces. The wicket spaces are also shown to be aspherical.

Mathematics Subject Classification (2010). Primary 20F36; Secondary 57M07.

Keywords. Braid group, symmetric automorphism group.

1. Introduction

The classical braid group B;, can be defined as the fundamental group of the space of
all configurations of 7 distinct points in R2. In this paper we consider a 3-dimensional
analog which we call the ring group R,,. This is the fundamental group of the space
Ry of all configurations of 7 disjoint pairwise unlinked circles, or rings, in IR3, where
we mean the word ‘circle’ in the strict Euclidean sense. Itis not immediately apparent
that R,, is path-connected, but in Section 2 we recall a simple geometric argument
from [FS] that proves this. In particular, this says that configurations of n pairwise
unlinked circles form the trivial link of #» components.

The ring group R, turns out to be closely related to several other groups that have
been studied before in a variety of contexts under different names. This connection
arises from one of our main technical results:

Theorem 1. The inclusion of R, into the space L, of all smooth trivial links of n
components in R? is a homotopy equivalence.

Thus R,, is isomorphic to the group 7y &£, first studied in the 1962 thesis of Dahm
[D], who identified it with a certain subgroup of the automorphism group of a free

*The first author gratefully acknowledges support from the National Science Foundation.
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group on 1 generators, subsequently called the symmetric automorphism group [Mc],
[C]. A finite-index subgroup of this group is the ‘braid-permutation group’ of [FRR].
Other references are [G], [BL], [R], [BMMM], [IMM], [BWC].

We will show that the group R, is generated by three families of elements p;,
oi, and 7; defined as follows. If we place the » rings in a standard position in the
vz-plane with centers along the y-axis, then there are two generators p; and o; that
permute the ith and (7 4 1)st rings by passing the ith ring either through the (i 4 1)st
ring or around it, respectively, as in Figure 1.

i i+1 i i+1

QO QO

1 7] 143

Figure 1. The generators p;, 7;, and ;.

The generator 7; reverses the orientation of the 7th ring by rotating it 180 degrees
around its vertical axis of symmetry. It is not hard to see that z; has order two in R,,.
We will show that the p;’s generate a subgroup of R, isomorphic to the braid group
B, and the 0;’s generate a subgroup isomorphic to the symmetric group 2,,.

Parallel rings. The space (R, has a number of interesting subspaces. The first of
these we single out is the ‘untwisted ring space” UR,, consisting of all configurations
of rings lying in planes parallel to a fixed plane, say the yz-plane. The loops of
configurations giving the generators p; and o; lie in this subspace. We will show that
the untwisted ring group UR,, = w1 UR, is generated by the p;’s and o;’s, and that
the map UR,, — R, induced by the inclusion U.R, — R, isinjective, so UR, can
be identified with the subgroup of R,, generated by the p;’s and 0;’s. We will also see
that UR,, can be described as the fundamental group of the 2"-sheeted covering space
of R, consisting of configurations of oriented rings, so UR,, hasindex 2" in R,,. The
7;’s generate a complementary subgroup isomorphic to Z7%, but neither this subgroup
nor UR,, is normal in R,,.

Intermediate between UR,, and R, is the space V.R,, of configurations of rings
lying in vertical planes, perpendicular to the xy-plane. The group VR, = mi VR,
is also generated by the p;’s, 6;’s, and 1;’s, but the 7;’s have infinite order in VR,,.

Wickets. Another interesting subspace of R, consists of configurations of rings,
each of which is vertical and is cut into two equal halves by the xy-plane. The upper
halves of these rings can be thought of as wickets, as in the game of croquet, in
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upper half-space R3 , and this subspace of R, can be identified with the space W,
of all configurations of # disjoint wickets in R3. The condition of being pairwise
unlinked is automatically satisfied for vertical rings that are bisected by the x y-plane.
In analogy to Theorem 1, one can compare ‘W,, with the space #4, of configurations of
n disjoint smooth unknotted and unlinked arcs in R with endpoints on 9R3 = R2.
Here ‘unknotted and unlinked” means ‘isotopic to the standard configuration of #
disjoint wickets’.

Theorem 2. The inclusion 'W,, — A, is a homotopy equivalence.

In fact, we will prove a common generalization of this result and Theorem 1 that
involves configurations of both rings and wickets.

We call the group ='W, the wicket group W,. It too is generated by the p;’s,
o;’s, and 7; ’s. The p;’s again generate a subgroup isomorphic to B, but the ;’s now
generate a subgroup that 1s isomorphic to B, rather than %,. The 7;’s have infinite
order just as they do in VR,. There is also an untwisted wicket group UW,, =
m UW, where U'W, = W, N UR,. We show that U W, is generated by the p;’s
and o;’s, and that the map UW,, — W, induced by inclusion is injective, so U W,
can be identified with the subgroup of W,, generated by the p;’s and o; ’s.

When defining UR,,, VR,, W,, and UW,, as fundamental groups we did not
mention basepoints, and this is justified by the fact that UR,, VR,, Wy, and UW,
are all connected, by the same argument that shows that &R, is connected.

Summarizing, we have the following commutative diagram relating the various
ring and wicket groups:

UW, —» UR,

|

W, —» VR, —» R,

The two vertical maps are injective and correspond to adjoining the generators 7;. We
will show that the two maps from the first column to the second column are quotient
maps obtained by adding the relations 67 = 1, and the lower right horizontal map is
the quotient map adding the relations 77 = 1.

Presentations. In Section 3, we will derive finite presentations for all five of the
groups in the diagram above, with the p;’s, 0;’s, and 7;’s as generators. The relations
that hold for all five groups are the usual braid relations among the p;’s and o;’s
separately, together with certain braid-like relations combining p;’s and ¢;’s, and for
the groups in the second row there are relations describing how the z;’s interact with
the other generators. For the three ring groups there are also the relations o7 = 1,
and in R,, the relations Tl_z = 1 are added.
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For UR,, the presentation was known previously [FRR], [BWC] using one of the
more classical definitions of this group. A presentation for W,, was derived in [T1],
using its interpretation as my <A, after generators had been found earlier in [H4].

Asphericity. The space of configurations of n distinct peints in R? is aspherical,
with trivial higher homotopy groups, but this is no longer true for the ring spaces R,
UR,, and VR,,. This is because the groups R,, UR,, and VR, contain torsion,
the subgroup X, generated by the 0;’s, so any K(x, 1) complex for these groups has
to be infinite dimensional, but the spaces R,, UR,, and V.R,, are smooth finite-
dimensional manifolds, hence finite-dimensional CW complexes (as are W, and
UW,). The situation is better for the wicket spaces:

Theorem 3. The spaces W, and UW,, are aspherical.

In particular, this implies that W), and U W, are torsionfree. The proof of this
theorem in Section 5 is more difficult than the proof of the corresponding result for
configurations of points in R?, as it uses Theorem 2 as well as some results from
3-manifold theory.

Wicket groups as subgroups of braid groups. There is a natural homomorphism
W, — B2, induced by the map which associates to each configuration of n wickets
the 2n endpoints of these wickets, a configuration of 2 points in R?. For example,
the generators p; and o; give rise to the two braids shown in Figure 2.

i i+1 ioi41

Pi mﬁ" %

i i+1 ioi41

. %

A, X
Figure 2

It is a classical fact, whose proof we recall in Section 5, that this homomorphism
W, — B,, isinjective. This gives an alternative way of looking at W), as ‘braids’ of
n ribbons, where certain intersections of ribbons are permitted, intersections that are
known in knot theory as ribbon intersections.

Pure versions. Just as the braid group B, has a pure braid subgroup PB,,, so do the
five groups in the earlier commutative diagram have ‘pure’ subgroups, the kernels
of natural homomorphisms to %, measuring how loops of configurations permute
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the rings or wickets. As in the braid case, these pure ring and wicket groups are the
fundamental groups of the corresponding configuration spaces of ordered n-tuples
of rings or wickets. The full ring group R, is the semidirect product of the pure
untwisted ring group PUR,, and the signed permutation group Zif. For the wicket
group W, there is a weaker result, a nonsplit short exact sequence 0 — PUW,, —
W, — =L — 0 where X2 is the semidirect product of X, and Z".

Our simple geometric method for finding presentations of the five ‘impure’ ring
and wicket groups also gives presentations for the pure versions of the ring groups R,,,
UR,, and VR, but not for the pure wicket groups. In the case of the pure untwisted
ring group P UR,, the presentation was originally found in [Mc]. It has generators o;;
in which all rings except the 7th ring are stationary and the 7th ring is pulled through
the jth ring and back to its initial position without passing through any other rings,
for each pairi # j.

Rings of unequal sizes. The subgroup of PUR,, generated by the «;; withi < j
has been studied in [CPVW]. We show that this ‘upper triangular pure untwisted
ring group’ is the fundamental group of the subspace UR,, of UR, consisting of
configurations of rings of unequal diameters. The sizes of the rings then provide a
canonical ordering of the rings, hence loops in this space give elements of P UR,,, and
we show the resulting homomorphism 7y UR, — PUR, is injective with image
the subgroup generated by the «;; withi < ;.

Passing to the 3-sphere. In Section 6, we also obtain similar results for configura-
tions of circles in S and wickets in a ball. In the latter case wickets can be viewed
as geodesics in hyperbolic 3-space, and the configuration space of disjoint wickets
is a subspace of the space of configurations of disjoint geodesics, a dense subspace
having the same homotopy type as the larger space. (A pair of disjoint geodesics can
have an endpoint in common, so the two spaces are not identical. )

Complexity of configurations. A key step in proving these results is a process for
simplifying configurations of rings in [R,,. General configurations in R, can be quite
complicated, with all the rings tightly packed together. This happens already in the
subspace ‘W, where the unlinking condition is automatic. One can take an arbitrary
finite set of wickets, possibly intersecting in very complicated ways and tightly packed
together, and then with a small random perturbation remove all the intersections to
produce a configuration in ‘'W,,. The goal of the simplification process is to produce
configurations in which each circle is surrounded by a region in which it 1s much
larger than all other circles that intersect the region. This region, or ‘microcosm’,
is by definition a closed ball of double the radius of the circle, and with the same
center. We define the complexity of a configuration of circles Cy, ..., C, of radii
71.....7n to be the maximum of the ratios r; /r; < 1 for the pairs of circles C;, C;
whose microcosms intersect. If none of the microcosms intersect, the complexity is



136 T. E. Brendle and A. Hatcher CMH

defined to be 0. If we let R be the subspace of R,, consisting of configurations of
complexity less than ¢, then the simplification process will show that the inclusion of
R¢ into R, is a homotopy equivalence for any ¢ > 0.

Configurations of small complexity can be thought of not only on the small scale
of microcosms, but also in large-scale astronomical terms. When the microcosms of
two circles intersect, one can think of the smaller circle as a ring-shaped planet with
the larger circle as its ring-shaped sun. There can be several such planets in each solar
system, each planet can have its own system of moons, the moons can have their own
‘moonlets’, and so on. The solar systems can form galaxies, etc.

The process of deforming R, into R is an elaboration on the argument for
showing R, is path-connected by shrinking all circles simultaneously in a canonical
way. If one starts with a configuration which is in general position in the sense that no
circle has its center on the disk bounded by another circle, then this shrinking process
produces a configuration of circles lying in disjoint balls. This suffices to show R,
is path-connected, but to capture its full homotopy type one cannot restrict attention
to configurations that are in general position. We deal with general configurations by
combining shrinking with a pushing process that is realized by extending shrinkings
of circles to ambient isotopies. This is explained in detail in Section 2 of the paper.

Configurations of spheres and disks. The proof of Theorems 1 and 2, that the in-
clusions R, — £, and W,, — +,, are homotopy equivalences, uses the complexity
reduction result described above, and it also involves a shift in focus from codimen-
sion two objects to codimension one objects, embedded spheres and disks, which are
generally more tractable. In Section 4 we use a parametrized disjunction technique to
create the necessary configurations of spheres and disks, then we use the analogs of
Theorems 1 and 2 for spheres and disks to improve configurations of smooth spheres
and disks to round spheres and disks. This relies ultimately on the proof of the Smale
Conjecture in [H1], as does the final step of turning smooth circles and arcs into round
circles and arcs. The spheres and disks are introduced to reduce the problem from
configurations of many circles and arcs to configurations of at most one circle or arc
in each complementary region of a configuration of spheres and disks.

Dimension. The paper concludes with a brief discussion in Section 7 of some el-
ementary things that can be said about the homological dimension of the ring and
wicket groups.

2. Reducing complexity

One way to define the topology on R, is in terms of its covering space consisting
of ordered n-tuples of disjoint oriented circles in R*. This covering space can be
identified with an open subset in RS” by assigning to each circle its centerpoint
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together with a vector orthogonal to the plane of the circle, of length equal to the
radius of the circle and oriented according to the orientation of the circle via some
rule like the right-hand rule. Ignoring ordering and orientations of circles amounts to
factoring out the free action of the signed permutation group on this space. Thus we
see that R, has a finite-sheeted covering space which is an open set in R®”, and so
Ry itself is an open manifold of dimension 6.. By similar reasoning one sees that
the subspaces V.R,, UR,, W,, and U'W, of R, are submanifolds of dimensions
5n, 4n, 4n, and 3n, respectively.

Let us recall the definition of complexity from the introduction. If C is a con-
figuration in R,, consisting of disjoint circles Cy, ..., Cy, let B; be the closed ball
containing C; having the same center and double the radius. (There is nothing special
about the factor of 2 here, and any other number greater than 1 could be used instead. )
Then the complexity of the configuration C is the maximum of the ratios r; /7; <1
of the radii of the pairs of circles C;, C; in C such that B; N B; is nonempty, with
the complexity defined to be 0 if no B;’s intersect. We remark that complexity, as a
function R,, — [0, 1], is upper semicontinuous, meaning that small perturbations of a
configuration ' cannot produce large increases in the complexity. They can however
produce large decreases if two circles C;, C; whose balls B;, B; intersect in a single
point are perturbed so that B; and B; become disjoint.

Define R; to be the subspace of R, consisting of configurations of complexity
less than ¢. This is an open subset of R,,.

Theorem 2.1. The inclusion RS, — R, is @ homotopy equivalence for each ¢ > 0.
The same is true for the subspaces UR, — UR,, VR, — VR, W — W,,
and UW,, — UW,.

In preparation for the proof there are some preliminary things to be said. First we
describe the argument from [FS], Lemma 3.2, for showing that [R,, is connected. Each
configuration of disjoint circles in R? bounds a unique configuration of hemispheres
in Ri orthogonal to R3. The claim is that these hemispheres will be disjoint when
each pair of circles is unlinked. To see this, think of IR{‘_‘,_ as the upper halfspace
model of hyperbolic 4-space, with the hemispheres as hyperbolic planes. If two such
planes intersect, they do so either in a single point or in a hyperbolic line, but the
latter possibility is ruled out by the disjointness of the original collection of circles.
Switching to the ball model of hyperbolic space, the point of intersection of two
hyperbolic planes can be moved to the center of the ball by a hyperbolic isometry,
so the planes become Euclidean planes through the origin. Any pair of transverse
planes through the origin can be deformed through such planes to be orthogonal.
Once the planes are orthogonal it is obvious that their boundary circles are linked
in the boundary sphere S>. Thus unlinked circles in R? bound disjoint hemispheres
in Ri.
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For a configuration of circles in R 3 bounding disjoint hemispheresin R4 , consider
what happens when one intersects the configuration of hemispheres with the hyper-
planes R? = R3 x {u} foru > 0. Asu increases, each circle shrinks to its centerpoint
and disappears. Let us call this the canonical shrinking of the configuration.

A given configuration of circles can be perturbed so that no centerpoint of one
circle lies on the disk bounded by another circle. Then if we perform the canonical
shrinking of the configuration, we can stop the shrinking of each circle just before it
shrinks to a point and keep it at a small size so that no other shrinking circles will
bump into it. In this way the given circle configuration can be shrunk until the disks
bounded by the circles are all disjoint. This says that the configuration of circles
forms the trivial link, and it makes clear that the space R, is path-connected.

When dealing with a k-parameter family of circle configurations, however, one
cannot avoid configurations where one circle has center lying in the disk bounded by
another circle. If the latter circle is larger than the first, the two circles would then
collide if we stop the shrinking of the smaller circle just before it disappears. Our
strategy to avoid such collisions will still be to stop the canonical shrinking of each
circle just before it disappears, and thereafter shrink it at a slower rate so that it does
not disappear, but we also allow it to be pushed by ‘air cushions’ surrounding larger
circles as they shrink, so that the smaller circle never intersects the larger circles.

The pushing will be achieved by an inductive process that relies on extending
isotopies of circles to ambient isotopies of IR>, so let us recall the standard procedure
in differential topology for extending isotopies of submanifolds to ambient isotopies.
An 1sotopy of a submanifold N of a manifold M is a level-preserving embedding
F: Nx1 < M x{. Thishasatangent vector field given by the velocity vectors
of the paths 1 — F(x,f). The second coordinate of this vector field is equal to 1,
and we extend it to a vector field on M x [ with the same property by damping
off the first coordinate to O as one moves away from F(N x [) in a small tubular
neighborhood of F (N x1). Then the flow lines of this extended vector field define the
extended isotopy. This also works with 7 replaced by [0, 0o) as will be the case in our
situation. The manifold M will be R?, and we can choose the tubular neighborhood
of the submanifold F(N x [0, o0)) tobe an (7 )-neighborhood of F(N x {¢}) in each
level R3 x {1}.

Proof of Theorem 2.1. There will be two main steps in the proof. The first will be
to construct the modification of the canonical shrinking of an arbitrary configuration
in R,,. The second step will then be to show how to make this modification depend
continuously on the initial configuration.

Step 1. Modifying the canonical shrinking. For a configuration C in R, consisting
of circles Cy,...,Cy, let C! be the union of the largest circles in C, let C? be
the union of the next-largest circles, and so on. Let u be the time parameter in the
canonical shrinking of C, and let # = u; be the time when the circles of C ! shrink
to their centerpoints, so 17 > i, > --- . Note that all the circles in C ! have distinct
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centerpoints since two circles with the same center and radius must intersect. The
canonical shrinking defines an isotopy ®,,(C*) foru < ;. Ouraim is to truncate this
at a value u = u; slightly less than u;, then extend this truncated isotopy to values
of u greater than 1. The new extended isotopy &, (C ') will move each circle C; of
C' through circles parallel to itself, so ®,,(C;) will be determined by specifying the
centerpoint ¢; (#) and the radius r; (1) of ®, (C;). The center c;(u) is the centerpoint
of C; for u =< u; since this point does not move during the canonical shrinking, and
we will in fact have ¢;(u) equal to this same point for ¥ < u;, not just ¥ < u: For
the function 7;(u), the canonical shrinking specifies this for ¥ < u}, and it will be
chosen to be a positive decreasing function of u foru > u;.

The extended isotopy @, (C*) will be constructed by induction on i. Fori = 1
and C; a circle of C! we let ¢;(u) be constant for all u, and we let 7;{x) be any
decreasing function 71(u) of u for u > u/ where u is chosen close enough to u;
so that the microcosms of all the circles of @, (C1) are disjoint. Such a 1} exists

since the centerpoints of the circles of C! are distinct. The microcosms of the circles
of ®,(C!) will then remain disjoint for all ¥ > u. To finish the first step of the
induction we extend the isotopy ®,(C!) to an ambient isotopy ®.: R? — R3 by
the general procedure described earlier, with @] the identity.

For a circle C; of C 2 with centerpoint cj we let ¢j(u) be constant for u <
u, and then we let it move via the isotopy ®}. In formulas this means c; (1) =
ol(al 2)_1 (cj). This will in fact be constant for u slightly greater than u, as well
as for u < uy. Since @), is an ambient isotopy, ¢; (1) will be disjoint from @, (C")
and from ¢y (1) for other circles C of C?2 for all . This implies that if we choose
u’, close enough to 1, and we choose the function r?(u) giving the radius of the
circles of @, (C?) small enough, then these circles will be disjoint from &, (C1) for
all u and will have disjoint microcosms for ¥ > u’. We can also make r2 (1) small
enough so that the ratio 72(u)/r! (1) goes to 0 with increasing #. The second step
of the induction is completed by extending the isotopies ®,(C') and ®,(C?) to an
ambient isotopy ®Z starting with @2 the identity.

Subsequent induction steps are similar. For example, at the next stage, for acircle
C; of C? with centerpoint ¢; we let ¢; (1) move according to the isotopy @2, and we
choose u’; close enough to 13 and 77 () small enough so that the resulting circles
of ®,(C?) are disjoint from &, (C1) and &, (C?) for all  and the microcosms of
the circles of ®,(C?) are disjoint for u > u}. Also we make r*(u) small enough
so that the ratio 73 (u)/r?(u) goes to 0 with increasing 1. We can also assume that
r3u)/r?(u) < r2(u)/r'(u), and inductively that ' 1)/ r (1) < ri(u)/r' "1 (u)
foralli.

When the induction process is finished we have a path ®,(C) in R,,, defined
for each C € R,. It is clear that the complexity of ®,(C) approaches 0 as u
goes Lo 0o since the circles of ®,,(C*?) have disjoint microcosms for large # and the
ratios 7' T1(a) /r* (u) approach 0. We claim that the complexity of ®,,(C) decreases
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monotonically (in the weak sense) as i increases. To see this, consider two circles of
C,say Cy and C,. Ifthey are in the same C', they have the same radius throughout the
isotopy ®,,, and their centers are stationary until ¥ = u;, after which their microcosms
remain disjoint, so their contribution to the complexity decreases monotonically,
being either 0 for all # or 1 for a while and then 0. If C'; and C; belong to different
C?’s, with Cy in C*t and C, in C*2 for iy > i, the ratio of their radii approaches 0
monotonically, so the only way they could contribute to a non-monotonic complexity
would be for their microcosms to bump into each other at a certain time u after having
been disjoint shortly before this time. For this to happen, both ®,(C;) and &,,(C;)
would have to be within the microcosm of some larger circle ®,(Cs) in C*3 for
some i3 < iy. In this case the pair ®,(C,), ®,(C3) would be contributing a larger
number to the complexity than the pair ®,(Cy), ®,(C>), so the collision between
the microcosms of the latter pair would not be causing an increase in the overall
complexity.

Step 2. The modification process for parametrized families. To show that the in-
clusion RS — R, is a homotopy equivalence for ¢ > 0 it suffices to show that
the relative homotopy groups mx (R,, R},) are zero for all k, since both spaces are
smooth manifolds and hence CW complexes. Thus it suffices to deform a given a map
(Dk, BDk) — (R, R), t — C;, through such maps to a map with image in R,.
This would follow if we could add a parameter ¢ € D* to our previous construction
of the deformation ®,,. However, there is a problem with doing this directly because
the relative sizes of the circles in a family of configurations C; € R, can change
with varying £, so the sequence of induction steps in the construction of the desired
deformation ®,,, could change with 7. What we will do instead is concatenate initial
segments of deformations ®,,, over different regions in D¥ to produce a new family
of deformations W,,,.

As a preliminary step, note that choosing an ordering of the circles of the configu-
ration C, for one value of ¢ gives an ordering for all / since the parameter domain D*
is simply-connected. Thus we can label the circles as Cy, ..., C/. The radius of C/
varies continuously with 7, and we can approximate these radius functions arbitrar-
ily closely by piecewise linear functions of #, close enough so that they correspond
to a deformation of the family C,, staying in the open set RS over 3D*. Thus we
may assume the radius functions are piecewise linear. This means we can triangulate
D¥ so that the radius functions are linear on simplices. After a subdivision of this
triangulation, we can assume that on the interior of each simplex the ordering of the
circles C/ according to size is constant, and as one passes to faces of a simplex all
that happens to this ordering is that some inequalities among sizes become equalities.

We will construct the final deformations ¥;,, by a second induction, where the
inductive step is to extend Wy, from a neighborhood of the p-skeleton of the triangu-
lation of D* to a neighborhood of the (p + 1)-skeleton. More specifically, we will
construct continuous functions ¥y < ¥y < --- < Y from D¥ to [0, oc) such that
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the inductive step consists of extending ¥,,, from being defined for 0 < u < ¥, (1)
to being defined for O < u < v, 1(#). The functions yr, will satisfy:

(a) ¥, = 0 outside some neighborhood N, of the p-skeleton.

(b) Wy (Cy) lies in Ry, foru = yrp(¢) when ¢ lies in a smaller neighborhood N of
the p-skeleton.

© ¥p = Yp41 =+ = Y in N},

The ordering of the circles of €, according to size will be preserved during the
deformation W,,,.

For the induction step of extending W,,, over a p-simplex o, let ¢’ be a slightly
smaller copy of o lying in the interior of o and with boundary in the interior of };_1.
As t varies over ¢ the size ordering of the circles of C; is constant. For each ¢ in
o’ we apply the earlier inductive procedure to construct a deformation ®,,,, starting
with the family W, (C;) for u = ¥,_1(¢). This can be done continuously in ¢t € ¢’
since the various choices in the construction can be made to vary continuously with /.
These choices are: the numbers u}(f) < u; (1), the radius functions ri(t,u), and the
isotopy extensions @}, ,. The construction of ®,, works in fact in a neighborhood
of ¢’ in D* by extending the functions /(1) and 7' (z, 1) and the isotopy extensions
@  tonearby ¢ values. As f moves off o’ the size ordering in C; may vary, as some
size equalities become inequalities, but we still use the same decomposition of (;
into the subsets C I‘ , and we choose the functions (7, %) so that for each 7 in the
neighborhood, this size ordering is preserved throughout the deformation ®,,. To
finish the induction step we choose v, by requiring ¥, — ¥, to have support in a
neighborhood of ¢’ and to have large enough values in a smaller neighborhood of ¢’
so that ®,,,(C;) lies in R, for ¢ in this smaller neighborhood and u > ,(¢). Then
we extend the previously defined W, (C;) for u € [0,,_1(f)] by defining it to be
equal to @, (C;) foru € [yr,_1(2), ¥, (1)].

This finishes the proof for the inclusion R;, < R,. Since the deformations ®;,,
take circles to parallel circles, the proof also applies for the inclusions UR!, — UR,,
and VR, — VR,. For the inclusions ‘WS — ‘W, and U'W, — U'W,, observe
that in the case of configurations of wickets, the extended isotopies ®!,, take the
xy-plane to itself so they take wickets to wickets. O

Remarks on the proof of Theorem 2.1. We can strengthen the proof slightly to
give a deformation of the given family C, to a family which not only has small
complexity but has the additional property that the microcosm around each circle is
disjoint from all larger circles. This can be achieved by choosing the radius function
r'(u) sufficiently small at each stage of the construction of the deformations ®,,.
In the later part of the proof when W, is constructed from truncated deformations
®,,,. initial segments of canonical shrinkings are also inserted, and these preserve the
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additional property since smaller circles shrink faster than larger circles during the
canonical shrinking.

The proof also works for the configuration space WR,, ,, consisting of configu-
rations of m wickets and 7 rings in IR3 , all the wickets and rings being disjoint and
pairwise unlinked, and with the rings disjoint from the xy-plane. Thus WR,, o is
"W, and it is easy to see that W.Ry , and R, are homeomorphic, although they are
not identical since one consists of configurations in Ri and the other of configura-
tions in R3. Namely, both contain the space of configurations of rings for which the
minimum z-value of all the rings is 1, and WR, ,, is the product of this subspace with
(0, oo0) while R, is the product of this subspace with R. In each case the projection
onto the first factor is given by vertically translating configurations to make their
minimum z-value 1, and projection onto the second factor is by taking the minimum
z-value of a configuration.

A further enhancement. A slight variation on the technique used to prove the
theorem will be used to prove the following result:

Proposition 2.2. The natural maps UR, — R,, UR, — VR,, and UW,, — W,
induced by the inclusions UR, — R,, UR, — VR,, and U'W, — W, are

injective.

Proof. Consider first the case of UR, — R,. Let PUR, and P R, be the “pure”
versions of UR, and R, the covering spaces of UR,, and R, obtained by ordering
the rings, so that UR,, and R, are the quotients of P UR,, and P R,, with the action
of the symmetric group %, factored out. It will suffice to show injectivity of the map
T PUR, — 71 P R, induced by the inclusion P UR, — PR,.

By associating to eachring in R? the line through the origin orthogonal to the plane
containing the ring we obtain a map £ R,, — (RP?)" whose fibers over points in the
diagonal of (RP?)" are copies of P UR,,. Let us suppose for the moment that this
map is a fibration. It has a section, obtained by choosing a standard configuration of
rings lying in disjoint balls and taking all possible rotations of these rings about their
centers. The existence of the section would then imply that the long exact sequence
of homotopy groups breaks up into split short exact sequences, so in particular there
would be a short exact sequence

0— 7 PUR, = PRy — 11 (RPH) = 0

which would give the desired injectivity.

We will make this into a valid argument by showing the weaker result that the
projection PR, — (RP?)" is a quasifibration. Recall that a map p: £ — B is
a quasifibration if p.: 7 (E, p~1(b),e) — m;(B,b) is an isomorphism for each
b e B,ee p~l(b),andi > 0. Thus a quasifibration has a long exact sequence of
homotopy groups just like for a fibration. The standard argument for showing that a
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map p: E — B with the homotopy lifting property for maps of disks D¥, k > 0, has
an associated long exact sequence of homotopy groups in fact proceeds by showing
that the quasifibration property is satisfied; see for example Theorem 4.41 in [H3].
This argument generalizes easily to a slightly weaker version of the homotopy lifting
property, which asserts the existence of a lift, not of a given homotopy D* x I — B,
but of some reparametrization of this homotopy, obtained by composition with a
map D¥ x I — D¥ x I of the form (x,f) — (x, g,(¢)) for a family of maps
gx: ({,0,1) — (£,0,1). (Note that g, is canonically homotopic to the identity by
the standard linear homotopy.) We will use this generalization below.

To show that the projection PR, — (RP?)" is a quasifibration, the key obser-
vation is that we can enhance the construction of the deformations ®;,, by not only
shrinking the rings and moving their centers, but also rotating the rings according
to any deformation of the planes that contain them, provided that we delay the start
of these deformations to the time ¥ = u1(¢). At the inductive step when @ is
constructed for the rings of C ; for u > u;(¢), these rings lie in microcosms that are
disjoint from each other and from the larger rings for which &/, has already been
constructed, so they can be rotated arbitrarily about their centers, starting at time
u = u(t).

With this elaboration on the construction of ®;, we construct the deformations
W,,, as before. First we deform a given map D¥ — £ R, to make the radii of the rings
piecewise linear functions of the parameter t € D¥. Then we proceed by induction
over the skeleta of the triangulation of D¥. Prior to the induction step of extending
over p-simplices, the deformation W,, for u < ,_;(¢f) will include some initial
segment of a given deformation of the planes of the rings of (;, reparametrized by
the insertion of pauses. Then we construct ®;,, as in the preceding paragraph, starting
with W4, (C;) for u = ¥p—1(¢). Thus the deformation of the planes containing the
rings pauses for a time before continuing with the given deformation. At the end of
the induction step we choose the function v, and truncate ®,,,, which can truncate
the deformation of the planes containing the rings, so that they pause once more in
the next stage of the induction. It is no longer necessary to choose v/, large enough
to make W, (C;) lie in RS for u = Y, (¢) if ¢ is near the p-skeleton. Instead, we
only need it large enough to allow time to carry out the deformation of the planes of
the rings.

At the end of the induction process we have a deformation ¥, such that the planes
of the rings vary by a reparametrization of the given deformation of these planes. The
parameter ¥ varies over an interval [0, ¥ ()| but we can rescale to make this [0, 1].
This finishes the proof that the projection £ &R, — (RP?)" is a quasifibration, and
hence the proof that UR,, — R, is injective.

Since the injection UR,, — R, factors through VR, it follows that UR, — VR,
is also injective. For UW,, — W,, we can use the same quasifibration argument as
in the first case, the only difference being that (RP?)" is replaced by (RP!)", an
n-dimensional torus. U
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Another result stated in the introduction can be proved using the same method:

Proposition 2.3. The natural map from UR, to the covering space R of Ry

consisting of configurations of oriented rings induces an isomorphism w1 UR, —
T CR;:_

Proof. The arguments in the preceding proof work equally well with oriented rings,
the only difference being that RP? is replaced by S2. Since this is simply-connected,
the previous short exact sequence of fundamental groups for the quasifibration reduces
to an isomorphism 77 UR,, — 71 J%;:' O

In the proof of Proposition 2.2 we constructed a short exact sequence

0 — PUR, — PR, —» Z5 — 0

with a splitting obtained by rotating the rings within disjoint balls. This sequence
embeds in a larger split short exact sequence

0— PUR, - R, - ¥ >0

where ZF is the signed permutation group, the semidirect product of %, and Z2. The
homomorphism R, — X assigns to each loop in R,, the permutation of the rings
that it effects, as well as the changes of orientations of the rings. The sequence splits
since = is the fundamental group of the subspace of R, consisting of configurations
of rings contained in disjoint balls. This short exact sequence maps to another split
exact sequence

0— PR, - R, - %, =0

which in turn contains the split exact sequence
0— PUR, - UR, — >, — 0

where splittings of these last two sequences can be obtained from the subspaces of
configurations of rings contained in disjoint balls and parallel to a fixed plane.

The same arguments give analogous sequences with VR, in place of R, and with
the Z,’s replaced by Z’s and Ei: replaced by E%, the semidirect product of %, and
7.

For wicket groups there are similar short exact sequences obtained in the same
way, but the only one that splits is the one not involving %, namely

00— PUW, - PW, - 2" =0

with the splitting obtained as before. The sequences involving X, cannot splitbecause
the wicket groups are torsioniree since the wicket spaces are aspherical, as will be
shown later.
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3. Presentations

In this section we use the results in the preceding section to obtain finite presentations
of ring and wicket groups. First an elementary result:

Proposition 3.1. The elements o; of UW, generate a subgroup isomorphic to the
braid group By, and so also do the elements p;.

Proof. Let us take U'W,, to be the subspace of ‘W, consisting of configurations
of wickets lying in planes perpendicular to the x-axis. Sending each wicket to its
endpoint with larger y-coordinate defines amap U'W,, — €, where €, is the space of
configurations of # distinct points in R2, so B, = 71C,,. The restriction of this map
to the subspace U'W;, of U'W,, consisting of configurations of wickets having disjoint
projections to the x y-plane is a homotopy equivalence since wickets in configurations
in UW;, can be shrunk to be arbitrarily small. The maps UW, — UW, — €,
induce homomorphisms B, — W, — B, whose composition is the identity. The
image of the first homomorphism is generated by the o; s, so this subgroup of W, is
isomorphic to B,.

The argument for p;’s is similar using the subspace UW? of UW,, consisting
of configurations of wickets, each of which is symmetric with respect to reflection
across the xz-plane. Wickets with this symmetry property are determined by their
endpoints in the upper half of R?, so U W can be identified with €, viewed as the
space of configurations of 7 points in the upper half of R2. (]

These arguments do not work with UR,, in place of U W,,, but the p;’s still generate
a copy of B, in UR,, as we will show in Proposition 4.2. The o;’s, on the other hand,
generate a copy of %, in UR,, since they have order 2 and satisfy the braid relations,
so the canonical map UR,, — X, has a section.

Now we determine a presentation for U W, by a straightforward elaboration of
the standard procedure for computing a presentation for B, using general position
arguments.

Proposition 3.2. The group UW,, has a presentation with generators the elements
oi and p; fori = 1,...,n — 1 and with the following relations:

loi. pj] = o1, 07] = [pi.oj] =1 if li — j| > 1,

PiPi+1Pi = Pi+1PiPi4+1,  0i0i4+10; = 0,410,041,

Pi0i410; = Oi+10iPi+1, GiGi10i = Pi+10i0i41, OiPi+1Pi = Pi+1Pi0i41-
Proof. Weagaintake U'W,, to consist of configurations of wickets lying in planes per-
pendicular to the x-axis. Let ‘U’Wg be the open dense subspace of U'W,, consisting of

configurations of wickets all lying in distinct planes. This subspace is homeomorphic
to R3", so it is contractible. The complement of ‘U"Wg decomposes into a disjoint
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union of connected manifold strata, determined by which subsets of wickets lie in
the same planes and how these wickets are nested in these planes. Each stratum is
homeomorphic to a Fuclidean space of the appropriate dimension. The codimension
one strata are formed by configurations with exactly two wickets lying in the same
plane. These form a codimension one submanifold ‘U'erl of U'W,, defined locally
by equating the x-coordinates of two wickets. The codimension two strata, forming
a codimension two submanifold ‘UWﬁ, consist of configurations where either two
disjoint pairs of wickets lie in coinciding planes, or three wickets lie in a single plane.

To find generators for U W, consider aloop in U'W,,. By general position this can
be pushed off all strata of codimension 2 and greater until it lies in U W U UW]!, and
we may assume it is transverse to ‘UW;, crossing it finitely many times. Each such
crossing corresponds to a generator p; or g; or its inverse. Since the strata of ‘U’W;
are contractible, they have trivial normal bundles and we can distinguish between
the directions of crossing these strata. Since ‘U'Wg 1s contractible, it follows that the
given loop in U'W,, is homotopic to a product of p;’s and o;’s and their inverses, so
these elements generate U W,.

To find a complete set of relations among these generators, consider a homotopy
in U'W,, between two loops of the type just considered. General position allows us
to push this homotopy off strata of codimension greater than 2, and we can make it
transverse to strata of ‘U’Wﬁ and ‘UW,II. Let us examine what happens near points
where the homotopy crosses U W2 . For strata of U'W: where two disjoint pairs of
wickets lie in coinciding planes we just have simple commuting relations: p; and o;
commute with p; and o; if |i — j| > 1. More interesting are the relations arising
from three wickets lying in the same plane. Here there are five cases according to
how the projections of the wickets to the xy-plane intersect. The three projections
can be completely disjoint, completely nested, or some combination of disjoint and
nested, as indicated in the first column of Figure 3, where for visual clarity we have
perturbed the overlapping projections of the three wickets so that they appear to be
disjoint.

A small loop around the codimension 2 stratum crosses codimension 1 strata six
times since the local picture is like the intersection of the three planes x = y, x = z,
and y = z in R3. One can view the resulting relation as an equation between two
ways of going halfway around the codimension 2 stratum. The starting and ending
points of the two ways are shown in the second column of Figure 3. The relation
itself is written in the next column, and the final column shows the braid picture of
the relation, using the endpoint map U W, — Bj,,. ]

Proposition 3.3. A presentation for UR,, is obtained from the presentation for UW,
in the preceding proposition by adding the relations 01-2 = L.

Note that the relations p; 0j+10; = Gi+10; Pi+1 and 0,0; 410 = Pi+10i0i+1 1N
the presentation for U W,, become equivalent if ¢; and ;41 have order 2, so either
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Figure 3. Relations in {7 W,,.

relation can be omitted from the presentation for UR,,. The geometric explanation
for this is that the third and fourth configurations in Figure 3 are obviously equivalent
when we are dealing with rings rather than wickets.

Proof. The argument is similar to that for UW,,. We take UR, to consist of the
configurations of rings lying in planes parallel to the xz-plane. Strata here are defined
justas for U'W,, according to the coincidences among these planes. The only essential
difference is that now not all strata are contractible. A codimension one stratum where
two planes coincide and the two rings in this plane are not nested has the homotopy
type of a circle. Crossing this stratum corresponds to a generator ¢;. The normal
bundle of this stratum is nontrivial, which means that we cannot distinguish between
o; and o;” 1 or in other words, we have the relation 01.2 = 1. An alternative way to
proceed would be to subdivide this stratum into two contractible codimension one
strata separated by a codimension two stratum, the configurations where the centers
of the two rings in this plane have the same projection to the x y-plane. A small loop
around this codimension two stratum would give the relation 6 = 1. Using either
approach we conclude that adding the relations 07 = 1 to the earlier presentation for
UW,, gives a presentation for UR,,. O

Next we turn to the pure untwisted ring group PUR,,. Recall the elements «;;
passing the i th ring through the jth ring and back to its initial position, fori # j.
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Proposition 3.4. The group PUR,, has a presentation with generators the elements
ajj forl <i,j <n,i # j, and relations

Wijlpg = Oy, Ol = O, OG0 0ie = U0 pO;
where distinct symbols for subscripts denote subscripts that are distinct numbers.

Using the second relation, the third relation can be restated as saying that oy
commutes with «; ;o .

Proof. The group PUR,, is the fundamental group of the covering space P UR,,
of UR,, in which the rings are numbered. Let J"Uﬁg be the subspace of # UR,
consisting of configurations in which no circles are nested within the planes that
contain them. We claim that ‘Uﬂg is simply-connected. To see this, consider the
projection of umg to the space of ordered n-tuples of distinct points in IR sending
a configuration of circles to the configuration of its centerpoints. This projection
has a section, sending a configuration of points to the configuration of circles of
radius equal to one-quarter of the minimum distance between the points. Further,
P umg deformation retracts to the image of this section by first shrinking the circles
whose radius is too large, then expanding the circles whose radius is too small.
Since the space of point configurations is simply-connected (by a standard induction
argument involving fibrations obtained by forgetting one of the points), it follows that
T P ‘u,ﬂg = 0.

Let P ‘llﬂ,l,t be obtained from & ‘umg by adjoining the codimension-one strata, the
configurations having exactly one circle nested inside another. The map 7; & ‘LLR,I1 —
w1 P UR, is surjective, so we see that PUR,, is generated by the elements «;;. To ob-
tain the relations we adjoin the codimension-two strata, where two circles are nested.
If these occur in two different planes we have commutationrelations o gy = g g .
If the two occurrences of nested circles occur in the same plane we have either the
second or the fifth configuration in Figure 3. The fifth configuration gives another
commutation relation oo = o ;. The second configuration gives a relation
ij O = Ojp OOt . [

This argument does not immediately extend to the groups P U W, since the space
P UW? corresponding to PURY is not simply-connected. Its fundamental group is
the pure braid group PB,,, soin principle it should be possible to extend a presentation
for PB), to a presentation for £ U W, by adjoining the generators «;; corresponding
to the codimension-one strata as before, and then figuring out the relations that cor-
respond to the codimension-two strata.

The argument in the preceding proof does however work to prove the following:

Proposition 3.5. For the subspace UR, of UR, consisting of configurations of
rings of unequal size, there is a presentation for w1 UR with generators the ;s



Vol. 88 (2013) Configuration spaces of rings and wickets 149

with i < j and with relations the same relations as in the preceding proposition,
restricted to these generators.

Proof. By ordering rings according to size we obtain an embedding UR; —
P UR,. The argument is then similar to the one for P UR,. A small adjustment is
needed in showing the subspace of unnested configurations has the homotopy type
of the space of ordered point configurations; this we leave to the reader. L

Proposition 3.6. A presentation for the group W, is obtained from the earlier pre-
sentation for UW, by adding the generators t; for | < i < n and the following
relations:

[2.5]=1 fori # .
[pi.ti] =1 and [oi, 7] =1 forj #i.i+1,

e N _ N _¢
‘.'.‘I-Ul- —Jl-‘f-

Fp1 and ff+1gin = Jj”tf fore, n= =1,

. . L E £ o ~—E&—1 _E_E _
TP = Pitiyy and T pi = 0; Cp;opTy  fore = &£l

A | R R E =1, o = loE =
TP, =07 pi0;Ti and L0 =p; T fore =%l

The relations in the last three lines are highly redundant. For example, two of the
eight relations in the third-to-last line imply the other six.

Proof. Itis not difficult to verily that the relations listed in the statement hold. These
relations guarantee that any product of p;’s, o;’s, and z;’s can be rearranged as a
product uf where u is a product of p;’s and ¢;’s and 7 is a product of z;’s.

To verify that the p;’s, 0;’s, and z;’s generate W, note first that for a given x € W,
there exists a product s of ¢;’s such that sx is in the subgroup PW,,. As we saw
at the end of the preceding section, P W, is a semidirect product of PUW,, and the
subgroup Z" generated by the 7;’s. Thus sx = uf for some u € PUW, and ¢ a
product of 7;’s. Since u is in PU W), itis in U W), and can therefore be written as
a product of p;’s and o;’s since we know these generate U W,,. This implies that
x=slurisa product of p;’s, 6;’s, and t;’s, so these elements generate W,,.

To prove that the relations listed (including those for U W,,) define W, it will
suffice to show that a word w in the generators that represents the trivial element of
W, can be reduced to the trivial word by applying the relations. To start, we can use
the relations to rewrite w in the form uf where u is a product of p;’s and ¢;’s (thus
u € UWy) and ¢ is a product of z;’s. Since u/ = 1 and the 7;’s do not permute
the wickets, we see that u in fact lies in PUW,,. The relation uf = 1 implies that
u = l and ¢ = 1 in view of the semidirect product structure on P W,,. The relations
for U W, then suffice to reduce u to the trivial word, and the commutation relations
among the 7;’s allow  to be reduced to the trivial word since the relation / = 1 holds
in the group Z". O
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The same argument works also for VR, and R,, to prove:

Proposition 3.7. Presentations for Ry, and VR, are obtained from the presentation
for Wy, by adding the relations O'l-z = 1 and rl-z = 1 for Ry, or just 01-2 = 1 for
VR,. O

Note that the relations involving the z;’s can be simplified when o; = UI-_I.

4. Rigidifying floppy wickets and rings

Generalizing the spaces o, and £, there is a space AL, , of smoothly embedded
configurations of 7 arcs and » loops in Ri which are unknotted and unlinked, hence
are isotopic to a configuration in ' WR,, ,,. We also require the loops to be disjoint
from the x y-plane. Thus AL, o = Ay, and ALy, is homeomorphic to £, by the
same argument that showed that WR 5, is homeomorphic to R,,.

Theorem 4.1. The inclusion WRy, 5, = ALy, is a homotopy equivalence.

Note that Theorems 1 and 2 in the Introduction follow directly as corollaries of
Theorem 4.1.

Proof. Thespace WR,, ,, is asmooth manifold and hence aCW complex, and AL, »
has the homotopy type of a CW complex, so it will suffice to show that the relative
homotopy groups g (AL .y n, WRs ») vanish. As noted in the remarks following the
proof of Theorem 2.1, the inclusion WR;, , — WR,, , is a homotopy equivalence

for each ¢ > 0, so it will in fact suffice to deform a given map f: (D*,3D*) —
(AL, WRy, ,) through such maps to a map (D*,aDF) = (WR,,., WR;, )
for any convenient choice of ¢ > 0.

Denote the family of arc and loop systems f(¢) by A;. We will be interested in
systems §; consisting of finitely many disjoint smooth disks and spheres embedded
in R3 — A; with §; N dR3 = 35, such that each component of R} — S, contains
at most one component of A,. We call such systems separating systems. We assume
that for each component of S, there is a connected open set in the parameter domain
D¥ such that the component of S, varies only by isotopy as 7 ranges over this open set,
and outside the open set the component is deleted from §;. If we choose the constant
¢ in WR;, , to be less than % then for 1 € 3D* we can choose S; to consist of at
least one round hemisphere or sphere in the interior of the microcosm of each wicket
orring of A;, lying outside the wicket or ring, concentric with it, and disjoint from all
other wickets and rings of A;. By the remarks following the proof of Theorem 2.1,
we can assume that microcosms are disjoint from larger circles (and wickets). This
prescription for S, gives a separating system since each hemisphere or sphere chosen
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separates the corresponding wicket or ring from all other wickets or rings of equal
or larger radius. For nearby ¢ in 4D* the hemispheres and spheres of the same radii
remain a separating system, so we obtain in this way a family of separating systems
S, consisting of round hemispheres and spheres for all ¢ in dD*.

There will be three main steps in the proof:

(1) Extend the family of round separating systems S, over 3D¥ to smooth separating
systems S; fort € D,

(2) Detform these smooth separating systems to be round spheres and hemispheres
over all of D¥.

(3) Deform A; so that it consists of round wickets and rings over all of D,

At each step the family 4, over dD¥ will be unchanged.

Step 1. Extending over the disk. There is a fibration Diff(Ri) — AL, , that sends
a diffeomorphism to the image of a standard configuration of arcs and circles under
the diffeomorphism. Using the lifting property of this fibration, we can choose a
separating system for one parameter value € DX and extend this to a family of
separating systems X, for A, that varies only by isotopy as ¢ ranges over all of D¥.
For ¢ € 3D* we then have two families of separating systems .S, and X, and it will
suffice to construct a family Sy, (£,u) € aD* x I, which for each u is a separating
system for A;, such that §;p = S; and §;; = 3;. We can then place this family
Sty in a collar neighborhood of aD¥ in D , after first deforming the family A; to be
constant on each radial segment in this collar.

First thicken X; to a family 3, x [—1, 1] of parallel separating systems for A;.
Sard’s theorem implies that for each / € 3D thereis aslice &, x {s} in this thickening
that is transverse to S;. This slice will remain transverse to S, for all nearby 7 as well.
By a compactness argument this means we can choose a finite cover of 9D¥ by open
sets U; so that S, is transverse to a slice 3; = X;(¢) forall 1 € U;.

For a fixed ¢ € U; consider the standard procedure for surgering .S, to make it
disjoint from 2J;. The procedure starts with a component of S; N ;, either a circle
or an arc, that cuts off a disk D in 3; that contains no other components of §; N ;.
Using D we then surger §; to eliminate the given component of S; N X;. The process
is then repeated until all components have been eliminated. Note that each surgery
produces a system of disks and spheres that still separates Ri — A, into components
each containing at most one component of A;.

A convenient way to specify the order in which to perform the sequence of surg-
eries is to imagine the surgeries as taking place during a time interval, and then
surgering an arc or circle at the time given by the area of the disk it cuts off in %;,
normalized by dividing by the area of %; itself. The only ambiguity inherent in this
prescription occurs if one is surgering the last remaining arc and this arc splits 3;
into two disks of equal area. Then one would have to make an arbitrary choice of one
of these disks as the surgery disk.
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We will refine this procedure so that it works more smoothly in our situation.
Thicken §; to a family §; x [—1, 1] of nearby parallel systems, all still transverse to
2 fort € U;. Call this family of parallel systems S;. For¢ € U;, with i fixed for the
moment, we perform surgery on 8, by gradually cutting through it in a neighborhood
of %;, as shown in Figure 4. Thus we are producing a family S,,, foru € [0, 1], where

S

—

i

Figure 4

again we use the areas of the surgery disks in %; to tell when to perform the surgeries.
Notice that S;,, is allowed to contain finitely many pairs of spheres or disks that
touch along a common subsurface at the instant when these spheres or disks are being
surgered. To specify the surgeries more completely we choose a small neighborhood
2 x(—&;, &) of Z; in X; x|—1, 1], which we rewrite as %; xR, and we let the surgery
on a component surface of 8;,, produce two parallel copies of the surgery disk in the
slices 3; x {£1/u} of £; x R. Observe that this prescription for constructing S¢,
avoids the ambiguity in choosing one of the two equal-area surgery disks mentioned
earlier since we can now surger using both these disks simultaneously.

To convert the thickened family S;,, back into an ordinary family S;, consisting
of finitely many disks and spheres for each (7, #) we replace each family of parallel
disks or spheres in S;, of nonzero thickness by the central disk or sphere in this
family. Thus this central disk or sphere belongs to Sy, for an open set of values of
(£, u).

As ¢ varies over U; we now have a family S;,,, depending on /. To combine
these families for different values of i, letting ¢ range over all of 9D* rather than just
over U;, we proceed in the following way. For each i choose a continuous function
@ : Ui — [0, 1] that takes the value 1 near dU; and the value O on an open set V; inside
U; such that the different V;’s still cover D¥. Then construct S;,, by delaying the
time when each surgery along %; is performed by the value ¢(7). We may assume all
the systems 2; are disjoint for fixed ¢ and varying i with / € U;, and the thickenings
2 X (—&;, &;) are disjoint as well, so the surgeries along different X; ’s are completely
independent of each other.

We have constructed the family Sy, for (f,u) € aDk x |0, 1] such that all the
curves of S; N %; are surgered away as u goes from O to 1/2 forr € V;. We can then
adjoin %; to Sy, for (£, u) € V; x (1/2, 1), deleting the surgered disks and spheres
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of §;, foru = 3/4. We may assume all the thickenings %; x (—&;, &;) are disjoint
from the original separating system ;. Then we adjoin X, to Sy, foru > 3/4, so
that for ¥ = 1 only %, remains in S;,. This finishes Step 1.

Step 2. Rounding smooth disk and sphere systems. We will use the following result:

Lemma 4.2. The space of systems of finitely many disjoint smooth disks and spheres
in Ri, where the disks have their boundaries in BR?'_, deformation retracts onto the
subspace of round disks and spheres.

Proof. We show the relative homotopy groups are zero, which is all we need for the
application of the lemma. Thus we are given a family S,, t € D*, of disjoint smooth
disks and spheres that we wish to isotope to round disks and spheres, staying fixed
over dD¥ where S; is assumed to already consist of round disks and spheres. We can
assume 1n fact that S, consists of round disks and spheres for / in a neighborhood
of aDF.

First we show how to round the spheres of §; by an inductive procedure, starting
with the outermost spheres. We construct families of embeddings of D7 in R3 with

images bounded by the outermost spheres, such that near 3D¥ these embeddings are
rescaled isometric embeddings. This can be done by first applying isotopy extension
to construct families of embeddings without the condition near 3D, then deforming
these embeddings to achieve this extra condition using the fact that the inclusion of
0O(3) into Diff(D?) is a homotopy equivalence, which is a consequence of the Smale
conjecture that Diff(D? rel 3D?) is contractible, proved in [H1]. We can also arrange
that the embeddings are rescaled isometric embeddings near the center of D, just by
differentiability. By restricting these embedding to smaller and smaller concentric
spheres in D3 we can isotope the outermost spheres to be round over all of D¥,
damping the isotopy down to the identity near 3D¥. The non-outermost spheres are
dragged along in this process. Having rounded the outermost spheres in S;, we do a
similar construction for the next-outermost spheres, and so on.

To make the disks round we first make all their boundary circles round following
the same plan as for spheres, using Smale’s theorem that Diff(D? rel 9D?) is con-
tractible. The rounding of the boundary circles can be done by a deformation of the
family S, supported in a neighborhood of BR?,_. Having the boundary circles round,
we then deform the disks themselves to the round hemispherical disks spanning the
round boundary circles. This is possible since the fibration obtained by restricting the
disks to their boundaries has contractible fiber, the space of smooth disk systems in
Ri with given boundary circles. For a single disk this is one of the equivalent forms
of the Smale conjecture, and for systems of disks it follows by induction. When we
perform these isotopies of the disks of S;, the spheres of §; are to be dragged along,
so the proper way to proceed is first to make all the disks round, then make the spheres
round by the procedure described earlier. U
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Now we return to Step 2 of the proof. Foreach gy € DF the components of S, vary
only by isotopy as ¢ varies over some neighborhood of 7. Choose a finite number
of these neighborhoods that cover DX, then triangulate D¥ so that each k-simplex
of the triangulation lies in one of these neighborhoods. Over each such k-simplex
we then have the associated set of disks and spheres of §; that vary only by isotopy.
Over a face of the simplex we have the union of the sets of disks for the various k-
simplices that contain the face. Let us change notation slightly and call these systems
of surfaces S;. (They are subsets of the systems S, constructed in Step 1.)

Suppose inductively that we have isotoped the disks and spheres of .S, to be round
for ¢ in the i -skeleton of the triangulation of DX, without changing anything over 3D*
where the systems S; and A; are already round. The possibility i = —1 is allowed,
which will give the start of the induction. For the induction step we apply the lemma
to extend the rounding isotopy of S, over each (i 4+ 1)-simplex in the interior of D*
in turn. The arcs and circles of A, are carried along during this deformation of S,
by isotopy extension. This completes Step 2.

Step 3. Rounding smooth arc and circle systems. Having the components of §; round
over all of DX, we can round the components of A, by an inductive procedure as in
Step 2. Over a simplex ¢ of the triangulation of D¥ we look at a complementary
region C; of §;. This contains at most one component of 4;, and we need only look
at the case when there is exactly one component, say «,. Consider first the case that
oy is an arc. The region C; is bounded by the plane R? together with some round
disks and spheres of §; that can vary by isotopy. Let C, be obtained from C, by
filling in the boundary spheres with balls. We can then think of C; asa region in the
upper half-space model of hyperbolic 3-space bounded by geodesic planes. There is
always a unique round arc &} in C, having the same endpoints as «;. This means that
the space of round arcs in C; is the same as the space of pairs of endpoints of smooth
arcs. The map sending each unknotted smooth arc to its endpoints is a fibration, and
it is a homotopy equivalence since its fiber, the space of unknotted arcs with fixed
endpoints, is contractible, by another equivalent form of the Smale conjecture. Since
the fibration is a homotopy equivalence, this implies that we can deform the arcs o,
to round arcs over the simplex o, staying fixed over the boundary of ¢ where they are
already round. We can drag the balls of C; — C; and everything inside them along
during the isotopy that rounds «;. This could destroy the roundness of these balls,
but this problem can be avoided by first shrinking the balls sufficiently small so that
they can stay round during the isotopy.

The other case is that «, 1s a circle. There are then two subcases depending on
whether C; is of the same type as in the preceding case or C; is a ball with smaller
disjoint sub-balls removed. In the first subcase the space of round circles in C; has the
homotopy type of R P2 since such circles bound unique geodesic disks in C; and the
space of such disks has this homotopy type. The space of smooth unknotted circles
in C, also has the homotopy type of R P2 by the Smale conjecture, so we can deform
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the circles «; to be round over ¢ as before, after first shrinking the balls of C ¢ — Ct.
The other subcase, that C; is a ball with sub-balls removed, is done in the same way,
using the fact that the space of round circles in a ball has the same homotopy type as
the space of smooth circles, namely R P2 again.

This finishes the proof of the theorem. (]

Further injectivity results. We observed at the beginning of Section 3 that W,
contains two copies of the braid group B,,, one generated by the p;’s and the other
generated by the o;’s. Under the projection W;, — R, the copy of B, generated by
the o;’s becomes a subgroup X, C R,, and we can now see that the other copy of
B, remains unchanged:

Proposition 4.3. The map o: B, — R, sending the standard generators of the braid
group to the elements p; is injective.

Proof. Tt sulffices to show o is injective on the ‘pure’ versions of these groups, the
kernels of the natural maps to %,. The pure braid group fits into a well-known split
short exact sequence

00— F,_1— PB, - PB,_1—0

where [}, is the free group on n — 1 generators and the map PB,, — PB,_; is
obtained by ignoring the last strand of a pure braid. This short exact sequence maps
to a similar split short exact sequence

0— K, - PR, - PR,_1—0

which is part of the long exact sequence of homotopy groups associated to the fibration
which sends an ordered n-tuple of smooth circles forming the trivial link to the ordered
(n — 1)-tuple obtained by ignoring the last circle. The kernel K, is 7y of the fiber,
the subspace of £, consisting of configurations with » — 1 of the circles in a fixed
position and the last circle varying. It suffices by induction on 7 to show that the map
of kernels F,,—; — K, is injective. We do this by constructing a homomorphism
K,, — F,_q such that the composition I,,_; — K,, — F,,_; is the identity.

The homomorphism K, — F,_; is obtained by choosing a point in the nth
circle and taking the path it traces out in the complement of the other n — 1 circles
under a loop in the fiber. This path may not be a loop, but it can be completed to a
loop by adjoining an arc in the nth circle. Since the circles are unlinked, the choice
of this arc does not affect the resulting element of Fj,_;, the fundamental group of
the complement of the first # — 1 circles. This construction gives a homomorphism
K;, — F,_1 such that precomposing with F,,_; — K, is obviously the identity. LI

The kernel K, is the product KU, x Z for KU, the kernel of the projection
PUR,, — PUR,_. Itis shown in [P] that KU, is not finitely presented forn > 3,
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although it 1s finitely generated, with the generators one might expect, oy,; and ;.
The lack of finite presentability probably means that these kernels do not have nice
geometric interpretations in terms of configuration spaces of circles.

Proposition 4.4. The map UR; — UR, is injective.

Proof. Thisis similarto the preceding proof. The map UR,; — UR,_, thatignores
the smallest ring is a quasifibration, as in Section 1, using the canonical shrinking to
first make the smallest ring point-sized. The fundamental group of the fiber is Fy,—q
so we get a split short exact sequence

0— Fyy > UR; - UR;_{— 0
which maps to the split short exact sequence
0—- K, - PR, —- PR,_1—0

from the preceding proof. The rest of the argument is the same. L

5. Asphericity

As a warm-up to proving Theorem 3, which states that the spaces ‘W, and U'W,
are aspherical, let us recall a standard sort of argument for showing that the map
W, — By, induced by the map A, — €., sending a configuration of arcs to the
configuration of its endpoints is injective. We can view #, as the space of config-
urations of 7 disjoint smooth unknotted, unlinked arcs in a ball D? with endpoints
in a hemisphere D2 of 3D3. By restricting diffeomorphisms of D? fixing the other
hemisphere D_2|_ to the standard configuration A of n arcs we abtain a fibration

Diff(D?, A rel D2) — Diff(D? rel D2) — A, (1)

where Diff(X, Y rel Z) denotes the space of diffeomorphisms of a manifold X that
leave a submanifold Y setwise invariant and {ix a submanifold Z pointwise. Restrict-
ing everything to D2 gives a map from this fibration to the fibration

Diff(D2, 34 rel 3D%) — Diff(D2 rel 3D2) — €y (2)

In each fibration the projection map to the basespace is nullhomotopic by shrink-
ing the support of diffeomorphisms to a smaller ball or disk disjoint from A. Thus
the associated long exact sequences of homotopy groups break up into short exact
sequences. Since moDiff(D2 rel 3D2) = 0 and moDiff(D? relD_zi_) = 0 (the lat-

ter by Cerf’s theorem), we obtain isomorphisms A, a2 moDiff(D?>, A rel Di) and
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By, = moDiff(D2,0A rel 3D?). The problem is thus reformulated as showing in-
jectivity of the map

moDIff(D?, A rel D3) — moDiff(D2, 34 rel 3D2).

This map is induced by the restriction map from the fiber of the first fibration above
to the fiber of the second fibration. This restriction map is itself a fibration

Diff(D?, A rel 3D*) — Diff(D?, Arel D2) — Diff(D2,34 el 3D2)  (3)

so it suffices to show that 77y of the fiber of this fibration is trivial. Note first that a
diffeomorphism £ in Diff(D?, 4 rel 3D >) can be isotoped to be the identity on A, and
f cannot twist the normal bundles of the arcs of A, as one can see by looking at the
induced map on 71 (D3 — A). Then f can be isotoped rel A U 3D? to be the identity
in a neighborhood of A, so f can be regarded as a diffeomorphism of a handlebody
fixing the boundary of the handlebody. The space of such diffeomorphisms is path-
connected since any two spanning disks in a handlebody are isotopic rel boundary,
and similarly for collections of disjoint spanning disks, so diffeomorphisms of a
handlebody rel boundary can be isotoped rel boundary to have support in a ball, and
then by Cerf’s theorem they can be isotoped to the identity. (With a little more work
the use of Cerf’s theorem in this argument could be avoided by factoring out the
image of moDiff(D3 rel 3D3) in the various groups.)

Now we prove Theorem 3 by refining this argument to reduce asphericity of ‘W,
to asphericity of €,,,.

Proof. Since W, is homotopy equivalent to #,, we can obtain the result for ‘W, by
showing that A, is aspherical. The total space in the fibration (2) above is contractible
by a theorem of Smale. The total space in the fibration (1) is also contractible, as one
can see from the fibration

Diff(D? rel 8D3) — Diff(D? rel D2) — Diff(D2 rel 9D2)

where the base is contractible by Smale’s theorem and the fiber is contractible by the
Smale conjecture [H1]. The fiber of the fibration (3) is also contractible by the follow-
ing argument. Restricting diffeomorphisms in Diff(D?, A rel 3D ) to normal bundles
of the n arcs gives another fibration whose base space is homotopy equivalent to the
space of automorphisms of the normal bundles of these arcs that are the identity at
the endpoints of the arcs. For each arc this is the loopspace of SO(2), which has con-
tractible components. Components other than the identity component can be ignored
since diffeomorphisms in (D3, A rel 9D3) cannot twist the normal bundles nontriv-
ially, as we saw earlier. Thus from this fibration we can replace (D3, A rel 3D?)
by the subspace of diffeomorphisms that are the identity on a neighborhood of the
arcs. This can be identified with group of diffeomorphisms of a handlebody fixing
its boundary. This diffeomorphism group is path-connected as we observed before,



158 T. E. Brendle and A. Hatcher CMH

and it has contractible path-components by [H2]. (The key point is that the space of
spanning disks with fixed boundary is contractible.)
Thus for i > 2 we have isomorphisms

Ay & i DIff(D>, A rel DI) ~ m;_1Diff(D2, 94 rel 3D2) = 7; 5y

so asphericity of A, is reduced to asphericity of €, which is well-known.

For the case of U'W, we can pass to the covering space & U'W,, aobtained by
ordering the wickets, and then use the quasifibration PUW,, — PW, — T" from
Section 1, where 7" is the n-torus. The associated long exact sequence of homotopy
groups shows that P UW,, is aspherical since W, and 7" are aspherical. O

6. Wickets and rings in a sphere

Instead of wickets in upper halfspace one can consider wickets inside a sphere, circular
arcs in the interior of the sphere that meet the sphere orthogonally at their endpoints.
Configurations of n disjoint wickets of this type form a spherical wicket space S'W,,.
An equivalent space is the space of configurations of n disjoint line segments in
a ball that meet the boundary sphere in their endpoints. The equivalence between
the two definitions can be seen by considering two of the models for hyperbolic
3-space, the standard ball model and the projective model. In the ball model the
geodesics are circular arcs orthogonal to the boundary sphere, while in the projective
model they are line segments in the ball with endpoints on the boundary sphere.
The disjointness condition is preserved in going from one model to the other since
intersecting geodesics lie in a common hyperbolic plane in both cases.

The space § 'W,, is slightly smaller than the space of all configurations of » disjoint
geodesics in hyperbolic 3-space since geodesics do not include their endpoints in the
boundary sphere, so two disjoint geodesics could share a common endpoint on the
boundary sphere. The inclusion of § ‘W, into this slightly larger space is a homotopy
equivalence, however, as one can see easily in the projective model by shrinking the
ball by a small amount for each configuration (without shrinking the configuration
itself). For example, the ball can be shrunk by one-half of the minimum of the
numbers d;, where d; is the maximum distance from points on the i th line segment
of a given configuration to the boundary of the ball. Note that this is essentially the
same as the canonical shrinking process considered in Section 1.

Comparing the ball model of hyperbolic 3-space with the upper halfspace model,
we see that ‘W, can be regarded as the subspace of § W,, consisting of configurations
disjoint from a point oo in the boundary sphere. The configurations in §'W,, that
contain aline to oo forma codimension 2 submanifold. Interms of the upper halfspace
model, this submanifold is the space of configurations of # — 1 disjoint wickets and
one vertical line disjoint from the wickets. This submanifold is connected, by the
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same argument with canonical shrinking used to show that W,, is connected. From
transversality it follows that the inclusion 'W,, — S§'W,, induces a surjection on my
with kernel generated by a small loop linking the codimension 2 submanifold. This
loop can be represented by taking the standard configuration of 7 wickets in the xz-
plane and dragging the left endpoint of the first wicket around a large circle enclosing
all the other wickets. It would not be hard to write this loop as a word in the generators
pi, 07 and ;. Thus 71 §'W,, has a presentation obtained from the presentation for W,
by adding one extra relation.

There is an analogous space § A, of configurations of » disjoint smooth arcs in
a ball with endpoints on the boundary sphere, all these arcs being unknotted and
unlinked.

Proposition 6.1. The inclusion S W, — SA, is a homotopy equivalence.

Proof. This can be reduced to the corresponding result for W,, — A, by considering
some fibrations. Let § W7, be the space of configurations consisting of 7 disjoint
wickets in a ball together with a basepoint in the boundary sphere disjoint from the
wickets. Projecting such a configuration onto either the wickets or the basepoint gives
two fibrations

F—=8W, —-8W,, W,—>SW, — S2.

Here the fiber F in the first fibration is just $2 with 27 points deleted, the endpoints
of a configuration of n wickets. The homotopy lifting property in the first fibration
follows by extending isotopies of configurations of wickets to ambient isotopies then
restricting these to the basepoint. The second fibration is actually a fiber bundle
since the basepoints in a neighborhood of a given basepoint can be obtained via a
continuous family of rotations of S? applied to the given basepoint, and then these
rotations can be applied to configurations of wickets.
Similarly there are fibrations

F— SAY = SA,, A, = SAT — 52

The fiber F is the same as before. There are natural maps from the first two fibrations
to the second two fibrations. Applying the five lemma to the induced maps of long
exact sequences of homotopy groups, we see that 'W,, — <A, being a homotopy
equivalence implies first that this is true also for S W, < S4, and then also for

SW, — SA,. O

Similar things can be done for rings as well as wickets. Let § R, be the space
of configurations of n disjoint pairwise unlinked circles in S3, and let § £,, be the
corresponding analog of &£, the space of smooth n-component trivial links in §3.

Proposition 6.2. The inclusion S R, — S L, is a homotopy equivalence.
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Proof. This follows the line of argument in the preceding proof by comparing fibra-
tions, using the space § R of configurations of circles in §* with a disjoint basepoint,
and its smooth analog § £, . 0

One can also obtain a presentation for 7718 R, from a presentation for R, by adding
the same relation as was added to get a presentation for 7,8 W,. The justification
is the same as before, by using stereographic projection to identify &R, with the
complement of the codimension 2 submanifold of § R;, consisting of configurations
passing through a given pointin S3.

7. Remarks on dimension

It is a classical fact that the general position argument for finding a presentation for
B, can be refined to build a finite CW complex K(B,, 1) having a single O-cell, a
1-cell for each standard generator o;, and a 2-cell for each of the standard relations.
The cells are dual to the strata of the stratification of €, according to coincidences
of the x-coordinates. Thus the 0-cell corresponds to the unique stratum of maximum
dimension consisting of configurations with distinct x-coordinates, the 1-cells to the
strata of codimension one where exactly two points in a configuration have the same
x-coordinate, and so on. The same procedure works also for U'W,, to give a finite
CW complex K(UW,,,1). The dimension of this complex is n — 1, just as for B,,.
For B, there is a single cell in the top dimension, corresponding to the stratum of
configurations with all # points on one vertical line, but for UW,, there are a number
of different strata consisting of configurations of wickets all lying in one plane, so
there are a number of top-dimensional cells. There cannot exist a K(U W, 1) of
dimension less than n — 1 since I/ W, has a subgroup Z"~! generated by the elements
o fori < n.

For W, the minimum dimension of a K(W,,, 1) is 2n — 1. There is a K(W,,, 1)
of this dimension since W, is a subgroup of B5,, and there cannot be one of lower
dimension since W, contains a subgroup Z2"~!, generated by the Z"~! above and the
7;’s. It seems likely that W, should have a finite CW complex K(W,,, 1) of minimum
dimension, perhaps constructible by extending the general-position constructions
referred to above.

For R, the virtual cohomological dimension is known to be n — 1 by [C], where
a K(m, 1) which is a finite CW complex of dimension n — 1 was constructed for
the finite-index subgroup PUR,. This K(m, ) can be described as the space of
basepointed graphs consisting of # circles touching in a tree-like pattern, forming a
cactus-shaped object. The dimension # — 1 cannot be reduced since PUR,, again
contains a subgroup Z"~! generated by the elements o, .
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