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Orbit closures and rank schemes

Christine Riedtmann and Grzegorz Zwara

Dedicated to Andrzej Skowroriski on the occasion of his 60th birthday

Abstract. Let A be a finitely generated associative algebra over an algebraically closed field
k., and consider the variety modﬁ (k) of A-module structures on k. 1In case A is of finite

representation type, equations defining the closure @ps are known for M < modﬁ (k); they
are given by rank conditions on suitable matrices associated with Af. We study the schemes
€ s defined by such rank conditions for modules over arbitrary A, comparing them with similar
schemes defined for representations of quivers and obtaining results on singularities. One of our
main theorems is a description of the ideal of @y for a representation M of a quiver of type
A, aresult Lakshmibai and Magyar established for the equioriented quiver of type A, in [12].

Mathematics Subject Classification (2010). Primary 14L30; Secondary 14B05, 16G20,
16G70.
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1. Introduction

Throughout the paper, & denotes an algebraically closed field of arbitrary character-
istic. By abuse of notation, a k-scheme X and its functor of points, i.e. the functor
from the category of commutative k-algebras to the category of sets sending X to the
set of morphisms Spec(R) — X, will be denoted by the same symbol. Any scheme
X considered in the paper will be of finite type over k. In fact, X (k) can be viewed
as the set of closed points of the scheme X.

Let d € N. We denote by My the k-scheme of d x d-matrices and by GL4 the
group k-scheme of invertible d xd -matrices. Let A be a finitely generated associative
k-algebra with a unit. The module scheme modg can be easily described in terms of
its functor of points

mod4 (R) = Homy g, (4, M4 (R)).
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The name is justified by the fact that modﬁ (k) can be identified with the set of A-
module structures on the vector space k9. The scheme modj is affine and of finite
type over k, so its coordinate ring k[modg] is a finitely generated (commutative)
k-algebra. The group scheme GL, acts on modg via

(g*M)(a)=g-M(@)-g~".

Given M € modg (k), we denote its GL;(k)-orbit by Ops. If we view the points of
modf,f (k) as d -dimensional A-modules, then @37 consists of all modules in modf,f (k)
isomorphic to M. By abuse of notation, we treat 3y and its closure @M as reduced
subschemes of modg.

It is an open problem to describe the ideal of @y or even to exhibit polynomials
having Oy as their zero set. We now present some polynomials vanishing on Oz
Given N € modj and a p X g-matrix @ = (a; ;) with coefficients in A we define the
pd x gd-matrix

N(ay1) -+ Nlayy)

and then any point N € (9 satisfies the condition
tk N(a) =1k M(a),

which means that all minors of size 1 4 rk M(a) of the matrix N(g) vanish. These
minors can be interpreted as elements of the coordinate algebra k[modﬁ] (see Section 3
for details). Let Tps be the ideal in k[modf;] generated by such minors, where ¢ varies
over the set of all matrices with coefficients in A. Then €y = Spec(k [modfl] [ Iar)
is a closed GL4-subscheme of modj containing Oy .

When A is a finite dimensional algebra, these rank conditions are directly related
to the so-called Hom-order considered extensively before, for instance in [4], [5],
[13], [15]. In fact, if M. N € modj(k), M <pom N if and only if N € €pr (k).
It is known that (€ar)ea = Opr in special cases, e.g. if A is a representation-finite
algebra [15] or a tame concealed algebra [4]. However, (€ )eq strictly contains
Oy in general; the first example is due to Carlson [13]. Moreover, €3y need not be
reduced even if (€p1)ea = Opr. This occurs already for the algebra A = k[x]/(x2)
of dual numbers and dimension d = 2 (see Example 3.7 for details).

Our goal in this article is to study the scheme Cpy inits own right. We now roughly
describe the content of every section.

In Section 2 we define rank ideals and present tools used later. The definition of
the scheme €y is given in Section 3, along with a reduction of the set of matrices @
to be considered. In fact, a p x g-matrix g with coelficients in A yields a morphism
vg: AP — A7, and two matrices @ and @’ yield the same rank conditions if v, and
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Ve have 1somorphic cokernels. In Section 4, we define analogous rank schemes for
quiver representations and use them in Section 5 to extend Bongartz’ results on a
geometric version of the Morita equivalence to rank schemes.

In [12], Lakshmibai and Magyar proved a result which turns out to be equivalent
to the following (see Section 4): If M is a representation of an equioriented Dynkin
quiver of type A, then €ps = (Cpf)rea = Oz . In [17], the second author introduced
so-called hom-controlled exact functors. This tool allowed him to show that some
types of singularities in orbit closures of modules over two different algebras coincide.
In Section 6 we study hom-controlled exact functors for rank schemes, and we obtain
one of our main results, a generalization of the result above to representations of
Dynkin quivers of type A, not necessarily equioriented (see Theorem 6.4). Thus the
ideal defining @y is now known for Dynkin quivers of type A; it is an open question
whether this result can be generalized to representations of arbitrary Dynkin quivers.

The main advantage of the scheme €y over @y is that its tangent space at some
N € O has a module theoretic interpretation; we will explain this in Section 7 and
use it in Section 8 to study the regularity of € at N. Under the assumption that the
algebra is representation-finite, we will characterize the singular locus of Cps. The
motivation is that the knowledge of the singular locus for €ps helps to describe the
singular locus for the orbit closure @ps. We will show in a forthcoming paper that in
fact both loci coincide if M is a nilpotent representation of an oriented cycle.

Acknowledgements. We would like to thank the Swiss Science Foundation for its
support. This article was written while the second author was visiting the University
of Berne; he also gratefully acknowledges support from the Research Grant No. N
N201 269135 of the Polish Ministry of Science and High Education.

2. Rank ideals

Throughout the section R denotes acommutative ring. Let Ml be the affine scheme
of p X g-matrices, and fix U € M,»,(R) and ¢ € {l,..., min(p, g)}. Following
[7], 1.B, we denote by I,(U/) the ideal in R generated by the minors of U of size /.
It will be convenient to define /o(U) = R and I;(U) = 0 for f > min(p, g). Thus
we have

R=5LU)2LHTU)2LU)2---.

We first collect a few properties of /,(U/).
Lemma 2.1. Let U € My, (R) and V € M, (R). Then
LUV) S LU)NI(V).

Proof. Recall that, given a matrix W € M4/ (R) and the corresponding R-homo-
morphism U/: RY — RP' the entries of the matrix of the R-homomorphism
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ANU): AT (RY) — A'(RP') with respect to the standard bases are just the £ x f-
minors of W. For two subsets K € {l,...,p"t, L C {l,...,¢'} of the same
cardinality, we denote the minor of W corresponding to rows in K and columns in 1.
by Wx 1. Using the functoriality of A?, we obtain

det(UV)gy = ) _detUg f det Vi

L
foranytwosubsets K C {1,..., p}, N C {1,...,r}ofcardinality 7, where 1. ranges
over all subsets of {1, ..., g} of cardinality 7. Our claim follows. 0

Lemma 2.2. Let U, V and W be matrices with coefficients in R, where U and W
are invertible and of a size that the product UV W exists. Then [L{UVW) = I, (V).

Proof. Apply Lemma2.1to V' =UVW andto V = U~V'W~1, O

We leave the proof of the next lemma to the reader. Given two matrices U/ and V
wesetU @V = (Y 9).

Lemma 2.3. We have I,(U & V) = ZEZO LU, (V). Inparticular, if V is the
identity matrix of size s < t, then I, (U & V) = I,_;(U).

3. Definition and first properties of Ty

Let A be a finitely generated associative k-algebra and d € N. The coordinate
algebra k[modﬁ] can be constructed as follows: Choosing generators ay, ..., d, of
A we obtain an isomorphism of A with the quotient of a free k-algebrak{xq, ..., x;)
by a two-sided ideal /. We consider rd ? independent variables xf’j, I <r,i,j<d,
arranged into » matrices X; = (xf! ;) of size d x d. Then k[modﬁ] is the quotient
of the polynomial algebra k[xf’ ;71 by the ideal generated by the entries of the d X d-
matrices p(Xy,..., X,),p e J. Let Xj be the element in modf; (k[modf;]) defined
by the equalities X(a;) = X; for! < r. We call Xf auniversal module in modj, asit
satisfies the following universal property: For any commutative k-algebra R and any
element N € modg (R) there is a unique algebra homomorphism ¢ : k[modg] — R
such that N = modj ((p)(Xj).

The coordinate algebra k[M,,] is the polynomial algebra k|y; ;] withi < p,
J =gq. Wedenote by V. © M, the closed subscheme of “matrices of rank at
mostr” defined by theideal I, 4 1(Y) C k[Mpxq]forY = (yi;) € Mpxg(k[Mpxq]).

Leta = (a; ;) be a p x ¢ matrix with coefficients in A. The assignment

N{ai1) -~ Nlaig)
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leads to a regular morphism ©,: modj — Mpgxga. For an A-module M €
modg (k), we set

— tk M
Cra = OF (Vo).

Note that Cpre = Spec(k[modf;]/IM,Q), where Ipry = Il_,_rkM(Q)(Xj(Q)) C
k[mod?].

Lemma 3.1. The subscheme Cpy 4 C modﬁT is stable under GL.4.

Proof. Fix a commutative k-algebra R. We need to show that N € € ,(R) and
g € GLgz(R) implies g * N € € 4(R), or equivalently that all » X r-minors of
(g * N)(a) vanish, where r = 1 4+ rk M(a). But I,(g * N(a)) = I,(N(a)) by
Lemma 2.2 as

0 0 --- g 0 0o ... g1 0

We define the rank scheme associated to M as
n = ) Cra-

where a ranges over all p x g-matrices with coefficients in A for all p and g. Thus
€z 18 the closed GL. z-subscheme of modj defined by Ipy = > Ipm,. Note that
isomorphic modules define the same rank scheme.

Sending @ € A to the A-homomorphism v,: A — A, v,(b) = b - a defines a
bijection from A to Homy4(A4, A). Givena p X g-matrix a = (a; ;) with coefficients
in A, we define an A-homomorphism

(Uaj,l')
ve: AF ———— A9
This gives a bijection between the set of p x g-matrices with coefficients in A and
the space Homy4(A?, A7). Moreover, for a ¢ x s-matrix b with coefficients in 4 we
get
Vg.h = Vp O Vg.

Lemma 3.2. et @’ and a” be two matrices with coefficients in A. If the cokernels
Coker(vy) and Coker(vy) are A-isomorphic then Ipnp a0 = Ipg .

As aconsequence, we obtain a well defined scheme €y ;. for any finitely presented
A-module 1. by choosing a presentation

APEAQ—ML—>O
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and setting Cps 1 = Cpr,. Note that €pr = (1) €ay 1, where L ranges over represen-
tatives of all isomorphism classes of finitely presented A-modules.

Proof of the lemma. Let @’ and ¢” be two matrices with coefficients in A of sizes
P1 X g1 and pa X g2, respectively. Setting fi = vgr and f> = vy we obtain two
A-homomorphisms

am Iy oqar ang ar2 2 gee,

We assume that there is an A-isomorphism & : Coker( f;) — Coker( f,). We claim
that there are matrices 5 and ¢ with coefficients in A such that

a 0 _, (lgy O
(O 1dq2) _Q ( O QH) Q

Using the property that free A-modules are projective we obtain the following com-
mutative diagram with exact rows

AP 2 A1 —ELs Coker( f1) —= 0
h B =&
APz J2 492 225 Coker( f,) —=0
] ! ~ E_]‘
S g1
AP Ad Coker(f1) —0.
In particular,
' fi = fah, I'fo= fil, (3.1)

and g1/’h’ = gy. The latter implies that Im(1 — {’A’) is contained in Im( f7), and
consequently 1 — /’h" factors through fi. From this, and by symmetry, we get two
A-homomorphisms ¢; : A9 — APi | = 1,2, such that

U'n + flqgl = 1A£Z1 and Al + f2992 = 1Aq2. (32)
We conclude from (3.1) and (3.2) that
f] 0 . fl(pl —1 ) 1A‘?1 0 ) f] !
0 lyaz) A e 0 1 —h @)

We get the claim by choosing matrices b and ¢ such that

_(Nh 7 _(fi;n T
UQ—(_k s and v, = AN
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Let X =X j be a universal module for modﬁ. The claim implies that

X(a') 0 Lag, 0

By Lemmas 2.1 and 2.3, we know that

eSS (XO@ 1;)@2) =" (1%{11 X((;)) = Tiaq, (X(@").

for any 1 > ¢1d,qg2d. Applying the functor Homy4(—, M) we obtain the exact
sequences

Hom 4 (vg/,M)

0 — Homy (Coker( f1), M) — Homy (A9, M) —————— Homu(A"', M),

Hom 4 (v,,# .M )
0 — Homy (Coker( f2), M) — Homy(A92, M) ———— > Homy(A?2, M).

Let w = dim; Homy4(Coker( f1), M) = dimy Homy, (Coker( f5), M ). Identifying
the space Homy(A*, M) with k9 s e N, we get

Homy(vgy, M) = M(a") and Homy(ve, M) = M(a").
Consequently,
k(M(a")) =dg, —w, tk(M(@") =dg, —w

and
IM,Q’ = Il+dq1—w (X(Q!)) - Il+dq2—w (X(QH)) = IM,Q”-

In a similar way we prove the reverse inclusion, which finishes the proof. U

Lemma 3.3. For finitely presented A-modules Ly and L, we have that Iy 1 @1, C
IM,L1 + IM,LZ-

Proof. We fix matrices ¢’ and a” with coefficients in A such that the cokernels of
Vg and vgr are isomorphic to Ly and L, respectively. Let ry = rk(M(g')) and
r, = 1k(M(a")), and set X = Xf. Using the fact that

R=1(U)2 L(U)2 L{U)2 -
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for any matrix U with coefficients in a commutative ring R, we get from Lemma 2.3

Ivper, = IMaea = ligr 4+, (X(@) ® X(@"))

1471472
= Y LX@)) - Db e (X(@)
i=0
1 1+r;+#2
Y Dipran—(X@N+ Y L(X@))
=0 f:1+l"1
= l14,(X(@") + l141 (X(@) = Ina’ + Ina
=Imr, +Im i, =
Let L be a finitely presented A-module. Then the space Hom,4 (L, M) is finite
dimensional, and we choose a basis f1,..., f;. We denote by Lz the kernel of the
map
I3 (f15ees f5) v
Note that L s does not depend on the choice of the basis fi,. .., f;.

Lemma 3.4. Using the above notation, we have Iy 1 © Ipp/r0,,-

Proof. As there is an injective A-homomorphism from L/Ljs to M?®, the module
L./ Lz is finite dimensional and thus finitely presented, as A is finitely generated.
We may choose presentations of L and of L /L s for which there is a commutative
diagram

Va
P — At L 0
‘N

Ve

At — A9 LiLy —0

with exact rows.

From v, = v o vp we see that ¢ = b o ¢. Note that the injection from L/ Ly
to M* induces an isomorphism from Hom4(L./Lpr, M) to Homu4 (L, M) and thus
rk(M(a)) = rk(M(c)). By Lemma 2.1 we conclude that

Ivr = Inwg = Nin @ (X5(@)
= lvam@ (X (2) o X§ (0)
= 11+rkM@(Xf(£)) = Iy
= IM,L/LM- ]

Next we study the behavior of rank schemes under an algebra homomorphism
¢: A = B. Fora p xg-matrix @ = (a;,;) with coefficients in 4, we denote
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the corresponding p X g-matrix with coefficients in B by ¢(a) = (¢(a; ;)). Any
B-module can be considered as an A-module via ¢; we will write 4 M for the A-
module corresponding to the B-module g M. In addition, ¢ induces a regular GL 4-
morphism ¢ : modg, — modg defined by [¢¢(N)](a) = N(g(a)), which is a
closed immersion if ¢ is surjective. If = dimy M, then @< (Opm) = Oz, and
consequently © M C ()~ 1O M ). A similar result holds for rank schemes.

Lemma 3.5. et ¢: A — B be an algebra homomorphism and let M belong to
mod% (k). Then

ng - (qjd)_l (fAM)'

If @ is surjective, the above inclusion is an equality.

Proof. Note that Oy, = Oy © @? and g M(¢(a)) = 4M(a) for a B-module 3 M,
and thus €, a1 p(a) = (@) 7HE , M.())- u

Thealgebra B = A/ Ann M is finite dimensional, being a subalgebra of Endy (M ).
By the above lemma, we can work over the finite dimensional algebra B = A/ Ann M
instead of A and consider M as a B-module. For a finite dimensional algebra, any
finitely presented module is isomorphic to a direct sum of indecomposables, and we
obtain the following consequence.

Corollary 3.6. Let A be finite dimensional, and let £ be a complete set of pair-

wise non-isomorphic indecomposable A-modules which can be embedded into finite
powers of M. Then

In=)Y Inr
LeX

We construct €y on a simple but instructive example.

Example 3.7. Let A = k[eg] =~ k[x]/(x?) be the algebra of dual numbers and
M : A — M, (k) be the unique algebra homomorphism satisfying M(e) = [9§].
so that the corresponding module is isomorphic to 4 A. Choosing ¢ as a generator of
A, we identify the coordinate algebra k[mod3] with
. 2
klx1.1.x1,2, 2,1, X2,2]/ (entries of (i;} i;%) ).
The set &£ considered in the previous corollary consists of two modules: M and
its one-dimensional simple submodule denoted by §. In fact, any indecomposable
A-module is isomorphic to either M or S, so the algebra A is representation finite

and therefore (€af)req = O, as mentioned in the introduction. Since M is free as
an A-module, we have a free presentation 0 = A° — A! — M — 0 giving us no

" . ; . Vie)
condition, i.e. Zpsp = 0. Thus choosing a free presentation A' S Al 5 S50
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and denoting by X; ; the residue class of x; ; in the coordinate algebra k [mod3], we
get

_ _ X11%12Y _ X1 X2y _ X1.1 X1.2
Iy = Ius = Il"'rkM(E) (fz,1 J_62,2) =1 (fz,l 52,2) - (det (562,1 J_62,2) )

Obviously the trace of (;;1 ;;i ) does not belong to Ips (but its third power does),

so the ideal Iz is not radical and €y is not reduced.

4. Rank schemes for representations of quivers

We first recall the classical definition of the representation space of a quiver with
relations for a given dimension vector, acted upon by a product of general linear
groups, and then view this space as the k-points of an affine scheme with the action
of a group scheme.

Let Q = (Qg, O1,5.1) be a finite quiver, i.e. a finite set ¢ of vertices and a
finite set (01 of arrows a: sa¢ — fo, where so and f«a denote the starting and the
terminating vertex of «, respectively. A representation of Q over k is a collection
(X(i); i € (Qp) of finite dimensional k-vector spaces together with a collection
(X(a): X(sa) — X(ta); @ € Q) of k-linear maps. A morphism f: X — VY
between two representations is a collection ( f(i): X(i) — Y(i)) of k-linear maps
such that

flta) o X(a) = Y(a) o f(sa) foralla € Q.

The dimension vector of a representation X of ¢ is the vector

dim X = (dim X(i)) € N0,
We denote the category of representations of () by rep((Q), and for any vector d =
(di) € N9,

repG (k) = [ | Ma,pxdss (k)

aed
is the affine space of representations X of Q with X(i) = k%, i € Q. The group
GLa(k) = [ ] GL4 (k)
€@
acts on rep‘é (k) by
((81) * X)(0) = gra 0 X(@) 0 g5, -

Note that the GL4 (k)-orbit of X, denoted by Oy, consists of the representations ¥
in rep‘é (k) which are isomorphic to X.
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Let £Q denote the path algebra of : The paths in O form a k-basis of kQ,
and two paths are multiplied by juxtaposing them if possible and they have product 0
otherwise. In each vertex / of (J we have the trivial path &; of length zero. Note that

1kQ = Z &

ie@o

is a decomposition of 1 into a sum of pairwise orthogonal idempotents and that
g; - kQ - &; is the vector subspace consisting of the linear combinations @ of paths
starting from vertex j and terminating at /. We will write s(w) = j and {(w) = i.
For any representation X € rep‘é (k) the d; x d;j-matrix X(w) is defined in the obvious
way. If J is a two-sided ideal of k£ Q, one can restrict the category rep(() to the full
subcategory rep( (), J) consisting of the representations annihilated by J. The pair
(Q,J) is called a bound quiver if J is an admissible ideal, i.e. (kQ )Y € J C
(kQ)? for some N > 2, where kQ . stands for the ideal in kQ spanned by the
paths of positive length.
The affine scheme rep‘é 1s defined as

rep‘é = 1_[ Mdm:deut

aed

and has the polynomial ring
klrepf] = k[xg]

as its coordinate ring, where o ranges over Qq, k over {1,...,d;4}, and / over
{1,....dsq}. Auniversal representation X g is given by X g (a) = (x3;). The group
scheme

Glg = l_[ GLg;

i€Qop
acts on rep‘é by the same formula as above. If J is an ideal in k0, the closed GLg4-
subscheme rep‘é’ 7 18 defined by the vanishing of X g (w) forany w € ;- J -, where
i, j vary over the set Qp.

Now we are ready to define the rank subscheme €y of rep‘é associated with a
representation M € rep‘é (k): Let p,g € N, consider two sequences (1, ..., Up)
and (vy,...,v,) of vertices in Qg and a p X g-matrix @ = (w; ;) such that each w; ;
belongs to &y, - kQ - &y;. The assignment



66 Ch. Riedtmann and G. Zwara CMH

where p’ = ) dy, and g’ =) dvj. We keep track in w; ; of the vertices v; and u;
evenifw; ;j = 0. For M € mp‘é2 (k), ®u(M)isa p’ x ¢’-matrix with coefficients in

k. We set
tk @, (M)

O =60,' Vot ), Cu=( \Crmw,
where @ ranges over all possible matrices of paths with all possible sets of starting
and terminating vertices. Note that €y = Spec(k [rep‘é] /IMmw), where Ipr C
k[rep‘é] is the ideal generated by all minors of size 1 + rk ©, (M) of the matrix
@Q(Xg), and that Cpyy = Spec(k[rep‘é]/IM), where Ipy = ) Iy We leave the
necessary adjustments for quivers with relations to the reader.

All results presented before in the context of module scheme have a corresponding
version in terms of representations of bound quivers (Q, J). The main difference is
that instead of finitely generated free presentations of modules we consider projective
presentations of representations using the projectives (kQ/J) - &, i € Qp. In
particular, if () is an equioriented Dynkin quiver of type A,

a1 az Op—1

L R . n,

J =0,w;; =aj_10j_5---0a; and M is a representation in rep‘é (k), then

In = Z Mo, ) = Z It ) (X G (@5.0)-

1<i<j<n l<i<j<n

Thus Ips is exactly the ideal generated by determinantal conditions as considered by
Lakshmibai and Magyar in [12]. Therefore we can reformulate their main result as
follows:

Theorem 4.1. Let M be a representation in repf2 (k), where Q is an equioriented
Dynkin quiver of type A. Then the ideal Iar is radical and €3 = Opy.

5. A geometric version of Morita equivalence for rank schemes

The purpose of this section is to relate rank schemes for quiver representations to
rank schemes for modules over algebras.

Let A be a finite dimensional algebra, and let Sy, ..., Ss be representatives for
the isomorphism classes of simple A-modules. The Grothendieck group Ko(A4) can
be identified with Z°, and the dimension vector dimN € Z° of a finite dimensional
A-module N is the vector

dimN = (dy,...,d,) € Ko(A),
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where d; is the multiplicity of S; in any composition series for N. If ¢/ € Ais a
primitive idempotent such that Ae’ is a projective cover for §7, we have

d; = dimy Homy(Ae!, N) = ik N(¢').

By [9] or Lemma 1 of [3], there is a connected component modﬂ of the scheme
modg, characterized by the fact that

mod4 (k) = {N € mod4 (k) : dimN = d}
for any vectord = (dy,...,d;) € N°.

Lemma 5.1. For M € modﬁ (k) we have €py C modfl".

Proof. As modj is a connected component in mod? , it suffices to show that €y (k) €
modﬁ (k). Let N € €y (k), and set dimN = d’ = (dj,...,d}). Considering the
ideal Ipz (.;), where (¢!) is the 1 x 1-matrix having the idempotent defined above as
its entry, we get that

d] = rk(N(e))) < dy = 1k M(e),

for/ =1,...,s. But

5 A
d =dimg M =) dydimg §) = dimg N =) " df dimy S,
=1 =1

andthus d’ = d. O

Let B be a maximal semisimple subalgebra of 4. We know that

§
B = [ [ My, k),
=1

i

Lk
canonical basis of B, and sete = ], ei’l. Then eAe 1s a basic algebra Morita
equivalent to A. There is a quiver (0 with the set of vertices {1, ..., s} together with
an admissible ideal J in kQ and an algebra isomorphism ®: ede — kQ/J such

that @(ei’l) =g+ J.
Theinclusiong : B — A ofk-algebras induces a regular morphism ¢¢ : modj —

where we set n; = dimg §;. Denote by e: ., 1 = 1,...,5,i,j = 1,...,n; the

modg, which restricts to a regular GL z-equivariant morphism p: modflT — modg.
Bongartz showedin [3] that the fiber of some special element £ € modg 1s isomorphic
to rep‘é’ 7~ In fact, he proved that p is a fiber bundle with fiber p~LE. We now recall
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his construction and describe explicitly a closed immersion 7: rep‘é 7 = modﬁ

which is an isomorphism onto p~! E. First we need some more notation.
Recall that d = )";_, n;d;. According to the decomposition

!
la=) ) e,
I<s i<ny

into a sum of primitive orthogonal idempotents, we subdivide a d x d-matrix W first
into s2 “large” blocks, the block Wit being of size ny.dy X nyndyr, l’ l” < s, and
then we subdivide each block W!-!" into nynye blocks, the block W being of
size dy X dy»,i < np, j < nyr. In order to handle these blocks we 1ntroduce the
obvious injective scheme morphisms

Fa ¥4
li}l : My, xa,, = Mg, U017 <s,i<np, j<npw.

We define a subfunctor £ of modd by E (R)(e ) = L (1n ;) for a commutative
k-algebra R, where 1,, denotes the 1dent1ty matnx in M, (R) So F is a closed point
of the scheme mod%. Using the decomposition of an element @ € A,

a= (LN edi)a(X X )= T X el

V=si<ngp <s j<ngm VI@'=si<np j<nm

and the fact that ei’ ja- ej.ﬂl belongs to e Ae, we define the scheme morphism

n:reph ;> modf, Ny = Y > ST D N@El, ael)).

PiIM=gi<ng j<nm

Then 7 is an isomorphism onto p~'(£). Note that if we view elements of rep‘é’ 7 (k)

and modf"1 (k) as representations and modules, respectively, then the map
p(k): repfy (k) — modf (k)

is in accordance with an equivalence between the category of representations of
(@, J) and the category of A-modules.

Proposition 5.2. With the above notations we have
N (Epm) = Cu CfePQ )
forany M € rep‘éJ(k).

Proof. The resultis a consequence of the following two facts.



Vol. 88 (2013) Orbit closures and rank schemes 69

(1) Forany pxg-matrix g with coefficientsin A there are p'+¢’ verticesuy, ..., up,
v1,..., vy of Q andelements w;r ;1 € &y, -kQ /[ J -8y, yielding w(a) = (wir, )
such that

CMw@ = ’?_hé’nM,Q-

or an ., ¢', any vertices uq,...,Up/, V1,...,Vg O and any elements

2) For any p’, ¢', any vert ? g of d any element
Wit j* € &gy -k Q[T -8y, withw = (w;r j), thereis a p’ X ¢'-matrix a(w) with
coefficients in A such that

CMep = U_lan,Q@)-

In order to prove (1) we first construct w(a) for @ € A such that N{w(a)) =
(nN)(a)for N € rep‘éJ: Wesetp' =¢' =n=737_;n,choose uy,y = vy =
leQptorl=1,...,5,i =1,...,n5and set w = (g ),q7, ;) with

a)(p_!,-)’(lu’j)(a) = q)(ei’i - 65-’1) e &y kQ/J s Epr.

By the definition of 1, we have

N @ = Y D T W@l a-el ) = Nw@)).

Pif<si<ng j<njr

as desired. For a p X g-matrix @ = (a;/,j») with coefficients in A, we set w(a) =
(w(ajr,jr)). As above, we conclude that

(MN)(a) = N(w(a)).

In particular, r = 1 4 rk(nM)(@) = 1 4+ rk M(w(a)). As a consequence we
obtain that, for any commutative k-algebra R, I.(N{(w(a))) = 0 if and only if
I.((nN)(a)) = 0, forany N € rep‘é’J(R), which is equivalent to €p (o) (R) =
(7" Coar.a)(R).

For the proof of (2), we set a(w) = (® lwy jv) for @ = (wyr ;). For any

commutative k-algebra R and any N € rep‘é 7 (R), the only possibly non-zero entries
Ui, Uir

of the d x d-matrix (PN )@ wyr j7) = th " (N, »;,)) sitin the small block in
the upper left corner of the big block corresponding to / = = u;,{" = vjr. Therefore
the rows and the columns of the p'd x ¢'d-matrix (N )(a(w)) can be permuted in
such a way that the upper left corner becomes N(w) and all other entries are zero.
In other words, there are invertible matrices, in fact permutation matrices, U/ and V

such that 0
0o -v = (Ve 7).

Then clearly » = 1 + rk(nM )(a(w)) = 1 4 rk M{(w) and by Lemma 2.2 we have

LN @@)) = I (N (@) O) _ I,(N@)).
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Therefore I, (N(w)) = 0if and only if I, ((nN)(a(w))) = 0, and we conclude that
fM,g(R) = (n_lan,g@))(R)- [

Following Hesselink (see (1.7) in [11]) we call two pointed schemes (X, xp) and
(¥, yo) smoothly equivalent if there are smooth morphisms f: 2 — X, g: Z — ¥
sending a point zg € Z to xo and yo, respectively. This is an equivalence relation
and an equivalence class will be denoted by Sing(X, xo) and called the type of
singularity of X at xp. Assuming Sing(X, xg) = Sing(¥, yp), the scheme X is
regular (or reduced, normal, Cohen—Macaulay, respectively) at xo if and only if the
same is true for the scheme ¥ at yq (see [10], Section 17, for more information about
smooth morphisms).

Theorem 5.3. et n: rep‘é’ ;= modg be the morphism defined above. Suppose
M and M’ in rep‘éJ(k) are such that M’ belongs to €pr (k). Then nM' belongs to
Cymk) and

Sing(Cym, nM’) = Sing(Cpr, M').

Proof. The orbitmapy: GLy — modg defined by ¥(g) = g * E is smooth and in-
duces an isomorphism of schemes GLy / GLg — modg, where GL,; = ]_H:l GLg,
is embedded into GL; via

s 1y
1.1
(Biliss ) 2 Zztj;i(gf)'

I=1i=1

It is not hard to see (compare e.g. [6]) that the diagram

GL; X rep‘éJ # modﬁ

-

GLy — %~ mod% —= GL, /GL4

is a pullback, where 7 is the projection to the first factorand A(g, N) = g*nN. Note
that A is smooth as smoothness is preserved under base change. As A(k) is surjective
and thus contains n M’ in its image, it is enough to show that )L_lfn M =Gl x€py.

A pair (g, N) € GLg(R) % €y p (R) belongs to (A™1€,27)(R), for a commutative
k-algebra R, if and only if g * nIN € €p(R). Asby Lemma 2.2 €,/ (R) is stable
under GL;(R), this is equivalent to nN € €pp (R), which is in turn equivalent to
(g, N) € GL4z(R) x Cp (R) by Proposition 5.2. O
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6. Hom-controlled exact functors

Letg: A — B beahomomorphism of finite dimensional algebras and ¢*: mod B —
mod A the induced change of scalars functor. For a B-module M we will use the
notation M = g M and ¢* (M) = 4 M. Thus (pd(OBM) = O , p for any module M
in mod% (k).

Following [17], we call an exact functor ¥ : mod B — mod A hom-controlled,
if there is a bilinear form & : Ko(B) x Ko(B) — Z such that

[FU,FV]4—[U. V]p = &(dim U, dim V)

for any U,V € mod B. Here and later on, we abbreviate dimy Hompg (U, V) by
|U, Vg, forany U, V € mod B and similarly for A-modules.

Assume now that the functor ¢* is hom-controlled. It follows from Theorem 1.1
of [17] that the restriction of (pd

(OBM —>(§AM

is a smooth morphism. The aim of this section is to show this is still true if we replace
the orbit closures by the rank schemes €, and €, py.

Let L be a finite dimensional A-module and / € N. We choose a p X g-matrix
a such that Coker(vg,) is A-isomorphic to L. Let modi 1..; be the closed subscheme
of modj defined by the ideal 1,4, (Xf (a))ink [modj]. The proof of Lemma 3.2
can easily be generalized to show that this ideal is determined uniquely by ¢ and the
isomorphism class of 1.. By (modi L,z)o we denote the open subscheme of modﬁq Lt
whose k-points are the modules N with [L, N]4 = ¢.

It has been proved in Section 4 of [17] that ¢ restricts to a smooth morphism
from mod% to (modiA B,z)o forany d € Ky(B), where d is the common dimension

of all modules in mod% and f = d + &(dim B, d). We denote by
Y modg — modiABJ

the composition of this morphism with the open immersion into modg L B.1» Whichis
still smooth.

Theorem 6.1. Let ¢: A — B be an algebra homomorphism such that ¢* is a hom-
controlled exact functor and fix M € modg (k). Then the morphism Vr restricts to a
morphism

€BM —> ‘€AM,

which is smooth.

Proof. We know that €, 37 is a subscheme of modg. Thus the claim will be proved
if we can show that €, s is a subscheme of modj”ABJ, wheret = d + &(dim B, d),
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and that ¥ ~1(€, p7) = €, u, or equivalently that
(@)1, Nmodé =€,y
The first part is easy, because
[4B.aM)4 = [pB.pM|p + §(dim B, dim M) = ¢

and consequently, Il_,_qd_f(Xj(g)) = I,m. B, where g is a p X g-matrix with
coefficients in A and with 48 = Cokerv,. The inclusion €4 C ((pd)_l‘CfAM N

modg follows fromLemma 3.5 and Lemma5.1. Inorder to prove the reverse inclusion
we will show that, for any B-module gL, we have

IoMmpL C k[modg] . ((pd)*IAM,AL + I(mod%) (6.1)

in k[mod%], where 1 (mod‘g,) is the ideal defining modg.
Let L be a finite dimensional B-module. Choosing a finite free presentation of
AL we obtain the exact sequence of A-modules

AP 55 49 5 L =0

for some p,g = 1 and a p x g-matrix g with coefficients in A. We apply the tensor
functor B ®4 (—) to get another exact sequence

Vola
B? ““ B L B, L 0.

Using the homomorphism ¢ we have a left and a right A-module structure on
B, and the functor ¢* can be identified with the functor 4 B ®pg (—) as well as with
Hompg(pB4.—). Observe that

B, L=BR4¢ L) >B®,B®pL =Q®plL,
where €2 is the B-B-bimodule B ®4 B, and that for any B-module ¥ we have

Homy(4L,4Y) = Hom4 (4B ®p L.Homg(gB4.pY))
~ Homp(pB ®4 B ®p L,pY)
= Homp(2 ®p L, pY).

As @* is hom-controlled, we obtain
[Q®p L. Y|p—[L.Y]p =&(dimL,dimY)

for any B-module Y.

Let { Py, ..., P,} be a complete set of pairwise non-isomorphic indecomposable
projective B-modules and S; = P;/rad(P;) fori < n. Note that {Sy,...,S,}isa
complete set of pairwise non-isomorphic simple B-modules.
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Lets; = £&(dim L,dim S;) fori < n and P, = @@, P, and let y; denote the
i -th coordinate of dim Y. Then

[PL.Y]=) s [P.Y]=) £dimL,dimS;)-y;
i=1 =1

= £(dim L, djm(@ §¥)) = £(dim L, dim Y),
i=1

and consequently,
[Q®pL,Y]=[L& P Y]

The latter holds for any finite dimensional B-module ¥, hence Q®p . = 1. & P, by
Auslander’s theorem. This implies that the ideal generated by (¢)* I, a7, equals

LeM g(LoP)-
If P; = 0, the inclusion (6.1) clearly holds. Otherwise, choose matrices 5" and

b" with coefficients in B such that the Coker(vy) >~ L and Coker(vyr) >~ Pr. Let
ri =tk M(D'), r, = tk M(b"), and set X = X§. Then

X b, O ! 1
Lgwory = hansr (V0 xin) 2 an () - I (X @),

by Lemma 2.3. Obviously {14, (X(b")) = I, .51 and therefore
Iompwapr,) + Lmod%) 2 I a1 - (L (X)) + I(mod%)).
Thus it suffices to show that
I, (X(B")) + I(mod§) = k[mod3].

Let N be a module in mod% (k). The condition that 7,,(X (")) vanishes on N
means [Pr, N]| > [P, M| while T (modg) vanishes on N if and only if dim N =
dim M. Since dim N = dim M implies [Py, N| = |Pr, M, there exists no point
N on which the ideal 7,,(X(2")) + I(mod%) vanishes. L

Theorem 1.2 in [17] says that
Sing(Ogar, FM') = Sing(Opr, M")

for a hom-controlled exact functor ¥, M € modj (k) and M’ € Ops. The proof can
be adapted to rank schemes, yielding the following result. The only slight difficulty
is taken care of by the lemma following the theorem. Recall that if M’ is a point
of €pr(k), the modules M and M’ have the same dimension vector, and so do their
images ¥ (M) and F (M ') under an exact functor.
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Theorem 6.2. Let ¥ : mod B — mod A be a hom-controlled exact functor and fix
M, M e modg (k) with M’ € Opp. Let e be the common dimension vector of ¥ M
and ¥ M'. Identifying ¥ M and ¥ M' with the corresponding elements in mod§ (k)
we obtain that ¥ M' € € py and

Sing(€5pr, FM') = Sing(€ar, M.

Lemma 6.3. let B = C x D be the product of an algebra C with a semisimple
algebra D, both finite dimensional, fix a B-module M = (M, M3), and choose
M’ = (M{, M)) € €y (k). Then we have

Sing(€yr. M) = Sing(€pr,. M)).

Proof. The easiest way to see this is to replace the algebras by quivers and relations
using Theorem 5.3. Then we have

fM = €M1 X sz, fo = fM{ x fMé-

As D 1s semisimple, its quiver consists of some vertices but no arrows, and thus
Cum, = Cpyy = {Ma} = {M,}. L

The above theorem remains true if modules are replaced by representations of
quivers, by Theorem 5.3. In particular, applying the theorem to the exact functors
constructed in [1] and [2] we may generalize Theorem 4.1 as follows.

Theorem 6.4. et M be a representation in rep‘é (k), where Q is a Dynkin quiver of
type A. Then the ideal Ips is radical and €y = Oy

Let us describe the ideal I3s explicitly. We know from Corollary 3.6 that Iy =
> Inm.1, where L ranges over all indecomposable representations of Q. Suppose
the underlying graph of Q 1s

1 2 n.

Independently of the orientations of the arrows, an indecomposable L is given by an
interval 1. = [{,!'] in [1, n], for some ! < [”: Each vertex in [/, !’] is represented by
k, each arrow between such vertices by the matrix (1). Denote the full subquiver of
O with vertex set [/, I'] by Q[ /7. We associate with L the sequence ! < vy < --- <
vy < 1" of all sources of Qp ;7 and the sequence / — 1 < uy < -+ <u, <" +1
consisting of all sinks in Q7 ;7 distinct from /,/” in addition to

I—1 if l </andthereisanarrow / — 1 </ € Qy,
I"+1 if! <nandthereisanarrow " — /' + 1 € Q.



Vol. 88 (2013) Orbit closures and rank schemes 75

For any u; there is either some vj» < u; and a path w; j/: vj» — u; in Q or some
v;» > u; and a path w; j»: v;» — u; in Q or both, in which case we must have
J" = j"+ 1. The p x g-matrix w corresponding to L. = |/, /'] has all its entries 0,
except for those just described.

In the special case

23} (270 o3 Oy

g=1 2 3 4 35,

the matrices to be considered are
(1), (22). (o3). (o).
(1 @), (wo0as), (”‘)

iy O 0y o1 0O C kg
(01 az20as), ( ) ( :
g 0 o4

7. Tangent spaces

Let N belong to € (k). The main aim of this section is to describe the tangent space
Te,, ~ in terms of selfextensions of the module N.

The tangent space T odd N CEN be identified with the space of l-cocycles
Z}l (N, N), that is, with the set of k-linear maps Z: A — M, (k) with the prop-
erty that Z(aya,) = N(ay)Z(ay)+ Z(a)N(a,) forany a, a, € A. Note that from
a l-cocycle Z we obtain a module structure on k9 @ k¢ given by

N Z N(a) Z{a)
(0 N)(“):( 0 N(a))

(o)

qJ(Z):O—>N—>(

and that the sequence

N —=0

NZ)(O_U>

0 N

is exact.

The tangent space T, n can be identified with the space of 1-coboundaries
IB}l(N, N)Y=1{h-N—N-h;h € My(k)}. By[9], Proposition 1.1, the map ¢ induces
an isomorphism, called Voigt’s isomorphism,

Toosd N /Ton N = Zy(N.N)/Bi(N.N) = Exty(N, N).

Since To, ¥ € Tey N C Tmodﬁ,N’ the tangent space Te,, x5 corresponds to a
subspace of Zjl (N, N) containing IB}I(N , V), which we now describe.
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Let ¥ and ¥’ be complete sets of pairwise non-isomorphic indecomposable
modules X and X' such that [N, X]| = [M, X|and [ X', N| = [ X', M|, respectively.
Set

&, 7)
={l6:0>Z—> W —>Y -0l €Ext}(Y,Z); §,(X) =0forall X € ¥}
={lo:0>Z > W =Y = 0]. €Ext)(Y,Z); §,(X') =0forall X' € ¥} .

for two A-modules Y, Z, where

85(X) = dimy Homy(Z & Y, X) — dimg Homy (W, X)),
§0(X") = dimg Homy (X', Y & Z) — dimg Homuy (X', W).

Note that the pushout or pullback of an exact sequence in &€ belongs to & again. As
a consequence, &(—, —) is a k-subfunctor of Ext}(—, —).

Proposition 7.1. For N € Cp(k), Voigt’s isomorphism restricts to an isomorphism
Tery N/ Toy N = E(N,N).
The following corollary is an immediate consequence.

Corollary 7.2. Let N be a point of Opr. Then codim(M, N) < dimy (N, N), and
equality holds if and only if N is a regular point of Cyy.

By definition, codim(M, N) = dim Oy — dim Oy.

We will prove Proposition 7.1 in several steps. We begin by characterizing the
tangent space to the scheme V. at some matrix N € V. (k) as a subspace of the
tangent space of M, ., at N, which we identify with M, (k).

Lemma 7.3. Fixr < p.q, and choose a matrix N € V,, (k). Then
T . Mpxq(k) If tk N < r,
YrxaN T NID € Mpwg(k): tk (¥ B) =2r} if tk N =1

Proof. The algebraic group scheme GL, x GL, acts on M, x, via (g.h) * N =
g-N’-h~!, and weknow that N = g-(los g)-k_l forsome g € GL,(k).h € GLg4(k).

where s = rk N. As the tangent space to V), at g - N'-h~Vis g Tyr_ yo-h71 it

suffices to prove the claim for N = ( I(f g).

It is obviously true for s < r. In case s = r, we decompose

Dy Daa
D =
(Dzl Dzz)
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into blocks; the size of Dy 1s s X 5. A straightforward computation yields that
T — _ { Pu1 D1z Y. -
g N = {D - (D21 Dzz)’ D22 = O}'

But note that

l, 0 Dy D12
N DY _ 0 0 Dy Dy
rk(0 N)_rk 00 1, 0 =2r + 1k Djyj.
0O 0 0O 0
Sork (¥ B) = 2r if and only if D> = 0, and the lemma is established. O

Let @ be a p x g-matrix with coefficients in A, set L. = Cokerv,, and ix N €
Cum (k). Mapping the exact sequence

Va

AP —— A4 L 0
to amodule N' € modgl(k) and identifying Hom4(A, N') with N’, we see that
tk N'(a) + dimy Homy (L, N') = gd’. (7.1)

Corollary 7.4. Using the notions just introduced, we have that the tangent space

Tep L, N = T‘C’M,Q,N equals

(1) Tmodﬁ,N provided that dimy Homy4 (L, M) < dimy Homu4(L, N);

(2) {Z €7, 4qa y:dimg Homa(L, (¥ §)) = 2dimg Homa(L, N)} provided that
dimy Homy (L, M) = dimz Homy4 (L, N).

Proof. Remember that
— tk M
Cra = 07 (Vo).

Using (7.1), the corollary is a direct consequence of Lemma 7.3 and the fact that
N Z\, _ . (No Z@
rk(0 N)(g)_rk( 0 N@).
Now Proposition 7.1 is easy to prove. Indeed, we have

Ter, N = Ter..¥-

where the intersection 1s taken over representatives L of all isomorphism classes of
A-modules which are finitely presented, or, by Lemma 3.4, even finite dimensional.
In case dimy Homy4 (1., M) < dimz Homy (L, N), this gives no restriction. The
condition dimy Homy (1., M) = dim; Homy4 (L., N) is equivalent to [. € add ¥’ by
definition, and having the equality

dimy Homy (L, (§ ) ) = 2dimy Homa(L, N)
forall L. € add ¥ is equivalent to (Z) € E(N, N).

(]
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8. Singular loci

In this last section, we assume A to be representation finite, except for the final
remark and example. All A-modules considered will be finite dimensional, and we
fix M € modﬁ (k). N € Op. We denote the Auslander—Reiten quiver of A by T'y.
In order to study the singularity of €y at N, we need some definitions and some
preliminary results on source and sink maps, also called approximations by some
authors.

We define the shadow § of the degeneration from M to N to be the set of all
meshes in T'4 which start in a vertex X ¢ ¥, or equivalently which stop in a vertex
X" ¢ F'; the shadow S, of an exact sequence ¢ of A-modules consists of all meshes
of I'4 with starting vertex ¥ with §5(Y) > 0 or equivalently with ending vertex ¥’
with 8/ (Y’) > 0. We call an exact sequence

ag: 0 Z W Y 0

fit for (M, N) if its class [o] belongs to E(Y, Z), or equivalently it S € § or
0.(X) =0forall X € F.

For an A-module Z, we call a morphism f : Z — W auniversal morphism from
Z toadd ¥ if W € add ¥ and any morphism from Z to some W' € add ¥ factors
through f. Itis easy to see that universal morphisms from Z to add ¥ exist. Such
a morphism is necessarily injective as all injective indecomposables belong to . A
universal morphism f : Z — W is called a source map if any endomorphism ¢ of W
for which ¢ o f is still universal is invertible. A source map fz: Z — Wz is unique
up to isomorphism, and it is characterized by the fact that the morphism Wz — Vz
in the exact sequence

oz 0 7% w, Vy 0

is radical.
Sink maps from add ¥ to some module Y are defined dually. We will denote the
exact sequence obtained from a sink map Wy — Y from add ¥' to ¥ by

(I;/I 0 Uy W{z v 0.

Lemma 8.1. Let Y, Z be A-modules.
(1) The sequences oz and oy are fit for (M, N).

(2) Mapping Y 1o 0z, we oblain an exact sequence

0 — Hom(Y, Z) — Hom(Y, Wz) — Hom(Y, Vz) — &(Y,Z) — 0.

(3) Mapping oy to Z, we obtain an exact sequence

0 — Hom(Y, Z) — Hom(Wy, Z) — Hom(Uy,Z) — &Y, Z) — 0.
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4) Wehave S5 € 85, and S, C SG;/ for any exact sequence o with o] € E(Y, Z).

Proof. Statement (1) holds by definition. For (2), note that the pullback of oz under
any morphism in Hom(Y, Vz) will still have a splitting pushout under any morphism
from Z to X € add ¥ and thus belongs to £(Y, Z). By the definition of 0z, any
exact sequence o with [o] € &(Y, Z) is a pullback of oz. The proof of (3) is dual,
and (4) follows from (2) and (3) as shadows cannot grow under pushouts nor under
pullbacks. U

As an immediate consequence we obtain the following corollary.
Corollary 8.2. dim; (Y, Z) = 5(_,;/ (Z) = 85,(Y).

Lemma 8.3. For an A-module X the following properties are equivalent:
(1) X eadd ¥,

(2) 6(=. X) =0,

(3) E(N,X)=0

There is a dual statement characterizing X’ € add 7.

Proof. The implications from (1) to (2) and from (2) to (3) are immediate. In order
to show that (3) implies (1), it is enough to prove the inclusion § C Sg;v; in fact
then both shadows coincide as o, is fit for (M, N). By [16] there is a short exact
sequence

c: 0O A Z'eM N 0.

By the definition of F, we know that §; = §. Therefore [¢] € &(N, Z’), which
implies that § = 85 C SU}V C § by Lemma 8.1 (4). O

Lemma 8.4. The following conditions are equivalent:
(1) Uy belongs to add(¥F”’),
(2) Uy belongs to add(F") for any module Y,
(3) Vi belongs to add(¥F),
(4) Vz belongs to add(F") for any module Z.

Proof. Obviously (2) implies (1) and (4) implies (3). Thus, up to duality, it suffices
to show that (1) implies (4). Let Z be a module. As Wz € add ¥ and Wy, € add ¥/,
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the exact sequences o'y, and oz induce the following commutative diagram with exact
rows and columns:

Homu(Wy, Wz) —— Homy(Uy, Wz)

0
i
Homy (Wy, Vz) —— Homu(Uy, Vz) — E(N.Vz) —= 0

0 EUN. 7).

As Uy belongs to add F' by our hypothesis, § is surjective. Then « is surjective as
well, thus E(N, Vz) = 0, which implies Vz € add ¥ by Lemma 8.3. O

We are now ready to give a first characterization of the regularity € at V.

Proposition 8.5. The scheme €py is regular at N if and only if E(M, M) = {0} and

one of the equivalent conditions in Lemma 8.4 holds.

Proof. We compute the difference dimy &(N, N) — codim(M, N). Observe that
codim(M, N) = &3, y(N) + Sy v (M).
By Corollary 8.2,
dimy &(N, N) — dimy &(N, M) = 51 (N) — 8,1 (M)
= Sy n(UN & N) =8y y(WR)
=Sy n(Un & N),
dimg E(N, M) — dimg E(M, M) =&, (N)—&,, (M)
= S .N(M @ Var) — Spa.v (W)
= Su N (M & Var).
Thus
dimy (N, N) — codim(M, N) = dimy E(M, M) + 8y 5 (Un) + Sma,8 (V).

By Corollary 7.2, the scheme €y is regular at N if and only it E(M, M) = 0
and 8y, y(Uy) = Sy n(Vm) = 0. As by Lemma 8.4 &), (Uy) = 0 forces
Sm.v (Var) = 0, our claim follows. ' O

Lemma 8.6. Assume that E(M, M) = 0. Then Cyy is singular at N if and only if

there exists an indecomposable U such that the sequence

JU:O—>U£>WUE>VU—>O

satisfies the following conditions:
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(1) The representation Vi is indecomposable.
(2) The morphism g: Wy — Vy is a sink map from add ¥ to V.

(3) Ifthe mesh stopping at some indecomposable Y belongs to Sq,,, then Y ¢ ¥

[eF R

Proof. We first prove that €y is singular at N if these conditions hold. Note that o7
does not split, as U/ € ¥ would imply Vi = 0, but Vy is indecomposable. Therefore
the mesh stopping at V; belongs to 84,,, and condition (3) implies Vi ¢ F. The
claim then follows from Proposition 8.5 as condition (4) in Lemma 8.4 is violated.
In order to show the converse implication, observe that the surjection Wy — Vy
factors through the sink map 6: C — Vy from add ¥ to Vy. In particular € is
surjective and we obtain the following commutative diagram with exact rows:

on: 0 N Wx Vn 0
o
g: 0O B C VN 0.

Thus ¢ is fit for (M, N), being a pushout of o5 . A decomposition of Vi into a direct
sum of submodules yields a corresponding decomposition of ¢ as a direct sum. We
choose a direct summand of @:
7 0—U Lo ey ——

such that V is indecomposable and does not belong to add(¥). As g is radical, f
is a source map from U to add ¥. But a source map from a decomposable module
has a decomposable cokernel, and therefore {/ must be indecomposable and 7 is
isomorphic to og;.

Finally, suppose the mesh stopping at some indecomposable ¥ belongs to ;.
Equivalently, we have 6,(Y) # 0. If ¥ belongs to ¥, any morphism from ¥ to V
factors through g, and thus §,(¥) = 0, because g is a sink map from add ¥ to V.
Our last claim follows. O

Lemma 8.7. Assume that the algebra A is dirvected and consider the exact sequence
n from Lemma 8.6. Then codim(W,U @ V) = L.

Proof. Since nisfitfor (M, N)and W belongs toadd(¥ ), we have 6,(W) = 0. Since
U and V are indecomposable and A is directed, Ext}1 (U, U) = {0}andEnd4(V) >~ k.
We conclude from the long exact sequences

0 — Homu(U,U) — Homy (U, W) — Homu(U, V) — Extjl(U, U),
0 — Homy(V, U) — Homu(V, W) — Homu(V, V) - &(V,U) — 0

induced by 7 that §, () = 0 and &, (V) = 1. Thus
codim(W,U @ V) =8 (U & V) + 8,(W) = L. O
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We end this section with a few remarks on singularities.

Remark 8.8. For a finitely generated algebra A and M € modj (k), we have a
chain of inclusions of schemes Oy C (Cadrea C €y Fix N € O, and let us
compare regularity at N for Ops, (€as)rea, and €ps. Clearly, if €y is regular at N,
the subscheme (€as )r.q Will be as well. Remember that in Example 3.7 we have that
(CrM red = O and that the tangent space of O (and thus of (Car)req) at N is a
proper subspace of 7¢,, x. So there might be cases where Ty is singular at N while
(€af )rea 18 regular at that point.

As Oy is an irreducible component of (€as)req by Proposition 1 of [4], we have
that regularity of (€ps)req at N implies regularity of @p at N. The following sim-
plified version of Carlson’s example shows that the reverse implication is false.

Example 8.9. Let O be the quiver

1#—-#;—
B 40 - S

and let J be the ideal generated by do, ¥ and ya — 8. Consider the representations

(1)

\0) (1 0) O @
k=2 ==k, Uh=0"_Sk—=

(O (© 1 ©

\1)

M =

and

for A, € k. It is not difficult to see and can be found in [14] that Oy and the
closure of | J; ,,ex GLa (k) * (U, & V) are irreducible components of € and that
they intersect in the closure of |_J; o GLg(k) * (Uy & V_,), where d = (1,2, 1).
So €y issingularat N = Uy @ V_y.

On the other hand, a computation shows that the morphism given by

B

X1 X2 Y1 )2

k 2 k +— (_ N )

i (51 12) I i Zzz Z
Y2
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is an isomorphism from @4 to the variety V1 (k) of 2 x 4-matrices of rank at most
1, which has a single singularity at 0, the image of the semisimple representation.
Hence 9y is regular at N.
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