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On the uniform perfectness of the groups of diffeomorphisms of
even-dimensional manifolds

Takashi Tsuboi *

Abstract. We show that the identity component Diff” (M ?")¢ of the group of C” diffeo-
morphisms of a compact (2m)-dimensional manifold M2 (1 < r < oo, 7 # 2m + 1) is
uniformly perfect for 2m = 6, i.e., any element of Diff” (M ™)y can be written as a product
of a bounded number of commutators. It is also shown that for a compact connected manifold
M?2" (2m > 6), the identity component Diff” (A2 of the group of C7 diffeomorphisms
of M2 (1 < r < oo, r # 2m + 1) is uniformly simple, i.., for elements f and g of
Diftl"r (M2 {id}, f can be written as a product of a bounded number of conjugates of g or

g
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1. Introduction

For an n-dimensional manifold M”, let Dift’. (M ") denote the group of C* diffeo-
morphisms of M" with compact support (1 < r < o0). Here, the support of a
diffeomorphism f of M” is defined to be the closure of {x ¢ M ‘ f(x) £ x}. Pora
compact manifold M ", Diff’ (M ") coincides with the group Diff" (M") of C” dif-
feomorphisms of M”. Let Diff’ (M ™) denote the identity component of Diff (M").
Here Difff (M ") is equipped with the C” topology ([16], [23]). By the results of Her-
man, Mather and Thurston ([11], [14], [16], [23], [2]), for an a-dimensional manifold
M?”, Diff (M")g is a perfect groupif r =0orl <r < ocandr # n + 1. Here,
a group is said to be perfect if it coincides with its commutator subgroup. In other
words, a group is perfect if any element can be written as a product of commutators.
The perfectness of a group is equivalent to the vanishing of first homology group of
the group. The homological properties of the group Dift] (M” )¢ has been studied in
connection with the theory of foliations ([23]).

*The author is partially supported by Grant-in-Aid for Scientific Research (A) 20244003, Grant-in-Aid for
Exploratory Research 21654009, Japan Society for Promotion of Science, and by the Global COE Program at
(Graduate School of Mathematical Sciences, the University of Tokyo.
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In general, for an element g of the commutator subgroup [G, G| of a group G,
its commutator length is defined to be the minimum number of commutators whose
product is equal to g. It is natural to ask whether the commutator length function
cl: [G,G| — 7 is bounded. When the commutator length is not bounded, then it
is very interesting to know about the stable commutator length defined by scl(g) =
limy,_seocl{(g®)/n in Bavard [3]. The stable commutator length function is related
with the bounded cohomology groups H;(G) of the group G defined by Gromov
([7D. Namely, the homomorphism Hbz(G) — H?*(G) is injective if and only if
the stable commutator length function vanishes on [G, G]. This is formulated as the
Bavard duality theorem which describes the stable commutator length in terms of
homogeneous quasimorphisms ([3]). In recent years, the stable commutator length
and the quasimorphisms appear as an important key to study infinite groups (see for
example [5] and its references).

We say that a group is uniformly perfect if any element can be written as a product
of a bounded number of commutators. It is easy to see that the uniform perfectness
implies the vanishing of stable commutator length function, and hence the injectivity
of the map from the second bounded cohomology group to the usual one.

For the question of uniform perfectness of the group of diffeomorphisms, the
following results are shown in [4], [30] and [31].

Theorem 1.1 (Burago—Ivanov—Polterovich [4], Tsuboi [30], [31]).

(1) Fortheinterior M" of a compact n-dimensional manifold which admits a handle
decomposition only with handles of indices not greater than (n — 1)/2, any
element of Diff (M")o (1 <1 < oo, 7 # n + 1) can be written as a product
of two commutators.

(2) For a compact even-dimensional manifold M*™ which has a handle decom-
position without handles of the middle index m, any element of Diff" (M*™)
(1 =r <oco,r #2m + 1) can be written as a product of four commutators.

(3) For an arbitrary compact odd-dimensional manifold M*" ™+ any element of
Diff" (M?™ 1) (1 < r < oo, r # 2m + 2) can be written as a product of five
commutators.

Now the result of this paper concerns the remaining cases.

Theorem 1.2. The identity component Diff" (M ™) of the group of C* diffeomor-
phisms Diff” (M?™) of the compact (2m)-dimensional manifold M?™ (1 <r < oo,
r % 2m + 1) is uniformly perfect for 2m = 6, i.e., any element of Diff” (M?#")q can
be written as a product of a bounded number of commutators.

Here the bound for the number of commutators may depend on manifolds. For
the manifolds of dimensions 2 and 4, the problem of uniform perfectness of the
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identity component of the group of diffeomorphisms is still open. The vanishing of
the stable commutator length of these groups is not known either. It is interesting to
find some other approach to study the stable commutator length of diffeomorphism
groups which might solve the remaining cases (see [4], [12]).

The argument deducing the simplicity of Diff” (M ™ )¢ from the proof of its per-
fectness ([8], [23], [2]) applies to showing the uniform simplicity from the proof of
its uniformly perfectness ([31]). We say that a group G is uniformiy simple if, for
elements f and g of G Y\ {1}, f can be written as a product of a bounded number of

conjugates of g or g7 1.

Corollary 1.3. For a compact connected (2m)-dimensional manifold M*™* 2m >
6), the identity component Diff" (M ™) of the group Diff" (M*™) of C' diffeomor-
phisms of M?™ (1 < r < co,r # 2m + 1) is uniformly simple.

The main part of the proof of Theorem 1.2 is a decomposition of an isotopy into
a bounded number of isotopies with controlled support. Then the theorem follows
from Theorem 1.1(1) in a way similar to the proof of Theorem 1.1(2) and (3) in
[30] and in [31]. For the decomposition, we give a technique to find the Whitney
disks which guide to separate two stratified subsets of the middle dimension #. The
condition 2m > 6 on the dimension implies that the Whitney disks can be disjointly
embedded in the manifold and enables us to show Theorem 1.2.

We review the proof of Theorem 1.1 in Section 2 and there we give lemmas about
the general position of two stratified subsets which were not correctly stated in [31].
Then we give the proof of Theorem 1.2 in Section 3. The proof of lemmas used in
Section 3 is given in Sections 4 and 6. We show Corollary 1.3 in Section 5.

The author is grateful to the referee for patient and careful reading and for pointing
out several errors in the earlier versions, one of which is a misleading statement on
relationship between the decomposition by the stable manifolds of a gradient flow of
a Morse function and a cellular decomposition of the manifold (see Section 6).

2. Decomposition of isotopies

The proof of our Theorem 1.2 relies on the general position argument for differentiable
maps between manifolds with stratified subsets. In [30] and [31], we looked at the
general position of the differentiable mappings from a cellular complex to a manifold
with differentiable cellular decomposition.

The argument in [30] and [31] works for differentiable manifolds with stratified
subsets which are defined as follows: Let M” be an n-dimensional manifold. A
subset X of M" is an m-dimensional stratified subset if there is a filtration

X = X0 = yll) = = U = 5900)
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such that, fork =0, ..., m,
(1) X% is a closed subset,
2) X%®\ X% ig 4 k-dimensional submanifold of M",

(3) for the closure X&) \ X *=1) of x ®)\ x =1
W\(X(k) \X(k—l)) c x%&=1)

The subset X% is called the k-dimensional skeleton of X. This definition of the
stratified subsets is a weak one ([36], [24]).

First we show the following lemma which is the necessary generalization of
Lemma4.3 in [30] or Lemma 2.3 in [31].

Lemma 2.1. Let M" be an n-dimensional manifold with a compact k-dimensional
stratified subset KX, and N™ be an m-dimensional manifold with a compact £-
dimensional stratified subset LY. Let SN — M?" be a differentiable map. If
k4 £+ 1 = n, then there is an isotopy {®;: M"™ — M"}icp01] (Po = id) such that
P (K*) N f(LY) = 0.

Proof. We construct the isotopy @, skeleton by skeleton. Let K @) denote the u-
dimensional skeleton of K k;

EF=K® ... 5 O 5 O

Assume that for ¥ — 1 < k — 1, there is an isotopy {@P¥1},c(01] (@Y1 = id) such
that
oK Dy (LY = 0.

Then there is a neighborhood U,,_; of K%~V such that Q¥ Uu1) N LY =0.

Now for u = k, we construct an isotopy {D}};c0,1] (P§ = id) such that
CD{‘(K(”)) N F(LY = 0. Since K™ is closed in K*, K \ U,_, is compact
and is covered by finitely many coordinate neighborhoods {(D* x D”_u)i}fil of
M?" of the form D¥ < D" % where D" and D" ™% are the closed balls of radius 1 in
R* and R™"* respectively, and

(KW \ Uy1) N (D* x D™7*); € (D¥ x {0}
Moreover we can take such neighborhoods that the family
. ' — ky_
{int(DY,,) > int(D )i 12

still covers K® \ U,_,, and

Ky
KN\ Uy © | JGnt(DY)5) < {0,
i=1
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where DY 12 and D?/_Q” are the images of the closed balls of radius 1/2 in R* and
R*™¥ respectively, and “int” denotes the interior. _

Now assume that fori —1 < k,, —1, we have an isotopy {CD;"L*I teelo,1] (@g’kl —
id) with support in U;;II(D” < D"7*); such that

ko
KM @y o @ T I ALY) | in(DY),) x int(D59),;.
j=i
On the neighborhood (D% x D?7*);, we have the projection
Di = projys (s B %) —ae DIV H,

Put LE | = (@¥Lo @ 1Yy L(F(LY). Since p;(LE_| N (D* x D**);) is a finite
union of images of manifolds of dimension < £ < n —%k —1 < n —u — 1 under
differentiable maps of class C" (r = 1), it is a measure zero subset of D*7¥ by
the Sard theorem. Moreover, since Lf is compact, p,;(Lffl N(D* x D" *);)is a
nowhere dense closed subset of D" ¥, Take a point ¢; close to 0 in the complement
of p; (Lf_1 N (D¥* > D*7¥);). Let {@]"4: M" — M"};cp0,1] (@' = id) be an
isotopy with support in (int(D*) xint( D™ *)); such that @/*(x,0) = (x, ti(x)g:)
on (D* x D"7%);, where w: int(D*) — [0,1] is a C*° function with compact
support such that u(x) = 1 for x € D;‘/z. Since we took ¢; in the complement of
pi(Li_y N(D* > D)),

LY N (K™Y N (int(D 1/2) X int(D75°)); = 0,

hence _
(@) L) 1KY N (int(DY ) > int( DY) = 0.

Since we took g; sufficiently close to 0 € D" ¥,

@1t Hn (K(”) U U(mt(D 1) X int(D77 ))j) — 0 (1 € [0,1]).
i=1

Thus we found the isotopy {@;"i = @f’i_l o @;”J}Ie[osl] (Do = id) with support
}:1(Du > D*7*); such that

Ky

KW @it ooy L (@) ¢ | Gnt(DY,) > int(D]3);
=i+l

Let @ be the composition @¥~! o @," K , then (&} }56[0 1] (@ = id) satisfies
thatqb"(K(")) N f(LY = 0. Then @; = cbk catiefies QKRN LY =0. O
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We use Lemma 2.1 to show the following theorem ([30], [31]).

Theorem 2.2. Let M" be a compact n-dimensional manifold. Let P¥ and Q¢ be
p-dimensional and g-dimensional stratified subsets in M”", respectively. Assume
that p +q + 2 < n and that P? N Q7 = 0. Then any element f < Diff" (M")q
(1 <r < oo)canbewrittenas aproduct | = gohsuchthat g € Diff L (M™\k(Q%))
and h € DiffL(M" \ P?)g, where k < Diff .(M" \ P?)q is a diffeomorphism of
M?" with support in a smail neighborhood of Q9, and Diff (M" \ k(Q%))o and
Diffl(M" \ P?)q are considered as subgroups of Diff" (M")q, respectively.

The statement of Theorem 2.2 means that, by moving Q by asmall isotopy &, the
diffeomorphism g of M7" obtained in Theorem 2.2 is isotopic to the identity by an
isotopy which is the identity on a neighborhood of £(Q?), and 4 is isotopic to the
identity by an isotopy which is the identity on a neighborhood of P#.

For the completeness, we include the proof of Theorem 2.2.

Proof of Theorem 2.2. Let { f}:c[0,1] be the isotopy such that fo = id and f; = f.
Let F:[0,1] x M" — M?" be the trace of the isotopy: F(z,x) = f;(x). Here,
[0,1] x M" contains the (p + 1)-dimensional stratified subset [0, 1] < P®,

We look at the image F([0,1] x P?) C M". Asp+1+g =n—1,byLem-
ma 2.1, there is an isotopy {ks }se[o,1] (ko = id, k1 = k) such that F([0, 1] < P?) N
kK(Q7) = 0.

Then the following lemma implies Theorem 2.2 by putting Py = @ and replacing
07 by k(Q9). [

Lemma 2.3. Let M" be a compact n-dimensional manifold. Let PP and Q% be
p-dimensional and g-dimensional stratified subsets of M", respectively. Let Py be a
subset of PP. Let { f;} C Dift" (M™)q (fo = id) be an isotopy which is the identity
on a neighborhood of Py. Assume that [;(PP\ Po) (1 Q2 = 0 (¢t € [0,1]). Then
J1 € Diff"(M"™)q can be written as a product fi = g o hy, where {g;}efo,1] C
Diff,(M" \ Q%o (g0 = id) and {h; }tefo,] C DIfL(M™ \ P¥)q (ho = id).

FProof. Let F:[0,1] X M" — M" be the trace of the isotopy: F(f,x) = f:(x).
Let W be a neighborhood of Py in M where f; is the identity. Let U be a
neighborhood of F([0,1] x (P?\ W N P#)) and V be a neighborhood of 0% such
that U NV = 0.
Let & be the vector field on [0, 1] x M” given by 8% + (W)szo at (¢, f:(x)).
This & generates the isotopy f;. Let 1 be a vector field on [0, 1] x M " with support

in [0, 1] x U such that = & on a neighborhood of

{r, fi(x)) | xo € PPAW N PP, 1 €0, 1]}
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Thenn = d/df on [0, 1] x (V UW) which is a neighborhood of [0, 1] x (Q7 U Py).
Then n generates an isotopy 18+ }s<[0,1] Such that g, is the identity on the neighborhood
VIUW of 09U Pgand g,(x) = f;(x) for x in a neighborhood of P? = (P?\ W N
P2YU(W N P?). Here,forx € W, g,(x) = x = f;(x). Puth = g1 fi,then his
the identity on a neighborhood of PZ, and it is isotopic to the identity as an element
of Diff" (M™). For, put h; = g,~% o f;. Then h, is the identity on a neighborhood
of P?.

Thus we can write /' = goh,where g € Diff . (M"\ Q9)¢, h < DUfL.(M"\ P ?),.

0]

To use Theorem 2.2, we looked at the stratifications of a compact manifold M”
given by the stable manifolds or by the unstable manifolds of the gradient flow of a
Morse function associated with a handle decomposition.

A function f: M" — R on a compact n-dimensional manifold M” without
boundary 1s called a Morse function if the critical points are nondegenerate, that is,
the Hessian matrices of / at the critical points are nondegenerate. For such a function
f, the set of critical points is a finite set. The index of the Hessian matrix of f ata
critical point is called the index of the critical point.

Any compact n-dimensional manifold M7” without boundary admits a Morse
function f: M” — R suchthat f(M?") = [0, n], the set of critical points of index &
is contained in f~1(k) (k = 0, ..., n). Such a Morse function is called self-indexing.
If M" is a compact connected n-dimensional manifold M” without boundary, there
is a self-indexing Morse function f: M" — R such that £ '(0) and f '(n) are
one point sets ([19]).

For a < [0, n], put M, = f~(a). Then M, is a codimension 1 submanifold of
M?" if @ is not an integer. Put Wy = f~1([0,k + 1/2]), and then this W is a compact
manifold with boundary 8Wy = M1/ = f ' (k + 1/2). Let ¢x be the number
of critical points of index k. Then the manifold Wy, is diffeomorphic to the manifold
obtained from Wj_; by attaching ¢z handles of index & (k = 0, ..., n). This means
the following,

Let Df % D" % be the product of the k-dimensional disk D¥ and the (# — k)-
dimensional disk D" . Let ¢;: (ADF) x D" % — W, (i = 1, ..., ¢) be
diffeomorphisms with disjoint images. Let

Ck
Wi = Wi, ULee g | |(D* > D" *),
i=1

be the space obtained from the disjointunion Wy LI |_|fi1 (D > D" %), by identify-
ing x € (D) D" % < (D* x D" %); with ¢; (x) € 0Ws_1 C Wi_1. The image
of D¥ x D" % in W, is called a handle of index k. We will simply write the handle
of index k as (D* x D"%), Then W, is a manifold with boundary and the corner
which is the image |_|f£1 ¢; ((ADF) % (AD"%)). By smoothing along the corner, we
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obtain W/ from W/ and W has a differentiable structure which is diffeomorphic to
Wy, and we say Wy is obtained from the manifold Wy _; by attaching ¢; handles of
indexk (k=0,...,n).

In fact, we can consider W) as a submanifold with corner of Wy, W/ is obtained
by taking the union of W/ and a neighborhood of corner of W/, and Wy \ W/ is
diffeomorphic to (—oo, k + 1/2] < 0Wy. We have the sequence of submanifolds

WoCW CW' cW C - C Wy CW.CW] C W
CoCWy CW, =W =W, =M"

Then, when we identify W/ with Wy, M" is decomposed into the union of the handles
(Dk X D”’k)i (i=1,....,cp; k5 =0,...,n) and this decomposition into handles is
called a handle decomposition of M. However, hereafter we do not identify W,/ or
W with W We call the image of D* x {0} the core disk of the handle (D* x D™ %),
of index k. The boundary of the core disk of the handle of index k is an embedded
(k —1)-dimensional sphere in 0Wy_1 = My_/, and it is called the attaching sphere.

For the above self-indexing Morse function f: M"™ — R and the constant func-
tion n, the function # — f is a Morse function, and the critical points of index &k of
the Morse function f are nothing but the critical points of index #n — &k of the Morse
function » — f. Hence this gives rise to a handle decomposition of M " called the
dual handle decomposition. That is for

W=7 0n—k+1/2) = f7H(k —1/2,n]),

MP=Wr=W)"=W;>W, |
DD WL O W D Wl D W L
DD WD W o WY o Wy
Then W, is obtained from W* , | by attaching c; handles of index n — k. The
core disk of the handle of index n — k for this handle decomposition is called the
cocore disk of the handle decomposition for f. The boundary of the cocore disk of
the handle of index & is an embedded (# —k — 1)-dimensional sphere in dW* , | =
0Wg = Mj1/2 and it is called the belt sphere.

By choosing a Riemannian metric on the manifold M?”, the Morse function f
defines the gradient vector field and the gradient flow ¥,. The singular points of the
gradient vector field are precisely the critical points of f. The local stable manifold
and the local unstable manifold of the singular point p of the gradient flow ¥, cor-
respond to the core disk and the cocore disk of the handle containing p of a handle
decomposition of M”, respectively ([18], [19]). Let ef and e;‘”_k denote the global
stable manifold and the global unstable manifold, respectively, for the singular point

pf which is a critical point of index &k of f (i = 1, ..., ¢z). Then ef and e;‘”_k are
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diffeomorphic to R* and R*~*, respectively. Let

x%® = er;’ k=0,..., 5.

J=ki=1

Then
Mt =xW 5 xe-1) 5 - x® 5 x0O

is a stratification of M" ([18]). That is, X®) is a closed subset, LSk e* is a k-

i=1"%i
dimensional submanifold, and |_J;¥ | ef LS ef c X®=1_ We call this the strati-
fication by the stable manifolds (for the gradient flow of the Morse function). We also
have the stratification by the unstable manifolds (for the gradient flow of the Morse
function):

MR e X*(R) = X*(R—I) T o T X*(]) = X*(O),

where X *(n—%) — U U2, e:”_j (k =0, ..., n). This is the stratification by the
stable manifolds for the gradient flow of the Morse function n — f.

We look at the k-dimensional skeleton X ®) of the stratification by the stable
manifolds and the (n — k — 1)-dimensional skeleton X**~%=1 of the stratification
by the unstable manifolds. The boundary dW; = Mg/, of Wy is transverse to the
gradient flow ¥, and hence M \ (X ® U X *(»—% 1)) ig diffeomorphic to dWy x R

by the map
W xRo(x,0)r>¥(x)e M), (X(k) L X*(n—k—l))'

Moreover ¥, (3W;) converges to X asr — —oco and to X*# %1 a5 1 — o0,
Hence, M \ X*—*-1 ig diffeomorphic to the interior int( Wy ) of Wy, and any small
neighborhood of X ®) contains a deformation retract of both Wy, and M . Jrigkd),

X® int(We) € Wi ¢ M\ X ¥k,

Using the gradient flow ¥, for any neighborhood IV of X% in int(Wy) and for
any compact subset A in int(Wy), we can construct an isotopy (G, int(Wy) —
int(Wg)}reo,1] with compact support such that Go = idipwy), G;(X(k)) o X%
(t € [0,1]) and G1(A4) C V. A similar statement is true for X% < M\ X *n—k=1),

Remark 2.4. For our Morse function there is a Riemannian metric on M " such that
the stable manifolds ef and the unstable manifolds e;ik; intersect transversely ([21]).
As we shall see in Section 6 (Proposition 6.2), for a carefully chosen Riemannian
metric, there is a cellular complex structure compatible with the stratification by
stable manifolds.

Now for the interior M” of a compact manifold with boundary M ” which admits

a Morse function such that W, = M?" for 2m < n, we have the following lemma
(see [30], Lemma 4.5).
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Lemma 2.5. Let M" be the interior of a compact n-dimensional manifold which
admits a handle decomposition only with handles of indices not greater than (n—1) /2.
Let X ) be the m-dimensional skeleton of the stratification by the stable manifolds for
the gradient flow of the Morse function on M" adapted to the handle decomposition
(2m < n). Then there are an isotopy {Fy: M"™ — M"},[0,1] with compact suppoit
(Fo = id) and an open neighborhood U of X such that (F)YYU) (£ € ) are
disjoint.

Proof. Let I be a small neighborhood of X0 M”® We apply Lemma 2.1 to
the identity map M”" — M" of M" with stratified subset X" . Then there is an
isotopy {h¢}refo,1] such that hg = id and hi (X)) N X0 = §. We may assume
that the support of the isotopy {/¢};<[0,1] is contained in V5. Take a neighborhood
of X and V5 of 21 (X% ) such that V; N Vs = @. Then Va3 = ¥, N (h1) "1 (V3)
is a neighborhood of X @ such that V5 M A (V) = . Here we can take V] and V5
such that their closures 71 and Vg are compact, and then Vg, is compact.

For V5 and h;(V3), by using the flow lines of the gradient flow ¥,, we have an
isotopy {G¢: M" — M"};c[0,1] with support in V such that Gg = id, G| X™ =
idX(m) and Gl(hl(V3)) & V3.

Let F; be the composition of G; and #;: F; = Gy o h;. Then Fl(Vg,) C V3. For
U = V3 \ F1(V3), (F)YU) (£ € Z) are disjoint. O

We give the proof of Theorem 1.1 (1).

Proof of Theorem 1.1 (1). Forthe manifold M ", we take the m-dimensional stratified
set XU (2m < n) given in Lemma 2.5. Let £ € DiffL(M"®)y (r £ n + 1). By the
result of Herman, Mather and Thurston ([11], [14], [16], [23], [2]), f can be written
as a product of commutators.

f — [alabl]”'[akabk]a ay, bla ceey Ap, bk € lefZ(Mn)On

where [a;,b;] = a;b;a;7'h; 7. Let C be a compact subset of M” such that the
supports of a;, b; as well as the supports of the isotopies {a;; }ie[0,1] (@30 = id and
aj1 = @), {bit}iepo.1] (bio = id and by; = b;) are contained in C.

By using the flow lines of the gradient flow ¥, we have an isotopy {G | };c[0,1] with
compact support such that G{(C) C U, where U is the open neighborhood taken in
Lemma 2.5. Then by Lemma 2.5, for F; in Lemma 2.5 and g = (G{) ' o F; o G,
LG I(U)) (£ € Z) are disjoint.

Put

k
H = H e ([ar, bl [as, by g .
)
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Then H is an element of Diff’ (M"),. Now the conjugate of H by g is as follows:

k
gHg ' =[] (a1 bu] -+ [as. Bi])g" !
i=1

= Hgk “an, bal e [ai1, bia]g ™
Hence
k-1
H'gHg ' = (lar. ba] -+ [a. b)) [ | 8% las 11, b a]g"*
=0
k-1
= /e Tairn. bl
1=0
k-1 fe—1
= f [ H gt 00, H 8k_lbz'+1gl_k]—
i=0 i=0
Put

A=]]&" 041" and B= ]_[g bit1g'

then A and B are elements of Diff’ (R”)y. Thus f can be written as a product of two
commutators: f = [4, B][g, H™. ]

Proof of Theorem 1.1(2). For an even-dimensional compact manifold M ™ which
has a handle decomposition without handles of the middle index m, Theorem 2.2
together with Theorem 1.1 (1) implies Theorem 1.1 (2) (see [30]). [

For the decomposition of an isotopy on an odd dimensional manifold, we used
the following lemma (see [30], Remark 4.4).

Lemma 2.6. [n Lemma 2.1, let K¥ = K® o k&1 5 ... 5 KO 5 KOgng
Lt = LO 5 @8 5 .0 5 LA 5 LO pe the stratifications. Then there
is an isotopy {@;: M"* — M?" }t 0.1] (Po = id) with support in a neighborhood
of K* such that ®1(K@) N f(L&')) = 0 fora+ b + 1 = n, and the intersec-
tion ®1(K@Y N f(L®)Y consists of finitely many transverse intersection points for
a+b=n.

FProof. We proceed as in the proof of Lemma 2.1. Assume that foru —1 < &k — 1,
there is an isotopy {@¥1},c[0.1] (@g_l = id) such thit @‘1‘_1(1’((“)) NALOYy=10
fora+b+1 =mnanda < u—1, and the intersection CD‘I‘_I (K@Y £(L®Y consists
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of finitely many transverse points for a + & = n and @ < u — 1. Then there is a
neighborhood U,_; of K@U such that ¥ Uyu—1) N FLE)y = ¢, We cover
K™\ U,_, by finitely many coordinate neighborhoods {(D* x D" %), } “, such
that

(K™ \ Uy) N(D* x D*7); € (D™ x {0});
and {(int(DY 2) K 111‘[(1)1/2 )),,}fﬁl still covers K™\ U,_;.

By the proof of Lemma 2.1, we have isotopies {@f’i}te[o,l] (@g’i =id, & =1,
k) with support in U}Zl(D” > D"7"); such that

ku
K@yt ooy L (r@ )y ) (DY) > int(D]5);
j=i+1

and for @ = P¥~1 o @M @U(KWY M F(LOD) = g,

We modity @/ to obtain @‘r‘ such that Eﬁ‘l‘ (KWWY M A(LP%) consists of finitely
many transverse intersection points.

Since @} (KO pL 10y = g, (f|L(”’“))’1(CD{"(K(“))) is a closed subset
hence is a compact subset in L% Thus it is compact subset in L#—#\ [ #—u—1)

Now assume that, for i < k,,, we have an isotopy {5?,5—1}t6[0,1] (@g’i_l = id)
with support in Uj-_:ll (D¥* x D"™*); such that

KW (@F o %1 L ALY 0 U(mt(D 12) X (D73,
i=1

consists of transverse intersection points. Then for
L =@ o o) (/@)
we look at p; (LT~ N (D > D" *);)in D" More precisely, we look at the map

pio(@f @Y o f:
@ L (@) o Y T ((int(D*) xint(D™)),)) — D",

Then by the Sard theorem for C" mappings between the manifolds of the same
dimension (r = 1), the critical value of p; o (P} o @T’I_l)_l o f is measure zero in
D", We choose aregular value g; close to 0.

Let {C/ﬁ’t"’i tre[o,1] be the isotopy with support in (int(D*) xint(D"7*)); such that
cﬁ’;“"'(x, 0) = (x, tu(x)q;) (5’0“”5 — id). Then since g; is a regular value,

L= 0 @ (KW) N (int(DY ;) x int(D5):
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or
(@)L 0 K™ N (int(DY),) x int(D]54));

consists of transverse intersection points. Since g/ is close to zero, the transversal-
ity in U};ll (int(Df,) x int(D],;*)) is preserved. Hence for (P = ¥l
Dy Yrefo,1s

K9 0@ o o7 (L) = 0

and

i
KM @t o o)L ALYy | int(DY,) x int(DY 54
F=1

consists of transverse intersection points.
~ - Au!k
Then for &% = @1 o @},

K @) @)y =0

and

K™ @9~ (f(L )

consists of transverse intersection points. Since K™ (5?)’1(f(L(”*“))) is com-
pact, this is a finite set.
Put @; = CD?. Then &; is the desired isotopy. L]

In the rest of this section, we sketch the proof of Theorem 1.1 (3). We need three
more lemmas whose proofs are omitted because they are either straightforward or
given by rewriting those in [30].

By using [Lemma 2.6 and the argument of the proof of Theorem 2.2, we obtain
the following lemma.

Lemma 2.7 ([30], Lemma 6.3). Let M" be a compact n-dimensional manifold. Let
PP and Q1 be p-dimensional and g-dimensional stratified subsets of M ", respec-
tively. Assume that p +q + 1 = n and that PP 1 Q9 = 0. Let P? — PW)
PP 5. 5 PO gnd 01 = 0@ 5 04D 5 ... 5 0O perhe stratifications.
Then any element | € Diff" (M ™)q can be written as a product f = g o h such that
g € DIffL (M™\k(Q7))o and h € Diff’ (M™\ PP~ wherek € Diff(M™\ PP)q
is a diffeomorphism of M ™ with support in a small neighborhood of Q9. Moreover
there is anisotopy {h¢ fee[o,1] Such that ho = id, hy = h, hy is the identity on aneigh-
borhood of PP~V and for H(t, x) = hy(x), H([0,1] x P?) Nk(QY™V) = § and
H{0,1] x (P2 P2~V M k(02 09V consists of finitely many transverse
intersection points.
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For an odd dimensional compact manifold M ?”+1, we considered a handle de-
composition of M?*™ 1 in [30]. Let M*"+1 = P(2m+1) > oo o PO be the strat-
ification by the stable manifolds for the gradient flow for the corresponding Morse

funetion, and M2#+1 = Q@m+1) 5 ... 5 OO e the stratification by the unstable
manifolds for the gradient flow. We look at the stratified subsets P = P and
O™ = 0" and we have the following lemma.

Lemma 2.8 ([30], Lemma 6.4). Let {h;}ie(o,1] (ho = id) be a C" isotopy which is
the identity on a neighborhood of PP~V and H([0,1] % P™) Nk(Qm D) = 0
for H{t,x) = hy(x). Let V" C P™ be the complement of a neighborhood of
P@ 1 where h, = id. Then there is a C*® _isotopy Ry }iefo,1] (ho = id) fixing a
neighborhood of PO=Y sych that its trace H: [0,1] x M2+l 5 pM2m+l g ¢
closeto H: [0,1] x M1 5 M™% and H|[0, 1] x V™ is an immersion outside
of a finite subset. Moreover the image

H(0,1] x V™) ¢ M2+ (PU—1 U g(0™—1y)

has finitely many double point curves which is in general position with respect to the
curves H([0,1] x {v}) (v € V™). If m = 2 these double point curves are disjoint,
and if m = 1, there are at most finitely many triple points and cusps.

Then, using the idea of Burago, Ivanov and Polterovich ([4]), we constructed an
isotopy {a; }te[o,1] (@0 = id) with support in a union of disjointly embedded (2m +1)-
dimensional open balls embedded in M 2"+ such that (a; o b, }(P™) Nk(Q™) =
(r € [0,1]), and we showed the following lemma.

Lemma 2.9 ([30], Lemma 6.5). For the generic diffeomorphism

h = hy € Diffe(M2m 1y pim-by,

given by Lemma?2 8, h can be decomposed ash = aogoh/, wherea € Diff2°(|_|; U)o,
Ll; Ui is a union of 2m -+ 1)-dimensional open balls U; disjointly embedded in
M2 FL g e DIff (M2 I\ k(Q™))g and B’ € Diff* (M2 1\ pmy,,

Proof of Theorem 1.1 (3). Note that the element ! o & € Diff" (M2"+1), is close
to the identity and it can be decomposed as A~ o h = ho g with he Diffl (M2 1
P™)o and § < Diffo(M?" 1\ k(Q™))o (Remark 5.4 in [30], see Remark 2.10).
Then by Lemmas 2.7 and 2.9,

f=goh=goho(h™toh)
:goaogoﬁ’ofl\og
=(goaogo(gogog)o( 1ol chog)
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and geaog —1 e Diffl(g(L]; Ui))o, g 0 g o & € DiffL(M# 1\ k(Q™))o and
oh' ok o § € Diff? (M1 \ §71(P™)). Noticing that a can be taken as

a commutator with support in | |, U, Theorem 1.1 (1) implies Theorem 1.1 (3) (see
[20]). ]

It is worth noticing again that, for any compact manifold M”, there is a neigh-
borhood of the identity of Diff" (M")o (1 < r < oo, ¥ #£ # + 1) whose element can
be written as a product of four or six commutators([30], Remark 5.4).

Remark 2.10. For a compact manifold M, we have a self-indexing Morse func-
tion F: M"™ — [0,n]. By choosing a Riemannian metric on M”, we have the
stratification {X (k)}” by the stable manifolds for the gradient flow of the Morse
function F, and the strat1ﬁcat10n fx*n—k) IL_o by the unstable manifolds. For a
compact odd-dimensional manifold M 271 M2"T1 is covered by two open sets
Uy = FY[0,m +2/3)and U, = F~ 1((m + 1/3,2m + 1]), where any neigh-
borhood of X U, contains a deformation retract of U; and any neighborhood
of X*m U, contains a deformation retract of U/,. Then by the fragmentation
lemma ([2]), there is a neighborhood A of the identity in Diff" (M 27" +1) such that
any element f of N can be written as a product f = g o h, where g € Diff (U )g
and A € Diff’.(U,)o. Hence by Theorem 1.1 (1), any element f of N can be written
as a product of four commutators of elements of Diff" (M2 1)y (1 < r < ¢,
r # 2m + 2). For a compact even-dimensional manifold M2 M?™" is covered by
three open sets Uy, U, and Us. Here, Uz is aunion of disjointly embedded open balls
which is a neighborhood of the set of critical points of index m. Let V3 be a smaller
neighborhood of the critical points of index m such that 13 ¢ Us. Then we can put

= (MP\ V)N FY[0,m + &) and Uy = (M2 \ V)N F~1({(m —¢,2m])
for a small positive real number &. Here, we can choose V5 so that any neighbor-
hood of X =1 U contains a deformation retract of U; and any neighborhood
of X/0n=1) — U, contains a deformation retract of U,. Then by the fragmentation
lemma, there is a neighborhood & of the identity in Diff” (M ?™)q such that any
element f of N can be written as a product f = a o g o b, where g € Diff7 (Uj)q,
h € Diff (U)o and a € Diff,(U3)o. Hence by Theorem 1.1(1), any element f
of N can be written as a product of six commutators of elements of Diff” (M?™)
(1=<r=<oo,r#2m+1).

3. Proof of the main theorem

For an even dimensional compact manifold M 2", we proceed as follows to prove
Theorem 1.2. (The proofs of lemmas are given in the next section.)

For the manifold M 2", we consider any smooth triangulation P of it (for the
existence of smooth triangulations, see [33], [37], [20], [6]). Let P% denote the
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k-dimensional skeleton of P. Then the (m — 1)-dimensional skeleton P —1 of the
triangulation P has the following property:

For each m-dimensional simplex 6™ of P®) let (P@—1 U g™) /6™ denote the
(m—1)-dimensional cell complex obtained from P #~1 Ug™ by identifying o™
to apoint. Then there is an embedding: of (P~ Ug™) /o™ in M 2™ such that,
for any neighborhood U of (((P" 1 U ¢™)/o™), there is a diffeomorphism
of M 2™ isotopic to the identity which maps P~ U o™ into U.

For any smooth triangulation P of M?™  there are a Morse function on M 2™ and
aRiemannian metric on M ?" such that the stratification by the stable manifolds of the
gradient flow is homeomorphic to P. Here, in a neighborhood of the barycenter b« of

the simplex o , we can take a coordinate neighborhood (I, (x1, . .. , X)) such that 6%
is locally given as xg) = <+« = x, = 0, and the Morse function in a neighborhood
of bk is givenby k —x1% —+«— x5 2 + X412+ + X 2. The homeomorphism can

be constructed so that it sends the stable manifold of the barycenter b« differentiably
to the interior of the simplex o* . Moreover the homeomorphism can be constructed
so that it sends the stratification () by the unstable manifolds of the gradient flow to the
cell decomposition P* dual to P. We show this fact in Section 6 (Proposition 6.1). In
this section, we identify the stratification by the stable manifolds with the triangulation
P by the homeomorphism and it is denoted by P, and then, we call the stratification
Q by the unstable manifolds the cell stratification dual to P. We call the stable
manifolds of P simplices and the unstable manifold of Q dual cells.

Remark 3.1. We may use a cellular complex associated with a handle decomposition
of M?™ if it has the above property for each m-dimensional cell 6™. The number
N of the m-dimensional cells of such a cellular decomposition of M*™" appears in
the estimate of the bound for the number of commutators at the end of the proof of
Theorem 1.2. We discuss the relationship between the handle decomposition and the
cellular decomposition in Section 6 (Proposition 6.2).

Now we look at the m-dimensional skeletons P™ and O of the triangulation
P and its dual cell stratification (). These P" and Q" intersect transversely at the
barycenters of m-dimensional simplices of P. Then by an isotopy f; (t € [0, 1]), the
intersection f; (P™) M O™ becomes very complicated. However, we can treat it as
follows.

For the manifold M?" , the statement of Lemma 2.7 is written as follows.

Lemma 3.2. Let P denote the m-dimensional skeleton of atriangulation of a(2m)-
dimensional manifold M, and Q™, the m dimensional skeleton of the dual cell
stratification. Let PD and Q(i) denote the i-dimensional skeletons (i = m — 2,
m — 1) of P™ and Q™, respectively. Then any element f € Diff" (M?*™)y can
be written as a product f = g o h such that g € Diff L((M** \ k(Q™))o and
h < DiffL (M2 \ P2, where k < Diffo (M2 \ P™)q is a diffeomorphism
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of M" with support in a small neighborhood of Q™. Moreover there is an isotopy
1At biefo,1] which has the following properties:

(1) hg =id, by = h, and h; is the identity on a neighborhood ofP(mfz).

(2) For H(t,x) = h:(x),
H([0,1] x POy N k(Q®DY = § and H([0,1] x P™)Nk(QW™—2)) = §.

(3) For each (m —1)-dimensional simplex o™~ ofP(m_l) and each m-dimensional
cell T of Q™ the intersection H([0,1] x o™~ 1) N k(™) is transverse. Thus
H([0,1] x P N k(O™) is a finite set.

Then, if 2m > 4, we can separate the image H([0, 1] x P~ from k(Q™) by
an argument similar to the proof of Lemmas 2.8 and 2.9.
First, we approximate the isotopy H by a generic one, say H. Let

{hs}iefo.1] C DIffPMP™ \ PO=DY  (ho = id)

be a C* approximation of {A;},e[0,1] C Diff, (M2 P2 generic with respect
to P™ and k(Q™) such that #, is the identity on a neighborhood of P=2) Then
H (¢, x) = h(x) has the following propertics:

(0) H: [0,1] x M — M?" isclose to I : [0,1] x M — M?" and h, is the
identity on a neighborhood of pm=2)

(1) The restriction

H|([0,1]] x V™1 [0,1] x V7" ! — M

is an immersion, where Vm_l_(C P =1y is the complement of a neighborhood
of P™=2 « pm=1 where h; is the identity.
(2) H([0,1] x P N k(@™ V) =@ and H([0,1] x P™) Nk(Q" D) =0.
(3) H([0,1] x Py N k(O™) is a finite set:

H(0,1] x Py k(O™ = {H(s;,vi) | i =1, ...,r}.

@) H(0, 1] > {v; ) Nk(Q™) = H(s;,v) (0 = 1,...,7),
(5) H([0,1] > {v;}) does not contain double points of H([0,1] x P? )i =1,

O
(6) H|[0,1] = PO 1 restricted to a neighborhood of [0, 1] {v; } in [0, 1] x P07 1)
is an embedding (i = 1, ..., r), and

(7) H([s;, 1] < {vi}) G = 1, ..., r) are disjoint.
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Here, the statements (1)—(7) hold for generic H (or the properties (1)—~(7) are generic
in the space of isotopies). In particular, the statement (5) holds because the inverse
image of the double point set of H([0, 1] x P~1) ig a finite set which is in general
position with respect to [0, 1] x {v;} (¢ = 1,...,r)and 2m > 4.

Note that for the proof of uniform perfectness, we can approximate the diffeo-
morphism for a bounded number of times. In fact in this case, fi=g10h =
grohio(hi™ o hy)and hy! o by e DIff"(M?™) is close to the identity. By
Remark 2.10, ;! o hy can be written as a product of six commutators.

For the above disjoint curves H ([s;, 1] > {v; }), we can construct isotopies as in
Lemma 2.9 which was used to prove Theorem 1.1 (3).

Lemma 3.3. For the above generic isotopy {fzf};e[osl], there is a neighborhood
U (i = 1,...,7) of the curve H([s;, 1] = {v;}) C M?™" diffeomorphic to a (2m)-
dimensional ball such that U; are disjoint and there is an isotopy {a; }re[o,1] (@o = id)
with support in |_|::1 U; such that, for b, = a; o h,,

RPNy Nk(Q™M =0 (<[0,1]).

Note that a, € Diff”.(|_|!_; U;)o can be taken as one commutator with support in
|_|£:1 U; (see [31)).

Since A, (P=Dy N k(Q™) = @ (¢t € [0,1]), by Lemma 2.3, there are isotopies
{8 refo.] C DIFFL(M2™ \ k(Q™)) and {h]}seo.1) C Diffh,(M2™ \ PUm=1) such
that b} = g} o 7. In other words, g} and A (¢ € [0, 1]) are the identity on neigh-
borhoods of k(™) and P~ 1), respectively. Note that, by taking A generically on
P™ B (P™Y N k(QU2) = g,

Put hgo) = kY. Then hgo) is the identity on a neighborhood of P®~1 and
B (P N k(O™ D) =G (¢ € [0, 1]).

We look at the intersection hgo)(Pm) N &k(Q™). At time 0, the intersection
h(()o)(Pm) M k(Q™) is the set of the points near the barycenters of m-dimensional

simplices. The image under the isotopy hgo) of an m-dimensional simplex ¢™ inter-
sects kK(Q @1 and k(Q™). We assume 2m > 6 and we are going to construct an
isotopy with support in the union of disjointly embedded balls which removes the
intersection of ¢™ and k(™) except on the dual m-dimensional cell.

This is the main part of the proof of our Theorem 1.2.

In fact, for an m-dimensional simplex ¢, we can remove the intersection of the
image of the isotopy of 0™ and k(Q® 1)) in a way similar to Lemma 3.3, and then
we can remove the intersection of the resultant isotopy of o™ and k( Q™ o™ *), where
o™* is the m-dimensional cell of Q™ dual to ¢™. For the latter process, we will find
the Whitney disks which guide the construction of isotopy to reduce the order of the
intersection point set. After removing the intersection of an m-dimensional simplex
o™ and k(O™ \ 6™*), we continue the process for other m-dimensional simplices.

More precisely, we construct the isotopies inductively, in Lemmas 3.4-3.7.
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Let ol (i = 1, ..., N) be the m-dimensional simplices of P™. For0 < j = N,
assume that we have an isotopy

{hgj)}re[o,u c Diff" (M*™)q (h(()j) s )

such that hgj) is the identity on a neighborhood of P~ U Ule o' Let f_zgj) be a

C approximation of hﬁ” generic with respect to P™ and k(gm) such thatﬁg]) is

the identity on a neighborhood of P 1 U \}/_, o™ Then HD (¢, x) = hgj)(x)
has the following properties:

©) HY: [0,1] x M2 — M s closeto HU): [0,1] x M2 — M2™ defined

by _H(J’) (t,x)= hg” (x)and hg") is the identity on a neighborhood of P ~1

i=107"
(1) The restriction

HY[0,1] x V7, [0, 1] x VT — M*™

is an immersion outside of a 1-dimensional subset (a codimension m subset)
of [0,1] x V; ( ) where V( )(C P™) is the complement of a neighborhood of

PUn=1) in P™ where h; U) s the identity.

2) HU([0,1]|x PNk = gand HY([0,1] x P™YNk(Q®™2) =
Q.

(3) HY([0,1] x P™) N k(O™ 1) is a finite set:

HI(0,1] x Py n k(@) = (HD (D) oDy |5 =1, ... #D).

@ BN(O,1] x DN k@™ Dy = DD vy i =1, ..., rD).

(5) HU)([0,1] ><{v1.(j)}) does not contain double points of U ([0, 1]x P™) (i = 1,
()
LY,

(6) HD|[0,1] x P™ restricted to a neighborhood of [0, 1] x {v?’} in [0, 1] x P™
is an embedding (i =1, ..., rU)Y, and

7 HD (s, 1] % {0971) are disjoint.

Here, the statements (1)—(7) hold for generic H (). In particular, for the statement
(1), we notice that the set of rank m matrices in the space of (m + 1) x (2m) matrices
is codimension m ([22]). The statement (6) holds because the inverse image of the
double point set of V[0, 1] x P™) is 2-dimensional in [0, 1] % P™ which is in

general position with respect to [0, 1] x {v(j Y =1, o9 and 2m > 6,



160 T. Tsuboi CMH

Lemma 3.4. Forthe above generic isotopy {EE” trefo,1], there is aneighborhood Ui(j)
G =1,...,rY)of the curve H’U)([SIU), l]x{vgj)}) C M diffeomorphicto a(2m)-
dimensional ball such that UU) are disjoint and there is an isotopy {aUH)}Ie[OJ]
(a(()jJrl) = id) with support in |_|E i U(") such that, for h’(") = a("H) o h(")

RPN Q™ N =06 @ <0,1).

P2
Note again that agjﬂ) e Diff’ (| | ;1 U(]))o can be taken as one commutator

with support in |_|E . U(") (see [31]).
The isotopy h’ff given by Lemma 3.4 has the following properties.

(0) h’gj) is the identity on a neighborhood of P11 Ule of".
(1) H'D(0,1] x P™) nk(Q™ V) = g.
(2] h’gj) is generic with respect to P and k(Q').

Now we look at the intersection h’gj)(Pm) N k(Q™). Since h’gj) is the identity
on a neighborhood of P 1 Ule o;", the intersection h’gj)(af’) N k(Q™) for
i < J is always the one point set o]" M k(o["*), where o/** is the m-dimensional
cell of O™ dual to 0/” (i < j). For the simplex o7” 71, the intersection h’ﬁ”(a}’.ﬁl) M
k(QO™) is a finite set which vary with respect to the parameter . If 2m > 6, we
can find the Whitney disks which guide to reduce the order of intersection point set
h’(")( o) k(O™ \ o J-I-l) where U}"Jr*l is the m-dimensional cell of O™ dual to

o | as we explain now.

For the m-dimensional simplex o?” i of P™, the intersection of 077, | and k(Q™)

is just one point which is the intersection of O , and k(o 1 )» Then the behavior

of the intersection h’m( o) Nk(o H_1)

mMouxg+QmuQm\]H)mhmkjﬂ)mugm\]H)Fmtmw
thath’(])(a 7)) NE(Q™ N\ 07Y ) is the empty set for small ¢, andsmceh’(])( o )0

k(Q"—V) = § (and h’(f)(P(m MNk(Q™) = B), the algebraic intersection numiber

of the two m-dimensional cells h’(f)( o/ 1) and k(z) (r € [0,1]) is always 0 for

each m-dimensional cell T of the dual cell complex O other than O‘] +1

If we look at the movement of the intersection h’(J )( +1) M k(™) with respect
to the parameter ¢, there happen a finite number of generatlons of pairs of intersection

it rather complicated. Hence we look at

points and cancellations of pairs of intersection points. For generic H'U) or h’gj),
the values of the parameters ¢ of generations and cancellations are different. This
genericity argument follows from the following well known lemma.

Lemma 3.5. Considerthe space of C°° maps F: R xR"™ — R™. Then, for generic
F, the inverse image of a generic point y € R™ consists of regular points and fold



Vol. 87 (2012) On the uniform perfectness of diffeomorphism groups 161

points for F; = F(t,*). At a fold point x for F;, by changing the coordinates of R™
(both of the second factor of R X R™ and the target R'™), F; is locally written as

Ff(xla"'axm): (xla"'5xm—1aym(rax15"'axm))a

where gym =0, aym # Oand 5 9 2. £ 0 at x. The fold points are discrete in F~ L)
and correspond to Ihe genemrzons or cancellations of pairs of intersection points.

We use this Lemma 3.5 in the following way. We take a tubular neighborhood
of k() and the projection pg(,m) to the fiber which is an m-dimensional disk, and
look at the map pg(pmy © (H'D|[0,1] x U}”H). Then for generic H'YU) | by using
Lemma 3.5, there are only finitely many generations and cancellations of pairs of
intersections in the family {h’(})( ] ol 1) N EE™ ) refo,1]-

We are going to construct the disks associated with the intersection H'G)([0,1] x
+1) M k(7’") for an m-dimensional cell 7 of O other than ¢” +1
For a generation of a pair of intersection points, the mtersectlon points near the
generation point are written as h’(j)(x ) and h’(j)(y ) (t € [to,t0 + €0)), where
(])(Xgo) =1y (j)(ygo) isthe generation point. Here, x; and y; are continuous func-

tions written as X; = (C1,...,Cm_1. T —Ig) and ¥; = (C1,..., Cu_1, —~/T — o),
respectively, for a suitable choice of coordinate around (fg, x;)) = (0, i) €
[0,1] x o J+1’ where ¢q,..., G 1 are constants.

We take aflat metric on the m-dimensional simplex crj’."“jrl and we draw the geodesic
segment X;y; in 07", | joining the intersection points x; and y; (¢ € [fo.fo + €0)).

Once we choose the pair of intersection points to be joined by the geodesic seg-
ment, we continue joining them as the parameter ¢ increases unless one of these
intersection points meets a cancellation point.

For a cancellation of a pair of intersections, the intersection points near the cancel-

lation point are written as h’(j)(x )andh’(j)(yt) (r € (tp—¢€0, to)), Whereh’(j)(xto) =

s )( Vt,) 1s the cancellation point. Here, x; and y, are continuous functions written
as x; = (C1,...,Cm—1,~/—t +to) and y; = (¢1,...,Cm—1, —+/—F + fp), TESpPEC-
tively, for a suitable choice of coordinate around (¢g, xz,) = (fo, Vi) € [0,1] Uj e
where ¢q,..., ¢;—1 are constants,

Assume that we have chosen geodesic segments for the intersection points such
that r < #g. Let x; (t € (fop — &g, %¢)) be the other endpoint of the geodesic segment
containing x;, and y; (r € (19 —¢&0, 1)) be the other endpoint of the geodesic segment
containing y;. There are two cases. In the case where x, # y; , that is, if it is

a cancellation of intersection points belonging to different geodesic segments x,x}
and y;yt in{t} xo 1 (r (Io €0, 10)), we draw the geodesic triangle joining the
3 points Xz, = ¥ ;O, xto and yr in {fo} X U}”H, and continue to draw the geodesic

segment xty,f joining x}; and y} in {1} x & 41 (0 € (to, 1o + €0)). In the case where
Xt, = Vi,» that is, if it is a cancellation of intersection points of the same geodesic
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segment X;y; in {{} X o +1 (t € (tp — €0, t0), x; = y¢ and y; = x;), we add the
auxiliary band

U bixixdu | [B1xiyg,

teltg—e.to] teftg—e.to]

which contains the curve [fo, 1] > {x;,} = [to, 1] X { ¥y, }, where & (< &o) is a small
positive real number. Note that the image of the auxiliary band does not contain
double points of H'([0,1] < 07" 1) for generic H'U) and hence H'Y) restricted
to the auxiliary band is an embedding into M 2" \ k(Q 1),

Now we have a family of geodesic segments in U}”H moving with respect to the
parameter 7 and there are only finitely many times t; ¢ = 1, ..., #)) when there
appear geodesic triangles.

We are assuming that 2m > 6, and for generic h’ﬁ”, the family of geodesic
segments satisfies the following properties because the preimage of the double points
of h’(J)(Pm) is 1-dimensional in [0, 1] x o7

(1) The geodesic segments in O‘j ‘1 Joining the pairs of intersection points in

(7, 92y~ 1 (k(z™)) never contain the preimage of double points of (2} P™),

(2) The geodesic triangles never contain the preimage of double points of
(i DY P™).

Fort; (i = 1, ..., 7U)), let Y be the union of the geodesic triangle with the

three vertices x;; = s, x; and y; in{t;i} <o the geodesic segments x:x; and

m
j+1e
y;yt inf{t} xo T € (t; — &, 1)) and the geodesic segments xtyt in{t}xo e
(t € (.t + &)

Y:( g {r}xzrxg)u( U {f}XJTJf;)

telti—eiati) telti—ei ;)
U ({63} > Axyxg v ) U ( g {t}xxtyt)
te(ti ti+&;)

C ot — &t + &) X0}

We deform it to obtain a 2-dimensional manifold Y’ embedded in (f; —&;,4; + &) %
cr;"ﬂrl such that

' =Y = {(t’ x;)}fE(fi—Sj,fi-FBf) U {(Is y;)}ie(if—ej,fi-l-ﬁ')
. {(I xr)}re(q—q tl] U {(Is yr)}fe(f,f—é,—;,ij]
C(rx &, +51)>< Jx+1:

and Y’ coincides with Y for |t — ;| > &;/2 and the intersection of ¥" and {1} x & J+1
is a union of two disjoint differentiable curves near the original geodesic segments
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fort € [t; —e&;/2,t;) and is one differentiable curve near the geodesic triangle for
t et + & /2]

Now we look at the union Z of geodesic segments which are not modified by the
above operation and the manifolds ¥/ forallt; (1 =1, ..., 7). If there are auxiliary
bands we add them to Z and modify it to make Z an embedded 2-dimensional
manifold with boundary in [0, 1] < o7 ;.

For a generic choice of the isotopy H'Y) and manifolds Y’ if2m = 8§, Zisa
union of disjointly embedded 2- dlmensmnal disks in [0, 1] x J-H If2m = 6, the 2-

dimensional disks may intersect in [0, 1] x j ', creating finitely many double points.

For 2m > 8, the fact that a connected component of the union Z is diffeomorphic
to a 2-dimensional disk can be seen as follows: Consider the space obtained from Z
by identifying the points in each connected component of Z M ({f} x UJ’.”H). Then it is
a graph with vertices corresponding to the generation points and cancellation points.
The generation points correspond to the vertices of valency 1 and the cancellation
points correspond to the vertices of valency 3 except the cancellation points with
auxiliary bands. For the cancellation points with auxiliary bands, the auxiliary bands
become edges ending at {1} < o i i 1+ Thus each connected component of the graph
is atree rooted at time r = 1 which grows in the negative direction in ¢. Hence each
connected component of Z is a 2-dimensional disk.

In the case where 2m = 6, we see in a similar way that Z C [0, 1] x crj3+1 is an im-
mersed image of 2-dimensional disks which has generically a finite number of double
points. That is, the curves joining the pairs of intersection points in (h’ﬁ”)—l (k(z*))
may intersect at finitely many points (77, X¢) (¢ = 1, ..., #UU)). Then for generic

H'Y) f; are not the time of generations or cancellations. When two geodesic curves

j/l(t) and j/( )

curves near 7y by a family {y} (r)} of curves which does not intersect {yl(t)} near f;.

intersect at the time #;, we modify one of the family {j/g)} of geodesic

More concretely, for a small positive real number &g, we can find a neighborhood

of j/l(tﬁ) U y(tﬁ) C [0, 1] o™ which is diffeomorphic to (f; — &z, f; + &) < X, where

X is a neighborhood of [—1, 1] x {0} x {0} U {0} x [—1,1] x {0} in R3,
P = (e x [1,1] x {0} x {0}
and

79 = ffe} x {0} x [-1,1] x {0}
We can choose the parametrization in this neighborhood so that

vy = (o + 5,u,0,9)

and

yéfzﬂ)(u) = (fg +5,V15, U + V28, Vas)
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for a vector (v, vz, v3) € B3 (v3 # 1). By using a smooth bump function
[ [_]-5 ]-] - [0’ ]-] such that Iu’(x) = Ju’(_x)a M‘[O, ]-/3] = 1 and fu’|[2/3a ]-] = 0,
we modify ]/g). Put

Vet () = (1 + 5, (1 + co)e(s/Ee) i /8g) + v18, 4 + 28, V3s),

where ¢; and §; are small positive real numbers such that the image of 3 @ets) jg
contained in our neighborhood X'. Then the curves ')f( ) and )/2(5) (r € (tg—8p, 2 +E7))
do not intersect in o JE

Thus for 2m = 6 , using the above family of curves if necessary, we have the union

Z' of a finite number of disjointly embedded 2-dimensional disks in [0, 1] x UJ’.”H
such that
H'P|[0. 1] > of} ) k(") € Z"

Since Zm = 6, the images under generic H (/) of these 2-dimensional disks are
disjointly embedded in M2 \ k(Q®~1). The images of these disks are called the
Whitney disks.

We have been looking at the mtersectlon point set h’(")(a " 1) M k(z™) for one
m-dimensional cell 7 of O™ other than o™ *. These con81derat10ns can be applied to
the intersection point sets A’; G )( o 1) Mk(z™) for all (finitely many) m-dimensional
cells £ of O™ other than O‘m* simultaneously. This is because, if 2m > §, the
embedded 2-dimensional disks Z’ are disjoint for different ¢ for generic H'U?, and
if Z2m = 6, we can remove the intersection of the embedded 2-dimensional disks
Z' for different ™ in a way similar to what we did for the intersection of Z for the
same . Thus we obtained the union Z’ of a finite number of disjointly embedded
2-dimensional disks in [0, 1] > 0", | such that

(H'D[0,1] x o ) k(™ \ o)) C Z',

and H'U)| Z’ is an embedding.

If 2m = 8, then the Whitney disks H'V?(Z") do not contain double points of
H'U)([0, 1] % P™) for generic H'Y?. This is because the inverse image of the double
point set of H'U([0, 1] x P™) is 2-dimensional in [0, 1] x P™ and m + 1 > 5.

If 2m = 6, then the Whitney disks H’U)(Z’) may intersect the double point set
of 'Y ([0,1] x P?). Then, for generic H'V), the intersection is a finite set and we

pick up the points of Whitney disks which are in the image of h’ﬁ” (P3) with larger ¢;
Hr(j)(ti(f), wi(j)) _ Hf(f)(rrgj), wrgj)) G=1,.., rr(j)),
where (I(J) l.(j)) is a point Z' C [0,1] x oy (r’(” ’gj)) € [0,1] x P? and

51) < 1"5]). Then, for generic H'Y), the curve H' ([t ’g“‘) 1] X{w’gj) 1) isembedded
in M2\ k(Q™) and does not contain double points of H'V?([0, 1] x P3) other than
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H') (r’gj), w’gj)). Hence if 2m = 6, we have the Whitney disks H'U) (Z7) together
with the curves H’(f)([r’gj), 1] % {w’gj)}) (G =1,..rUN.
Using the Whitney disks H'Y)(Z’) and curves H’(j)([rfgj), 1] x {w’lg)}) i=1,
, prU )), we prove the following lemmas in the next section.

Lemma 3.6. For h’gj), there is an isotopy {bg(jJrl)}tE[O,l] (béjﬂ) = id) with support
in a union of disjointly embedded open balls such that for h”(j) bUH) h’(j)
h”(” is the zdenrzty on a neighborhood of P™1) U U]_ ol and h”(”( o )0

k(Qm Vo) = 0.
Lemma 3.7. For /U given by Lemma 3.6, there are isotopies

{8 ™Y reton C DIEL(MP™ \ k(@™ \ o7)) (25T = id)

and
. j+1 .
Yo € DIEELMPP\ (P D U | oy @V =19)
i=1

such that 7)) = gt o g,

Now we complete the proof of our main Theorem 1.2.

Proof of Theorem 1.2. Let f be an element of Diff” (M?™),. By Lemma 3.2, there
are g € Diff’. (M2 \ k(Q™))o and h < Diff’,(M?"\ P"=2)gsuchthat f = goh.
Then by using the approximation 4 of 4,

S=goho(h ' oh)

By Lemmas 3.3 and 2.3, there are a diffeomorphism a with support in a union of
disjointly embedded open balls, g’ € Diff" (M 2™\ k(Q™))o and h” € DiffL(M 2™\
P =Yg such that
h=alo(@aohy=a tog oh”"
Put h@ = b” e Diff"(M "\ P D), and for £V < Difft (M2 \ (P~D U
3 o"))o (j = 0,..., N —1), we use its approximation hU) and by Lemmas 3.4,

3.6 and 3.7, there are diffeomorphisms a1 and pUFD with support in unions
of disjointly entbedded open balls, g1 € Diff (M2 \ k(O™ \ o 07" ))o and

RUHD 2 D (M2 (Pm=D | )1 57)), such that
gl _ pOX., ((;_l(j))—l - h(}'))
— (a(jJrl))—l & (a(jJrl) = };(j)) " ((;}(}'))—1 oh(j))
= (a(jJrl))—l » (b(jJrl))—l o g(j+1) R L 4 ((fl(}'))—l = h(j))_
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Hence,

f=goho(h ' oh)
—goalog o hDo(h 1 oh)
=goalog o (@) o @) o gW kW o (A1 oy o(h 7 o k)
=g et & g’ " (a(l))—l 5 (b(l))—l " g(l) . (a(N))—l 5 (b(N))—l Og(N)
o B o (RWV=D)=1 o pIV=Dy o o (BN 0 By o (271 o ).

Here, note that

N
K& € DiffL (M2 \ (P D U | o]"))o = DiffL(M>" \ P™).

i=1
Since

(BN o gDy oo ((BOY L 0 hO) o (B o b) € Diff" (M)

is close to the identity, by Remark 2.10, it can be written as hodo 2, where hoe
Diff? (M?27\ P™)q, & € Diff - (M?™ \ k(Q™))¢ and & is with support in a union of
disjointly embedded open balls which is a neighborhood of the union of m handles.
Thus

f=goalogo@)y oWy logWo...
+v 0 (a(N))_l ) (b(N))_l o g(N) o hM) o ]:L odog.

Now by the construction, each of a1, (¢™)~1, ..., (W)L, (a1 ., (p1¥))—1
can be written as one commutator with support in a union of disjointly embedded
open balls. The diffeomorphism & can be written as a product of two commutators by
Theorem 1.1 (1). The diffeomorphism 4@ oh € DiffZ(M#™\ P™)q canbe written as
aproduct of two commutators in Diff”. (M 2™\ P™), by Theorem 1.1 (1). Each of the
diffeomorphisms g, g"and g € Diffl(M 2™\ k(Q™))o can also be written as a product
of two commutators in Diff”.(M 2™ \ k(Q™))q by Theorem 1.1 (1). By the property
of the triangulation, the diffeomorphism g% & Diff? (M2™ \ k(O™ \ O‘}ﬂ_:l Yo is
supported on an open set which can be deformed in a neighborhood of the embedded
(m — 1)-dimensional complex t((P" 1V U UJ’.")/U;”), and hence ¢) can be written
as a product of two commutators in Diff” (M 2™\ k(Q™ \ 07"* ))o by Theorem 1.1 (1).

7
Thus f can be written as a product of 4N + 11 commutators. ]



Vol. 87 (2012) On the uniform perfectness of diffeomorphism groups 167
4. Proofs of the lemmas

We now give the proofs of the lemmas we used in the previous section to show
Theorem 1.2.

Proof of Lemma 3.2. This follows from Lemma 2.7. UJ

Proof of Lemma 3.3. The construction of a; is essentially due to Burago, Ivanov and
Polterovich ([4]) and we wrote it in the proof of LLemma 2.9 which is Lemma 6.5 in
[30]. However, we write it again here, for, we use this argument later again.

For H (s;, v;), we take asmall neighborhood U; of H([s;, 1] {v; }) diffeomorphic
to the (2m)-dimensional ball. We can take these U; to be disjoint.

The intersection of T; and H ([0, 1] > PP~y or k(™) is described as follows.
We put a coordinate

(X1,X2, ., X Xma1, .- X2m) € (=2,2)%™
on T/; such that, for g; > 0,
k(Q™) N U; = {0} x {0}~ x (=2,2)",
H((s; —26;(1 —5;),1] x {u; DN U; = (=2,1] x {03#"~1,  and
by ar—sp (PO TDY N U = {03 (22,277 < {01 (1 € [, 1)),

Take anisotopy {a; }se[0,1] with supportin |_|;-’:1 U; suchthat, oneach U;, ag = id
and, for (x1,%2,...,%Xm) € [—&;, 1] % [=1, 1]7*~1 € (=2,2)*",

ar(X1,x2,. ., Xam) = (x1 — (1 + &), %2,-.., X2m)-

Now (a1 oh1 WP ™= 1YNk(0™) = 0. Moreover, by changing the time parameter
of the above a;, we obtain an isotopy ¢; (ag = id) with support in |_|::1 U; such that
for h; =d; © hh

R(PT D) nk(Q™ =0 (<[0,1]).
In fact, if we put
t =8 +ui(l —s;) €8s —&i(l —s4).1], ie,u; €[—ei,1],
and look at dgy; 4e:)/(14e;) © I;Si-l—uj(l—sl')’ then on U},

(Au;+e)/Arep) © sy ruya—s) =8t x [1, 11771 x {0y™)
= ;o) (4o (i} X [—1, 17771 < {OF™)
= {ui — (ui + &)} x [-1, 17771 x {0}
= {—g;} x [-1, 11" ! x {0)™.



168 T. Tsuboi CMH

Hence by using the above a,; with appropriate time change, we obtain the desired
isotopy a;.

Note that @1 € Diff".(|_|'_; U;)o can be taken as one commutator with support in
LIi—y Ui (31D 0

Proof of Lemma 3.4. The proof is similar to that of Lemma 3.3.
(U)oU) : Y o 71D ()
For H(f)(si] ,v;’"), we take a small neighborhood U/ /7 of H([Sij 1] x v’}
diffeomorphic to the (2m)-dimensional ball. We can take these Ugj ) 10 be disjoint.
The intersection of Ugj) and H([0,1] % P™) or k(O 1) is described as
follows. We put a coordinate

(x1:x2s' . —:xm+1:xm+2:- .- !x2m) = (72!2)2}”

on Ugj) such that, for egj) > 0,

QM) N U = {0y > 40" x (2,27,
AP 2690 — s 11 x 6P U = (2,11 x {0}, and

;EE{_'})H(I_SW)(P”“) MUY = fr1 5 (=2,2)" < {0y (¢ e [, 1]).

Take an isotopy {agj+l)}re[0,1] with supportin |_|;21) Ugj) such that, on each U:gj)’
a(()jH) = id and, for (X1, X2,..., X2m) € [_ng), 1] [, 1P € (-2, 2)*™,

a1 xa, - Xam) = (1 — (U4 6, X2, Xam).

Now (a&jﬂ) o }_zgj))(Pm) M k(QY1Y = §. Moreover, by changing the time
parameter, we obtain an isotopy agj 1 (a(()j ) id) with support in |_|£:1 Ui(} )
such that, for h’gj) = agj g izﬁ”,

FPEM QM) =0 ¢ <[0,1).

In fact, if we put

§ s ng) + ugj)(l —ng)) € [ng) —sl(j)(l —SIU)), I, ies ugj) = [—egj), 1],
(J+1)

7 (i)
; , . o h“ , ,
(M§J)+8§j))/(1+8§J)) ng)+ul(_j)(lisl(.}))

gj)))({*ggj)} x [-1,1]" x (0™ 1)

1 . )
= — @ + M} [-1, 11" > foym-!

— (P} [-1, 17" x {oyL.

and look at a , then on Uﬁj),

G+1) ~(/)
@y ten/uten * B 00,
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Hence by using the above a(} o

(j +1)

with appropriate time change, we obtain the desired

isotopy a;

(2
Note again that a%jﬂ) e Diff?! (|_|;—j1 UU))O can be taken as one commutator

with support in |_|; ! U(]) ([31]). O
FProof of Lemma 3.5. For

F(t, 215 oo X Y= (6 X000 B Yo vios il Xy o0 s X )

put
L1541 I, 4 B
aF ot aF X1 X
-_— = : and — = : =, {
ot . ox ' ' :
BT dxq Bx

On the 2-jet bundle J?(R x R™ R™), we consider the subbundle E; defined by
rank (aF a—F) = m — 1 and the subbundle £, defined by the two equations,

¢ dx BF
rank (ﬁ) =m-—1 andrank( d tap) m — 1, where
dx dx
Jd , dF J dF d aF
—det— = | — A det—
gx  ox 9x1 9x dx,  dX

Then E; and F, are codimension 2 subbundles. The closures of these subbundles
are the sets determined by the inequalities expressing the ranks are not greater than
m— 1.

By the jet transversality theorem, the jet of a generic map F intersects these
subbundles transversely. Hence the set

{(¢.x) | T F € E1 U E3}

is an (m — 1)-dimensional subset and its image in R'” is nowhere dense. We take a
point y in R™ in the complement of this image and consider its inverse image F~1(y).
Then for a point x € F~1(y), either rank (%—i) = m holds or the three equations

aF
rank (‘3—5) =m—1 rank(aF %—5) — m and rank (ai 3gt%_F) = m hold.
.o X

If rank (ﬁ) = m at x, then x is a regular point of F; = F(t,*) and the inverse
image is locally a 1-dimensional manifold transverse to {¢} x R™.
Assume that the three equations hold. Since rank (%—5) = m — 1, by the implicit

function theorem, we can change the local coordinate (xy, ..., X;) of the second
factor of the sourceto (x},...,x;,, )andthat (y1,..., ) ofthe targetto (¥1,..., ;)
so that

i

FQ,xl, o, x0) = (X1, oo, X Vi X000 %0)).
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ar
£ =t
Then det (%—i) = gi—ﬁ and the matrix ( g 0x ap) with respect to these coordinates

. . e Btﬁ
1s written as
( 1 g - 0 0 \
0 ; ‘
: ; : 0 0
0 o 0 1 0
U 0y 0y
agxl ! aazxm
\me dx] R T axm 1 Oxp? )
and the matrix (%—I: %F ) with respect to these coordinates is written as
[0 1 0 - 0 0
0 0 ) : :
: : s 0 0
0 N 1 0
W ym Wym _ Om
\ T 9x] dxy, 1 X
Hence, gy =\ aym o 0 and 3m = ,2 75 0 at x.

Thus at x € F_l (), either det (%) = 0 or F is locally written as

7

Pl v 0 B0 = (xi,...,x,fn_l,y;n(t,x’l,...,xm)),

Wheregym: aym#Oand #O L]

The proof of Lemma 3.6 is divided into two cases.

Proof of Lemma 3.6 in the case where 2m > 8. If 2m = §, the Whitney disks guide
the way to construct the isotopy b}' 1)
bgj +1)

with support in a union of disjoint open balls.

In fact, the support of is in a neighborhood of the union of the Whitney disks.

The construction of the isotopy b(] g possible because the neighborhood of one
of the Whitney disks can be considered as a neighborhood of a tree growing in the
negative direction in ¢ in [0, 1] x

b(]-l-)

m
G pd

The construction of is as follows. Take a vector field of the form - 7=+, v)
on the union of disks Z” C [0, 1] x 07", ; which is tangent to Z’ and transverse to the
boundary 97’ C Z’, where (,v) is a vector field in the direction of U}”H. Such a

vector field % +¢(z, v) exists because Z’ deforms to atree which grows in the negative
direction in ¢ by shrinking the connected components of Z’ M ({r}x U}”H) to a point.
We extend £(7,¢) on U}"H so that the support is contained in a small neighborhood
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of Z’'. Let b’g”l) denote the isotopy generated by % + (¢, v). Then the support
of b’ﬁf“) is contained in a neighborhood U'J) of the union of the Whitney disks
H'UN(Z"). Since H'U)(Z') does not contain double points of H'V([0,1] x P™),
the support of b’ﬁf“) intersects H'U([0,1] x P™) only in U'Y). Here, U'V) is a
union of disjointly embedded open balls in M 2. Moreover, (h’ﬁ”)*;(r, *) is tangent
to the union of the Whitney disks H’U+1D(Z’) in M2 and

@I P ) N RO\ o) =6 (¢ € [0,1).

Put bY Y = Ty then
BTV o )0 ) KT o) =0 ¢ € [0,1])

Note that b§j+1) € Diff" (U"1))q can be taken as one commutator with support
in U'Y) ([31]. ]

Proof of Lemma 3.6 in the case where 2m = 6. If 2m = 6, then we also consider
the curves H’(f)([t’gj), 1] x {w’gj)}) G=1,..rWh,

First take a small neighborhood U77U) of the union of the Whitney disks which is
a union of disjointly embedded open balls in M€, and construct b§j+1) as in the case
where 2m = &. Then we modify it by using an isotopy.

We take asmall neighborhood U;(j) of the curve H'() ([r’gj), 1] X{w’gj) D=1,

..., 7'Y)). We put a coordinate
(X1, X2, X3, X4, X5, X6) € (—2,3) % (-2,2)°
on U’gj) such that, for e’gj) > 0,

ARG () ) () () _
B — 260 — C 0,10 s P n U = -2,1] 54032,
and

h PHNUD = 1y x (2,22 < 0 (¢ € [, 1)),

!
t;g})_28;§1)(1_t,r§_1))

We take an isotopy {a’g’i 7 tre[o,1] With supportin U’gj) such that a

and, for (x1, X3, X3, X4, X5, Xg) € [—s’gj), 1] =< [-1,1]° € (=2,3) % (=2,2)°,

;éj+1),;' — g

o _
FITVE e %, %3, B, B, Kg) = (¥ + HL+ED), %2, %3, %4, X5, X6).

o Fy : . :
Puta = H::; a’&JH)’I. Then a o bgﬁ_l) o a1 is isotopic to the identity by the
isotopy with support in the union of disjoint 6-dimensional open balls a(1/'%). By
the construction,

@by ca Yy ohi)o? ) NK(Q3\ 0¥ )) = 6.
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: : () :
Moreover, by an appropriate change of time parameter on each U’;’’, we obtain an

isotopy d@; (¢t < [0, 1]) such that

(@ o by ™V 0arYy o hy) o2, ) NK(Q3\ a¥ ) =0

and the support of the isotopy a; o bgﬂ'l) oa;!is contained in UG U |F_] 7 U’(”

which is a union of disjointly embedded open balls in M4™. Thus we obtamed the
desired isotopy.

Note that a o b(” 1 571 can be taken as one commutator with support in a union
of disjointly embedded open balls. L]
Proof of Lemma 3.7. This follows from Lemmas 3.6 and 2.3. U]

5. Uniform simplicity
We prove Corollary 1.3. In Theorem 2.2 of [31], we showed the following theorem.

Theorem 5.1 ([31]). Let M" be the interior of a compact n-dimensional manifold
with handle decomposition with handles of indices not greater than (n — 1)/2. Let ¢
be the order of the set of indices appearing in the handle decomposition. Then any
element of Diff .(M™)o (1 < r < 00,1 # 0 + 1) can be written as a product of
two commutators. Moreover, if M" is connected, any element of Diff L(M")q can be
written as a product of 4c + 1 commutators with support in embedded open balls.

In Section 3, we showed that any element f € Diff” (M ?")q can be written as

F=pgo alto g’ o (a(l))_l o (b(l))_l ) g(l)
o (@W) Lo (BIWI)T1 oV h(N)ohoaog

Since a compact subset of a union of disjointly embedded open balls is contained in
a larger embedded open ball, each of diffeomorphisms a1, (WY1, ..., (a@1,
BT (BN can be written as one commutator with support in an embedded
open ball and the diffeomorphism & can be written as a product of two commutators
with support in an embedded open ball. Now by Theorem 5.1, each of the diffeo-
morphisms A% o he Diff"(Mzm \ P™)o, g, 8 and g € Diff (M2 \ k(Q™))o,
e ¢ Difff (M 2™ \ k(O™ \ O‘ "1 )o is written as a product of 4m + 1 commu-
tators with support in embedded open balls. Hence f is written as a product of
4(N + 4)ym + 3N + 7 commutators with support in embedded open balls.
Now Corollary 1.3 follows from the following lemma ([31], Lemma 3.1).

Lemma 5.2 ([31]). Let M" be a connected n-dimensional manifold. Let g be a
nontrivial element of Dift.(M")o. Assume that f € DiftL(M")o is written as a
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product of commutators [a;,b;] (0 = 1, ..., k); f = [a1,b1] - [agr, br], where a;
and b; are with support in an embedded open ball Uy  U; © M™. Then f can be
written as a product of 4k conjugates of g or g7,

Proof of Coroliary 1.3. Let g be a nontrivial element of Diff" (M?™)o (1 <r < oo,
r # 2m + 1). Since any element f of Diff” (M?™)y can be written as a product
of 4(N + 4)ym + 3N + 7 commutators with support in embedded open balls, by
Lemma 5.2, f can be written as a product of 16(N + 4)ym + 12N + 28 conjugates
of gorg L. ]

Remark 5.3. We showed in [31] that, for a compact connected n-dimensional man-
ifold M” with handle decomposition without handles of the middle index n/2, for
any elements f and g of Diff" (M ")\ {id}, f can be written as a product of at most
16n + 28 conjugates of g or ¢~ '. For such manifolds, the bound for the number of
conjugates depends only on the dimension n. In Corollary 1.3, however, the bound
for the number of conjugates may depend on the topology of M 2™

6. Appendix

In this section, we show two propositions. The first proposition constructs the Morse
function adapted to a smooth triangulation of a compact manifold. The second propo-
sition constructs a cellular decomposition adapted to a Morse function.

Proposition 6.1. Let P be a smooth triangulation of a compact n-dimensional man-
ifold M™. Let bsd(P) denote the barycentric subdivision of P and P* be the cell
decomposition dual to P of M™. Then there is a Morse function f on M" and a
Riemannian metric on M" such that, for the gradient flow @, of f, there is a homeo-
morphism of M" which sends the stratification by the stable manifolds of the critical
points of f and that by the unstable manifolds of the critical points of | to P and
P¥, respectively.

First we prepare a Morse type function on each simplex of bsd(P).

Lete; (i =1, ..., n)be the basis of R”. Let
A" =4, )= e €ERY |1 >0 = =1, > O}

be the standard simplex. Let /: R” —> R be the function defined by

Sl ) =n— cos(ty/m).
i=1

The function f is a Morse function such that the vertex (1,...,1,0,...,0) =
le e; of A" is the critical pointofindex j (f = 0,1, ...,n) and J‘(Zf:1 e;)=j.
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Let Xgpr = grad( f ) denote the gradient vector field of f withrespectto the Euclidean
metric. The standard simplex is invariant under the flow generated by Xg».

Let bsd( P) be the barycentric subdivision of P. An n-dimensional simplex of
bsd( P )is the simplex with vertices b 0, ..., bon, where 60 < ol < ... < g™ 1 < g"
b, ; is the barycenter of the j-dimensional simplex o/ and “o? < o/ ”means that “o’
is a face of o/,

Let g: M" — A" be the map which sends cach n-dimensional simplex with
vertices byo, ..., ben of bsd(P) linearly to A" so that g(b,;) = Z{:o e;. Then
f o g is a piecewise smooth function on M” which looks like a Morse function on
M" and X = g !Xpn is a Lipschitz continuous piecewise smooth vector field on
M*"

We show that there are a Morse function f . M"™ — R and a Riemannian metric
on M” such that there is a homeomorphism of M” sending the stratification by the
stable manifolds for the gradient flow of the critical points of f to the triangulation
P and the stratification by the unstable manifolds of the critical points of f to the
dual cell decomposition P*.

Since the function f og is transverse to the triangulation outside aneighborhood of
the set of vertices of bsd(P), (f o g)~(k +1/2) is a piecewise smooth codimension
1 submanifold of M “transverse” to cach simplex of bsd( P ) and is transverse to the
vector field X.

We are going to modify (f o g)"*(k + 1/2) to a smooth manifold My 1,2
transverse to each simplex of bsd(P) and to the vector field X .

Let bsd( P)® denote the i -dimensional skeleton of bsd( P). First, we modify ( £ o
2)"1(k +1/2) in a neighborhood of the intersection ( £ o g) "' (k +1/2) Nbsd (P )V

and obtain MIEB 12 € M?" approximating ( f gy~ 1 (k+1/2) which is smooth near the

1-dimensional skeleton bsd( P ) and transverse to bsd(P ) and to the vector field

X. After obtaining Mk(i)rlﬁ

bsd(P)® and transverse to bsd(P)¥) and to the vector field X, we obtain M]E:rll/)z

approximating Ml&-l/z in a neighborhood of the intersection Mé:)_lm M bsd(P)(”l)

C M?" which is smooth near the i-dimensional skeleton

which is smooth near the (i + 1)-dimensional skeleton bsd(P)¢+1 and transverse

bsd(P)E+D and to the vector field X. Finally, put M2 = M]E’:l% Then
My 12 is a smooth codimension 1 submanifold transverse to bsd(P) and X.

The codimension 1 submanifold My ./, divides M” into two compact manifolds
Wy and W* , which are obtained from (f o ) 1[0k +1/2) and (f o g) 1k +
1/2, n]) by smoothing, respectively.

We are going to show that W}, is diffeomorphic to the manifold obtained from Wy
by attaching handles of index k for k-dimensional simplices of P and by smoothing
along the corner. That is, for each k-dimensional simplex o*, we can define a handle

D{: g X D;;k of index & such that Wy, is diffeomorphic to the manifold obtained from
Wi _1 by attaching D{: i X Dﬁ;k for all k-dimensional simplices o* of P and by
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smoothing along the corner. The reason is as follows. First, for each k-dimensional
simplex o¥ of P, since the intersection S c]f;l — ofn M1/, approximates o* n
(fog) '(k—1/2),itis diffeomorphic to the (k —1)-dimensional sphere S* ! which
bounds a k-dimensional disk D;;k in o*. Then by choosing a Riemannian metric in

a neighborhood of o* and using the exponential map, we obtain a diffeomorphism
from a neighborhood of the zero section of the normal bundle of the k-dimensional
disk ka to a neighborhood of D’:k. By an appropriate choice of the metric, this

defines an embedding D’;k X Dg;k C M7 such that 8D’§k X Dg;k C Mg_y/2. Then
we obtain
Wy = Wit U\ (DS < DI (C W)

ok

We can add a neighborhood of the corner of W) and obtain W,/ such that the orbits
of ¥, on Wi — int(W) are transverse to My, 1/2 = Wy and dW,. Here each
orbit of 1 intersects both dW,” and dWy. Since this transversality is preserved when

we approximate X by a smooth vector field X, W — int(W)) is diffeomorphic to
Mg 172 < [0,1]. Thus this gives the (n — &k — 1)-dimensional sphere Sg;k_l on
My 17> = 0W corresponding to {0} x BDEE”C which will be used as the belt sphere.

Now we define a smooth vector field X on M" which generates the flow 1?/;
satisfying the following conditions.

(1) X restricted to a neighborhood of b« is of the form

S " 9
—ina—x‘i—O— Z Xia_x,;

i=1 i=k+1

and the stable manifold ¢

b(oh) of b, i of the flow ¥/, contains Dik x {0} C oF.

(2) The orbits of 12& are transverse to My 1/ (k =0, ...,n —1).
(3) An orbit of ¢, in Wy \ int(Wi_;) is one of the following types.

— An orbit crossing through both My, and My /5.

— An orbit contained in the stable manifold of b« and crossing through
My 15 at apoint of Sf,c_l.

— An orbit contained in the unstable manifold of &_x and crossing through
My 17 at a point of S;k_k_l.

(4) For two simplices o and o*t1 of P, if 0¥ < ¢**1, then S* *~1 and S’I‘;CJr1
o o

(C My 1/2) intersect transversely at a point. Conversely, if Sc’:;k_l and kaﬂ

(C My 1) intersect, they intersect transversely, and of < gFTL,
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The statement (4) implies that there is a unique orbit of &r connecting b« and b x+1
if and only if 6% < g*+1,
By [21], for this g@;, we can define a Morse function f and a Riemannian metric

such that grad( f = X. These are the desired Morse function and Riemannian
metric for our Proposition 6.1.

Proof of Proposition 6.1. We show that the configuration of stable manifolds and
unstable manifolds of ¥; is homeomorphic to the configuration of the triangulation
P and its dual cell decomposition P*.

We explain how we take W)/ and W” such that W,y € W/ C W, C W related
to the flow fb;.

First, each connected component of Wy is in the unstable manifold of a 0-
dimensional simplex ¢, On M, > = W, wehave anumberof 521 for 1-dimensional
simplices o'!. Hence the stable manifold LZ(Ul) of b 1 consists of b 1 and the two
orbits of g[hf; connecting b1 and o*io (i = 1,2) such that crio <ol.

For a 1-dimensional simplex o, in a neighborhood of ,1, the unstable manifold

LE(UI) of b1 divides the neighborhood into two parts which are the subsets of the
0] 1 0]

unstable manifolds of o < ¢ and 0, < ol. We can take the union of W, and
appropriate closed neighborhoods of Lz(al) for 1-dimensional simplices o! of P

as Wi = Wo U U1 Dél P D?fl, where the flow fh on Dél X D::fl is of the
form &;(xl,...,xn) = (e7'x1,e'x2,...,€' x,). Then we can take W]’ which is
obtained from W] by smoothing along the corner and there is an isotopy sending
W' to W along the orbits of &f. There is a homeomorphism %; sending W) to
(f o 2)71([0,1 + 1/2]) such that k; sends the stable manifold 1.} of b1 to o

b(o1)
and the unstable manifold Lg(al) of b1 too* M fog) 1([0, 1+1/2]), respectively.

Now we look at a 2-dimensional simplex o2. On M 112, we have Sclr2 for each
2-dimensional simplex o of P and S;l_z for each 1-dimensional simplex o! of P.
A 2-dimensional simplex o2 of P has three faces Uil (i = 1, 2, 3), hence we have
three orbits of ‘ﬁz which pass through Sclr2 N Sc':_l_z and connect bU} and b2 i = 1,2,
3). Each component of S;z iy Ule S;z M S;:l—2 is sent by the flow 1@; in the negative
time direction to one of the components of Wy. The component of W is necessarily

the one which contains one of the three vertices of o2 and the stable manifold Ly )
of b, is bounded by the union of stable manifolds of b 1 (i = 1, 2, 3) and the

vertices of o2, Thus the stable manifold L;( 5
o?)

is homeomorphic to the 2-dimensional skeleton

is homeomorphic to a 2-dimensional

simplex and the union ( J; ., LZ(U::)

P @ Then the stable manifold LE(UZ) as well as a neighborhood of L;(ﬂ) is divided

by the union of the unstable manifolds of b_3 (i = 1, 2, 3) and b2 into three parts,
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each of which is contained in the stable manifold of one of the vertices of 2. We can
take the union of W) and closed neighborhoods of LZ ) for 2-dimensional simplices

olof Pas Wy = Wy U Uo;g(Dé2 pq D;gz), where the flow ¥/, on D§2 X Dggz is of
the form ¥, (x1,...,X,) = (¢ X1, e " X5, €" X3, ..., e x,). We can take W,” which
is obtained from W, by smoothing along the corner and there is an isotopy sending
W, to W2 along the orbits of g@; Then there is a homeomorphism A2 sending W to
(f 02) 1[0, 2+1/2]) extending & such that #, sends the stable manifold Lb( 2 of
b,> to o2 and the unstable manifold Lb( % of b2 to o2* N (fog) 1([0,24+1/2]),
respectively.
Inductively, assume that we showed that

(1) for a (j — 1)-dimensional simplex o/ ~! of P, the stable manifold of by j-1 is
bounded by the union of the stable manifolds L% .. of b_; suchthat o < o771,

b(o?)
(2) Lb( -1 is homeomorphic to a {j — 1)-dimensional simplex,
(3) the union Uiijfl iz

bol) is homeomorphic to the (j — 1)-dimensional skeleton

pU-D,

& L1y bod =
unstable manifolds Lg( i of b; suchthato? < ¢/~ !into j parts each of which
is contained in the unstable manifold of one of the vertices of /!, and

(5) there is a homeomorphism /;_1 sending W;_j to (f © 2) ([0, j —1/2]) such
that ;1 sendsthe stable mamfold Lb( i of b to o' and the unstable manifold

Lz( iy of boi to o™ M (f o g) ([0, j — 1/2]), respectively.

Consider a j-dimensional simplex ¢/. On M;_1;,, we have Sc{;l for each j-

as well as a neighborhood of Ls is divided by the union of the

dimensional simplex ¢/ of P and S;;fl for each (j — 1)-simplex 0/~1 of P. A
j-dimensional simplex ¢/ of P has j +1 (j — 1)-dimensional faces Uij_l (F =y
..., j + 1), hence we have j + 1 orbits of 1/, which pass through Si;l M S:;_Jl
and connect b = andb_; ({ =1,...,j +1). Any point on S’I isin an unsteible

manifold L% of b« for ak-dimensional simplex, where k < j —1. If k = j —1,

b(o*)
it is one of the points SJ e Sn Jl. The flow Wr transverse to M;_;/, sends a

neighborhood of W;_; U PWtoa nelghborhood of W;. Hence a neighborhood of

SJ In S”j 7 € M;_1,, is divided by the union of the unstable manifolds Ly i

E .
of b, such that o* < o/~! into j parts, each of which is contained in the un stable

manifold of one of the vertices of /1. This means that the closure of the stable
manifold of b,; contains the union of the stable manifolds L} (o) of b, such that

ot < o7. Since | J i .57 LS is homeomorphic to 847, by looking at the flow ¥,

b(o?)
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we see that the stable manifold of &, ; is bounded by the union of the stable manifolds
Lz(ai) of b,: such that 0* < o/. We see then that Li(af) is homeomorphic to a j-
dimensional simplex and Li(af) as well as a neighborhood of Li(af) is divided by
the union of the unstable manifolds of b_; such that o’ < o7 into j + 1 parts each of
which is contained in the unstable manifold of one of the vertices of /. We can take

the union of W; 1 and closed neighborhoods of LZ(O’j) for j-dimensional simplices

o/ of P as Wj’ = Wy L Um,- (Dij P D:;j), where the flow Jff on Dg”,- x D:;j
is of the form

Ur(X1,. .. xn) = (e "x1,...,e x5, 0" X511, .., €' xp).

We can take Wj” which is obtained from Wj’ by smoothing along the corner and there is
an isotopy sending T/Vj” to W; along the orbits of g}r. Then there is a homeomorphism

h; sending W to (f og) ([0, j +1/2]) extending h;_; such that ; sends the stable

manifold Ly of byi to o® and the unstable manifold L3 iy Of byi 0 o *N{(fo

2y 1[0, j + 1/2]), respectively.

Thus we see that the configuration of stable manifolds and unstable manifolds
of g}; is homeomorphic to the configuration of the triangulation P and its dual cell
decomposition P*. O]

Now we construct a cellular decomposition adapted to a Morse function.

Let M” be a compact n-dimensional manifold. Let F: M" — [0, n] be a self-
indexing Morse function. Then there is a Riemannian metric such that the gradient
flow @, at a critical point of F of index k is of the form

Or(x1,. .., xn) = (€ x1,..., e "xp, e xp 1, ..., €5 %)

in a coordinate neighborhood and the stable manifolds and unstable manifolds of
critical points of F are transverse.
For such a gradient flow we have the following proposition.

Proposition 6.2. For a k-dimensional stable manifold 1. of a critical point (of index k)
of F, there is a continuous map h: D¥ — M™ such that h|Int(D*) is a diffeomor-
phismto L and h(dD*) ¢ P&=D where P®=1 isthe (k — 1)-dimensional skeleton
of the stratification by the stable manifolds of ¢;.

This proposition is shown by Laudenbach in [13]. The author is grateful to the
referee for indicating him this reference. We include the proof of Proposition 6.2 for
completeness.

To show Proposition 6.2, we need to use the fact that the stratification by the
stable manifolds of such ¢, satisfy a much stronger condition, namely, the closure of

a stable manifold is a submanifold with conical singularities (smcs) which is defined
in [13].
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An m-dimensional stratified subset X = X@ > ... 5 X© of M” defined in
Section 2 is called a submanifold with conical singularities (smes) if, for 1 <k <m
and any x € X% \ X® -1 there are a neighborhood V of x diffeomorphic to
D¥* % D" % and an (m — k)-dimensional smes T = 705 5 ... 5 7O iy prk
such that V' M X is diffeomorphic to DF < T, and for x € X© there is a C!
embedded #-dimensional ball B centered at x such that X’ = X NadB isan (m —1)-
dimensional smes in the (n — 1)-dimensional sphere and (B,B N X ... .B N
XY is diffeomorphic to (B, CX'"D ... €X'} where C denotes the cone
with respect to the linear structure of the C'! parametrization for B.

Roughly speaking Proposition 6.2 is shown in the following way. Let pf - pg y
be the critical points of F of index j. Let S’ J,-_l denote the attaching sphere which
p.

is the intersection of the stable manifold I.¢ -I and M;_ 1/, and is the boundary of
»i

I

thecoredlskDJ =L, NF~ Wlp —1/2,0 <+ L12]), LetSn 771 denote the belt
v}

sphere which is the intersection of the unstable manifold L* and M;_ 1/2,and is the

ri
boundary of the cocore disk D”;J = L;j NFY[j—1/2,7 +1/2]).

We look at L M M; qppfor j=k—1,..,0 and we show that L M M; /218
a (k — 1)-dimensional smes of M; /2. In fact, on M; /2, there are belt spheres

Sn;jfl (i = 1,...c;) which intersect transversely to L MM; 1/2. Onthe cocore disk

i

D"%; / which is bounded by St LI D*; 7 is homeomorphlc to the cone over
P Pt pI

L ﬂS "Il T restrictedtoa neighborhood of the cocore disk D 7 is homeomorphic

I I

to a product of L N D 7 and an open ball of D7. Using the flow ¢; on F~H([j —

1/2, 7 +1/72)\ U , we see that I M) M;_ ;5 is a(k —1)-dimensional smcs
Pz
of M] —1/2-
By using this structure we define the homeomorphism 4 in the proposition.

Now the first step of the proof of Proposition 6.2 is the following lemmas, which
show that the closure of a stable manifold of such ¢; is a submanifold with conical
singularities (smes) ([13], Proposition 2).

Lemma 6.3. Let ¢; be the flow on D7 > D*/ such that ¢,(x,y) = (e *x,e'y),
wherex = (x1,...,x;)andy = (Xj41,...,%n). Let N = N&® 5...o NO® peg
k-dimensional stratified subset of D7 x D"~J invariant under the flow ¢; such that
N N(D? xaD* /) is a (k —1)-dimensional smes of DV x dD" ™/ near {0} < D"/
and N is transverse to {0} x D" 7. Then there is a neighborhood U of 0 € D/ such
that N N (U x D" is homeomorphic to U x C(N N ({0} x 3D" 7)), where C
denotes the cone.
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Proof. Since N N (D7 x dD" /) is a (k — 1)-dimensional smes and transverse
to {0} x aD" ™, N’ = N N ({0} x aD" /) is a (k — 1 — j)-dimensional smcs
in {0} x dD"/ and there is a positive real number ¢ such that the g-neighborhood

= int(D?)of 0 € D/ hasthe following property. Thereis amappingv: U <N’ —
D™/ such that v(0, y) = y,

NN(UxaD" /)= {(x,v(x,y)) ‘ (x,y) e UxN'},

and v is smooth on each product U x S, where S is a stratum of N'. By the invariance
under the flow ¢;, the set {(x, v(x, ¥)) ‘ (x,y) € U x S}iscontained in the stratum
in N N (U x D* /) which is written as

{(x,s5v(5x,y)) ‘ (x,y)eUxS, s<][0,1]}

In particular, N N ({0} x D"/} = C(N'). Hence the map (x,sv(sx, y)) >
(x,sv(0, y)) is a homeomorphism sending N N (U x D* V) to U x C(N'). O

Lemma 6.4. L N M; .,/ is a (k — 1)-dimensional smes of M; 1172 for j =k —1,
ey O,

Proof. The above lemma implies that if L M M; {1/21s a (k —1)-dimensional smcs
of M; 1>, then on

i i
M =M\ JUx D" U |Jou x D™

i=1 ! i=1 !

smoothened appropriately, L N M! is a (k — 1)-dimensional smecs of M/

j41/2 F+1/2
Since FY([j —1/2,j + 1/2D \ (U x Dn ]) after smoothing along the corner is

diffeomorphic to [0, 1] x M;_ 1/2> where the flow ¢, corresponds to the flow in the
direction of [0,1], L N M/ 12 is diffeomorphic to L M M;_1 /2. Hence E M M;_ i
is a (k — 1)-dimensional smes of M; /5. B

Since LNMj_ 1/2 is aunion of attaching spheres Sk L = 1, ceptpi L NM;i1/2

is a (k — 1)-dimensional smes of M; 1/, for i = k — 1 R O]

Letrd. = L;, be the stable manifold of the critical point p of index k. The stable

manifold L is diffeomorphic to R¥ and the restriction ¢ |L of the flow ¢, is conjugate
to the radial contraction t; on B¥ defined by ¥ (x1, ..., x5) = e Hxr,...,x8).
First we embed R¥ in D¥ such that the ray from the origin corresponds to the radial
ray in int(Dk). Leti: L — D¥ denote the embedding. Then we see that the identity
map i (L) — L does not extend to a continuous map D¥ — L in general.

In order to define the map 4 : D¥ — L, we use the construction in the above
lemmas. For a subset A of D¥, we write R(A) the radial saturation of A, that is the
union of the radial segments of length 1 from the origin 0 passing through the points
of A.
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Froof of Proposition 6.2. We are going to construct the k-dimensional compact sub-
manifold B; of D¥ with boundary such that

By C By, C--CB CBy=DF
and the homeomorphisms
hi: By — LNFYj—-1/2,k+1/2)) G=k,....0),
such that z; |(B; N int(D*)) is a diffeomorphism onto L M F1([j —1/2,k + 1/2]).
First, for L = L}, L M Mg_1/2 is a (k — 1)-dimensional sphere which is the
attaching sphere Sg_l bounding the core disk D;f. Put By = .i(Dg) C D*, and we

define hy: By — Ltobei
Secondly, we look at the finite set Sk I S”k * . The cone C, £l (Sk I'n S

is contained in L and we take the closed disk nelghborhood U; of Sk I S”,c ;. in
Sk ! given by LLemma 6.3 such that U; x C o1 (Sk et S”,c 1) is a nelghborhood of
k 1 (S"c L S *Yin L. Then we take the radial saturat1on R(i(U;)) in D¥. The

part R(z(UI))\mt(z(D};)) is diffeomorphic to i (U;) %[0, 1], where i (U; ) {0} < aD*
and i(U;) < {1} = i (U;). Then we define

B i(0) % [0,1] — U; x cpj_c_l(sjf—l N S;f‘fl

by A (x,t) = (i~1(x),1), where ¢ is the parameter of the cone such that r = 0
corresponds the vertex. Then we take the union z(Dk ) U Uck L R(i(U;)) and add a

neighborhood of UC"T 1$(dU;) to obtain a smooth manifold B in D¥*_ On the other
hand, we take the union

Ck—1
k r7 k-1 n—k
Dy U | ) Ui x Gy (5,71 1 S ko
i=1

and add a neighborhood of | Ji%7? dU; to obtain the subset Az < L. There is a
contimuous map Ay B, — Ap C L extending Ay, such that RLI(B, M Int(D*)) is a
diffeomorphism onto L M Ag. Since L N F~ Y[k —3/2,k + 1/2]) Y Ag is invariant
under the flow ¢; and the flow ¢; on

Ck—1

. n—k+1
F~ W[k —=3/2,k+1/2D\ ul U; ngc_ﬁ

is conjugate to the flow on [0, 1] X My_s,5 in the direction of [0, 1], we can perform
the following construction. We take a collar neighborhood dB; x [0, 1] of 3B in
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D* int(B, ) and let Bx_; be the union of B, and its collar neighborhood. Using
the flow ¢, we can construct a continuous map

hi_1: By — LN F Y k—3/2,k+1/2)

such that iy |(Br_y M int(D¥)) is a diffeomorphism onto L N F~1([k —3/2,k +
1/2]). We may arrange that By_; is star-shaped with respect to 0 € D in such a
way that dBy_; and radial segments from 0 to points of dD¥ are transverse.

Thirdly, assume that we have constructed the k-dimensional compact submanifold
B;.yof D¥ with boundary and the homeomorphism

hiv1:Biyy —>LOF N[ +1/2,k+1/2))

such that 2; 1 [(Bj+1 N int(D*)) is a diffeomorphism onto L N FYi+1/2.k+
1/2]) and B; is star-shaped with respect to 0. Then L M M;, /2 is a(k — 1)-
dimensional smes of M; |/, and the belt spheres S;,-_"_l (C M;1/2) are transverse

to L NM; 120 =1,...¢;). Hence . M S"zj-_j_1 isa (k — j — 1)-dimensional smcs
Pj

of Snj-_j_l. The cone Cp; (LN Snj_j_l) is contained in L and we take the closed
i i P

disk neighborhood U; C Djj- of pf_l given by Lemma 6.3 such that U; x Cp; G 1)
P . _ i _
S”;f—l) is a neighborhood of C, (LN S;:f—l) in L. We look at (h; 1)~ "(L N

Snj-_j_l) and its closed neighborhood
Py

VIt = (hjp) '@ < (L0 8%7Th)

in dB; 1. Then we take the radial saturation R(T/_’{H) in D*. This time, the part
R(]?;Hl) \int(B;41) and Vg“ x |0, 1] are not diffeomorphic, but homeomorphic.
The reason is that R(T?;;Jrl) \ int(B; 1) near 17;ij1 M dD* is a manifold with corner
along 171.”1 N dD*, and there is a homeomorphism Vi’i+1 % [0,1] — R(I_/{H) \
int(B; 1) such that Vi’i+1 x {0} ¢ aD* and Vin x40} = Vin, which straighten
the corner along (T/_’in NaD*yx 10} and is no longer send the radial segments to the
direction of [0, 1] near (ﬁjJrl Napkyx= {0}. This homeomorphism can be taken to be
a diffeomorphism on Vij+1 > [0, 1). Then we take the union B; {1 U Uszl R(V{JFI)
and add a neighborhood of Uszl 8T7g+1 to obtain a smooth manifold B} | in D¥.
On the other hand, we take the unicn

ci
(LnF N +1/2.k+1/2D) Ul J U x Cpg(i M S;.‘J‘l)
i=1 .
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and add a neighborhood of Uf”;l U; < (LN Sn;jfl) to obtain the subset 441 C L.
P;

There is a continuous map 47, ,: Bi,, — A;41 C L extending k; ;; such that
h;.’+1 |(Bj’fle N Int(D¥)) is a diffeomorphism onto L N Ajy1. Since LN F71([j —
1/2,j + 1/2]) \ Aj41 is invariant under the flow ¢; and the flow ¢; on

FU =172, + 1720\ [ J U< D77
=it :

is conjugate to the flow on [0, 1] x M; _;,, in the direction of [0, 1], we can perform
the following construction. We take a collar neighborhood BB;JFI %[0, 1] of BB;JFI in

D¥ \int(B}H) and let B; be the union of B}H and its collar neighborhood. Using the

flow ¢,, we can construct a continuous map 4, : B; — LNFYj—1/2,k+1/2))
such that A; |(B; M int(DX)) is a diffeomorphism onto L M F1([j —1/2,k + 1/2]).
We may arrange that B; is star-shaped with respectto 0 € DF in such a way that dB;
and radial segments from 0 to points of dD* are transverse.

Finally, for j = 0 in the above construction, we notice that B, = B, U
€0 R(V!)is D* itself and the map h7: B! — A, extending k is the desired
i=1 I P Ay 1 £

map. ]
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