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Pure states, nonnegative polynomials and sums of squares
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Abstraet. In recent years, much work has been devoted to a systematic study of polynomial
identities certifying strict or non-strict positivity of a polynomial f on a basic closed set K C
R™. The interest in such identities originates not least from their importance in polynomial
optimization. The majority of the important results requires the archimedean condition, which
implies that K has to be compact. This paper introduces the technique of pure states into
commutative algebra. We show that this technique allows an approach to most of the recent
archimedean Stellensitze that is considerably easier and more conceptual than the previous
proofs. In particular, we reprove and strengthen some of the most important results from the
last years. In addition, we establish several such results which are entirely new. They are the
first that allow f to have arbitrary, not necessarily discrete, zeros in K.
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Introduction

Consider a sequence g1,...,8r € R[x] = R[xy,..., x| of real polynomials to-
gether with the basic closed semi-algebraicset K = {x: g,(x) = 0,...,g,(x) = 0}
in R”. Given a polynomial f & I[x]| which is nonnegative on K, it is an important
problem, both from a theoretical and from a practical point of view, to understand
whether there exist simple algebraic certificates that make the nonnegative character
of f evident. Traditionally, a result stating the existence of a particular type of such
certificates is called a Positivstellensatz, or a Nichtnegativstellensatz, depending on
whether f is supposed to be strictly or only non-strictly positive.

Krivine [Krl] and Stengle [St] proved that such certificates always exist. However,
their results amount to rational representations of f, that is, representations with
denominators. Much harder to establish, but also much more powerful when they
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exist, are denominator-free representations of £, such as

F 1 1
f=s0+D si8, F=2 2 S48l 8
i=1 i1=0 =0

or .

f= D i -glteegr,

i1 ey 20

in which the s; or s;,,. ; are sums of squares of polynomials and the a;, .. ;. are
nonnegative real numbers. The study of such identities comprises questions of exis-
tence and complexity as well as algorithmic aspects. Considerable research efforts
have been spent in recent years on these questions (see [PD], [MaZ2], [Sch4]), not
least because of their central importance in polynomial optimization (see [[La] for an
excellent survey).

A prototypical version of a denominator-free representation result is the so-called
archimedean representation theorem, due to Stone, Krivine, Kadison, Dubois and
others. See Section 5.6 of [PD] and also Theorem 6.1 below. It asserts that f
has a representation as desired, provided that / > 0 on K and the archimedean
condition holds. Many refinements of this result have been proved in the last decade,
notably extensions to cases where f is allowed to have zeros in K. Some of them are
recalled in Section 6 below. A common feature of all these results is the archimedean
hypothesis. See 1.2 for its technical definition. Note that in any case, this condition
implies that K is bounded, hence compact.

The purpose of this paper is to lay out a new approach to these results and to new
archimedean Stellensdtze, which is based on pure states of the associated cones in
R[x]. This new approach permits proofs which are considerably more transparent,
easier and more uniform than the existing ones. In a number of cases, we arrive at
substantially stronger results than known so far. In addition, using the new technique,
we prove several archimedean Nichtnegativstellensiatze which are completely new.
Altogether, we believe that this paper gives ample support to our claim that the con-
sequent use of pure states is a powerful tool in the study of archimedean Stellensétze.
We remark that the results presented here do by far not exhaust the applications of
this technique. We plan to give further applications elsewhere.

The technique of pure states relies on an old separation theorem for convex sets in
areal vector space V', due to Eidelheit and Kakutani ([Ei], [Kk]). Combined with the
Krein—Milman theorem, it yields a sufficient condition for membership in a convex
cone C C V, provided that C has an order unit (also known as algebraic interior
point): If x € V' and all nonzero states of C have strictly positive value in x, then
x € C. The first systematic use of this criterion was probably made by Goodearl and
Handelman [GH].

The starting point for this work was a remark of Handelman made to the third
author in 2004, Handelman pointed out that a slightly weaker version of Theorem 2
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in [Sw2] (corresponding to the special case M = S in Theorem 6.4 below) can be
proved easily by using pure states.

We now give a brief overview of the contents of this paper. Among its seven
sections, the first five are preparatory in character, while the last two contain the
main applications. After a few notational preliminaries in Section 1, we recall the
general Goodearl-Handelman criterion in Section 2. From Section 3 on we work
in a commutative ring A and consider (pseudo-) modules M over subsemirings S
of A. After studying order units in such M in general (Section 3), we prove an
important fact in Section 4, which applies in the situations which are most common
(S archimedean or S containing all squares): If M contains an order unit with respect
to the ideal it generates, then the associated pure states satisfy a multiplicative law
of a very peculiar form. See Corollary 4.12 for a summarizing statement. This fact
lies at the basis of all later applications. Section 5 discusses the question whether
intersecting M with an ideal of 4 preserves the existence of an order unit. This is an
important technical point, as explained in 3.8.

In Section 6 we review some of the most important Positiv- and Nichtnegativ-
stellensatze in real algebra. Using pure states, we reprove them in an elegant and
uniform way. For some of them we arrive at statements that are considerably stronger
than previously known (Theorems 6.4, 6.5). Finally, in Section 7 we use pure states
to arrive at Nichtnegativstellensatze which are entirely new. The so far known results
of this type apply only (essentially) in the case where the zeros of the polynomial f
in K are discrete. The two main results presented here are Theorems 7.6 and 7.11.
In both, the zero set of f in K can have any dimension. While in Theorem 7.6,
this zero set necessarily lies in the boundary of K (relative to its Zariski closure),
Theorem 7.11 applies typically when the zeros lie in the (relative) interior of K. A
particularly concrete case of Theorem 7.6 is Theorem 7.8, dealing with polynomials
nonnegative on a polytope and vanishing on aface. It becomes visible in Theorems 7.6
and 7.11 how pure states on suitable ideals of the polynomial ring are closely related
to directional derivatives (of order one in 7.6, of order two in 7.11).

In most parts of this paper, our setup is more general than real polynomial rings and
semi-algebraic sets in R”. We explain in 1.4 why we think such a greater generality
is necessary.

1. Notation and conventions

1.1. We start by recalling some terminology (mostly standard) from real algebra.
General references are [PD], [Ma2], [Sch4].

Let A be a commutative ring (always with unit), and let S C A be a semiring,
i.e., asubset containing {0, 1} and closed under addition and multiplication. A subset
M C Aiscalled an S-pseudomodule it 0 e M. M + M C M and SM C M. Ifin
addition 1 € M then M is said to be an S-module. The support of M is the subgroup
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supp(M) = M N(—M ) of A; thisisan ideal of Aif S —5 = A. We sometimes write
a <p btoexpressthat b —a €« M, fora, b € A. The relation <js is anti-symmetric
modulo supp(M), transitive, and compatible with addition and with multiplication
by elements of S.

Particularly important is the case where S = X A2, the semiring of all sums of
squares in A. The X A?- (pseudo-) modules are called guadratic (pseudo-) modules
in A. Asemiring S C A is called a preordering in A if it contains ¥ A%, When % c A
we have ¥ A2 — £ A% = A by the identity 4x = (x + 1)? — (x — 1)?, and so, in this
case, supp(M ) is an ideal for every quadratic pseudomodule M.

Given finitely many elements a;,...,a, € A, we write

QM(ay,...,a,) = SA* + 542 a; +---+ZA4%-a,

resp. _ _
PO(a1,...,ar) == QM(a}' - <a) 1 i1,... iy € {0,1})

for the quadratic module (resp. the preordering) generated by ¢4,...,d, in 4.

1.2. Let M C A be an additive semigroup containing 1. Then M is said to be
archimedean if for every a € A thereis n € N with @ <p; #. In other words, M is
archimedean if and only if A = 7 + M.

Note that when M is archimedean, every semigroup containing M is archimedean
as well. See Remark 3.3 below for examples of archimedean semigroups.

Warning. In the functional analytic literature, M like in 1.2 is called archimedean if
no & € A~ M has the property that Na has a lower bound in A with respect to <ps
(see, e. g., p. 20 in [Go]). Our definition is completely different and coincides with
the usual terminology in real algebra (see, e. g., 1.5.1 in [Sch4]).

1.3. Given any subset M C A, we write
X(M) = {¢ € Hom(A,R): ¢|pr > 0}
(where Hom( A4, R) denotes the set of ring homomorphisms A4 —> R) and
Z(IM) =XMU-M)= {Q’) € Hom(A4,IR): ¢|ar = 0}.

Considering Hom(A4, R) as a subset of R4 = [14 R, this set has a natural topology.
When M is an archimedean semigroup in A4, the subset X(M) of Hom(A4,R) is
compact.

Write X := Hom(A,R). Every a € A induces a continuous map d: X — R
by evaluation. Thus we have the canonical ring homomorphism (not necessarily
injective)

A— CX,R), ara
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(here C(X, R) is the ring of continuous real-valued functions on X ). Thinking in this
way of the elements of A as R-valued functions, it is natural to write a(x) instead of
x{a), fora € A and x € X, an abuse of notation that we will often commit.

Scholium. Let A be a finitely generated R-algebra. To emphasize the geometric
point of view we will frequently identify Hom(A4, R) with V(IR), the set of [R-points
of the affine algebraic R-scheme V' = Spec(A). Thus, if M C A is any subset, we
have
X(M)y={xcV(R):VfeM f(x)>0}

If M is finite, or a finitely generated quadratic module in A, X(M) is a basic closed
semi-algebraic set in V(IR).

Any choice of finitely many R-algebra generators @1, ..., d, of A gives an iden-
tification of Hom(A4,R) = V(RR) with a real algebraic subset of R”, via the map

Hom(4,R) <> R", x> (x(ay),...,x(a,)).

The image set is the zero set of the ideal of relations between aq,. .., a,, and hence
is real algebraic. Generally it is preferable not to fix a set of generators in advance,
and only to introduce affine coordinates when it becomes necessary.

1.4. A wordonthe generality of our setup. Preorderings, and more generally quadratic
modules, in polynomial rings over R are the most traditional context for positivity
results (see [PD], [Ma2], [Sch4]). But there are also prominent examples which
do not fit this context, like theorems by Pélya and Handelman [H1], [H2], [Sw2].
These are cases where the required algebraic objects are semirings, or modules over
semirings. It is often preferable, or even necessary, to work with arbitrary finitely
generated R-algebras, instead of just polynomial rings over R. Finally, we feel that
applications to rings of arithmetic nature, like finitely generated algebras over 7 or
(), are interesting enough as to not exclude these cases a priori.

Given all this, our basic general setup will consist of a ring A and an additive
semigroup M C A (with 0 € M), We feel freetoassume @@ C Aand Q. M C M
when this helps to simplify technical details. Usually this does not mean much
loss of generality, since one can always pass from A and M to Ag = A ® (@ and
Mg = {x@%: n € N }. None ofthe methods discussed in this paper sees adifference
between f € M anddn e Nnf ¢ M.

1.5. By N = {1,2, 3,... | we denote the set of natural numbers. The set of nonneg-
ative rational, resp. nonnegative real, numbers is written @, resp. R .

2. Convex cones and pure states

2.1. Let G be an abelian group, written additively, and let M C G be asubsemigroup
(always containing 0). The subgroup supp(M) ;= M N (—M) of G is called the



118 S. Burgdorf, C. Scheiderer and M. Schweighofer CMH

support of M. We neither assume supp(M ) = {0} nor M — M = G in general. It is
often useful to work with the relation <ps on G definedbyx <pr y =y —x e M.

A group homomorphism ¢: &G — R into the additive group of reals is called a
state of (G, M) if ¢ |y > 0. We sometimes denote the convex cone of all states by
S(G, M).

An element ¥ € M is called an order unit of (G,M) if G = M + Zu, or
equivalently, if for every x € G thereisn € N with x <7 nu. In general, there need
not exist any order unit, not even when G = M — M (which clearly is a necessary
condition).

Example 2.2. If A isaring and M C A is an additive semigroup containing 1, then
M is archimedean (see 1.2) if and only if 1 is an order unit of (A, M ).

Example 2.3. A typical and frequently used example is when G = I/ is a vector
space over R (of any dimension) and M is a convex cone in V', i.e., M is non-empty
and satisfies M + M C M and R _M C M. The convex cone S(V, M) of all states
of (V, M) is equal to the dual cone

M* = {pe V" gy =0}

of M (regarded as sitting in the dual linear space V'), provided that V = M — M.
(If M does not span V, there exist additive maps V' — R vanishing on M which are
not R-linear.)

The order units of (V, M) are also known under the name algebraic interior points
of M (e.g. [K&],p. 177, or [Ba], II1.1.6). In particular, when dim(V') < oo, the order
units of (V, M) are precisely the interior points of M with respect to the euclidean
topology on V. Hence, in this case, an order unit exists if and only if V =M — M.

2.4. Assume that (G, M) has an order unit #. Then every nonzero state ¢ of (G, M)
satisfies (1) > 0. We say that ¢ is a monic state of (G, M, u), or for brevity,
simply a state of (G, M, u), if ¢(#) = 1. The set of all monic states will be denoted
S(G, M, u).

The set S(G, M, u) can be regarded as a subset of the product vector space R¢ =
[T R. Assuch it is compact and convex. A state ¢ € S(G, M, u) is called a pure
state of (G, M, u) if it is an extremal point of the compact convex set S(G, M, u), or
equivalently, if 2¢ = @1 + @2 with ¢, ¢2 € S(G, M, u) implies ¢ = @1 = @3.

By the Krein—-Milman theorem, the convex hull of the set of pure states of
(G, M, u) is dense in S(G,M,u). Using this fact together with the Eidelheit—
Kakutani separation theorem ([Ei], [Kk], see also [Ba], III.1.7), one can prove the
following fundamental result. Originally it is due to Effros, Handelman and Shen
[EHS] (see also Lemma 4.1 in [GH| and Theorem 4.12 in [Go]).
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Theorem 2.5. Let G be an abelian group and M C G a semigroup in G with order
unitu. Let x € G. If o(x) > O for every pure state ¢ of (G, M, u), there is an integer
n>1withnx € M. L]

Remarks 2.6. Let G be an abelian group and M C G a semigroup.

lLLet Gp =G@Qand Mg ={x®qg: x €« M, g < Q,}. Then S(G,M) =
S(Gg, Mp) holds canonically. If ¥ € M is an order unit of (G, M) then ¥ ® 1
is an order unit of (Gq, Mg) (the converse being false in general), and we have
S(G, M,u) = S(Gg, Mg, u @1). In this way one reduces the proof of Theorem 2.5
to the case where G is a Q@-vector space and (), M = M.

2. Inthe situation of Theorem 2.5, ¢(x) > Oholds for every pure state of (G, M, 1)
if and only if ¢(x) > 0 holds for every 0 £ ¢ ¢ S(G, M).

Indeed, note that the map S(G, M,u) — R, ¢ — @(x) assumes its minimum
since S(G, M, u) is compact. The set of minimizers is compact and convex, and
hence has an extremal point ¢. One verifies that any such ¢ is also an extremal point
of S(G, M, u),i.e., apure state of (G, M, u).

As a consequence, the condition on x in 2.5 is independent of the choice of a
particular order unit.

Corollary 2.7. Assume that (G, M) has an order unit u, and that M satisfies (na <
M =acM)foreverva € G andn € N. Let x € G with ¢(x) > 0 for every pure
state ¢ of (G, M, u). Then x is an order unit of (G, M).

Proof. x € M by adirect application of Theorem 2.5, using the assumption on M.
Given y € G, the map ¢ — €O from the (compact convex) set S(G, M, u) to R is

p(x)
continuous. Hence there is n € N with ‘%‘ < n,i.e, ¢nx + y) > 0, for every
¢ € S(G, M, u). Again from 2.5 and the assumption we get nx + y € M. O]

3. Order units in rings and ideals

Definition 3.1. Let 4 be aring and M C A an additive semigroup (with 0 € M, as
always). For u € M we put

OM,u):= O4(M,u) = {ac A:IneNnu+taecM},
or equivalently, O(M,u) = supp(M + Zu).

So O(M,u) consists of all elements which are bounded “in absolute value” by
some positive multiple of u#, with respectto <ps.
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Proposition 3.2. Let M, M, M, be additive semigroups in A.

(a) Letu € M. Then O(M,u) is an additive subgroup of M — M C A containing
supp(M ) + Zu.

(b) O(Ml, ul) . O(Mg,ug) - O(MlMQ,Mlug)fO?‘ all Uy € Ml, Uy & Mg, where
My M, denotes the semigroup in A generated by all products x1%, with x; € M;
i=1,2).

(c) Let S be a semiring in A. Then O(S,1) is a subring of A, and O(S,u) is an
O(S, 1)-submodule of A for everyu € S.

(d) Assume that % e A and M is a quadratic module. Then O(M, 1) is a subring of
A, and O(M, u) isan O(M, 1)-submodule of A foreveryu € M withuM C M.

FProof. (a) is obvious. For the proof of (b) let a; € O(M;,u;), say n;u; + a; € M;
withn; e N ( = 1,2). From

3npna U Uy + arax = (n1uy + ar)(nak2 + &az)

+ nu (o — &az) + naua(Biur —an)

fore = +£1 we see a1a2 € O(M My, uq12).
(¢) is an immediate consequence of (b). To prove (d) let ¢ € O(M,1), say
m+ac M. Ifr > 7 is an integer, the identity

(r —a)(m+a)+ (r +a)m—a) =2rm —20Qr —m)a®

shows a® € O(M,1). Given another element b € O(M, 1), we get ab € O(M,1)
from 4ab = (a + b)?> — (a — b)?. So O(M, 1) is a subring of A.

Nowletu €¢ M withuM C M,letx € O(M,u) and let a € O(M, 1) be as
before. We have nu + x € M for some » € N, i.e., £x <3y nu. Multiplying with
a® gives +a*x <py na*u. By what was said before there is k ¢ N with a? <y k.
Using uM C M we conclude a’u <ps ku, and therefore +a?x <pr nku. This
shows a?- O(M,u) C O(M,u) foreverya € O(M,1),and O(M,u)isan O(M, 1)-
submodule of A, using the identity 4a = (a + 1) — (a — 1)?. O

Remarks 3.3. 1. If M C A is a semigroup containing 1, then M is archimedean
(1.2) if and only if O(M,1) = A.

2. More generally, let M C A be any semigroup and ¥ € M. Then O(M, u) is
the largest subgroup B of A containing ¥ with the property that u is an order unit of
(B,M N B).

3. The rings O(M, 1) were introduced in [Swl], in the case where M is a pre-
ordering. The fundamental result proved in [Swl] is that when A is an R-algebra of
finite transcendence degree d and T C A is a preordering, then O(T, 1) coincides
with H? (A, T), the d times iterated ring of geometrically bounded elements. (See
loc. cit. for precise details.)
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4. A special case of the just mentioned result is the celebrated theorem of Schmiid-
gen [Sm]: If A is a finitely generated R-algebra and 7' C A is a finitely generated
preordering, then T  is archimedean if (and only if) the basic closed set X(1') is
compact.

5. The article [TP] (see also [PD] and [Ma2]) is concerned with the question when
quadratic modules are archimedean. In general, this is much more subtle than for
preorderings.

6. Let K C R” be a nonempty compact convex polyhedron, described by linear
inequalities g7 = 0,..., g, = 0. Let S be the semiring generated in the polyno-
mial ring R[x] = R[x1,...,x,] by R, and gi1,...,82s;. By a classical theorem
of Minkowski (Theorem 5.4.5 in [PD]),the cone R, + R, g1+ -+ R g, C S
contains every linear polynomial which is nonnegative on K. Using compactness of
K it follows that O(S, 1) contains all linear polynomials. Since O(S, 1) is asubring
of R[x] (3.2 (¢)), it follows that S is archimedean.

Corollary 3.4. Let S C A be a semiring and M C A an S-module. Let I, J be
ideals of A such that (I,S (1) has an order unit w and (J, M N J) has an order
unit v. Then uv is an order unit of (1J, M M IJ).

Proof. The hypotheses say I C O(S,u) and J C O(M,v). By 3.2 (b) we have
IJ C O(M,uv), which is precisely what was claimed. O]

Proposition 3.5. Assume that M is a pseudomodule over an archimedean semiring
S in A. Then

O(M, f) = supp(M + Af)
forevery f € M, and this is an ideal of A.

Proof. supp(M + Af) is an ideal since it is stable under multiplication with .S and
since S + Z = A. The inclusion O(M, f) = supp(M + Z f) C supp(M + Af)
is clear. Conversely let g € supp(M + Af).sav g = x +af = —y + bf with
X,y € Manda,b e A. Since S is archimedean, thereis#n € N withn £4 € S and
n+tbeS. Thereforenf —g=m->0)f +yandnf +g=@m+a)f +xliein
M, which shows g € O(M, f). O]

Here is an equivalent formulation:

Corollary 3.6. Let M be a pseudomodule over an archimedean semiring in A, and
let f € M. Then f is an order unit of (I, M N I) where I .= supp(M + Af) (an
ideal of A).

FProof. The inclusion I C O(M, f), which holds by 3.5, means that f is an order
unit of (I, M N 1) (see 3.3). L]
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Using the Goodearl-Handelman criterion, we can give still another formulation:

Corollary 3.7. Assume () C A. Let S be an archimedean semiring in A with
Q4 C S, let M be a pseudomodule over S, and let f € A be fixed. Then f ¢ M
if and only if there exists an ideal I C A with f € I having the following two
properties:

(1) (I,M 1) has an order unit u,
(2) @(f) > 0 forevery pure state ¢ of (I, M N I,u).

Moreover, when [ < M, the ideals I with the above properties are precisely the
ideals satisfying Af C I C supp(M + Af).

Proof. 1f I is an ideal containing f with (1) and (2), then we get f € M directly
using 2.5. Conversely assume f € M. Then I := supp(M + Af) has the desired
properties. Indeed, f itself is an order unit of (I, M N I) (3.6). The last assertion in
3.7 follows from 3.5 and 3.6, cf. the second of the Remarks 3.3. (]

Remark 3.8. Suppose we have A, S and M as before, and are given an element
f € A that we want to prove lies in M. Corollary 3.7 shows a possible way to
proceed. In fact, most of the main results of this paper will be concretizations of this
corollary in one or the other way. At this point, we would like to point out the need
of understanding the following two questions:

(Q1) Givenanarchimedean S-module M and anideal I of 4, whendoes (I, M NT)
have an order unit %?

(Q2) If u is such an order unit, what are the pure states of (I, M N I,u)?
We will address (Q1) in Section 4 and (Q2) in Section 5.

Remark 3.9. Without the archimedean condition on S, a result like Corollary 3.6
is usually far from being true. This is demonstrated by the following example: Let
M =QM(x, y,1 —x —y)in A = R[x, y], an archimedean quadratic module by
Proposition 3.2 (d), and consider the element f = x of M. Then supp(M + Ax) =
Ax =: I,but x is not an order unit of (I, M N 1) (or equivalently, O(M, x) is strictly
smaller than 7). For example, cx + xy ¢ M for any ¢ € R, as one can show. In
fact, we will show in 5.7 below that (I, M M [) does not have any order unit at all.

4. Pure states on rings and ideals

In 3.8 we have seen why it is important to have a good understanding of the pure
states of (I, M, u), where [ isanideal of Aand M C [ isan S-pseudomodule over S
with order unit #. We shall now give a satisfactory characterization in two important



Vol. 87 (2012) Pure states, nonnegative polynomials and sums of squares 123

cases, namely when S is archimedean, or when M is archimedean and & = ¥ A2,
These results are variations of a theorem by Handelman ([H1], Proposition 1.2). The
main idea appears to some extent already in earlier work, see Theorem 10 in [BLP]
or Theorem 15 in [Krl1].

Proposition 4.1. Zet Abe aring and I C A anideal. Let S C A be an archimedean
semiring and M C I an S-pseudomodule, and assume that (I, M) has an order
unit u. Then every pure state ¢ of (I, M, u) satisfies the following multiplicative law:

Yae AY b el elab) = ¢lau) - ¢(b). (1

4.2. Before we start the proof of 4.1, here are some preparations. Let ¥ be an order
unit of (I, M). Given an additive map ¢: I — R, and given any ¢ € A with
plau) == 0, let ¢, I — R be the localization of ¢ by a, defined by

plab)
pau)

Clearly, ¢, is an additive map with ¢, (#) = 1. [f gisastate of (/, M )andaM C M,
then ¢, is a state of (I, M, u). If a1, a; € A satisfy ¢(a;u) > 0 = 1,2) then

Palb) =

(el

@la1u) - Qg + elazu) - @u, = @{a) + adit) Ca;+ar,

SO @, +a> 18 a proper convex combination of ¢,, and ¢@,, in this case.

4.3. Proof of Proposition4.1. Inproving (1) we canassume ¢ € S since 4 = S 4+ Z.
Fixing a € S there are two cases:

If p(au) = 0, we have to show ¢(al) = 0. Now al = aM + Zau, and so it is
enough to prove ¢(aM ) = 0. For any x € M there is n € N with 0 <3y X <p nu,
whence 0 <pr ax <pr nau, from which we get ¢(ax) = 0.

There remains the case where @(au) > 0. Since S is archimedean there isn € 7,
with @ <g #. Choosing # so large that p(au) < n = @(nu), we can consider
the localized (monic) states ¢, and ¢, _,. As remarked before, ¢, = @ is a proper
convex combination of the two. Since ¢ is a pure state we must have ¢, = ¢, which
is identity (1). L]

The case I = A and ¥ = 1 deserves special attention:

Corollary 4.4. Let M be a module over an archimedean semiring in A. Then every
pure state of (A, M, 1) is a ring homomorphism A — R. 0J

A result similar to 4.1 is also true for quadratic pseudomodules:

Theorem 4.5. Let [ be an ideal of A and M C I a quadratic pseudomodule with
order unit w of (I, M ). Every pure state ¢ of (I, M,u) satisfies (1) of 4.1.
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The proof of 4.5 is somewhat more tricky. We need two auxiliary lemmas:

Lemma 4.6. Forn ¢ N let

F
1/2
@) =3 ( ] ) (x),
k=0
the n-th Taylor polynomial of ~/1 — x. Then the polynomial t,(x)* — (1 — x) has
nonnegative coefficients in 7. [%]

Proof. Fix n, and write pp(x) := ta(x)? —(1 —x) = 3 o cxx". Thencg = 0
fork <mnork > 2n, while

s 8 (7))

i=k—n

for n < k < 2n. The term with index / in the sum has sign (—1)~! - (=1~ =
(—1)*. This implies the lemma. ]

Lemma 4.7. Keep the assumptions of 4.5, assume moreover % c A, andleta € A
satisfy aM C M and (1 — 2a)u € M. Then every state ¢ of (I, M) satisfies
p((l —a)M) = 0.

Proof. Normalizing ¢ we can assume that ¢ is monic, i. e., ¢(#) = 1. By hypothesis
we have au <y %, and inductively we get aku <pp 2 %u forallk > 0. Leth € M.
Thereis r > QO with 2"u4 — b € M. In order to show ¢((1 — a)b) > 0 we may replace
b by 277 &, and may therefore assume ¥ — b € M. We will show ¢((1 —a)b) > —¢
for every real number & > (.

Let t,(x) be the Taylor polynomial from Lemma 4.6, and write pp(x) = 1,(x)* —
(1—x). Duetothe convergence of the binomial series, thereisn € N with p, (%) < &
Fix n and write p := pp. According to 4.6 we have

p(x) = exxt
2

with nonnegative numbers ¢ € Z[%] SoaM C M implies p(a)M C M, and
from & <pr u we conclude p(a)b <pr p(a)u. In particular, ¢(p(a)b) < e(p(a)u).
On the other hand,

e(play) =Y crplau) = Y c2 " :p(%) <e
k k

We conclude

@(1a(a)’b) — o((1 — a)b) = @(p(a)b) < p(payu) < &
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and so
o((1 —a)b) > @(a(a@)’b)—¢ = —¢

since M is a quadratic pseudomodule. []

4.8. Froof of Theorem 4.5. We may pass from A, I and M to A ® Q, I ® () and
Mg ={x® %: x € M,n e N}, respectively (see the remark in 2.6). In particular,
we may assue % € A, and thus have ¥ A% — ¥ A% = A. Therefore it is enough to
prove identity (1) fora € A% and b € 1.

If ¢(au) = 0, one shows ¢(al) = 0as in4.3. If ¢(au) > 0, choose k € N with
au <p 2Fu. For the proof of (1) we may replace a with 2-0+1 4 and can thus
assume (1 — 2a)u € M. Lemma 4.7 now shows ¢((1 — a)M) > 0. As in the proof
of 4.1, this makes ¢ a proper convex combination of the monic states ¢, and ¢1_,.
Since @ is a pure state we conclude ¢ = ¢, which is the assertion of 4.5. ]

The algebraic meaning of identity 4.1 (1) is explained in the following easy lemma:

Lemma 4.9. Let A be aring, I C A an ideal and v € 1. Let k be a field and
¢: I — k an additive map satisfying ¢(u) — 1. The following conditions are
equivalent:
(i) vae AV b el plab) = plau)- - ¢(b),
(i) there is a ring homomorphism ¢ A — k such that ¢(ab) = ¢(a) - p(b) for
ac A bel.

Moreover, the homomorphism ¢ in (i) is uniquely determined and satisfies ¢(a) =
e(au) for a € A. Exactly one of the following two alternatives holds:

(1) ¢(u) = 0and (b) = ;‘;E—zgfor every b € 1,
(2) ¢(I) =0.

Note that the alternatives (1), resp. (2), are equivalent to @(u?) # 0, resp.
e(u?) = 0.

Proof. (1) = (ii) One sees immediately that ¢ must satisfy ¢(a) = g(au) (@ € A).
It is readily checked that the so-defined ¢ satisfies (ii). The converse is clear as well.
Assuming that ¢ satisfies (i), we have ¢(b) = ¢(u) - ¢(b) for every b ¢ 1. If
¢ (1) # 0 then (1) holds. Otherwise ¢(i) = 0, and so ¢(I) = 0. O]

Definition 4.10. In the situation of 4.9 we call ¢ the ring homomorphism associated
with ¢. We refer to the identity ¢(ab) = ¢(a)p(b) (fora € A, b € I')by saying that
@ is ¢-linear.

The setting described in 4.9 isrelevant to us since it arises from pure states in ideals,
see 4.1 and 4.5. In this situation the following additional observation is important:
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Lemma 4.11. Let A be aring, I C A anideal and M C I an additive semigroup.
Letu € M, and let ¢ I — R be a state of (I, M, u) fulfilling (1) of Lemma 4.9.
Then the associated ring homomorphism ¢ . A — R satisfies ¢  X(1') where

T:={ted:rue My
In particular, if uM C M then ¢ € X(M).
Proof. If t € Ais suchthat tu € M, then ¢(¢) = ¢(tu) = 0. O]

Corollary 4.12 (Dichotomy). Let S be a semiring and I an ideal in A, and let
M C I be an S-pseudomodule such that (1, M) has an order unit w. Assume that S
is either archimedean or a preordering. Given anypure state . I — R of (I, M, u),
precisely one of the following two statements is true:

(1) @ is a scaled ring homomorphism: There exists ¢ € X(S) with ¢(u) = 0 such
that ¢ = HIE'QMI'
(II) There exists ¢ € X(S + 1) such that ¢ is ¢-linear.
More precisely, (I) < ¢m?) # 0, and (1) < ¢u?) = 0. In both cases, ¢ is
uniquely determined. In (1) (resp. (I)), one even has ¢ ¢ X(T') (resp. ¢ ¢ X(T + 1))
with T defined as in Lemma 4.11. Case (I1) can occur only when I £ A.

Proof. Thisis Proposition4.1 (for S archimedean) resp. Theorem 4.5 (for X 4% C S),
combined with 4.9. In both cases (I) and (II), note that ¢ is necessarily the ring
homomorphism associated with ¢ (Definition4.10), and hence is uniquely determined
by ¢. So the additional information ¢ € X(T') follows from Lemma 4.11. O]

Depending on u, the semiring 1" can be larger than S. This is sometimes useful,
for example, in the proof of Theorem 6.4 below.

Remark 4.13. In general, both ¢(#) > 0 and ¢ (1) < 0 are possible in case (I),
and accordingly, both ¢ € X(M) and ¢ € X(—M). In many standard situations,
however, the second cannot occur. Forexample, when M = N M/ for some quadratic
module N of A, then necessarily ¢ € X(M) since u? € M. The same reasoning
applies when M is a semiring.

Corollary 4.14. Assume () C A, and let M be a quadratic module in A. If (A, M)
has an order unit then M is archimedean.

In other words, if (A4, M ) has an order unit, then 1 is such an order unit as well.

Proof. Let u be an order unit of (A, M). By 2.7 it suffices to show ¢(1) > 0 for
every pure state ¢ of (4, M, u). By 4.12, such ¢ satisfies ¢(b) = %(% (b € A) for

some ring homomorphism ¢: A — R with ¢(u) == 0. So ¢(1) = ﬁ =+ 0, and
1 € M implies ¢(1) > 0. L]
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Remark 4.15. It is natural to wonder where there is a converse to Corollary 4.12, in
the following sense. In the situation given there, assume that ¢ is a state of (I, M, u)
that satisfies the multiplicativity law (1) (and hence satisfies (1) or (II) of 4.12, by
Lemma 4.9). Does it follow that ¢ is a pure state, i. e., is extremal in S(I, M, u)?

It is easy to see that the answer must be no in general, at least when ¢ is of type
(II): Fixing ¢, the ¢-linear states of (I, M, u) usually form a convex (compact) set
of positive dimension, so most of its elements are not extremal. For example, when
M =PO(x,y,1 —x—y)in A = R[x, y]and I = (x, y) is the maximal ideal of
the origin in A, then ¥ = x + y is an order unit of (I, M N I') (this is shown in 5.1
below). The states of type (II) are the partial derivatives whose direction lies in the
closed first quadrant (up to normalization). Hence only two of them are pure states.

However, when ¢ is of type (1), then under suitable additional side conditions on
M itisindeed true that ¢ is necessarily pure. For example, thisissowhen M = N7
for some quadratic module N in A:

Proposition 4.16. Suppose R C A. Let I be an ideal of A and M C I a quadratic
pseudomodule with I = M — M. We assume a® € M for every a € I. Then every
multiplicative state ¢ € S(I, M) is extremal inthe cone S(I, M), i.e., ¢ = ¢1 +¢3
with ¢; € S(I, M) implies ¢; = ci@ withc; = Q.

By saying that ¢ is multiplicative, we mean here that ¢(xy) = @(x)¢(y) holds
forall x,y ¢ M.

When A is aring (possibly without unit) of R-valued functions on a set, the analo-
gous result for multiplicative states of (A, A, ) was proved by Bonsall, Lindenstrauss
and Phelps in 1966 (|BLP], Theorem 13). The same proof applies, essentially liter-
ally, in our situation as well. Since Proposition 4.16 and Corollary 4.17 will not be
used elsewhere in this paper, we skip over the details. ]

Combining Proposition 4.16 with Theorem 4.5 we conclude:

Corollary 4.17. Suppose R C A. Assume that M is an archimedean quadratic
module in A. Then the pure states of (A, M, 1) are precisely the elements of X(M).
]

5. Existence of order units in ideals

Given an archimedean S-module M in A, and given an ideal  of A, we are going
to study when the cutted-down pseudomodule M M [ has an order unitin /. See 3.8
for why this is an important question.

Proposition 5.1. Let S C A be a semiring and M C A an S-pseudomoduie, and let
I C A be an ideal generated by x1,. .., Xy Assume that one of the following two
conditions holds:
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(1) (A, S) has an order unit u, and x1,...,x, € M
(2) (A, M) has an order unit u, and x1,...,xp € S.
Thenv ;= u(x) + -« + Xp) is an order unit of (I, M N I).

FProof. Any b & [ can be written & = Z?:l aixi witha; e A =1,...,8). By
assumption there is k € N with ku + a; € S (1), resp. ku +a; € M (2), for
i=1,...,n Hence kv = b =>7_ (ku + a;)x; liesin M. O

For (I, M M I) to have an order unit, it is obviously necessary that [ is generated
by elements of M. We see that this condition is already sufficient in many cases:

Corollary 5.2. Let M be a pseudomoduie over some archimedean semiring S in A.
If I is any ideai in A generated by finitely many elements of M, then (I, M N 1) has
an order unit.

FProof. Indeed, this is 5.1 (1). L]

On the contrary, when M is merely an archimedean quadratic module in A4, there
do in general exist ideals I, generated by finitely many elements of M, such that
(I, M N 1I)doesnothave an order unit. We shall now construct such examples within
a somewhat more general framework.

Proposition 5.3. Assume % € A. Let M be an archimedean quadratic moduie in A,
and let 1 be a finitely generated ideal in A.

(@) (I*, M N I?)always has an order unit.
(b) (I, M N 1I) has an order unit if and only if (I1/1?, M N I) has an order unit.

For the proof we need the following easy observation:

Lemma 35.4. Let G be an abelian group, H C G a subgroup and M C G a
semigroup. If (G/H, M) and (H, M (1 H) both have order units, then (G, M) has
an order unit.

Proof. By assumption there exists v € M N H with H C Zv + M, and there
exists ¥ € M with G/H = Zit + M,ie,G = Zu + M + H. Hence G =
Zu +Zv+ M. From —v = —(u +v) +u we get Zv C Z(u + v) + M, and
similarly Zu C Z(u + v) + M. Therefore G = Z(u + v) + M, which means that
¥ + v is an order unit of (G, M). O]

Proof of 5.3. The ideal I? is generated by squares since 4ab = (a + b)* —(a — b)>.
Hence (a) is a particular case of 5.1(2). Assertion (b) follows from (a) together with
Lemma 5.4. L]



Vol. 87 (2012) Pure states, nonnegative polynomials and sums of squares 129

Remarks 5.5, 1. In the situation of 5.3, assume that I = (b1,...,8,,). Thenu =
b? +- -+ b2 is an order unit of (1%, M M 1?). Indeed, u + b;b; is asum of squares
forallZ, j, and so the b;b; lie in O(M, u). Since O(M, u) is anideal in A (3.2), and
since the ;b; generate 12, we have I? € O(M, u).

2.1n 5.3 (b), the quotient I /I? can bereplaced by I/ J for any ideal J < I which

is generated by finitely many sums of squares.
Here is a sample application.

Proposition 5.6. Assume% c A Let M = OM(gy,...,8r,11,..., hy) bearchime-

deanin A, and let I = (gy,..., g, ). Assume that I is M -convex, [ = V1, and that
hi,..., hy,, arenot zero divisors modulo I. Then (I, M (N I) has an order unit if and
only if

(I/I?, 2A% g1+ + 24% g,)

has an order unit.

Recall here that 7 is said to be M -convex if I = supp(M + I), or equivalently,
ifa,be Manda+b € [ implya, b € I. Yet another equivalent formulation is that
a,c € I,be Aanda <pr b <ps ¢ together imply » € I. This last version explains
why this property is called M -convexity.

Proof. This follows from Proposition 5.3 (b) once we have shown
MnNI C BA2. g1+ 4+ ZA%. g + 12
Tothisendlet f € M M1, say

F Rt
f=) sigi+ )tk
i—1 =0

with 5;,7; € £ A? and by := 1. Then ZT:O t;h; lies in I. This element is a sum of
products a?h; witha € A and j € {0,...,m}. Since I is M-convex, all these a?h;
liein I. Moreover a € I in each case since [ = «/7 and the hj are not zero divisors
mod f. Therefore Zj tih; € I?, which proves the proposition. ]

Example 5.7. 1. In a geometric situation, e. g. for A = K[x1,..., x|, the condition
that 7 is M-convex is satisfied, for example, when [ is the full vanishing ideal of a
real algebraic set 1V C R” for which X(M ) NV is Zariski-dense in V.

2. Let A = R[x,y] and M = QM(x,y,1 —x — y), an archimedean quadratic
modulein 4. Theideal I = (x)in A4 is generated by an elementof M, but (I, M N 1)
has no order unit.

Indeed, this is a particular case of Proposition 5.6: Via the identification R[y] —>
I/17,g(y) > xg(y)+ I* thecone M NI = XX in I/I? corresponds to the cone
of sums of squares in R[y]. Clearly, this cone does not have an order unit.
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6. First applications

In this section we demonstrate how the approach via pure states gives a uniform and
elegant approach to many (if not most) of the important known archimedean Stellen-
sdtze. Our proofs via pure states are shorter and more conceptual than the previously
known proofs. In several cases we shall obtain versions that are considerably stronger
than previously known.

The selection of applications presented here is not exhaustive. We plan to explain
other applications elsewhere in a similar spirit.

Theorem 6.1 (Representation Theorem). Let M be a module over an archimedean
semiring in A, andlet f € Awith f > 0on X(M). Thennf < M for somen € N.

This fundamental theorem has been proved and re-discovered in many versions
over the time, by Stone, Krivine, Kadison, Dubois and others (see, e. g., [Kr1], [Kr2]).
See [PD], Section 5.6, for detailed historical remarks.

Proof. This is immediate from the criterion 2.5, since every pure state of (A4, M, 1)
is an element of X(M) by Corollary 4.4. ]

The version for archimedean quadratic modules was proved by Putinar [Pu] in the
geometric case, and by Jacobi [Ja] in an abstract setting. Again we get it easily using
the approach via pure states:

Theorem 6.2. Let M be an archimedean quadratic module in A, and let | € A with
S >00n X(M). Thennf € M for some n € N.

Proof. The proof is the same as for Theorem 6.1, up to replacing the reference to
Corollary 4.4 by a reference to Theorem 4.5. L]

Remark 6.3. We just remind the reader that Theorems 6.1 and 6.2 have many cel-
ebrated applications. Among the best known ones are the Positivstellensatze by
Schmiidgen [Sm] and by Putinar [Pu].

The following membership criterion, though more technical, played an important
role in the proofs of various Nichtnegativstellenséitze from the last years (see, e. g.,
[Sch4], Section 3, in particular 3.1.9):

Theorem 6.4. Let M be an archimedean module over a semiring S in A, and assume
that S is either archimedean or S is a preordering. Let f € Awith f = 0on X(M).
Suppose there is an identity f = D151+ -+« + b5, withb; € Aand s; € S such that
bi>0on Z(f)YNXM)(i =1,...,r). Thennf € M for somen € .
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The first version of Theorem 6.4 was given in [Schl], Proposition 2.5. Later it
was generalized substantially in [Sw2], Theorem 2. The statement of Theorem 6.4
above is still stronger than the version in [Sw2], at least essentially so, since the latter
covered only the case M = S. (The slightly stronger conclusion f < S, instead of
nf € S for some n € N, was achieved in [Sw2] under the assumption % e S for
some integer ¢ > 1. It seems that this cannot be proved with the pure states method
alone. Of course there is no difference when we assume () € Aand @, C S.)

Here is an easy proof of Theorem 6.4 using pure states:

FProof. Considertheideal I := (sy,...,8,)in A. Thenu := §; +-.-+ 35, is an order
unit of (I, M M I) by Proposition 5.1 (2). Let ¢ be any pure state of (I, M M I,u),
and let ¢p: A — R be the associated ring homomorphism (4.12). Clearly uM C M,
which implies ¢ € X(M) (Corollary 4.12). We have ¢(s;) = Ofori = 1,...,r and
@(s;) > Ofor at least one i since » ; ¢(s;) = 1. By 2.5 it suffices to show @( f) > 0.

First assume that ¢ is of type (I) (see 4.12), so ¢(f) = %% with ¢ (1) = 0.
Note that ¢ € X(M) implies ¢(u) > 0. Also, since f > 0 on X(M), it implies
¢(f) = 0, whence @( /) = 0. Assuming @( /) = O would give ¢ € Z(f) N X(M),
hence ¢(b;) > 0 (i = 1,...,r) by hypothesis. This would lead to a contradiction
since @(f) = >, ¢(bi)e(si). So @(f) > 0 holds in case (I).

When g isof type (IDthen p € X(M + 1) CX(M + Af) = Z(f) N X(M).
Soagain ¢ (b;) > O0fori = 1,...,r,and @(f) = >_; ¢(b;i)e(s;) implies ¢(f) > 0.

[]

In Theorem 2.8 of [Sch3], alocal-global criterion was stated for membership in a
module M over an archimedean preordering, in which the local conditions referred
to the “localizations™ of M with respect to the maximal ideals of A. This criterion
has turned out to be quite powerful, cf. the applications mentioned in loc. cit.

Using pure states it is easy to reprove this criterion, and in fact to strengthen it
further:

Theorem 6.5. Let S be an archimedean semiring and M an S-module in A. Let
f € A. For every maximal ideal mu of A, assume that there exists s € S withs ¢ m
and sf € M. Thennf € M for some n € N.

Proof. Let I := supp(M + Af), and let J' be the ideal generated by M M I. For
every maximal ideal m of A there exists s € S, s ¢ m, with s/ € M, and hence
sf € J'. Thisshows f € J'. (The argument is classical, we repeat it for the readers’s

convenience: Choose finitely manys; € S with (s1,...,5,) = (1)and withs; f € J'
(i =1,...,r), then multiply an equation } , a;s; = 1 with ftosee f € J’.) Hence
there are finitely many elements X1, ..., X, € M NI with f € (x1,...,%Xm). Since

I =supp(M + Af),thereare y; «c M NI withx; +y; e Af i =1,...,r). Let
Ji=1, ..., %, 1,...,Y) Then f e J,andu := > ,(x; + y;) is an order unit
of (J,M M J)by5.1(1). Note that u = af for some g € A.
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Let ¢ be a pure state of (J, M N J,u), we are going to show ¢(f) > 0. Let
¢ be the associated ring homomorphism, so ¢ € X(S) (Corollary 4.12). From
1 =g@laf) = ¢la)e(f) we get @(f) # 0. On the other hand, there exists s € S
with ¢ (s) £ 0 (hence ¢(s) > 0)and sf € M. So 0 < ¢(sf) = ¢(s)e( f) shows
@( f) = 0. Altogether we get @(f) > 0, and the proof is once more completed by
an application of Theorem 2.5. ]

Remark 6.6. When M is a quadratic module (so we can assume that .S is a preorder-
ing), the local condition is needed only for the maximal ideals m = supp(M). (If
there is @ € supp(M) with a ¢ w, then af < supp(M) < M.) For such m, the
condition simply says f € My, where My, is the quadratic module generated by M
in Ay

When % € Aand M = S is apreordering, and if we assume f > 0 on X(5), the
local condition is only needed for mt © I = supp(S + Af). (The brief argument is
given in the proof of [Sch3], Corollary 2.10.)

7. More applications

We demonstrate now that the technique of pure states allows to establish archimedean
Stellensétze that are completely new. Given a compact basic closed set K € R”
and a polynomial f € R[x] with f|x = 0, all known results on denominator-free
representations of f require (essentially) that the zero set of f in K is discrete, i.e.,
finite. In contrast, this zero set can be of arbitrary dimension in the two main results
of this section, Theorems 7.6 and 7.11 (see also Theorem 7.8).

Proposition 7.1. Assume Q C A. Let M be a module over an archimedean pre-
ordering S in A, let f € Awith f = 0on X(M), andput I := supp(M + Af) (an
ideal of A). Consider the following conditions:

) feM;

(i) f liesin the ideal of A generated by M M I, and for every ¢ € X(S + 1) and

every ¢-lincar map ¢ . I — R with ¢ |pnz = 0 one has ¢(f) = 0.

Then (i1) implies (1) if the ideal I is finitely generated. The converse (1) = (i1) holds
unconditionally.

Remark. “¢(f) = 07 at the end of condition (ii) is not a misprint. However, (i)
implies in fact ¢( /) > 0 whenever ¢ is nonzero.

FProof. I is anideal of A since SI C I and S + Z = A. The implication (i) = (ii)
is trivial. We remark that ¢( ) > 0 holds in (ii) whenever ¢ = 0. Indeed, f is an
order unit of (I, M M I') according to Corollary 3.6.
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Conversely assume that (i1) holds and [ is finitely generated. Let J be the ideal
generated by M N [. Since I = (M Nl)+ Af,itisclearthat I = J + Af. So
f € J implies J = I. Choose generators x1,...,X, € M of I. There are elements
yi e M NI withx; +y;, € Af i = 1,...,r). The element ¥ := ) . (x; + ¥;)
liesin Af, and is an order unit of (I, M M I) by 5.1. Applying 2.5, we have to show
@( /) > 0 for every pure state ¢ of (I, M N I,u).

Given such ¢, let ¢ € X(S) be the associated ring homomorphism (Corol-
lary 4.12). Fromu € Af we see that ¢(f) # 0. If ¢ is of type (II) then ¢(f) = 0
by the hypothesis. Assume that ¢ is of type (D), i.e., ¢p(u) £ 0. Fromu? e M N I
and @(u?) = ¢(u) we see ¢p(u) > 0. Forany x € M we have u’x ¢ M N1,
therefore 0 < @(u?x) = ¢(u)¢(x), which implies ¢(x) > 0. Hence ¢ € X(M),
and so ¢( f) = 0 follows from the hypothesis. O]

Remark 7.2. Atfirstsight it is surprising that ¢( f) > Oin (ii) should suffice (instead
of @( f) > 0). The subtlety, however, lies in the ideal I and in the condition that f
should lie in the ideal generated by M M . In concrete situations it is often hard to
decide whether this is true. Even when S is a preordering in K [xy, ..., X,] given by
finitely many explicit generators, there seems no general procedure known to produce
generators for the support ideal supp(.S). For these reasons, Proposition 7.1 seems to
be mainly of theoretical interest.

Proposition 7.3. Let A be an R-algebra, let S C A be a semiring and M C A
an archimedean S-module. Assume that S is either archimedean or a preordering.
lLet f € Awith f = 0on X(M). Assume there are g1,...,2- € S that vanish
identically on Z( ) M X(M), such that the following two conditions are satisfied:

() fel:=@1,.,8)

(2) forevery ¢ € Z(f) N X(M), the residue class [ lies in the interior of the cone
Rogi++Rig Cl/mgl, where my = ker(g).

Then | € M.

Note that [ /mug/ is an [R-vector space of finite dimension, which explains the
meaning of interior in (2). It is clear how to give a dual formulation of (2) using
states.

Proof. By Proposition5.1(2),u# := g1 +---+ g, isanorder unit of (I, M M ). Note
u e S. Letg: I — R be apure state of (I, M M I,u). We shall show ¢{ ) > 0,
which implies f € M by Theorem 2.5. Let ¢ € X(5) be the ring homomorphism
associated to ¢. Forevery x € M we have xu € M N1,andso 0 < @(xu) = ¢(x).
This shows ¢ € X(M), and so ¢(f) = 0 by hypothesis. Moreover, there are two
possibilities (Corollary 4.12):
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1. If ¢ is of type (I) then ¢ (1) == 0, and hence ¢ (1) > 0 since ¥ € S. Assuming
¢(f) = 0 would mean ¢ € Z(f) N X(M). This would imply ¢(g;) = O for all i,
contradicting ¢(u) > 0. So ¢(f) > 0, and hence ¢( f) = ﬁ(({:)) > 0.

2. If g isof type (II) then ¢ € Z({ f) N X(M). The map ¢ is induced by a ¢-lincar
map ¢: [ /mgl — R satisfying ¢(M (1 I) = 0. In particular, ¢ > 0 on the cone

Rigi+-+R,g,. Since F lies in the interior of this cone by assumption (2), we
again get ¢(f) = ¢(f) > 0. O

Remarks 7.4. 1. Given g1,..., 2, € S that vanish on Z{ f) N X(M), conditions
(1) and (2) in Proposition 7.3 can be effectively checked, for example when A is a
polynomial ring over [R.

2. In Proposition 7.3, assume that S is an archimedean semiring and M = §.
Then the sufficient conditions of 7.3 are also necessary for f & S, in the sense that
f € S implies the existence of gq,...,g, € S satisfying (1) and (2). (One can
simplytaker = land g; = f.)

3. Assume we are given S, M and f asin7.3, with f = Oon X(M ), and we want
to prove /' © M using this theorem. In general, it is a subtle task to find a suitable
ideal [ as in this theorem (together with its generators), since conditions (1) and (2)
tend to work against each other: (1) asks for [ being large, (2) asks for [ being small.

Using the abstract criteria established so far, we shall now obtain applications in
geometric situations that are more concrete. In doing so, the question arises how
to interpret conditions like 7.3 (2) in a geometric way. Under suitable regularity
assumptions, this turns out to be possible.

First, we need the following lemma:

Lemma 7.5. Let (A, m) be a regular local ring, and let I #£ (1) be anideal. If A/
is regular then for any n = 1 the map

I" ™ s !

induced by I™ C w” is injective. Conversely, if this map is injective for n = 1, then
A/l is regular.

Proof. Injectivity of this map for n = 1 means that / can be generated by a sub-
sequence (x1,...,Xyz) of a regular parameter system of (A4, m). It is well known
that this is equivalent to A/ being regular (e. g., [Mt], Theorem 14.2). Assuming
that this is the case, the ideal 7" is generated by the monomials x* = xtlll o x;d of
degree |x| = n. These are linearly independent in m”® /m®+! over A/m (loc. cit.,
Theorem 14.4), and so the map I /mI” — m” /m” ! is injective as well. 0J

Here is an application of Proposition 7.3 to a geometric situation. We write

Rlx] :=R[x1,...,xs]
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Theorem 7.6. Let S C R[x| be a semiring and M an archimedean S-module.
Assume that S is either archimedean or a preordering. Let f € R[x| with f = 0 on
X(M), and let V be the (reduced) Zariski closure of Z(f) N X(M) C R” in A"
Assume there are g1, ..., 8, € S vanishing on Z(f) 1 X(M) with

(1) fe(@. &)
(2) foreveryz € Z(f)NX(M)andeveryv € R* with Dygi(z) = 0(i =1,...,r)
and v & T,(V) we have Dy f(z) > 0.

If moreover every point z € Z( f) N X(M) is a nonsingular point of V., then f € M.

Here we have written Dy f(z) for the directional derivative of f at z in the

direction v, 1 [
z+rv)— f(z
va(z) = rliIIOl f( 1;) f( )

FProof. Write A := K [x] and I := (g1,..., &), and let J be the vanishing ideal of
V in A. We are going to apply Proposition 7.3. To verify hypothesis (2) there, fix
z € Z(f)NX(M), and let n := m; be the corresponding maximal ideal of A. Note
that / € J C m.

We first show 7 + m? = J + m?. Assume to the contrary that the inclusion
I +m? C J +m?is strict. Then there exists a linear form ¥ € (m/m?)” vanishing
on all residue classes of elements of I, but not on all residue classes of elements of J .
This means that there is a vector v € R” with v ¢ T,(V') and with D, g(z) = 0 for
all g € I. But this contradicts assumption (2), since we cannot have D1, f(z) > 0
for both signs +.

Next we show that the elements of ( /mul)" are directional derivatives at z. It is
enough to prove that the map I/l — m/m? induced by the inclusion I C 1 is
injective. Since Ay, /JAy is aregular local ring by hypothesis, the map J/mJ —
m/m? is injective (Lemma 7.5), which means J M m? = mJ. On the other hand,
I +(J nm?) = J by what has just been proven. So I +mJ = J. By the Nakayama
lemma this implies /Ay = JAm, and so I /] — m/m? is injective as desired.

Therefore, when v runs through the vectors in R” asin (2), then gy : g — Dy g(2)
(g € I/wl)runs through the nonzero elements in the dual of the cone R gy +--- +
Ryg, € I/mli. So we see that condition (2) in 7.6 corresponds precisely to (2) in
Proposition 7.3. The proof is therefore complete. ]

Remarks 7.7. 1. For Theorem 7.6, it is not necessary to work in a polynomial ring
R[x], resp. in affine space A”. One could replace A" by any nonsingular affine
R-variety, if one is willing to reformulate condition (2) properly in this setting. We
restricted to the case of the polynomial ring only to allow a less technical formulation.

2. Let W be the Zariski closure of X(M). Then the hypotheses of Theorem 7.6

imply that every point z € Z( f) N X(M) is a boundary point of X(M ) relative to
W(IR), except when f vanishes identically on a neighborhood of z in X(M). Indeed,
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otherwise T-(V') & T (W), and there would be a neighborhood of z in W(R) on
which g1,..., g, are nonnegative. Choose any v € T,(W) with v ¢ T,(}) and
apply (2) to £v to get a contradiction. (By 7,(W') we denote the tangent space of
W atzinlR?%)

Here is a particularly concrete case of Theorem 7.6. Again we denote R[x] =

Rx1,...,x,].

Theorem 7.8. Let K C R” be a nonempty compact convex polyhedron, described
by linear inequalities g1 = 0,..., 85 = 0. Let S be the semiring in R[x] generated
byR,_and g1,...,8s Let F be aface of K, and let f € R[x] satisfy f|r = 0 and
Slg~F > 0. Foreveryz ¢ F and every y € K ~ F assume Dy_; f(z) > 0. Then

fes.

Speaking informally, the last hypothesis says that every directional derivative of
f at apoint of F pointing into K and not tangential to F should be strictly positive.

Proof. By Remark 3.3, § 1s archimedean. After relabelling the g; we can assume
that g1, ..., g, vanish identically on ¥ while g,11,...,gs donot, where 1 <r <g.
Then I := (g1,...,g;) is the full vanishing ideal of the affine subspace V spanned
by F,andso f € 1.

We are going to apply Theorem 7.6 with M = §. Condition (1) has just been
established. In viewof (2)fixz € F,andletv € R” withv ¢ T.(V)and D,g;(z) =
Ofori =1,...,r. We need to show D, f(z) > 0.

For this we would like to assure that z + bv € K for small & > 0. A priori,
this need not be the case. However, we still have some freedom to adjust v. Choose
w € [R” such that z + gw lies in the relative interior of F for small &€ > 0. Then for
every index j € {r + 1,...,5} we have either g;(z) > O or Dy, g;(z) > 0. Replace
v by v 4 tw for large ¢ > 0. This does not change Dya(z) for @ € I, but in this way
we can achieve Dyg;(z) > 0 forevery j € {1,...,s} with g;(z) = 0. Therefore,
z+bv e K~ F forsmall 2 > 0, which means v = ¢(y — z) for suitable ¢ > 0 and
y € K ~ F. From the hypothesis made on f we therefore conclude Dy f(z) > 0.

0J

Remark 7.9. Inthe situation of Theorem 7.8, it was so far not even known whether f
would lie in the preordering PO(g1, .. ., g;) except when F is a face of codimension
one. (In this case, after extracting from f the linear equation for ¥ with the maximal
possible power, one is left with a polynomial which is strictly positive on K.)

Example 7.10. Consider the simplex

K=4{xeR" x120,...,%, 20, >0 x <1}
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in BR* and let S C R[xy,...,x,] be the semiring generated by R _ and xq,..., X,
I—Zle x;. Considerthe face ¥ = KM{x; =« =x, = 0}of K(withl <r <n
being fixed). Given a polynomial f with f > Oon K ~ F and f = 0 on F, we
have f € S provided that dy, f,..., dy, f are strictly positive on F.

While Theorem 7.6 applies only in cases where the zeros of f in X(M ) lie on the
boundary of X(M) (see Remark 7.7), we will now mention a result which applies
when f vanishes in interior points of X{M).

Theorem 7.11. Let M = QM(g,,....8gm) be an archimedean quadratic module
inR[x]. Let f € R[x] with f = 0 on X(M). Assume that the (reduced) Zariski
closure V of Z(f) N X(M) in A" is a local complete intersection. For every point
z € Z(f)N X(M), assume moreover:

(1) z is a nonsingular point of V,

@) Vi) =0,

(3) D2f(D)[v,v] > Qforallv € R* withv ¢ T,(V).
Then | € M.

Here D? f(z)[v, w] denotes the evaluation of the Hessian D? f(z) at the pair of
vectors (v, w).

FProof. Let J be the vanishing ideal of V' in R[x]. We have f < J and are going
to show f € J4. Firstfixz € Z(f) N X(M), let m = 1, be the corresponding
maximal ideal of R[x]. Then f & m? since V f(z) = 0. Since V is a local
complete intersection, J/J? is locally free as a module over R[V] = R[x]/J (e. g.
[H], pp. 184-185). Since f < w,J/J? forevery z € Z(f) N X(M), and since this
set is Zariski dense in V/, it follows that £ & J2.

By Proposition 5.3 (a), (J2, M M J?) has an order unit #. Let ¢ be a pure state
of (J2, M N J?,u), we shall show ¢(f) > 0. If ¢ is of type (I) then, up to positive
scaling, ¢ is evaluation in some point of X(M ) outside Z( f ), andso@(f) > 0. If ¢
is of type (11), there isapointz € Z( f )X (M) suchthat ¢ is induced by alinear map
@: J?/mJ? — R, where mt := 1. Since z is a nonsingular point of V, the map
J?/mJ? — m?/m? induced by the inclusion J? C m? is injective (Lemma 7.5).
The inclusion J/mJ < m/m? induces an inclusion of the second symmetric powers
ofthese vector spaces, which is J2 /mtJ? < m?/m>. The linear map @ can therefore
be seen as a positive semidefinite symmetric bilinear form on J/mJ. As such it can
be extended to i/m?. This yields a linear extension ¢ € (m?/m>)" of ¢ such
that ¢(g?) = 0 for all ¢ € m. Since the elements of (m?/m>)" are the symmetric
second order differential operators at z, it follows that there is a positive semidefinite
symmetric matrix (s;;) such that ¢(g) = Zi,j $ij0x; 05, 8(2) for all g € J?. In
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particular, there are vectors vy, ..., v in R” with

k
0(g) =Y D*g(z)[v, vi]

i—1

for every g € J2. Since ¢ does not vanish identically on J2 we have v; ¢ T,(V) for
at least one index i. Therefore ¢( f) > 0 follows from the hypothesis. ]

Remark 7.12. The conditionin Theorem 7.11 that V is a local complete intersection
means that the ideal J of V in R[x] can locally be generated by n — dim (1) many
elements. It is satisfied if 17 is nonsingular, but the condition is much more general.

Example 7.13. We illustrate the use of Theorem 7.11 by an example. Let M be
an archimedean quadratic module in R[x, y,z], let K = X(M), and let Z =
{(0,0,1): 1 € R} be the z-axis in R*. Assume that p, ¢, r € R[x, y, z] are such that

f=x*p+y*qg+2xy-r

satisfies f > Oon K ~ Z and f = 0 on Z. Then f € M, provided that p and
pg — r? are strictly positive on Z M K. This follows by a direct application of 7.11.
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