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Height pairings, exceptional zeros and Rubin’s formula:
the multiplicative group

Kazim Biiyiikboduk

Abstraet. In this paper we prove a formula, much in the spirit of one due to Rubin, which
expresses the leading coefficients of various p-adic L-functions in the presence of an exceptional
zero in terms of Nekovai’s p-adic height pairings on his extended Selmer groups. In a particular
case, the Rubin-style formula we prove recovers a p-adic Kronecker limit formula. In a disjoint
case, we observe that our computations with Nekovai’s heights agree with the Ferrero—Greenberg
formula (more generally, Gross’ conjectural formula) for the leading coefficient of the Kubota—
Leopoldt p-adic I-function (resp., the Deligne—Ribet p-adic L-function) at s = 0.
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1. Introduction

The celebrated formula of Gross and Zagier [GZ.86] expresses the first derivative at
s = 1 of aRankin L-series of amodular form f of weight 2 on I'g (V) in terms of the
Néron—Tate height of a Heegner point on the f-quotient Ay of the Jacobian Jo(N)
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of the modular curve Xo(N). A p-adic variant of this formula has been proved by
Perrin-Riou [PR&7], relating the p-adic height of a Heegner point on Ay to a first
derivative (taken in the cyclotomic direction) of a two-variable p-adic L-function
associated to f. (See also [How035] for a generalization of this formula with more
Iwasawa theoretical flavor). Later, Nekovar [Nek95] extended the results of [PR87]
to higher weight modular forms, where he utilized his p-adic heights defined earlier
in [Nek93].

When E is an elliptic curve defined over (@ with CM and p is an odd prime
at which E has good, ordinary reduction, Perrin-Riou [PR&83] gives a purely alge-
braic construction of the canonical p-adic height pairing on the p-adic Selmer group
Sp(E/Q). If further L(E/Q,1) = 0, Rubin [Rub92] obtains a formula for the
special values of the associated Katz two-variable p-adic I.-function in terms of the
p-adic height of an element x,, € S,(F) (which is constructed from elliptic units).
When E does not have CM, but still good, ordinary at p, results along this line
have been obtained by Perrin-Riou [PR93] utilizing Nekovéai’s definition of p-adic
heights [Nek93] and Kato’s zeta-elements [KatO4]. Perrin-Riou’s formula in [PR93]
goes hand-in-hand with Rubin’s result [Rub94], Theorem 1 (which follows from
Theorem 3.2 of loc.cit.; this is the version of Rubin’s formula we refer to in the ab-
stract). Rubin uses in [Rub94] the definition of [PR92] for p-adic height pairings.
We finally note that Rubin’s formula [Rub94]. Theorem 3.2, has been generalized by
Howard [How(4], Theorem 3.4, for abelian varieties (resp., by Nekovér in §11.5.10
of [Nek06] for general motives) whose /.-functions vanish to higher order. We pro-
vide an overview of Rubin’s formula since it is one of the main motivations for the
results of the current paper.

Suppose E q is an elliptic curve which has good, ordinary reduction at p. Let Qg
be the unique Z ,-extension of (), and for every n, let @, be the unique sub-extension
of (J of degree p". Put &, = Q, @ Qp and ®oc = UP,. Let T,(E) denote the p-
adic Tate module of E, and suppose we are given a sequence of cohomology classes
Z=1{zp} € hﬁ HY(Qp, Tp(E)). Using local Tate cup-product pairing, one obtains
an element f; € Hom(E(Pu), Zp); see equation (5) of [Rub94]. The following is
Theorem 3.2 (i) of loc.cit.:

Theorem (Rubin). Let S,(E/Q) denote the p-adic Selmer group of Eq over ().
Then zp € Sp(E/Q) if and only if f{E(Q,)) = 0.

When f,(E(Q,)) = 0, Rubin constructs in §3 of [Rub94] a derivative Der,( f7)
of f, along p, where g is any nonzero homomorphism Gal(Q »o/@Q) — Z,. See
also the remarks preceding Theorem 3.2 and Proposition 7.1 of [Rub94]. Rubin’s
formula can be stated as follows:

Theorem (Rubin). Suppose zo € Sy(E/Q) C HYWQ,Tp(E)). Then for every
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X < E(@) & Zp:
{Zo, X>p — Derp(fz)(x)a

where {, }, is the p-adic height pairing.

This formula should be compared to our formula stated in Theorem 5.1. Having
spelled out the first link between our work and results mentioned above, let us describe
our results in greater detail.

In [NekO6], Nekovér defines extended Selmer groups associated to (ordinary)
Galois representations, which are strictly larger than the classical Selmer groups in
the presence of an exceptional zero (in the sense of [Gre94]). He also defines p-adic
height pairings on his extended Selmer groups. One natural question is what portion
of the results above may be transferred to this new setting when an exceptional zero is
present. We tackle this problem in the simplest and the most classical setting: Fixinga
number field K, the Galois representation in considerationis T = @(1)® y!. Here,
@ is the ring of integers of a finite extension & of Q) and O(1) = O @z, Zp(1),
where Z,(1) = 15(Gyy) is as usual the p-adic Tate module of the multiplicative
group, and y: Gal(K/K) — ©*is anon-trivial Dirichlet character with the property
that y(5) = 1 for a prime g of K lying above p. The Rubin-style formula we prove
here (Corollary 5.7) is akin to Theorem 1 in [Rub94]. Before we state it, we introduce
the necessary notation.

Suppose in this introduction that K =  and y is an even Dirichlet character.
See §6.3 below for the case when K is a general totally real number field but y is
totally odd, and §6.4 when the base field K is totally imaginary. Let L be the field
cut by the Dirichlet character y, i.e., the fixed field of ker(y). Let ¢ ¢ ﬁ} (Q,T)
be tame cyclotomic unit inside of L defined as in §6.1 of [MRO4], see also §3 below
for a recap. Here (and below) H ]} (K, T) stands for the extended Selmer groups of
Nekovar; for an overview (and explicit calculations specific to our case of interest,
including a description of how we view the cyclotomic units as elements of the
extended Selmer groups) see §2.1 and §3 below. Set T* = Hom(T, @(1)) = O(x).
Let {, nex denote Nekovdl’s p-adic height pairing, see [NekO6], §11, for a general
definition, and also §2 below for the portion of the theory that concerns us. Attached
to an arbitrary element ¢ € gj} (€, T™) and the collection of cyclotomic units & along
the cyclotomic Z p-tower, we construct a ‘ p-adic L-function’ L¢ ¢ in §5 below. The
Rubin-style formula we prove reads as follows:

Theorem A (Corollary 5.7 below). {(cf, @)Nek = L%’q)(l).

Here, 1 is the trivial character and L/ o 18 the derivative of Lg ¢ along the cy-
clotomic character, see §5 for details. Using Coleman’s map, one may choose a
particular € and &, and apply Theorem A above to prove:
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Theorem B (Theorem 6.7 below). {c¥, col¥ )ne = L1 (1, 2).

Here, col} € ﬁj} (€0, T™) is the element we obtain from Coleman’s homomor-

phism and EP(S, ) is an imprimitive Kubota-Leopoldt p-adic L-function. See §6.2
for details. See also §6.4 for the version of this result when the base field is a quadratic
imaginary number field. We remark that our formula above recovers a p-adic variant
of Kronecker’s limit formula with a new perspective offered by Nekovar’s theory.

In §6.3, we present similar results for totally odd characters y (when the base field
K is totally real). We remark for now that when K is an arbitrary totally real number
field and y is totally odd, our calculations provide a new interpretation for Gross’
conjecture (and for the Ferrero—Greenberg theorem when k = Q). See Theorem 6.9
and Remark 6.12 below.

See also Remark 6.14 for a related observation when the Galois representation
in question is the p-adic Tate-module of an elliptic curve E;q which has split-
multiplicative reduction at p.

The layout of the paper is as follows: In Section 2 we give an overview of
Nekovéi’s theory of Selmer complexes and p-adic height pairings. We explicitly
describe these objects in §2.2 in the cases of interest. In sections 3-5 we restrict our
attention to the case K = () and y even, and to the case when the base field K is
totally imaginary. In Section 3, we define three types of cyclotomic ( p-) units which
our calculations rely on. In Section 4, we calculate the p-adic height pairing on these
different types of cyclotomic “units”, and use our computations in Section 5 to prove
a Rubin-style formula. In §6, we use this formula to compute the leading coefficients
of certain p-adic L-functions in terms of Nekovar’s heights.

We remark that the results of this paper are not covered by Nekovéf’s [NekO6]
general treatment (e.g., by his variant of Rubin’s formula in §11.3.15 and §11.5.10;
nor by his calculations in §11.4.8). In particular, Remark 11.4.10 in [Nek06] is
erroneous. [t would be of interest to extend the formalism developed in [Nek06],
§11.4, to cover our setting.

A line of apology: We gave a very detailed and long outline of prior results of
‘Gross—Zagier type’, although the conclusions of the current paper only concern a
very particular (and simple) Galois representation. This is mainly because of the
author’s desire to translate/transform the results in other settings into the context

of [Nek06].

Acknowledgements. The author wishes to thank Ralph Greenberg and Tadashi
Ochiai for helpful discussions; Karl Rubin for helpful correspondence and David
Burns for an informative conversation on the results of this paper. He also is grateful
to Masato Kurihara for explaining the author a related result he proved in a different
setting. Special thanks are due to Jan Nekovéar for his encouragement and for many



Vol. 87 (2012) Height pairings, exceptional zeros and Rubin’s formula 75

enlightening discussions. The author started his work on this project while he was
supported by a William Hodge Postdoctoral Fellowship at IHES and the final form of
this paper was written up during his stay at Max Planck Institut fiir Mathematik. The
author thanks both these institutes for their hospitality. The author also thanks the
anonymous referee for pointing out several inaccuracies in an earlier version. This
research was partially supported by the grant EU-FP7 IRG-230668 and TUBITAK.

1.1. Notation and hypotheses. Fix once and for all a rational prime p > 2. For a
number field K, write Gg for the absolute Galois group Gal(K/K). Let @ be the
ring of integers of a finite extension & of 0, and let y denote a non-trivial Dirichlet
character

¥ Gg — O,

which has prime-to- p order and which satisfies y(s2) = 1 for a prime g C K lying
above p. In this paper, we will only! deal with the case K = Q or K = k, where k
is a quadratic imaginary number field such that the prime p splits in £ /0.

Define T = @)@y~ ' and T* = @(y), rank one ?-modules with a G -action.
Here (1) is the Tate twist.

Let I will be the fixed field of ker(y) and let A = Gal(l./ K). Our assumption that
x() = 1 is equivalent to saying that & splits completely in L/K. Let S, = {v|g}
denote the collection of places of L above g (the letter “v” is reserved to stand for
these places of L), and let L, denote the completion of L at v. Although L, = K
for each v, we will distinguish the completions of I at different places (as different
embeddings L — @p) and set G, = Gal(Qp/Lv) for a fixed algebraic closure @p
of (p.

Fix once and for all embeddings to : Q < C,and Ip: Q — @p. The choice of
tp fixes a prime vg € Sp,.

Let () /() denote the cyclotomic Z ,-extension of () and let I' = Gal{Q o, /(Q0).
We write peyc for the cyclotomic character peye: I' > 1+ pZ,. Let (O, denote the
unique sub-extension of Qu, /Q of degree p™ over @, i.e., the fixed field of ['#7". Let
®,, be the completion of (3, at the unique prime of (J, above p, and set @ = U,
the cyclotomic Z p-extension of Q. By slight abuse of notation Gal(® /(2 ) will be
denoted by " as well. We fix atopological generator ¥ of I'. We alsoset A = @[[I']
as the cyclotomic Iwasawa algebra.

When the base field K is the quadratic imaginary number field & which satisfies
the assumption that p splits in k/(), we write p = pp* with p = £*. Also in this
case, we assume that p does not divide the class number Ay of k. For an @¢-ideal 3,
let k(3) be the ray class field of conductor J. For each n > 0 we write

Gal(k(p"*1)/ k) = Gal(k(p" ™)/ k() = 1,

'Except in Remark 6.12, where we say how the arguments of §6.3 apply for a general totally real number
field.
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where H is isomorphic to Gal(k(g)/ k) by restriction. We set

kn = k™Y, ko= | k.

n=0

Then ko /k is a Z,-extension and we write I' := Gal(k/k) also when there is
no danger of confusion. The extension ko/k is the unique Z,-extension which is
unramified outside . The prime g is totally ramified in Ko,/ k. Let f;, C @4 denote
the conductor of I (which is prime to g by our assumptions on y) and let ¥ be a
multiple of Tz, which is prime to g and which also satisfies the condition that the map
OF — (O /1)™ is injective. Attached to a Gréssencharacter ¢ of k of infinity type
(1, 0) and of conductor T, there is an elliptic curve E defined over F = k(]) with the
properties that

* F has complex multiplication by ¢y

¢ F(Eiy) is an abelian extension of &,

where we write F(Eyy) for the extension of K which is generated by the coordi-
nates of the torsion-submodule Ey C E(k). For such E, we have F(E[p""!]) =
k(fg" ™) for all n = 0, and using this fact one obtains a canonical identification
Gal(F(E[9™])/F(E[%])) —> T and the following isomorphisms:

O pe: Gal(F(E[R™D/F) == Aw(E[p™]) = OF  —— L},
(i) pr:=pg|p: T =>1+ pZ,.
The character pr will play the role of cyclotomic character when our base field K is

the quadratic imaginary number field k.

For any finitely generated abelian group M endowed with a Gg action, M will
denote its p-adic completion Hom(Hom(M, Q,/Z,),Q,/Z,), and M* will denote
the y-isotypic part of M @z, 0. Also, letlog,: 1 + pZp — Zp denote the p-adic
logarithm.

For a field K (with fixed separable closure K/K) and a @[[Gal(K /K)]-module
X which is finitely generated over (7, we will denote the i-th cohomology (with
continuous cochains) of the group Gal(K /K ) with coefficients in X by H* (K, X).

For every positive integer n, we define ft, C Q to be the set of ath roots of unity.

2. Height pairings on extended Selmer groups

2.1. Generalities. Inthis section we very briefly review Nekovar’s theory of Selmer
complexes and his definition of extended Selmer groups. The treatment in this section
is far more general than what is needed for the purposes of this paper, and it is much
less general than what is covered in [Nek06]. For example, we focus on coefficient
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rings such as the ring of integers @ of a finite extension of (@, or the one variable
Iwasawa algebra @[[I']]; and we restrict our attention to a complex of @-modules M
of finite type, endowed with a continuous action of the absolute Galois group G g of
a fixed base field K, concentrated in degree zervo. From §2.2 on, K will be () (except
in §6.4 where K = k, a quadratic imaginary number field and Remark 6.12 where
K is an arbitrary totally real field), and M will be one of @(1) @ ¥, @(x), ©(1)
or ¢ (in degree zero) .

Let G be a profinite group (given the profinite topology) and let ¢ be as above.
Let M be a free -module of finite type on which G acts continuously. Then M is
admissible in the sense of [Nek06] (see §3.2), and we can talk about the complex
of continuous cochains C*(G, M) as in §3.4 of loc.cit. Let K be a number field
with a fixed algebraic closure K and let S denote a finite set of primes of K which
contains all primes above p, all primes at which the representation M is ramified and
all infinite places of K, let Sy denote the subset of finite places of S. Let K the
maximal sub-extension of K/ K which is unramified outside S, and let Gg s denote
the Galois group Gal(Ks/K). Forall w € Sy, we write K, for the completion of
K at w, and Gy, for its absolute Galois group. Whenever it is convenient, we will
identify G,, with a decomposition subgroup inside Gg := Gal(K/K). We will be
interested in the cases G = Gg g or &G = Gy

2.1.1. Selmer complexes. Classical Selmer groups are defined as elements of the
global cohomology group H (G s, M) satisfying certain local conditions; see §2.1
of [MRO4] for the most general definition. The main idea of [Nek06] is to impose

local conditions on the level of complexes. We go over basics of Nekovar’s theory,
for details see [Nek06].

Definition 2.1. Local conditions for M are given by a collection

AM) = {Au(M)}ues,

where A, (M) stands for a morphism of complexes of @-modules
it (M) Ul — C*(Gy, M)

for each w € S¢.

Also set
—i;r

Uy (M) = Cone(U, (M) —2= C*(G,, M))

and

Us(M)= P ULM); id (M) = (i,) (M))wes; -
wESf
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We also define

ress,: C*(Gg,s. M) — € C*(Guw. M)
weSy

as the canonical restriction morphism.

Definition 2.2. The Selmer complex associated with the choice of local conditions
A(M) on M is given by the complex
CH(Gx,s. M, A(M))

resg —i;(M)
= Cone(C*(Grs. MY US M) " € C*(Guw. M) 1]

weSy

where [1] denotes a shift by #. The corresponding object in the derived category will
be denoted by RT ¢ (Gg s, M, A(M)) and its cohomology by H} (Gr.s, M, A(M))

(or simply by ﬁ} (K, M) orby ﬁ} (M) when there is no danger of confusion). The
©-module H j} (M) will be called the extended Selmer group.

The object in the derived category corresponding to the complex C*(Gg s, M)
will be denoted by RI'(Gg 5, M).

2.1.2. Comparison with classical Selmer groups. For each w € Sy, suppose that
we are given a submodule

Hi (Ky, M) cC HY (K, M).

This data which # encodes is called a Selmer structure on M. Starting with ¥, one
defines the Selmer group as

HY (K, M
HL(K,M):= ker{Hl(GK,S,M) — P ﬁ}
weSf ¥ W

On the other hand, as explained in §6.1.3.1-§6.1.3.2 of [Nek06], there is an exact
triangle

Ug (M)[-1] — RT;(Gg.s, M, A(M)) — RT(Gg.s, M) — Ug (M)
This gives rise to an exact sequence in the level of cohomology:

Proposition 2.3 ([Nek06], §0.8.0 and §9.6). For each i, the following sequence is
exact:

- — H7WUg (M) — Hi(M) — H' (G s. M) — H' (Ug (M)) — -+
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This proposition is used to compare Nekovar’s extended Selmer groups to classical
Selmer groups. Although this may be achieved in greater generality, we will only state
the relevant comparison theorem for Greenberg’s local conditions (and Greenberg's
Selmer groups) whose definitions we now recall. For further details, see [Gre&9],

[Gre94], [NekO6].

Let I,, denote the inertia subgroup of G,,. Suppose we are given an OG-
submodule M} of M for eachplace w|p of K,set M, = M/M, . Then Greenberg’s
local conditions (on the complex level, i.e., in the sense of [Nek(U6], §6) are given by

pde,_ C*(Gy, M) if wp,
YOG/ e M) ifw | p
with the obvious choice of morphisms
iT(M): Ub (M) — C*(Gy, M).

Asin Definition 2.2, we then obtain a Selmer complex and an extended Selmer group,
which we denote by Hfl (M). Greenberg’s local conditions are the only type of local
conditions we will deal with from now on.

We now define the relevant Selmer structure? %.,, on M.

Definition 2.4. The canonical Selmer structiure ¥,y 1s given by

im (HY(Gy, M) — HY (K, M)) 5
1 = ker (HY(Gw, My) — HY(Gw, My)) ’
Hj (Ky. M) =1 1 1
ker (HY(Gy, M) — HY(I,,, M)) fopnd g
=im (HYGyw/ Ly, M) — HY(Gy, M)) '

Hence, we obtain the following Selmer group (which is called the strict Selmer
group in [Nek06], §9.6.1, and denoted by S37(K)):

HL (K,M)= ker (Hl(GK,S, M) — P H Gw M) o P H (Lu, M))_

w|p witp
2.1)

Proposition 2.3 now shows that:

Proposition 2.5. The following sequence is exact:

M — PBMH — T (M) — H (K, M) — 0.
wlp

‘Fora general M, our definition of %, (the canonical Selmer structure) slightly differs from its original
definition in [MR04]. However, for the specific Galois representation we use starting from §2.2 on, they do
coincide.
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See [Nek06], Lemma 9.6.3, for a proof.

Remark 2.6. Note that if (M, Yow = 0 for all w|p, then the extended Selmer group
H fl (M) coincides with the canonical Selmer group H %ﬁm(K , M). However, if some
(M;)Cw # Othen H j} (M ) is strictly larger than H %CW(K , M) (under the assumption
that M 9% =0, say). This is the main feature of Nekovar’s Selmer complexes: They
reflect the existence of exceptional zeros, unlike classical Selmer groups.

2.1.3. Height pairings. We now recall Nekovai’s definition of height pairings on
his extended Selmer groups. All the references in this section are to §11 of [Nek06]
unless otherwise stated.

Let M* = Hom(M, ?)(1) (in Nekovéi’s language thisis $(M )(1), the Grothen-
dieck dual of M). Let I" be the Galois group Gal((Qso /() (resp., the Galois group
Gal(koo/ k)) and p be the cyclotomic character pey (resp., the character pr) when
the base field K is (@ (also more generally, when K is a totally real number field)
(resp., when K is the quadratic imaginary number field k). The height pairing

25 P id®@log, p
(o ne: HYM) @9 HHM*) — 0 @7, T —2"~ ¢

is defined in two steps:

(1) Apply the Bockstein morphism

B: R, (M) — R, (M)[1] @7, T ——22 « RT ;(M)[1]

See §11.1.3 in [NekO6] for the original definition of 8. Let 8! denote the map
induced on the level of cohomology:

gl HNM) — HF(M).

(i) Use the global duality pairing
(. yor: H} (M) @0 H}(M*) — 0

on the image of B! inside of H J%(M ). Here the subscript PT stands for Poitou—
Tate, and the global pairing comes from summing up the invariants of the local
cup product pairing, see 6.3 in [Nek(06] for more details.

Just as for other height pairings, universal norms are in the kernel of Nekovar’s
height pairing:
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Proposition 2.7 ([Nek06], Proposition 11.5.7 and §11.5.8). For X = M, M*, the
universal norms

im(H} (G5, X @0 O[T, AM) @ O[T]) — H}X))

are in the kernel of the height pairing {, )Nek-

Here A(M)® @[I']] stands for an appropriate propagation of the local conditions
AM)on M to M @p OI'], see §8 of [Nek06] (particularly §8.6) for details.

2.2. The classical case: T = @(1) ® y~!. In this section we explicitly calculate
both the classical Selmer groups and the extended Selmer groups associated with the
representations T = @ (1)@ y ' and T* = @(y), viewed as arepresentation of Gg.
We keep the notation of §2.1. Let S = {q : g | pf,00} be a set of places of K. We
set TT=T,(T*)" =0thence T~ =0,(T*) =T%).

Lemma 2.8. (i) ﬁj}([(, Ty =>HL (K.T).
(i1) The sequence

0— P H Ky, 0(0) — HHK.T*) — Hj (K, T*)—0
wlp

is exact.

Proof. Immediate from Proposition 2.5. U

Remark 2.9. For our particular Galoisrepresentation T, the Selmer group H }can(K , 1)
as defined above agrees with what [MRO4] calls H J(};can (K, T). Indeed, in the language
of [MR0O4], H?If“can (0, T') is defined as

HYK,, T

Hj (K. T)=ker|{ H (Ggs, T)— P %

can ’ HY(K,,T)
geSqtp S0

where f = {, denotes the conductor of y, and H}(Kq, Ty c HY(K,,T)is as in
[Rub00], Definition 1.3.4. Let

HL(K,, T)=ker(HY(K,,T) — H'(1,,T)).
It follows from Lemma 1.3.5 (iii) in [RubQ0] that

HAM Ky T) = HY(K,. T)
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for every g + p (including primes g|f,), hence it follows that the canonical Selmer
group of [MRO4] is given by

HJ};W(K,T):ker(Hl(GK,S,T)—> P Hl(Iq,T)).
geS.qgtp

This shows that our definition of the canonical Selmer group given by (2.1) agrees
with the definition of [MRO4].

Proposition 2.10. Let O denote the ring of integers of L, O [1/ p] its p-integers,
OF its unit group and O [1/ p]™ its p-units.

M HE (K, T)=(0L[1/0]7)",

(i1) H%m(K, ) =0.
Proof. The first part follows from Remark 2.9 and [MR04], Equation (25). For the

second part, observe that H },m (@, T™) is contained in the submodule of unramified
homomorphisms inside

1

HYK, T* = Hom(Gr, )X

where the equality is obtained from the inflation-restriction sequence. In other words,

1

Hy (K. T*) C Hom(Gal(HL /L), O)*

where Hj denotes the Hilbert class field of .. But since Gal(Hy /L) is finite, we
have Hom(Gal(Hr, /L), ®) = 0, so H%Jcan(K, T*) = 0 as well. O]

Corollary 2.11. Keep the notation above.
(i) H} (K, T)= (O [1/pI"),
(i) B, HO(Kp, O() == HI(K.T*).

We suppose until the end of this paper that

(H) y(%) = 1 for aprime g C K lying above p, and that y(s€’) # 1 for any other
£ C K above p.

It follows from Corollary 2.11 that I}]} (0, T*) is a free @-module of rank one.
Furthermore, it follows from the proof of Proposition II1.2.6 (i1) in [Rub0O0] that we
have

(00 [1/p]) = (0L [1/£])*

since we assume (H).



Vol. 87 (2012) Height pairings, exceptional zeros and Rubin’s formula 83

When K = (@ and y is an even character, it follows from Theorem 5.2.15 in
[MRO4] that the core Selmer rank of the canonical Selmer structure (in the sense of
Definition4.1.11 of loc.cit., see also Corollary 5.2.6 of loc.cit.) is 2 (since we assumed
y is even and y(p) = 1); hence Hgl,can(@, ) = HJ}(@, T) is a free ©@-module of

rank 2. We will later describe an explicit §-basis for ﬁ]} (Q,TY®e &.
When K is totally real and y is totally odd, then ((C’L [1/p]x)x = (CC’L [1/5@])())(

(resp., (Q}f’x) isafree (?-module of rank one (resp., of rank zero) and hence Hf1 (K, T)
is also free of rank one.

Let ﬁ)l( ﬁfl (Q,7T) — ﬁf(@, T') denote the Bockstein morphism, as in §2.1.3
above.

Proposition 2.12. For any x € ﬁ}}(f{, TYand y € ﬁ}}(f{, %),

X, YiNek = (ﬁ)l((x):y>PT—

Proof. This is just arestatement of the definition of Nekovai’s height pairing we gave
in §2.1.3. L]

3. Cyclotomic units

Throughout §3, our base field K is () and y is an even, non-trivial Dirichlet character
whose order is prime to p and which has the property that y(p) = 1. Let L be the
field cut by y and write A := Gal(L/Q). Weset ey := ¥ sca ¥ 1 (6)6 € O[A]. In
this section, we define three different types of special elements which will be crucial
in what follows: Tame cyclotomic units, wild cyclotomic units and Solomon’s wild
cyclotomic p-units defined as in [Sol92].

Fix a collection {&,, : m = 1} such that {,, is a primitive m-th root of unity and
(h, = Cm for every m and n. Let f = f, denote the conductor of y, and recall the
Kummer map which induces a canonical map

F* — HY(F,Zy(1))
for every finite abelian extension F of ().

Definition 3.1. For every positive integer n prime to p, define

Cp = N@(Mnf)/[‘(f»{rn)(gﬁf - ]-) = L(ﬂn)x

and
¥ = exNou, /L) Cnr — 1) € L)X = H (Q(un), T).
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The collection ¢ = {¢f : (n, p) = 1} is called the collection of tame y-cyclotomic
units. The element cf( is called the tame y-cyclotomic unit of L, or simply the tame
cyclotomic unit once y (thus also L) is fixed.

For every finite abelian extension F of (Q of conductor m, define

§F = NQ(ump)/ F(Gmp — 1)

Here and elsewhere in this paper, the symbol N stands for the norm map.

Let () o be the cyclotomic Z,,,-extension of (0, and (), be its unique sub-extension
of degree p" over ©). We set L, := L(],. Note that the collection {&F } satisfies
the Euler system distribution relation, in particular the collection {&;, : n > 1} is
norm-coherent.

Definition 3.2. The collection

§=tL ={eyb,in=1}¢ H{_mﬂl(QmT)

B

is called the wild y-cyclotomic units. When y is understood, this collection will be
called the collection of wild cyclotomic units.

3.1. Cyclotomic units and ‘exceptional zeros’. From our assumptionthat y(p) =
1, it follows that p splits completely in L.

Lemma 3.3. Under the running assumptions &5 = 1.

Proof. This is [Sol92], Lemma 2.2; see also Remark 6.1.10 in [MR04]. []

Let ' = Gal(Qoo/Q) and A = O[T']. Let log,: Z; — Zp be the p-adic
logarithm, and let peye: 1" — 1 + pZ,, be the cyclotomic character. Fix a topological
generator ¥ of [, The short exact sequence

0 s TOA STOA T 50

induces a long exact sequence of cohomology (where we have the zero on the left
thanks to our assumption that y is non-trivial)

0=H%Q.T)— HY(Q,. T ® A) L HYQ, T ® A) L. HY Q. 7). 3.1

It follows from Proposition I1.1.1 in [Col98] that we may identify HY(Q, T @ A)
with h{_mn HY(Q,,T), and thus view the wild cyclotomic unit & as an element of

HYQ,T @ A). The image of § under the map N of (3.1) is ELX = 1, hence the exact
sequence (3.1) shows:
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Proposition 3.4. There exists a unique

5} =25 e H'Q.T® A) = limH'(Q,. T)

B

such that
p—1

——— ol =g
logy, peye(y) %

85

Remark 3.5. Just as we did above, one could have obtained an element Z. €
li<_mn HY(Lp, Zp(1)) such that bgp%qlcﬂ_ X Zoo = Eoo := {Ex}. Then, y-part of this
clement would be our zZ4 and &£ = &, respectively. Although we only need to

analyze the y-parts z&, and & = &% of these elements for our purposes, it may be
worthwhile to keep this in mind for a comparison with the treatment of [So0l92] and

§9.3 of [BGO3].

3.2. Wild cyclotomic p-units. Inthissection we quickly review Solomon’s [Sol92]
construction of cyclotomic p-units and relate these p-units to zZ, defined above.

Solomon’s construction® starts with the observation that there exists (thanks to

Hilbert 90) a unique g%  L,**/L>X such that

p—1

—  x BX =§X,
log, Poyely) g g

Thus, from our definition of zX, = {Z,)f} it follows that
X — =X 1 X X XX
# =z inside L% AL,

Applying Ny, /1. on both sides of this equality we see that

X

Ky =Ny Bf =Ngppzl=eg  mod p

Solomon proves (and (3.2) above shows as well) that

X _ n !
ki, =«f mod p", fora’ > n,

and he defines
ik o= limiyf € L7,

This is what he calls the cyclotomic p-unit. By (3.2), we clearly have k¥ = z

(3.2)

9The attentive reader will notice that Solomon’s construction is carried out without taking x-parts. However
his arguments apply on the ¥-parts verbatim. In fact, it is easy to see that the p-unit ¥ constructed below is

simply the y-part of the p-unit ¥ which Selomon constructs in §2 of [Sel92].
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Definition 3.6. The clement zg is called the cyclotomic p-unit and the collection

zX e LiilHl(@n,p,T) = lim L}
I Ft

is called the collection of wild cyclotomic p-units.

Remark 3.7. By [Sol94] that {c{, z}'} is an ordered F-basis for ﬁ]} (Q,TYe &

3.3. Local Tate duality. In this section we give areview of well-known results from
local duality which we will need later in §4. For each n > 0, we have the local Tate
pairing

HYQpp. T)x HY(Qpp. T") — 0,

induced from cup-product pairing composed with the invariant isomorphisim, for more
details see §5.1-85.2 of [Nek06]. This induces a map

HY(Qnp. T) " Hom(H  (Qn,p, T*), @)

thus, in the limit a map (using Proposition I1.1.1 in [Col98] once again)

Too ;
HY(Qp. T @ A) — Hom(lim H' (Qp,p, T™), 0).

n

Definition 3.8. (i) Let £¢ be the image of & under the compositum

1 [t
HY(Q,T® A) —2 H'(Qp, T @ A) —=> Hom(lim H'(Qn,p. T*), 0).

1]

(i1) Let éfig. be the image of z&, under the compositum

= ol
HY(Q,T®A) =2 Hom(lim H'(Qp, . T*), 0) — Hom(H'(Q, T*), 0).

41

Remark 3.9. For n > n’ we have a commutative diagram

' (Qn,p, T) ——=Hom(H(Qy,p, T*), 0)

Hl(@?’ﬂ,pa T) — HOI‘H(HI(@R;’:P, T*): @)9
where res* is induced from the restriction map

res: H'(Qu p, T*) — HY(Qp,p, T*).
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We therefore have a commutative diagram

L ¢ HYQpT®A)—Homim H'(Qu, T, 0)

250

b |

75 € HYQ,T) ———Hom(H'(Q,,T*),0)
Thus ﬁﬁ’é is simply the image of Zé( under the map

0: HY(Qp,T) —> Hom(HY(Q,.T*), @).

4. Computation of the height pairing

Throughout §4, our base field K is () and y is an even, non-trivial Dirichlet character
whose order is prime to p, and which has the property that y(7) = 1. In this section
we calculate the height pairing on the cyclotomic unit Ci( . Note that, in view of
Remark 3.7, Proposition 2.7 and the fact that z£ € H J} (€, T') is auniversal norm (by
its definition), this gives the only non-trivial output of the machinery we described
in §2 we could hope for.

For ¢ = y*1, we write as usual @(y) for the free @-module of rank one, on
which Gg acts via ¥. Define ey = Y ;.o ¥ 1(6)§ as the idempotent of O[A]
associated to ¥. We identify the module (i) with (@vlp @ - v)¥ (therefore we
regard gy = ey Vo as a generator of (), where we recall that vg is the place of L
we fixed in §1.1 via choosing an embedding ¢p: Q — @p) and we define

pry (@04})1'” e,
v|p

by setting pry, : gy +> 1. Inother words, pry, isthe map induced from projection onto
the vo-coordinate. For each place v of L lying above p, write 00 L = Ly = O,
for the induced embedding.

Let p, denote the compositum

A}, 00) ® ¥ 1) 2= B2@Q,0(1) @ 1) —= H2(Q.0() @ )

T e

H2Qp, 0 ® x71)
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and B, the compositum

~ 1 P o

Hi(@,0(0) @y — H*Qp, 0 @ x 1) —= (D), H2(Lo, 0O))*

T~ . Z‘U invy

Haé;f“* (erlp@'U)X

- o ]J'[‘x

where the map ﬁ}( in the first diagram is the Bockstein morphism applied on the first
cohomology; ¢t comes from Proposition 2.3; the isomorphism b in the second diagram

from the Hochschild—Serre spectral sequence. Let log,: @ — Zp be the p-adic

logarithm extended to the p-adic completion @3 of Q;‘ by setting log,,(p) = 0. We
extend log, by linearity to define an ¢-module homomorphism

r—

log,: O @z, @; — 0.
Proposition 4.1. 8, (c{) = log,(t,(c])) = vo(zf) € O.

FProof. The second equality is the main calculation of [Sol92], hence it suffices to
check the first claimed equality. This assertion is essentially Proposition 9.3 (ii) in
[BGO3]. In fact, the statement of loc.cit. is that

Br(cl) = pry(ey > log,(ou(c1)) ),
v|p

where the equality takes place in ¢¢. Furthermore, we have the following brute-force
calculation:

O() > ey » logy(auc)) v =Y x ()8 log,(au(c1)) - v

vz seA vlp
=33 1) logy(ou(cr)) - v°
deA v|p
- Z inl(g)logp(gwé‘—l(cl))'a)
deA w|p
=33 1 B log,(0u(cd) - @
deA w|p

=Y log,(au(ci) - @ € O(x),

w|p
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where v9 is the place obtained by the action of § € A on the set of places {v : v|p};
and we have the final equality by the O-linearity of log,,, and the forth equality thanks
to the following commutative diagram:

sl ” 4.1)

We further have
> log,(0u(el) @ =3 log, (0,8 (c1)) - g

w|p deA

ey Z log,, (Uvo((cf)afl)) ; Ug

dcA

_ Z log, (UUO(C{()X_I(S)) . vg
deA

= 3" 17 6) log, (0o (cD)) - v

dcA
= log,, (v (c])) - exv0 € O(x),

where the second equality holds thanks to (4.1) and the third because (C{()‘S_1 =

(C{())F1 @) Putting all this together (and noting that Ovy|L = tp|L by definition), we
conclude that

ﬁx(ci() = éx (]'ng (Uvo(ci()) ) eXUO) = logp(f’p(cf))
as desired. ]

Remark 4.2. Note that if we replace vg by another place vg of L, the value of B X(C{( ) =
log (0, (1)) changes by 7~ (8): log, (0,3 (c)) = x1(8) log, (Gue(c]).
We are now ready to complete the computation of Nekovéf’s height pairing

(C{(, o)Nek for @ € HJ} (Q,T*) and C{C as above. We have the following identifi-
cations:

=1 pr _
A}NQ.T) = H(@p. 000) ~> (0o -v) . @
vlp

Let @(vo) denote the image of & under the compositum of the maps (4.2).

Remark 4.3. Note that since pr,—1 depends on the choice of v, so does a(vg) € 0.
Write pr,—1 = prx_l(vo) only in this remark to remind us the dependence on .

One then has pr,—1(v8) = x(8)pr,—1(vo) and in turn @ (v) = ¥ (&) (vo).
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Lemma 4.4. Suppose x € HY(Q,, @) = @ and y € H*(Q, O(1)). Then
i) xUy=x-ye H*(Q,,0()),

(i) (x, y)mae = x - invp(y) € O, where {, )rae is the local Tate pairing.
Proof. Clear. U
Lemma 4.4 may be used to check the following:

Lemma 4.5. The following diagram commutes:

HYQ, 0() © HXQ,001) oY) ¢

e =

(Do, HOULo, 0 Dy, HX Ly, OO

‘ 2oup invy | 22

1

(Bup 0-0)" (D0, 0 -v)*
m‘x_ll pry
@ @ @ @.

()

Here, (a,®) := ab € @ for a,b € O, and the vertical isomorphisms between
first two rows come from the Hochschild—Serre spectral sequence.

The following proposition is key to our main results.

Proposition 4.6. For an arbitrary o ¢ I;TJ} (Q, T*), we have (¢, d)nex = vo(z8) -
a{vo).

Remark 4.7. Both vg(z¥) and «(vo) depend on the choice of vg, yet v (z5) - @(vg)
is independent of v thanks to Remarks 4.2 and 4.3,

Proof. By Proposition 2.12

{efs W)Nek = (}B;l((cf()’fX)PT,

where B B
{,Jor: HH(Q,T)® H}(Q, T*) — O
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denotes the global pairing from [NekU6], §6.3. The definition of this global pairing
(along with the fact that H2(Qg, T) = 0 for every £| ) shows that the following
diagram commutes:

BQ.omerh © HQO00)—Tw0 @.3)

locy © tl T invp T

H¥Q,. 0@y ® HQp 0(x) — HX(Q,, 0(1))

We explain the arrows in (4.3): The arrow on the left is the canonical map (coming
from Proposition 2.3)

v Q0@ ) — HXQ,0)® )

followed by the restriction map loc,. The extended Selmer group ﬁfl (Q, O(x)) may

be canonically identified by H°(Q,, @(x)) (see §2.2), this is how we obtain the
vertical arrow in the center.

The commutative diagram (4.3) gives {¢f, &)nek = (0 (¢]), 0 )1ate, Where oy is
defined as in the beginning of §4. Furthermore, by Lemma 4.5

(pr(et), imae = (Br(ct), @(v0)) = vo(z5) - a(vo),

where (a,b) .= a - b for a,b ¢ @ as in Lemma 4.5, and the final equality is
Proposition 4.1. The proof is now complete. ]

5. Rubin’s formula

Throughout §4, our base field K is () and y is an even, non-trivial Dirichlet character
whose order is prime to p, and which has the property that y(7) = 1. In this section
we complete our main computation, using the calculations carried outin §4. Starting
with o € HJ} (€D, @(x)) as above, we first wish to define an element ¢y :

bo € H'(Qp O00) = (D1 H' Las O)F —"— H' (L 0) .

= Hom(Gy, ©).

Here we recall that G, = Gal(Q,/L,) and pr,-1 is the projection onto the vg-
coordinate as in §4. In the equalities above, we are again using an identification com-
ing from Hochschild—Serre spectral sequence, along with the fact that H1(L,, @) =
Hom(G, @). Note also that Hom((r,, ?) is the group of continuous homomorphisms
and we have

Hom(Gy, ) = Hom(GZ, 0) = Hom(G2™?, ¥) = Homw (0 @z, GIF, 0),
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where G,ﬂb for the abelianization of the group G, and Gﬂb’p 1s its pro- p part.

We write ¢p° € Hom(G,, @) for the image of ¢, under the compositum (5.1)
(which we henceforth call 1,). Defining $y” as the unramified homomorphism given

by
$30: Gyy —> O, Fry, — ot(vo),

where Fry,, denotes an arithmetic Frobenius at v, we also define oy € H(Qp, O (1))
using the identification r,. Below, we normalize the local reciprocity isomorphism
(and the local invariant map) by letting uniformizers correspond to arithmetic Frobe-
nius elements.

Let § = &% = {£5Y ¢ HY(Q,T ® A) be the collection of wild cyclotomic units,
as in §3. Recall the definition of the element éfig_ = Hl(Qp, T') from §3.3 which we

regard as an element of Hom(H (Q,, T*), ) vialocal duality. Recall also the tame
cyclotomic unit ¢ € HY(Q, T).

Theorem 5.1. {c{, &)}nex = £y (da).

Proof. Let zg be Solomon’s cyclotomic p-unit as above. It follows from the discus-
sion in §3.3 that

;;-(Qi’af) = <Z(J)Ca¢a>Tate- (5.2)

The computation of the right hand side of Theorem 5.1 is thus reduced to local class
field theory.

Let v, 1 denote the following compositum:

HY (Qp, 0()® x71) = (D, H (Lo, 6N §> HY(Ly,, 0(1))

e

= L,Z,(O Rz, O,

(5.3)

where £, is the projection onto the vp-coordinate as above, and Eff stands for the
p-adic completion of the multiplicative group L. We note that v, 1 (locp(z®)) =
tp(zF), with 1,0 L = L,, is as in the introduction and

.yl 1
locy,: H(Q,T) - H (Q,,T)
is the canonical restriction map, as usual. We then have a commutative diagram

( s )Tate

Hl(@PsT) & Hl(@PsT*)—\F@

S

( 3 )Tate

HI(LUOEO(I)) & HI(LU():@)é‘@
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which translates to
<Z())(’ ¢a>Tate - {Lp (Z())(), ¢§0 )Tatc- (54)

Let .
ay: H'(Ly,Zy(1)) = LS — G®F

denote the local reciprocity map. Let further
o™ IX s Gal(L™/L,)

denote the projection of ay to the Galois group of the maximal unramified extension

of L. We also write a; (resp., a%ur)) for the induced map @ ®z,, f;’? - 0Q®z, Gf}b’p

(resp., for the map O @z, f:j( — 0 @z, Gal(Ly/Ly)).
By the very definition of the local Tate pairing,

(1o (), 820w = B2° (00 (p(2) = 420 (82 (ep(2))

where we have the second equality because ¢y is unramified by construction. Write

€23 =% i
LP(Z(})() = w';}g 2 u e @ Rz, L:}(O = Q7 (wvop & @EUO),

g

where w,, is a uniformizer of L,, and ¥ € O ®gz, (9}; 1s a unit at vg. Then
0

X
ag}ué)(tp(zg)) = Frzg(zo) since ay,(¥) € 4y C Gy, the inertia subgroup at v. Thus

X
lp (B0 e b= ;0(1:1'38(20)) = vo(2{) - ¢a° (FYUO)

and this equals, by the definition of ¢, to vo(zg) - @(vo), which equals, by Propo-
sition 4.6 to {z{, @)nek and finally, by (5.2) and (5.4) to iﬁﬁg. (¢« ). This completes the
proof. ]

Next, we relate the right hand side of the statement of Theorem 5.1 to a special
value of a p-adic L-function (that we call L¢ ¢) which we construct below.

Let . denote the cyclotomic Z p-extension of (7, := &y, and let $, denote the
unique sub-extension of @/, of degree p”. Recall that T* = Hom(T, O(1)) =
O(x). We set

HL(Q,,T* = lim HY (®,, T"),
I3
where the inverse limit is taken with respect to norm maps. We may identify
Gal(Poo/Qp) naturally by I' = Gal(Qo/Q). Let y be a topological generator
for I and let A = @[[I"]] as usual.

Lemma 5.2. The natural map H! (Qp, T*) — H'(Qp, T*) is surjective.
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Proof. By [Col98], Proposition II.1.1, we have H1(Q,, T*) = HY(Q,, T* @ A)
and the map above is simply the reduction map modulo y — 1. Hence, the cokernel
of thismapis H2(Q,, T* @ A)[y — 1], the y —1 torsion of H2(Q,,T*®A). Since
the cohomological dimension of Gal({Q),/Q,) is 2, it follows that
H*(Qp, T* @ A)/(y — 1) = H*(Qp, T* @ Af(y — 1)) = H*(Q,, T™),
which is trivial (by local duality). Thus we have an exact sequence
0 — H*Qp, T*® M)y —1] — H*(Qp, T* @ A)
=}
S HYQ,, T*® A) —> 0.

Itis knownthat H*(Q,, T*®A) is an @-module of finite type (cf. Proposition 3.2.11in

[PR94]), thus it follows from Theorem 2.4 in [Mat89] that Hz(Qp, T*@MN)[y—1] =
(0 as well, hence the lemma is proved. (]

By Lemma 5.2, it is possible to choose & = {gb(gn)}nzo € HL (Qp, T*)such that
0 _ ¢
o - o

Definition 5.3. Attached to & and @, define an (?-valued measure fte o on I' as
follows: For t € T, set

e, e(zT?") = Le(zg(™).

The fact that ¢, ¢ 1s a distribution follows from the fact that the collection {@én) o
is norm-compatible.

We define the “ p-adic L-function” associated to & and & by setting

.2 3] o= fr ndite.o

for each character n: I" — Z . Let1be the trivial character, and peye: I' = 1+ pZ,p
be the cyclotomic character. We define the derivative at the trivial character 1 as

d
; e 5
L-'g',cp(l) i dSL"g',CI)(fOcyc) -

We also define Pe ¢ € A to be the power series associated with the measure fte .
Remark 5.4. Define
Po(ise)i= » pgo(T?") v e o[r/T7"),
zel/T 2"

so that Pg ¢ = limp Pulptg ) € O[[I']]. For the powers piy.: I' = 1 + pZ, of the
cyclotomic character, observe that

PhePga) = lim > pea(rT?) - pl (D). (5.5)
e/ T P"
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Here, 7 € T stands for an arbitrary lift of 7 € I'/ I'#", and it is not hard to see that
the limit above does not depend on the choice of these lifts although each sum does
depend on this choice. We therefore see that o (Bg,0) = Lg o (0l ), which in turn
implies that

d s '
gpcyc(qs’g',Q) _— = L-‘.;':q)(l)

Proposition 5.5. Sﬁ’s(gba) = Lfg,cp(l)-

Remark 5.6. Note that the left hand side of the equality in Proposition 5.5 depends
only on ¢y, not on its lift &; whereas the right hand side depends a priori on <. Hence
Proposition 5.5 shows in particular that L:g,cb(l) does only depend on ¢, and not on
the lifting .

Corollary 5.7. (cf, &)nek = L 4(1).

The proof of Proposition 5.5 will be completed in a few steps, all of which are
essentially borrowed from [Rub94] with minor alterations.

Definition 5.8. Suppose p = @ e HY(dy, T*)and it = {M(n>}en£31(cbn, 7,
Define

Derpcyc (C‘CE‘{,:)(M) = nli)ngo Z logp(pcyc(f)) i U‘:@{f(fﬂ(n))
TeGal(Qp /1)

As the notation suggests, this definition only depends only on w, not on the lift u.
This fact will follow from Lemma 5.9 below (where we also prove that the limit above
exists).

Lemma 5.9. Suppose v € HY(®,, T*) is such that No,,jo,(v) = 0. Then

Y. logy(peyel(e)- £e(rv) =0 mod p".
T€Gal(Q, /D)

Proof. Tix n and to ease notation, set £ = £¢ ‘Hl(dm Ty € Hom (H1(<I>n, %), (9)
and G = Gal(QQ, /(). Write

§ =" log, (pee(r)) - T € Z/p"Z[G].
tels

Note that the claim of the lemma is equivalent to showing that

SE(W) = 0 (in O/ p"O). (5.6)
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It is easy to see that

(0 —1)§ =log,, (pse(0)) Y | T

TelG
= log,(feye(0)) ' Ng,/9,, foralo €G,

hence it follows that
(c —1)6f = logp(pcyc(a)) . Nq,n/q,ocfﬁ =40

where we have the final equality because SE‘HI@O ey = 0 by Lemma 3.3. This is
equivalent to saying that

§% € Hom(HY(®,, T, @/ p"N°. (5.7)
Consider the map

- ON@n/@o

N*: Hom(H'(®g, T*), 0/ p" @) ————— Hom(H (D, T*), @/ p" ®)C.

Note that both of the sides of above are finite and the map N*is injective by Lemma 5.2.
Claim below proves that there is an isomorphism

Hom(H Y®,,T*),®/p Y =~ Hom(H (Do, T*), @/ p" )
which in turn implies that N* is surjective as well:
Claim. Hom(H Y (&,, T*), ®/p"@)® = Hom(H (®o, T*), O/ p"O).

Proof of the Claim: By slight abuse, we let y denote a generator of . Then, an
element ¥ € Hom(H (®,, T*), ©/p"O) is fixed by G if and only if

Yy =¥ = Y(yx) = ¥(x)forallx ¢ HY(D,, T*)
— Py((y —Dx) =0forallx € H(®,, T
<= 1 factors through H(®,, T*)/(y — 1) = H(®o, T*).

where the very last isomorphism comes from the proof of Lemma 5.2. (]

We are now ready to complete the proof of Lemma 5.9. It follows from our
conclusion that N* is surjective that there exists g € Hom(H (&g, T*), O/ p" )
such that £ = g o Ng,, /o, hence

§L(v) = g(Ng,/9,()) =0in O/ p"0.

This is exactly the statement of (5.6). L]
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Remark 5.10. As in the remark following Lemma 3.1 in [Rub94], one can check that
Derpcyc (if) - c"f;;'

using the fact that H1(Q,, T ® A) has no (y — 1)-torsion. Here the equality takes
place in Hom (HI(CIDO, ), (9). Note that the term involving the p-adic logarithm
in loc.cit. does not appear here because we have already normalized zZ, by the factor

logp prc (:V)

Proof of Proposition 5.5. (Compare with Proposition 7.1 (ii) in [Rub94].) By Re-
mark 5.10,
Lilgo) = lim > log, peye(r) - Le(z L)

R—>00

reGal((Qy /1)
— lim Z log,, pcyc(r),u,sé,q,(rrp”)

—r o0

tGal(Qr/0)
= frlogp Peyo  Aite, o-
On the other hand p
gpgyc = (logp pCYC)pgym

hence

! d 5 5

= ﬁlogppqc'dﬂg,Q
= ié(qba). []

6. p-adic L-functions and Nekovai’s height pairing

In this section, we obtain a formula for the leading term of an imprimitive Kubota—
Leopoldt p-adic L-function in terms of Nekovai’s height pairing, much in the spirit
of a p-adic Gross—Zagier formula, using the Rubin-style formula we proved above.

This in particular suggests a new interpretation of the classical p-adic Kronecker limit
formula (cf. [Was82], Theorem 5.18, §2.5 of [dS87]) and the formula of Ferrero—
Greenberg [FG78].

6.1. p-adic L-functions. In this section, we give an overview of the well-known
construction of the Kubota—Leopoldt p-adic L-function (resp., Katz’s two variable
p-adic L-function) using cyclotomic units (resp., elliptic units).
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6.1.1. Cyclotomic units and the Kubota=Leopoldt p-adic L-function. We denote
byw: Gg — (Z;)m the Teichmiiller character giving the action of Ggy on the p-th

roots of unity pt,,. Fix anembedding @ — @p — C sothat one can identify complex
and p-adic characters of finite order of (rp. Via this identification, a character p of
I" of finite order naturally extends to an (?-algebra homomorphism p: A — .

For acharacter p: Gg — @ — C of finite order, let L(s, p) denote the associated
Dirichlet L-series .

Definition 6.1. Attached to a non-trivial even Dirichlet character ¥ of Gq whose
order is prime to p, there is an element £y € A such that for every k£ > 1 and every
character p of finite order of I,

Phep(Ly) = (1= pyr(p)p*HLA —k 0™ py).
See Theorem 7.10 in [Was82]. The element ¥ is called the p-adic L-function
attached to .

Remark 6.2. Starting from % above, one may construct a function L (s, %) (which
is analytic at all s € Z,) by setting

Lp(s.9) = pog’ (L)

Recallthat L, = LQ, and Lo, = L0 . For aprime p, let U, , denote the local
units inside (L,),. Let U, = lep U, » be the group of semi-local units and let

= (Ln ® @p)x = [, p(Ln)y- By Kummer theory, we have an identification
HY(Ly),,00) =5V, and HY(Qn),,T) ==V, (6.1)

where we recall that A denotes the p-adic completion of an abelian group A and when
A is endowed with an action of Gal(L/Q)), we write AX for the y-part of A. Define
Was.— h£1 U, and Vo, = h£ V.., where the inverse limits are taken with respect

to the normnmaps. The identifications (6.1) above then gives in the limit
HYQ, T @A) =5 VX, (6.2)

Coleman introduced in [Col79] a useful tool which as an input takes a norm
coherent sequences in a tower of local fields and gives as an output a power series.
More precisely, Coleman defines a A-module homomorphism

col? - UY, — O[T (6.3)

with the property that
coll, (EL) = £y, (64)
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where we recall that éfo = ul{’o is the norm coherent sequence of cyclotomic units
along the towerof fields {L,, },-0. Let y beatopological generator of I as fixed above.
If the character ¥ is unramified at p, then CD[gO extends uniquely to a homomorphism

1
col¥ : v¥ — yj@[[r]]. (6.5)

See §3 of [Sol92], §2 of [Gre92] and §4 of [Tsu99] for a detailed description of
Coleman’s map.

We define using (6.5)

— —1
col¥, = i & xeol¥ : VY —s A, (6.6)
5 108, (Peye (¥))
so that
Py -1 o
o gy = —2 « %y and colV(zl) = pLy, ©6.7)

% logp(pcyc(y))

X vy being the collection of wild cyclotomic p-units. Note that % log, (Peye(¥)) €

Z; since ¥ € 1" assumed to be a topological generator and since we assumed p is
odd.

6.1.2. Elliptic units and Katz’s p-adic L-function. Let © be the completion of
the ring of integers of the maximal unramified extension of ¥ and let & be a quadratic
imaginary number field such that p splits in & /Q). Write p = g™ with p #£ ™.
We adapt the notation and hypotheses from §1.1, in particular, koo is the unique
Z p-extension of k which is unramified outside g and I' = Gal(k/k). Write

k(F%°) = Upso k(fp™ ™) and let
pE: Gal (k(fp™)/k()) — Z,

be the character whose construction is sketched in §1.1; and let pr be its restriction
to I'. We may similarly define p%, I'* and pr+ by replacing o by p*. Set § =
Gallk(tp™)/k(t)) and A = D[[¥]]. We denote the Grossencharacter character
attached to the elliptic curve E also by pg, which should cause no confusion since
these two characters are related in a manner described in [Weid6].

For a Grossencharacter ¥ of k of type Ag (in the sense of [dS87], §11.1) and an
integralideal mu C k,the Hecke I.-series of 1 (with modulus 1) is the complex valued
function Lo m (¥, 8) = > ¢¥r(a)Na ¢, where aruns over all integral ideals relatively
prime to m. Let d € Z~ be the discriminant of K. As before, let y: G — D bea
Dirichlet character whose order is prime to p and let £2 be the positive real period of
a global minimal model of E. For notational simplicity, write p = pg and p* = pF.

The following theorem describes the 2-variable g-adic L-function, first con-
structed by Katz [Kat76] and Manin and Vishik.
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Theorem 6.3. For j. k € 7, set ¢ = p”ép}j}{. There is a g-adic period 1y € A
and an element £, € A such that for 0 < —j <k,

_ . | 7]
%"‘ix(p’w*’)—szf—’“(k—lﬂ( 23rk) Gl (1_%)‘%,@((1,0}

See Theorem 11.4.14 in [dS87] for details (e.g., for a definition of G(¢)) and for
the proof.

In this paper, we are only interested in the restriction £, ‘ r of the 2-variable p-adic
L-function £, to characters of I". Starting from the one-variable p-adic L-function
Ly|p, we define Lo (s, y) = Sﬁx‘r(p%‘_s :

For k, as in §1.1, write L,, = Lk,. For a prime g, let U, 4 be the local units
inside (Lp)q, and let U, = ]_[th Up 4 be the group of semi-local units. Set U =
li£ U,. Asin §6.1.1, we consider Coleman’s map

Ft

col 0 UL @D — DT,
see §1.3.5 of [dS87] for a definition of this map. The map colX here is the map “i ”
of loc.cit. restricted to the y-parts and to the I"-direction.

Letw, € L betheelliptic unit denoted by &, by Bley [Ble04], §3. The collection
wi, = {wf} € UL is called the collection of wild elliptic units along T'. As wild
cyclotomic units recovers the Kubota—Leopoldt p-adic L-function, wild elliptic units

along I may be used to obtain the one-variable p-adic L-function:
ol (wk) = £y|w (6.8)

This fact has been first proved by Coates and Wiles [CW78]. For the 2-variable
version of (6.8), see [Yag82] and [dS87], §IV.

6.2. Height computations for the base field Q@: The case y is even. Let y be an
even Dirichlet character as before. Recall that &, = (0, ),, and recall also the fixed
place vo of L which is induced from the embedding tp: @ < Q. Write v for the
unique place of L, which lies above vy and define &,, = (L,),,. In this section, we
construct a particular collection

& =i}, € H'(Qp, T* @ A) = lim H' (0, T*)

i

starting from (?B-fé{o, which we use together with Corollary 5.7 to prove a formula for
the leading term of an imprimitive Kubota—Leopoldt p-adic L-function.
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As in (5.1), we have identifications

1 (@0, 000) = (P 1 (L), @))X_l S H(24.0) — Hom(G,. 0)
vlp

= Hom(g:f;(, ).

Here the direct sum is over the places of L which lie above p with the convention
that the unique place of L, above a place v|p of L is also denoted by v. Also, &,
is the projection to the vg-coordinate and the final equality is obtained by local class
field theory. Furthermore, as in (5.3), we have identifications

H'(®n, 0() ® x ) = (By)p H (Ln)w, 0 (1)) (% H'(R,,0(1))
= ﬁ ®z, 0,
which, put together with the identification above gives isomorphisms
Hom (H'(®,,T), @) =>Hom(LS, 0) == H'(®,, T*). (6.9)

Note that both isomorphisms in (6.9) depend on the choice of vg, yet the compositum
of them does not.

Let UH(®,,T) C HY(®,, T) denote submodule of universal norms inside of
HY(®,,T),ie., the image of the canonical A-module homomorphism

HY (Q,, T®A) = thl(®m,T) — HY®,,T).

Hi

e T 1 s X : : b 3
The Coleman map col5s: h{_mm H Ry F = l{glm Vim — A induces (since it is

A-linear) a @[T, ]-module homomorphism
col2: UHY(®D,,T) — O[T,].
For a finitely generated @[I";]-module M, there is a canonical isomorphism
b: Homg (M, @) = Homep[r,|(M, O[T,]), [f+— (m— > el flg=tm)-g)

(cf. [Bro94], Proposition VI.3.4). Using the isomorphism b applied with M =
UHY(D,,T), we define ¢ by requiring b(¢™) = eolX,

Lemma 6.4. The @ -module
HY(®,, T)/UH (®,,T) = coker (H'(Qp, T @ A) = HY(®,,T))

is free of rank one.
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Proof. By the long exact sequence of G, -cohomology we have
coker (H'(Qp. T ® A) > H'(®n, T)) = H(Qp. T @ Ay 1]

By Proposition II.1.1 in [Col98] and by local duality, we have

HYQ,, T ® A) = lim H(®,,, T) = limHom (H°(2,, §/0 (1)), §/0))

f H

- Hom(njn; HO(®,, §/0 (1), §/0)) = 0,

which is free of rank one as an ¢-module. Ll

Remark 6.5. In this remark, we give a further study of the universal norms
UHY(D,, T) inside H!(®,,T). For notational simplicity, we assume @ = Z,;
the general case may be treated tensoring all our conclusions in this remark by @.
Furthermore, since we assume ¥(p) = 1 (i.e., ){|G@p = 1), it suffices to study the

universal norms WH ' (®,, Z,(1)) inside H (D, Z,(1)).

(i) Let @, € &, be a uniformizer which is chosen in a way that Ng, /¢, (77,) =
wy,, for every n = m. Let Uy the units of ®,. Kummer theory gives an

identification

HY(®y,Z,y(1)) = 3% = wl? x .

Since p ¢ HY(Qp, Zp(1)) = plr x Z;é is a universal norm, it follows from
Lemma 6.4 that no local unit (i.e., an element of Z;( C @3) besides 1 is a
universal norm, and we have UH(Q,,Z (1)) = pZr under the identification
above. Set Yy = @5, so that we have a decomposition H(Q,,Z,(1)) =
UH1(®g, Z,(1)) x Y, into rank-one Z ,-modules. Note that we adopt here the
multiplicative notation for these abelian groups.

(i1) For every n = m, the restriction map

rese,, /o, H (Om, Z,(1)) —> HY(®,, 7,(1))50@n/®m) . gY(D,, 7,(1))

issimply the naturalinjection&)‘;’f: — &;};‘ Whenm = 0, writeres, forresg, /g,
(iii) If 1 £ u ¢ Z;( C HY(Qp,7Z,(1)), thenres, () is not auniversal norm. Indeed,
if otherwise, Ng,, /0, (res, (1)) = u?" e Z;& would then be a universal norm

and hence u?" = 1 by (i). Since ZZ{ is torsion-free, it follows that # = 1. Let

€Sy

Y, =im(Yo — > H'(®n, Z,(1))).
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(iv) The quotient H'(®,, Z,(1))/Y, = @(/im(iﬁ s &;;() is torsion-free. In-
deed, if an element of the quotient &;;;( / im(@( > &;;;() represented by x €
5::‘ — Z;( is p-torsion, so that x¥ & Z;‘, then we would have i, C @, which
is not true. IHence, Y, is a free rank-one direct summand of H(®,, Z,(1)).
(v) By Lemma 6.4, we have

rankz,, WH '($,, Zp(1)) = rankz, H' (Dn, Zp(1)) — 1. (6.10)

Using (ii1), (iv) and (6.10), we conclude that
Hl((bn, Zp(l)) - U’Hl(q)m Zp(l)) £
as Zp-modules.

Remark 6.5 (v) ensures that one may extend ¢ @ : UHY(®,,, T) — @ to ahomo-
morphism H'(®,,T) — © by declaring ¢ ™ (c) = 0 for ¢ € Y,. Note in particular
for n = 0 that the map ¢©@ = CDIX HYQ, T) = LX ®z, @ — O (which is
extended from UH ! (Q p» I') as described above) is unrarmﬁed since it is identically
zero on the units C9 ® 7, @ by construction (as explained in Remark 6. 5().

Letwy, € Ly, be auniformizer and set a(vg) = cofg(wvo) € . Note that the
value (ﬁg (0y,,) is well defined thanks to the discussion in the preceding paragraph.
Let col§ ﬁl(Q, T*) be the element which maps to a(vg) under the compositum
of the isomorphisms (4.2). Furthermore, one may verify without difficulty that the
collection & = {gb(”)} chosen as in this section is norm-coherent and the Rubin-style
formula we proved (Corollary 5.7) applies with the particular & we have constructed.
Before stating the theorem we prove using these facts, we first define what we call
the “imprimitive p-adic L-function”.

Definition 6.6. For £, € A as above and for any topological generator y € I', write

F,o=—¥=L % e A, and define the imprimitive p-adic L-function to be
X < log, Py (¥) X v ’ f

Ly(s. ) = pese* (Ly).
Note that,
- L (s, x) is an Iwasawa function,

. %Ep(s, x) " does not depend on the choice of y.

Theorem 6.7. Suppose y(p) = 1 and let EP(S,){) be the imprimitive p-adic L-
function defined as above. Then

L (1 ) = (e}, colf e
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Proof. Asin §5, let ptg ¢ be the measure on I' attached to § = &%, and ® we chose
as above, let P o € A be the associated power series and let Lg o(#) denote the
‘p-adic L-function’ on the characters 7: I' — Z 7. We then have

Voo = Ol (EL) = ——— x colX, (E1.)
7 logp pcyc(y)
y —1

= X Ly
7 logp Peye(Y)

We therefore see that

d A
_pgyc(q}’éﬂfb) ey pUL)=p-Lp(l,x)= d_Lp(Sa){) i (6.11)

ds s
where we have the first equality because %pgyc = log,, Peye - pgyc, the second thanks
to our definition of L, (s, x) (see Remark 6.2).

On the other hand, we have %pgyc(ﬂ,}%-’cp) ‘ g = L%’cp(l) by Remark 5.4, and the
theorem follows combining (6.11) and Corollary 5.7. ]

Remark 6.8. When y is an even character with y(p) = 1, the exceptionality that
Nekovar’s extended Selmer groups detect are not due to an honest exceptional zero
of the associated Kubota—Leopoldt p-adic L-function, but rather due to the fact that

the extended Selmer groups correspond to an imprimitive p-adic L-function.

6.3. Height computations for the base field Q: The case y is odd. We suppose
now that y: Gg — @ is an odd Dirichlet character whose order is prime to p and
which has the property that y(p) = 1. Keeping the notation of §2.1 and §2.2, we
have the following identifications as in Proposition 2.10 and Corollary 2.11:

HNQ.T)=H}_ (Q.T)=(01[1/p]")". (6.12)
HQp, O (1)) = HH Q. T 6.13)

In particular, ﬁfl (0, T*) is a free @-module of rank one. Also, since y is odd and
x(p) = 1, the @-module ﬁfl (@, T) is also free of rank one.

The assumption that y(p) = 1 implies that the prime p splits completely in
L/Q. Let 9o C L be any prime above p and lett,: L — L, = @, be the induced
embedding. Let & denote the class number of L, and let x € @ [1/p]* be such that
Oy 1 = gak. Define

~ 1 ~
z=ey x €(OL[1/p) = H}(Q,T) and zozz'zeH}(Q,T)@)@p.
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It is not hard to see that the £-invariant (cf. [Gre94], §1)

_ logy(1p(2))

T = log,(ip(20)) € & = Frac(?)

is independent of the choice of the place & and the choice of x.

Let f = f1 bethe conductor of the abelian field L. We regard the character y as
a character of the group Ay 1= Gal(Q(uy)/Q) via

X Ay —» Gal(L/Q) — O~
and define the tame Stickelberger element
{a) 1y .
= ¥ (Fog)iteow
ac(Z/fT) =2As

so that
x(87) = By 1 = —L(0,777),
where B, ,—1 is the generalized Bernoulli number.

Fixing generators g, of @{(y)and g,—1 of @ (x~1), and using the fact that y(p) =
1, we obtain isomorphisms

gy H'(Qp,T) => H (@, 0(1)) and g1 H(Qp, T*) =5 H (@, 0)

foreveryi > 0. We choose g, and g,—1 sothat the following diagram is commutative:

( i) )Tate

Hi(QPBT) @ H2_i(@p!T*)é@

gxl Ey—1 l
(s)Tate

HE(sto(l)) & H2—i(@p,@)—)@_

Via the identifications above, we view x(0r) as an element of ﬁ} (Q,T™).

Let {, )nex be Nekovéi’s height pairing as in §2.1.3 above. We write {, }nek also
for the induced pairing

( ’ )Nek

QDo) e (THQTHeF) — §
Theorem 6.9. (zo, y(07))nek = —L L(0, x~1).

Proof. The statement of this theorem is equivalent to the assertion that

(2, x(Or e = logy (1p(2)) - X(8)- (6.14)
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As we have recalled in §2.1.3, we have (zg, x(67)Inek = (B1(20), x(8¢))pr, Where
gl H}(Q.T) — H}Q,T)®T

is the Bockstein map which is defined as follows:
Fors € H}HQ,T), wedefine f'(s) = slUc € HX(Q,T®D) = H}Q,T)aT,

where ¢ € HY(Q),T') = Hom(Gqg, T') is the tautological homomorphism ¢: Gg —
I". One similarly defines

By H'(Qp,T)— H*(Qp. T)®T

by taking cup product with the element ¢, € H'(Q,, ") = Hom(Gq,, '), which is
the restriction of ¢ to Gg,,. We then have the following commutative diagram:

< : 7 7 . 1 @ Loye
H}(Q,T)LH)%(@,T)®F ® )}(@,T*) {der I 0gp © foy o

| | |

HI(QP’T) THz(QPBT) & I' ® HO(QPBT*)

P

logy, © poye

{ [ )Taw

Here, the square on the left is commutative thanks to the description of g1 and 8 }1,
above, and the square on the right is commutative by the definition of the Poitou—Tate
global pairing as the sum of local invariants, and thanks to the fact that H*(Qp, T) = 0
for £|f,. The proof of the theorem follows from the following lemma, whose first part
is a restatement of [Nek06], 11.3.5.3, and second part is Lemma I1.1.4.5 in [Kat93]:

Lemma 6.10. Suppose « € H(Q,, O(1)) = J—E, and suppose ap: @3 — G%E’p is
the local reciprocity map as before.

i) invp(B, () = invp(a U cp) = cplap(a)).

(i) log, o pege © ¢p (ap()) = log,(a). O

Remark 6.11. The interpolation property that the p-adic L-function L,(s, y ')
satisfies (see Definition 6.1), along with our assumption that y(p) = 1 forces the
Kubota—Leopoldt p-adic L-function L,(0, ¥~ 'w) to vanish at s = 0. The theorem
of Ferrero—Greenberg [FG78] combined with a result of Gross and Koblitz [GK79]
shows that

d N _
—=Lp(s, 37 @)y = —£ LO.x 7).

Thus, Theorem 6.9 implies that

d
5%(&){’1@)\5:0 = (20, (67 ))nex: (6.15)
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This provides us with a new interpretation of the Ferrero—Greenberg theorem. Of
course, it would be desirable to prove first a Rubin-style formula (as we did in §5)
in this setting and from that deduce (6.15) and the Ferrero—Greenberg theorem (as

we prove a p-adic Kronecker formula from a Rubin-style formula in §6.2 above and
36.4 below).

Remark 6.12. Suppose in this remark that our base field K is an arbitrary totally
real number field and y: Gg —> @* is a totally odd character which has finite
prime-to- p order. Assume further that y(g) = 1 for exactly one prime » C K
above p. In this setting, Gross conjectured in [Gro81] a formula for the leading
coefficient L7,(0, ') of the Deligne—Ribet p-adic L-function L,(s, y ‘@) at
s = 0, and Darmon, Dasgupta and Pollack recently announced a proof of a portion of
this conjecture. Usingtheir result, we may express L; (0, y 1) interms of Nekovat’s
heights exactly as we did above for the Kubota—IL.eopoldt p-adic L-function when
K =Q.

On the other hand, if one succeeds in proving a Rubin-style formulain this setting®,
then one in turn would obtain an alternative proof of Gross’ conjecture.

6.4. Height computations for a totally imaginary base field k. We keep the no-
tation from §6.1.2. Every Dirichlet character y of Gy, behaves like an even character
and the results we presented in §5 and §6.2 extend to this case without an extra effort.
Replacing the cyclotomic units by elliptic units, and the results of [BGO3] by that
of [Ble06]; the results of [Sol92] by that of [BleO4], one may prove the following
formula:

Theorem 6.13. Suppose y() = 1. Then
£0(L, x) = (e}, colf hner.

Here we follow the notation from §6.1.2. Namely,

* ¢ is the (tame) elliptic unit which is denoted by Ngsy, ¥ (1, T, a) in [BleO4]
and ef ¢ Hj} (T y= H},m(k, T)= L*Xisthe y part of e,

« colf € H (k,T*) is the element which is obtained from the Coleman map (as
in §6.2),

- 1=5 (0}
o (5, 1) = M - Xp(s, ) is the imprimitive (one-variable) Katz p-

v Ing Peye(y)
adic L-function, where £,(s, y) is the restriction of the two-variable p-adic

L-functionto T".

*1t is expected that obtaining a Rubin-style formula fora general totally real k (and foratotally odd character x)
should not be any harder than proving such a formula for &k = Q.
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Remark 6.14. Suppose E /g isanellipticcurve and only inthisremark, let 7" = T,(E)
be the p-adic Tate-module of E. Let L,(E,s) denote the Mazur—Tate—Teitelbaum
p-adic L-function attached to E. Assume that £ has split multiplicative reduction
at p. Inthis case, L,(E,s) has an exceptional zero at s = 1 which is forced by the
interpolation property. The Mazur—Tate—Teitelbaum conjecture (now a theorem of
Greenberg and Stevens [GS93]) asserts that

d L(E,1)
%LP(E’S)‘szl = B Q—E

(6.16)
where £ g is the £-invariant, L.(E, 1) is the value of the Hasse-Weil L-function at
s = 1and QE is the real period of E. Let

(e HY(Qp, T)®@ HYQp, T*) — Zy

denote Tate’s local cup-product pairing. M. Kurihara has kindly explained us how one
may interpret the quantity on the right in (6.16) as the local Tate pairing calculated on
Kato’s zeta-element Zg € H'(Q,, T') and another special element . € H(Q,, T*)
(which we do not define here). Using this observation, Kurihara was able to give
another proof of the Mazur—Tate—Teitelbaum conjecture (6.16).

If onesucceeds in proving a Rubin-style formula in this setting, one could globalize
Kurihara’s calculation with Kato’s zeta-element Zq and the element ¢, so as to obtain
a p-adic Gross—Zagier formula in the presence of an exceptional zero, i.e., relate
Nekovéi’s height pairing to the Mazur—Tate—Teitelbaum p-adic L-function via

(1) a Rubin-style formula to relate heights to local Tate pairing,

(2) then using Kurihara’s local calculation,

much in the spirit of [BD96], [BD97].
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