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On the topology of fillings of contact manifolds and applications

Alexandra Oancea and Claude Viterbo*

AbstractThe aim of this paper is to address the following question: given a contact manifold
(S, £), what can be said about the symplectically aspherical manifolds (W, co) bounded by
(S, £)? We first extend a theorem of Eliashberg, Floer and McDuff to prove that, under suitable

assumptions, the map from //*(S) to H*(W) induced by inclusion is surjective. We apply
this method in the case of contact manifolds admitting a contact embedding in E2" or in a
subcriticai Stein manifold. We prove in many cases that the homology of the fillings is uniquely
determined. Finally, we use more recent methods of symplectic topology to prove that, if a
contact hypersurface has a subcriticai Stein filling, then all its SAWC fillings have the same

homology.
A number of applications are given, from obstructions to the existence of Lagrangian or

contact embeddings, to the exotic nature of some contact structures. We refer to the table in
Section 7 for a summary of our results.

Mathematics Subject Classification (2010). 53D35, 57R40, 32S20.

Keywords. Topology of symplectic fillings of contact manifolds, obstructions to contact
embeddings.

1. Introduction

In this paper all symplectic manifolds will be assumed to be connected, of dimension
2n, and symplectically aspherical, meaning that the symplectic form vanishes on the
second homotopy group. All contact manifolds are connected and have dimension
2n — 1. We denote by oo the standard symplectic form on M2n or CPB, and by ao
the standard contact form on the sphere S2n~l.

In a celebrated paper ([McD]), Eliashberg, Floer and McDuff proved that, if
(W, co) is a symplectically aspherical manifold with contact boundary (52n_1, ao),
then W is diffeomorphic to the unit ball B2n. In the case of dimension 4, Gromov
had earlier proved ([Gr]) that W is actually symplectomorphic to (B4 ,ctq), but this

* Supported by ANR project "Floer Power" ANR-08-BLAN-0291-03/04. We are grateful to Beijing
International Center for Mathematical Research of Beijing University for hospitality during the completion of this
paper.
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relies heavily on positivity of intersection for holomorphic curves that is special to
dimension 4.

One can ask more generally, given a fillable contact manifold (E, £) and a
symplectically aspherical filling (W, co), what can be said about the topology or the

homology of W. Is it uniquely determined by the contact structure (E,£)? Is it
determined by the topology of E? Do we have lower bounds? Upper bounds? It
turns out that all these possibilities actually occur.

For example, if (E,£) has a contact embedding into (M2",o"o) - many such

examples can be found in [La] - it readily follows from the Eliashberg-Floer-McDuff
theorem and some elementar}' algebraic topology that all subcriticai Stein fillings have

the same homology. If the homology of E vanishes in degree n, we can prove that all
Stein fillings have the same homology. This gives easy examples of contact manifolds
with no contact embedding in (M.2n, o~o). As far as the authors know, there are only
few previously known examples of fillable manifolds not embeddable in M2n, with
the exception of recent results in [C-F-O] and [A-McL], which however assume the

exactness of the embeddings, an assumption we usually can dispense with. More
general results of the same homological flavour follow from the same methods, and

a generalization of the Eliashberg-Floer-McDuff theorem to the case of subcriticai
Stein manifolds. These are manifolds W admitting an exhausting plurisubharmonic
function with no critical points of index n ^ dim(W^) (see Definition 2.4).

Our last result uses more sophisticated tools. One of them will be symplectic
homolog}' of W, and its positive part, defined in [V]. It turns out that this positive
part, under mild assumptions on the Conley-Zehnder index of closed characteristics,
is independent of the filling. This is proved in [C-F-O] as a consequence of arguments
in [B-O-l]. A symplectically aspherical manifold (W, co) with contact type boundary
is called an SAWC-manifold if its symplectic homology vanishes (this is equivalent
to the Strong Algebraic Weinstein Conjecture formulated in [V], cf. Section 5). We
show that, if (E, £) bounds a subcriticai Stein manifold (W, co), any other SAWC

filling will have the same homology as W.
Of course many questions remain open. As far as we can see, nothing can be said

about the symplectic topology of fillings outside the subcriticality/non-subcriticality
alternative. Are there examples of compact manifolds L such that ST*L has fillings
with homology different from H*(L)1 Is there an embedding of the Brieskorn sphere
of a singularity of Milnor number //. in the Milnor fibre of a singularity of Milnor
number /f < jxl

2. The Eliashberg-Floer-McDuff theorem revisited

Conventions. We denote by (W, co) a symplectic manifold of dimension 2n which is

symplectically aspherical ([&>] #2(1^0 0). We denote by (E, £) a contact manifold
of dimension 2n — 1. We assume that £ is co-orientable, and fix a co-orientation.
The contact structure £ is then defined by a contact form a, and E is oriented by



Vol. 87 (2012) On the topology of fillings of contact manifolds and applications 43

a A (da)n~l ^ 0. All homolog}' and cohomology groups are taken with coefficients
in a field.

Definition 2.1. A contact embedding of (E, £) in (W, co) is a codimension 1 embedding

such that there exists a positive contact form a extending to a neighbourhood
of E as a primitive of co. The contact embedding is called exact if a extends to the

whole of W as a primitive of co.

Definition 2.2. A (co-oriented) hypersurface E C (W, co) is said to be of contact
type in W if there exists a primitive a of co, defined in a neighbourhood of E, and

restricting on E to a contact form (whose 0)-dual vector field defines the positive
co-orientation of E). The hypersurface is said to be of restricted contact type in W
if there exists such a primitive a which is globally defined on W.

Definition 2.3. A symplecticfilling of (E, £) is a symplectic manifold (W, co) without
closed components, such that dW E and there exists a positive contact form a
extendingto a neighbourhood of E as aprimitive of co. We shall say that the symplectic
filling is exact if a extends to the whole of W as a primitive of co.

Definition 2.4. A symplectic filling (W, co) of (E,£) is a Stein filling if W has a

complex structure /, and a non-positive plurisubharmonic function ty, such that
E ^_1(0) and —J*dty is a contact form defining f. Note that ty can always be

chosen to be a Morse function. Then its critical points have index at most n, so that
W has the homotopy type of a CW complex of dimension < n. If we can find the

function ty with no critical points of index n, then W is said to be subcriticai Stein.

Remark 2.5. A contact embedding of (E, £) in (W, co) which is separating — i.e.

W \ E consists of two connected components - yields a filling of (E,f) bj' the

connected component of W \ E for which the boundary orientation of E coincides
with the orientation induced by a positive contact form a. This filling we shall call
the interior of E and we shall denote by Z. If W is non-compact, Z is the bounded

component of W \ E. Note that E is always separating if H.2n-i(W; Z) is torsion,
and in particular if W is Stein and n > 2.

Our goal in this section is to prove the following theorem.

Theorem 2.6. Assume (E, £) admits a contact embedding in a subcriticai Stein manifold

(M, coq), with interior component Z. Let (W, co) be a symplectically aspherical
filling of E and assume that one of the following two conditions is satisfied:

(a) H2(W,T,) 0;

(b) E is simply connected.
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Then the map

Hj(X)^Hj(W)
induced by inclusion is onto in every degree j > 0.

Remark 2.7. Condition (a) holds if W is Stein of dimension 2n > 6. The embedding
E^-Mis always separating since H^n-x (M;Z) 0.

Remark 2.8. When E is a sphere, we get that W has vanishing homology. This is

the original Eliashberg-Floer-McDuff theorem (see [McD]), since an application of
the Ä-cobordism theorem, plus the fact - due to Eliashberg - that Jti (W) vanishes,

implies that W is diffeomorphic to the ball B2n. Indeed, since Hj(S2n~l) 0 for
1 < J < 2n—2, the same holds for Hj(W). In particular H\(W) 0, which implies
that Hl(W) and H.2n-i(W) vanish. When n 2 Gromov (see [Gr]) proved that W
is symplectomorphic to the ball B4, but this relies heavily on purely 4-dimensional

arguments (positivity of intersection of holomorphic curves).

Our proof of Theorem 2.6 closely follows the original proof in [McD], except for
the final homological argument.

We shall start by working in the following special situation, and we will then prove
that this is enough to deal with the general case.

Let (P, cop) be a symplectic manifold and H be a codimension two symplectic
submanifold of P.

We consider the symplectic manifold (P x S2 ,cop ® o~), where a is the standard

symplectic form on S2 normalized by [a] [S2] 1. Viewing 52asCU{oo}we denote
D2^ := {z : \z\ < j} and D2^ := {z : \z\ > j}. Let (E,£) be a separating contact
manifold contained in (P \ H) x D^, with interior Z. We set Y (P x S2 \ Z)
and

V Y US W (P x S2 \ Z) US W,

where (W, co) is a filling of (E, £) (Figure 1). We assume that the contact 1-forms on
E viewed as a contact hypersurface in P x S2 and W agree, and denote them by a.
Then V has a symplectic form coy obtained by gluing cop $(tonF and co on W.

Let po be a point in H and denote A := [{po} x S2] e H2(V;Z) (note that,
for po € H, we have that {po} x S2 C Y C V). Given an coy -compatible almost

complex structure / on V, we denote by Mj the space of /-holomorphic maps
u : CP1 —>¦ V representing the class A.

Lemma 2.9. Assume the symplecticform cop is integral, i.e. [cop] G lm(H2(P;'Z) ->
H2(P; ffi)). Assume also that one of the following conditions holds:

(a) H2(W,T,) 0;

(b) E is simply connected.
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Then, for any (Oy -compatible almost complex structure J on V, the class A is J -

simple, meaning that it cannot be decomposed as A B + C, with B,C G H2(V\Jj)
represented by non-constant J -holomorphic spheres.

H
H xS'

P x {pt}

Figure 1. Geometric setup.

Proof. Arguing by contradiction, let us assume that such a decomposition exists for
some coy -compatible J. We obtain in particular 0 < coy(B),coy(C) < coy(A).
Let r# and Tc be the /-holomorphic spheres representing B and C. Since W is

symplectically aspherical, it is not possible that any of the cycles Tb Tc be entirely
contained in W. Since cop is integral and fs2 cx 1, it follows that the class A has

minimal area in P x S2, so that it is neither possible that any of the cycles Tb, Tc
be entirely contained in F C P x S2. Thus Tb and Tc intersect both Y and W.

By (smoothly) perturbing the representing /-holomorphic spheres, we can achieve
transverse intersection with S, along some collection of circles.

Let us now assume (a). We consider the two pieces in Tc separated by S.
We denote by C\ the piece in W and by C2 its complement. Then f T̂C (Oy

fc coy + fc coy. But C\ G H2(W, S) so by our assumption there is a cycle T

in S such that dC\ dT. Because C\ U T is a cycle in H2(W), and the map
H2(Z) ->- H2(W) is onto (using again H2(W, S) 0), we obtain that Ci U T is

homologous in W to a cycle C3 contained in S. Thus fc toy — fT coy fc coy,
which vanishes because coy is exact near S. Finally C2 U T is a cycle in Y with the
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same area as Tc C\ U C2. Since Y C P x S2, this contradicts the fact that the
class A has minimal area in P x S2.

We now assume (b). As above, let C\, C2 be the parts of Tc separated by E,
with C\ being the piece contained in W. By assumption, we can cap all the common
boundary circles of C\ and C2 by discs. Let us denote this union of discs by T. Then
Ci U T is a collection of spheres in W and, by symplectic asphericity, it has zero area.
Thus C2 U T is a cycle in Y with the same area as Tc C\ U C2. This contradicts

again the minimality of the area of the class A in P x S2. D

As a consequence of Lemma 2.9 we have the following facts:

• For any coy -compatible almost complex structure / on V, the elements of Mj are

simple curves (i.e. they are not multiply covered).

• For a generic choice of the coy -compatible almost complex structure /, the
linearized Cauchy-Riemann operator is surjective for every element of Mj and

Mj/PSL(2, C) is a smooth manifold of dimension

dim Mj/PSL(2,€) 2n + 2<Ci(F), A)-6 2n-2.

Such an almost complex structure / is called regular.

• The manifold JK//PSL(2, C) is compact.

Let / be a regular almost complex structure for which P x{z},z —1,1, 00 are

/-complex submanifolds. It is convenient to consider the following model for the
manifold JK//PSL(2,C). Given (disjoint) submanifolds T-\,T\, Tqq C V that are
C2-closeto P x {—1}, P x {1}, respectively P x {00}, we denote by M := Mj the
set of elements u <G Mj such that u(z) <E Tz, z —1,1, 00. For a generic choice

of the perturbations Tz, z —1,1, 00 the relevant evaluation maps are transverse,
so that M is a compact submanifold of Mj of dimension 2n — 2. By positivity of
intersections (see also Step 1 in the proof of Lemma 2.10 below), we infer that M
intersects every orbit of PSL(2, C) exactly once, and it follows that the natural map
M -> jK//PSL(2, C) is a diffeomorphism.

Given an cop -compatible almost complex structure Jp on P, we denote by Jp
the almost complex structure Jp ®i on P x S2. For the proof of the next result, we
closely follow [McD], pp. 660-661.

Let Jp be an cop -compatible almost complex structure on P. We say that H is

hyperplane section-like for Jp if the following hold:

• H is a Jp -complex submanifold,

• there exists a codimension two Jp -complex (singular) submanifold B C H (the
base locus), a relatively compact neighbourhood Ì1 of H and a relatively compact
open neighbourhood ilp of B, and a family Mz of Jp -complex hypersurfaces
parametrized by an open neighbourhood of 0 in C and contained in XI, such that

Mz n (U \ Up) foliate U\VLB.
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Note that the hyperplane section of a projective manifold is hyperplane sectionlike

for the underlying complex structure.

Lemma 2.10. Let Jp be an cop -compatible almost complex structure on P such that
H is hyperplane section-like for Jp. For every regular J which is close to Jp on a
neighbourhood of H x S2 C V, the evaluation map

ev: MxS2 -> V

has degree ±1.

Proof. Let B be the base locus for H and let XI, Xlp be the neighbourhoods of H
and B such that XL \ Xlp is foliated by Jp -complex hypersurfaces M fl (XI \ Xlp).
We consider XI x S2 as a neighbourhood of H x S2 in V, so that (XL\XLp)x S2

is also foliated by the Jp -complex hypersurfaces (M x S2) fl (XI \ Xlp) x S2. We

prove the lemma in three steps.

Step 1: Let J coincide with Jp on XI x S2. For every p E (Xl\ Xlp) x S2, there

exists a unique element of Mj/PSL(2,<£) through p.
Let Mp x S2 be the Jp -complex hypersurface through p. Given a curve C

through p represented by some [u] <G Mj/PSL(2, C), the homological intersection
between C and 3tp x S2 is zero. Since C C\ Mp x S2 ^ 0, it follows from the

positivity of intersections for holomorphic curves that C is entirely contained in
Mp x S2. But, in Mp x S2, there is clearly a unique Jp -holomorphic curve in the
class {pt} x S2 through each point. (Remark: Positivity of intersections is proved
with all details in a 4-dimensional context in [L-McD-S]. The higher dimensional
case of a curve intersecting a complex hypersurface is treated using exactly the same

methods.)

Step 2: Let Jq be an almost complex structure which coincides with Jp on XI x S2.

For every J which is close enough to Jo, andfor every point p € (XI \ Xlp) x S2,
there is a unique element ofMj/PSL(2,<£) through p.

We follow [McD], Lemma 3.5. Arguing by contradiction, we find a point p e

(XI \ Xlp) x S2 and a sequence Jv,v > 1 converging to Jq such that, for every v,
there exist two distinct unparametrized Jv -holomorphic spheres Cv and C^ through p.
Since A is a simple class (Lemma 2.9), both Cv and C'v converge as unparametrized
spheres to the unique /o-holomorphic sphere C through p. In particular, for v large
enough they are both contained in XL' x S2, for some relatively compact open subset

W C U.
We now view XL x S2 as a subset of P x S2 and extend Jv \w-xlS2 t° an almost

complex structure J'v on P x S2 which is compatible with cop ® o and satisfies

J'v -> Jp, v —>¦ oo. For v large enough, the Jv-holomorphic curves Cv, C'v passing
through p are now viewed in P x S2, where they are /'-holomorphic. The almost
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complex structure Jp is obviously regular for curves in the class [{pt} x S2] in P x S2,
and Step 1 shows that the evaluation map

ev : Mjp xPSL(2)c) S2 —> P x S

is a diffeomorphism (we make a slight abuse of notation and write here Mj for the

space of /-holomorphic curves in P x S2 representing the class [{pt} x S2]). The
evaluation map remains a diffeomorphism for small perturbations of Jp, and we reach
a contradiction with the fact that p has at least two preimages via the evaluation maps
ev: Mj' XpsL(2,C) S2 -> P x S2 for v large enough.

Step 3: We prove the lemma.

The degree of the evaluation map can be computed by counting the number of
preimages of a generic point in V. We can therefore choose our point generically in
(XL \ Xlp) x S2 C V, and the number of preimages is then equal to one by Step 2.

D

Proposition 2.11. Let (P, cop) be a symplectic manifold such that cop is an integral
class, and let H C P be a codimension two symplectic submanifold which is hyper-
plane section-like for some cop-compatible almost complex structure Jp. Let (E, £)
be a contact separating hypersurface of (P x S2,cop ® a) which is contained in
(P \H)x S2. Let W be any symplectically asphericalfilling of (E, £). Assume one

of thefollowing two conditions holds:

(a) H2(W,T,) 0;

(b) E is simply connected.

Then the map

Hj(E)^Hj(W)
induced by inclusion is surjective.

Proof. We can assume without loss of generality that the contact forms induced on
E viewed as contact hypersurface in W and respectively in P x S2 are the same.

Indeed, if a, denotes the contact form coming from the contact embedding in W, and

ß denotes the contact form coming from the contact embedding in P x S2, we can

modify W by attaching a large piece of symplectization ([1, R] x Jù,d(ra)), R ^§> 1

inside which we can find a graph over E on which the induced contact form is a large
multiple of ß. By removing what lies beyond the graph and rescaling the symplectic
form, we reduce ourselves to the situation where a ß.

We are now in aposition to perform the construction of V described above: we take

away the interior Z of E in P x S2, and we replace it with W. Lemmas 2.9 and 2.10
hold true, and there exists an coy-compatible regular almost complex structure /
on V which satisfies the assumptions of Lemma 2.10. The outcome is the compact
manifold M Mj together with the degree ±1 map ev : M x S2 -> V.
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Given the sets S C T, let us denote by ij the inclusion map of S into T. Let
Ci <E Hj(W) be fixed. In order to prove that Ci lies in the image of (i^r)*, it is

enough to show that C := (iy)*(C\) <G Hj(V) lies in the image of (iy)*. Indeed,
the Mayer-Vietoris exact sequence is

^Hj(E) -£ Y-^ Hj(W)®Hj(Y) -?- V-^ Hj(V) —? ff/_i(E) —?

Thus, if there is C2 <= /Zy (Y) such that C (iy)*(C2), then (Ci, C2) is in the kernel
of (iy)* — (iy)*, hence in the image of (i^)* ® Oy )*• In particular Ci is in the

image of (i^)*.
We now prove that C lies in the image of (iy)*. We start with the observation

that the map

(ev)* : Hj(M x S2) —> Hj(V)
is surjective. Since we use field coefficients, this is equivalent to injectivity of ev*
in cohomology, which in turn follows from the non-degeneracy of the cup-product
pairing and the fact that ev: M x S2 -> V has non-zero degree (with respect to

any field of coefficients). We can therefore write C ev*(rc) for some Tc £

Hj(M x S2) or, equivalenti}',

C ev*(A <g> {pt} + B 0 [S2])

for some A e Hj(M) and B e Hj_2(<M-)-
We claim that B must vanish. Arguing by contradiction and using that M is

orientable, let B' be Poincaré dual to B in H*(M), so that B • B' {pt}. We obtain

rc • (B' 0 {pt}) (B 0 [S2]) • (B' 0 {pt}) (B ¦ B') 0 {pt} {pt} 0 {pt}.

This implies that

{pt} (ev)*(rc • (B' 0 {pt})) C • (ev)*(B' ® {pt}) C • evf(B'),

where ev*(w) w(z). Since ev£°(5') C P x {00}, we get C • ev™(B') 0, a

contradiction.
As a result, we obtain C ev^(A) (for any z <G 52), with A <E i2) (JK). Choosing

z 00 we get that C G (i^x{oo})*(Hy(P)) C (i£)*(//,-(7)). This concludes the

proof. D

Remark 2.12. If the image of the boundary map Hj+i(Y, E) -> ///(E) coincides
with the image of the boundary map Hj+\(W, E) -> Hj(E), then dim Hj(W) <
dim Hj(P). Indeed, it follows from the commutative diagram below that the map

Hj(W) -> Hj(V) is injective. Since its image is contained in Im(«y )*, the
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conclusion follows.

HJ+i(V, W) > Hj(W) > Hj(V)

Hj+l(Y, E) —2 > ff,-(E) > Hj(Y)

CMH

%i(^S)
Proofof Theorem 2.6. We use a result ofCieliebak (see [C1]) stating that a subcriticai
Stein manifold is symplectomorphic to N x C where N is Stein, and a result of
Lisca and Matic ([Li-M], Section 3, Theorem 3.2), stating that any Stein domain
embeds symplectically in a smooth projective manifold P with ample canonical
bundle. Moreover N is contained in the complement of a hyperplane section H,
which is of course hyperplane section-like for the underlying complex structure. Up
to shrinking E via the Liouville flow, we can thus assume that we have a contact
embedding E C N x D2 C P x S2, where P carries an integral symplectic form
cop, the symplectic form a on S2 is normalized by [cr][5'2] 1, and the image of
E is contained in (P \ H) x S2, where H is a hyperplane section-like symplectic
submanifold. We may now apply Proposition 2.11 and this concludes our proof. D

Remark 2.13. Of course the condition that Hj (E) —>• Hj (W) is onto is equivalent to
the claim that Hj(W) ^ W (E) is injective, or that Hj (W) -> Hj (W, E) vanishes.

The case when E is a sphere leads to the following variant of the Eliashberg-
Floer-McDuff theorem ([McD]): the assumptions that we impose are weaker, but so
is the conclusion.

Corollary 2.14. Let (E,£) be a simply connected contact manifold admitting an
embedding in a subcriticai Stein manifold, and assume that E is a homology sphere
(resp. rational homology sphere). Any symplectically aspherical filling of E is then

a homology ball (resp. rational homology ball).

Proof. Indeed apply Theorem 2.6 to the case where Hj (E) 0. We conclude that

Hj(W) 0.
'

D

(Counter-)examples are given by Brieskorn spheres (see Corollary 6.4). Note
that if (E,£) is the standard contact sphere, it has an obvious embedding in M2n.

In this situation, using an argument by Eliashberg, it is proved in [McD] that W is

simply connected. Thus we get, using Smale's Ä-cobordism theorem ([Sm]) that W
is diffeomorphic to the ball. This is the original Eliashberg-Floer-McDuff theorem.
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3. The case of (R2",<r0)

In this section we denote bp(X) the Betti numbers of a manifold X with coefficients
in a given field. Thus bp(X) is the rank of the p-th homology/cohomology group.

Theorem 3.1. Assume (E, £) admits a contact embedding in (M2n, ao), with interior
component Z. Let (W, co) be a symplecticfilling o/(E, £) such that W is symplectically

aspherical and one of the following conditions is satisfied:

(a) H2(W, E) 0.

(b) The maps JTi(E) -> iti (W) and iti (E) -> 7ti(ßL2n \ Z) are injective.

(c) (E, £) is of restricted contact type in (W, co) and in (M2n, ero).

Then

(1) any two symplectically aspherical fillings of ("L, £) which satisfy either of the

conditions (a)-(c) have the same Betti numbers;

(2) given a symplectically asphericalfilling W which satisfies one ofthe conditions
(a)-(c), the inclusion of E in W induces an injection in cohomology

Hp(W)^Hp(E).
Moreover, we have

bp(X) bp(W) + b2n-P-i(W).

Remark 3.2. Condition (a) holds if W is Stein and n > 3. Condition (b) holds

if E is simply connected. The embedding E <^-> M.2n is always separating since

H2n-i(M2n;Z) 0.

Remark 3.3. The first statement in (2) follows from the previous section if either E
is simply connected or condition (a) is satisfied. The reason why we can allow more
general assumptions in the case of M.2n is that the geometry at infinity is perfectly
controlled, unlike for an arbitrary subcriticai Stein manifold.

Remark 3.4. As will be clear from the proof, the conclusions of Theorem 3.1 hold
under the more general assumption that (M2n \ Z) Us W is symplectically aspherical.

Remark 3.5. There is a natural way to endow the smooth manifold U := (M2n \
Z) Us W with a symplectic form, which coincides with Oq on M2" \ Z. The

assumption that U is symplectically aspherical in the statement of Theorem 3.1 is

understood with respect to this symplectic form. The construction is the following.
Let ao be the contact form induced on E as the concave boundary of M2n \ Z, and let

aw be the contact form induced on E as the convex boundary of W. Ifao &w, then
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ctq and co can be glued into a symplectic form on U. If ao fotw f°r some function

/ : E -> (0, oo), we reduce to the case of equality as follows. Let m maxs(l//)
and choose R > m maxs(/). We attach to W along its boundary the finite piece of
symplectization ([1, R] x ~E,d(raw)), remove what lies beyond the graph of mf,
and denote the resulting domain by W. Then W is diffeomorphic to W, it carries a
natural symplectic form co', while its contact boundary is naturally identified with E
and carries the contact form mfaw meco- Up to replacing (W, co) with (W, -co'),
we can therefore assume that aw ^o» and the two symplectic forms on W and
M2n \ Z can be glued into a symplectic form on U.

Proof. We first show that any of the conditions (a)-(c) guarantees that the symplectic
form co' on U := (ßL2n \ Z) Us W described in Remark 3.5 vanishes on spheres.
Since co' ao outside a compact set, we obtain that U is diffeomorphic to M2n

by the Eliashberg-Floer-McDuff theorem. (Although for the convenience of the
formulation we use the diffeomorphism statement in the Eliashberg-Floer-McDuff
theorem, we only need the fact that U has the homology of a point.)

Let C be a 2-sphere in U, assume without loss of generality that it intersects

E transversally, and denote by Ci and C2 the pieces contained in W and M2n \ E
respectively.

• Let us assume (a). Then we find a cycle T in E such that dCi dT. Since Ci U T
is a cycle in H2(W) and the map //2(E) —> H2(W) is onto, we obtain that C\ U T
is homologous to a cycle C3 contained in E. Since co is exact near E, the area of
C3 is zero and therefore the areas of Ci and of T are equal. Hence T U C2 is a

cycle in M2" \ Z with the same area as C. But the area of T U C2 is zero because

o~o is exact, and so is the area of C.

• Let us assume (b). At least one of the components of C\ or C2 is a disc, with
boundary on E. By assumption, we can cap it by a disc in E to get a sphere in W
or in M.2n \ Z which, by symplectic asphericity of W and M.2n \ Z, has zero area.
We can thus inductively remove each component of Ci, C2 and finally prove that
C has zero area.

• Let us assume (c). In this case the symplectic form on U is exact.

We thus have that U is diffeomorphic to M2". Since E is contained in some large
ball, denoted B, we equivalently have that (B \ Z) Us W is diffeomorphic to B. In
this case the cohomology Mayer-Vietoris exact sequence is as follows:

—? HP(B) —? HP(W) © HP(B \ Z) —? Hp(E) —? HP+1(B) —?

Since HP(B) 0 for /? > 0, we see that the map

#^(W) e //^(5 \ Z) —? HP(E)

is an isomorphism for p > 1. Since it is induced by the inclusion maps, the first
claim in (2) follows.
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For p > 0 we have

bp(E) bp(W) -I- bp(B \ Z).

Moreover, according to Alexander duality (see [G-Ha], theorem 27.5, p. 233) we have

bp(B\Z) b2n_p_l(Z)

for 0 < p < 2n — 1, which implies that, in this range, we have

bp(?) bp(W) + b2K-p-i(Z).

Of course, this also holds when we replace W by Z, so that

bpÇ2)-bp(Z) b2K-p-i(Z)

and finalty
bp(S) bp(W) + (bp(S)-bp(Z)).

This implies bp(W) bp(Z) for 0 < p < 2n — 1.

For p 2n — 1, if B(s) is a small ball inside Z, the inclusions

B\B(s) D B\ZD S2n~l

imply that b2n-\ (B — Z) > 1, and the exact sequence

0 —? i/2"-1^) e H2n~l(B \ Z) —>- H2B_1(E) —? 0

implies that b2n-i(B \ Z) 1 and &2r-i(W0 — i>2n-i(Z) 0. Finally, it is clear
that the equality still holds for p 0, since &o(E) &o(^0 =1- D

Corollary 3.6. Assume (E, £) /z<2s «3 Steinfilling (W, co) and has a contact embedding
in(R2n,cr0),n>3. Then

(bp(E) bp(W) for0<p<n-2,
K-i(E) *„(E) bn(W) + bn-i(W).

Thus the homology of W is completely determined by the homology of E except,
maybe, in degree n — 1 and n. It is completely determined by the homology of E if
bn("L) 0 or W is subcriticai Stein.

Proof. The assumptions ofTheorem 3.1 are satisfied, since H2(W, E) H2n~2(W)
vanishes if n > 3. It follows that bp(W) is determined by bp("L), except maybe in
dimensions n — 1 and n. If &„(E) 0 we obtain bn(W) è^-^W^) 0, and if W
is subcriticai we have bn(W) 0 and therefore bn-i (E) ^„-1(1^). D
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Remark 3.7. Mei-Lin Yau proved (see [Yau]) that, if W is subcriticai Stein and the

first Chern class of the complex vector bundle defined by £ vanishes, then cylindrical
contact homology in the trivial homotopy class Z/C°(E,a) is well-defined for a

suitably chosen contact form a, and we have

#C°(E,a) ~ H*(W, E) <g> H*(£P°°)[2].

By definition, the chain complex underlying HC^ÇL, a) is generated by contractible
closed Reeb orbits for the contact form a. The degree of a generator y is defined to be

CZ(y) + n — 3, where CZ(y) denotes the Conley-Zehnder index of the linearized
Reeb flow along y in the transverse direction, computed with respect to a trivialization
of £ along y induced by a trivialization over a spanning disc. The symbol [2] denotes

a shift in degree by 2.

It is therefore a general fact that the homology of a subcriticai filling is determined

by the contact structure (E, £). It is however not clear whether in general it is already
determined by the knowledge of the topology of E (i.e. independently from f or the

topology of a filling).

As a first consequence of Corollary 3.6 and Mei-Lin Yau's result we have:

Corollary 3.8. Assume (E,£) satisfies Ci(%) 0, has a subcriticai Stein filling
(W, co) and has a contact embedding in (R2n, ao). Then the rank of HC®(Yi, a) is
determined by /Z*(E). Indeed, we have

rank(i/C°(E,a)) £ bpÇZ).
2n — 2 — k < p <n— 1

p k mod 2

Proof Note that assumption (a) from Theorem 3.1 is automatically satisfied: we are
in the Stein case. The result is a straightforward application ofCorollary 3.6, Mei-Lin
Yau's theorem and the duality H2n~k(W) ~ Hk(W, dW).

Thus

#q°(S,a) 0 Hk_2m+2(W, S) 0 H2n-2-k+2m(w)
m>0 m>0

and&2ß-2-&+2m(W0 b2n-2-k+2m(E) forQ<2n — 2—k + 2m < n — 1. Setting

p =2n — 2 — k -\-2m yields the above formula. D

To state the next application ofour theorem, let us recall the following definitions.

A Hermitian line bundle X —>¦ N over a symplectic manifold (N2n~2, ß) is called
negative ifCi (X) — [ß]. Equivalently, there exists a Hermitian connection V whose
curvature satisfies ^—Fv —ß. Such a connection determines the transgression 1-

form 9 G Q,1 (£\0x, ffi) which, by definition, vanishes on the horizontal distribution
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and is equal to j- times the angular form in the fibers. Denoting r(u) := \u\, the

total space X carries the symplectic form co := 7t*ß + d(r29 which is exact on
X \ Ox with co d((\ + r2)0v). The unit disc bundle W {u e X : |w| < 1}
is a symplectic manifold with contact type boundary. For details we refer to [O],
Section 3.3.

Proposition 3.9. Let (E, £) be the contact boundary of the unit disc bundle (W, co)

associated to a negative line bundle over (N2n~2, ß). Assume that (N, ß) is symplectically

aspherical. Then (E, £) has no contact embedding in (M2n, ao) with interior
Z, such that (ßL2n \ Z) Us W is symplectically aspherical. The same holdsforn > 3

andfor any contact manifold obtained by contact surgery (as in [E], [W]) of index k
for any k <G [3,n].

Proof. The Gysin exact sequence is

—» HP~2(N) ^i HP(N) —? Hp(E) —? Hp-\N) —?

and, in degree 2, we get

tf2(E) H2(N)/{[ß])eker([ß]U: HX(N) —> #3(iV)).

Hence

è2(E) < è2(iV) -f- èi(iV) fc(JV) + b2n-2-i(N) b2(W) + b2n-2-i(W),

and this contradicts Theorem 3.1.

Let us now see whathappens when we make a contact surgery. We shall denote our
hypersurface by E_, W~ will be its filling, and E+ will be the result of the surgery on
E_ along a (k—l)-dimensional isotropic sphere. Let us denote by Ak c^ D xD2n
the attached handle, and denote d~Ak Sk-lxD2n~k,d+Ak DkxS2n-k~1,so
that the new filling of E+ is W+ W~ Ug-^ Ak. We first need to prove that W+ is

symplectically aspherical. But the homotopy exact sequence of the pair (W^+, W~)
is given by

—? 7T3(W+, W~) —? JT2(W-) —? JT2(W+ —? 7T2(W+, P^~) —?

and 7t2(W+,W-) ~ 7t2(Ak,d-Ak) ~ ir2(Dk,dDk) 0 for & > 3. Thus the

inclusion of W^_ in W^+ induces a surjective map on ?T2, hence if [^^(W^-) 0,

we also have [a)]jT2(W^+) 0.

Let us now first consider the case /: > 4. We claim that we have &2(E+)
b2("L~) and &2(W^+) &2(^-)- Indeed the homology exact sequence for the pair
(W+,W~)is

—? //3(^+, W~) —^ #2(W~) —^ H2(W+ —? #2(W+> W~) —^
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but Hj(W+, W-) ~ Hj(Ak, d~Ak) ~ Hj(Dk, dDk) 0 for j 2, 3 and k > 4,

so è2(P7+) b2(W~).
Similari}' the Mayer-Vietoris exact sequence for Jj± E_ \ (d~Ak) U d±Ak

reads

ff2(S*_1 x S2"-*"1) —? ff2(E" \ d~Ak) © H2(3±i4Jfc)

^(E*) -jfc-i s2ii-*-l) Q_
(3.1)

- Hi(S'

S2n-k-i) and H^Ak) vanish, so that weWhen k > 4, the groups H2(Sk~l
have isomorphisms

#2(e- \ a-Ajfc) ~ ^2(e±)
and therefore 62(E+) 62(E_).

Let us now deal with the case k 3, n > 4. In the "—" case, the first map in
the exact sequence (3.1) is injective (since its projection on the second summand is

induced by the inclusion S2 x S2n~4 -> S2 x D2n~3 Since 2n - 4 > 2, we
obtain b2(E~) b2(E~ \ d~A3). In the "+" case, we have H2(d+A3) 0 and

*2(E+) < b2(TT \ d~A3) è2(E-).
Below we write down the homology exact sequences of the pairs (W^+, W~) and

(E+,E+nP7-):

H3(W+,W-)

ff3(E+,E+nr)

àW
-*- H2{W~) -*- H2(W+) 5- H2(W+, W~) 0

3s
->¦ /?2(s+ n fp-) -*- H2CE+) -*• H2ÇL+, S+ n W-) 0

fl2(E_\ d-A3)^H2(X-)

The left-hand side vertical map is an isomorphism since

#3(E+, E+ n W~) ~ H3(D3 x S2n~4, S2 x S2"'4)
v2n-3 2b-3^—» #3CDJ x Dzn-\ Sz x Dzn~ó) ~ H3(W+, W~)

Hence either the map dw is injective, and thus so is 3s and consequently b2(W+)
b2(W~) - 1 and b2(E+) b2(E~) - 1, or it is zero, and then b2(W+) b2(W~)
and62(E+)<62(E-).

For n k 3, we leave it to the reader to check that

and

H2(E~) ~ H2(E~ \ 3-A3)/Im(^2({pt} x S2))

#2(E+) ~ #2(E_ \ 3-A3)/Im(//2(52 x S2))
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so that b2(Jj+) equals either b2("L~) or b2("L~) — 1. Again using the same argument
as above, whenever b2(W+) b2(W~) — 1 we have &2(E+) &2(E~) — 1. This
concludes our proof. D

Remark 3.10. According to [La], if (E,£) has a contact embedding in M.2n, the

same holds for any manifold obtained by contact surgery over an isotropic sphere of
dimension < n — 1. In contrast, we display here an obstruction to embedding E in
M.2n that survives such a surger}'.

Examples 3.11. The symplectic asphericity condition in Proposition 3.9 is necessary:
the manifold (CPn-1,ao) is n°t symplectically aspherical, and (£2"_1,ao) has a

contact embedding into (M2n, ao).

Remark 3.12. The previous proof does not generalize to higher rank bundles. Let us

call a Hermitian vector bundle 8 -> N over a symplectic manifold (N2n~2, ß)
negative if it admits a Hermitian connection V whose curvature -F <G Q2(N, End 8)
is negative definite. This means that, for any ^-compatible almost complex structure

/ on the base N and any non-zero vector v <G TN, we have jF (v, Jv) < 0.

Let P(£) denote the projectivized bundle and Xg -> P(£) be the tautological
line bundle. Then Xg is a negative Hermitian line bundle, and the total space carries
the symplectic form cox tc*cofs + ^£> where cops is the curvature form on
~P(8) and Qx d(r20^), with r(u) \u\ and #v the transgression 1-form (see

the preamble to Proposition 3.9). Denoting Wx {u <G Xg : \u\ < 1}, we see

that E dWx is a contact manifold. However, the filling Wx is not symplectically
aspherical since it contains P(£) as a symplectic submanifold.

The manifold E can also be realized inside 8 as {u <G 8 : \u \ 1}, via a natural

diffeomorphism Xg \ 0xs — 8 \0g. This diffeomorphism transforms Wx into
W^ {u G £ : |w| < 1}. The pull-back of £ix via this diffeomorphism, denoted Q,
is symplectic on 8 \0g and extends over 0g, as equal to the area form in the fibers
and vanishing along the zero-section. We can thus equip 8 with the symplectic form
co ix*ß + Q. If ß is symplectically aspherical, then so is co. However, E dW is

not of contact type since the restriction of Tt*ß to E is not exact for r > 2, as shown

by the Gysin exact sequence.
The outcome of this discussion is that, even if (JV, ß) is symplectically aspherical,

E does not appear naturally as contact type boundary of a symplectically aspherical
manifold. We feel that a result analogous to Proposition 3.9 should hold for higher
rank negative vector bundles, but our methods do not apply in this case.

For the details of the above constructions we refer to [O], Section 3.4.

Proposition 3.13. Let L be a compact manifold admitting a Lagrangian embedding
into M2n and n > 3. Then any symplectically aspherical filling W of ST*L such
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that H2(W, ST*L) 0 has the same homology as DT*L (and hence the homology

ofL).

Proof. Indeed, the hypothesis implies that ST*L has a contact (non exact embedding

into M2n, so that we can apply Theorem 3.1. Using Thorn's isomorphism, the
condition H2(DT*L, ST*L) 0 is clearly satisfied. D

Let now ST*L be the unit cotangent bundle of L. The spectral sequence of this
sphere bundle yields the following dichotomy:

• either the Euler class vanishes, and then

bp(ST*L) bp(L) + bp_{n-i)(L),

• or the Euler class is non zero and then

(bp(ST*L) bp(L) + V(«-i)(L) for P Ï » - M
\bn(ST*L) bn-i(ST*L) bn-i(L) h(L).

The formula
bp(T,) bp(W) + b2n_p_l(W)

becomes

(a) in the first case

bp(L) + bp_{n-i)(L) bp(L) + b2n-p-\{L),

hence

bp-(n-i)(L) b2n-p-i(L),
that is, the Poincaré duality formula;

(b) in the second case

h(L) bn-X{L) bn(L) + b2n-n-\{L) bn(L) -I- è„_i(L).

This implies bn(L) 0, which is impossible (at least for orientable L).

Proposition 3.14. Let L be an orientable manifold with non zero Euler class. Then

ST*L has no contact embedding in M2n, n > 3. The same holds for any contact
manifold obtainedfrom such a ST*L by surgery of index 3 < k < n — 3.

Proof. The case of ST*L has been already proved above. The surgery does not
modify the conditions H2(W, E) 0 nor does it change bnÇL) or bn(W), ^„-1(1^).
This concludes our proof. D

Remark 3.15. The condition e(L) 0 is exactly the condition needed to be able to
find a Lagrangian immersion ofL regularly homotopic to an embedding. We however

suspect that there are no embeddings of ST*L as a smooth hypersurface in M2n.
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4. The Stein subcriticai case

In this section we assume that (Ei,£i) has a separating contact embedding in a

subcritical Stein domain (W2,co2) with boundary (E2, £2), and we denote by V\ the
bounded component of W2 \ Ei. We denote by (Wi, C0\) an arbitrary symplectically
aspherical filling of (Ei, £i) such that one of the following assumptions holds (cf.
Theorem 2.6):

• #2(P7i,Ei) 0;

• Ei is simply connected.

Proposition 4.1. Under the above assumptions, we have that

bj(Wi) < bj(Ei) + min(0, bj(E2) - bf(W2 \ Vi)).

f g
Proof. Note that given an exact sequence A -> B -> C we have dim.(B)
dim(ker(g)) + dim(Im(g)) dim(Im /) + dim(Im(g)) < dim(A) + dim(C).
Using the Mayer-Vietoris exact sequence of (W2 \ V\) U Wi and the inequality
dim Hj (E2) > dim H} ((W2 \ Vx) U Wx), we get that

bj(W2 \ Ki) + bj(Wx) < bjÇ22) + */(Si).

Thus

bj(Wi) < (bjÇ22)-bj(W2 \ Vi)) + bjÇSi).

According to Theorem 2.6 we have bj(W\) < bj(Ei), and our claim follows. D

Note that bj(W2 \ V\) b2n_j(W2, V\ U E2) by Poincaré duality and excision.
Note also that the above result is stronger than Theorem 2.6 only when &/(E2) —

bj(W2 \ V\) < 0. This happens for example if E2 is a homology sphere.

The first part of the following result has been obtained in a weaker form and by
different methods in [C-F-O] (see also proposition 5.12).

Proposition 4.2. Let L be an orientable closed manifold of dimension > 3, with
non-zero Euler class. Then ST*L has no contact embedding in a subcriticai Stein

manifold. As before, this also holdsfor any manifold obtainedfrom ST*Lby contact

surgery of index k G [3,n — 1].

Proof. Since n > 3, the group H2(DT*L, ST*L) is zero, so assumption (a) of
Theorem 2.6 is satisfied. The Gysin exact sequence of ST*L shows that the map
Hn(ST*L) -> Hn(L) vanishes. This contradicts Theorem 2.6. The case of manifolds

obtained by surgery is dealt with as in Proposition 3.9. D
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5. Obstructions from symplectic homology

In this section we assume that (E, £) is a contact manifold whose first Chern class

Ci(£) vanishes. All the symplectic fillings (W,co) of (E,£) that we consider are
assumed to satisfy C\(TW) 0.

Definition 5.1. Let (W, co) be a connected symplectically aspherical manifold with
contact type boundary. We say that (W, co) is an SAWC manifold if SH*(W, co) 0.

Remark 5.2. The vanishing of SH*(W) is equivalent to the fact that W satisfies the

Strong Algebraic Weinstein Conjecture as defined in [V], stating that the canonical

map H2n(W, dW) -> SHn(W) is not injective. This follows from the following three
observations: (i) non-injectivity of the map H2n(W, BW) -> SHn(W) is equivalent
to its vanishing, since H2n(W, dW) is 1-dimensional; (ii) symplectic homology is a

ring with unit [McL], and the unit is the image of the fundamental class of W under
the map H2n(W, dW) -> SHn(W) [Se]; (iii) vanishing of the unit for SH*(W) is

equivalent to the vanishing of SH*(W).
It is proved in [B-O-2], Corollary 1.4 that an SAWC manifold also satisfies the

Equivariant Algebraic Weinstein Conjecture from [V]. This can also be seen using
the spectral sequence connecting the usual version of symplectic homology to the

equivariant version [V].

If we have an exact embedding (V\, C0\ into (W\, C0\ there is an induced transfer

map (see [V])
SH*(Wi) —? SH*(Vi)

which, according to Mark McLean (see [McL]), is aunital ring homomorphism. This
implies the following result:

Proposition 5.3 ([McL]). Let (V, co) be an exact symplectic submanifold of(W, co).

If(W, co) is SAWC then (V, co) is also SAWC.

It is easy to find SAWC manifolds which are not Stein. For example, we have:

Proposition 5.4 ([O]). Let P be any exact symplectic manifold with contact type
boundary. Then, for any exact SAWC manifold W, we have that P x W is SAWC.

Also, the total space ofa negative symplectic fibration in the sense of [O] with fiber
W is SAWC.

Proposition 5.5 ([C2]). Let W' be obtained from W by attaching handles of index
< n - 1. Then SH*(W) ~ SH*(W'). In particular if W is SAWC, the same holds

for W.

The following statement is contained in [C-F-O], Corollary 1.15 and Remark 1.19.
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Theorem 5.6. Let (E, £) be a contact manifoldfor which there exists a contact form
a whose closed characteristics are nondegenerate and have Conley-Zehnder index

strictly bigger than 3—n. Let i : (JÙ, ^) ^^ (W, co) be a separating exact embedding
in an SAWC manifold (W, co). Assume i*: JTi(E) -> 7t\(W) is injective. Then the

Betti numbers of the interior V of Tj in any coefficient field are determined by the

contact structure £ (and do not depend on the choice of the SAWC manifold W).

Proof. By Proposition 5.3 we have SH#(V) 0. The relative exact sequence in
symplectic homology (see [V]) then implies that

SHÌ(V)^H^n_l(V,dV).
We can assume without loss of generality that the contact form induced by the

contact embedding on E is equal to a. Let V (V, co) U ([1, oo[xE, d(ra)) be the

symplectization of V, obtained by gluing a semi-infinite cone along the boundary.
If the Reeb vector field associated to the contact form a has no closed characteristic
with Conley-Zehnder index < 3 — n, and if i*: JTi(E) -> 7ti(V) is injective, then
there is no rigid holomorphic plane in V bounding a closed characteristic. In this

case, it is a consequence of the stretch-of-the-neck argument in [B-O-l] that SH^(V)
depends only on the contact boundary dV E (see also [C-F-O], Corollary 1.15).
As a consequence, the Betti numbers bj(V, dV) only depend on f.

Now if we have another exact embedding of E in W and W is also SAWC, the

interior V of E in W must have the same cohomology as V. D

Proposition 5.7. Let (E, £) £>e the boundary ofa subcriticai Stein manifold (W, co).

Let (M, co) be an SAWCmanifold such that (E, £) has an exact separating embedding
into (M, co), with interior Z. Then H*(Z) c± H*(W).

Proof. First of all, by Proposition 5.3, we have SH*(Z) 0. On the one hand the

exact sequence ([V])

—? SH*(Z) —? SH+(Z) —? H*+n-i(Z, E) —? SH*-i(Z) —?

shows that H*(Z, E) c^ SH^+l_n(Z). On the other hand, since E bounds a subcrit-
ical Stein manifold, there exists a contact form a such that the Reeb orbits are all non-
degenerate and of index > 3 — n (cf. [Yau]), so the proof ofTheorem 5.6 implies that
SH^~ (Z) ~ SH#(W). This last space is in turn isomorphic to H*+n-1 (W, E) by the

same argument, and finali}' H*(Z, E) c^. H*(W, E), hence H*(Z) c^. H*(W). D

Remark 5.8. The condition that W is subcriticai is not really necessary. We only
need W to be SAWC provided there is a contact form defining f for which all closed
Reeb orbits are nondegenerate and have index > 3 — n.

Remark 5.9. Proposition 5.7 can be compared to the following result:
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Corollary 5.10 ([Yau]). Let W be a subcriticai Stein manifold with boundary dW
such that CiÇTW^x^w) 0. Then any subcriticai Stein manifold with the same

boundary dW and whose first Chern class vanishes on the second homotopy group
has the same homology as W.

Proof. This follows from the main computation of [Yau] (cf. Remark 3.7),

HC°(dW,a) ~ H*(W, dW) <g> #*(CP°°)[2],

which implies directly that the homology of a subcriticai Stein filling is determined

by the contact structure of the boundary. D

Remark 5.11. Note that, when E S2n~l, we may apply our proposition to W
D2n. Thus we prove that any symplectically aspherical filling Z with vanishing
first Chern class satisfies H*(Z) 0 in nonzero degree. Thus, if Z is simply
connected and n > 3, it is diffeomorphic to a ball. This is a weak version of the

Eliashberg-Floer-McDuff theorem mentioned in the previous section, but note that
the above proof does not make use of it and also that it extends to many other contact
manifolds.

Let us now use the above tools to find obstructions to contact embeddings. We

first have:

Proposition 5.12 ([C-F-O]). //(E, £) (ST*L, £std) with L a closed simply
connected manifold, then (E, f has no separating exact embedding in an SAWCmanifold
(M, co). Here £std denotes the standard contact structure on ST*L.

Proof. Since the characteristic flow on ST*L is the geodesic flow, it has all closed

trajectories of index > 0 > 3 — n if n > 3 (in the cases n 2, 3 we have that
L is a sphere and we can find a metric for which all closed geodesies have index

> 3 — n). Assuming the existence of such an embedding, with interior Z, the proof
ofTheorem 5.6 shows that SH^(Z) depends only on the boundary (E, f We obtain

on the one hand SH^(Z) c± H*+n-i(Z, dZ), and on the other hand SH^(Z) c^

SH+(DT*L). But SH+(DT*L) ~ H*(AL,L), where AL denotes the free loop
space of L. Hence SH£(DT*L) is infinite dimensional, a contradiction. D

Remark 5.13. Let (M, co) be obtained by attaching subcriticai handles to DT*L.
Provided one can prove that the Reeb orbits on (dM, £) still have index > 3 — n,
our argument extends to show that (dM, £) has no contact embedding in an SAWC
manifold.

The case ofcircle bundles can also be dealt with using contact and Floer homolog}',
as follows.
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Proposition 5.14. Let (E, £) be the unit circle bundle associated to a negative line
bundle X over a symplectically aspherical manifold (N2n~2, ß) such thatCi(TN)
0. Then, for n > 2, E does not bound a subcriticai Stein manifold with vanishing
first Chern class. The same holds for any contact manifold obtained by subcriticai

surgery on (E, £) of index ^2,3.

Proof. Indeed, let M denote the manifold bounded by E. If W is the unit disc bundle
associated to E, we have dW E and, using that SH*(W) 0 ([O]) and the exact

sequence

—? SHJW) —? SH+Ç2) —? H*+n_x(W, E) —?

we obtain

SH+ÇZ) ~ H*+n-i(W, E) ~ H*+n-3(N).

The same exact sequence with M yields

SH+CL) ~ i?*+„_i(M, S) ~ Hn~*+1(M)

But this last space vanishes for * < 1 while H*+n_3(N) is non-zero for * 3 — ft.
When n > 2 we get a contradiction. Now since/: ^2,3, H2(W, E) does not change,
so remains equal to Ho(N) Q. But we must have H2(W, E) SH^n(Ti)
H2n~2(M) 0. A contradiction.

~

D

Remark 5.15. This partially answers a question of Biran in [Bi] who asked the

same question in the Stein case (not subcriticai). A different answer was given by
Popescu-Pampu in [Po]

6. Brieskorn manifolds, McLean's examples

We consider an isolated singularity of holomorphic germ. For example, assume we
are given V a complex submanifold in <C"+1 with an isolated singularity at the origin.
We then consider the submanifold Ee Se fl V, where Se {z e Cn+1 \ \z\2 s}
and s > 0 is small enough. The maximal complex subspace of the tangent space
defines a hyperplane distribution which happens to be a contact structure, and whose

isotopy class is independent of e. In case the singularity is smoothable, Ee bounds a

Stein manifold W.

Example 6.1. If V is the hypersurface /_1(0) where / is polynomial, then the

singularity is always smoothable. According to [M], the manifold W is homotopy
equivalent to a wedge of n-spheres. The number fx > 0 of spheres is called the Milnor
number of the singularity. We obtain that W is (n — l)-connected and Hn(W) Z^.
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The boundary E : dW is (n —2)-connected. It is called the linkofthe singularity.
For n > 2 the long exact sequence of the pair (W, E) reduces to

0 —? //„(E) —? #„(W) -^-> Hom(#„(W0,Z) —? #„-i(S) —> 0. (6.1)

Here we used the identification Hn(W, E) ~ i?"(P7) ~ Hom(iï„(P7),Z). It is

proved in [M] that the map £ is given by the intersection form, namely

S(x)(y)'.= x - y, x,yeHn(W).

One also defines the Seifert form of the singularity

A: Hn(W) <g> Hn(W) -> Z

by A(x, y) := lk5£(x+, y), where W is now viewed inside Se via the Milnor open
book given by //1 /1, x + denotes a small push-offofx in the positive direction given
by the open book decomposition, and lkse denotes the linking number inside Se. We

then have S A + (—\)n A1 (see [D] and the references therein).

As an immediate consequence of Proposition 2.6, we obtain the following result.

Proposition 6.2. (a) Let n > 3 and (E,£) be the link of an isolated hypersurface
singularity. If the intersection form on the middle~dimensional homology of the

Milnorfiber is nonzero, then (E, £) does not embed in a subcriticai Stein manifold.
(b) Brieskorn manifolds ofdimension 2n — 1, n > 3, with Milnor number at least

2 do not admit contact embeddings in subcriticai Stein manifolds.

Proof, (a) The long exact sequence (6.1) shows that surjectivity of the map Hn E) ->
Hn(W) is equivalent to the vanishing of the intersection form. Since n > 3 we have

H2(W, E) 0, and the conclusion follows from Theorem 2.6.

(b) The Brieskorn manifold E(#o> #i> #„), #o> • • • >a" — 2, is, by definition,

the link of the singularity Zq° + - - - + z%n 0. The Milnor number of
E(ûo,öi,...,an) is fl (ao — 1)... (an — 1). Following [Sa], its Seifert form
is the tensor-product of blocks of dimension a% — 1, i 0, n, and the blocks
have the form [D]

/1 1 0 0\

0 1 1 0

0 1 0

1

0 0 1

Thus A is neither symmetric, nor anti-symmetric, and we infer that S

conclusion then follows from (a).

0. The
D
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Remark 6.3. The condition ß > 2 is violated if and only if all the exponents flj
are equal to 2. In this case E ST*Sn. For n even the matrix of A is symmetric,
hence S A + A1 ^ 0, so there is no contact embedding of E in a subcriticai Stein
manifold. But an argument of Lisca in [C-F] shows that there is not even a smooth

embedding. If n is odd we cannot conclude.

Corollary 6.4. Let n > 3 and (E, £) be a Brieskorn manifold which is diffeomorphic
to the sphere S2n~l. The standard contact structure £ inheritedfrom the Milnorfiber
is exotic, i.e. £ is not diffeomorphic to the standard contact structure on S2n~l.

Proof. This follows immediately from Proposition 6.2, since E does not admit a

contact embedding in M.2". There is no need to consider the case û; 2 for all i
since ST*Sn is never diffeomorphic to S2n~l. D

Remark 6.5. Ustilovsky has actually exhibited in [U] infinitely many pairwise non-
isomorphic contact structures on spheres of dimension 4m + 1. In [vK], the reader

will find an algorithm to compute the linearized contact homology of most Brieskorn
manifolds in dimension greater than 5.

We now consider the manifolds of Mark McLean in [McL]. These are Stein
symplectic manifolds (M?n,cok) diffeomorphic to M2n (n > 4), suchthat (dM?n,lfn) is

a contact manifold diffeomorphic to S2n~l. However, McLean shows that SHn (MP
contains N idempotent elements for some N > 2, therefore the manifolds M^n are

pairwise non symplectomorphic.
We now prove

Proposition 6.6. The contact manifolds (dM?n, f?B) are never contactomorphic to
the standard sphere.

Proof. Let us denote for simplicity W M^n and (S,f) (dM^n,^n). The
exact sequence in symplectic homology reads

—? H2n(W, E) —? SHn(W) —? SH+(W) —? 0.

Assume (E, £) is the standard sphere. Then SH^(W) only depends on (E, £) so is

the same as SH+(D2n) 0. As a result we should have rank(SHn(W)) < 1. But
for k > 2, there are at least 3 idempotents, hence the rank is at least 2 and we get a

contradiction. D

If we knew that there is a contact form on (dM?n, f?") with no closed characteristic
of index less than 3 — n, then we would get, by the above argument, that (dM^n, f^B)
has no embedding in an SAWC manifold.
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7. Summary

A conceptual framework for the study of symplectic fillings is provided by the

following definition of [Et-Ho].

Definition 7.1 ([Et-Ho]). Let (Ei, £i and (E2, £2) be two closed contact manifolds.
We say that (Ei, £i) is dominated by (E2, £2) if there exists a symplectically aspherical

manifold (W, co) such that (W, co) has (Ei, £i) as a concave boundary, (E2, £2)

as a convex boundary and no other boundary component. We shall write

(Ei,fi)^(E2,f2).
We shall say that E i, £i is equivalent to E2, £2 ifwe both have E i, £i -< (E2,£2)
and (E2, £2) -< (Ei, £i), and this is denoted by

(S1;fi)~(E2,f2).

Remark 7.2. In the terminology of Symplectic Field Theory, we see that (Ei, £i) is

dominated by (E2, f2) if and only if there exists a symplectically aspherical cobordism
between (Ei,£i) and (E2,£2).

Clearly, we have

(Ei,fi)^(Ei,fi).
We would like to know if there are nonequivalent pairs of contact manifolds. Clearly,
a contact manifold admits a filling if and only if it dominates the standard sphere.
Which manifolds are dominated by the standard sphere? Our results give examples of
fillable manifolds which are not dominated by the standard sphere or, more generali}',
by the boundary of a subcritical Stein manifold. On the other hand, in dimension 4,

any overtwisted contact manifold is dominated by any other contact manifold (see

[Et-Ho]). In particular, all overtwisted contact structures are equivalent!
The point of view of Definition 7.1 is also related to the work of [Ch] on the

non-symmetry of Legendrian concordances.
We here try to summarize our results, but warn the reader that in the table below,

the assumptions of the theorems are usually incomplete and the statements often not
precise. One should refer to the relevant section of the paper for full details.

Acknowledgements. We are grateful to Vincent Blanlœil for his help with the
formulation and proof of Proposition 6.2. We thank the anon}'mous referee for many
useful questions and for contributing to improve our manuscript.
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