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Smooth compactness of self-shrinkers

Tobias H. Colding and William P. Minicozzi 1T*

Abstracet. We prove a smooth compactness theorem for the space of embedded self-shrinkers
in B3, Since self-shrinkers model singularities in mean curvature flow, this theorem can be
thought of as a compactness result for the space of all singularities and it plays an important role
in studying generic mean curvature flow.
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0. Introduction

A surface & C R? is said to be a self-shrinker if it satisfies

{(x,n)
H = 1 (0.1
2
where H = diva is the mean curvature, x is the position vector, and # is the unit
normal. This is easily seen to be equivalent to that ¥ is the ¥ = —1 time-slice! of

a mean curvature flow (“MCF”) moving by rescalings, i.e., where the time ¢ slice is
given by ~/— .

Self-shrinkers play an important role in the study of mean curvature flow. Not
only are they the simplest examples (those where later time slices are rescalings of
earlier), but they also describe all possible blow ups at a given singularity of a mean
curvature flow. The idea is that we can rescale a MCF in space and time to obtain
a new MCEF, thereby expanding a neighborhood of the point that we want to focus
on. Huisken’s monotonicity, [H3], and Ilmanen’s compactness Theorem, [11], give a
subsequence converging to a limiting solution of the MCF; ¢f. [T1], [W1]. This limit,
which is called a tangent flow, achieves equality in Huisken’s monotonicity and, thus,
its time ¢ slice is /—f ¥ where ¥ is a self-shrinker.

The main result of this paper is the following smooth compactness theorem for
self-shrinkers in &2 that is used in [CM1].

*The authors were partially supported by NSF Grants DMS 0606629 and DMS 0405695.
Un [H3), self-shrinkers are time ¢ = fé slices of self-shrinking MCFs; these satisfy H = {x, n).
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Theorem 0.2. Given an integer g = 0 and a constant V' > 0, the space of smooth
complete embedded self-shrinkers & C R> with

= genus at most g,
s 0¥ =0,
s Area(BRr(xo) NX) < VR forall xo € R*> and all R > 0

is compact.
Namely, any sequence of these has a subsequence that converges in the topology
of C™ convergence on compact subsets for any m = 2.

The surfaces in this theorem are assumed to be homeomeorphic to ¢losed surfaces
with finitely many disjoint disks removed. The genus of the surface is defined to be
the genus of the corresponding closed surface. For example, an annulus is a sphere
with two disks removed and, thus, has genus zero. Below, we will use that the genus
is monotone in the sense that if 21 C X5, then the genus of ¥ is at most that of 5.

As mentioned, the main motivation for this result is that self-shrinkers model
singularities in mean curvature flow. Thus, the above theorem can be thought of as
a compactness result for the space of all singularities. In practice, scale-invariant
local area bound, smoothness, and the genus bound will automatically come from
corresponding bounds on the initial surface in a MCE. Namely:

« Areabounds are adirect consequence of Huisken’s meonetonicity formula, [H3].2

» Tlmanen proved that in [2* tangent flows at the first singular time must be smooth
and have genus at most that of the initial surface; see Theorem 2 of [T1] and
page 21 of [11], respectively.

Conjecturally, the smoothness and genus bound hold at all singular times:

¢ [lmanen conjectured that tangent flows are smooth and have multiplicity one at
all singularities. If this conjecture holds, then it would follow from Brakke's
regularity theorem that near a singularity the flow can be written as a graph of
a function with small gradient over the tangent flow. Combining this with the
above mentioned monotonicity of the genus of subsets and a result of White,
[W3], asserting that the genus of the evolving surfaces are always bounded by
that of the initial surface, we get conjecturally that the genus of the tangent flow
is at most that of the initial surface.

Our compactness theorem will play an important role in understanding generic
mean curvature flow in [CM1]. Namely, in [CM1], we will see that it follows im-
mediately from compactness together with the classification of (entropy) stable self-
similar shrinkers proven in [CM1] that given an integer m and § > 0, there exists an
¢ = ¢(m,d,V, g) > 0such that:

2See, for instance, Corollary 2.13 in [CM1].
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* For any unstable self-similar shrinker in B satisfying the assumptions of Theo-
rem (.2, there is a surface d-close to it in the C™ topology and with entropy less
than that of the self-similar shrinker —e.

This is, in particular, a key to showing that mean curvature flow that disappears in a
compact point does so generically in a round point; see [CM 1] for details and further
applications.

The simplest examples of self-shrinkers in R? are the plane R?, the sphere of
radius 2, and the cylinder S! x R! (where the S! has radius 2). Combining [H3],
[H4], and Theorem 0.17 in [CM 1] it follows that these are the only smooth embedded
self-shrinkers with £ = 0 and polynomial volume growth.® It follows from this that
spheres and cylinders are isolated (among all self-shrinkers) in the C ?-topology. On
the other hand, by Brakke’s theorem, [Br], any self-shrinker with entropy sufficiently
close to one (which is the entropy of the plane) must be flat, so planes are also isolated
and we see that all three of the simplest self-shrinkers are isolated. Moreover, one of
the key results of [CM1] (see Theorem 0.7 there) was to show that these are the only
(entropy) stable self-shrinkers. Tn sum, if a self-shrinker has H > O or is stable, then
it is one of the three simplest types. Moreover, all of these are isolated among all self-
shrinkers. * However, there are expected to be many examples of self-shrinkers in R 3
where H changes sign or that are unstable. In particular, Angenent, [A], constructed
a self-shrinking torus of revolution and there is numerical evidence for a number of
other examples; cf. Chopp, [Ch], Angenent—Chopp—Ilmanen, [AChI], llmanen, [12],
and Nguyen, [N1], [N2]. These examples suggest that compactness fails to hold
without a genus bound.

There are three key ingredients in the proof of the compactness theorem. The
first is a singular compactness theorem that gives a subsequence that converges to a
smooth limit away from a locally finite set of points. Second, we show that if the
convergence is not smooth, then the limiting self-shrinker is I-stable, where I -stable
means that for any compactly supported function ¥ we have

2
f (—uLu)e T =0 0.3)
z
Here L is the second order operator from [CM 1] that is given by
1 1
Lu:Au+|A|2u—5{x,Vu>+5u. (0.4)

The last ingredient is the following result from [CM1]:

*Huisken, [H3], [H4], showed that these are the only smooth embedded self-shrinkers with H > 0, |A|
bounded, and polynomial volume growth. In [CM1], we prove that this is the case even without assuming a
bound on | A].

*Both the classification of stable self shrinkers from [CM1] and that thoge are isolated are implicitly used
in the application in [CMI1], mentioned above, of our compactness theorem to prove that the € > 0 above can
be chosen independently of the self-shrinker and not just independently for all self-shrinkers a definite distance
away from one of the stable ones.
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Theorem 0.5 ((CM1]). There are no L-stable smooth complete self-shrinkers without
boundary and with polynomial volume growth in R" 1,

To keep this paper self-contained, we will prove Theorem 0.5 in an appendix.

Finally, we note that the results of [CM4]-[CM&] suggest that there is a compact-
ness theorem for embedded self-shrinkers even without an area bound. However,
as mentioned above, then it follows from Huisken’s monotonicity formula that self-
shrinkers arising as tangent flows at singularities of a MCF starting at a smooth closed
surface automatically satisfy an area bound for some constant depending only on the
initial surface.

0.1. Conventions and notation. A one-parameter family M; of hypersurfaces in
R+ flows by mean curvature if

(3;X)" = —Hn, (0.6)

where # is the outward unit normal and the mean curvature 7 is given by f = diva.
With this convention, H is n/R onthe n-sphere of radius R in R"+! and H isk/R on
the “cylinder” Sk Rrk - B2 of radius R. Tf e; is an orthonormal frame for X,
the coefficients of the second fundamental form are defined to be a;; = (V,,e;,n).
In particular, we have

Vel.n = —dij€;. (07)

Since {Vpn,n) = 0, the mean curvature is H = (Vn, ;) = —a;; where by
convention we are summing over repeated indices.

1. The self-shrinker equation

The starting point for understanding self-shrinkers is to realize that there are several
other ways to characterize self-shrinkers that are equivalent to the equation (0.1):

(1) The one-parameter family of hypersurfaces /— % © R* ! satisfies MCE.

(2) ¥ is a minimal hypersurface in R**1, not with the Euclidean metric §; +, but
_ix|2
with the conformally changed metric g;; = e~ 8.

(3) X is a critical point for the functional F defined on a hypersurface & < R?+!
by

—lx}?

F(z):(zmr"/z/ e T du. (1.1)
=

The characterization (2) is particularly useful since it will allow us to use local esti-
mates and compactness theorems for minimal surfaces to get corresponding results
for self-shrinkers.
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1.1. The equivalence of (1),(2), and (3). The factthat (1), (2), and (3) are equivalent
to satisfying the self-shrinker equation (0.1) is well known, but we will include ashort
proof of this in the next two lemmas.

Lemma 1.2. If a hypersurface 3 satisfies (0.1), then M; = /—t X satisfies MCF

and

<x’th}
Hy, = ——. 1.3
M; 2f ( )

Conversely, if M; is an MCF, then M; = /—t M_ if and only if M; satisfies (1.3).

Proof. If ¥ is a hypersurface that satisfies (0.1), then we set M; = /— £ and
x(p,t) = ~/—t pfor p € . ltfollowsthatups, (x(p, 1)) = nx(p), Ha (x(p.t)) =
HZT_(‘IU), and d;x = —2—LJ_—E. Thus, (3,x)+ = —ép—Ji—)! = —Hjg, (x(p,1)). This proves
that M; is an MCF and shows (1.3).

On the other hand, suppose that M; is an MCFE. A computation shows that

3 X e
—1)Zd =—d;x + —. 1.4
(030 ( <) = e+ 3 14
If j}g — M _,,then
3 X 1
0= (1) (9 v RVEVEE RCIE N YY) +§{x,nM,1>- (1.5)
Hence, since M; is an MCEF, it follows that
X, A
HM—I :—(atx’nM_1>:%_ (1.6)

The equation for Hpy, for general ¢ fellows by scaling.
Finally, if an MCF M; satisfies (1.3), then, by the first part of the lemma, N; =
&/ —tM_ 1 is an MCF with the same initial condition as M, : thus M; = N, forr = —1.
a

The next lemma, which is due to Huisken, [H3] (c¢f. Ilmanen, page 6 of [I2], [A];
see also [CM1]), computes the first variation of the F functional; since it is so short,
we include the proof here. The equivalence of both (2) and (3) with (0.1) follows
from this lemma.

Lemma1.7. [fx' = fnisacompactly supported normal variation of a hypersurface
Y C R*™ and s is the variation parameter, then -38; F(X)is

(4ar)”§Lf(H — <x’2n>)d;u,. (1.8)
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Proof. The first variation formula (for volume) gives

(duy = f Hdu. (155

n %2
The 5 derivative of log [(4%)*’2 efl_i_] is given by ,% {x,n). Combining this with
(1.9) gives (1.8). O

1.2. Self-shrinkers as minimal surfaces. We saw that self-shrinkers in B”*! are
minimal hypersurfaces for the conformally changed metric

]2

8ij = e Sij. (110)

We will use this in the next section to get local estimates and singular compactness,
but first investigate these metrics a bit. In particular, we will see that these metrics
cannot be made complete and, thus, the compactness of the space of self-shrinkers
does not follow from compactness results for minimal surfaces such as the Choi—
Schoen, [CS], compactness for positive Ricel curvature; ¢f. [CM2]. In fact, it turns
out the Ricci curvature of these metrics does not have a sign and goes to negative
infinity at infinity.

We begin with the obvious observation that the distance to infinity is finite since

2 P
fooo e~Tm dt < oo. Furthermore, for n > 2, the scalar curvature R of the metric

4 o
um=T §;; is given by’

o —4n  —@y3n
R = - 1 Awn. (L.1D
n—1
£ 7?1! Xz
Thus, for our conformal metrics, we have u — e 5 . Using that Ae/ =
S Af + VAP, Alx]2 = 2(n + 1) on R*, and [V|x22 = 4|x|2, we get
that
=1 2 2 _ 1
Au:u(u\x\zfn—). (1.12)
16 1?2 dn
It follows that the scalar curvature is
g =4 n—1 2 =2 n—1 2
R=ur1T|n+4+1-— |x|“)=¢e=27 |n+1———|x|°). (1.13)
4n 4n

There are a few interesting consequences of this formula. First, the scalar curvature
does not have a sign; it is positive when |x | is small and then becomes negative near
infinity. Second, as |x| — oo, the scalar curvature goes to negative infinity. Tt follows
that the space is not complete; even though infinity is at a finite distance, there is no
way to smoothly extend the metric to a neighborhood of infinity.

See page 184 in [SY]; the formula there is for an 7-dimensional manifold, so we have shifted 7 by one.
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2. Compactness away from a locally finite set of singular points

We specialize now to self-shrinkers in IR . We will use the following well-known local
singular compactness for embedded minimal surfaces in any Riemannian 3-manifold.

Proposition 2.1. Given a point p in a Riemannian 3-manifold M. There exists
R > 0 suchthatthe following is true: Suppose Xy are embedded minimal surfaces in
Bag = Bar(p) C M with d%; C 0Bag. If each X; has area at most V and genus
at most g for some fixed V, g, then there is a finite collection of points Xy, a smooth
embedded minimal surface X C Bg with 9% C dBgr and a subsequence of the X;’s
that converges in By (with finite multiplicity) to X away from the X ’s.

There are a number of ways to prove this proposition. For instance, one can use
the bounds on the area and genus to get uniform total curvature bounds on Bag s M
(this follows from the local Gauss—Bonnet estimate given in Theorem 3 of [11]) and
then argue as in Choi—Schoen, [CS]. Alternatively, the proposition is an immediate
consequence of the much more general compactness results of [CM4]-[CMSE] that
hold even without the area bound.

Combining Proposition 2.1 with a covering argument (and going to a diagonal
subsequence) gives a global singular compactness theorem for self-shrinkers:

Corollary 2.2. Suppose that ; C R? is a sequence of smooth embedded complete
self-shrinkers with genus at most g, 0%; = 0, and the scale-invariant area bound

Area (Bg(xo) N E;) < VR? (2.3)

Jorail xo € R3 and all R > 0. Then there is @ subsequence (still denoted by %),
a smooth embedded complete (non-trivial) self-shrinker L without boundary, and a
locally finite collection of points § C X sothat ; converges smoothly (possibly with
mudtiplicity) to X off of 5.

A set § C R? is said to be locally finite if Bg M § is finite for every R > 0.

Proof. The compactness follows by covering IR by a countable collection of small
balls on which we can apply Propesition 2.1 and then passing to a diagonal subse-
quence. To see that the limit must be non-trivial, observe that every self-shrinker
must intersect the closed ball bounded by the spherical self-shrinker. This follows
from the maximum prineiple since the associated MCI’s both disappear at the same
point in space and time. Ol
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3. Showing that the convergence is smooth

It remains to show that the convergence is smooth everywhere. By Allard’s theorem,
[Al], this follows from showing that the multiplicity must be one. We will show that
if the multiplicity is greater than one, then the limit % is L-stable where

L:A+|A|Zf%{x,V(~))+% (3.1)

is the linearization of the self-shrinker equation (see [CM1]).

Proposition 3.2, If the muitiplicity of the convergence of the X; s in Corollary 2.2 is
greater than one, then X is L-stable.

The idea for the proof of Proposition 3.2 comes from a related argument for
minimal surfaces in [CM9].

Proof of Proposition 3.2, Since the limit surface X C R? is complete, properly
embedded, and has no boundary, 2 separates B3 and has a well-defined unit normal
n. By assumption, the convergence of the 2;’s to 2 is not smooth and, thus, by
Allard’s theorem [Al] must have multiplicity greater than one.

Existence of a positive solution # of . u = 0. Tet 5 be the (non-empty) locally
finite collection of singular points for the convergence. Since the convergence is
smooth away from the y;’s, we can choose ¢; — 0 and domains £2; C ¥ exhausting
2% 8 so that each ¥; decomposes locally as a collection of graphs over £2; and is
contained in the ¢; tubular neighborhood of 2. By embeddedness (and orientability),
these sheets are ordered by height. Let w;‘ and w; be the functions representing the
top and bottom sheets over £2;. Arguing as in equation (7) of [Si2], the difference
w; = wj — w; satisfies Lw; — 0 up to higher order correction terms since the
operator L given by (3.1) is the linearization of the self-shrinker equation (this is
proven in Section 4 in [CM1]).

Fix some y ¢ § and set u; = w; /w;(y). Since the #;’s are positive (i.e., the
sheets are disjoint), the Harnack inequality implies local C¥ bounds (Theorem 8.20
of [GiTr]). Elliptic theory then gives C?* estimates (Theorem 6.2 of [GiTr]). By
the Arzela—Ascoli theorem, a subsequence converges uniformly in C? on compact
subsets of 22\ 5 to anon-negative function ¥ on X \ § which satisfies

Lu =0 and u(y)=1. (3.3)

It remains to show that ¥ extends smoothly across the y;’s to a solution of Ly = Q.
This follows from standard removable singularity results for elliptic equations once
we show that ¥ is bounded up to each yr. Consider the cylinder Ny (in exponential
normal coordinates) over B.(yr) C X. If e is sufficiently small, then aresult of White
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(see the appendix of [W2]) gives a foliation by minimal (in the conformal metric)
graphs v; of some normal neighborhood of X in Ny so that

vo(x) =0 forall x € B.(yg), and (3.4
vi(x) =t forall x € dB.(yx).

Furthermore, the Harnack inequality implies that 7 /C < v; = C ¢ for some C > 0.
In particular, combining (3.4) with the maximum principle for minimal surfaces (and
the Hausdorff convergence of the X; "sto ), we see that u; is bounded on B.(yx) by a
multiple of its supremum on Be{yx )\ Bey2 (Vi) We conclude that u has aremovable
singularity at each y; and thus extends to a non-negative selution of Lu = 0 on all
of ¥; since u(y) = 1, the Harnack inequality implies that u# is everywhere positive.

Using # to prove L-stability, We will now use a variation on an argument of
Fischer—Colbrie—Schoen (see, e.g., Proposition 1.26 in [CM2]). Set w = logu, so

that

A 1 1
Aw =2 — [Vt = —|AP + 2 (x,Yw) - 3 — [Vul®, (3.5)

a2
Given ¢ with compact support, applying Stokes’ theoremto div (¢2 e =T Vw) gives

(2

O:f(2¢(V¢,Vw)+[—|A\2—%—|Vw|2]¢2)e 2
< [(1voP - 14297 - 34*) = [ 91007 G6)

where the inequality used 2¢(V¢, V) < ¢2 [Vw|? + |V4|? and the last equality
5B
came from applying Stokes’ theorem to div (gb Ve F ) U

Proof of Theorem 0.2. We will argue by contradiction. Suppose therefore that there
is a sequence of smooth complete embedded self-shrinkers X; © R with genus g,
d% = @, and the scale-invariant area bound

Area (Bg(x0) N E;) < VR? (3.7)

forall xp € R® and all R > 0, but so that &; does not have any smoothly convergent
subsequences. By Corollary 2.2, we can pass to a subsequence so that the %;’s
converge (possibly with multiplicity) to an embedded self-shrinker 3 away from a
locally finite set § < X. By assumption, § is non-empty and, by Allard’s theorem,
the convergence has multiplicity greater than one. Consequently, Proposition 3.2
implies that ¥ is L-stable. However, Theorem 0.5 gives that no such X exists, giving
the desired contradiction. [l
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A. There are no L -stable self-shrinkers

In this appendix, we will include a proof of Theorem 0.5 from [CM1] for the reader’s
convenience. Throughout, the smooth complete embedded hypersurface X © R™H!
will be a self-shrinker without boundary and with polynomial velume growth.

We will need the following caleulation from [CM1]: The normal part (v,n) of a
constant vector field v is an eigenfunction of I with

L{v,n) = %{v,n}. (A.D)

Proof of Theorem 0.5. We will construct a compactly supported function # that does
not satisfy (0.3). Fix a point p in ¥ and define a function v on 3 by

v(x) = {n(p).n(x)). (A.2)

Tt follows that v(p) = 1, |v| < 1, and, by (A.1), that L v = % v. Therefore, given
any smooth function n, we have

1
Lnvy=nLv+ U(An— E{x,Vr,')) + 2{Vn, Vu}
1 1
= Env A U(An— E{x,Vn}) + 2(Vn, Vv). (A3

Taking » to have compact support, we get that

ix|2 1 1
—‘/nvL(nv)e_‘*i‘_ = —f [5 7 v? +nv2(An—5(x,Vn)) (A.4)

1 —1x2
+5<vn2,w2>] e 4
—1x2
—f[%nzvz—vzwnz]e T, (A.5)

. . —Ix2
where the second equality uses Stokes’ theorem to % div (v2 Vn?e T ) to get
—Ix|2

1 —|x|2 1 |
[ 50t vt e = [0 (nan 4 R - 500 ) L w0

If 1 is identically one on B g and cuts off linearly to zero on Bgry; \ Br, then (A.4)
gives

_xz _x2 1 —x2
—[nuL(nv)e 7 5[ vle 2 ——[ vie 7 . (A7)
T\Ba 2 Jpepnz

However, since |v| = 1 and % has polynomial volume growth, we know that

w2
B pie 1 =0, (A.8)
K—oo E\Bgr
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so the

right-hand side of (A.7) must be negative for all sufficiently large R’s. In

particular, when R is large, the function ¥ = 1 v does notsatisfy (0.3). This completes

the proof. O
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