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Floer homology on the universal cover, a proof of Audin’s conjec-
ture and other constraints on Lagrangian submanifolds

Mihai Damian*

Abstract. We establish a new version of Floer homelogy for monotone Lagrangian embeddings
in symplectic manifolds. As applications, we get assertions for monoteone Lagrangian submani-
folds I < M which are displaceable through Hamiltonian isotopies {this happens for instance
when M = C™). We show that when L is aspherical, or more generally when the homology
of its universal cover vanishes in odd degrees, its Maslov number Ny equals 2. This is a gen-
eralization of Audin’s conjecture. We also give topological characterisations of Lagrangians
L — M with maximal Maslov number: when N7, = dim(L) + 1 then L is homeomorphic to
a sphere; when Ny = n = 6 then L fibers over the circle and the fiber is homeomorphic to a
sphere. A consequence is that any exact Lagrangian in 7% §2%+1 whose Maslov class is zero
is homeomorphic to gkl

Mathematics Subject Classification (2010). 57R17, 57R58, 57R70, 53D12.

Keywords. Lagrangian embeddings, Floer homology, Maslov number.

1. Introduction and main results

1.1. Preliminaries. Let (M?2”, @) be a symplectic manifcld. A submanifold L* of
M is called Lagrangian if the restriction of @ on L vanishes. Throughout this paper
all symplectic manifolds are assumed to be either closed or convex at infinity and
all Lagrangian submanifolds are assumed to be closed and connected. One of the
fundamental questions in symplectic geometry is the following:

What properties has to satisfy a closed manifold L in order to admit a
Lagrangian embedding into a given symplectic manifold M ?

This question is still widely open even in the case of M = C”. The results of the
present paper concern symplectic manifolds suchas M = C*, M = CP" ,or M =
T*K for K closed, all of them being endowed with their standard symplectic form.
We establish new topological constraints on Lagrangian submanifolds I. € M which
are monotone or exact. These notions are defined using two morphisms related to a

*Supported by ANR project “Floer Power” ANR-08-BLAN-0291-03.
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given Lagrangian L which are defined as follows. The morphism I, ma(M, L) — R

is defined by
1,(4) = [ a.
A

In order to define the morphism [,,: m2(M, L) — Z, pick a smooth map of pairs
w: (D?,3D?%) — (M, L)intheclass A € my(M, L). There is anunique trivialisation
(upto homotopy) of the pull-back w*TM = D? > C" as a symplectic vector bundle.
This gives a map oy, from S! = aD? to A(C™) —the set of Lagrangian planes in C”.
On this space there is a well-known Maslov class g € H'(A(C"?), Z) (see [2]), so
that one can define

I (A) = pla) € Z.

Definition 1.1. A Lagrangian submanifold L C M is called weakly exact if the
morphism {,, vanishes. Itis called exactif @ = d A and the restriction Ay, is an exact
one-form.
A Lagrangian submanifold is called monotone if there is a constant v > 0 such
that
Iy =1l

We can see from the definition that only exact symplectic manifolds admit exact
Lagrangian submanifolds. Tt is less obvious, but still true, that monotone Lagrangian
submanifolds only exist in monotone symplectic manifolds (i.e. in symplectic man-
ifolds in which the morphism defined on 7, (M) by the first Chern class is a positive
multiple of the morphism defined by the symplectic form). Many authors studied
monotone and exact Lagrangians and found various obstructions to the existence of
such embeddings. A celebrated result of M. Gromov asserts:

Theorem 1.2 ([26]). There is no weakly exact Lagrangian embedding L  C”.

The results on the obstructions to the existence of monotone Lagrangian submani-
folds mostly concern their Maslov number. This number, denoted by Ny, is defined as
the positive generator of the image of I,,. In 1896, Y.-G. Ch established the following
inequality [34], improving thus previous results of L. Polterovich [36], [37]:

Theorem 1.3. For any monotone Lagrangian submanifold L < T" we have
1< N <n,

These bounds turn out to be sharp. Indeed, Polterovich gave in [37] an example
of a monotone Lagrangian . € €" which satisfies Ny = n.

Note that both Gromov’s and Oh’s result can be stated for the more general case of
symplectic manifolds M which are convex at infinity and have the property that any
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compactsubset is displaceable through a Hamiltonian isotopy. This means that for any
compact K C M there is a Hamiltonian isotopy (¢¢)se[o,1] such that 1 (K) MK = @,
Symplectic manifolds of the form € x W, or subcritical Stein manifolds satisfy to
this assumyption.

However, in this more general case Oh’s result is not true as it is stated above.
The correct formulation is:

Theorem 1.4. Let M be a symplectic manifold in which every compact subset is
displaceable through a Hamiltonian isotopy. For any monotone Lagrangian sub-
manifold L C M we have

1< Np <n+41,

and if Ny, = n + 1, then L is a £ [2-homology sphere.

Actually, more recent results of K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono [22]
imply that for N = n + 1, the Lagrangian L is a Z-homology sphere in the statement
above.

1.2. Mainresults. Ourresults about monotone Lagrangian submanifolds are of two
types. First we show that under some topological assumptions on I wehave Ny = 2.
Then, we study the topelogy of monotone Lagrangian submanifolds with maximal
Maslov number Ny = # + 1 or Ny, = n. Here are the statements:

Theorem 1.5 (Audin’s conjecture). Ler M be a monotone symplectic manifold which
has the property that any compact subset is displaceable through a Hamiltonian
isotopy. Let L C M be a monotone Lagrangian submanifold.

a) If L is aspherical (i.e. L is an Eilenberg—McLane space K(mi(1.),1)), then
Ny = 2if L is orientable and N € {1,2} if L is not orientable.

b) Denote by L the universal cover of L. If L is orientable and has the property

Hy 1 (L,Z/2)=0

for any integer i, then Np = 2.

c) Moreover, for any almost complex structure J which is compatible with the
symplectic form, a Lagrangian L which satisfies to the condition b) has the property
that through every p = L there is a J-holomorphic disk w. (D, dD) — (M, L) such
that:

o The Maslov index p(w) equals 2.
« pewl(dD)

« w(dD) is non-zero in my(L).
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Remarks. 1. Part a) of Theorem 1.5 was proved by K. Fukaya for general aspherical
Lagrangian submanifolds, but under the additional hypothesis that L is orientable and
relatively spin ([21], Theorem 12.2). In the case where L is a torus the statement was
conjectured by M. Audin [3]. In this particular case, many results were previously
obtained by L. Polterovich, C. Viterbo, Y.-G. Oh, Y. Eliashberg, P. Biran, K. Cieliebak,
K. Mohnke and L. Buhovsky.

2. Part b) of the statement above was proved by K. Fukaya in the case L =
St §27 without any monotonicity assumption ([21], Theorem 13.1). However,
our result applies to many more general examples, such as arbitrary products of
tori (or other orientable aspherical manifolds) and complex projective spaces, even-
dimensional spheres, etc.

3. Many results related to Part ¢) of the theorem can be found in the paper [11] of
P. Biran and O. Cornea. Using their terminology, the Lagrangian I should be called
uniruled of type (0, 1) and order 2.

Using the ideas of P. Biran [7], we obtain the following corollary on the monotone
Lagrangian submanifolds in the complex projective space.

Theorem 1.6. Let W be a symplectic manifold such that M = CP" x W ismonotone
(forinstance this holds for may (W) = Qorfor W = CP"). Let I C M be amonatone
Lagrangian submanifold which is aspherical. Then Ny = 2 if L is orientable and
Np € {1,2}if L is not orientable.

For spin Lagrangian submanifolds and W = point this result was also proved by
K. Fukaya in [21] without any monotonicity assumption. The result is still true in the
more general situation where CP” is replaced by a symplectic manifold which arises
as a hypersurface in a subecritical polarisation. These manifolds were studied in [8]
by P. Biran and K. Cieliebak.

Our next result is atopological characterisation of monotone Lagrangian subman-
ifolds with maximal Maslov number.

Theorem 1.7. Let M be a (monotone) symplectic manifold of dimension 2n, which
has the property that any compact subset is displaceable through a Hamiltonian
isotopy. Let L C M be a monotone Lagrangian submanifold.

a) Suppose that Ny, = n + 1 and n = 2. Then n is odd and L is homeomorphic
to the n-sphere.

b) Suppose that Ny, = n and n = 3.

If n is odd then w1 (L) has an infinite cyclic group G m= T of finite index. If
moreover M is an exact symplectic manifold then there is an exact sequence of
groups

0— K —>ml)y > Z— 0,

where K is finite and has odd order:
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If v is even then w1 (L) = Z. If moreover n = 6, then there is a fibration of L
over the circle S' whose fiber is homeomorphic to the (n — 1)-sphere.

Remarks. 1. There are examples of monotone Lagrangian submanifolds satisfying
the hypothesis on the Maslov number above. Indeed the embedding of 525+ drio
CP* x Ck+! given by

z = ([z],2)

is monotone, Lagrangian and its Maslov number is 2k + 2. This example is due to
M. Audin, F. Lalonde and L. Polterovich [5]. An example of a monotone Lagrangian
embedding S! x §%-1 ¢ C2* whose Maslov number equals 2k was constructed
by L. Polterovich in [37].

2. In [25] A. Gadbled established topological constrains on monotone Lagrangian
submanifolds in cotangent bundles which have a large Maslov number (which implies
that they are not displaceable through Hamiltonian isotopies).

We prove the following corollaries of this theorem:

Theorem 1.8. a) Let X be a symplectic manifold of dimension 2n+2 with m(X) = 0.
Let L € CP" x X be a Lagrangian submanifold such that Hy(L,Z) = 0. Then L
is homeomorphic to S*"T1,

b) Let L & CP" x CP” be a Lagrangian submanifold such that Hy (L, £) van-
ishes. Then L is simply connected and there is a circle fibration 2"t — L,

¢) Let L < CP" be a Lagragian submanifold such that 2x = 0 for any x €
HYL,7Z). Then if n is odd we have m(L) = 7./2 and the universal cover of L is
homeomorphic to S™.

In [9] O. Cornea and P. Biran asked whether a Lagrangian as in 1.8.c is diffeo-
morphic (or homeomorphic) to RP*. Our result goes in this direction but we do not
know whether its conclusion implies that I. is homeomorphic to the projective space.
In the mentioned paper Biran and Cornea proved that under the hypothesis of 1.8
the cohomology ring (with Z/2-coefficients) of L is isomorphic to the cohomology
ring of RP®. Similar results were previously obtained by P. Biran [7] and P. Seidel
[38]. The statement a) generalizes Theorem B of [7] (asserting that L is a homology
sphere). The statement b) generalizes Theorem C of [7] (which asserts that I has the
homology of CP™).

Theorem 1.9. a) Let L < T*S?**! be an exact Lagragian submanifold with van-
ishing Maslov class. Then L is homeomorphic to Frakel,

b) Let K¥+1 g manifold whose universal cover is S*+1 Let I ¢ T*K be
an exact Lagragian submanifold with venishing Maslov class. Then the universal
cover L is homeomorphic to 2kl fy particular my (L) is finite). For instance,
when K = RP¥**! then my (L) = Z/27 and L is double covered by (a manifold
homeomorphic 10) SAHL,
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This result gives an answer in the case K = .5 k41 (under the hypothesis of the
vanishing Maslov class) to an open question raised by V. I. Arnold [1]:

Is an exact submanifold L ¢ T*K homeomorphic to K?

Actually, Arnold asks whether L is Hamiltonian isotopic to the zero section, but
this latter question seems out of reach, except for the case dim(K) = 2 (see [27]
for related results). In the general case the most striking result was obtained by
K. Fukaya, P. Seidel and T. Smith, who proved in [23], [24] that when L is relatively
spin with vanishing Maslov class, its cohomology is isomorphic to the cohomology
of K. For the case K = S5 similar results were previously obtained by P. Seidel
[38] and L. Buhovsky [12].

1.3. Idea of the proofs. The proofs are based on a new version of Floer homology
which is constructed using an arbitrary covering of the Lagrangian submanifold. In
order to present it we need to recall some facts about the original Floer homology
construction.

1.3.1. The original Floer setting. [.et L. C M be a Lagrangian submanifold which
is monotone with Ny = 2, or weakly exact. Consider a Hamiltonian isotopy (¢;)
defined by a time-dependent Hamiltonian H : [0, 1]xM — R and an almost complex
structure J which is compatible with the symplectic form @. For a generic choice of
the couple (H, J), A. Floer associated to these data a complex (C.(H), 95) whose
homology does not depend on (H, J) [17], [18], [19]. The Floer complex is free over
7. /2, spanned by the intersections L M ¢ (L), which are supposed to be transverse.
Tts differential 45 is defined by counting the isolated holomorphic strips

w: Rx[0,1] = M,
with boundary in L U ¢h (L) (more precisely w(lR > {i}) C ¢;(L) fori =0, 1) and
joining intersection points x,y € L M ¢ (L), which means that

lim w(s,f)=x and lim w(s,7) =y
§—=>—00 §F—=>+00

If n(x, y) is the number modulo 2 of such curves then

dy(x) = Z nx, ¥)y.

yeLngi(L)

Note that if L is orientable and relatively spin (meaning that the second Stiefel—
Whitney class w,(L) lies in the image of H2(M,Z/2) — H?*(L,7/2)), then the
whole theory works for integer coefficients [22].

A relation between the Floer homology HF (L) and the usual homology can be
established. At this end, one should remark that given a Morse function f: L — R
which is sufficiently €1-small, its graph

Wdfg.0)1qe Ly CTL
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canbe embedded in M viaa Weinstein neighborhood U(L) C M and the intersection
points L M Ly correspond to the critical points of f. Moreover, for a good choice of
the almost complex structure J, the application

wis, t) > wis,0)

defines a one-to-one correspondence between the holomorphic strips joining two
intersection points x, y which lie in U(L) and the flow lines of a vector field on
M which is the gradient of f with respect to some Riemannian metric. So the
Morse complex becomes a sub-complex of the Floer complex in this case. If L is
weakly exact, and f is chosen sufficiently small, one can prove that no holomorphic
strip leaves U/(L), so that the two complexes are actually isomorphic and thus Floer
homology is isomorphic to usual homelogy. In the case where I is monotone,
Y.-G. Oh shows in [34] that in the case of the particular Hamiltonian isotopy defined
by the graph of a small function f, the Floer differential decomposes into a sum

dy =do+dy +02 4+,

wheredo: Cr(f) — Cr_1{ f}isthe Marsedifferentialand d;: C{ /) — Cr1 1w,
for any integer /. By comparing the degrees of the 8;’s in the relation 83 = (0 one
easily sees that d; defines an application of degree —1 + Ny, on the usual homology
groups of L and moreover that this application is actually a differential. On the re-
sulting homology groups 93 defines an application of degree —1 4+ 2Ny, which again
turns out to satisfy 8% = 0, and so on... This feature of the Floer differential can
be formalized in the existence of a spectral sequence which converges to the Floer
homology HF(L) and whose first page is built using the usual cohomology groups
of L [34], [7].

1.3.2. The difference between the cases Ny = 2 and Ny > 3. As said above,
the Lagrangian Floer homology HF(L) can be defined for monotone Lagrangian
submanifolds with Maslov number Ny = 2. But the proof of this fact is slightly
different in the case Np = 2. Since this difference is important in the sequel, we will
explain it below, using the simple example of an embedded circle in C.

The fact that d7 defines a complex is equivalent (with the notation above) to

Z a(x, y)n(y,z) =0 mod?2,
yeLngy (L)

forany x,z € L N ¢1(L). The usual proof of this assertion in Morse theory requires
to show that any broken trajectory which joins x and z via another intersection point
y is a boundary pointin a 1-dimensional manifold whose open part is a 1-dimensional
component of the space of trajectories between x and z. This implies that the total
number of broken trajectories is even and therefore the above relation is satisfied and
the Floer complex is well defined.
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Inthe case of a monotone Lagrangian submanifold L, this proof works for Ny, = 3
(see Theorem 2.3 and Theorem 2.4 below). But it fails for Ny, = 2. To illustrate this,
let us consider the intersection between an embedded circle L < C and its image by
a translation as in Figure 1 below.

-

L #1{L)

Figure 1. The case Ny = 2.

As one caneasily see, the Maslov number Ny isindeed equalto 2. The differential
(associated to the standard complex structure) is given by the three holomorphic strips,
denoted by ¥, v and w. More precisely,

xX)=u-y+v-y=0 and Iy)=w-x =x,

where the notation u - x (= x) is used to emphasize that the coefficient of x is given
by the strip u. So, 3% = 0 and the complex is defined. But there is no 1-manifold
consisting of holomorphic strips which have the broken orbits u # w and v # w as
boundary points. As we see in Figure 2 below, there is a path of holomorphic strips
A; passing through x, whose ends are on one side the broken orbit # # v and on
the other side the holomorphic disk D with boundary in L. Analogously, the broken
orbit v # w is connected through holomorphic strips to the holomorphic disk with
boundary in ¢ (L).

X

L7 L L
Figure 2. Broken orbits and holomorphic disks.

The reason why the Floer complex is still well defined here is that there are
exactly two holomorphic disks with boundary either in L. or in ¢y (L) and therefore
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the number of broken orbits is even. This is a particular case of a more general
phenomenon which occurs when Ny = 2. Namely the number of holomorphic disks
passing through a intersection point x € L M ¢1(L) having the boundary contained
in one of these submanifolds is even. And any such disk can be connected either to
another similar disk or to a broken orbit joining x to itself. This result, dueto Y.-G. Oh
[33] (see Theorem 3.2 below), enables us to define the Floer homology HF(L) when
Ny = 2. The relation between Floer and usual homology is the same as for Ny = 3.

1.3.3. Floer homology on a covering space. The idea of our proofs is the following.
Fix a covering space L. — L. Given aMorse function on I. and an associated generic
gradient, one can build a free complex, possibly infinite-dimensional, by lifting its
flow lines to L. The homology of this complex is the usual (singular) homology
H.(L).

Now consider the Floer complex associated to /. and to some generic pair (H, J).
Look at the collection of paths vy defined by s — w(s,0) < L of holomorphic
strips w: R x [0,1] — M which define the Floer differential dy. Obviously the
Floer complex can be reconstructed from the collection of these paths, by counting
the number of those who have the same endpoints x and y and defining thus a
differential on the free module spanned by all these endpoints. On the other hand one
can lift these paths to the covering space L. The question is:

Do the lifted paths define a complex 7

This turns out to be true when L is weakly exact or monotone with Ny, > 3 (see
Proposition 2.6 below). But it fails for Ny, = 2, as one can easily see by looking
again at the example of an embedded circle in € which we considered in the previous
subsection. We draw in Figure 3 below the paths ¥ which define the new differential.
For the trivial covering L. — L we get of course the same thing, namely

X)) =yu-y+yu-y and d(y) = yux,

so that 3% = 0. But when we consider the universal covering for instance, we get

Fx)= (Yu#yuw) X+ (P #yw) x £0,

since the paths ¥, # 1 and ¥y # ¥ are not homotopic in L. Therefore, we do not
get a complex in this case. This can be explained by the fact that, unlike in the usual
case, the holomorphic disk with boundary in ¢; (L) does not have any contribution
to the differential, as long as we only look at the submanifold 1. Let us go back to
the case where L is weakly exact, or monotone with Ny, > 3, when our complex is
defined. In the particular case of the Hamiltonian isotopy defined by a graph Ly of a
small function, the differential 0y clearly defines the lifted Morse complex described
at the beginning of the present subsection. Therefore, when this lifted Floer complex
is defined, its homology has analogue features, namely it coincides with the (Morse)
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Yu v 1

Yv £

\-t-_-!'

¥
L ¢1(L)

Figure 3. Definition of the lifted complex.

homology of the covering I if I is weakly exact and it is the limit of a spectral
sequence starting from the homology of L when L is monotone. This allows us to
infer the claimed results, by using the homology of the universal cover. Sometimes,
as for instance in the case of a monotone aspherical Lagrangian, the existence of
the lifted complex leads to a contradiction, which implies Ny < 2, proving Audin’s
conjecture 1.5.a).

The construction of the new complex will be formalized in the next section.

2. The lifted Floer complex

Let L ¢ M be a Lagrangian submanifold. Let p: L — L be a covering of L.
The elements of a fiber of p are indexed by a possibly infinite set . Let (¢ )se[o,1]
be a Hamiltonian isotopy of M such that L. and ¢;(l.) are transverse. For any
x € L N ¢1(L) denote by (x;)ier the elements of p~1(x). We prove the following
theorem, which is the main ingredient in the proof of the results that we claimed in
the preceding section:

Theorem 2.1. [f L is exact or monotone with Ny, = 3, there exist a free 7 /2-complex
C, spanned by UxeLm¢1 ()iXs |8 € I} such that:

« [f L is exact then 3
H(Co) o2 Ho(L,E/2).

o If L is monotone with N, = 3 then there exist applications §1,82,....6¢, ...
with the following properties:

- 81: Ho(L,2/2) — Hy1n, (L, Z/2).

- & Ho(L,7/2) — Hy yn, (L. 7/2) is well defined if & = O for
2 ol e el L
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= If§; =0 foranyl = 1 then
H.(C) ~ H (L ,Z/2).

L = L is the universal cover of L then Cq can be viewed as a free, finite-
dimensional complex over 7./ 2[m1(L)], spanned by ¢1 (L) N L. A CW-decompostion
of L can be lifted to L and gives rise to a free Z/2[m (L)]-complex, Da. Then, given
a T/ 2[m (L)]-module P, the statements above are valid when one replaces Co by
Ca®7/2[m (1) P and H*(E) withthe homology of the complex Do @7 /37, (L) P For
instance, when P is the Novikov ring associated to some 1-cohomology class u, the
latter is the Novikov homology H(L;u). More generally, the analogous assertion
for coverings L — L associated to normal subgroups G < m1(L) is also valid.

When L is orientable and relatively spin, one can replace 7. [2-coefficients with
Z-coefficients in all the statements of this theorem.

Froof. 1. The usual Floer complex. Let us start by reminding the definition of the
original Floer complex FCo(L, (¢;:)) over Z/2. Tt is spanned by the intersection
points L M ¢1(L). Denote L; = ¢¢(L). In order to define the differential of FC,,
one has to choose an almost complex structure J on M which is compatible with
the symplectic form @ and to define the space of holomeorphic strips with bounded
energy M(Lg, L.1), as follows:

av av

Fri i
oo s
M(Lo, L1) = qv e TR = [0,1], M) v(s,0) € Lo, v(s,1) € Ly,
E(v) < 400
Here, the energy E(v) is defined by the formula
8 2
E(v) — f LN asde,
Rx[0,1] ds

the norm being defined by the Riemannian metric (-, J-}. Then consider for x, y
Lo M Ly the space

M(x,y)={v e M(Lo,L1)| lim v(s,)=xand lim v(s, )= y}.
§F—>—00 §——+00
Floer proved in [17], [19] the following:
Theorem 2.2. a) We have
MLo.Ly= | )  Mx.y)

x,yelonly

b) For a generic choice of J the spaces M(x, y) are finite-dimensional manifolds
of local dimension p(v) = the Maslov—Viterbo index of v (see [39] for the definition).
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Denote by £°(x, y) the O-dimensional component of £(x,y) = M(x, v)/R.
To define the differential of FC. we need to prove that £°(x, y) is finite. This is a
consequence of Gromov's compactness for holomorphic curves [26] and was proved
by Floer in [17] and Y.-G. Oh in [32]:

Theorem 2.3. Suppose that L is compact, either weakly exact, or monotone with
Np =3 Letx,y € Lo Ly and A > 0 and let (vy) C Mx, y) be a sequence of
solutions with constant index u(v,) = po = 2. Then there exist a finite collection
(zi)i=o,..k of points in Lo N Ly with zog = x and zp = y, some solutions vl e
Ma(zi1,2z;) fori = 1,... k and some sequences of real numbers (o), fori =
1,... k suchthat foralli = 1,...,k the sequence vp(s + cf,i, t) converges towards
vils, ) in €20

loc*
Moreover, we have the relation

k
ZM(Ui) = Ho-
i=1

If pto = 1 in the statement above then necessarily & = 1 due to the latter relation,
so we immediately infer that the spaces £%(x, y) are compact, which implies that
they are finite. This enables one to define the differential 9: FCq — FC, as

W)= > wx )y,

yeLonkLy

where n(x,y) = #£°(x, y) mod (2). In order to prove the relation 8> = 0, one
has to study the compactness of the 1-dimensional component £'(x, v) of £(x, y).
Using again 2.3 we find:

Theorem 2.4. Denote by £1(x, y) the union

ey v | 22 x 20, ),

zeLognlq

endowed with the topology given by the convergence towards broken orbits which
was defined in 2.3,
Then £'(x, y) is a compact 1-dimensional manifold whose boundary is

) 2°(x2)x 2%, ).

zelgnly

Note that the proof of the fact that ¥!(x, ¥) is a manifold with boundary requires
a gluing argument as in [18]. Now the fact that a compact 1-dimensional manifold
has a boundary of even cardinality immediately implies 32 = 0, proving thus that
(FC,, d) is a complex.
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Remark 2.5. In the monotone case the hypothesis Nz > 3 is crucial in Theorem 2.4
and in Theorem 2.3. The reason is that for Ny > 3 no bubbling holomorphic disk
can oceur in a sequence of elements of the 2-dimensional component of M(x, ¥) and
this implies the existence of a subsequence which converges towards a broken orbit,
via Gromov compactness.

As explained in Section 1.3.2, Theorem 2.4 is no longer true when Ny, = 2. Usual
Floer homology is still defined in this case whereas lifted Floer homology is not (see
again the explanations in §1.3.2).

We present below the definition of the lifted Floer homology for Lagrangians L
which are weakly exact or monotone with Ny, > 3. A sufficient condition to extend
this definition to the case of monotone Lagrangians with Ny = 2 is presented in the
proof of 1.5.¢ below.

2. Thelifted Floer complex. A construction of alifted Floer-type complex was already
sketched in our previous work [15]. The idea of constructing such a complex was
suggested in [6].

Consider the intersection points L M ¢ (L), viewed as points in L. For two such
points x, y, any holomorphic strip v € M(x, y) defines apath v: | — oo, +oo[— L
which joins x and y:

v(s) = v(s,0).

We consider the obvious extension of ¥ to [—oo, +00] keeping the same notation for
the extended path. Look at the collection of intersection points and take the paths
y as above, defined by the strips v which belong to the 1-dimensional components
of M(x, y) (which correspond to the 0-dimensional components of £(x, y)). This
collection of points and paths joining them is obviously sufficient to re-construct the
complex FFC,. Denote by € the collection of points and by I" the collection of paths.

Now start with the above collection of points and paths (€, [') and fix a covering
p: L — L. For any point x € € denote by (x;);e7 the elements of the fiber p~1(x).
Consider all the lifts of the paths of T to the covering space L. It is clear that for
fixed points x;, y; (where i, j € I), the lifted space PP, ¥;) is finite; let n{x;, y;)
be its parity. On the free 7./2-complex CL spanned by UxeLmd)l (L p~1(x) one can

therefore define an application al. C_‘E — C,‘E by the formula
My = 3 ax
pyj)=yet

The sum above is obviously finite since [ is finite and any path ¥ € I' admits
only one lifting starting from x;. We prove

Proposition 2.6. (C.Z, BZ) is a complex.
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Proof. This is equivalent to the fact that, given x;, y;, there is an even number of
“broken paths™ joining them. Broken paths means lifts of concatenations y; * ¥a,
where ¥; € I and ¥ starts from x and ends into some point z € €, while ¥ starts
from the same point z and ends in y.

Since the paths of I define a complex (namely the Floer complex FC,), we know
that the number of broken paths joining x and y downstairs is even. Moreover,
they represent boundary points of a 1-dimensional compact manifold, so they can
naturally be dispatched in a disjoined union of sets of two elements, corresponding
to the boundary points of each component of the mentioned 1-dimensional manifold.
But in order to get the same property at the level of the covering space L one has to
check that the broken paths in such a set admit liftings with the same endpoints:

Proposition 2.7. Let {y| * y,,y| * v} } be a set of two broken paths in L as above.
Then these broken paths are homotopic in L.

Proof. The concatenations y; * y» and y; * y5 have the same starting point x € €
and the same ending point ¥ € €. We use the following lemma which was proved in
[15] (Lemma 3.16).

Lemma 2.8. Let (Vn)nen be a sequence in M(x, y), asin2.3. Let yn: [—00, +00] —
L be the path defined by y,(8) = v,(s,0) extended by x ins = —co and by ¥y in
5 = 400 Fori = 1,... klety': [—oc, +o0] — Lg be the analogous paths defined
by the holomorphic strips v*. Then for n large enough yn, andy = yl x y2 %+ % e
are homotopic in Lo.

Now the broken holomorphic strip (v, v?) which defines y; * y3 corresponds to
a boundary point in £' (x, y), which means that it is the limit of a sequence lying in a
2-dimensional component of M (x, y). The same is true for the broken path y{ # y5.
Using the previous lemma we infer that there is some component of £!(x, y) such
y1# ¥ and y{ *y; are respectively homotopic to paths in L defined by some elements
in this component. On the other hand all paths defined by the elements of the same
component of £'(x, y) are obviously homotopic, which finishes the proof of our
claim 2.7. |

The proof of 2.6 immediately follows, since the previous proposition implies that
the set of paths in I whose lifts in L join some fixed points x;, y; is a disjoined union
of sets with two elements. U

3. Hamiltonian invariance. The usual way (see [18], [32]) to prove that the ho-
mology of the Floer complex FC, does not depend of the (generic) choice of the
Hamiltonian and of the almost complex structure, is to consider a generic homotopy
W, = (H,,;, J;) between two fixed couples (H,, J;) and (H], J]) and to use it to
define a chain morphism FCo(H;,J) — FCJ(H], J') which induces an isomor-
phism in homology. More precisely, the homotopy W is used to define moduli spaces
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My (x, y) forx € gb{q‘(L)ﬁL and y € q&ff;(L)ﬂL. The space My (x, v) is defined
as follows:

dv dv

s o

viRx[0,1] =M | y(5,0) € Lo vis, 1) € 55 (Ly),

lim w(s,t) = x(r), 1i13Ll v(s,t) = y(r)
§—>—00 §F—>1T00

=0,

For a generic choice of W these spaces are actually finite-dimensional manifolds,
and the morphism between the two complexes is defined by counting the number of
elements (mod 2) of their O-dimensional components. The latter are proved to be
finite by using a compactness result, analogue to 2.3. The same result shows that
the 1-dimensional component of M(x, y) can be completed to a compact boundary
manifold such that the parity of the number of boundary points is equivalent to the
fact that the morphism defined by ¥ commutes with the Floer differentials.

The same argument as before can be used to get the invariance of the homology
of CE. Given two collections of points and paths (€, T") and (€’, I), as above, the
paths v(s, 0) € Ty defined by elements v belonging to 0-dimensional components of
My (x, y) define a morphism between the associated lifted complexes CL and (CL)'.
Claiming that it is a chain morphism is equivalent to the claim that the number of
broken paths in 'y admitting lifts which join fixed points x; and y; is even. As above,
this is a consequence of Lemma 2.8, adapted to this new setting.

Finally, the arguments of [17] which show that the morphism defined by ¥ be-
tween the two usual Floer complexes induces an isomorphism at the homology level,
can be used together with 2.8 in the same way, in order to show that the homology
of the lifted complex CZ does not depend on (H;, J) either. We will denote this

homology by FHE(L).

4. Computation of FHY(L). When the Lagrangian L is weakly exact its Floer
homology is isomorphic to the singular homology of L [18]. To prove this, one has
to consider a Morse function f: I — IR and a particular Hamiltonian isotopy ¢;
which maps L into the graph L;, C U(L)} C M, sothat the Lagrangian intersections
correspond to the critical points of f. The notation is that from §1.3, in particular
U(L) is a Weinstein tubular neighborhood of L. If £ is sufficiently € '-small one
proves that all the holomorphic strips lie in U/(L); the contrary would imply — via
Gromov compactness —the existence of a holomorphic disk with boundary in £ which
is impossible for a weakly exact Lagrangian [34]. For a well-chosen almost complex
structure the canonical projection U/(L) — I maps the holomorphic strips onto the
flow lines of a gradient vector field of f with respect to a generic Riemannian metric
on L. Moreover, this projection defines a one-to-one correspondence between the
isolated holomorphic strips and the gradient lines joining critical points of consecutive
indices. This means that for these particular choices (which still satisfy the generity
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assumptions required to define Floer homology), the Floer complex is identical to a
Morse complex and the result follows.

The latter property of the holomorphic strips above shows that in this particular
case the collection (€, ') is the one defined by the critical points of £ and the isolated
gradient lines which join them. So the lifted complex CF coincides with the lifted
Morse complex on L. The homology of the latter is the singular homology of L.
To see this, recall that the stable manifolds of the gradient vector field associated
to a Morse function yield a CW-decomposition of I whose lift to 7. computes the
homology of this covering space. Therefore we infer:

FHY(L) ~ HJ(L,7./2).

In the monotone case, when one chooses the same particular Hamiltonian isotopy
and almost complex structure, it is no longer true that the holomorphic strips lie in a
Weinstein neighborhood U{L). But, as Y.-G. Oh pointed out in [34], the holomorphic
strips which lie in I/(L) still project onto the gradient lines and the isolated ones are
in bijective correspondence to the gradient lines defining the Morse complex. On the
other hand, according to the same paper [34] an isolated holomorphic strip of finite
energy which leaves U{L) connects two critical points x, y of f which satisfy

Ind(x) —Ind(y) = 1 —INg,

for some positive integer /.

In this particular case, the Floer complex can be graded by the Morse index.
Therefore, given an integer {, the count (mod 2) of the isolated holomorphic strips
satisfying the index relation above defines for each integer & a map

8,{1 FCk — FCk—l-i—lNL-

Of course, d; vanishes for [ > [%] The Floer differential d: FCy, — FC,
writes
d=Bp+ 4+ 4,

Here 9y is the Morse differential defined by the (projections on L of the) homolorphic
strips which do not leave U(L).

From these data Y.-G. Oh [34] and P. Biran [7] inferred the existence of a spectral
sequence which converges towards the Floer homology and whose first page is built
using the usual (Morse) homology of L.

Now, by definition, it is obvious that the differential 3% of the lifted complex CL
satisfies to the same properties, namely:

1. Tt decomposes into a finite sum ot = Bé‘ + 8‘1[‘ +oeee

2. PFor the grading given by the Morse index we have 8374 : C’kE — Cki—l-i-lNL'
3. The complex (C.‘T‘, 8‘07‘) is identical to the lift to L of a Morse complex on L.
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These properties are sufficient for the existence of a spectral sequence analogous
to the one defined by Biran and Oh. The precise statement is:

Theorem 2.9. Denote by A the subring 7./2[T N, T=NL] of the Laurent polyno-
mials with 7./ 2-coefficients and by ARNL = A the subgroup 7./2 - T*NL, for any
integer k. There exists a spectral sequence {Ef*%, d,} which converges to the lifted
Floer homology FHY (L) and which satisfies the following properties (all the tensor
products below are over £./2):

* B = Chigpw, ®@ AP do =135 @14

« EPY = Hypg o, (L, 7/2) @ APNL d) = [9F] @ T—NL(), where

[071: Hpg-pi (L, 2/2) — Hpig1-p-nyn (L. 2/2)

is induced by 8‘1".

» Foreveryr = 1, EP'Y has the form JIF s PBE oy APNL with d, = 8, @
T—NL where VP are vector spaces over 7./2 and 6, : VT — T/',,‘D_’”"ﬁ'r_1
are homomorphisms defined for every p, g and satisfying 6; o &, = 0. Moreover:

Ker(d,: VP9 — pF a7l

Im(8; : pEreTEl Ty ’

r.aq __
v =

andforf = 0.1 we have VS = CE—%—q—pNL’ VPt = P+q_PNL(E,Z/2),
8y = [af].

e The spectral sequence collapses at page [%] + land fordi p € Z,
Dz EE? ~ FHLQ).

The proof of 2.9 is analogous to the proof of Theorem 5.2.A in [7]. Tt is purely
algebraic, and it applies to any graded complex whose differential (in our case oL)
satisfies to the conditions 1-3 above. The spectral sequence {E#*?} is associated to
an increasing filtration of the complex Co:

EI e @ C[I:;CNL & AkNLs
kel

which is endowed with the differential
d=3®d+3 T M)+ T () +....

Asin [7], one can show that the homology of this complex is isomorphic to the
Floer homology FHE(L).
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Remark that the above theorem immediately implies 2.1 for L monotone. Indeed,
if 8, = 0, then, according to 2.9, Vzp’q — le’q =Hpigpn, (L, Z/2),and

$2: Hyrg piny (L.Z/2) — Hp+q—1—(p—1)NL(I, Z/2).

Actually, the proof of [7] shows that §; = [85] Analogously, if 6y = 8, = -+ =
8;_1 = 0,then§; is defined on the homology of L (by [83"]) and its degreeis —1 +! Ny
Finally, if all the ;s vanish then the spectral sequence EF*? collapses at page 1 and
therefore, applying again 2.9, we have

FHE(L) =~ HJ(L,7./2).

This finishes the proof of 2.1 for homologies with Z /2-coefficients.

5. Change of coefficients. A Lagrangian submanifold . C A is called relatively spin
if there exists a class st € H2(M, Z/2) that restricts to the second Stiefel-Whitney
class wp (L) of L. For such submanifolds, also supposed to be orientable, it was
proved in [22] that the spaces of holomorphic strips M(x, y) can be oriented and that
under this hypothesis the Floer complex FC, can be defined aover Z-coefficients.

In our case, when [ is orientable and relatively spin, the lifted complex CF is
constructed using a collection of oriented paths T", which enables us to define it over
7. To show that it is a Z-complex whose homology only depends on L. & M and on
the chosen covering space L one can use the same proof as above,

If we chose the universal cover L as covering space, then CL | can be seen as a
free, finite-dimensional complex over 7 /2[m(L)] (resp. over Z[m1(L)] when L is
orientable and relatively spin). Of course we can change the coefficients by tensoring
with any Z /271 (L)]-module R, for instance with the Novikov ring associated to
some morphism #: 71 (L) = Z.

In all these situations the homology of the complex CZL is related in the same
manner as for 7 /2-coefficients to the homology of I with coefficients in the new
coefficient ring. In particular, in the case we have just considered, the latter is the
Novikov homology Hx(L,u) (for definition and related properties, see for instance
[13], [14]).

The proof of 2.1 is now complete. a

3. Applications

In this section we prove our main results which we stated in §1 and other applications
of 2.1.

3.1. Aspherical Lagrangian submanifolds. Proof of Theorems 1.5 and 1.6. The
idea of the proofs is that, under the given hypothesis, the spectral sequence given by
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2.1 collapses at page 1, which means that the lifted Floer homology associated to the
universal cover of L is isomorphic to the singular homology of L. On the other hand,
since L is displaceable through a Hamiltonian isotopy, the lifted Floer homology
vanishes. This is contradictory and therefore Theorem 2.1 should not apply here.
The only possible reason for that is the fact that the Maslov number Ny is less than 3.

Proof of 1.5. a)If Ni. = 3then we get the applications §; provided by 2.1. But since
1 is aspherical H; (L) = 0 for i # 0, which implies that §; = 0 for all . Therefore,

according to 2.1,

H(CLY ~ H(T,2.)2).

Since L is displaceable, the left term vanishes, whereas the right term is not zero in
degree i = 0. This contradiction implies Ny, < 2.
We use the following well-known result [2] (see also [21], Lemma 2.5):

Proposition 3.1. If L is orientable then Ny, is even. The converse is true if m1(M)
is trivial.

The conclusion of 1.5 follows.

b) Since L is orientable, its Maslov number Ny, is even and therefore all the
applications §; provided by 2.1 have an odd degree. Suppose N > 3. The homology
of L is zero in odd degrees. This implies 6; = 0 and Ef’q — Ef]’q in the spectral
sequence of 2.9. The same argument shows that all the applications é; vanish, which
implies that the singular homology of L is zero. But this is impossible and therefore
Np =2

¢) Denote by fep the generic set of compatible almost complex structures for
which the usual Floer complex (FC,, ) is defined. Consider J € o and denote

MM, J:2) ={w: (D,dD) — (M,L)|d;w =0, plw) =21}

By standard transversality results ([16], see also [10], Chapter 3) one gets that for
generic J, M(M, J;2) is a manifold of dimension n + 2. It is important to notice
here that a crucial point in the proof of the transversality is the fact that all the disks
in M(M, J;2) are simple. This is a consequence of the monotonicity of L and of
a result of D. Kwon and Y.-G. Oh [28] and L. Lazzarini [30] (see again [10]). The
monotonicity of I also implies that M(M, J; 2)is closed. Indeed all the holomorphic
disks of this manifold have the same area, so Gromov’s compactness [26] applies.
On the other hand, since L is monotone and the disks have minimal Maslov number,
no bubbling can occur.

The unparametrized J-holomorphic disks of Maslov number 2 passing through a
given point p € L can be identified with the preimage ev—!( p) of an evaluation map

ev: N — L,
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where N = (MM, J;2) x SU)/PSL(2,R) and PSL(2,R) = Aut(D) acts on
(MM, J;2) > S by

ho(w,2) = (woh, h™H{2).

The evaluation map is given by ev([w, z]) = w(z), for [w,z] € V.

The closed manifold & is r-dimensional and in particular for a generic p, the
preimage ev 1 (p) is finite. Following the notation of [33], denote by ®z(p) the
number of elements of ev!(p), modulo 2. This number does not depend on the
choice of the regular value p: it is the mod-2 degree of the evaluation map. Y.-G.
Oh shows in [33] that in order to define the Floer homology FH(Lg, L1) in the
case where Ny, = 2 one needs the hypothesis &, + @, = 0. This comes from
the fact that the 2-dimensional component of the trajectory spaces M(x, ¥) can be
compactified by adding the broken trajectories and the holomorphic disks of Maslov
index 2 with boundary in one of the L;’s, passing through the intersection points; the
latter occur as bubbles of sequences in AM(x, y) (when x = y). If their number is
even then the relation 8% = 0 is still valid.

Note that Y.-G. Oh also shows:

Theorem 3.2. When L. is a Hamiltonian deformation of Lo then the above relation
CDLO -+ q)Ll =0

is satisfied and therefore the Floer homology FH(L) can be defined.

But for the definition of the lifted Floer homology FH%(L) this is no longer
sufficient as can be seen in the example of two circles in C intersecting in two points
which we explained in §1.3.2. Recall that the lifted Floer complex was defined
(for Nr, = 3) using the paths w(s,0) defined by the isolated holomorphic strips
of M(x,y). To define it for Ny = 2 (with Z/2-coefficients) one needs for any
x € LN Ly, L1 = ¢ (L) and for any homotopy class ¢ € 71 (L) an even number
of broken isolated trajectories w from x to x whose associated paths w(s,0) C L
define a loop in the class g. This is clearly not true in the case of the two circles, as
the two broken paths lie in different homotopy classes.

Inthe general situation, we claim that the Floer homology FH (1) can be defined
if for any g € 71 (L) the number of J-holomorphic disks passing through a generic
p € L and whose boundary realize g is even. The same arguments as above (fixing
the homotopy class of the boundary in the definitions of A, &) show that the parity of
this number does not depend on the generic cheice of p. Denoteitby @, 5 < {0,1};
clearly

o= Y @z mod2. (1)
gem (L)
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Let us proof our claim. As explained above, it can happen that in order to com-
pactify a 1-dimensional connected component of £1(x, x) (where x € L M ¢ (L)),
one has to add a broken trajectory and a holomorphic disk D with boundary in L
or ¢1(L). The homotopy class of the boundary D C L is determined by the paths
w(s, 0) defined by the holomorphic strips corresponding to the elements in £ (x, x).
When the boundary contains a holomorphic disk (D, 8D) C (M, L), then the loops
defined in L by the trajectories of J£(x, x) are necessarily contractible in I.. There-
fore, counting modulo 2, we have ¢4 1 broken trajectories in the class g when g # 0
and $g,r + $r, for g = 0. Using the fact that ¢y, = &y and the relation (1)
we infer that the lifted Floer complex is defined provided that ®, ; — 0 for any
gem(L),g#0

Now we are able to finish our proof. If for any non-zero g € my (L) there is
some p € L such that there is no holomorphic disk with boundary in the class g,
passing through p, then @,y = 0 for any g # 0, so FHY(L) is defined. But
this leads to a contradiction like in the proof of 1.5.a). So, the proof is finished for
J € Jrp. For an arbitrary J, take a sequence J, € Jrg Which converges towards
J. Fix p € L and consider J,;-holomorphic disks wy,: (D,dD) — (M, L) such
that p(wy,) = 2 and p € wu(dD). Using again Gromov's compactness [26] we find
that w, converges towards a J-holomorphic disk whose boundary passes through
7. There is no bubbling here because of the monotonicity of L and the fact that the
Maslov index is minimal. The boundary of the limit is not trivial in 7, (L) by an
argument which is similar to the one in the proof of 2.8 (see [15], Lemma 3.16).

The proof of 1.5 is now complete. U

Using a quite similar argument one can prove the following version of 1.5:

Theorem 3.3. Let M be a monotone symplectic manifold which has the property that
any compact subset is displaceable through a Hamiltonian isotopy and let L © M
be a monotone Lagrangian submanifold.

a) If for some integer k = | we have H{(L,Z/2)= 0 fori >k, then

Np e [1k +1].

b) Suppose that L is orientable. If H(L,7./2)is of finite dimension over F./2

and the Euler characteristic

n
X = (—1Y dim(H;(L, Z/2))
i=0
does not vanish, then Ny = 1. Moreover, for any almost complex structure J which
is compatible with the symplectic form we have that through every p < L passes at
least a J-holomorphic disk w: (D,dD) — (M, L) whose Masiov index equals 2
and whose boundary is not trivial in m (L).
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Proof. a)lf Np = k + 2 = 3, the lifted Floer homology FHY is well defined. Since
the degree of the applications §; is greater than or equal to —1 + Nz = & + 1, all
these application vanish and therefore FH L is isomorphic to the singular homology
of L. On the other hand FHL — 0, as L is displaceable, which is absurd.

b) To prove this statement one has to look at the proof of Theorem 5.2.A in [7].
It is shown that the vector spaces V77 in the statement of 2.9 satisfy V" e —

v ’g+17NL, and the applications 67*7 have the same property. Therefore, for p,

g+k(1—rNp) ¥

g fixed, 6, is a differential on the complex (V¥ e7. This complex is

finite (since this assertion is true for r = 1) and its homology is (Vr‘tf;ql-‘_k(l_rNL))k,

according to 2.9. Now fix p € Z and consider the Euler characteristic:

X = (=17 dim(V,79).

geZ

We show that y, does not depend on r. Fix a negative odd number m. Itis quite clear
that

0
xr= 3 1 3D dimppm,
I=m+1 kel

Indeed we have just changed the order of the summands in the writing of y,. Applying
this for m = 1 — r N (which is odd, since L is orientable, by 3.1), we get

0

Xe= Y. (1)L,

q=2—rNy

where x7 is the Euler characteristic of the complex (¥, ’q+k(1_rNL))k. The Euler
characteristic of the homology is the same, so one can write

. q+k(1—rN
2= D () dim(VA TN,

kel
Therefore we get
0
ar= 3 (DY (=1 dim(VEATO TNy =y
gq=2—-rNy keZ

The latter equality is obtained by applying the property above for m = 1 — r Ny, and
r + 1 instead of r.
So y, is independent of #. On the other hand, according to 2.9, we have

X1 = x(H(L,2/2)) # 0
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and since the spectral sequence collapses and its limit is zero we also have y, = 0
for r sufficiently large. Therefore the lifted Floer complex can not be defined, which
means that Ny = 2.

The proof of the existence of a J-holomorphic disk of Maslov index 2 passing
through a given p € L is similar to the proof of 1.5.a). Ol

Proof of 1.6. We use the following result of P. Biran ([7], Proposition 4.1.A):

Proposition 3.4. If L. C CP" x W is Lagrangian monotone then there is a circle
bundle Ty, — L suchthat Tt admits a monotone Lagrangian embedding into C"H1 x
W and moreover Ny, = Nj.

If L is aspherical then it is easy to see that 'y is aspherical, too. Since it is
displaceable through a Hamiltonian isotopy, the result follows by 1.5, U

3.2. Lagrangian submanifolds with maximal Maslov number. Proof of Theo-
rems 1.7 and 1.8.

Proof of Theorem 1.1. a) As N = n + 1 = 3 the lifted Floer complex is well

defined. We know that its homology FH % (L) vanishes because L is displaceable.
On the other hand, we know by 2.9 that the spectral sequence { ££'7} which converges
towards this homology, collapses at page 2. So, according to 2.9 we have

Rer([8]: EP? — EP 1)

_ P.q
0=1£"= L. -ptlag p.gy
Im([of]: E{ "7 — EP7)

which for g = p — pNp + i gives

Ker([8F]: Hi(L, Z/2) — Hpyi(L,7/2))
Im([oF]: Hi_w(L,2/2) — Hi(L,7/2))

_ P p—pN
0=£E; —

Applying this equality for = 1,...,n — 1 we find that L is a 2-homology sphere
for any covering space L. In particular, for I = 1. we have H'(L,7/2) = 0, for
i = 1,2 and therefore we infer that L is spin. So dim(l) = Ny — 1 is odd (by
3.1, since L is oriented) and the whole theory works for Z-coefficients. The same
argument then shows that any covering I is a Z-homology sphere. Let us prove
that I is also simply connected. If not, take a non-zero element g € m (L) and
consider the Abelian subgroup & = {g} and the associated covering space L. Then
Hi(L,Z) = G which contradicts the fact that L is a Z-homology sphere. Finally,
using the (proofs of the) Poincaré conjecture, (5. Smale, M. Freedman, G. Perelman)
we infer that 7. is homeomorphic to S%, as claimed.
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b) As above, the lifted Floer complex is defined, its homology vanishes, and the
spectral sequence converging to it collapses at page 2. Consider an arbitrary covering
L — L. We get, as in the proofof a) fori = 1,...,m1:

Ker([0F] : Hi(L,Z/2) = Hi+n1(L,2/2))

Ep,p—pNLH _ J L - .
: m([0F]: H i 1(L,2./2) — Hi(L,7./2))

We infer that

Hi(L,Z/2)=0 (1)

fori =2,...,n—2 and
[67] : H\(L,7./2) = H,(L,7./2), @)
(0L : H(L,Z/2) ~ H,_1(L,2/2). (3)

Suppose first that I is not orientable. Choosing I = L we get Hn(i) = 0,
so L is not compact, and therefore 1 (L) is infinite. We know that H{(L,Z/2) =
H,(L,Z/2) = Z/2Z. Take an element g € m;(L) which is not in the kernel of
the Hurewicz morphism 7;(L) — H;(L,Z/2) and consider the covering L —
I associated to the Abelian subgroup G = {g}. If g is of finite order — which
has to be even, the covering I — L is infinite (since 7 (L) is infinite), therefore
H,(L,7Z/2) = 0and H\(L,7/2) = 0, by (2). On the other hand H,(L,7Z/2) =
Gz /2 #0,as G isacyclic group Z/21. This contradiction implies that & is an
infinite cyclic group. In particular H,(L,Z/2) # 0, and by (2) H,(L,Z/2) £ 0,
which means that L is compact and G has finite index in 71 (L), as claimed.

If M is an exact symplectic manifold then 1.2 applies and H*(L,R) # 0, a
non-zero class being given by the restriction to L. of a primitive of the symplectic
form. Therefore the first Betti number of L is not zero. Consider a non-vanishing
morphism u: m1(L) — 7 and denote by K its kernel. We show that K is finite of
odd order.

Indeed, take an element ¢ € 7, (L) such that u(r) = 1 and consider the covering
L — L corresponding to the infinite cyclic subgroup G spanned by r. As above,
using the relation (2) we infer that L — L is a finite covering. It is easy to see that
different elements of K = Ker(u) lie in different classes of the quotient 71 (L)/ G
and therefore K is finite. Moreover, if we suppose that an element g € K has even
order, then, taking for L the covering associated to G = (g}, we find as above that
Hi{(L,Z/2) # 0, whereas H,(L,Z/2) = 0 since the covering is infinite. This
contradicts the relation (2).

Let us now consider the case where L is orientable (so # is even). Since it is
also spin (by (1)), the relations (1) and (2) are valid for integer coefficients. Taking
L = L, weget Hi(L,7) = 7, which implies H (L., 7Z) = 7. Therefore, as above



Vol. 87 (2012) Floer homology on the universal cover 457

there is an exact sequence of groups
0= K —>m(L)—=>7 —0,

where K is finite. Now, using the same argument as above for the covering L
associated to (g}, for an arbitrary g € K, we find that H;(L, Z) # 0 unless g is
the identity. Using the relation (2), this implies that K = {1}, so m1(L) =~ Z, as
claimed.

For dim(Zl) = 6, F. Latour and A. Pajitnov independently established an algebraic
criterion for the existence of a fibration of L over the circle [29], [35]. Form (L) = Z
we get (see for instance [14]):

Theorem 3.5. /fn = dim(L) = 6 and m1(L) = Z, then there exists a fibration
f: L — SYif and only if the Novikov homology Hy(L;u) vanishes, where u =
[£*(d®)] e HY(L,Z).

Accordingto 2.1 the relations (1) and (2) are also valid for the Novikov homology
with respect to any 1-cohomology class 1. On the other hand, for any ¥ == 0 one
can show that Ho(L;u) = 0 and H,(L;u) = 0 (see for instance [13]). Using (1),
(2) and (3) we find that for ¥ = idg, H«(L,u) = 0 and therefore, L admits a
fibration over the circle, by 3.5. Denote by F a fiber of this fibration. We know that
m(Fy = Ker(u), so F is simply connected. We also have that 1. is diffeomorphic
to F x IR and in particular

H.(L,7) ~ HAF, 7).

We infer from (2) that F is a simply connected homology sphere, therefore it is home-
omorphic to the standard (r# — 1)-sphere, using the proof of Poincaré’s conjecture.
The proof of 1.7 is now complete. U

Proof of Theorem 1.8. a)The vanishing of the first homology group of L implies that
L is monotone with Ny, = 2(»n + 1). Applying 3.4 we get a monotone Lagrangian
submanifold Iy < C**! x X which has the same Maslov number Nj, = Ny =
dim(I'r) 4+ 1. Moreover 'y, — L is a circle fibration.

The submanifold 'y, satisfies to the hypothesis of Theorem 1.7.b and therefore
71(T'L) ~z Z. Moreover, considering the lifted Floer complex associated to the
universal cover [z, the relations (1), (2) and (3) from the proof of 1.7 imply that
H; (fL) =0fori #£0,2n+1,and Hz,,ﬂ(fL) ~z Z. Therefore, using Hurewicz’s
isomorphism the first 2n + 1 homotopy groups of I'y, are isomorphic to the corre-
sponding homotopy groups of S2"*+1. From the long exact sequence of the fibration
'y — L we infer that

(L) m~ m (S fori=2,...,2n 41,
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and, since w1(I'r) is Z, m1(L) is Abelian. But as H1(L,Z) = 0, L is simply
connected. Therefore L is homeomorphic to S2"*! according to (the proof of) the
Poincaré conjecture.

b) As above L is monotone with Ni, = 2(n + 1). Again, we can apply 3.4 and
we get a monotone Lagrangian in €**1 x CP”" which is a circle fibration over L
and has the same Maslov number. We can therefore use Theorem1.7.a and infer that
'y is homeomorphic to the (2n + 1)-sphere, as claimed. Tn particular L is simply
connected.

¢) As pointed out in [7], one can easily see that L is monotone with N, = n + 1.
We consider as above the Lagrangian submanifold I';, € ©"+1 which has the same
Maslov number. We can use 2.1 with integer coefficients because I'y, is spin (using
again 2.1 with mod-2 coefficients) and orientable (by 3.1, since N, is even). As in
the proof of a) above we get that w1 (I'z) = Z and the universal cover 'y, has the
same homotopy groups m; as S*, fori = 1,...,n. Using the long exact sequence of
the fibration 'y, — L we find @, (L) = Z, m;(L.) = O0fori = 3,...,n— 1 and we
have an exact sequence

0> ml) > mSH=2 > miT) =2 — m(L) — 0.

It follows that m1(L) is cyclic and, since Hi(L,Z) is 2-torsion, it follows that
m (L) = Z/2. From the exact sequence we then infer that m»(L) = 0. So the
universal cover of L is a homotopy sphere and therefore it is homeomorphic to the
n-sphere. 1

3.3. Lagrangian submanifolds in the cotangent bundle. Proof of Theorem 1.9.
Let K < M be a Lagrangian submanifold. If I. < T*K is Lagrangian then by
Darboux” Theorem it follows that L admits a Lagrangian embedding into M. We
need the following result:

Proposition 3.6. Suppose that K & M is monotone and that L < T* K is exact with
vanishing Maslov class. Then L C M is also monotone. Moreover, if the morphism
(L) = m(K) induced by the projection is surjective, then Ny = Ng.

Proof. Since L is exact it is easy to see that {(using the notation of the first section)
we have

IOAEL)M _ IOJ)KL)M o p,
where p: ma(M, L) — n2(M, T*K) =~ m2(M, K) is the canonical morphism.

It is also known and not very hard to prove (see [4], Chapter [, Proposition A.3.3)
that when L has a vanishing Maslov class then (again with the notation of §1) we
have

Ii,%M _ If%M o p.
Therefare 1. € M is monotone. If (L) — 71 (K) is surjective, then p is also an
epimorphism and the conclusion follows. [l
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Proofof 1.%.a). Let L C PH92EEL Lagrangian exact with vanishing Maslov
class. As pointed out in §1.2, the application

z = ([z],2)

defines a monotone Lagrangian embedding of S2E+1 into CPF x CF 1, Tt follows
by 3.6 that L admits a monotone Lagrangian embedding into CP* =« CF 1 of Maslov
number Ny = Ngorer1 = 2k + 2. The statement a) of Theorem 1.7 implies the
desired result. U

Proofof 1.9.b). Let L C T*K be a Lagrangian exact submanifold with vanishing
Maslov class. There is a finite cover L of I which admits an exact Lagrangian
embedding into THE = Thy2k+l (see [15], Lemma 3.5). Moreover, we have a
commutative diagram:

L ——T* SZkJrl

L ——T7T*K.

From this diagram one immediately infers that the Maslov class of L vanishes. There-
fore we can apply the point a) which asserts that L. is homeomorphic to S &kl
When L = RP?*+! we show that 71 (L) — 71 (RP?¥ 1) is an epimorphism. If
not, we can lift . to an exact Lagrangian embedding into T*S2% 1 which still has
vanishing Maslov class. Using the statement a) we find that L is homeomorphic to
a sphere, and in particular Ny = 2(2k + 2). But this is impossible by the results
of P. Biran [7] (There is no Lagrangian sphere in CP"). So 71 (L) — m; (RP2*+1)
is surjective. In this case the mentioned statement of [15] asserts that . = Lisa
double covering. O

Acknowledgements. I thank Alexandru Oancea for our valuable discussions on the
subject and Octav Cornea for his useful remarks.
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