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Multicurves and regular functions on the representation variety
of a surface in SU(2)

Laurent Charles and Julien Marché

Abstraet. Given a compact surface 3, we consider the representation space
M(Z) = Hom(z (%), SU(2))/ SU(2).

We show that the trace functions associated to multicurves on X are linearly independent as
functions on M (X). The proof relies on the Fourier decomposition of the trace functions with
respect to a torus action on A ({X) associated to a pants decomposition of X. Consequently the
space of trace functions is isomorphic to the Kauffman skein algebra at A = —1 of the thickened
surface.

Mathematics Subject Classification (2010). 57M27, 57M25, 37E30, 81510,

Keywords. Representation variety, multicurve, skein algebra, Dehn coordinates, topological
quantum field theory.

1. Introduction

Given a compact and oriented surface X, one defines its representation space as the
quotient Hom(z1(X), G)/G. For G = SI(2,C),SU(2), SI(2,R), we obtain three
related and celebrated spaces. The first one is an algebraic variety which classifies
semi-stable complex bundles of rank 2 over X with trivial determinant: it contains the
two other ones. The second space is compact and contains an open and dense subset
supporting a natural symplectic form. Its quantization provides a construction of a
topological quantum field theory (TQFT) which has interesting interactions with the
topology of 3-manifolds. Finally the last space contains as a connected component
the Teichmiiller space, that is, the moduli space of hyperbolic structures on 2.

The purpose of this article is to study a special class of functions on these spaces
called “trace functions”. Given a 1-dimensional submanifold y of ¥ and a represen-
tation p € Hom(m1(Z), &)/ G one sets

Fraloly = [ ] trpte))
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where the f;'s represent the free homotopy classes of the components of .

Assume that the Euler characteristic of % is negative. We prove that the functions
Jy.G where ¥ runs over the isotopy classes of 1-submanifolds of X without a com-
ponent bounding a disc are linearly independent as functions on Hom(m (%), G)/ G
for G = SU(2) or SI(2,C). Inthe case G = S1(Z, ), it follows that these functions
form a basis of the coordinate ring of the representation variety. Consequently the
coordinate ring is isomorphic to the Kauffman bracket skein algebra of ¥ x [0, 1] at
A = —1, cf. Sections 1.1 and 1.2 for precise statements.

D. Bullock showed in [Bul] that the last assertion is equivalent to proving that the
Kauffman bracket skein algebra has no non-zero nilpotents. Bullock’s proof relies
on a delicate analysis of algebraic relations between trace functions which started in
[GM]. This statement also follows from Theorem 2.8 and 7.1 of [PS]. Our strat-
egy is completely different and somewhat simpler: using a pants decomposition of
the surface, we define on M(Z) = Hom(m1(Z),SU(2))/ SU(2) an action of the
torus T% where & is the set of separating curves of the decomposition. Moreover,
I-dimensional submanifolds of 2 are parametrized up to isotopy by their Dehn coor-
dinates, which form a system of parameters depending on the pants decomposition.
Finally, we compute the Fourier decomposition of the trace functions relatively to
the action of T'? and show that one can recover the geometric intersection number
of two curves and more generally the full Dehn parameters of a multicurve via its
Fourier decomposition. This allows us to prove our assertion.

Our motivation to study the trace functions is the quantization of the representation
space .M(X). First, the space of trace functions is a Poisson algebra, the Poisson
bracket being defined with the symplectic structure of Atiyvah—Bott [AB]. Hence
the skein algebra at 4 = —1 inherits a Poisson bracket. It appears that the skein
algebraat A = e~ /4 ig a deformation quantization of this Poisson algebra. Thisisa
consequence of the Goldman formula [Gol] expressing the bracket of trace functions,
of. [BFK] and [T].

Not only do we have a formal quantization, but also a strict quantization provided
by the topological quantum field theory. Working with the combinatorial version of
TQFT |[BHM V] we associate to X a family of Hilbert spaces V(X)) and to each curve
y afamily of operators (Opg(y): Vi (Z) — Vi(Z)). Then it appears that the natural
symbol of this family of operators is the trace function of y. Indeed, by [MN] the
asymptotic behavior of Opg(y) as the level k tends to infinity is controlled at first
order by the trace function. Furthermore the composition and the commutator of
operators corresponds to the product and Poisson bracket of the trace functions. So
the relation between the curve operators and the trace functions is similar to the one
in microlocal analysis between operators and their symbols. From this point of view,
our result produces non-vanishing trace functions and consequently non-vanishing
curve operators. This has non-trivial consequences like the asymptotic faithfulness
of the representation of the mapping class group on Vi (¥) provided by TQFT, cf.
[And], [FWW], [MN].
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In the next parts of this introduction, we give precise statement of our results
(Sections 1.1 and 1.2) and of the quantization of M () (Sections 1.3 and 1.4). Note
that we do not use skein modules and TQFT in the sequel of the paper. So the re-
mainder of the paper is completely independent of Sections 1.3 and 1.4. Section 2
introduces the Dehn coordinates for multicurves on a surface while Section 3 describe
torus actions on Hom(m (X, SU(2))/ SU(2) which are part of the action-angle co-
ordinates of [JW2]. In Section 4, we give the main ingredients for computing the
Fourier coefficients of the trace functions. Section 5 describes the applications of
the preceding computations while Section & explains the isomorphism of the trace
functions algebra with the coordinate ring of the representation variety in S1(2, C).

After we completed this article, A. Sikora mentioned us that a very different proof
of Theorem 1.1 appears in Corollary 50 of [Si].

Acknowledgment. This work originated with an exciting workshop in La Llagone
in January 2008. The second author received support ANR-08-JCIC-0114-01 from
Agence Nationale de la Recherche.

1.1. Results. Let & be the group SU2) or SI(2,C). Now consider the space
Hom(m, G)/G of morphisms from a group 7 to (¢ up to conjugation. For any
t € m, introduce the function y; of Hom(m, G)/ G defined by

xe(lpl) = —te(p()), p € Hom(m, G).

Let us call a trace function any linear combination of the y;’s with complex coeffi-
cients. Because of the relation

tr(a)tr(b) = tr(ab) + tr(a™'h) foralla, b € G (D

the space 7 (7, &) of trace functions is a subalgebra of the algebra of complex valued
functions of Hom(z, &)/ G.

When 7 is of finite type, 7 (7, SI(2, ©)) is finitely generated and is the coordinate
ring of the S1(2, C) character variety of . The relation with the usual definition is
explained in Part 6.

Assume now that 7 is the fundamental group of a manifold M. Let us define a
trace function f,, ¢ for any isotopy class y of 1-dimensional compact submanifold of
M without arc components. Let #;, ..., £, be the homotopy classes of loops which
are freely homotopic to the connected component of a representant of  and set

JnG = Yoy oo St

Since the f;’s are well defined up to conjugation and inversion, this product only
depends on the isotopy class y.

We will use these definitions in two cases. First, M is a surface and y the isotopy
class of a multicurve, that is no component of ¥ bounds a disc. Secondly, M is 3-

dimensional, the 1-dimensional compact submanifolds without arc components are
then called the links of M.
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Theorem 1.1. Let G be SU(2) or SI1(2, T) and m the fundamental group of a compact
orientable surface T with boundary (possibly empty) and negative Euler characteris-
tic. Thenthe trace functions [, G, where y runs overthe isotopy classes of multicurves
of X which do not meet the boundary, form a basis of T (rw, G).

Some elements of the fundamental group of X cannot be represented by multic-
urves because of the self-crossings. However, using the relations (1), one can show
casily that the trace functions ( f,¢) are a spanning set of 7 (7, &). The proof that
they are linearly independent is much more delicate and is the content of Theorem 5.3,
Let j be the obvious map

Hom(z, SU(2))/ SU(2) — Hom(m, S1(2, C))/ S1(2, C).
By the previous theorem, j* maps 7 (z, SI(2, C)) bijectively onto 7 (zr, SU(2)).

1.2. The Kauffman bracket skein module at 4 = —1. Let M be a 3-dimensional
oriented compact manifold. We call banded {ink an orientation preserving embedding
of a finite disjoint union of annuli in M. Note that these annuli are not framed as
we do not fix an orientation of their core. The skein module of M is defined as the
module over C[4, A*!] freely generated by the set of isotopy classes of banded links
of M quotiented by the relations of Figure 1.

\/\><

- ( AQ 2) @

Figure 1. Kauffman bracket skein relations.

We will denote this module by K (M, A). If we replace A by —1 we get a vector
space that we denote by K (M, —1). As a consequence of the relation (1), we have a
well-defined map

KM, —1)— T(x, G)

sending a link y to f,. . Here & is the fundamental group of M.

Assume that M = X x [0, 1] where ¥ is an orientable compact surface. Then
by identifying X with % x {1/2} C M, each multicurve of X defines a link in M.
Any link L in M has a generic projection to 2: by choosing such a projection and
applying the Kauffman relation at each crossing, we get a decomposition of L as
a linear combination of multicurves. Two projections are related by a sequence of
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Reidemeister moves and one can show that the decomposition of L does not depend
on the projection by analyzing each move. Hence, the family of isotopy classes of
multicurves of X is a basis of K (M, —1). As a corollary of Theorem 1.1, we obtain

Theorem 1.2. For any compact orientable surface X, the natural map
F(Zx[0,1],-1) = T(7,G)
is an isomorphism.

Bullock proved in [Bul] that the kernel of this map consists of the nilradical of
KX = [0, 1], —1). Moreover, it is claimed without proof in [PS] that this nilradical
is zero.

The skein module K (X x [0, 1], —1) is an algebra where the product is defined
in the following way: let £: X < [0, 1] IT X < [0, 1] — Z x [0, 1] be the map defined
by (x,1) — (x, %) for the first copy and (x,¢) — (x, %) for the second one. Then
we set

v 3 =1y 11 3).

As aconsequence of therelations (1) this product is sent to the product of functions
by the isomorphism of Theorem 1.2. We will refer to this product as the stacking
product: it is also defined for the Kauffman skein module K (2 x [0, 1], A).

1.3. ¥ (m, G} as a Poisson algebra. In this subsection and the next, G is the group
SU(2), X is a closed orientable surface and 7 its fundamental group. The space
M = Hom(m, &)/ G has a natural topology such that the trace functions are contin-
uous. The subset M* consisting of classes of irreducible representations is open and
dense. By [AB] and [Gol], M® is a symplectic manifold. Furthermore Goldman in
[Gol] expressed the Poisson bracket of the trace functions of two curves intersecting
transversally as a trace function. Consequently, 7 (7, ) is a Poisson subalgebra of
Eo(M*, C). The Poisson bracket appears also naturally on the topological side in
the following way.

Letus introduce the Kauffman module K (M, — il ) of a3-dimensional compact
oriented manifold. Tt is defined as the free C[[%]]-module generated by the set of
isotopy cilleflsses of banded links of M quotiented by the relations of Figure 1 with
A= -4,

One has a natural C-linear map from K (M, —e™4) to K (M, —1) sending a
linear combination > c;(A)y; of banded links to > ¢; (0)¥;, where ¥; is the core of
¥i. The kernel of this map is 4K (M, —e™™/4).

Assume now that M = 3 x [0, 1]. Using the isomorphism of Theorem 1.2, we
obtain an exact sequence

0 — 7 K(M, —e™* — KM, —e™% 2 T(n,6) =0 2)
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Furthermore the multiplication by # is a bijection
J(M, —eP*y 5 h K(M, %) (3)

The injectivity follows from the fact that K (M, —e#/4) is free as a C[[A]]-module,
a basis being given by the family of isotopy classes of multicurves of X.

Finally, X (M, —pthi ) has a natural stacking product * and a natural involution —
defined by conjugating coefficients and sending abanded link y to S(y ) where S : 2x
[0,1] — X % [0,1] is defined by S(x,£) = (x,1 —¢). Onchas f *g = g+ f.

Theorem 1.3. Let G be the group SUQ2), X a closed surface, w its fundamental
group and M = 3 [0, 1]. Then the Kauffiman bracket skein module K (M, -
with its product * and involution ~ is a deformation of the Foisson algebra T(m, )
in the sense that for any f. g € K (M, —e'**) one has

o(f * g) = o(fo(g). o(f)=0o(/),
o (f*xg—g*f)= %{U(f),ﬁ(g)}

where o is defined in (2) and 51 is the inverse of the map (3).

The first equation follows from the fact that the isomorphism of Theorem 1.2 is an
algebramorphism. Forthe second equation, observe thatthe classes in K (M, —g 4
of the multicurves of X are real and that their trace functions are real too. Last formula
on the comrmutator follows from the Goldman formula expressing the Poisson bracket
of two trace functions (see [Gol]).

The Poisson bracket depends on the symplectic form on M* which itself depends
on achoice of an invariant scalar product onthe Lie algebra. Weset (A, B) = tr(AB™)
for A, B < su(2). In [AB], it is explained how a symplectic structure on M* comes
from the interpretation of Hom{m, G)/G as gauge equivalence classes of flat G-
connections. More precisely, the symplectic form comes as a reduction of the affine
space of all G-connections. On the latter space, the form is given by the following
formula:

w(a,b) = /z{a Ab) fora,b e QYT su(2)).

1.4. Topological quantum field theory. In this section, we give an application
of our results to topological quantum field theory (TQFT). Precisely, the proof of
asymptotic faithfulness of quantum representations of mapping class groups given in
[MN] uses Theorem 1.2 as a final step.

Let M = % [0,1]. By sending 3_ P;(A)y; to ¥ Pi(—e™*)y;, one identifies
the skein module K (M, A) with a complex subalgebra of J (M, —e'/*) preserved
by the involution ~.
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For any integer k = 2, the topological quantum field thecries (TQFT) coming
from Chern—Simons theory with gauge group SU(2) provides a complex Hermitian
space Vi(Z) of finite dimension. In the geometric framework, the integer & — 2
is called the level while in the combinatorial framework constructed in [BHMV],
the authors use the parameter p = 2k. Following them, one has a natural algebra
morphism

KM, §g) — End(Vi (X))

where 0 = €% and K(M, &) 1= K(M,A) ©4-¢, C.
For any f € K (M, A) and any & = 2, we denote by Op, (/) the corresponding
operator of Vi (2).

Theorem 1.4. For any f, g € K(M, A) one has

Op(f * 8) = Opr(f)Opr(g) and Opi(f) = Opr(f)*,

and as k — oo,

wOp )~ (5) [ otrm+ 0w

where n is half the dimension of M® and p is the Liouville measure.

First part follows from the general properties of TQEFT. The estimation of the trace
has been proved in [MN]. A factor 472 appears due to the different normalization

of the symplectic form. This estimation gives some information on the asymptotic
behavior of Op,( f).
Define the normalized Hilbert—Schmidt norm of T € End(V (X)) by

IT |us = (dim(Ve(Z)) (T T).

Then by Theorem 1.3 and 1.4, for any f £ J(M, A), the Hilbert-Schmidt norm of
Opy( f) is estimated by the 1.2 norm of g = o(f):

100/ lFrs = (Vel0) ™ [ el + 06

The space of sequences (1) < [ -, End(Vx (X)) with a bounded Hilbert—Schmidt
norm has a natural filtration G(0) > O(1l) > O(2) D -++ where (I}) is in O(€) if
| Ty lus = Ck~¢ for some C. Tt follows from Theorems 1.3 and 1.4 that this filtration
corresponds to the formal one:

(Opr (), € OF) <= f = hb K (M, —e™*),

for any f = K (M, A). In particular, if f # 0, Op( /) does not vanish when & is
sufficiently large.
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Using this last observation, one may deduce that the action on V(%) of an home-
omorphism ¢ of 2 provided by TQFT is asymptotically non trivial as soon as the
action of this homeomorphism on the Kauffman module is non trivial. This occurs
only if ¢ is isotopic to the identity, the elliptic or the hyperelliptic involution, cf.
[MN] for details.

2. Dehn coordinates

Given ¥ an oriented compact surface with boundary, we will call multicurve a sub-
manifold of ¥ which does not meet the boundary and has no component bounding
a disc. The Dehn theorem classifies isotopy classes of multicurves by decomposing
them into simple pieces: in these simple pieces, we will allow multicurves to meet
the boundary transversally as we explain below.

Let w be the arc of points in S whose angles are in [—n/8, w/8]. For every
m & N we fix a subset W, of cardinality m in w invariant by complex conjugation.
Let A = S*! [0, 1] be an annulus and introduce a family A(m, t) of multicurves of
A indexed by I x Z. If m is positive, A(m,t) is the multicurve in A (unique up to
isotopy) whose projection on [0, 1] is a submersion, which intersects each boundary
circle in W, and whose algebraic intersection with the curve {—1} = [0, 1] equals ¢
(oriented from O to 1). An example is shown in the left hand side of Figure 2. In the
case where m = 0, A(m, 1) consists of ¢ parallel copies of the boundary.

Let T be the surface {z e €, suchthat |z] < land |z + %\ > %} Choose
identifications of the boundary circles of 7 with S! such that 1 € S! is identified
respectively with p; = %, P2 = _Tl and pa = i. Wecall T the standard pair of pants
(or trinion). Let #111, 4, M4 be three non-negative integers with even sum. Consider
amulticurve as in the right hand side of Figure 2 which intersects the boundary circles
in Wy, , Wi, Wiy, via the identifications with S1. Denote it by C{m, m,, ma).

Consider now a general surface 3 with negative Fuler characteristic. From the
classification of surfaces, it follows that 3 can be obtained by gluing trinions on
boundary components. We will call pant decomposition of X a homeomorphism

o: 32— (UnulU4)/e

iel jerF

where the T;’s are copies of T, the A;’s are copies of 4 and ¢ is a collection of
homeomorphisms reversing the orientation between boundary components of the
T;’s and the A;’s. We ask that these homeomorphisms reduce to either the identity or
the complex conjugation via the identifications of the boundary components with S!,
s0 that they preserve the subsets W,,. We also ask that each boundary component of a
copy of T' is glued to some copy of A. In that way, the components of the boundary
of % correspond to some copies of A.
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Figure 2. BExamples of elementary multicurves.

We associate to a pants decomposition of ¥ the following graph G. Its vertex set
is I Umg(d%). Edges are indexed by J in such a way that the edge associated to the
annulus A; connects the copies of T or the boundary component of ¥ to which it is
attached. Ithappens that the vertices in / are trivalent and the vertices in (9 X)) are
univalent. An edge is said internal if it connects trivalent vertices, otherwise it is said
external,

Consider now a surface with a pants decomposition with graph ¢. We will call
Delm parameter a pair (m, ) where m is amap fromthe edgesof Gto N andt is a
map from the edges of G to 7 satisfying the following conditions:

— if j1, J2, Ja are three edges incoming to the same vertex, then m;, +mj, + i,
is even.

— forall edges j,if m; = Othent; = 0.
— all external edges j satisfy m; = 0.

Given such a Dehn parameter, one can construct a multicurve on % by gluing
elementary multicurves in the following way: define C(m, ) as the union

Ui COniymy,m3) ULy Almy, 1)/

In this expression, ml1 , mg, mg are the values of m at edges adjacent to £.
The classification theorem of Dehn is the following.
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Theorem 2.1. Let X be a surface with pants decomposition. The map sending a
Dehn parameter (m, t) to the multicurve C(m ,t) is a bijection between the set of
Dehn parameters and the set of isotopy classes of multicurves in 2.

We refer to [FLP] for the proof. In the sequel we only need to know that each
multicurve of 3 is isotopic to some C(m, ). The fact that C(m, r) is isctopic to
C(m',t")only it m = m’ and r = ¢’ is a consequence of our results.

3. Moduli spaces and torus actions

Let 2 be an oriented compact surface with boundary. Let M(X) be the set of iso-
morphism classes of pairs (E, 8) where E is a flat Hermitian bundle of rank 2 over
¥ and @ is a volume section, that is a flat unitary section of A?E. An isomorphism
between two pairs is an isomorphism of flat Hermitian bundles commuting with the
volume sections. The holonomy representation of the fundamental group 7 induces
an isomorphism

M(E) — Hom(m, SU(2))/ SU(2).

To any pants decomposition is associated a torus action on a dense open subset of
this moduli space together with a set of invariant functions which separate the orbits.
Let C be asimple curve (embedded circle) of 2. Choose an orientation of C and
a base point x € C. Then for any (£, 8) € M(X), the holonomy at x of E|¢c is a
unitary automorphism g, of Ey preserving 8.. So the trace of g, belongs to [-2, 2].
We set
ac(E, @) .= arccos(%tr (gx)) e [0, x].

This defines a function a¢ on the moduli space .M(%) which does not depend on
the choices of the base point and the orientation, these functions were introduced by
Goldman in [Gol].

Let us introduce a circle action on the subset of M(X) consisting of bundles
with a non-central holonomy along C. Letz € T := R/Z. To define t.(E, #), we
assume that C is oriented. Then E|¢ is isomorphic to E* @ E: the holonomy
along C preserves this decomposition and acts on E* by exp(iac(E)) and on E—
by exp(—iac(E)). Let R; be the automorphism of E|c which acts on E+ by
multiplication by exp(*2int).

Next consider the surface 3 obtained from 3 by cutting out €. Denote by 7 the
projection from %' to X. Let € and C_ be the boundary components of £/ such that
7 restricts to diffeomorphisms 7y : Cy — C and which respectively preserves and
reverses the orientation. Then ¢.(E, ) is the quotient of #* E under the identification

wre wX R A ) ), ue 7*Elc, = wi(Elc)

This definition does not depend on the orientation of C.
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Let % be a set of simple disjoint curves. Then the correspending actions commute
and we obtain an action of the torus T? on the set M°(X) of bundles with non-
central helonomy along any curve of %. Assume that the curves of 4 cut % into
trinions. As in Section 2 we define a graph G whose edges are naturally indexed by
J =% U mp(3%). Introduce the map

a: M(Z) = R7
whose coordinates are the ac’s.

Theorem 3.1. The image of a is the polyhedron A consisting of the (@;) € BT such
that for any trivalent vertex v of G

log — oy | < ot < minde; + o, 2w — (0 + 05))

ifi, j and k are the edges incident to v. The fibers of the restriction of a to M°(X) are
the orbits of the action of T%. Furthermore the action is locally free on the preimage
of the interior of A.

This theorem has been proved in [JW1] under the assumption that ¥ has no
boundary. There is no difficulty to generalize to the case where d% £ . One shows
first the result for a pair of pants 3, cf. Proposition 3.1 of [TW1]. The general case
follows by analyzing how one can paste flat SU(2) bundles on the trinions cut out by
% to a global bundle on .

When ¥ has no boundary, the open set of irreducible classes (£, 8) is naturally a
symplectic manifold, as we already mentioned it in Section 1.3. Then for any simple
curve C, the function a¢ (£) is a moment of the circle action corresponding to C,
that is its symplectic gradient generates the circle action, see [TW 1], Proposition 5.4,

It is easily seen that A has a non-empty interior. Furthermore the restrictions to
Int(A) of the functions

exp(i Y b)), (e,
jet
are linearly independent where a; denctes the 7-th component of ¢. This will be

used in the proof of Theorem 5.3. The fact that A has a non-empty interior will also
ensure that some Fourier coefficients do not vanish, ¢f. Lemma 4.4.

4. Fourier decomposition

We are concerned in this part on the Fourier decomposition on some trace functions
defined on the moduli spaces discussed above. Consider a disjoint union I' of unori-
ented circles and amap i: I’ — Z. Then define the following function on M(X):

TW(E. &)= [] (g

yemo(T)
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where g, is the holonomy of E along i(y). Let € be a finite family of disjoint simple
closed curves. Then for any k € Z%, the k-th isotype of T}, for the action of the torus
T¥ is the function

[ (Ty)(x) = f Tp(t.x)e 2T H0E) gp
TF

The first step in the computation of 1 (773) is to extend the definition of T3(E, &) to
the case where I" is a disjoint union of circles and closed intervals.

4.1. Generalized holonomy trace. Letus start with an algebraic preliminary. Con-
sider a finite family (V; )iz of vector spaces. Letus define the tensor product &, ; Vi
assuming that the V; are odd superspaces. First, for any bijections ¢ and o' from
{1,...,n}to I, one has a commutation map

Coo' ' Vo) @@ Vormy = Vorr) @+ @ Vory

sending v; & -+ ® vy to (—1)6(“)1}&(1) @ @ Ug(n) Where @ = o’ o oL, Since
Col ot © Copl = Coot, ONe can identify coherently these tensor products by taking
the projective limit of this system, which defines the unordered tensor product. More
precisely, we define ®;.7V; as the subspace of the product

1_[ (VO‘(I) B B Vo‘(n))
oebij({1,...,n},1)

consisting of the families (v ) such that cg6/ (Vo) = Vo

Let £ — 2 be a flat vector bundle of rank 2 and & a non-vanishing flat section
of A?E. Observe that each fiber E, has a complex symplectic product @, defined
in such a way that for all u, v € £y,

U AY =0y = welu,v)y=1.

Consider a 1-dimensional compact manifold I" and a continuous function /i : I —
3. We will define the generalized holonomy trace of £ as a vector

Th(E,Q) = ® Eh(p)
pedl

If T" is an interval, we choose an orientation of it and denote by p and g the source
and target point of I". Then the holonomy along I" is an homomorphism

A € Hom{Epp), Enig)) = Enig) ® E;:(p)‘

Identifying Epqp) with Ei:(p) by the map sending # to () (i, ), we obtain a vector
A, € Ek(q) & Ek(p). We set
Th(E,8) = A,.
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The important point is that this definition does not depend of the orientation of T" if
we use the previous identification between Ep(py & Epg) and Epggy @ Eppy. Indeed
with this identification, we have that (A~ '), = A,.. This is easily deduced from the
fact that A is a linear symplectomorphism. If I" is a circle, we define 13,(E, 8) as
before as the opposite of the trace of the holonomy of h (the super-trace). Finally,
if " has several components (I';), we define Ty(FE, 8) as the tensor product of the
Ty, (E,8).

Now let A': IV — X be a continuous map and p and ¢ be two distinct points
in dI" such that A’(p) = h'(¢). Then by identifying p with ¢, we get a compact
I-manifold I' withamap k: I' — 2. Itis easily checked that

Ty(E,0) = Cont(Ty (E, 0))

where Cont is the contraction

X Ein — @ Fun

redr’ redl'\{ p,q}

sendingu@v@wtou.w(v, w)if w € Eyp, v € Eppyandu € Q,carnp.gr Fhir)-

4.2. The basic computation. In this part we consider the case of a single simple
closed curve C of 3 with its associated circle action. Let I” be a finite disjoint union
of circles and h: T' — X be a map intersecting C transversally.

Let T be the compact 1-manifold obtained by cutting out the points p of T such
that A(p) is on C and compactifying. Let A’ be the obvious map I'" — 3. Then it
follows from the considerations of Section 4.1 that T3 ( E, @) is the contraction of the
generalized trace holonomy Tj/(E, @) by the linear map

Cont: ® Ehf(p) —C
pedl”

defined as follows. For any p € A~1(C), let ji{p) and j,(p) be the corresponding
boundary points of I'" chosen in arbitrary order, so that

R Evpy= R EH@2D) @
pedl” peb—1{(C)

Then Contisthe mapsending &, ,—1cy (Vp,1@Vp,2) 0 [ [ pep10y @aip) (Up,1. Up,2)-
We will compute I1;(T}) in terms of these generalized holonomy traces. To do this
we introduce another contraction map from @Fear, Ey(py to C.

Let p € h~1(C) and let us orientate C in such a way that the tangent vector of
I" oriented from j;1(p) to j2(p) followed by the oriented tangent vector of C form a
direct basis in 2. Assume that the holonomy of (£, #) along C is not central. Choose
two unitary eigenvectors ei € Eppy of the holonomy along C with corresponding
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eigenvalues exp(+iac (E)) and such that 8y, = ei A e?, Then consider the linear
maps
=

Cont? : Epp) @ Enp) — C, vy @ vy — (v, 65} vy, €2

where the bracket denotes the scalar product. Exchanging ji(p) and j»(p) and
defining the same application, we obtain a map Conti satisfying

Conti(vl B vz) = *c—aﬁti(vz & 1),

So we have a well-defined contraction Ei{@&gp)’jz([')} — . Finally we set,
Cont§: X)) Ew(n — C, Q) pa@vp2)— [ Conth(vy1®1p2)
pedl’ peh™1(C) peh™1(0)

where we used the decomposition (4) into a product of even superspaces. If C does
not intersect 4, Conti is the identity map.

Lemma d.1. Letk ¢ N. Ifk is bigger than the cardinality of b= 1(C), then T4 (T,)
and T1_;(Ty,) vanish. Ifk is equal to the cardinality of h=1(C), then

T (TyNE, 8) = ContS (T (E. ).

Proof. Assume first that A71(C) is reduced to a point. Then the proof is based on
the simple observation that

Tt (E,0) = Conty (T (E,0)) forallt €T (5
where Cont, is the linear map from E;fg)l (2):22(P)} 1 C given by

Cont; (11 @ v2) = wp(p(Riv1, v2)

with R; the automorphism of Ej(p) entering in the definition of the circle action.
Next a straightforward computation leads to

@n(py (Rev1, v2) = 2™ (vy,e8) (v, €2) + e 27 vy, 2} (v, €T )

which proves the result, taking into account that the Hermitian product is C-linear
on the left. In the case where A1 (C) consists of several points, (3) is still satisfied
with the contraction

COﬂtf( ® (Up,1®Up,2)): 1_[ Op( ) (ReVp,1, Vp,2)- (6)
peh~1{C) peh~1(C)

Replacing each term in the product by the previous formula leads to the result. [
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Consider now a finite set ¢ of disjoint simple closed curves. One can generalize
the previous lemma with the action of T?. Assume that A: I" — X intersects each
C € % transversally. Consider the manifold I and the map #’: T'" — X obtained
fromh: T" — X by cutting out the p’s such that #(p) € C for some C £ ¥. Then
one has the following decomposition into a tensor product of even superspaces

Q) Ewin = ®( X Eh/(p))

pedl Ce¥ pedlV/ W (p)eC

So for any & € {4+, —}% we can define a linear map

Cont? = 1_[ Contgci ® Eppy = C
Ce¥ pedl”

where the Cont'j‘gE are the previously defined contractions.

Lemma 4.2. Let k € Z¥. [f there exists C € € such that |kc| > |h=(C)), then
I (Ty) vanishes. If for any C € € we have |kc| = |hH(C)|, then

T4 (TH(E, 8) = Cont? (Ty,(E, 0))
with ec = sgnike) forany C € %.

Proof. 'The proof is the same as the one of Lemma 4.1. Indeed equation (5) is still
satisfied with the contraction Contf defined as the product of the ContICC given in (6)
where C runs over ¥ O

4.3. Fractional Dehn twist. Consider againacurve Con Zandamap h: I’ — X
which intersects C transversally in k points. One defines the fractional Dehn twist
of b along C of order £/ k by cutting T" along C and connecting each strand with the
£-th consecutive one.

Formally, it is defined as follows. Let us orient arbitrarily C. Let I’ be the 1-
manifold obtained by cutting out from I" the points p such that A(p) is on C and
compactifying. For any p € h~1(C), denote by j;(p) and j»(p) the corresponding
boundary point of T such that C goes left when seen from 71 (p). This is the same
convention as in Section 4.2, exceptthat the orientation of the curve C does notdepend
on p. The orientation of C provides P = A~(C) with a cyclic order, so Z /kZ acts
on P. One sets

Dysr = | AN ([0, 1] =< P)/ ~

where we identify ji(p) with (0, p) and j(p + £) with (1, p) for any p € P.

Choose a parametrization a: S! — C respecting the crientation such that P
corresponds to the set of k-th roots of unity. We define the map Ay ¢ I'ejp — X as
being equal to & on ' and such that for all (¢, p) € [0, 1] x P one has

hesi(t, p) = alexp(2EL0).0 H(h(p))).
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The manifold I'g ¢ and the map #¢;4 do not depend up to homotepy on the orientation
of C nor on the parametrization «.

Lemma 4.3. One has Tk (T, ) = (—1) & DeFHac I1 L (Tp).

Proof. This is an easy application of the Lemma 4.1 using the explicit description
of the fractional Dehn twist above. More precisely, denote by Hy/p the restriction
of hy to [0,1] x P and choose a parametrization : S' — C as above. Given a
bundle E in .M(Z) one can suppose that it is trivialized on P in such a way that the
holonomy from p to p + 1 is

exp(2imac /k) 0
[ 0 exp(2iymc/k)} '

Then Hy; and Hy,y differ by the factor exp(2i wae / kY and the sign of the per-
mutation sending x to x + £ in 7/ k7. Ol

4.4. Non vanishing of some isotypes. Consider a pants decompeosition of 2 in the
sense of Section 2 with graph G. Let S! x £1/2} be the core of the standard annulus
S1 < [0,1]. For each internal edges of G, we consider the core of the corresponding
annulus and the circle action it generates. This defines a torus action of T? where €
is the set of internal edges.

Consider the multicurve C(m, t) with Dehn coordinates (1, ¢). By the first part
of Lemma 4.2, the k-th isotype of T,y vanishes if |k;| > m; for some internal
edge j.

Lemma 4.4. Let k € Z% be such that |k;| = m; for ail j € €. Then the function
i (Teon ) is nowhere 0 on a™'(Int(A)), where a is the map introduced in Section 3
and A is the image of a.

Proof. By Lemma 4.3, one may assume that r vanishes. We computed I (Togn,0))
in Lemma 4.2 in terms of a contraction Contf defined as a product over the boundary
points of I'" as follows.

For any curve C in %, any p of C and any choice of erientation of C, one considers
aunitary eigenvector ¢ of E, forthe holonomy along C whose eigenvalue has positive
imaginary part. To any point p in T such that 2'(p) € C, one associates the vector
ei (resp. eF) corresponding to the orientation of C going to the left from p (resp. to
the right). For any p € dI', denote by &(k, p) the sign of k; where A(p) belongs to

j € %. Then
Contf( ® Baj— £ l_[ {Up,ef(k’p)).
pedl’ pedl

Here the equality is only true modulo a plus or minus sign because we have not chosen
an order of aI", so the sign of the left hand side is not defined.



Vol. §7(2012) Multicurves and regular functions on the representation variety 425

Since Ty(E, 8) is the tensor product of the Ty, (E, ) where y runs overs the
components of T, we have by Lemma 4.2

Me(TW)NE,8) =+ [] Cont”(Ti,(E,0))
yemo(l')

with Cont? (v, @ v,) = (v, ef(k!p)}{vq,eg(k!q)) if the source and target of y are p
and g.

To prove the lemma, it suffices to show that the factors Cont” (T}, (E, 8)) do not
vanish when a(E, #) belongs to the interior of A. There are two cases to consider,
according to whether the endpoints of ¥ belong to different boundary curves of the
pair of pants or the same one, cf. for example C(1,1,0) and C(2,0,0).

In the first case, consider the pair of pants containing ) and let j;, j; and j3 be
the bounding curves with the orientation induced by the pair of pants. Assume that
the endpoints p and g of y belongs to j; and j; respectively. If Cont? (Ty, (£, 8))
vanishes, one deduces from the definition of Tj: |, (E, #) that the holonomy along the
loop #’|, sends the decompesition Ceﬁ & Ce? to the decomposition Ceﬁ apCed,
permuting possibly the summands. Choosing p as a base point, one obtains that the
holonomies along j; and the concatenation ¥~ ! /¥ commute. Observe furthermore
that j;! is freely isotopic to y ™1 joyj1. It follows that for some & € {1,—1},
the three eigenvalues exp(eiia;, (E)}), exp(eaia;, (E)), exp(esia;, (£)) have product
equal to 1. This implies that

e1a;(E) + e2a,(E) + £30;,(E) =0 mod 277,

This formula is only satisfied if a{ £, 8) belongs to the boundary of A.

In the second case, £'|, connects two points p and g of the same boundary circle
J1 by going around another boundary circle j,. Since the neighborhoods of the
endpoints of y are on the same side of j;, the eigenvalues of ¢, and ¢, are the same.
Using this, one shows that if Cont” (7|, (E, #)) vanishes, then the holononty along
apath joining j; to j preserves the decomposition into eigenspaces. In other words,
we are again in the first case. Ol

5. Consequences

5.1. Geometric intersection numbers. The geometric intersection number of two
isotopy classes of multicurves & and # is the minimal number of intersection points
of a representant of & with a representant of .

If £ has only one connected component, it generates a circle action on M(X).
One may characterize the geometric intersection number of & and 7 in terms of this
action and the trace function of 7.
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Theorem 5.1. For any isotopy classes & and 0 of a curve and a multicurve respecti-
vely, the geometric intersection number of & and 1 is the biggest k such that the k-th
isotype of the trace function of 1 with respect to the circle action generated by & does
not vanish.

Proof. 1f k is larger than the geometric intersection number, then the k-th isotype
vanishes by Lemma 4.1. Conversely, assume that & does not bound a disc and is not
parallel to aboundary component, otherwise the result is trivially satisfied. Thenthere
is a pants decomposition with a separating curve C representing £. By Theorem 2.1,
n may be represented by a Dehn multicurve C(m, ). Then Lemma 4.4 shows that
the k-isotype of Togn ) does not vanish if & is the number of intersection points of
C(m,t) with C. Ol

The proof shows also that the intersection number is realized when the represen-
tative of § is a curve of a pants decomposition and the representative of 5 is one of
the associated Dehn curves, a well-known result.

The following corollary has been proved in [Gol]. Denote by M* (%) the subset
of M(Z) consisting of the irreducible bundles.

Corollary 5.2. Assume that X is closed so that M*(X) is a symplectic manifold. Let
& be a curve and 1 a multicurve in . Then the Foisson bracket of the trace functions
of & and n vanishes if and only if & and 1 admit non-intersecting representatives.

Proof. 1t is well known from Goldman’s Poisson bracket formula that it & and 5 do
notintersect, then their Poisson bracket vanishes (see [Gol]). Reciprocally, consider a
pants decomposition of X such that & belongs to the cutting curves. It follows fromthe
work of Goldman that A = arccos(—%ng-) is a moment of the circle action generated
by &, that is, on .M°, the infinitesimal torus action defined by & is the Hamiltonian
vector field of /. Hence, if the Poisson bracket of some function f: M° — R with A
vanishes, then f is constant on the hamiltonian flow of ki, that is along the circle action
associated to &. Hence with respect to this action, all non-zero Fourier coefficients
vanish. By Theorem 5.1 applied to f* = T,,, we see that ) does not intersect £. [

5.2. Independence of trace functions. One can now prove the following theorem:

Theorem 5.3. The functions Te, where & runs over isotopy classes of multicurves in
Y., are linearly independent.

Since the isomorphism between M (%) and Hom(zw, SU(2))/ SU(2) identifies the
function T¢ with the trace function fg) suc2), we deduce Theorem 1.1 for the group
SU(2).
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Remark 1. Consider the following map:
J i Hom(m, SU(2))/ SU(2) — Hom(z, S1(2, C))/ S1(2,T)

Then j* fys12,0) = frsu(z)- So the independence of the £, gu(y) implies the inde-
pendence of the f, 5i(2,c), which proves Theorem 1.1 for the group SI(2, C).

Proof. Consider a pants decomposition of 2 with associated graph G and the action
of the torus T as in Section 44. Let J = % U () be the set of edges of
(7. By Theorem 2.1, one may suppose that & runs over the multicurves C(m, ) for
admissible indices m: J — NWand¢: J — Z.

Let B be a vanishing linear combination of the Tg’s. Let § = 3, B be its
decomposition with respect to the multi-degree m. Write

B = % Ao Loy
I3

Consider an arbitrary order on J and the corresponding lexicographical order on maps
m. Let M be the maximal m with a non-vanishing family of coefficients (A, ¢);. By
Lemma 4.1, for m < M one has [Ty () = 0. Hence Ips(Bpr) = Oar(B) = 0.
Furthermore, by Lemma 4.3,

T (Ba) = 3 Ane T Teqarn)
t
= ( > hars [ ] ony (e )) My (Teo)
! jed
where for any integers k, £ and real o,

(—D D exp(ita) ifk £ 0,
(2 cos(e)) otherwise.

Crile) = {

By Lemma 4.4, the function ITar(Te(ar,0)) does not vanish on @~ (Int A). Further-
more, by Remark 1, the functions

1_[ goMj,tj(aj)
jeld

where ¢ runs over the maps J — Z such that (M,t) are Dehn coordinates, are
linearly independent over @' (Int A). So the coefficients Aps, vanish, contradicting
the maximality of M. Ol
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6. The character variety

Denote by V the vector space €2 and by G the group SI(2,C) C End(V). Let =
be a finitely generated group. Choosing generators f1,...,#, of 7, we identify the
set Hom(sr, G} of morphisms with a closed algebraic subset of (End V)”* by sending
the morphism g to (p(¢1),. .., p(t,)). This endows Hom(sr, (¢) with a structure of
affine variety. Its coordinate ring C[Hom(m, )] is the quotient of C[(End V')"] by
the ideal of polynomial functions vanishing on Hom(w, G).

The action by conjugation of G on Hom(z, (7) is regular. By Hilbert’s theorem,
the ring of invariant functions is finitely generated. By definition C[Hom(z, G)]¢ is
the coordinate ring of the character variety.

One may naturally identify this coordinate ring with a subspace of the space of
complex valued functions on the quotient Hom(sr, G)/G . By the following theorem,
this subspace is the space 7 (7, G) of trace functions.

Theorem 6.1. The ring C[Hom(m, G)|¥ is generated as a vector space by the func-
tions Xi,

xellpl) = —tr(p(r)), p € Hom(m, G),

where [ runs over .
We provide an elementary proof of this well-known result.

Proof. Because of the trace relation (1), it suffices to prove that the ring of regular
invariant functions is generated by the y;’s as an algebra. Then by averaging the action
of the compact subgroup SU(2) C G, we get that any invariant regular function is
represented by an invariant polynomial function P € C[(End 1)*]°.

The symplectic form of V induce an isomorphism between ¥ and ¥V* and con-
sequently an isomorphism between End V' and End V*. By composing with the
transposition map, we define an equivariant isomorphism @ — a* of End(17). We
will prove that € [(End ¥)*]% is generated as an algebra by the functions

(ay,...,a,) — tr(w(a)) (7N

. Since the elements

where w(a) runs over the words in the letters ay,af,... ,a,.a
of G satisfy ¢! = a*, this will end the proof.

Let W = End(V). For any n-tuple (dy,...,d,) of non negative integers, the
space of polynomials on W®”" which are homogeneous of degree d; on the i-th

variable is isomorphic with ), Sym® (W*). So

cwel= P QR swmiwHc P QK wWHPh=E

deNP i=1,..,»n deNFr i=1,.,n
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A right inverse of this inclusion is the following map from E to C[W®7

®(gg@)...@gff)%P(al,...,a,,): l_[ f{(ai)

Bl 43 i=1,..n;

Observe that the invariant subspace of E is sent onto C[W®#|%. Using again the
identification of V with V¥, wehave that W ~ V@ V* ~ V* @ V* ByLemma6.2,
the invariant subspace of (¥ *)®27 ~ (V92 i generated by the maps

X1 & @ Xoy — a)(xcr(l):xa(Z)) £ a)(xo‘(lmfl) ) xcr(2m))

where o runs over the permutation of {1, ..., 2m}. We deduce the invariants subspace
of E and then that the functions (7) generate C[W ©7%]¢, O

Denote by Mult,, the space of multilinear maps from V> to C and by Sym,, the
subspace of symmetric maps. For any non-negative integer & < n with the same
parity as n, let Mult,, 1 be the subspace of Mult, generated by the maps

P(Xg(1ys s Xo () YO (X (k1) s Xoth42)) -+ - @(Xg(n—1) s Xer(m))

where o ranges over the permutations of {1,...,n} and P over Symy. Recall that
the spaces Sym,, are the irreducible representations of G.

Lemma 6.2. The decomposition into isotypical subspaces of Mult, is

Mult, = € Mult,y.

O=sk=n,
k=Hn mod?2

Proof. Mult,, ;. is clearly asubspace of the k-th isotypical component of Mult,,. Since
Mult,, is the direct sum of its isotypical components, we only have to show that the
spaces Mult, ; generates Mult,. This may be proved by induction over # by using
that any multilinear map symmetric with respect to the (# — 1) first arguments is of
the form

n
L(x1,...,xn) = M(x1,...,x5) + Za)(xl-,x,,)N(xl,...,i},...xn_l)
i=1

with M € Sym, and N € Sym,,_,. To show this last fact, observe that the map
sending (M, N) to L is an isomorphism from Sym,, ¢ Sym,,_, onto the subspace
of Mult,, consisting of maps symmetric in the (# — 1) first arguments. Indeed, this

morphism is injective by G-equivariance and we conclude by counting dimensions.
O]
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