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Multicurves and regular functions on the representation variety
of a surface in SU (2)

Laurent Charles and Julien Marche

Abstract. Given a compact surface S, we consider the representation space

MÇZ) Honu>i(E),SU(2))/SU(2).

We show that the trace functions associated to multicurves on S are linearly independent as
functions on M(H). The proof relies on the Fourier decomposition of the trace functions with
respect to a torus action on M(£) associated to a pants decomposition of S. Consequently the

space of trace functions is isomorphic to the Kauffman skein algebra at A — 1 of the thickened
surface.

Mathematics Subject Classification (2010). 57M27, 57M25, 37E30, 81S10.

Keywords. Representation variety, multicurve, skein algebra, Dehn coordinates, topological
quantum field theory.

1. Introduction

Given a compact and oriented surface E, one defines its representation space as the

quotient Hom(jn(E), G)/G. For G S1(2,C),SU(2),S1(2,M), we obtain three
related and celebrated spaces. The first one is an algebraic variety which classifies
semi-stable complex bundles of rank 2 over E with trivial determinant: it contains the

two other ones. The second space is compact and contains an open and dense subset

supporting a natural symplectic form. Its quantization provides a construction of a

topological quantum field theory (TQFT) which has interesting interactions with the

topology of 3-manifolds. Finally the last space contains as a connected component
the Teichmüller space, that is, the moduli space of hyperbolic structures on E.

The purpose of this article is to study a special class of functions on these spaces
called "trace functions". Given a 1-dimensional submanifold y of E and a representation

p e Hom(jTi(E), G)/G one sets

fy,G([Pi) IT*" *</><'')))
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where the ti 's represent the free homotopy classes of the components of y.
Assume that the Euler characteristic of E is negative. We prove that the functions

fytQ where y runs over the isotopy classes of 1-submani folds of E without a

component bounding a disc are linearly independent as functions on Hom(jTi(E), G)jG
for G SU(2) or Sl(2, C). In the case G Sl(2, C), it follows that these functions
form a basis of the coordinate ring of the representation variety. Consequently the
coordinate ring is isomorphic to the Kauffman bracket skein algebra of E x [0,1] at
A —1, cf. Sections 1.1 and 1.2 for precise statements.

D. Bullock showed in [Bui] that the last assertion is equivalent to proving that the
Kauffman bracket skein algebra has no non-zero nilpotents. Bullock's proof relies

on a delicate analysis of algebraic relations between trace functions which started in
[GM]. This statement also follows from Theorem 2.8 and 7.1 of [PS]. Our strategy

is completely different and somewhat simpler: using a pants decomposition of
the surface, we define on JK(E) Hom(jTi(E),SU(2))/SU(2) an action of the
torus T where ^ is the set of separating curves of the decomposition. Moreover,
1-dimensional submanifolds of E are parametrized up to isotopy by their Dehn
coordinates, which form a system of parameters depending on the pants decomposition.
Finally, we compute the Fourier decomposition of the trace functions relatively to
the action of T^ and show that one can recover the geometric intersection number
of two curves and more generally the full Dehn parameters of a multicurve via its
Fourier decomposition. This allows us to prove our assertion.

Our motivation to study the trace functions is the quantization ofthe representation

space M(Jj). First, the space of trace functions is a Poisson algebra, the Poisson
bracket being defined with the symplectic structure of Atiyah-Bott [AB]. Hence
the skein algebra at A —1 inherits a Poisson bracket. It appears that the skein
algebra at A e~ '4 is a deformation quantization of this Poisson algebra. This is a

consequence of the Goldman formula [Gol] expressing the bracket of trace functions,
cf. [BFK] and [T].

Not only do we have a formal quantization, but also a strict quantization provided
by the topological quantum field theor}'. Working with the combinatorial version of
TQFT [BHM V] we associate to E a family ofHilbert spaces Vk(E) and to each curve

y a family of operators (Op^.(y) : Vk(E) -> I^(E)). Then it appears that the natural

symbol of this family of operators is the trace function of y. Indeed, by [MN] the

asymptotic behavior of Op^.(y) as the level k tends to infinity is controlled at first
order by the trace function. Furthermore the composition and the commutator of
operators corresponds to the product and Poisson bracket of the trace functions. So

the relation between the curve operators and the trace functions is similar to the one
in micro local analysis between operators and their symbols. From this point of view,
our result produces non-vanishing trace functions and consequently non-vanishing
curve operators. This has non-trivial consequences like the asymptotic faithfulness
of the representation of the mapping class group on Vk(E) provided by TQFT, cf.
[And], [FWW], [MN].
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In the next parts of this introduction, we give precise statement of our results
(Sections 1.1 and 1.2) and of the quantization of JK(E) (Sections 1.3 and 1.4). Note
that we do not use skein modules and TQFT in the sequel of the paper. So the
remainder of the paper is completely independent of Sections 1.3 and 1.4. Section 2

introduces the Dehn coordinates for multicurves on a surface while Section 3 describe

torus actions on Hom(jTi(E,SU(2))/SU(2) which are part of the action-angle
coordinates of [JW2]. In Section 4, we give the main ingredients for computing the
Fourier coefficients of the trace functions. Section 5 describes the applications of
the preceding computations while Section 6 explains the isomorphism of the trace
functions algebra with the coordinate ring of the representation variety in Sl(2, C).

After we completed this article, A. Sikora mentioned us that a very different proof
of Theorem 1.1 appears in Corollary 50 of [Si].

Acknowledgment. This work originated with an exciting workshop in La Llagone
in January 2008. The second author received support ANR-08-JCJC-0114-01 from
Agence Nationale de la Recherche.

1.1. Results. Let G be the group SU(2) or S1(2,C). Now consider the space
Hom(jr, G)/G of morphisms from a group jt to G up to conjugation. For any
t e Jt, introduce the function Xt °f Hom(jr, G)/G defined by

Xt([p]) -tr(p(0), P e Horner, G).

Let us call a trace function any linear combination of the Xt'& with complex
coefficients. Because of the relation

tr(a) tr(b) tr(ab) + tr(a~lb) for all a, b e G (1)

the space T(tc, G) of trace functions is a subalgebra of the algebra of complex valued
functions of Hom(?r, G)/G.

When tc is of finite type, T(jt, Sl(2, C)) is finitely generated and is the coordinate

ring of the Sl(2, C) character variety of jt. The relation with the usual definition is

explained in Part 6.

Assume now that jt is the fundamental group of a manifold M. Let us define a

trace function fYtG for any isotopy class y of 1-dimensional compact submanifold of
M without arc components. Let t\, ...,tnhe the homotopy classes of loops which
are freely homotopic to the connected component of a représentant of y and set

Jy,G — Xh ¦ ¦ ¦ Xtn-

Since the ?j's are well defined up to conjugation and inversion, this product only
depends on the isotopy class y.

We will use these definitions in two cases. First, M is a surface and y the isotopy
class of a multicurve, that is no component of y bounds a disc. Secondly, M is 3-

dimensional, the 1-dimensional compact submanifolds without arc components are
then called the links of M.
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Theorem 1.1. Let G be SU(2) or S1(2, C) andjt thefundamental group ofa compact
orientable surface E with boundary (possibly empty) and negative Euler characteristic.

Then the tracefunctions /Yìq where y runs over the isotopy classes ofmulticurves

of E which do not meet the boundary, form a basis ofT(jt,G).

Some elements of the fundamental group of E cannot be represented by multicurves

because of the self-crossings. However, using the relations (1), one can show

easily that the trace functions (fy,G) are a spanning set of T(jt, G). The proof that
they are linearly independent is much more delicate and is the content ofTheorem 5.3.

Let j be the obvious map

Hom(jr,SU(2))/SU(2) -> Hom(jr,Sl(2,C))/Sl(2,C).

By the previous theorem, j* maps T(jt, Sl(2, C)) bijectively onto T(jt, SU(2)).

1.2. The Kauffman bracket skein module at A — 1. Let M be a 3-dimensional
oriented compact manifold. We call banded link an orientation preserving embedding
of a finite disjoint union of annuii in M. Note that these annuii are not framed as

we do not fix an orientation of their core. The skein module of M is defined as the
module over C[A, A±]-] freely generated by the set of isotopy classes of banded links
of M quotiented by the relations of Figure 1.

A V/ -i/ /^\
(-Az -A~z)

Figure 1. Kauffman bracket skein relations.

We will denote this module by K(M, A). If we replace A by — 1 we get a vector

space that we denote by K(M, —1). As a consequence of the relation (1), we have a

well-defined map

X(M,-1)^T(jt,G)
sending a link y to fy,G- Here jt is the fundamental group of M.

Assume that M E x [0,1] where E is an orientable compact surface. Then

by identifying E with E x {1/2} C M, each multicurve of E defines a link in M.
Any link L in M has a generic projection to E: by choosing such a projection and

applying the Kauffman relation at each crossing, we get a decomposition of L as

a linear combination of multicurves. Two projections are related by a sequence of
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Reidemeister moves and one can show that the decomposition of L does not depend
on the projection by analyzing each move. Hence, the family of isotopy classes of
multicurves of E is a basis of K(M, —1). As a corollary ofTheorem 1.1, we obtain

Theorem 1.2. For any compact orientable surface E, the natural map

JC(Ex[0,l],-l)^r(jr,G)
is an isomorphism.

Bullock proved in [Bui] that the kernel of this map consists of the nilradical of
JC(E x [0,1], —1). Moreover, it is claimed without proof in [PS] that this nilradical
is zero.

The skein module JC(E x [0,1], —1) is an algebra where the product is defined
in the following way: let i : E x [0,1] II E x [0, l]^Sx [0,1] be the map defined

by (x, t) i-> (x, ^-) for the first copy and (x, t) i-> (x, j) for the second one. Then

we set

y • 8 i(y II8).
As a consequence of the relations (1) this product is sent to the product of functions

by the isomorphism of Theorem 1.2. We will refer to this product as the stacking
product: it is also defined for the Kauffman skein module JC(E x [0,1], A).

1.3. T(jt, G) as a Poisson algebra. In this subsection and the next, G is the group
SU(2), E is a closed orientable surface and jt its fundamental group. The space
M Hom(jT, G)/G has a natural topology such that the trace functions are continuous.

The subset Ms consisting of classes of irreducible representations is open and

dense. By [AB] and [Gol], Ms is a symplectic manifold. Furthermore Goldman in
[Gol] expressed the Poisson bracket of the trace functions of two curves intersecting
transversally as a trace function. Consequently, T(jt, G) is a Poisson subalgebra of
~€°°(MS, C). The Poisson bracket appears also naturally on the topological side in
the following way.

Let us introduce the Kauffman module K (M, —e'4) of a 3-dimensional compact
oriented manifold. It is defined as the free C[[Ä]]-module generated by the set of
isotopy classes of banded links of M quotiented by the relations of Figure 1 with
A -eihl4.

One has a natural C-linear map from K(M, —eifi'4) to K(M, —1) sending a

linear combination YI ci(n)ïi of banded links to Y2ci(fy9i' where fi is the core of
yi. The kernel of this map is fiX(M, —elh^4).

Assume now that M E x [0,1]. Using the isomorphism of Theorem 1.2, we
obtain an exact sequence

0 -> fi X(M, -eih/4) -> X(M, -eih/4) -^ T(jt, G) -> 0 (2)
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Furthermore the multiplication by fi is a bijection

X(M, -eih'4) -> fi X(M, -eih'4) (3)

The injectivity follows from the fact that X(M, —e'4) is free as a C[[Ä]]-module,
a basis being given by the family of isotopy classes of multicurves of E.

Finally, X(M, —e'4) has a natural stacking product * and a natural involution ~~

defined by conjugating coefficients and sending a banded link y to S(y) where S : Ex
[0,1] -> E x [0,1] is defined by S(x, t) (x,l- t). One has f *g g* f.
Theorem 1.3. Let G be the group SU(2), E a closed surface, jt its

group and M E x [0,1]. Then the Kauffman bracket skein module X(M, —e'4)
with its product * and involution ~ is a deformation of the Poisson algebra T(jt,G)
in the sense thatfor any f,g e X(M, —eifi'4) one has

<y{f * g) «(/Mg), <?(/) <r(/),

<y(h-\f*g-g*f)) -{<?(/),<?(£)}

where a is defined in (2) and fi is the inverse of the map (3).

The first equation follows from the fact that the isomorphism ofTheorem 1.2 is an

algebra morphism. For the second equation, observe that the classes in X (M, —e'4)
of the multicurves of E are real and that their trace functions are real too. Last formula
on the commutator follows from the Goldman formula expressing the Poisson bracket
of two trace functions (see [Gol]).

The Poisson bracket depends on the symplectic form on Ms which itself depends

on a choice ofan invariant scalar product on the Lie algebra. We set [A, B} tr(AB*)
for A, B e su(2). In [AB], it is explained how a symplectic structure on Ms comes
from the interpretation of Hom(jr, G)/G as gauge equivalence classes of flat G-
connections. More precisely, the symplectic form comes as a reduction of the affine

space of all G-connections. On the latter space, the form is given by the following
formula:

(o(a,b)= / (a Ab) for a, b e Ü1 (E, su(2)).

1.4. Topological quantum field theory. In this section, we give an application
of our results to topological quantum field theory (TQFT). Precisely, the proof of
asymptotic faithfulness of quantum representations of mapping class groups given in
[MN] uses Theorem 1.2 as a final step.

Let M E x [0,1]. By sending £ Pi(A)yt to ]T pt(-eih'4)yt, one identifies
the skein module X(M, A) with a complex subalgebra of X(M, —e'4) preserved
by the involution _.
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For any integer k > 2, the topological quantum field theories (TQFT) coming
from Chern-Simons theory with gauge group SU(2) provides a complex Hermitian

space Vjfc(E) of finite dimension. In the geometric framework, the integer k — 2

is called the level while in the combinatorial framework constructed in [BHMV],
the authors use the parameter p 2k. Following them, one has a natural algebra
morphism

JC(M,k)->End(K*(E))
where & -ein/2k and X(M, &) := X(M, A) ®A=i;k <C.

For any / e X(M, A) and any k^2,we denote by Opfc(f) the corresponding
operator of V^(E).

Theorem 1.4. For any f,g e X (M, A) one has

Opk(f*g) Opk(f)Opk(g) and Opk(f) Opk(f)*,

and as k -> oo,

tr(Opk(f)) (J^y j s
(T(f)fi + 0(kn~l)

where n is half the dimension ofMs and fl is the Liouville measure.

First part follows from the general properties of TQFT. The estimation of the trace
has been proved in [MN]. A factor 4jt2 appears due to the different normalization
of the symplectic form. This estimation gives some information on the asymptotic
behavior of Op^.(/).

Define the normalized Hilbert-Schmidt norm of T e End(I^(E)) by

||r||Hs:=(dim(^(E)))-1tr(rr*).

Then by Theorem 1.3 and 1.4, for any / e X(M, A), the Hilbert-Schmidt norm of
Opk(f) is estimated by the L2 norm of g <y(f):

Il Opk(f)\\ìiS (Vol(^))-1 / \g\2ß + 0(k~l).
Jms

The space of sequences (Tk) e \\k>2 End(F^(E)) with abounded Hilbert-Schmidt
norm has a natural filtration O(0) D 0(1) D 0(2) D ••• where (Tk) is in 0(l) if
II Tk ||hs ^ Ck for some C. It follows from Theorems 1.3 and 1.4 that this filtration
corresponds to the formal one:

(QPjfc(/))jfc € 0(l) <=*/ e filX(M,-éh'4),

for any / e X(M, A). In particular, if / ^ 0, Op^.(/) does not vanish when k is

sufficiently large.
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Using this last observation, one may deduce that the action on I^(E) of an
homeomorphism <p of E provided by TQFT is asymptotically non trivial as soon as the
action of this homeomorphism on the Kauffman module is non trivial. This occurs
only if (p is isotopie to the identity, the elliptic or the hyperelliptic involution, cf.
[MN] for details.

2. Dehn coordinates

Given E an oriented compact surface with boundary, we will call multicurve a
submanifold of E which does not meet the boundary and has no component bounding
a disc. The Dehn theorem classifies isotopy classes of multicurves by decomposing
them into simple pieces: in these simple pieces, we will allow multicurves to meet
the boundary transversally as we explain below.

Let w be the arc of points in S1 whose angles are in [—jt/8, jt/8]. For every
m e N we fix a subset Wm of cardinality m in w invariant by complex conjugation.
Let A 6'1x[0,l]bean annulus and introduce a family A(m, t) of multicurves of
A indexed by N x Z. If m is positive, A(m, t) is the multicurve in A (unique up to
isotopy) whose projection on [0,1] is a submersion, which intersects each boundary
circle in Wm and whose algebraic intersection with the curve {—1} x [0,1] equals t
(oriented from 0 to 1). An example is shown in the left hand side of Figure 2. In the

case where m 0, A(m,t) consists of? parallel copies of the boundary.
Let T be the surface {z e C, suchthat \z\ < 1 and \z ± ^| > ^}. Choose

identifications of the boundary circles of T with S1 such that 1 e S1 is identified
respectively with pi j, P2 -5- and p$ i. We call T the standard pair of pants
(or trinion). Let m \, f«2, m$ be three non-negative integers with even sum. Consider

a multicurve as in the right hand side ofFigure 2 which intersects the boundary circles
in Wmi, Wm2, Wm3 via the identifications with S1. Denote it by C(m,\, «2,^3).

Consider now a general surface E with negative Euler characteristic. From the
classification of surfaces, it follows that E can be obtained by gluing trinions on
boundary components. We will call pant decomposition of E a homeomorphism

0: X^(\jTiU\jAj)/<p
iel jeJ

where the T;'s are copies of T, the Ay's are copies of A and (p is a collection of
homeomorphisms reversing the orientation between boundary components of the
Ti 's and the Aj 's. We ask that these homeomorphisms reduce to either the identity or
the complex conjugation via the identifications of the boundary components with S1,
so that they preserve the subsets Wn. We also ask that each boundary component of a

copy of T is glued to some copy of A. In that way, the components of the boundary
of E correspond to some copies of A.
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oc

Figure 2. Examples of elementary multicurves.

We associate to a pants decomposition of E the following graph G. Its vertex set
is / U 7To(3E). Edges are indexed by / in such a way that the edge associated to the
annulus Aj connects the copies of T or the boundary component of E to which it is
attached. It happens that the vertices in / are trivalent and the vertices in jto(3E) are
univalent. An edge is said internal if it connects trivalent vertices, otherwise it is said
external.

Consider now a surface with a pants decomposition with graph G. We will call
Dehn parameter a pair (m,t) where m is a map from the edges of G to N and is a

map from the edges of G to Z satisfying the following conditions:

- if jx, ji, 73 are three edges incoming to the same vertex, then mjx m72 m73

is even.

- for all edges j, if my =0 then tj > 0.

- all external edges j satisfy my 0.

Given such a Dehn parameter, one can construct a multicurve on E by gluing
elementary multicurves in the following way: define C(m,t) as the union

Ut CXm^m^my U (J/ A{m},t})/<p.

In this expression, m\, m^m^ are the values of m at edges adjacent to i.
The classification theorem of Dehn is the following.
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Theorem 2.1. Let Tj be a surface with pants decomposition. The map sending a
Dehn parameter (m,t) to the multicurve C(m,t) is a bisection between the set of
Dehn parameters and the set of isotopy classes ofmulticurves in E.

We refer to [FLP] for the proof. In the sequel we only need to know that each

multicurve of E is isotopie to some C(m,t). The fact that C(m, t) is isotopie to
C(m'', t!) only if m m' and t t' is a consequence of our results.

3. Moduli spaces and torus actions

Let E be an oriented compact surface with boundary. Let JK(E) be the set of
isomorphism classes of pairs (E,0) where E is a flat Hermitian bundle of rank 2 over
E and 9 is a volume section, that is a flat unitary section of A E. An isomorphism
between two pairs is an isomorphism of flat Hermitian bundles commuting with the
volume sections. The holonomy representation of the fundamental group % induces

an isomorphism
M(E) -> Hom(jr,SU(2))/SU(2).

To any pants decomposition is associated a torus action on a dense open subset of
this moduli space together with a set of invariant functions which separate the orbits.

Let C be a simple curve (embedded circle) of E. Choose an orientation of C and

a base point x e C. Then for any (E, 0) e M(JÙ), the holonomy at x of E\c is a

unitary automorphism gx of Ex preserving 0X. So the trace of gx belongs to [—2,2].
We set

ac(E,0) := arecos^tr^)) e [0,jt].

This defines a function ac on the moduli space JK(E) which does not depend on
the choices of the base point and the orientation, these functions were introduced by
Goldman in [Gol].

Let us introduce a circle action on the subset of JK(E) consisting of bundles
with a non-central holonomy along C. Let t e T := M/Z. To define t.(E, 0), we
assume that C is oriented. Then E\c is isomorphic to E+ ® E~: the holonomy
along C preserves this decomposition and acts on E+ by exp(iac(E)) and on E~
by exp(—iac(E)). Let Rt be the automorphism of E\c which acts on E by
multiplication by exp(±2ijtt).

Next consider the surface E' obtained from E by cutting out C. Denote by jt the

projection from E' to E. Let C+ and C_ be the boundary components of E' such that

jt restricts to diffeomorphisms jt± : C± -> C and which respectively preserves and

reverses the orientation. Then t.(E, 0) is the quotient of jt*E under the identification

u ~ JT*.Rt.(jr*)-1(w), u e jt*E\c+ jt+(E\c)

This definition does not depend on the orientation of C.



Vol. 87 (2012) Multicurves and regular functions on the representation variety 419

Let fé7 be a set ofsimple disjoint curves. Then the corresponding actions commute
and we obtain an action of the torus T on the set JK°(E) of bundles with non-
central holonomy along any curve of fé7. Assume that the curves of fé7 cut E into
tri nions. As in Section 2 we define a graph G whose edges are naturally indexed by

/ := fé7 U 7To(3E). Introduce the map

a: M(T,)^MJ
whose coordinates are the ac's.

Theorem 3.1. The image ofa is the polyhedron À consisting of the (ay) eMJ such

thatfor any trivalent vertex vofG
Wi — ®jI < ak < min(o!j + ay, 2jt — (aj + ay))

ifi, j andk are the edges incident to v. Thefibers ofthe restriction ofa to JK°(E) are
the orbits of the action ofT^. Furthermore the action is locally free on the preimage
of the interior of A.

This theorem has been proved in [JW1] under the assumption that E has no

boundary. There is no difficulty to generalize to the case where 3E ^ 0. One shows
first the result for a pair of pants E, cf. Proposition 3.1 of [JW1]. The general case
follows by analyzing how one can paste flat SU(2) bundles on the trinions cut out by
fé7 to a global bundle on E.

When E has no boundary, the open set of irreducible classes (E, 0) is naturally a

symplectic manifold, as we already mentioned it in Section 1.3. Then for any simple
curve C, the function ac(E) is a moment of the circle action corresponding to C,
that is its symplectic gradient generates the circle action, see [JW1], Proposition 5.4.

It is easily seen that À has a non-empty interior. Furthermore the restrictions to

Int(A) of the functions

exp(*£>tfy), (ij)eZJ,

are linearly independent where aj denotes the y'-th component of a. This will be
used in the proof of Theorem 5.3. The fact that À has a non-empty interior will also

ensure that some Fourier coefficients do not vanish, cf. Lemma 4.4.

4. Fourier decomposition

We are concerned in this part on the Fourier decomposition on some trace functions
defined on the moduli spaces discussed above. Consider a disjoint union T of unoriented

circles and a map h : T -> E. Then define the following function on M(E):

Th(E,6)= f] (-tr(gy))
yejro(r)
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where gy is the holonomy of E along h (y). Let fé7 be a finite family ofdisj oint simple
closed curves. Then for any k e Z the k-th isotype of Tn for the action of the torus
T^ is the function

Tlk(Th)(x) f Th(t.x)e~2*1^ di.

The first step in the computation of Tlk(Tn) is to extend the definition of Tn(E, 0) to
the case where T is a disjoint union of circles and closed intervals.

4.1. Generalized holonomy trace. Let us start with an algebraic preliminary.
Consider a finite family (Vi )iej of vector spaces. Let us define the tensor product (£^ eI Vi

assuming that the Vi are odd superspaces. First, for any bijections a and a' from
{1,... ,n}to I, one has a commutation map

C<r,a> ¦ V0(X) ®---0 Va(n) -> 7a/(i) <g> • • • <g> 7a/(„)

sending Vx ® ••• ® vn to (— l)€^va(i) ® ••• ® va(«) where a o' o a--1. Since

Ca',a" ° ca,o' ca,o", one can identify coherently these tensor products by taking
the projective limit of this system, which defines the unordered tensor product. More
precisely, we define ®i&i Vi as the subspace of the product

crebij({l «},/)

consisting of the families (va) such that c0t0'(v0) va>.

Let E —> E be a flat vector bundle of rank 2 and 9 a non-vanishing flat section

of A E. Observe that each fiber Ex has a complex symplectic product cox defined
in such a way that for all u, v e Ex,

U AV 9X =$¦ cox(u, v) 1.

Consider a 1-dimensional compact manifold T and a continuous function h : T —>

E. We will define the generalized holonomy trace of h as a vector

Th(E,6)e QÇEKp)
pedr

If T is an interval, we choose an orientation of it and denote by p and q the source
and target point of T. Then the holonomy along T is an homomorphism

A e HQm(Eh(p),Eh(q)) ^ Eh^ <g> .E^.
Identifying £"ä(/j) with £'|(- \ by the map sending u to C0h(p) (ur), we obtain a vector
Ab G Eh(q) <g> ^Ä(/>)- We set

rA(£,ö):=Ab.
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The important point is that this definition does not depend of the orientation of T if
we use the previous identification between Eh(p) ® Eh(q) and En(q) ® En(p). Indeed
with this identification, we have that (A~l)\> A\,. This is easily deduced from the
fact that A is a linear symplectomorphism. If T is a circle, we define Th(E,Q) as

before as the opposite of the trace of the holonomy of h (the super-trace). Finally,
if T has several components (Ti), we define Tn(E,0) as the tensor product of the

Th\r.(E,e).
Now let h' : V -> E be a continuous map and p and q be two distinct points

in dV such that h'(p) h'(q). Then by identifying p with q, we get a compact
1-manifold T with a map h : T -> E. It is easily checked that

Th(E,9) Cont(Th,(E,9))

where Cont is the contraction

Eh(r) —> Q9 Eh(r)
redV redr'\{p,q}

sending u ® v®w to u.co(v,w) if w e Eh(p),v e En(q)andu e 0re3r/\{/>)?} Eh{r)-

4.2. The basic computation. In this part we consider the case of a single simple
closed curve C of E with its associated circle action. Let T be a finite disjoint union
of circles and h : T -> E be a map intersecting C transversally.

Let I"" be the compact 1-manifold obtained by cutting out the points p of T such
that h(p) is on C and compactifying. Let h! be the obvious map V —>¦ E. Then it
follows from the considerations of Section 4.1 that Tn(E, 0) is the contraction of the

generalized trace holonomy Ty(E, 9) by the linear map

Cont: Q9 Ey{p)^C
pedT'

defined as follows. For any p e h~l(C), let ji(p) and J2(p) De the corresponding
boundary points of T' chosen in arbitrary order, so that

<g) £*(,)= Cg) i?™^». (4)

pedV peh-iiC)

Then Cont is the map sending 0/,eÄ-i (c) (vPt i <g> vPt2) to Yipeh-i (c) a>h{p) (vPt i, vPt2).
We will compute 11^(7^) in terms of these generalized holonomy traces. To do this

we introduce another contraction map from t^peSr' ^h'(p) to C.
Let p e h~l(C) and let us orientate C in such a way that the tangent vector of

T oriented from ji(p) to j2(p) followed by the oriented tangent vector of C form a

direct basis in E. Assume that the holonomy of (E, 0) along C is not central. Choose

two unitary eigenvectors e± e En(j,) of the holonomy along C with corresponding
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eigenvalues exp(±iac(E)) and such that 6n(p) — e+ A e^_. Then consider the linear

maps
Cont^: Ek(jp) <8> Eh(p) -+C, vx®v2^ {vi,e±){v2,e*)

where the bracket denotes the scalar product. Exchanging j\(p) and J2(p) and

defining the same application, we obtain a map Cont^. satisfying

Contavi <S> V2) —Cont^.(i;2 <S> v\).

So we have a well-defined contraction E\f}[ -> C. Finally we set,

Cont£: (g) Ey{p)^C, (g) (^5i®^)2)^ H Cont±(v/U®v/»,2)

where we used the decomposition (4) into a product of even superspaces. If C does

not intersect h, Cont+ is the identity map.

Lemma 4.1. Let k e N. Ifk is bigger than the cardinality ofh 1 (C), then Hk(Tn)
and Tl_k(Th) vanish. Ifk is equal to the cardinality ofh~l(C), then

Tl±k(Th)(E, 0) Contg(Th,(E,8)).

Proof. Assume first that h~l(C) is reduced to a point. Then the proof is based on
the simple observation that

Th(t.(E, 0)) Contt(Th,(E, 0)) for all t e T (5)

where Cont^ is the linear map from E,P}P to C given by

Contavi <g> v2) o>k(p)(RtVi,v2)

with Rt the automorphism of Eh(p) entering in the definition of the circle action.
Next a straightforward computation leads to

ù>hip)(RtVi,v2) e2î*t(vi,el}(v2,el}+e-2î*t(vi,el}(v2,el)

which proves the result, taking into account that the Hermitian product is C-linear

on the left. In the case where h~l(C) consists of several points, (5) is still satisfied
with the contraction

Contf( (g) (vPii ® vpa)j Y\ ^Kp^RtVp,!^^). (6)

p&h~l{C) pehrl{C)

Replacing each term in the product by the previous formula leads to the result. D
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Consider now a finite set fé7 of disjoint simple closed curves. One can generalize
the previous lemma with the action of T Assume that h : T -> E intersects each

C e fé7 transversally. Consider the manifold V and the map h! : Tr -> E obtained
from h : T -> E by cutting out the /?'s such that h(p) e C for some C G fé7. Then

one has the following decomposition into a tensor product of even superspaces

Eh'(p) Qs) { 09 Eh'(p)
peBT' Cef pedT'/ h'(p)eC

So for any e e {+, —}^ we can define a linear map

Cef pear'

where the Cont_|_ are the previously defined contractions.

Lemma 4.2. Let k e Z^. If there exists C e fé7 such that \kc\ > |Ä-1(C)|, then

Uk(Th) vanishes. Iffor any C e fé7we have \kc | |A-1(C)|, then

Tlk(Th(E,8) Contf(Th,(E,8))

with sc sgn(kc) for any C e fé7.

Proof. The proof is the same as the one of Lemma 4.1. Indeed equation (5) is still
satisfied with the contraction Cont? defined as the product of the Cont? given in (6)
where C runs over fé7. D

4.3. Fractional Dehn twist. Consider again a curve C on E and a map h : T -> E
which intersects C transversally in k points. One defines the fractional Dehn twist
of h along C of order Ijk by cutting T along C and connecting each strand with the
¦£-th consecutive one.

Formally, it is defined as follows. Let us orient arbitrarily C. Let Tr be the 1-

manifold obtained by cutting out from T the points p such that h(p) is on C and

compactifying. For any p e h~l(C), denote by ji(p) and J2(p) me corresponding
boundary point of T' such that C goes left when seen from ji(p). This is the same
convention as in Section 4.2, except that the orientation of the curve C does not depend
on p. The orientation of C provides P h~l(C) with a cyclic order, so Z/fcZ acts

on P. One sets

n/h r' u ([o, i] x p)/ ~
where we identify y'i (/?) with (0, p) and y'2(j9 + ^) with (1, p) for any p e P.

Choose a parametrization a : S1 —>¦ C respecting the orientation such that P
corresponds to the set of k-th. roots of unity. We define the map hi/k '¦ Tg/k -> E as

being equal to h on Tr and such that for all (t, p) e [0,1] x P one has

hi/t(t, P) a(exp(2fir).a-1(Ä(^))).
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The manifold T^/k and the map hi/k do not depend up to homotopy on the orientation
of C nor on the parametrization a.

Lemma 4.3. One has U±k(Thl/k) (-1)^-^6^^ U±k(Th).

Proof. This is an easy application of the Lemma 4.1 using the explicit description
of the fractional Dehn twist above. More precisely, denote by Hg/k the restriction
of hg/k to [0,1] x P and choose a parametrization a : Sl —>• C as above. Given a

bundle E in JK(E) one can suppose that it is trivialized on P in such a way that the

holonomy from p to p + 1 is

exp(2 i jtac /k) 0
0 exp(—2ijTac/k)

Then Hg/k and #(>/& differ by the factor exp(2i jtac /k) and the sign of the
permutation sending x to x + I in TLjkTL. D

4.4. Non vanishing of some isotypes. Consider a pants decomposition of E in the

sense of Section 2 with graph G. Let S1 x {1/2} be the core of the standard annulus
S1 x [0,1]. For each internal edges of G, we consider the core of the corresponding
annulus and the circle action it generates. This defines a torus action of T where fé7

is the set of internal edges.
Consider the multicurve C(m, t) with Dehn coordinates (m,t). By the first part

of Lemma 4.2, the k-th. isotype of Tc{m,t) vanishes if \kj \ > mj for some internal
edge j.
Lemma 4.4. Let k e Z be such that \kj | my for all j e fé7. Then the function
nk (Tc{m ,t)) is nowhere 0ona~l (Int(A)), where a is the map introduced in Section 3

À is the image ofa.

Proof. By Lemma 4.3, one may assume that t vanishes. We computed Tlk(Tc(m,o))
in Lemma 4.2 in terms of a contraction Conte defined as a product over the boundary
points of Tr as follows.

For any curve C in fé7, any pofC and any choice oforientation ofC, one considers

a unitary eigenvector e ofEp for the holonomy along C whose eigenvalue has positive
imaginary part. To an}' point p in dV such that h'(p) e C, one associates the vector

e+ (resp. e^_) corresponding to the orientation of C going to the left from p (resp. to
the right). For any p e dT, denote by s(k, p) the sign of kj where h(p) belongs to

j e tf. Then

Contf( (g) vp) ± n«1*. <*.,)>¦
pedT' pedT'

Here the equality is only true modulo a plus or minus sign because we have not chosen

an order of dT', so the sign of the left hand side is not defined.
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Since Ty(E, 9) is the tensor product of the Ty\y(E, 9) where y runs overs the

components of V, we have by Lemma 4.2

Uk(Th)(E,9) ± f] ContV(Th%(E,9))
yenro(r')

with Conty(vi, <S> vq) [vp, e^(k \}{vq, eq,k if the source and target of y are p
and q.

To prove the lemma, it suffices to show that the factors Contv (Ty\y (E,9))do not
vanish when a(E, 9) belongs to the interior of A. There are two cases to consider,
according to whether the endpoints of y belong to different boundary curves of the

pair of pants or the same one, cf. for example C(l, 1,0) and C(2,0,0).
In the first case, consider the pair of pants containing y and let j\, y*2 and y*3 be

the bounding curves with the orientation induced by the pair of pants. Assume that
the endpoints p and q of y belongs to y*i and y*2 respectively. If Conty(7V|y (E, 9))
vanishes, one deduces from the definition of Ty\y (E, 9) that the holonomy along the

loop h'\y sends the decomposition Ce^ ® Ce^ to the decomposition Cei. ® Cei,
permuting possibly the summands. Choosing p as a base point, one obtains that the
holonomies along j\ and the concatenation y~lj2y commute. Observe furthermore
that j^1 is freely isotopie to y~lJ2yji- It follows that for some Si e {1,-1},
the three eigenvalues exp^i^a^ (E)), exp(e2iaj2(E)), exp(e^i(ij3(E)) have product
equal to 1. This implies that

eiûj!(E) + £2aj2(E) + s^aj3(E) 0 mod 2jtZ.

This formula is only satisfied if a(E, 9) belongs to the boundary of A.
In the second case, h'\y connects two points p and q of the same boundary circle

j\ by going around another boundary circle j2. Since the neighborhoods of the

endpoints of y are on the same side of j\, the eigenvalues of ep and eq are the same.

Using this, one shows that if Conty(Tn'\y (E, 9)) vanishes, then the holonomy along
a path joining y*i to j2 preserves the decomposition into eigenspaces. In other words,
we are again in the first case. D

5. Consequences

5.1. Geometric intersection numbers. The geometric intersection number of two
isotopy classes of multicurves £ and rj is the minimal number of intersection points
of a représentant of £ with a représentant of rj.

If Ç has only one connected component, it generates a circle action on JK(E).
One may characterize the geometric intersection number of £ and rj in terms of this
action and the trace function of rj.
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Theorem 5.1. For any isotopy classes £ and ijofa curve and a multicurve respectively,

the geometric intersection number of% and rj is the biggest k such that the k-th
isotype ofthe tracefunction ofrj with respect to the circle action generated by f does

not vanish.

Proof. If k is larger than the geometric intersection number, then the k-th. isotype
vanishes by Lemma 4.1. Conversely, assume that £ does not bound a disc and is not
parallel to a boundary component, otherwise the result is trivially satisfied. Then there
is a pants decomposition with a separating curve C representing £. By Theorem 2.1,
r\ may be represented by a Dehn multicurve C(m,t). Then Lemma 4.4 shows that
the Ä>isotype of Tc{m,t) does not vanish if k is the number of intersection points of
C(m, t) with C. D

The proof shows also that the intersection number is realized when the representative

of £ is a curve of a pants decomposition and the representative of rj is one of
the associated Dehn curves, a well-known result.

The following corollary has been proved in [Gol]. Denote by MS(JÙ) the subset

of M(Jj) consisting of the irreducible bundles.

Corollary 5.2. Assume that E is closed so that MS(JÙ) is a symplectic manifold. Let
%be a curve and rj a multicurve in E. Then the Poisson bracket of the trace functions
of% and rj vanishes ifand only if% and rj admit non-intersecting representatives.

Proof. It is well known from Goldman's Poisson bracket formula that if f and rj do

not intersect, then their Poisson bracket vanishes (see [Gol]). Reciprocally, consider a

pants decomposition of E such that f belongs to the cutting curves. It follows fromthe
work of Goldman that h arccos(—j Tç) is a moment of the circle action generated

by |, that is, on M°, the infinitesimal torus action defined by £ is the Hamiltonian
vector field of h. Hence, if the Poisson bracket of some function / : M° -> M. with h

vanishes, then / is constant on the hamiltonian flow of h, that is along the circle action
associated to £. Hence with respect to this action, all non-zero Fourier coefficients
vanish. By Theorem 5.1 applied to / Tv,we see that rj does not intersect £. D

5.2. Independence of trace functions. One can now prove the following theorem:

Theorem 5.3. The functions Tç, where £ runs over isotopy classes ofmulticurves in
E, are linearly independent.

Since the isomorphism between JK(E) and Hom(jr, SU(2))/ SU(2) identifies the
function Tjfc with the trace function /[^])su(2)> we deduce Theorem 1.1 for the group
SU(2).
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Remark 1. Consider the following map:

j : Hom(jr, SU(2))/SU(2) -> Hom(jr, Sl(2, €))/ Sl(2, C)

Then y */y,si(2,C) — /y,su(2)- So the independence of the /yssu(2) implies the
independence of the /y5si(2,C)» which proves Theorem 1.1 for the group Sl(2, C).

Proof. Consider a pants decomposition of E with associated graph G and the action
of the torus T as in Section 4.4. Let / fé7 U jto(E) be the set of edges of
G. By Theorem 2.1, one may suppose that £ runs over the multicurves C(m,t) for
admissible indices m : J -> N and t : J -> Z.

Let ß be a vanishing linear combination of the 7|'s. Let ß Ylm ßm be its
decomposition with respect to the multi-degree m. Write

ßm — / J^m,tTc{rni ty

Consider an arbitrary order on / and the corresponding lexicographical order on maps
m. Let M be the maximal m with a non-vanishing family of coefficients (Xmjt )t• By
Lemma 4.1, for m < M one has TlM(ßm) 0. Hence IIm^m) U-m(P) 0.

Furthermore, by Lemma 4.3,

N-m(Pm) / ^M,t^lM(Tç(M,t))
t

/, ^M,t fl <PMj ,tj (&j IÏM (Tc(M,Ö)
t /e/

where for any integers k, I and real a,

f(_l)^-i)exp(^a) if jt -é 0,
<Pk,e(<x) \ pl(2cos(a)) otherwise.

By Lemma 4.4, the function Um(Tc(m,o)) does not vanish on #_1(Int A). Furthermore,

by Remark 1, the functions

Y\<PMJtt](aj)
/67

where t runs over the maps / -> Z such that (M, t) are Dehn coordinates, are

lineari}' independent over a-1(Int A). So the coefficients Xmj vanish, contradicting
the maximality of M. D
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6. The character variety

Denote by V the vector space C2 and by G the group Sl(2, C) C End(F). Let jt
be a finitely generated group. Choosing generators ti,... ,tn of jt, we identify the
set Hom(jr, G) of morphisms with a closed algebraic subset of (End V)n by sending
the morphism p to (p(t\),... p(tn)). This endows Hom(jr, G) with a structure of
affine variety. Its coordinate ring <C[Hom(jr, G)] is the quotient of C[(End V)n] by
the ideal of polynomial functions vanishing on Hom(?r, G).

The action by conjugation of G on Hom(jr, G) is regular. By Hubert's theorem,
the ring of invariant functions is finitely generated. By definition C[Hom(jr, G)] is
the coordinate ring of the character variety.

One may naturally identify this coordinate ring with a subspace of the space of
complex valued functions on the quotient Hom(jr, G)/G. By the following theorem,
this subspace is the space T(jt, G) of trace functions.

Theorem 6.1. The ring C[Hom(jr, G)]G is generated as a vector space by the functions

Xt,
Xt([p]) -tr(p(0), P e Hom(jr, G),

where t runs over jt.

We provide an elementary proof of this well-known result.

Proof. Because of the trace relation (1), it suffices to prove that the ring of regular
invariant functions is generated by the Xt's as an algebra. Then by averaging the action
of the compact subgroup SU(2) C G, we get that any invariant regular function is

represented by an invariant polynomial function P e C[(End V)n]
The symplectic form of V induce an isomorphism between V and V* and

consequently an isomorphism between End V and End V*. By composing with the

transposition map, we define an equivariant isomorphism a —>- a* of End(F). We

will prove that C [(End F)"]G is generated as an algebra by the functions

(au...,an) -^ tr (w(a)) (7)

where w(a) runs over the words in the letters a\,a*,... ,an,a*. Since the elements

of G satisfy a-1 a*, this will end the proof.
Let W End(F). For any n-tuple (d\,..., dn) of non negative integers, the

space of polynomials on W®n which are homogeneous of degree dt on the i-th
variable is isomorphic with (££)j Sym ' (W*). So

£[W®n]= 0 (g) SymJW*)C 0 (g) (W*)®d^ =: E.

deNni=\,...,n deNni=\ n



Vol. 87 (2012) Multicurves and regular functions on the representation variety 429

A right inverse of this inclusion is the following map from E to C[W^®"]

(g> (ll®*-®l?)^P(ax,-..,an)= f] H("i)
i=X,...,n i=l «;

/=1 dt

Observe that the invariant subspace of E is sent onto C[W®B]G. Using again the
identification of V with V*, we have that W ~ V <g> V* ~ V* 0 V*. By Lemma 6.2,
the invariant subspace of (V*)®2m c^ (y®2m)* [s generated by the maps

Xi &•••& X2m -> CO(xc(x) *a(2)) ¦ ¦ ¦ ®(Xa(2m-X) *a(2m))

where a runs over the permutation of {1,..., 2m}. We deduce the invariants subspace
of E and then that the functions (7) generate C [W®n]G. D

Denote by Mult« the space of multilinear maps from Fx" to C and by Sym„ the

subspace of symmetric maps. For any non-negative integer k ^ n with the same

parity as n, let Mult„5£ be the subspace of MultB generated by the maps

P(x<r(l) ,--- Xcr(k))<ü(Xcr(k+X) > Xa(k+2)) ¦ ¦ ¦ ^(Xr(n-l) Xa(n))

where a ranges over the permutations of {1,..., n) and P over Sym^.. Recall that
the spaces SymB are the irreducible representations of G.

Lemma 6.2. The decomposition into isotypical subspaces of Mult„ is

Mult„ 0 Mult«,*.
0=S*:=Sh.

k=n mod 2

Proof Mult„5£ is clearly a subspace of the k-th. isotypical component ofMult«. Since

Mult« is the direct sum of its isotypical components, we only have to show that the

spaces MultBj£ generates Mult„. This may be proved by induction over n by using
that any multilinear map symmetric with respect to the (n — 1) first arguments is of
the form

n

L(xx,... ,x„) M(xx,... ,x„) + ^û)(xj,xn)N(xx,... ,xì,...x„-i)
i X

with M e Symn and N e SymB_2. To show this last fact, observe that the map
sending (M, N) to L is an isomorphism from Sym„ ® Sym„_2 onto the subspace
of Mult„ consisting of maps symmetric in the (n — 1) first arguments. Indeed, this

morphism is injective by G-equivariance and we conclude by counting dimensions.
D
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