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Current twisting and nonsingular matrices

Matt Clay and Alexandra Pettet*

Abstract. We show that for k > 3, given any matrix in GL(k, Z), there is a hyperbolic fully
irreducible automorphism of the free group of rank k whose induced action on Zk is the given
matrix.
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1. Introduction

Considerable progress has been made in understanding the dynamics of elements

of the outer automorphism group of a nonabelian free group of rank k, Out Fk, by
considering the corresponding situation for the mapping class group of a compact
oriented surface of genus g, MCG(5^). Indeed, some of the most fruitful examples
of this pedagogy include the Culler-Vogtmann Outer space CVk [16], as well as the
Bestvina-Handel train-track representatives [7].

As a consequence of the Thurston classification of elements in MCG(5^), the
most important elements to understand are the pseudo-Anosov mapping classes [31].
Such elements are characterized as those mapping classes for which no isotopy class

of a simple closed curve in Sg is periodic. If a mapping class fixes the isotopy class of
a simple closed curve, then it restricts to a mapping class on the subsurface obtained

by cutting along the simple closed curve. In general, if / <E MCG(5^), then Sg
decomposes into subsurfaces (which only intersect along their boundaries) such that
for some n, the element fn can be represented by a homeomorphism that restricts
to each subsurface as either the identity or a pseudo-Anosov map and acts as a Dehn
twist in a neighborhood of intersection of the subsurfaces.

An element 0 <G Out Fk isfully irreducible, also called irreducible with irreducible

powers (iwip), ifno conjugacy class of a proper free factor ofFk is periodic. As above,

if 0 is not fully irreducible, then Fk has a free factor Fk' such that for some n, the
element (f>n restricts to an element of Out Fy ¦ However, it is not the case that <f>n

"The second author is partially supported by NSF grant DMS-0856143 and NSFRTG DMS-0602191.
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preserves some free factorization of Fk- The dynamics of iterating a fully irreducible
element on a conjugacy class of an element of Fk are similar to the dynamics of
iterating a pseudo-Anosov mapping class on a simple closed curve [7].

Thurston also characterized pseudo-Anosov mapping classes as those elements

/ e MCG(Sg) whose mapping torus Sg x [0, l]/(x,0) ~ (f(x), 1) admits a

hyperbolic metric [31]. However the analogous characterization for fully irreducible
elements does not hold as the mapping torus Fk x$ Z is not necessarily a hyperbolic
group when <É> € AutFk represents a fully irreducible element of Out Fk-
Automorphisms of Fk such that the mapping torus Fk x$ Z is hyperbolic are precisely
those for which no nontrivial element of Fk is periodic [3], [10], [18]. Using this
correspondence, we say an element <f> e Out Fk is hyperbolic if no conjugacy class

of a nontrivial element of Fk is periodic. In the literature, such elements have also
been called atoriodal. We remark that there are hyperbolic elements that are not

fully irreducible and fully irreducible elements that are not hyperbolic. However,
fully irreducible elements that are not hyperbolic have a power that is realized by a

pseudo-Anosov mapping class on a surface with a single boundary component [7].
When k 2, no element of Out Fk is hyperbolic as Out F2 MCG (£1,1) where

S\ti is the torus with a single puncture.
One method to understand an element ofMCGfSg-) is to examine its action on the

first homology of the surface, Hi(Sg,Z) Z2g. Any such element preserves the

algebraic intersection number between curves on Sg, giving the short exact sequence

1 -> Ig -> MCG(Sg) f"f*> Sp(2#, Z) -> 1.

Similarly, the action of an outer automorphism on H\(Fk,Z) Z leads to the

following short exact sequence:

1 -> IA* -> Out Fk ^^> GL(k, Z) -> 1.

There are various homological criteria that ensure that a given element of the

mapping class group is pseudo-Anosov [11], [25], [27] or, in the free group setting,
that a given element of Out Fk is hyperbolic and fully irreducible [19]. The main
goal of this paper is to generalize to the free group setting a theorem of Papadopoulos
showing that there is no homological obstruction for an element to be pseudo-Anosov
[29], i.e., for any A <G Sp(2g,Z), there is a pseudo-Anosov mapping class / €
MCG(S) such that f* A.

Theorem 6.1. Suppose k > 3. For any A <G GL(fc,Z), there is a hyperbolic fully
irreducible outer automorphism 0 <G Out Fk such that (f>* A.

Remark 1.1. For k 2, the function </> i-> </>* is an isomorphism and hence there are
matrices A <G GL(2, Z) that are not represented by fully irreducible automorphisms.
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Papadopoulos relies on the characterization of pseudo-Anosov mapping classes

in terms of their dynamics on the Thurston boundary of Teichmüller space. The
Teichmüller space for a surface Sg is the space ofmarked hyperbolic structures on Sg ;

Thurston compactified Teichmüller space using the space of projectivized measured
laminations. Pseudo-Anosovs are precisely the mapping classes with exactly two
fixed points in the compactified Teichmüller space [31]. Using this characterization,
Papadopoulos shows that if f,h € MCG(Sg-) where / is pseudo-Anosov and / and

h satisfy an additional hypothesis, then for large enough m, the mapping class fmh
is pseudo-Anosov [29].

Our approach forproving Theorem 6.1 is similar to thatofPapadopoulos. Namely,
we show that if 0 is hyperbolic and fully irreducible, and <£ and ty <E Out Fk satisfy
a certain hypothesis, then for large enough m, the element $>mty is hyperbolic and

fully irreducible (Propositions 3.1 and 4.5). As such, one needs a space where the

dynamics of an element dictate its type, as with the action of a pseudo-Anosov on the
Thurston boundary of Teichmüller space.

Since the properties of being hyperbolic and of being full}' irreducible are
independent, it is perhaps of no surprise that two different spaces are used in verifying each

property for (f>m ty. We consider the action on the space of measured geodesic currents,
Curr(Fk), as defined by Bonahon [8] (Section 2.4). This space is the completion of
the space of conjugacy classes for Fk, and thus is natural for testing hyperbolicity.
We also consider a new complex defined by Bestvina and Feighn for Out Fk that has

the useful property of being <5-hyperbolic [5] (Section 2.5). Stabilizers in Out Fk of
conjugacy classes of proper free factors have bounded orbits in this complex, and

thus it provides a natural setting for checking fully irreducibility.
Once we establish that <$>m ty is a hyperbolic fully irreducible element under a

certain hypothesis, our problem is reduced to finding for any ty <G Out Fk a hyperbolic
fully irreducible element 0 <G IA^ which, together with ty, satisfies the hypothesis.
To build such elements we apply a construction from our earlier work [12]; namely,
we use Dehn twist automorphisms to build customized hyperbolic fully irreducible
elements of Out Fk- Satisfying the hypothesis then requires that we understand the
stable and unstable currents in PCurr(i^) associated to a product of Dehn twists.
This is our other main result, with definitions appearing in Section 2.

Theorem 5.2. Let Ti and Ti be very small cyclic trees thatfill, with edge stabilizers
c?i and Ci, and with associated Dehn twist automorphisms <5i and 8i- Let N > 0
be such that for n > N, we have that 8"8^" is a hyperbolic fully irreducible outer
automorphism with stable and unstable currents [fi+] and [//."] in PCurr(i^). Then

Urn \p"] [nci] and lim [fin_] [nC2\.

Acknowledgements. We would like to thank M laden Bestvina for fielding several

questions concerning this project, as well as Juan Souto for having suggested it as an
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application of our construction of hyperbolic fully irreducible outer automorphisms.
We are also grateful to the referee for thoughtful and interesting suggestions concerning

our results.

2. Preliminaries

2.1. Bounded cancellation. When working with free groups, the following lemma
due to Cooper is indispensable. For a basis A, let \x\^ denote the word length of
x <E Fk with respect to A and Ia(x) the length of the cyclic word determined by x.

Lemma 2.1 ([14], Bounded cancellation lemma). Suppose A and B are bases for
the free group Fk- There is a constant C C(A, B) such that ifw and w' are two
elements of Fk, where

|«>U + W\a. \ww'\a,

then

\w\s + \w'\s - \ww'\b < 2C.

We denote by BCC(A, B) the bounded cancellation constant; that is, the minimal
constant C satisfying the lemma for A and B. In other words, if ww' is a reduced

word in A, and we can write w Ylt=x xi anc^ w' T\i=x x\ where Xi, x't <G B,
then for C ÏÏCC(A, B) the subwords Xi * * * xm-c-i and x'c+l * * * x'm, appear as

subwords ofw w' when considered as a word in B. Applying the bounded cancellation
lemma to w2 where w is a cyclically reduced word with respect to A, we see that w is
"almost cyclically reduced" with respect to B, i.e., w zxz~l where x is cyclically
reduced with respect to B and \z\b < BCC(<>4>, B).

2.2. Culler-Vogtmann Outer space. Equally indispensable to the study of Out Fk
is the Culler—Vogtmann Outer space CVk [16]. This is the projectivized space of
minimal discrete free actions of Fk on M-trees and is analogous to the Teichmüller

space for a surface. There is a compactification CVk [15] that is precisely the projectivized

space of minimal very small actions of Fk on M-trees [4], [13]. Recall that an
action on an M-tree is minimal if there is no invariant subtree; it is very small if the
stabilizer of an arc is either trivial or a maximal cyclic subgroup, and if the stabilizer
of any tripod is trivial. We consider the unprojectivized versions cvk and cvk as well.

The group Out Fk acts on either ofthe above spaces on the rightby pre-composing
the action homomorphism. Fully irreducible elements act on CVk with North-South
dynamics.

Theorem 2.2 ([26], Theorem 1.1). Every fully irreducible element (f> € Out Fk acts
on CVk with exactly twofixedpoints [7+] and [T-]. Further, for any [T] G CVk such
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that [T] ^ [71] it holds that

lim [T<f>m] [T+\.
m—>oo

The trees [7+] and [T-] are called the stable and unstable trees of 0 respectively.
The stable and unstable trees of 0_1 are [71] and [7+], respectively.

2.3. Dehn twists. As mentioned in the introduction, we build customized hyperbolic
fully irreducible elements of Out Fk using Dehn twist automorphisms. These are
defined analogously to a Dehn twist homeomorphism of a surface. Specifically,
given a splitting Fk A *(c) B, we define an automorphism by

8(a) a for all aeA,
8(b) cbc'1 for all b e B.

The automorphism 8 acts trivially on homology and therefore belongs to the subgroup
IA&. A Dehn twist automorphism arising from amalgamations over Z is analogous
to a Dehn twist around a separating simple closed curve on a surface.

We similarly obtain an automorphism 8 from an HNN-extension of the form

-lFh A*z (A,t \t la0t fli

for öo,#i £ Aby

8(a) a for all aeA,
(5(0 a0t.

An automorphism arising from an HNN-extension should be compared to a Dehn
twist around a nonseparating curve on a surface.

From Bass-Serre theory, a splitting of Fk over Z defines an action of Fk on a

tree T, the Bass—Serre tree of the splitting (see [2] or [30]). We will refer to such

Fk -trees as cyclic. In a certain sense, cyclic trees for Fk correspond to simple closed

curves on a surface; as in the mapping class group, the Dehn twist automorphisms
associated to cyclic trees generate an index two subgroup of Aut Fk (the subgroup
which induces an action of SL^(Z) on homology). Note that if 8 is the Dehn twist
automorphism associated to the cyclic tree T, then 8 preserves the action of Fk on
T, i.e., there is an isometry h§ : T -> T such that for all g e Fk and all x e T we
have hs(gx) 8(g)hs(x). In particular, £r(8(g)) trig) for all g e Fk.

We are primarily interested in the outer automorphism group of Fk, and so in the

sequel a Dehn twist will refer to an element of Out Fk which is induced by a Dehn
twist automorphism in Aut Fk.

The role of intersection number of simple closed curves is played byfree volume.
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Definition 2.3 (Free volume). Suppose X is a finitel}' generated free group that acts

on a simplicial tree T such that the stabilizer of an edge is either trivial or cyclic. The

free volume volr(X) of X with respect to T is the number of edges in the graph of
groups decomposition T JX with trivial stabilizer. Here T denotes the smallest
X -invariant subtree.

In the case that X (x), the free volume volr(X) is just the translation length

It(x) of x in T.
We say two cyclic trees fill if

\olTl(X) + \oIt2(X) > 0

for every proper free factor or cyclic subgroup X C Fk- With these notions we have
shown the following analog to a classical theorem ofThurston:

Theorem 2.4 ([12], Theorem 5.3). Let <5i and 82 be the Dehn twist automorphisms
ofFkfor twofilling cyclic trees ofFk. Then there exists N N(8\, 82) such that for
all m,n > N:
(1) (8™, 8") is isomorphic to the free group on two generators; and

(2) if 0 e [8™ ,8%) is not conjugate to a power of either 8™ or 8", then 0 is a
hyperbolic fully irreducible element ofOut Fk.

Key to our analysis in [12] and Section 5 of the present paper is the following
theorem, which measures how the free volume changes upon twisting.

Theorem 2.5 ([ 12], Theorem 4.6). Let 82 be a Dehn twist automorphism corresponding

to a very small cyclic tree T2 with cyclic edge generator C2, and let Tx be any
other very small cyclic tree. Then there is a constant C C(T\, T2) such that for
any x e Fk and n > 0 the following hold:

^(^"(x)) > lT2(x)[nlTl(c2) - C] - lTl(x), (2.1)

lTltân{x)) < lT2(x)[nlTl(c2) + C] + iTl(x). (2.2)

These bounds are shown in [12] to hold not only for cyclic subgroups, but for
any finitely generated malnormal subgroup of Fk; in particular any proper free factor
of Fk.

We will also need the following notions from [12] for Section 5.

Suppose that T is a very small cyclic tree for an amalgamated free product Fk
A *(c) B. After possibly interchanging A ^> B, there is a basis T A U B for Fk
such that e e A, and such that A is a basis for A and B U {c?} is a basis for B. Such

a basis is called a basis relative to T. If x e Fk and It(x) 2m > 0, then x is

conjugate to a cyclically reduced word of the form

xichyich---xmci™ymcjm
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where for s 1,..., m, each ys is a word in B, each xs a word in A, such that both

zxs and xsz are reduced for z c,c~l.
Now suppose that T is a very small cyclic tree for an HNN-extension Fk

A*/tc/t-i=c\. After possibly interchanging A ^> tAt~l, there is a basis A U {?o} for
Fk such that t§a for some # G A, e e A and A U {f^cfo} is a basis for A. If
x e Fk and ^^(x) m > 0, then x is conjugate to a cyclically reduced word of the
form

xx(cilt0)€lX2(ci2to)€2 ¦¦¦xm(cimto)€m

where for s 1,..., m, xs is a word in A U {^cfo}, Q e {±1}; and if e5 1,

then xsz is a reduced word for z c, c?_1; and if £r —1 then zxs+i is a reduced
word for z c, c~l.

In either of two above cases, we say that the specific word is T-reduced.

2.4. Currents. Measured geodesic currents for hyperbolic groups were first defined

by Bonahon [8]. Recently, (measured geodesic) currents for free groups have seen
much activity through the work of Kapovich and Lustig [21], [23], [24], [22]. We

briefly introduce the parts of the theory needed for the sequel; see [21] for further
details.

The group Fk is hyperbolic and hence has a boundary dFk- We denote

d2Fk {(xi,x2) e dFk x dFk \ xx ^ x2}.

This is naturally identified with the space of oriented geodesies in a Cayley tree for
Fk- There is fixed-point free involution "flip" map a: d2Fk —>- d2Fk defined by
o"(xi, X2) (x2, Xi which corresponds to reversing the orientation on the geodesic.

A (measured geodesic) current on Fk is an Fk -invariant positive Radon measure
on d2Fk/&- The set Curr(i^) is the set of all currents on Fk, topologized with
the weak topology. There is an action of M>o on Curr(i^) — {0}, and the
quotient PCurr(i^) is a compact space. There is a continuous left action of Out Fk on
Curr(74) and PCurr(74) defined by <pv(S) v^'^S)), where <p e OutFk,
v e Curr(i^), and where S is a measurable set of d2Fk/&- There is a slight
abuse of notation here as strictly speaking <p_1(S) is not well-defined. But for any
two $0, $1 e AutFk representing <p £ OutF^, there is an x e Fk such that
x^>q1(S) «^(S) and hence v(x$q 1(S)) ^(«Ê""1^)) since v is /^-invariant.

Given a basis A of Fk, we have an identification between d2Fk/& and unoriented
geodesies in 7^, the Cayley tree for A. For a nontrivial g e Fk (thought of as a

vertex in 7^) and v e Curr(i^), we define the two-sided cylinder

Cyl^(g) {unoriented geodesies in Tj, containing the vertices 1 and g} C 3 Fk/cr

and denote

{g,v)A v(CylA(g)).
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As the sets {Jh gep. hGylA(g) form a basis for the topology of d2Fk/o, and as

v(ACyl^(g)) v(CylA(g)), a current v e Curr(i^) is determined by its values

{g,v}A.
Using these notions there is a useful normalization of a current v relative to the

basis A. Put

o>a(v) ^(x,v)a-
xeA

The following lemma provides a useful way to show convergence in PCurr(i^):

Lemma 2.6 ([21], Lemmas 2.11 and 3.5). Let A be a basisfor Fk- Then

Urn [vm] [v]
m—>oo

only iffor every nontrivial g e Fk,

{g,Vm)A (g,v)Alim
0)A(vm) 0)A(v)

Particularly useful are the counting currents, defined as follows. Given a nontrivial
h e Fk that is not a proper power, define the current n^ by

{g>Vh)A {g^^hJA-

Here {g h)A is the number of occurrences of g or g~l in the cyclic word
determined by h; specifically, this is the number of times either of the reduced words g or
g-1 appear as a subword of the cyclic word determined by h. When h fm where

m > 1 and / is not a proper power, define % mrjf. The current rjh only depends

on the conjugacy class of h, and for 0 e Out Fk we have (ßrjh n^h)- Notice that
for any nontrivial h e Fk we have coA^h) — ^A(h)- Although we will not explicitly
use it, we remark that the set {[nh]}heFk-{x} is dense in ¥Curr(Fk).

Similari}' we define o(g ,h)j, as the number occurrences of g or g_1 in the
word h; specifically, this is the number of times the reduced words g or g~l appear as

a subword of the word h. A direct application of the Bounded Cancellation Lemma
2.1 gives the following.

Lemma 2.7. Let A and B be basesfor Fk andfix aeA. Then there exists a constant
C > 0 such that ifw, w', and ww' are all reduced words in B and ww' is cyclically

in B. then

o(a±l,w)A + o(a±l,w')A < (a±l,ww')A + C.

Proof. Let B BCC(B, A) so that

o(a±1,w)A + o(a±l,w')A -2B < o(a±l,ww')A.
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Since ww' is cyclically reduced with respect to B, as a word in A we have ww'
zxz~l where \z\A < B and x is cyclically reduced in A. Thus

o(a±1,ww')A < (a±l,ww')A + 2B.

Therefore, for C AB, the lemma holds. D

As in the Outer space setting, a hyperbolic fully irreducible element acts with
North-South dynamics on PCurr(i^). Here is a weak version of this statement that
is sufficient for our needs.

Theorem 2.8 ([28], cf. [5], Proposition 4.11). Every hyperbolic fully irreducible
element 0 e Out Fk acts on PCurr(i^) with exactly two fixedpoints, [//.+] and [//¦_].
Further, for any nontrivial h e Fk,

Hm irVh] \ßi+\.
m—>oo

The currents [//.+] and [//._] are called the stable and unstable currents of 0,
respectively. The stable and unstable currents of 0_1 are [//._] and [//.+], respectively.

The existence of a continuous Out Fk -invariant intersection form is established

by the following.

Theorem 2.9 ([23], Theorem A). There is a unique continuous map

{,}:cvkxCurr(Fk)^M>o
such that

(1) for any h e Fnwe have [T, n^) lr(h)-
Further, this map is

(2) Out Fk-invariant: {Tty,fi} [T,tyfi);
(2) homogeneous with respect the first coordinate: (XT,(a) X(T, fi) for X > 0;

(4) linear with respect to the second coordinate: [T, X \ //. i + A2/A2) X \ [T, //. 1 +
X2{T, 1x2) for Xx, X2 > 0.

The actions of Out Fk on cvk and Curr(i^) satisfy a type of "unique-ergodicity"
with respect to this intersection form.

Theorem 2.10 ([24], Theorem 1.3). Let (f> e Out Fk be a hyperbolicfully irreducible
element with stable and unstable trees [7+], [71] e CVk and stable and unstable
currents [//¦+], [//¦-] e PCurr(i^). Thefollowing statements hold.

(1) If' \x e Curr(i^) — {0}, then {T±,fi} 0 ifand only if[ß] [fi^\.
(2) IfT e cvk, then (T, p±) 0 if and only if[T] [TT].

The difference in signs ± and T between the above and its version in [24] is due

to our use of the right action of Out Fk on cvk •
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2.5. Bestvina-Feighn hyperbolic Out(F/i;)-complex. The final space we consider
is given by the following theorem.

Theorem 2.11 ([5], Main Theorem). For any finite collection (f>\,... ,(f>n of'fully
irreducible elements ofOut Fk there is a connected 8-hyperbolic graph X equipped
with an (isometric) action ofOut Fk such that:

(1) the stabilizer in Out Fk ofa simplicial tree in CVk nas bounded orbits;

(2) the stabilizer in Out Fk ofa properfreefactor F C Fk has bounded orbits; and

(3) 0i,..., (f>n have nonzero translation lengths.

The (5-hyperbolicity of such a complex X makes it comparable to the curve complex

for the mapping class group, although its use is significantly restricted by its
dependence on a finite set of fully irreducible elements. For our purposes the actual
definition of X is not necessary; we need only that non-fully irreducible elements of
Out Fk act on X with bounded orbits, and that the action of the elements (f>\,..., <$>n

on X have nonzero translation length and satisfy a property known as WPD (weak

proper discontinuity). We refer the reader to [5], [6] for further details.

3. Producing hyperbolic automorphisms

In this section we show how to produce a hyperbolic outer automorphism with a

specified action on H\(Fk,li). This involves examining the dynamics of elements

on Curr(Fk)- Using the "unique-ergodicity" and continuity of the intersection form
we can mimic an argument due to Fathi ([ 17], Theorem 2.3) giving a construction

of pseudo-Anosov homeomorphisms.

Proposition 3.1. Let <$> e Out Fk be a hyperbolic fully irreducible outer automorphism

with stable and unstable currents [//.+] and [//._] in PCurr(i^). Suppose
ty e Out Fk is such that [tyii+\ ^ [//¦-]. Then there is an M > 0 such that for
m > M the element $>mty is hyperbolic.

Proof. Let A+ and A_ be the expansion factors for <£ and 0_1 respectively, and let
X min{A+,A_} > 1. Also let 7+ and 71 be representatives of the stable and

unstable trees for <fi in cvk- Thus T+<fi A+7+ and T-<fi~l A_71.
Hence for each m > 0 and any //. e Curr(i^) we have

(T+,rtV>) {T+4>m,M>lm{T+,tyß),
and

(T_ty,ty-lrmv>) (T-,rmß) {T-rm,rì > im{T-,ß).
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Now define ot(ß) max{{7+, ß), {T-ty,ß}}. Then

a(<f>mtyß) > {T+,r^ß)>^m{T+,tyß),
and

Hence

„— 1 JL—m ,,\ ^ it ¦ i — 1 j—ma(ty-y4>-mß) > (T-ty,ty-y4>-mß) >Xm(T-,ß).

max{a(i>mtyß),a(ty-14>-mß)} > Xmß(ß),

where ß(ß) max{{7+, tyß), (71, ß)}. Now /?(/U.) 0 if and only if both

(T+,tyß) and (71,//.) are equal to 0. Applying the "unique-ergodicity" (Theorem

2.10), we have that if //. ^ 0 then (71, //.) 0 if and only if [ß] [//¦+],
and (7+, tyß+) 0 if and only if [1/7/.+] [//¦-]. By assumption [^7/.+] 7^ [/"•-]>
and hence ß(ß) is strictly positive. Therefore a(ß)/ß(ß) defines a continuous function

on PCurr(i^). Since PCurr(i^) is compact, there is a constant K such that

a(ß)/ß(ß) < K for all ß e Curr^) — {0}, i.e., Kß(ß) > ot(ß). For m such that
Xm > K, we obtain

max{a((f>mtyß), a(ty~x4>~mß)} > a(ß) for all ß e Cmr(Fk) - {0}.

It is now easy to see that <$>mty acts on Curr(i^) — {0} without a periodic orbit.
Notice that if9 e Out Fk has aperiodic conjugacy class, say 9 fixes the conjugacy

class of c, then 9 nc ngi/c\ nc, and hence 9 acts on Cun^i^) — {0} with a

periodic orbit. Thus as <$>mty acts on Curr(i^) — {0} without a periodic orbit it does

not have a periodic conjugacy class, i.e., <$>m ty is hyperbolic. D

4. Producing fully irreducible automorphisms

In this section we show how to produce a fully irreducible element of Out Fk with a

specified action on Hi(Fk, Z). This involves examining the dynamics of elements

on the (5-hyperbolic Bestvina-Feighn complex X from Theorem 2.11. We begin with
a theorem about the isometries of (5-hyperbolic spaces. Even though the space we
will ultimate consider has a right action, we will consider the more customary setting
where the space has a left action; it is clear how to convert a right action into a left
action.

We recall some basics about (5-hyperbolic spaces needed for this section. Some
references for this material are [1], [9], [20].

A geodesic metric space X is called 8-hyperbolic if for any geodesic triangle in
X, the 8-neighborhood of the union of any two of the sides contains the third. There

are various other equivalent notions. There is an inner product defined for points
x, y e X by

(x-y)w ~(d(x, w) + d(w, y) - d(x, y))
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for a given basepoint w e X. Associated to a (5-hyperbolic space is a boundary dX
which compactifies X as X U dX when X is locally compact. One definition of dX
is as equivalence classes of sequences {x;} with limj)y^.00(Xj.Xy) oo (the inner

product is defined with respect to some basepoint), the equivalence relation is defined

by {Xj} ~ {yi} if limj^.00(Xj.iVj) oo. If / is an isometry of X with nonzero
translation length (i.e., lim^^co j;d(x, fn(x)) > 0 for all x e X), then the action
of / extends to a continuous action on dX with exactly two fixed points. One fixed

point is represented by the sequence {fn(x)} for any x e X; the other is represented
by {f~n(y)} for any y e X. These points are called the attracting and repelling
fixed points of / respectively.

Theorem 4.1. Suppose X is a 8-hyperbolic space and f e Isom(X) acts on X with
nonzero translation length, with attracting and respectively repelling fixedpoints A+
and A- in dX. If g e Isom(X) acts on X such that gA+ ^ A_, then there is an
M > 0 such that for m > M the element fmg acts on X with nonzero translation

Before proving this theorem we need a lemma that allows us to locali}' build
uniform quasi-geodesics. Recall that a (A, €)-quasi-geodesic is a function a : [a, b] —> X
such that for all t, t' e [a,b] we have

-\t -t'\ -€ < d(a(t),a(t')) <X\t -t'\ + €.
X

We allow for the possibility that the domain of a is M. or M.>o- A function a : [a, b] ->
X is an L-local (X, €)-quasi-geodesic if for all a < a' < b' < b where b' —a' < L,
the function a L is a (A, é)-quasi-geodesic. First we recall a standard fact about

<5~hyperbolic spaces.

Lemma 4.2 ([9], Chapter III.H, Lemma 1.15). Let X be a 8-hyperbolic space,
let C\ : [0, Tx] -> X and c?2 : [0, 7V| —>¦ X be geodesies such that Cx (0) c?2(0). Let
T maxjTi, 7*2} and extend the shorter geodesic to [0, T] by the constant map. If
K d(a(T), c2(T)), then d(a(t), c2(t)) < 2(K + 28) for all t e [0, T].

The next lemma shows us that the sequence of points (fmg)n(x) defines a local
quasi-geodesic with uniform constants.

Lemma 4.3. Let X, f and g be as in Theorem 4.1. Fix x e X andfor m > 0, let otm

be a geodesic connecting x to fmg(x). Then there is an € > 0 such thatfor m > 0
the concatenation of the geodesies am ¦ fmg(oim) is a (1, €)-quasi-geodesic.

Proof. Letßm amUfmg(am),dm d(x, fmg(x)) and consider the points g(x),
f~m (x) and gfmg(x). Notice f~m (ßm) is apath from f~m (x) to gfmg(x) passing
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through g(x); see Figure 1. As gA+ ^A-, the inner product (f~m(x).gfmg(x))g(?:)
stays bounded as m -> oo. Hence there is a constant C > 0 that does not depend on
m such that

d(x,fmgfmg(x)) d(f-m(x),gfmg(x))
> d(f-m(x),g(x)) + d(g(x),gfmg(x)) - 2C

gA-

t>

q gfmg(x)

g(x) f

.' /-"(*)

fmgfmg(x)

C + 28

fmg(x)

l>

A-

Figure 1. The geodesies in Lemma 4.3.

Fix a geodesic c from x to fmgfmg(x), and let z be the midpoint on c. As X is

(5-hyperbolic, there is an x' e ßm such that d(z,x') < <5. Without loss of generality
we can assume that x' e am. Thus

d(x',x)>d(x,z)-8>dm -C-8,
and therefore

d(x',fmg(x)) dm -d(x,x') <C +8,
from which we conclude l,(z,/w£(x)) < C+2.5. Let^ d(x, fmgfmg(x)) and

define cz : [0, dm] -> X by c?z(f) c?(?) if 0 < t < ^^ and cz(t) z otherwise.
Then by Lemma 4.2 we have for 0 < t < dm that d(ßm(t),cz(t)) < 2(C + 4<5).

Similarly define c'z: [dm,2dm] -> X by c?^.(f) .z if dm < r < 2dm — ^t^ and

c?^(?) c(t -\- d'm — 2dm) otherwise. Then another application of Lemma 4.2 shows
that for dm < t < 2dm we have d(ßm(t),c'z(t)) < 2(C + 4<5). Notice that if
0 < r < dm < r' < 2^», then

(t' - t) - 2C < d(cz(f), c' (t')) <(t' -t)
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as 2dm -d'm < 2C. Therefore if 0 < t < dm < t' < 2dm then

(t' - t) - (6C + 16,5) < d(ßm(t), ßm(t')) < (t' - t).

The other cases (0 < t < t' < dm or dm < t < t' < 2dm) are clear since am is a

geodesic. D

Now to complete the proof of Theorem 4.1 we need the following theorem.

Theorem 4.4 ([9], Chapter III.H, Theorems 1.7 and 1.13). Let X be a 8-hyperbolic
space, and let y: [a,b] -> X be an L-local (X, €)-quasi-geodesic. Then there is an
R R(8,X, e) such that ifL > R, then for some X' > 1 and €r > 0, the path y is a
(X', €r)-quasi-geodesic.

We can now give a proof ofTheorem 4.1.

Proofof Theorem 4.1. Fix x e X, and let € be given from Lemma 4.3 and let R

R(8,1, e) be the constant from Theorem 4.4. As / has nonzero translation length,
for m > 0 we can let Lm d(x, fmg(x)) > d(g(x), fmg(x)) - d(x,g(x)) >
m t — d(x, g(x)) for some t > 0. Let M be such that Lm > R- As in Lemma 4.3, let
otm be a geodesic connecting x to fmg(x), and let ßm am • fmg(ot)- Then define

a path y : [0, oo) -> X by

Y ßm [J fmg(ßm) [J (rgfißm)-...
fmg(<*m) (fmg)H<*m)

By Lemma 4.3, y is an Lm -local (1, é)-quasi-geodesic and hence if m > M then y
is a (A', é')-quasi-geodesic from some X' > 1 and €r > 0 by Theorem 4.4. Therefore
for any x' e X and ¦£ > 0 we have

d(x', (fmgf(x')) > d(x, (fmgf(x)) - 2d(x', x)

> —Lml-€'-2d(x',x)
A

and hence fmg has nonzero translation length. D

The fully irreducible analog ofProposition 3.1 follows easily from Theorems 2.11

and 4.1.

Proposition 4.5. Let (f> e Out Fk be a fully irreducible outer automorphism with
stable and unstable trees [7+] and [71] in CVk- Suppose ty e OutFk is such that
[T+ty] ^ [71]. Then there is an M > 0 such that m > M the element (f>mty is fully
irreducible.
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Proof. Let X be the Bestvina-Feighn <5-hyperbolic complex fromTheorem 2.11 using
(f>x 4> and let A+ and A- denote the attracting and repelling fixed points of0 in dX.
What needs to be shown in order to apply Theorem 4.1 is that [T+ty] ^ [71] implies
that A+g ^ A— As the action of 0 on X satisfies WPD, see Proposition 4.27 of [5],
if A+ty A_ then for some r, s > Owe have ty(f>rty~l (f>~s ([6], Proposition 6).
As the stable and unstable tree for positive powers of </> are the same as for </>, this
would imply [7+^"] [71].

Now we can apply Theorem 4.1 to the pair <£ and ty acting on X to conclude that
for large enough m, the element (f>mty does not have a bounded orbit and hence by
Theorem 2.11 is fully irreducible. D

We would like to thank Mladen Bestvina for suggesting the use of WPD in the
above argument.

5. The stable current for a product of twists

In this section we examine the qualitative behavior of the stable and unstable currents
associated to a product of Dehn twists. The main result is Corollary 5.4 which
produces elements of Out Fk satisfying the hypotheses of Propositions 3.1 and 4.5.
We begin with a simple lemma describing the change of a conjugacy class in Fk

resulting from powers of a single twist.

Lemma 5.1. Let T\ and T2 be very small cyclic trees with edge stabilizers C\

c?2 and associated Dehn twists 81 and 82. Suppose Tx and T2 are bases relative to T\
and T2 respectively such that c?2 is cyclically reduced with respect to T\ and C is the

constantfrom Lemma 2.7 using these bases. Thenfor any x e Fk and n > r > 0 the

following hold.

<Cf,«5f(x)>ri >(n-r + l)lTl(x)-{ctl,x)Tl, (5.1)

tn(ß"(.x)) < nlTl(x) + lTl(x), (5.2)

*7i(*?(*)) > nlTl(x) + iTl(x) - {ct\x)Tl, (5.3)

(Cf1,«52-"(x))ri <lT2(x)[n(c1±1,c2)T1 + 2C] + (cf\x)Tl, (5.4)

l7l(82n(x)) < lT2(x)[nlTl(c2) + 2C] + ln(x) (5.5)

Proof. We begin by proving the first three inequalities. By replacing x by a conjugate
we are free to assume that x is Tx -reduced as all of the quantities involved in the

inequalities only depend on the conjugacy class ofx. If Tx is dual to an amalgamated
free product we have

x xxtfyxcl1 ¦ ¦ ¦ xmc\m ymc{m.
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Therefore

Sj(x) xxc\l+nyxc{l-n ^xmc\™+nymci™-n

is a cyclically reduced word in Tx. Hence by only counting the occurrences of Cj

that appear in the clf and c^-" we see that

(cf ,8l(x))Tl > £(|i, +«l ~r + 1) + (\Js-n\-r + l)
5 1

m

> 2m(n — r + 1) — >J |^| + \js\
5 1

>(n-r + l)lTl(x)-{ctl,x)n-

A similar proof works if Tx is dual to an HNN-extension. This shows (5.1); the

inequalities (5.2) and (5.3) follow similarly by looking at the given cyclically reduced

expression for <5"(x).
We now prove the last two inequalities. As before, by replacing x by a conjugate

we are free to assume that x is 72-reduced. If 72 is dual to an amalgamated free

product we have

X X\C2 yx^2 ' " Xfn^2 )>fn('2 '

Therefore
e—«/ \ fi —n /*i -\-n im—n /wi+"82n(x) x1c21 yxcJ2l •••xmc2m ymcJ2m^

is a cyclically reduced word in T2. Hence by counting the number of occurrences of
c^1 in the various xs, ys, c2~n and c2

n we see that

(cf\82n(x))Tl
<lT2(x)o(ct\4)Tl

m

+ Y,o(ct\xs)Tl +o(ct\c^)Tl +o(ct\ys)Tl +o(ct\4s)n
5=1

<iT2(x)n{cf1,c2)r1 +{cf\x)Tl + AmC

< lT2(x)[n(cfl,c2)n + 2C] + [cf1 ,x)Tl.

A similar proof works if 7\ is dual to an HNN-extension. This shows (5.4). The

inequality (5.5) is just an application of the bounded cancellation lemma using the

cyclically reduced expression for 82n(x). D

These estimates allow us to show our main technical result concerning the stable

currents.



Vol. 87 (2012) Current twisting and nonsingular matrices 401

Theorem 5.2. Let Tx and T2 be very small cyclic trees thatfill, with edge stabilizers Cx

and c?2 and associated Dehn twist automorphisms <5i and 82. Let N > 0 be such that

for n > N, we have that 8n82n is a hyperbolicfully irreducible outer automorphism
with stable and unstable currents [ß+] and [ß^_] in PCurr(i^). Then

lim [pJV\ [r]cA and lim [ß"_] [nC7\.
n—>oo ' n—»-00

Proof Let T\ be a basis for Fk relative to T\. Denote by (pn 8n82n. Fix an
element a e Tx, denote its conjugacy class by a, and denote <fi™(ct) by a™. Hence

^Va Va™- As It2(m) > £ti(®<) 0, Lemma 5.2 of [12] shows that since n is

sufficiently large, for m > 0 we have ^r2(a™) > ^(a™). Let K > 0 be such that
for all m, n > 0,

lTl(<) < Wt,«) + %«)) < 2K£t2(<).

Such a K exists by Theorem 1.4 in [24].
Then for each n > N, as ß+ is the stable current for </>„, from the North-South

dynamics of <pn on PCurr(i^) (Theorem 2.8), we have for any g e Fk and € > 0, a

constant M M(n,g, |) such that for m > M (Lemma 2.6),

r>*?<)ri (s,^+hi
^5i0?<) û>7i(M+)

< f. (5.6)

We analyze how the current rjam changes as m -> 00 in terms of n. Fix a basis

Ti that is relative to T2 such that c?2 is cyclically reduced with respect to Tx, and let
C be larger than either constant C C(T\, T2) from Theorem 2.5 or the constant C
from Lemma 2.7, using the bases Tx and T2. Applying (2.1), (5.1) and (5.4), for any
m > 0 and n > r > 0 we have

>(n-r + l)l>Tl(82n(a™)) - [cf1,82»(a™))Tl

>(n-r + l)[lT2(a%)[nlTl(c2) - (C + 1)]]

-[£r2«)[n(c1±1,C2)r1+2C] + (c1bl,<)ri]

>n2lT2(aZ)tTl(c2)

-nlT2(a™)[(C + 1) + (r - l)lTl(c2) + {cf1,c2)r1]

-2ari(0-^(0
r2«)[n^ri(C2)

[(C + 1) + (r - iyri(c2) + ict\c2)n] - (2C + 2*)]

>— * Z v « ' I

— n

> îr2W)[«2^ri(c2)-«Ci-Ç2]
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for some constants Cx > 0 and C2 > 0 that do not depend on m. Applying (2.2),
(5.2) and (5.5) we also have for any m > 0 and n > 0 that

^(WW)) < nlTl(82n«)) + ^(<52n«))

<n[lT2(a%)[nlTl(c2) + (C + l)]\
+ %«)[n^(c2) + 2C] + ln(otn)

<n2iT2(x)lTl(c2)
+ «%«)[(C + 1) + iTl(c2)] + (2C + 2K)lTl(a%)

< %«)[n2^ri(c2) + «c; + C'2\

for some constants C[ > 0 and C2 > 0 that do not depend on m. Therefore, given
r > 0 there are constants ßi > 0 and ß2 > 0 that do not depend on m such that for

any n > r,

lTl(^2n{<)) - (cF.W^K))^ < tT2«)[nßx + ß2]- (5.7)

Now, applying (2.1) and (5.3), we have for any m > 0 and n > 0,

^(WW)) > »^(C*W» + iTl(^2n«)) - [Cf',82n(0L™))Tl

>n[lT2(a%)[nlTl(c2)-(C + l)]\
- lT2(a%)[nlTl(c2) + 2C] - {cf1 ,<)ri

>n2tT2(oÇ)tTl(c2)

-nlT2(0L™)[(C + 1) + ^n(c2)] -(2C + 2^)%«)

Therefore, there are constants yi > 0, 72 ^ 0 and 73 > 0 that do not depend on m
such that for n > 0,

^(WW))>WO[»2yi-»y2-y4 (5.8)

As a first approximation, we will show that the currents r\am converge to the

correct value on Cyly(c?[). Notice ^(Cyly (c?[)) 1. Suppose g c^ for some

r > 0. Let € > 0 and fix n > max{N, r } large enough such that €(n2yx — «72 — /3) >
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2(nßi + ß2). Now let m > M(n, g, §). Then

403

[g> vci in '.Wn
OTiOla) 0)Tl(ß")

(g,lafa is^a^m

{g,nam+i)n [g,ßn+)rx

ari0la>n+i) ^n(ßn+)

< 1- te'iaZ+vn
1 an

rt^Ç"«)) - (cfr,8ï82n(a™))Tl

€

2

±r sn s—n/n,m'

(5.9)

lr2«)[nßx+ ß2]

-T2«)[n2yx -ny2-ys]

<- + -=€.2 2

Now suppose g ^ Cj for any r > 0; in this case rçCl (Cyly (g)) 0. There is some

ao eT\ —{ci} such that [a^1, g}x1 > 0. Therefore for any m > 0,

(^.Orx^^rx^te^.On
,±1

(5.10)

±ias every occurrence of g in a™ contains some occurrence of a^ in a™ and such

an occurrence can only be used (a^ g)x1 times. Since

1

h(K) J2 (^te i-
,±1 „,m

xeTi-{ci)

(cr>On

the computation in (5.9) combined with (5.10) shows that there is an n n(g, €) such

that 2{g±1,a%)Ti < e^OO for m sufficiently large. Then for m > M(n,g, §),

{g^din {g,ß+m
OTiOlci) «>Ti(ß+)

{g>Vci)Ti {g'VajfiTi
WiOlci) 0)Tl(r}am)

hyalin {g,ß+)n
WiOla*) 0>T1(ß>+)

< ''VaZm

{g^^On

(5.11)

^«)
< - + - €.

2 2
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Putting together (5.9) and (5.11), we have that limn->oo[/-*¦+] — D7cJ- The same

argument applied to <p~l shows that limB_5.oo[ß"_] [nC2\-

Remark 5.3. We remark that Theorem 5.2 is analogous to the surface setting. Given
two simple closed curves a, ß C Sg that fill, the stable and unstable measured

laminations [A+] and [A"] in the Thurston boundary ofTeichmüller space associated

to the pseudo-Anosov mapping classes <5£<5ö" converge to [a] and [ß] respectively.
Here 8a and 8ß are the respective Dehn twist homeomorphisms about a and ß.

This raises a subtle point. To the hyperbolic fully irreducible outer automorphisms
8n82n in Theorem 5.2 are also associated the stable and unstable trees [Tf ] and [T"]
in CVk (see Section 2.2). As CVk is compact, the associated sequences {[7T]} and

{[7^]} have accumulation points. But in contrast with Theorem 5.2, it is not clear
whether there is a single accumulation point for each respective sequence or how
to characterize an accumulation point for either sequence. By Theorems 2.9, 2.10
and 5.2, the element c?2 has a fixed point in any accumulation point of {[T7"]}, and

similarly C\ has a fixed point in an}' accumulation point of {[7^]}. However it is

unlikely that this is a characterization of the accumulation points for the sequences

{[7^]} and {[7-]}.

The following corollary is essential for our main theorem (Theorem 6.1).

Corollary 5.4. Let T\ and T2 be very small cyclic trees thatfill, with edge stabilizers
c i and c?2 and associated Dehn twist automorphisms 8 \ and 82. Let N > 0 be such that

for n > N, we have that 8n82n is a hyperbolicfully irreducible outer automorphism
with stable and unstable currents [ß'V\ and [ß"_] in PCurr(i^) and stable and unstable

trees [T"] and [T"] in CVk- For ty e Out Fk such that the conjugacy class ofty(cx)
is not equal to the conjugacy class of C2, there is an Nx > N such that for n > Nx
we have [tyß\] ^ [ß"_] and [T^ty] ^ [T?].

Proof. As the conjugacy class of ty(cx) is not equal to the conjugacy class of c?2 we
have that [^??C1] ^ \jic-i\- Fix disjoint open sets U\ and l72 of PCurr(i^) containing
[tyrjci ] and [nC2] respectively. By Theorem 5.2, there is an Ni such that for n > Nx we
have [1/7/^] e Ui and [ß"_] e U2, and hence as Ui and U2 are disjoint, [^/u/j_] ^ [//¦"].

Additionally for n > Nx we have (T1ty,ßn+) {TJ_,tyß1_) > 0 by Theorem

2.10, as [tyß\] ^ [ß"_]. As (T^,ßn+) 0, this shows that [7^] ^ [TO].
D

6. A hyperbolic fully irreducible automorphism for every matrix in GL(k, %)

Our main theorem now follows easily.
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Theorem 6.1. Suppose k > 3. For any A e GL(fc,Z), there is a hyperbolic fully
irreducible outer automorphism 0 e Out Fk such that (f>* A.

Proof. Fix ty e Out Fk such that ty* A. Let T be a very small cyclic tree dual
to an amalgamated free product with edge stabilizer C\ (a primitive element of Fk)
and associated Dehn twist <5i. As is shown in [12], Remark 2.7, given any hyperbolic
fully irreducible automorphism 0 e Out Fk, the pair T and TO fill for sufficiently
large I. The edge stabilizer for TO is 0 (c\). Thus for large enough t we can
assure that the very small cyclic trees T and TO fill and that the conjugacy class of
ty(cx) is not equal to the conjugacy class of 0 (c\) (the edge stabilizer for TO

Let 82 be the associated Dehn twist for TO By Theorem 2.4, Propositions 3.1

and4.5 and Corollary 5.4, for large m and n the outer automorphism (8"82n)mty is a

hyperbolic fully irreducible element. Since both <5i and #2 act trivially on Hi (Fk, Z),
we have ((8n82n)mty)* ty* A.

'
D
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