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Current twisting and nonsingular matrices

Matt Clay and Alexandra Pettet*

Abstract. We show that for & > 3, given any matrix in GL(k, Z), there 1s a hyperbolic fully
irreducible automorphism of the free group of rank & whese induced action on Z* is the given
matrix.
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1. Introduction

Considerable progress has been made in understanding the dynamics of elements
of the outer automorphism group of a nonabelian free group of rank k, Out Fy,, by
considering the corresponding situation for the mapping class group of a compact
oriented surface of genus g, MCG(S,). Indeed, some of the most fruitful examples
of this pedagogy include the Culler—Vogtmann Outer space CVy, [16], as well as the
Bestvina—Handel train-track representatives [7].

As a consequence of the Thurston classification of elements in MCG(S,), the
most important elements to understand are the pseudo-Anosov mapping classes [31].
Such elements are characterized as those mapping classes for which no isotopy class
of a simple closed curve in Sy is periodic. If a mapping class fixes the isotopy class of
a simple closed curve, then it restricts to a mapping class on the subsurface obtained
by cutting along the simple closed curve. In general, if f € MCG(S,), then S,
decomposes into subsurfaces (which only intersect along their boundaries) such that
for some #, the element f” can be represented by a homeomorphism that restricts
to each subsurface as either the identity or a pseudo-Anosov map and acts as a Dehn
twist in a neighborhood of intersection of the subsurfaces.

Anelement ¢ € Out Fy is filly irreducible, also called irreducible with irreducible
powers(iwip),if no conjugacy class of a proper free factor of Fy, is periodic. As above,
if ¢ is not fully irreducible, then Fy has a free factor £ such that for some #n, the
element ¢ restricts to an element of Out Fr.. However, it is not the case that ¢®
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preserves some free factorization of Fy. The dynamics of iterating a fully irreducible
element on a conjugacy class of an element of Fg are similar to the dynamics of
iterating a pseudo-Anosov mapping class on a simple closed curve [7].

Thurston also characterized pseudo-Anosov mapping classes as those elements
f € MCG{S,) whose mapping torus S, » [0, 1]/(x,0) ~ (f(x), 1} admits a hy-
perbolic metric [31]. However the analogous characterization for fully irreducible
elements does not hold as the mapping torus Fy ¥4 Z is not necessarily a hyperbolic
group when & < Aut Fy represents a fully irreducible element of Out Fr. Auto-
morphisms of Fg such that the mapping torus Fi x4 Z is hyperbolic are precisely
those for which no nontrivial element of Fy is periodic [3], [10], [18]. Using this
correspondence, we say an element ¢ € Out Fy, is hyperbolic if no conjugacy class
of a nontrivial element of Fy is periodic. In the literature, such elements have also
been called atoriodal. We remark that there are hyperbolic elements that are not
fully irreducible and fully irreducible elements that are not hyperbelic. However,
fully irreducible elements that are not hyperbolic have a power that is realized by a
pseudo-Anosov mapping class on a surface with a single boundary component [7].
When & = 2, no element of Qut Fy, is hyperbolic as Out F> = MCGi(Sl,l) where
S1,1 is the torus with a single puncture.

One method to understand an element of MCG (S, ) is to examine its action onthe
first homology of the surface, H;(S,,7Z) = 7?¢. Any such element preserves the
algebraic intersection number between curves on S, giving the short exact sequence

ffe
1 = I, = MCG(S;) —— Sp(2g.Z) — 1.

Similarly, the action of an outer automorphism on H,(Fy, Z) = Z* leads to the
following short exact sequence:

{ = TA; — Out Fy 22 GL(k, Z) - 1.

There are various homological criteria that ensure that a given element of the
mapping class group is pseudo-Anosov [11], [25], [27] or, in the free group setting,
that a given element of OQut Fy is hyperbolic and fully irreducible [19]. The main
goal of this paper is to generalize to the free group setting a theorem of Papadopoulos
showing that there is no homological obstruction for an element to be pseudo- Anosov
[29], ie., for any A € Sp(2g, Z), there is a pseudo-Anosov mapping class f €
MCG(S) such that f, = 4.

Theorem 6.1. Suppose k = 3. For any A € GL(k, ), there is a hyperbolic fully
irreducible outer automorphism ¢ € Out Fy such that ¢ = A.

Remark 1.1. For & = 2, the function ¢¢ > ¢ is an isomorphism and hence there are
matrices A € GL(2, 7)) that are not represented by fully irreducible automorphisms.
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Papadopoulos relies on the characterization of pseudo-Ancsov mapping classes
in terms of their dynamics on the Thurston boundary of Teichmiiller space. The
Teichmiiller space for a surface S, is the space of marked hyperbolic structures on 5, ;
Thurston compactified Teichmiiller space using the space of projectivized measured
laminations. Pseudo-Anosovs are precisely the mapping classes with exactly two
fixed points in the compactified Teichmiiller space [31]. Using this characterization,
Papadopoulos shows that if £, A ¢ MCG(S,) where f is pseudo-Anosov and f and
i satisty an additional hypothesis, then for large enough #, the mapping class fh
is pseudo-Anosov [29].

Our approach for proving Theorem 6. 1 is similar to that of Papadopoulos. Namely,
we show that if ¢ is hyperbolic and fully irreducible, and ¢ and ¥ € Out Fj, satisfy
a certain hypothesis, then for large enough m, the element ¢y is hyperbolic and
fully irreducible (Propositions 3.1 and 4.5). As such, one needs a space where the
dynamics of an element dictate its type, as with the action of a pseudo-Anosov on the
Thurston boundary of Teichmiiller space.

Since the properties of being hyperbolic and of being fully irreducible are inde-
pendent, it is perhaps of no surprise that two different spaces are used in verifying each
property for ¢ yr. We consider the action on the space of measured geodesic currents,
Curr(Fy), as defined by Bonahon [8] (Section 2.4). This space is the completion of
the space of conjugacy classes for Fr, and thus is natural for testing hyperbolicity.
We also consider a new complex defined by Bestvina and Feighn for Out Fj, that has
the useful property of being é-hyperbolic [5] (Section 2.5). Stabilizers in Out Fy, of
conjugacy classes of proper free factors have bounded orbits in this complex, and
thus it provides a natural setting for checking fully irreducibility.

Once we establish that ¢™ ¢ is a hyperbolic fully irreducible element under a
certain hypothesis, our problemisreduced to finding for any ¥ < Out Fy ahyperbolic
fully irreducible element ¢ € TA; which, together with vr, satisfies the hypothesis.
To build such elements we apply a construction from our earlier work [12]; namely,
we use Dehn twist automorphisms to build customized hyperbolic fully irreducible
elements of Out F. Satisfying the hypothesis then requires that we understand the
stable and unstable currents in PCurr(Fy) associated to a product of Dehn twists.
This is our other main result, with definitions appearing in Section 2.

Theorem 5.2, Let Ty and Tz be very small cyclic trees that fill, with edge stabilizers
c1 and ¢a, and with associated Dehn twist automorphisms 61 and 2. Let N = 0
be such that for n = N, we have that 6765" is a hyperbolic fully irreducible outer
automorphism with stable and unstable curvents [} ] and [u" ] in PCurr(Fy ). Then

Jim [h] = [e] and [1”] = [ne,].

lim
H—>00

Acknowledgements. We would like to thank Mladen Bestvina for fielding several
questions concerning this project, as well as Juan Souto for having suggested it as an
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application of our construction of hyperbolic fully irreducible outer automorphisms.
We are also grateful to the referee for thoughtful and interesting suggestions concern-
ing our results.

2. Preliminaries

2.1. Bounded cancellation. When working with free groups, the following lemma
due to Cooper is indispensable. For a basis +4, let |x]|.,4 denote the word length of
x € F with respect to + and £,4(x) the length of the cyclic word determined by x.

Lemma 2.1 ([14], Bounded cancellation lemma). Suppose A and B are bases for
the free group Fr.. There is a constant C = C(A, B) such that if w and w' are two
elements of Fy, where

[wla + w4 = [ww|a,

then
lwlg + |w'lg — [ww'|g <2C.

We denote by BCC(A, B) the bounded cancellation constant; that is, the minimal
constant C satisfying the lemma for s and B. In other words, if ww’ is a reduced
word in +, and we can write w = 1—[?1:1 x; and w' = ]_[T;I x! where x;,x; € B,
then for € = BCC(4, B) the subwords x; -+ X;p—c—1 and x"CH <X . appear as
subwords of ww’ when considered as aword in 8. Applying the bounded cancellation
lermnma to w? where w is a cyclically reduced word with respect to #4, we see that w is
“almost cyclically reduced” with respectto B, i.e., w = zxz ! where x is cyclically

reduced with respect to B and |z]| g = BCC(A, B).

2.2. Culler-Vogtmann QOuter space. Equally indispensable to the study of Out Fy
is the Culler—Vogtmann Outer space CVy [16]. This is the projectivized space of
minimal discrete free actions of ¥y on R-trees and is analogous to the Teichmiiller
space for a surface. There is a compactification CVy. [15] that is precisely the projec-
tivized space of minimal very small actions of F on R-trees [4], [13]. Recall that an
action on an R-tree is minimal if there is no invariant subtree; it is very small if the
stabilizer of an arc is either trivial or a maximal cyclic subgroup, and if the stabilizer
of any tripod is trivial. We consider the unprojectivized versions cvy and ¢vy as well.

The group Out F}. acts on either of the above spaces on the right by pre-composing
the action homomorphism. Fully irreducible elements act on OV with North-South
dynamics.

Theo_rem 2.2 ([26], Theorem 1.1). Every fully irreducible element ¢ € Out_Fk acts
on CV . with exactly two fixed points [T4] and [T_]. Further, for any [T'] € CVy, such
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that [T] # [T_] it holds that

lim [T¢"] = [T4].
Ht—00
The trees [T4] and [T_] are called the stable and unstable trees of ¢ respectively.
The stable and unstable trees of ¢ ! are [T_] and [T, ], respectively.

2.3. Dehntwists. Asmentioned inthe introduction, we build customized hyperbolic
fully irreducible elements of Out Fy using Dehn twist automorphisms. These are
defined analogously to a Dehn twist homeomorphism of a surface. Specifically,
given a splitting Fy = A =,y B, we define an automorphism by

da)=a foralla € A,
8(b) = cbe™! forallb € B.

The automorphism & acts trivially on homology and therefore belongs to the subgroup
IAg. A Dehn twist automorphism arising from amalgamations over Z is analogous
to a Dehn twist around a separating simple closed curve on a surface.

We similarly obtain an automorphism § from an HNN-extension of the form

Frp = Axg = (At |t Lagr = ay)
for ag,a; € A by

d(a)y=a forallae A,
o(r) = apt.

An automorphism arising from an HNN-extension should be compared to a Dehn
twist around a nonseparating curve on a surface.

From Bass—Serre theory, a splitting of /¢ over Z defines an action of Fj on a
tree T', the Bass—Serre tree of the splitting (see [2] or [30]). We will refer to such
Fp-trees as cyclic. Tn a certain sense, cyclic trees for Fy correspond to simple closed
curves on a surface; as in the mapping class group, the Dehn twist automorphisms
associated to cyclic trees generate an index two subgroup of Aut Fy (the subgroup
which induces an action of SLi(Z) on homology). Note that if & is the Dehn twist
automorphism associated to the cyclic tree T, then & preserves the action of F on
T, i.e., there is an isometry hg: T — T such that for all g € Fp and all x € T we
have hg(gx) = §(g)hs(x). In particular, £7(5(g)) = £+ (g) forall g € F.

We are primarily interested in the outer automorphism group of Fy., and so in the
sequel a Dehn twist will refer to an element of Out Fj which is induced by a Dehn
twist automorphism in Aut Fy.

The role of intersection number of simple closed curves is played by free volume.
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Definition 2.3 (Free volume). Suppose X is a finitely generated free group that acts
on a simplicial tree T such that the stabilizer of an edge is either trivial or cyclic. The
Sfree volume volp (X)) of X with respect to T is the number of edges in the graph of
groups decomposition 7% /X with trivial stabilizer. Here 7% denotes the smallest
X -invariant subtree.

In the case that X = {x), the free volume volr(X) is just the transiation length
£r(x)of xinT.
We say two cyclic trees fill if

volr, (X) + volr, (X) > 0

for every proper free factor or cyclic subgroup X C Fy. With these notions we have
shown the following analog to a classical theorem of Thurston:

Theorem 2.4 ([12], Theorem 5.3). Let &, and §; be the Dehn twist automorphisms
of Fy fortwo filling cyclic trees of Fy. Then there exists N = N(81, 82) such that for
all m,n > N:
(1) {67,683} is isomorphic to the free group on two generators; and
(2) if ¢ € {87,063 is not conjugate to a pewer of either §7' or 83, then ¢ is a
hyperbolic fully irreducible element of Out Fy.

Key to our analysis in [12] and Section 5 of the present paper is the following
theorem, which measures how the free volume changes upon twisting.

Theorem 2.5 ([12], Theorem4.6). Ler 85 be a Dehn twist automorphism correspond-
ing to a very small cyclic tree Ty with cyclic edge generator ¢y, and let T be any
other very smiall cyclic tree. Then there is a constant C = C(1,T3) such that for
any x € Fr and n = 0 the following hold:

L1y (857 (x)) = Ly (x)[nlry (c2) — C] — £py (%), 2.1)
£ (857(x)) < £y (x)[nbry(c2) + C] + £y (x). 2.2)

These bounds are shown in [12] to hold not only for eyclic subgroups, but for
any finitely generated malnormal subgroup of Fy; in particular any proper free factor
of Fy.

We will also need the following notions from [12] for Section 5.

Suppose that T is a very small cyclic tree for an amalgamated free product Fy, =
A #y B. After possibly interchanging A <+ B, there is abasis 7 = A U B for Fy
such that ¢ € #, and such that 4 is a basis for 4 and B U {c} is a basis for B. Such
a basis is called a basis relative to T. 1f x € F and £7(x) = 2m > 0, then x is
conjugate to a cyclically reduced word of the form

X1yl o X Y™
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where fors = 1,...,m, each y; is aword in B, each x; a word in s, such that both
2, and x,z are reduced for z = ¢, ¢ 1.

Now suppose that 7" is a very small cyclic tree for an HNN-extension F/;, =
A# 01—y After possibly interchanging A4 < tAr 1, there is a basis 4 U {15} for
Frsuchthat t = fpa forsomea € 4, ¢ € # and A U {talcro} is a basis for A. If
x € Fr and £7(x) = m > 0, then x is conjugate to a cyclically reduced word of the
form

x1 (e 1) X2 (c216)62 - Xy (C™ 1)

where fors = 1,...,m, x; is a word in + U {tglcto}, €y € {t1}; and ife; = 1,
then x,z is a reduced word for z = ¢,¢ 1;and if ¢, = —1 then ZXg41 is areduced
word for z = e,e7L,

In either of two above cases, we say that the specific word is T'-reduced.

2.4. Currents. Measured geodesic currents for hyperbolic groups were first defined
by Bonahon [8]. Recently, (measured geodesic) currents for free groups have seen
much activity through the work of Kapovich and Lustig [21], [23], [24], [22]. We
briefly introduce the parts of the theory needed for the sequel; see [21] for further
details.

The group Fy is hyperbolic and hence has a boundary dFy. We denote

PF, = {(x1,x2) € 0Fg >3 0Fy | x1 # x2}.

This is naturally identified with the space of oriented geodesics in a Cayley tree for
Fi. There is fixed-point free involution “flip” map ¢: 8°Fr — 9% F; defined by
a(x1, x2) = (x2, x1) which corresponds to reversing the orientation on the geodesic.

A (measured geodesic) current on Fy is an Fg-invariant positive Radon measure
on #*Fy/o. The set Curr(F) is the set of all currents on Fy, topologized with
the weak topology. There is an action of R..o on Curr(Fz) — {0}, and the quo-
tient P Curr(#%) is a compact space. There is a continuous left action of Out £} on
Curr(Fy) and PCurr(Fy) defined by ¢v(S) = v(¢p~'(S)), where ¢ ¢ Out Fy,
v e Curr(Fy), and where S is a measurable set of 32 Fy /0. There is a slight
abuse of notation here as strictly speaking ¢~'(S) is not well-defined. But for any
two ®g, $; € Aut Iy representing ¢ € Out Fy, there is an x € Fp such that
x @ 1(S) = ®71(S) and hence v{(x P 1(S)) = v(P;1(S)) since v is Fg-invariant.

Given a basis # of Fy, we have an identification between 3% Fy /o and unoriented
geodesics in T, the Cayley tree for +. For a nontrivial g € Fg (thought of as a
vertex in T,4) and v € Curr( Fy), we define the two-sided cylinder

Cyl 4(g) = {unoriented geodesics in T4 containing the vertices 1 and g} C P F o

and denote

(g, V)4 = v(Cyl4(8)).
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As the sets Uh,geFk hCyl 4 (g) form a basis for the topology of 3°F; /o, and as
v(hCyly(g)) = v(Cyly(g)), a current v & Curr(Fz) is determined by its values

{8, V)
Using these notions there is a useful normalization of a current v relative to the
basis #. Put

wa(v) = Z {2, v}

xeA

The following lemma provides a useful way to show convergence in PCurr( Fy):
Lemma 2.6 ([21], Lemmas 2.11 and 3.5). Let & be a basis for Fr.. Then
lim [vg] = [v]
m—=00
if and only if for every nontrivial g € Fg,

{g,Ungg <g’v>cﬂa

m=oo wa(vm) @A)

Particularly useful are the counting currents, defined as follows. Given a nontrivial
h € Fy that is not a proper power, define the current 5 by

(g, 0p0h = (g5 1) A

Here (gil, ) 4 is the number of occurrences of g or g =1 in the cyclic word deter-

mined by A; specifically, this is the number of times either of the reduced words g or
g ! appear as a subword of the cyclic word determined by A. When i = f™ where
m = 1 and f is not a proper power, define 5, = mny. The current 1, only depends
on the conjugacy class of £, and for ¢ € Out Fy we have ¢y = ngp). Notice that
for any nontrivial A € Fy, we have w4 (1) = £.4(h). Although we will not explicitly
use it, we remark that the set {[1]}he {1} is dense in PCurr(Fy).

Similarly we define o(g*!, k)4 as the number occurrences of g or g ! in the
word k; specifically, this is the number of times the reduced words g or g1 appear as
a subword of the word A. A direct application of the Bounded Cancellation Lemma
2.1 gives the following.

Lemma 2.7. Let 4 and B be bases for Fy. andfixa € A. Then there exists a constant
C > 0 such that if w, W', and ww' are all reduced words in B and ww' is cyclically
reduced in B, then

o(at, w)a +o(att, w)y < (ail,ww’u +C.
Proof. Let B = BCC(8, #4) so that

o(a™!, wya +o(at wha —2B < ola™!, wwa.
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Since ww’ is cyclically reduced with respect to &, as a word in # we have ww’ =
zxz~ ! where |z]4 < B and x is cyclically reduced in . Thus

ol wila < @ty +28,

Therefore, for C = 48, the lemma holds. O

As in the Outer space setting, a hyperbolic fully irreducible element acts with
North-South dynamics on PCurr{ Fy). Here is a weak version of this statement that
is sufficient for our needs.

Theorem 2.8 ([28], cf. [5], Proposition 4.11). Every hyperbolic fully irveducible
element ¢ € Out Fy, acts on P Curr(Fy) with exactly two fixed points, [p01 ] and [it_].
Further, for any nontrivial h € Fy,

i [¢7 4] = 1]

The currents [p4] and [p—] are called the stable and unstable currents of g,
respectively. The stable and unstable currents of ¢! are [p_] and [ ], respectively.

The existence of a continuous Qut Fy-invariant intersection form is established
by the following.

Theorem 2.9 ([23], Theorem A). There is a unique continuous map
{0y v x Curr(Fr) — Ry

such that

(1) forany h € F,, we have {T,ny,) = L7 (h).
Further, this map is

(2) Out Fi-invariant: (T, by = (T, ¥rpt);

(2) homaogeneous with respect the first coordinate: (AT, ) = A (T, ) for A > O
and

(4) linear with respect to the second coordinate: (T, Aty +Azpta) = A {T py )+
)Lz(T, ;u,z)for Al A2 = 0.

The actions of Out Fi. on ¢vy and Curr( Fy) satisfy a type of “unique-ergodicity”
with respect to this intersection form.

Theorem 2.10 ([24], Theorem 1.3). Let ¢ € Out Fy be a hyperbolic fully irreducible
element with stable and unstable trees [T.], |[T_] € CVy and stable and unstabie
currents [p1 ], (] € PCurr(Fy). The following statements hold.

(1) Ifpu € Cure(Fy) — {0, then (T, w) = 0 if and only if [u] = [+,

() IfT e vy, then (T, pyy = 0if and only if [T] = [T5].

The difference in signs 4 and F between the above and its version in [24] is due
to our use of the right action of Out F on ¢vy.
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2.5. Bestvina=Feighn hyperbolic Out{F})-complex. The final space we consider
is given by the following theorem.

Theorem 2.11 ([5], Main Theorem). For any finite collection @1, ..., dn of fully
irreducible elements of Out ¥y there is a connected §-hyperbolic graph X equipped
with an (isometric) action of Out Fy, such that:

(1) the stabilizer in Out Fy, of a simplicial tree in CV . has bounded orbits;
(2) the stabilizer in Out Fy, of a proper free factor F C Fy. has bounded orbits; and

(3) d1,...,¢n have nonzero transiation lengths.

The §-hyperbolicity of such a complex X makes it comparable to the curve com-
plex for the mapping class group, although its use is significantly restricted by its
dependence on a finite set of fully irreducible elements. For our purposes the actual
definition of X is not necessary; we need only that non-fully irreducible elements of
Out Fy act on X with bounded orbits, and that the action of the elements ¢y, ..., d,
on X have nonzero translation length and satisfy a property known as WPD (weak
proper discontinuity). We refer the reader to [3], [6] for further details.

3. Producing hyperbolic automorphisms

In this section we show how to produce a hyperbolic outer automorphism with a
specified action on H1(Fz, Z). This involves examining the dynamics of elements
on Curr( Fr). Using the “unique-ergodicity” and continuity of the intersection form
{, ) we can mimic an argument due to Fathi ([17], Theorem 2.3) giving a construction
of pseudo-Anosov homeomorphisms.

Proposition 3.1. Let ¢ € Out F be a hyperbolic fully irreducible outer automor-
phism with stable and unstable currents [(ty] and [p—] in PCurr(Fg). Suppose
W € Out Fy is such that [Yrpy] # [n—]. Then there is an M > 0 such that for
m = M the element ¢™r is hyperbolic.

Proof. Let A, and A_ be the expansion factors for ¢ and ¢~! respectively, and let
A = min{A4,A_} > 1. Also let T4 and T_ be representatives of the stable and
unstable trees for ¢ in &y, Thus Tp¢p = A T and T_¢p~' = A_T_.

Hence for each m = 0 and any it € Curr(F;) we have

(Ty, @™ ) = (Top™  yrp) = A" (T4, grp),
and

(T, 7 ™) = (T, 7" ) = (T ™™, ) = A™(T_, .
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Now define a(p) = max{{T}, p}, {T_t, u}}. Then

and
a(y gy = (Toy, g ") = AT, p.

Hence
max{e (" Yrie), ey~ ¢ )}t = A B,

where f(p) = max{{T},¢¥ru),{T_,pur}. Now B(u) = 0 if and only if both
{T,yrpty and {T_, ) are equal to 0. Applying the “unique-ergodicity” (Theo-
rem 2.10), we have that if g # 0 then {T_, u} = 0 if and only if [p] = [p+],
and (I'y, ety = 0 if and only if [fpey] = [p—]. By assumption [yru o] 7# [re—],
and henece B(4t) is strictly positive. Therefore a(p)/f (1) defines a continuous func-
tion on PCurr(Fy). Since PCurr(Fy) is compact, there is a constant K such that
a(p)/B{p) < K forall p € Curr(Fy) — {0}, i.e., KB(p) > a(pe). For m such that
A" = K, we obtain

max{o(¢™Pa), a (P~ )} > () forall € Curr(Fy) — {0},

It is now easy to see that ¢™ ¢ acts on Curr(Fy) — {0} without a periodic orbit.
Noticethatif @ € Out Fy has aperiodic conjugacy class, say 6% fixes the conjugacy
class of ¢, then 8¢y, = Mgty = MNe. and hence € acts on Curr(F) — {0} with a
periodic orbit. Thus as ¢™ ¥ acts on Curr(Fz) — {0} without a periodic orbit it does
not have a periodic conjugacy class, i.e., ™ ¢ is hyperbolic. U

4. Producing fully irreducible automorphisms

In this section we show how to produce a fully irreducible element of Out /. with a
specified action on H1(Fy, 7). This involves examining the dynamics of elements
on the d-hyperbolic Bestvina-Feighn complex X from Theorem 2.11. We begin with
a theorem about the isometries of §-hyperbolic spaces. Even though the space we
will ultimate consider has aright action, we will consider the more customary setting
where the space has a left action; it is clear how to convert a right action into a left
action.

We recall some basics about d-hyperbolic spaces needed for this section. Some
references for this material are [1], [9], [20].

A geodesic metric space X is called 8-fryperbolic if for any geodesic triangle in
X, the -neighborhood of the union of any two of the sides contains the third. There
are various other equivalent notions. There is an inner product defined for points
x,y € X by

(¥ = (@ 0) + dw, 3) — A, 1)
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for a given basepoint w € X. Associated to a d-hyperbolic space is a boundary 0X
which compactifies X as X U 0X when X is locally compact. One definition of dX
is as equivalence classes of sequences {x;} with lim; ;.0 (X;.x;) = oo (the inner
product is defined with respect to some basepoint), the equivalence relation is defined
by {x;} ~ {y;}if Umyeo(x;.3:) = oo, If f is an isometry of X with nonzero
translation length (.e., lim,_ 0o %d(x, R (x)) > Ofor all x € X), then the action
of f extends to a continuous action on dX with exactly two fixed points. One fixed
point is represented by the sequence { £ "(x)} for any x € X; the other is represented
by {f7"(y)} for any y € X. These points are called the attracting and repelling
fixed points of f respectively.

Theorem 4.1. Suppose X is a §-hyperbolic space and f < Isom(X) acts on X with
nonzero translation length, with attracting and respectively repelling fixed points A
and A_ in 0X. If g € Isom(X) acts on X such that gA, # A_, then there is an
M = O such that for m = M the element ™ g acts on X with nonzero transiation
length.

Before proving this theorem we need a lemma that allows us to locally build uni-
formquasi-geodesics. Recallthata (A, €)-quasi-geodesicis afunctiona: [a,b] — X
such that for all ¢, ¢ < |a, b] we have

1
t—t—e<d(a®),etM <At —t'| +e

We allow for the possibility that the domain of & is R or Bs.p. A functiona: [a, 8] —
X is an L-local (A, €)-quasi-geodesicif foralla = a’ = b’ = b where b’ —a’' = L,
the function o ‘ e 5] is a (A, €)-quasi-geodesic. First we recall a standard fact about
&-hyperbolic spaces.

Lemma 4.2 ([9], Chapter [I[.H, Lemma 1.15). Let X be a §-hyperbolic space, and
letc1: [0,T1] — X and c2: [0, T2] — X be geodesics such that c1(0) = ¢2(0). Let
T = max{Th, T2} and extend the shorter geodesic to [0, T'| by the constant map. If
K = d(ci(T), c2(T)), then d(c1(r),c2(2)) < 2(K + 268) for dil t € [0, T].

The next lemma shows us that the sequence of points ( /" ¢)"(x) defines alocal
quasi-geodesic with uniform constants.

Lemmad.3. et X, f and g be asin Theorem4.1. Fixx € X and for m = 0, let oy
be a geodesic connecting x to f™ g(x). Then there is an € = 0 such that form = 0
the concatenation of the geodesics @ « 7 g(tm) is a (1, €)-quasi-geodesic.

Proof. Let B = ap U f glam ), de = d(x, /" g(x)) and consider the points g(x),
F7™(x)and g g(x). Notice f () isapathfrom f~"(x)to g f ™ g(x) passing
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through g(x); see Figure 1. As g4 # A, the inner product ( /" (x).8/™g(xDgwx)
stays bounded as m — 0. Hence there is a constant C = ( that does not depend on
m such that

dix, f"ef™e(x)) = d(f " (x), 8" 2(x))
Zd(f7x), 8(x)) + d(g(x), 8/ g (x)) - 2C

=2d,, — 2C.

gdy

h-

gf"g(x) S"efMe(x)
C+126
i o
2(X) ——_—— sy S7g(x)
o ST x

L

A

Figure 1. The geodesics in Lemma 4.3.

Fix a geadesic ¢ from x to £ g f™ g(x), and let z be the midpoint on ¢. As X is
d-hyperbolic, there is an x" € 8,, such that 4(z, x") < §. Without loss of generality
we can assume that x” € a,,. Thus

dix',x)=dx,2) -8 =d, — C —§,

and therefore
d(x', fPg(x)) =dy —d(x,x") < C + 3§,

from which we conclude d{(z, f™g(x)) < C+26. Letd, = d(x, f™gf™g(x))and
define ¢z [0,dm] = X by (1) = c(n)if0 =1 = %d,;t and ¢ (t) = z otherwise.
Then by Lemma 4.2 we have for 0 < 1 < d,, that d(B,u (1), cz(1)) < 2(C + 46).
Similarly define ¢} [dp.2dy] = X by cl(t) = zif d, =1 = 2d,, — %d,;t and
ci(t) = c(t +d;, —2d,) otherwise. Then another application of Lemma 4.2 shows
that for d,, < ¢ < 2d,, we have d(8,,(t),c.{(f)) < 2{C + 46). Notice that if
0=t =d, =<t <2d,then

(' —1)—2C =d(c:(1),c; (") = (' —1)
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as 2dy —d,, < 2C. Therefore if 0 <t < dy <1’ < 2d,, then
(t" — 1) —(6C + 168) < d(Bm(r), B (t)) = (t" —1).

The othercases (0 <t <t <d, ord, <t <t < 2d,) are clear since a,, is a
geodesic. Ol

Now to complete the proof of Theorem 4.1 we need the following theorem.

Theorem 4.4 ([9], Chapter IIL.H, Theorems 1.7 and 1.13). Let X be a §-hyperbolic
space, and let v [a, b] — X be an L-locdl (A, ¢)-quasi-geodesic. Then there is an
R = R(8,A,€) such that if I > R, then for some A > 1 and €’ = 0, the path y is a
(A, €")-quasi-geodesic.

We can now give a proof of Theorem 4.1.

FProof of Theorem 4.1. Fix x € X, and let € be given from Lemma4.3 and let R =
R(6,1, ¢) be the constant from Theorem 4.4. As f has nonzero translation length,
for m = 0 we can let Ly, = di(x, f™g{x)) = d(g(x), f"g(x)) —d(x,g(x)) =
mt—d(x,g(x))forsomet > 0. Let M besuchthat L.y > R. AsinLemmad4.3, let
a be a geodesic connecting x to [ g(x), and let B, = o - ™ g(). Then define
apath y: [0, 00) — X by

y=8x |J ety | (2P Ba) .
I g(em) (f™2)2(wm)

By Lemma 4.3, y is an L,,-local (1, ¢)-quasi-geodesic and hence if m > M then y
isa(A', €')-quasi-geodesic from some A’ = 1 and ¢’ = 0 by Theorem 4.4. Therefore
for any x’ € X and £ > 0 we have

A, (™) (x)) = d(x, (f™ @) (x)) —2d(x', x)

1
= fng —&" =2d(x", x)

and hence f™ g has nonzero translation length. O

The fully irreducible analog of Proposition 3.1 follows easily from Theorems 2.11
and 4.1.

Proposition 4.5. Let ¢ © Out Fy be a fully irreducible outer automorphism with
stable and unstable trees |T.| and [T_] in CVy. Suppose ¥ < Out Fy, is such that
[Tyr] # [T). Then there is an M = O such that m = M the element ¢ is fully
irreducible.
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Proof. Let X be the Bestvina—Feighn §-hyperbolic complex fromTheorem2.11using
¢1 = ¢ and let A and A_ denote the attracting and repelling fixed points of ¢ in 4%,
What needs to be shown in order to apply Theorem 4.1 is that [T ] £ [T_] implies
that AL g £ A_. Asthe action of ¢ on X satisfies WPD, see Proposition 4.27 of [5],
if Ay = A_ then for some r, s > 0 we have Y™ ¢y~ = ¢~ ([6], Proposition 6).
As the stable and unstable tree for positive powers of ¢ are the same as for ¢, this
would imply [T ] = [T_].

Now we can apply Theorem 4.1 to the pair ¢ and ¥ acting on X to conclude that
for large enough m, the element ¢™ 1 does not have a bounded orbit and hence by
Theorem 2.11 is fully irreducible. U

We would like to thank Mladen Bestvina for suggesting the use of WPD in the
above argument.

5. The stable current for a product of twists

In this section we examine the qualitative behavior of the stable and unstable currents
associated to a product of Dehn twists. The main result is Corollary 5.4 which
produces elements of Out Fy satisfying the hypotheses of Propositions 3.1 and 4.5.
We begin with a simple lemma describing the change of a conjugacy class in F
resulting from powers of a single twist.

Lemma 5.1. Let T and T3 be very small cyclic trees with edge stabilizers ¢1 and
¢ and associated Dehn twists 81 and §;. Suppose T1 and T, are bases relative to Ty
and Ty respectively such that ¢, is cyclically reduced with respect to 11 and C is the
constant from Lemma 2T using these bases. Then forany x € F andn = r > Othe
Sfollowing hold.

(e, 8% (x) 7 = (v —r 4+ 1)er (x) = (L, 007, (5.1)
L (B7(x)) = nlpy (X)) + L7y (x), (5.2)

3, (87(x)) = nlyy (%) + L3 (x) — (eF' x) gy, (5.3)
T8, (N n = b, ()[nlef cadm +2C] + (it x)m, (5.4)
L7 (857(x)) < Ly (X)mha (c2) + 2C | + £y (x) (5.5)

Proof. We begin by proving the first three inequalities. By replacing x by aconjugate
we are free to assume that x is 7j-reduced as all of the quantities involved in the
inequalities only depend on the conjugacy class of x. If 73 is dual to an amalgamated
free product we have

— i1 A L Jm
X = X1Cy Y16] o Xy ymey”
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Therefore

n — ii+n, fi—n im+n Jm—n
Six) =x1cy et e xme ™ ymey

is a cyclically reduced word in 77. Hence by only counting the occurrences of Cli”

that appear in the ciSHl and C{S_" we see that

el 8 eNn =Y (s +al—r+1)+ (ljs —n| -7 + 1)
s=1

m
=2mn—r +1)= Y lis] + | Js]
s=1

> (n—r + Dl (x) — {1, x)ay.

A similar proof works if T7 is dual to an HNN-extension. This shows (5.1); the
inequalities (5.2) and (5.3) follow similarly by looking at the given cyclically reduced
expression for 67 (x).

We now prove the last two inequalities. As before, by replacing x by a conjugate
we are free to assume that x is Th-reduced. If 7> is dual to an amalgamated free
product we have

X = xlcglylc;{l wxmc;m ymcim.

Therefore

B i1—n Ji+n T —it Jm+tn
6, "(x) = x1c5 Ty X" ymey”™

is a cyclically reduced word in 75. Hence by counting the number of occurrences of

Clil in the various X;, ¥5,¢5 " and ¢3° " we see that

R o S

=< £, ()o(ei e5)ry

m
+ Z aleFl x4 ol ey ol vy + oleF el )y
§=1

< ir,(x e ea)my + (e X + 4mC

< Lp,(x)nlcit ) +2C] + e x) gy
A similar proof works if T} is dual to an HNN-extension. This shows (5.4). The

inequality (3.5) is just an application of the bounded cancellation lemma using the
cyclically reduced expression for 65" (x). O

These estimates allow us to show our main technical result concerning the stable
currents.
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Theorem 5.2, Let T and T be very small cyclic trees that fill, with edge stabilizers 1
and ¢z and associated Dehn twist automorphisms 61 and §2. Let N = 0 be such that
forn = N, we have that 67657 is a hyperbolic fully irreducible outer automorphism
with stable and unstable currents [pu"\ | and [u”] in PCurr(Fy). Then
im [ph] = [fey] and lim [ ] = [e,].

Proof. Let T; be a basis for Fy relative to 77. Denote by ¢, — é74,". Fix an
element ¢ € 7p, denote its conjugacy class by «, and denote ¢ () by a’. Hence
Py Ne = N As £y, (@) > Lry (@) = 0, Lemma 5.2 of [12] shows that since 7 is
sufficiently large, for m > 0 we have £, (0} > £, (). Let K > 0 be such that
forall m,n = 0,

Lr (o)) < K(Lr (o)) + £, (0)))) < 2KLpy(0))).

Such a K exists by Theorem 1.4 in [24].

Then for each n > N, as ,u,’i is the stable current for ¢, from the North-South
dynamics of ¢, on PCurr(Fy) (Theorem 2.8), we have forany g € Fr ande > 0, a
constant M = M(n, g, %) such that for m > M (Lemma 2.6),

[/ "
(&gl (8045 | € (5.6)

wp (Mgm)  or ()| 2

We analyze how the current 7, changes as m — oo interms of #. Fix a basis
75 that is relative to T> such that ¢; is cyclically reduced with respect to 77, and let
C be larger than either constant C = C(7T}, T,) from Theorem 2.5 or the constant C
from Lemma 2.7, using the bases 77 and 72. Applying (2.1), (5.1) and (5.4), for any
m > 0and n > r > 0 we have

(e 8785 @ )m
= (n—r+ D (8" — (e 8™ ()n
= (n—r + D[en@)[ner (e2) = (€ + 1]
—[en @ [nici cadgy +2C] + (ef o) |
= 2, (el g (c2)
— (@M€ + 1) + (r — Dl (c2) + (e ca)m |
—2CEq () — L3y (o))
= Lry (o) [n2ry (c2)
—a[(C + 1)+ (r — Dp (c2) + {cF ea)ry | — QC + 2K)]

= Ar, ()| nPlr (c2) — nCy — G2
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for some constants C; = 0 and C> = 0 that do not depend on m. Applying (2.2),
(5.2) and (5.5) we also have for any m > O and # > 0 that

£y (81627 (@) = nly (837 (0)) + €518 (@)
< e, (@) [ntr (c2) + (C + D]
+ (e )| nla (c2) + 2C| + £y (ey))

< n2 e, (X)L, (c2)
+ nly, () [(C + 1) + 25, (c2)| + (2C + 2K)d 1, (o))

< fr, () [n?ery (e2) + nC] + ]
for some constants Cl’ > () and Cz’ = 0 that do not depend on m. Therefore, given

r > 0 there are constants 8; > 0 and 8, > 0 that do not depend on m such that for
any n = r,

(8787 — (ef 86 ey < Lm(@i)[npy + f2]. (5D
Now, applying (2.1) and (5.3), we have for any m > 0 and n > 0,

£y (818,01} = nlry (857 (@) + £ (6@ ) — (e 8,7y
= n[tr, @) [ty (e2) —(C + 1]
— b (@)l (e2) +2C] — (e ey

> 02l (M, (c2)
—nlr, () (C + 1) + £, (c2)| — (2C + 2K)r, ()

Therefore, there are constants y; > 0, ¥, > 0 and y3 > 0that do not depend on m
such that for n > 0,

£ (57857 (@) = Ly (o) [ w2y — ny2 — 3] (5.8)

As a first approximation, we will show that the currents %, converge to the
correct value on Cylg, (¢7). Notice 1, (Cyly, (¢7)) = 1. Suppose g = Clir for some
r > 0. Lete > Oand fixn > max{N, r}large enough such thate(n?y; —nys —y3) >
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2(nf1 + B2). Now let m = M(n, g, 5). Then

(g ne)n (& Taprr)n

07, Cler) 07 Gl ye1)

{ga naif:lﬂ"!’l )T

(gnein (& ulln
wr(Me) o (ph)

<

(g mmidr| e
— — + —
wr (m+1) | 2 (5.9)
b1y (878, "(o)) — (e 8185 "))y
£ (616, (o))
£, () nB1 + B2

Lo, () [n2yy — nyz — 73]
v € L €

S =g,
2 2

A

+e
2

Now suppose g cli" for any r > 0; in this case 770, (Cylg; (2)) = 0. There is some
ag € T1 —{c1} such that {aF!, gbs > 0. Therefore for any m > 0,

@t o™y el o) = (e ey (5.10)

n

as every occurrence of g1 in ¢/ contains some occurrence of a3 in @ and such
an occurrence can only be used (aéﬂ ,g)7 times. Since

1 (et o),
<x:|:1,am>r_ s n 1,
ETI (agt) xe’ﬁz—:{cl} " gr‘l (anm)

the computation in (5.9) combined with (5.10) shows that there isan # = a(g, €) such
that Z{gil,am)frl < edq; () for m sufficiently large. Then for m > M(n, g, %),

n

&) (& uln

1
@7 (1) @h (Mi)

@7 (Ucl) [ (7?41,’;”)

- ‘ (ga ﬂcl )Tl (8,7?05,’1”}?1

(&Ml (&MY )T
wr () an(pl)

:

‘_@”7“2””3 £ (5.11)
on(em) | 2
e an| L e

£ (ay) 2

<e+g
-+ =-=c
22
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Putting together (5.9) and (5.11), we have that lim, eo[t”L] = [#,]. The same
argument applied to ¢, ! shows that limp e[| = [7e,]. O

Remark 5.3. We remark that Theorem 5.2 is analogous to the surface setting. Given
two simple closed curves a, f# C S, that fill, the stable and unstable measured
laminations [A” | and [A” ] in the Thurston boundary of Teichmiiller space associated
to the pseudo-Anosov mapping classes 5355” converge to [¢] and [B] respectively.
Here &, and é4 are the respective Dehn twist homeomorphisms about a and 8.

This raises a subtle point. To the hyperbolic fully irreducible outer automorphisms
473, " in Theorem 5.2 are also associated the stable and unstable trees [T'7] and [T7]
in CV} (see Section 2.2). As CVy is compact, the associated sequences 1[77]} and
{[7]} have accumulation points. But in contrast with Theorem 5.2, it is not clear
whether there is a single accumulation point for each respective sequence or how
to characterize an accumulation point for either sequence. By Theorems 2.9, 2.10
and 5.2, the element ¢; has a fixed point in any accumulation point of {[T7]}, and
similarly ¢y has a fixed point in any accumulation point of {[7'"]}. However it is
unlikely that this is a characterization of the accumulation points for the sequences

{TE]} and {[T2]}
The following corollary is essential for our main theorem (Theorem 6.1).

Corollary 5.4. Let T and T5 be very small cyclic trees that fill, with edge stabilizers
¢1 and c; and associated Dehn twist automorphisms 61 and 83. Let N = 0 be suchthat
forn = N, we have that §7 65" is a hyperbolic fully irreducible outer automorphism
with stable and unstable currents " | and [u2 | in P Curr(Fy) and stable and unstable
trees [TV and [T"] in CVy. Foryr € Out Fy, such that the conjugacy class of ¥(c1)
is not equal to the conjugacy class of ca, there is an N1 = N such that for n = Ny

we have [y | # [uZ] and [TE9] # [T7].

Proof. As the conjugacy class of ¢(c1) is not equal to the conjugacy class of ¢; we
have that [Yn,,] # [1..]. Fix disjoint open sets I7) and U/, of P Curr{ ;) containing
[Vr1c, ] and [, ] respectively. By Theorem 5.2, there is an V; such that forn = N; we
have [rufi ] € Uy and [4"] € Uz, andhence as Uy and U; are disjoint, [l ] # [1®].
Additionally for n = Ny we have {T7y, u7t) = (T2, ¥ut) > 0 by Theo-
rem 2.10, as [Yruf] # [p”]. As (TZ,p%) = 0, this shows that [T ] # [T7].
O

6. A hyperbolic fully irreducible automorphism for every matrix in GL(k, Z)

Our main theorem now follows easily.
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Theorem 6.1. Suppose k = 3. For any A € GL(k, £), there is a hyperbolic fully
irreducible outer autornorphism ¢ € Out Fy. such that ¢ = A.

Proof. Fix yr © Out Fy such that ¥« = A. Let T be a very small cyclic tree dual
to an amalgamated free product with edge stabilizer ¢; (a primitive element of Fr)
and associated Dehn twist §;. As isshown in [12], Remark 2.7, given any hyperbolic
fully irreducible automorphism & < Out Fy, the pair T and 76¢ fill for sufficiently
large £. The edge stabilizer for 78¢ is 8 ¢(c;). Thus for large enough £ we can
assure that the very small cyclic trees T and 7 6% fill and that the conjugacy class of
¥r(cy) is not equal to the conjugacy class of 8 ¢(cy) (the edge stabilizer for T#¢).
Let 8, be the associated Dehn twist for T8¢ By Theorem 2.4, Propositions 3.1
and 4.5 and Corollary 5.4, for large m and # the outer automorphism (67 65”Y" 1 is a
hyperbolic fully irreducible element. Since hoth §; and 8; act trivially on H (Fp, Z),
we have (676, ") )x = e = A. |
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