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Small points on rational subvarieties of tori

Francesco Amoroso and Evelina Viada

Abstract. Let IV be a subvariety of a torus defined over the rational numbers. We study the
distribution of points of small Weil’s heighton V. We simplify the proof and we improve previous
results by the first author and S. David. We obtain a totally explicit version of a generalized
Dobrowolski result on the Lehmer problem.

Mathematics Subject Classification (2010). 11G50, 11K60.

Keywords. Heights, Lehmer’s problem.

1. Introduction

In this article we study the distribution of the small points of proper subvarieties of
the torus (=77 defined over (. For # = 1, the problem corresponds to finding lower
bounds for the Weil height of an algebraic number. Let @ be a non-zero algebraic
number of degree D which is not a root of unity. Lehmer (see [Leh]) asked whether
there exists an absolute constant ¢ > 0 such that A(«) > 5. The best known result
in this direction is Dobrowolski’s result ([Dob]): if D > 1,

-3
1) = 5 (e )
D \loglog D

for some absolute constant ¢ > 0. Dobrowolski’s theorem was generalized to ()-
irreducible subvarieties V' < G in a series of articles by David and the first author.
They prove the Generalized Dobrowolski Bound stated below. Their proofs are long
and involved. Mainly, they need an intricate descent argument, hard to read by non
specialists. This descent has been used in several occasions by other authors. Our
first achievement in this paper is a simple and short proof of an explicit and improved
version of the Generalized Dobrowolski Bound. More precisely, we generalize this
statement describing the distribution of small points for different invariants. In addi-
tion we improve some bounds in the applications.

We fix the usual embedding of G in P” givenby x = (x1,...,x5) = (1 : x; ¢
<ol Xp). Foraset S <GP, we denote by S the Zariski closure of S in Gr. On P”
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we consider the Weil logarithmic absolute height, denoted by £(:). Givene > 0 we
denote by S(¢) the set of & € S N G(Q) of height < &. A variety V' € (7% is the
intersection of G” with a variety of P” defined over (3. Note that the varieties which
appear in this paper are not necessarily irreducible or equidimensional. However we
consider only proper subvarieties of G}, therefore we say subvariety of &7 for proper
subvariety of G. We define the essential minimum 2*°(1") of V' as the infimum of
the set of & > O such that V{¢) is Zariski-dense in V. We say that B C G istorsion if
itis atranslate of a subtorus by a torsion point. The Kronecker theorem for points and
the Bogomolov conjecture (Zhang [Zha]) for varieties of positive dimension yield

275V = 0if and only if V' is not a union of torsion varieties. (1.1)

According to different geometric and arithmetic assumptions, we relate (£®%°(}) to dif-
ferent invariants of V, proving essentially sharp effective versions of (1.1). Lehmer’s
conjecture can be seen as a sharp effective version of (1.1) for points. The Gener-
alized Dobrowolski Bound is a quasi optimal effective version of (1.1) for varieties
defined over () of arbitrary dimension. For varieties over arbitrary number fields
which are not union of translates of subtori we speak of Effective Bogomolov. This
case has been treated in our previous work [Amo-Via]. Note that there are intersec-
tions between the two problems, namely for varieties over (@ which are not translates.
Therefore an interesting new case treated in this work, is the one of translates defined
over () and specially the case of 0-dimensional varieties consisting of the conjugates
of a non-torsion point & € G2 (()). Naturally the Galois group plays a key role in
this work.

Let us introduce relevant invariants of a proper projective subvariety 1 < P”.
The obstruction index (V') is the minimum degree of a hypersurface Z containing
V. Define §(V') as the minimal degree § such that V is, as a set, the intersection of
hypersurfaces of degree < §. Finally, define 6o(V) as the minimal degree §, such
that there exists an intersection X = Zy M-+ N Z, of hypersurfaces Z; of degree
< &y such that any Q-irreducible component of ¥ is a Q-irreducible component of
X. In Corollary 2.3 we prove that if V' is defined over ©, we can choose the above
hypersurfaces Z, 71, ..., Z; also defined over ().

The following effective version of (1.1) is proved in [Amo-Dav] for dim 1 = 0,
in [Amo-Dav] for codim V' = 1 and in [Amo-Dav] for varieties of arbitrary dimension.

Generalized Dobrowolski Bound. Let V' be a subvariety of G]} defined over () of
codimension k. Let us assume that V is not contained in any union of proper torsion
varieties.
Then, there exist two positive constants ¢(n) and k(k) = (k + D(k + DF —k
such that
c(n)

(k)
- (log 3e:(V)) *®) (1.2)

ﬂeSS(V) E
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To recover a slightly weaker version of Dobrowolski’s theorem it is sufficient to
take V equal to the set of conjugates of the algebraic number .

For a subvariety V' of G, we denote by 17 the complement in 7 of the union of
the torsion varieties B € V. By (1.1) the minimum of the height on V*(Q) is > 0.
In [Amo-Dav] is proved that for a Q-irreducible V and & € V*(Q)

e & 258

—k ()
= S log B0, (1.3)

where ¢(#) > 0 is not computed and where (1) ~ a™" is as above. Notice that this
lower bound implies (1.2), with a possible worse exponent on the remainder term. To
see that, apply (1.3) to a hypersurface Z = V7 defined over () and of degree @(17).
For n = 1 Dobrowolski’s result remains the best known. In order to simplify the
exposition and the computation of the constants we prefer to assume # > 2. Our first
achievement is a simple and short proof of an explicit and improved version of (1.3):

Theorem 1.1. Let V < G be a Q-irreducible variety of dimension d. Then, for
any e € V*(())

h({!) > S(V)il (935}1‘,5 log(nzg(v)))*(aw»1)(n+1)2'

In short, the exponent k(%) on the remainder term is improved by one exponen-
tial. In addition the constant ¢(#) is computed. This could be useful in possible
applications. However, the most interesting aspect remains the simplicity of the new
method. We avoid the technical descent argument and the generalization of Philippon
zero's estimate used in [Amo-Dav]. This new method could find other applications,
as for instance in the context of the Relative Lehmer Problem, where methods similar
to the ones of David and the first author are used (see [Del]).

To be able to use a conclusive geometric induction similar to the one presented in
[Amo-Via] we first need to produce a new sharp lower bound for 1%%%(V) in terms of
do(1) for varieties which are not union of torsion varieties.

Theorem 1.2. Let V be a subvariety of GJ of codimension k, defined and irreducible
over (). Assume that V' is not a union of torsion varieties. Let

80 = 50(V)(52n2 IOg(HZSO(V)))(n+1)(k+1)'

Then there exists a hypersurface £ defined over () of degree at most 8y which does
not contain V. and such that

Vg cVvnZ

This theorem is the arithmetic counterpart to [Amo-Via], Theorem 2.1. On one
side, V¥ has to be defined over (), assumption not necessary in [Amo-Via]. On the
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other side 77 can be a union of translates of torsion varieties by non-torsion points,
situation to avoid in [Amo-Via]. Despite some similarity, the methods used in other
works are not sufficient to prove this theorem. As in [Amo-Via], we first produce
an inequality involving some parameters, 4£°%(17) and the Hilbert functions of two
varieties related to V' (Theorem 3.1). Some ingredients of the proof of Theorem 3.1
come from [Amo-Dav]. The main difference is the following. In the quoted paper,
using Siegel’s lemma, the authors construct one auxiliary function vanishing on 17 and
then they extrapolate to show that the obstruction index of [p]V is small. Here we use
Siegel’s lemma in its full power and we find a family of linearly independent auxiliary
functions vanishing on V. Then, we extrapolate at [p] V' for each auxiliary function.
We don’t use an interpolation determinant, as in [Amo-Via], because the problem
is not symmetric. Another important difference is that, to decode the diophantine
information in Theorem 3.1 it is not sufficient to use the estimates for the Hilbert
function due to M. Chardin and P. Philippon [Cha-Phi], like we do in [Amo-Via].
In the present situation we need a refinement of their results which is proved in the
appendix of this article by M. Chardin and P. Philippon. A further subtle point is
to control the behavior of §g under the action of groups (Proposition 2.7). The final
geometric induction allows us to prove the main result of this article:

Theorem 1.3. Let Vo € V) be subvarieties of G, defined over Q, of codimensions
ko and k| respectively. Assume that Vo is Q-irreducible. Let

6 = 6(V,)(935n° log(n26(v,)y) o T DKot DEED,

Then,

— efther there exists a (-irreducible B union of torsion varieties such that Vy C
B C V1 and 80(3) = @,

— or there exists a hpersurface 7 defined over () of degree at most 8 such that
Vo g Z and Vo(eil) c Z.

In Section 5, we show how to deduce Theorem 1.1. In addition we prove some
corollaries. Combining Theorem 1.1 with the estimate on the sum of the degrees
of the maximal torsion varieties of IV ([Amo-Via], Corollary 5.3), we can give the
following complete description of the small points of V.

Corollary 1.4, Let V' € G be a Q-irreducible variety of dimension d. Let

6 = 5()(935n7 log(n?i(1')))“

Then
V@ H)=BU---UB;,
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where By, ..., By are the maximal torsion varieties of V. In addition, 5q(B;) < 8

and
t

¥ oo degll g Y,
j=1

A direct application of Theorem 1.3 allows us to show

Corollary 1.5, Let V' € G7 be a Q-irveducible subvariety of codimension k which
is not contained in any union of proper torsion varieties. Then

A75(V) = o(V)~ (9350 log(n?w(V))) FEHDETY,

As mentioned, also Theorem 1.1 implies a similar but less sharp lower bound
for the essential minimum, where the exponent on the remainder term is n(n + 1)?
instead of the better k(k + 1)(n + 1).

An important application of Corollary 1.5 is a lower bound for the product of
the heights of multiplicatively independent algebraic numbers. [For instance, this
kind of result is used by Bombieri, Masser and Zannier to show the finiteness of
the intersection of a transverse curve with the union of all subtori of codimension
two [Bom-Mas-Zan]. From Corollary 1.5 we deduce the following refined version
of [Amo-Dav], Theorem 1.6:

Corollary 1.6. Let oy, ..., up, be multiplicatively independent algebraic numbers in
a number field K of degree D = [K : QQ]. Then

hen).... how) = D71(10508% log(3D)) " T,

The dependence on § (or @) of our results is essentially sharp. However, the
dependence in the dimension # of the ambient variety remains mysterious. One
could conjecture that for all (O-irreducible linear subvarieties V' < G and for all
o € V*(Q) we had k(a) > ¢ for some positive absolute constant ¢ (not depending
on n). This is false, as the following example shows. Let V,, € G be the hypersur-
face defined by the equation

X1+ -+ xp—1+x,=0.
We claim that, as s tends to oo,

min A{e) — 0.
aclVy

Indeed, let n = 3. Consider for instance the point & € G7(Q) whose coordinates
are the roots p, ..., o, of the polynomial f(x) = x” — 2x — 6. Observe that f is
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irreducible by Eisenstein’s criterion. Moreover ¢ € V;,, because the coefficient of

x"Vin f is zero. We now show that & has small height. For a non-zero integer a,

leta=(a,...,a) €G], Sincea” =2« + 6 we obtain
nhla) = Ma™ = (2 -a +6) < h(2.a) + h(6) + log? < h{a) + log 24.
Thus

We claimthat ¢ € ¥V}, Assume on the contrary that & is in atorsion variety contained
in V,. From the description of [Sch], p. 163, of the torsion varieties contained in a
linear variety, we see that there exist § < j such that w = o; /0 is a root of unity.
Note that u #* 1 because f has distinct roots. Thus

0= flo;) — flua;) = (1 —u")af —2(1 —u)a;.

Lety = (1 —u™)/(1 —u). Then y is an algebraic integer and )/aiffl = 2. Passing

to norms, we infer that +6 = Norm%(aj)(aj) divides a power of 2. This is a

o log 24
contradiction. Thus & € V*(Q) and h{a) < —2g_1 ’

2. Geometry

2.1. Algebraic interpolation. In the introduction, we have already mentioned the
definitions of (1) and 8,5(1") for a projective variety V' < P®. Let us be more
precise and give some further details and useful relations.

Definition 2.1. Let V € P" be a projective variety and let K be a subfield of Q).

1) The obstruction index wx (V) is the minimum degree of a hypersurface defined
over K containing V.

ii) We define dg o(V') as the minimal degree § such that there exists an intersection
X of hypersurfaces defined over K of degree < & such that every (-irreducible
component of V' is a -irreducible component of X.

i) Supposethat V' is defined over K. We define Sg (V') asthe minimal degree & such
that V' is, as a set, the intersection of hypersurfaces defined over K of degree
< 4.

IfK = Q) we shall omit the index 0.

Note that the definition of éx ¢ makes sense for every number field K, indepen-
dently of the field of definition L of V. Indeed, V' = U%Gﬂl(@/m a(17) is defined

over K and the Q-irreducible components of ¥ are components of ¥’. On the con-
trary, §x can only be defined for extensions of the field of definition of V. Indeed if V'
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is the intersection of hypersurfaces over K then it is also defined over K. In addition,
if ¥V is defined over K, then in the above definition ii), it is equivalent to require that
every K-irreducible component of V is a K-irreducible component of X

Clearly, for L afield extension of K, wg = @y, 8k 0 = §p,0and g = 67 Weare
now going to show that these are equalities for extensions L of the field of definition
KofV.

Let G be a group acting on @] . For any subset S of ] we define

59 = (M) &8),
£eG

G s=|]ss)
geld

In what follows we provide relations between the obstruction indices of V' and
VS in two special cases, namely for G the Galois group (Lemma 2.2 below) and for
G the kernel of the “multiplication by {” (Lemma 2.4).

Lemma 2.2, Let K be a number field and let Z be a hypersurface defined over some
extension L of K. Then there exist D < [L . K| and hypersurfaces Zq,...,Zp
defined over K and of degree < deg Z such that

F7Gal(Q/K) _ Zg: Pl T Zps

Proof. Let F(x) € L[x] be an equation defining Z. We fix a basis {¢;} of L/K
and we write F(x) = 3 e; F;(x) with F;(x) € K[x]. Up to order, we can suppose
Fix)#0forj=1,...,Dand F;(x) = 0for j > D. Define Z; to be the zero
set of F;(x), for j < D. Clearly ZOMQ/KY 5 7, N ... N Zp. We now show the

reverse inclusion. Let & ¢ ZS4(@Q/K) [ et each 01,...,0[L:k] be an extension to

@ of each of the [L : K] embeddings of I in ) fixing K. Then, for every i, also

U{l (o) € ZGalQ/K) | Since the ¥ are invariant under the action of any such o, we
obtain that for every i < [L : K]

0= 0i(F(o; (@) = 01 (3 e Fy (o @)
=0; (3o Fy@)) = Y oile ) Fy(@).

The matrix (0;e;);,; is non singular. This implies that F(e) = O foralll < j =
[Z.: K]. This shows the inclusion Z9@/K) < 7, ... Zp. O

Corollary 2.3. Let V be a variety defined over a number field K. Then §g(V) =
8, g (VY= (V) and g o(V) = 8(V).
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Proof. Wealready mentioned that such invariants decrease by fields extensions. Then
we have only to show that §x (V) < §(1), ox (V) < w(V) and §g,o(V) < do(V).

Let X = V be an intersection of hypersurfaces of degree = 4, for § € N. By
Lemma 2.2 X (Q/K) is ap intersection of hypersurfaces defined over K, of degree
=< §. Since V is defined over K, V = G/ K) - X Gall/K)

Choosingd = 6(V)and X = V weseethatdg(17) < 8(17). Choosing d = w (V)
and X O V ahypersurface defined over © of minimal degree § we see that wg (V) <
(V). Chooseatlast§ = do(V)and X > V suchthat every Q-irreducible component
of VV is a Q-irreducible component of X. Let W be a Q-irreducible component of
V. Then W is a @—irreducible component of X. Since V < X GalQ/K) C X, we
see that W is a Q-irreducible component of X2/ %) 156, Thus Sk o(V) < 8o(1).

O

We shall recall some important relations between the obstruction indices. If V is
equidimensional of codimension &, then, by a result of M. Chardin ([Cha]),

(V) < ndeg(V)VF, (2.4)
Moreover,
(V) < 8o(V) < 8(V) = deg(V) = §o(V)F. (2.5)

The first three inequalities are immediate. The last one follows from [Phi], Corollary 3,
p. 357 (withm = n, S = P" and § = §4(V)).

2.2. An upper bound for d¢([/]V). Let V' be an equidimensional variety and let
[ % 0 be an integer. We need a bound for §o([/]1V). We denote by [I] : G —
Gr, o« al = (ai — ,ozfz) the “multiplication by I”” and by ker[/] its kernel. The
following lemma is analogue to LLemma 2.2. Here we consider the action of ker[!],
whereas in Lemma 2.2 we considered the Galois action.

Lemma 2.4, Let Z C G be a hypersurface. Then, there exist D < I and hyper-
surfaces Z1, ..., Zp of degree < deg Z such that ker[l] - Z; = Z; and

Zzelll — 7, n...n Zp.

Proof. Let F(x) € Q[x] be an equation for Z. Performing the euclidean divisions
by ! on the exponents of each monomial, we can write

F(x) =Y x*F(x")

AcA

where x! = xl, . ,xl and A runs over the set A of integral multi-indices A =
1 n
AL, Ap)with0 < A; < [. Let Z; be the hypersurfaces defined by the non-trivial
J yp ¥
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Fa(x"). Clearly ker[l] - Z; = Z;. Moreover Zvelll 5 7, n...nN Zp. We now
show the reverse inclusion. Let & € Z''I Then, for every ¢ < ker[l],

0=F(ta) =Y eV A¢e)) = t*ra*Fi(eh)

AcA AEA

Let §; varying over all elements of ker[/] and A; varying over all elements of A.
Then we can write the following homogenous linear system

M) @ Fy ey —o.

Since the matrix (£ i)“j );,; is non singular, (ati Fj, (ar)); must be the zero vector. We
remark that no monomial vanishes on . Then wehaveaw € Z; M+« M Zp. This
shows that ZXtl ¢ Z, ... 1 Zp. O

To estimate dp, we need a generalization of Lemma 3.7 of [Amo-Via], which
holds for @-irreducible varieties. Here the variety is not necessarily (-irreducible.
In general, the lemma does not extend to all equidimensional varieties, however it
extends under some additional assumptions.

Lemma 2.5. Let V be a ()-irreducible subvariety of G and let ] be a positive integer.
Let K be the field of definition of one of the Q-irveducible components of V. Assume
that K (1 Q(¢;) = Q, for a primitive l-th root of unity ;. Then

Sotker[I]- V) < 1"8p(V).

Proof. 'The first step is to prove the following remark. By definition of §o(V), there
exists a variety X defined by rational equations of degree < do(}') such that V is a
()-irreducible component of X. Let W1,..., W; be the (J-irreducible components
of V.

Remark 2.6. Tet & ¢ ker[l]. Assume that for some ¢ the variety £€W; € X. Then
{W, C X for any index ;.

Froof. We remark that the Galois group permutes transitively Wy, ..., W;. Let K; be
the field of definition of W;. By assumption K; N Q&) = Q. Thus [K;({) : K;] =
[Q(¢) : Q]. Hence, for any j = 1,...,t there exists © € Gal(Q/Q) such that
(W) = W; and ©(§) = §. Weinfer that { W; = (W) is included in 7(X) = X.

O

In what follows we say that a (-irreducible variety W < G is imbedded in a
variety X € G if V' is a subset of X but not an irreducible component of X'. Let



364 F. Amoroso and E. Viada CMH

us denote W = W4, Let S be the set of { € ker[/] such that { W is imbedded in X
Then, by the remark above, 1V € é_lX. We define

X'=xn{¢{'x
teS

Note that V < X'. Furthermore, the varieties X and §_1X are intersections of
hypersurfaces of degree < §p(V'). Thus §{X") =< §o(V).

We shall show that no translate £ W; is imbedded in X”. Assume by contradiction
that £ W; was imbedded in X’ for some £ € ker[/] and for some j < {1,...,n}. We
will prove that 1 € S. Then W would be imbedded in X, which contradicts the fact
that W is a component of X'. Since £ has finite order, to prove 1 € S it is sufficient
to prove that £" € S, for all posilive integers #. We proceed by induction. Since
X' < X,{W; is imbedded in X and so { € S. We now assume {" € S for some
n = 1 and we prove that {" ™! = S. Since X’ € {7 X, {W; is imbedded in § " X.
Thus £ W; is imbedded in X and £ € S.

We now define

Y = ker[l]- X",
Clearly ker[!] - V' € Y and 8(Y) < {"8(X") < ["8o(V). Let {W; (§ < ker[l],
J €{1,...,t}) bea(Q-irreducible component of ker[/]- V. Assume by contradiction
EW; imbedded in Y. Then {W; is imbedded in X’ for some § < ker[l]. Thus
7~ 1¢ W; is imbedded in X', which contradicts the construction of X', O

At last we provide the necessary upper bound for do([/]V).

Proposition 2.7. Let V be a Q-irreducible subvariety of Gfj and let | be a positive
integer. Let K be the field of definition of one of the (Q-irreducible component of V.
Assume that K N Q&) = Q. Then

So([11V) < 1" 18o(V).

Proof. By Lemma 2.5 there exist hypersurfaces Z1,..., Z; of degree < ["do(V)
suchthat every Q-irreducible component of ker[{]-V is a componentof Z1 M-+ -MNZ,.
By Lemma 2.4 we can assume ker[!]- Z; = Z;. Thus

[V < llZyn---nillZ,

and deg([11Z;) = 1~ deg(Z;). We now show that each component of [{| 1/ is isolated
in such an intersection. Suppose on the contrary that U7 is a Q-irreducible component
of IV such that

Ll cYy cll]lZin---n[iZ:
for some Q-irreducible ¥. Then there exists a Q-irreducible component Y7 of [{] 1Y
such that

UcY Ckerll]l-Z)n--nikerfl]-Z,) =Z1 N+ N Z,.
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This contradicts the fact that each component of V isisolated in Zy M-+ M Z,. O

2.3. Exceptional primes. Let V' € G be a Q-irreducible variety and let g be
a finite set of primes. In what follows, we need a lower bound for the degree of
Upep[p]V and an upper bound for do([p]V') for p € g. This holds outside a set of
“bad” primes. One has to ensure that there are few bad primes. This is the object
of the next proposition. Part of the proof was already in [Amo-Dav], Section 2. We
prefer to reproduce the integral argument.

Proposition 2.8. Let V € GP be a OQ-irreducible variety of dimension d. Assume
that V' is not a union of torsion varieties. Then there exists a set of prime numbers
E(V) of cardinality

d+1

log?2
such that for all prime numbers p & E(V),

So([pIV) < p""1do(V) (2.6)

and, for all finite subsets g of primes lying outside E(1),

deg ([ J121V) = o] deg(V). @7
pegp

[E(V)| < log deg(V)

Proof. Weremark that the Galois group permutes transitively the Q-irreducible com-
ponents W = Wy, ..., W of V. We recall the definition of stabilizer:

Stab(W) = {& € G suchthata W = W}.

Define H = Stab(W)/ Stab(W)® where Stab(W)° is the connected component of
Stab(W) through the neutral element. Then, H is a finite group of cardinality

= deg(dtal = deg . -
H| < deg(Stab W) = deg(W)? 1! (2.8)

We denote dg = dim Stab(W) < d. We remark that for any natural number [, it
holds that

|ker[]] N Stab(W)| = |ker[I] N Stab(W)°| - | ker[[] N H | = 19| ker[I] N H]|,

where we identify [/] with the “multiplication” by { in the quotient G / Stab(¥)°.
Furthermore, denote by K the field of definition of W. Then [K : ©)] = k.

Let £; be the set of prime numbers p such that p divides |H|. Let £; be the
set of primes p such that [p]W = [p]W; for some 1 < { < k. Let E3 be the set of
primes p such that K M Q({,) # @, where as usual {, is a primitive p-th root of
unity. We define

E(V)Y=E| U E; U Exs.
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Since E3 € E(V'), Proposition 2.7 shows that the upper bound (2.6) holds.
We now prove (2.7). First we show that

2t | H| = deg([p]Ws) = deg(W5), fori =1,...,k. (2.9)

If p } |H|, then |ker[p] N H| = 1. By the degree formula for the image of the
multiplication by p (see for instance [Dav-Phi], Proposition 2.1 (1)),

deg([plW) = p® % | ker[p] N H| ' deg(W) = p? 70 deg(W) > deg(W).

"This shows (2.9).
We now show that, for [1, I natural integers,

V' == union of torsion varieties and { £ {;

. 2.10)
— []W; # [L]W; ford, j =1,... k.

Assume on the contrary that [/1]W is a Galois conjugate to [[;]W. Since the multipli-
cation by natural numbers commute with the Galois action, the same holds replacing

Li by I] forr € N, as well. We can suppose [; < [3. Let h be the normalised height
for subvarieties of &7 (see for instance [Dav-Phi]). Then A([[{1W) = A([l2]W).

By the height formula for the image of the multiplication by an integer ([Dav-Phi],
Proposition 2.1 (i)), we obtain
10 er[lh] 0V HITTAOW) = A(LW) = A((LIW)
= 170N ker[ly] 1 H L R(W).

Since V is not a union of torsion varieties, W is not torsion. Then A(W) > 0. Thus

_ ker[la] N H|
/1y < (1 1yyi—dott < IKHLI VAL
2/l =2/ ) §|ker[ll]ﬂH\§| |

Replacing /1 and I> with /] and /] and letting ¥ — +c0 we get a contradiction.

Let g be a set of primes lying outside (1) and assume that V" is not a union of
torsion varieties. The statements (2.9) and (2.10) and the definition of E(1) show
that

deg (| J1p1V) = deg( CJ Jlnlw;) = f > deg (21W))

peg j=1pep J=1lpep

k
=) ) deg(W)) = || deg(V).

j=1pep
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To conclude the proof, we need to provide an upper bound for the cardinality of
E(V) = E|\UE;\JE;. First we remark that by (2.8) the set £ of primes p dividing
| H | has cardinality

log|H| d+1 d—+1
< =

logdeg(W) =
log2 = log2 ogdeg(W) log?2

log(deg(17)/ k).

Below we detail the proof that the set £, has cardinality

logk

By = .
| 2|_10g2

2.11)

We have still to estimate the cardinality of the set £ of primes p such that KX M

Q(£,) # . Itholds that
logk

log2’
Indeed, for [ € N, define K; = K M Q(¢;). Thus, K;/Q is Galois. We note that for
n,m e N coprime, K, N K,, = Q and K,,K,,, € K,,,,. By induction we easily sce
that

|E3| = (2.12)

k=1K:Q> | [] &:Q]= []&,: Q=25

pekEs PEE3
This is equivalent to (2.12). We conclude that
d+1 2logk
|[E(V)| = |EL| + |E2| + |Es| = log(deg(V)/k) +

log 2 log2
d+1 1—-d

= - log(deg(¥)) + logk
log 2 log?2
d+1

-

3 logdeg(})

as required.
The upper bound for | E | is a variant of the corresponding lemma of Dobrowolski
([Dob], Lemma 3). For a natural integer [ and fori < {1,... .k}, let

.8y = 4. W = [ W; 1

Thus, for a fixed [, these sets have the same cardinality. Moreover, p € E; if and
only if I(p,1) = 2.
Let !y, I; be coprime integers. Then, by the definition of the sets Z,

Ll i) 2 | I02.)) (2.13)
Jeltly i)

Indeed, if m € I(ly, j) for some j € I({1,i), we have [[z]W; = [[2]Wy and
[10Ws = [L1]W; which implies [[1 )W = [[11]W; = [[1{2]Wi,. This immediately
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gives the inclusion. Moreover, for j € (11, 1) the sets Z(lz, j) are pairwise distinct.
Indeed, let ji, j2 € Z(I1,§) such that I{l2, j1) N I(l2, j2) # U. Then [L]W;, =
[[1]W;, and [[:]W;, = [I2]W,,. Thus, there exist x; < ker[/,] and x» < ker[l,] such
that Wy, = x1 W), = x,W;, . This implies that xglxl € Stab(W;,). Since [y, I3 are
coprime, by the Bézout identity, there exist integers #1, w2 such thatwu [y +u2l = 1.
Thus

x| = xi_ulll = xllez = (x31x )2 € Stab(W;)).

Hence W;, = x| W;; = W, ,and j; = j,. This proves that (2.13) is a disjoint
union. We infer

Iz, ) = Y |22, )] = |20, D] 02, D).
Jellh )

Tterating this process, we see that

k= (T 21)| = TT 12,131 = 22,

PEES pek;
which proves (2.11) and concludes the proof of the proposition. Ol

We remark that the inequalities (2.9) and (2.11) in the proof of the previous propo-
sition hold even for a @)-irreducible variety which is the union of torsion varieties.

3. Diophantine analysis

3.1. Coding the information. Let I C @ [x]be ahomogeneous radical ideal, where
x = (x1,...,%,). Forv € N we denote by H(Q[x]/I;v) the Hilbert function
dim[Q[x]/I],. Let T be a positive integer. We denote by 17 the T-symbolic
power of I, i. e. the ideal of polynomials vanishing on the variety defined by I with
multiplicity at least T'. Let I be a variety of GJ. Let { be the radical homogeneous
ideal in ©Q[x] defining the Zariski closure of V in P”. By abuse of notation, we set
H(V;v) = HQ[x]/I;v) and H(V.T;v) = H@Qx]/17);v).

Proposition 3.1. Let v, T be positive integers and let g be a finite set of prime
numbers. Let V be a subvariety of GI defined over (). Define V' = | J[p]V for p
running over . Then, for some p € §,

TH(V,T;v)

H(V';v) (10g(u + 1) + log p) —nlog(v + 1))

1
eSS V S - (T 1 s
p=HV) = Py AL oBF
Froof. Denote for simplicity H = H(V,T;v) and H' = H(V';v) and choose a
real & such that & > 1°®(1). We remark that the lower bound for 2%°°(V) of the
proposition is obviously negative if H = H'. Hence we assume H' > H.
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As usual in diophantine approximation, we first construct the auxiliary function.
We are going to show that there exists an homogeneous polynomial F € Q[x],
vanishing on ¥V with multiplicity = T but not vanishing identically on V' and such
that the Weil height of the vector of its coefficients satisfies

(H' — HYh(F) = H(T + n)log(v + 1) 4 ve). (3.14)

Consider the vector space E of homogeneous polynomials F € (Q[x], vanishing on
V" with multiplicity > 7. Let
v+
(")
n

Then dim(E)y = L — H. Notethat L — H > L — H' = 0. Thus dim(E) = 1. Then

there exists a basis F,..., Fr_g of E such that
L-H
> h(F;) = H(T + n)log(v + 1) + ve). (3.15)
i=1

This is a standard application of Bombieri and Vaaler’s version of Siegel’s lemma.
The proof can be found in [Amo-Dav], Theorem 4.1. We briefly give a sketch.
Theorem 8 of [Bom-Vaa] shows that there exists a basis {F1,..., Fr_g} of F such
that Z}r‘:—iH h(F;)is bounded by the logarithmic L,-height (defined chocsingthe L -
normatthe infinite places) b2 (E£). Bythe duality principle (see the proof of Theorem 9
of [Bom-Vaa]) k,(E) is equal to the L,-height of the vector space E-+ of dimension
H. Givene = (01,...,0,) € Gg(@) and a multi-index A = (Aq,...,4;) € I*

we define ¢ = a'i” e aﬁ”. Given two multi-indices A, j we write (ﬁ) for the

product over j of (i:’,) Since V(e) is Zariski-dense in V', the space E= is spanned

by the vectors

((k)a”) (@eV(e), | <T) (3.16)
" A |<v

of Lay-height < (T + n)log(v + 1) + ve (use 3 1, (i) < (v + 1)T*"). Since
the L,-height of a vector space is bounded by the sum of the La-height of a basis
(by an application of Hadamard’s inequality, [Bom-Vaa], equation (2.6)) we find that
ho(E) < H((T + n)log(v + 1) + va). Then equation (3.15) is proved.

We can assume Fy,..., Fr_g € Z[x] and h(Fy) = --- = h(Fr_g). We claim
that there exists jo = L. — H’ + 1 such that F;, does not vanish on V', Indeed, if
all Fy,...,Fr_pg/yy vanishon V/ then H' < L — (L — H' + 1y = H' — 1. Let
F = F;,. Then

L-H
D WE) = (L — H — jo+ DIF) = (H' — HYh(F),
j=1



370 F. Amoroso and E. Viada CMH

Using (3.15) we deduce that A(F) satisfy (3.14).

The extrapolation step is based on a generalization of Dobrowolski’s main lemma
([Dob], lemme 1). We recall that F does not vanish on ¥V’ and & > ji***(1"). Then
there exists & € V(e) such that F(a?) # 0 for some prime p € . Let v be a place
dividing p. By [Amo-Dav], Theorem 3.1,

[Fla?), < p~ 7 lee| 2

where || = max{l, |®1]y,...,|0s|s}. Moreover, for an arbitrary place v,
lec |2V if v } oo,
F@P)o <9, e
LIF|yleely” ifv ] oo,

Note that L. < (v + 1)® and h(e) < &. The product formula gives
0= —Tlogp+nlog(v+ 1)+ h(F)+ pre
Comparing with (3.14) we get

(H'— H)(Tlog p —nlog(v + 1) — pve) < HA(T + n)log(v + 1) + ve)
= H({(T + n)log(v + 1) + pve),

which easily implies our claim. O

3.2. Decoding the information. To decode the information of Proposition 3.1 we
need an upper bound for the Hilbert function. The proposition below follows from a
result of M. Chardin [Cha]. It is proved in Lemma 2.5 of [Amo-Dav].

Proposition 3.2. Let V' C P, be an equidimensional variety of dimension d and
codimensionk = n —d. Letv, T be positive integers. Then

T—1+k d
H(V,T;u)g( k+ )(”; )deg(V).

We also need a sharp lower bound for the Hilbert function. This is a deepresult of
M. Chardin and P. Philippon. Let K be a subfield of @) and let V' be a K-irreducible
variety. They prove ([Cha-Phi], Corollary 3) that for an equidimensional V',

v+d—m

H(V;v)>( ‘

) deg(V)

for v > m and m = k{o(V) — 1).
We need a generalization of this result. Consider finitely many equidimensional
varieties V; of the same dimensiond. Letk = n —d,

m=-1+3 (k¥ —1) +1) <k bo(¥)).
j _

J
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Let us consider the equidimensional variety ¥V’ = |J¥;. In the appendix of this
article, M. Chardin and P. Philippon prove (see Subsection 6.1)

H(V';v) > (” + Z, - m) deg(V") (3.17)

for v > m.
Let g be aset of prime numbers. We apply the previousresultto V' = Upep [7]V.
Using the upper bound (2.6) of Proposition 2.8 and (3.17) we get:

Proposition 3.3. Let V' < G} be a ()-irreducible variety of dimension d and codi-
mension k = n — d which is not a union of torsion varieties. Let N be a positive

real number and let g be a set of prime numbers with p < N lying outside the set
E(V) of Proposition 2.8. Define

V= v
PER

and

m = [kN"5o(1)].

Then for any v = m we have
d—
H(V';v) > (” - . m) deg(V").

We are now ready to prove the main result of this section, Theorem 1.2. Let us
recall the statement.

Theorem L.2. Let V be a variety of G of codimension k, defined and irreducible
over (). Assume that V' is not a union of torsion varieties. Let

8o = 8o(V)(5202 log(n?8p(V)p) D%+

Then there exists a hypersurface Z defined over () of degree at most 8y which does
not contain V' and such that
Vg )y cVvnZ

Proof. For simplicity, denote do = 89(1"). We prove a slightly more precise result.
Namely that
V(Saln—l(SgnZ log(RZSO))—(n-i-l)(k-i-l)-i-l)

is contained in a hypersurface Z defined over (9, such that V' ¢ Z and

deg Z < §on?(39n2 log(n28y)) DD,
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Since 392/ HDUEHD = 39, 1/0n+1) = 39, 41/5 < 52 this statement implies the
statement of Theorem 1.2. Let

N = (3952 log(n?6,)Y* 1.
We need a lower and an upper bound for log N. We have
log N = 21og(39-4logd) = 10.75 (3.18)
and (using logx < ﬁfor x>0,k +1=1.5nand 39 < 2529 = p>29)

log N < (k 4+ 1)log (39112 -3/ n250)

(3.19)
< 1.5nlog(n®*%65) < 6.22n log(n?éy).

We define g as the set of prime numbers p such that N34 < p < N and p & E(V)
where E(V') is as in Proposition 2.8, Thus

| = 7(N) —a(N¥*) — |E(V),

where, as usual, 7w(r) is the cardinality of the set of prime numbers < ¢. By Theorem 1
of [Ros-Sch] we have, for r > 59,

t t t 3
— et —— <)< — + ——.
logr L 2(log1)? ) = logt * 2(log1)?

By Proposition 2.8 and by the last inequality in (2.5),

T - 1

(9] < ]

log2 =BV (Ron2log(n2y)) kD2
nk log o o 1

= :
~ log2-39r2log(n2dp) — 39log2

|E(V)|/VN <

Thus [g] = %Q—TNM, where

1 3 loge
2loge  tY4.3/4 2043/ 4)2logt 39(log 22

fley=1+

Since f(r) = 0.937 for logt = 10.75, we obtain,

ol > 0.937N

WL logN
As in Proposition 3.1, we set

V= Jlnlv.

PeER
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We constructed g such that g M E(V) = @, Then, by Proposition 2.8,

0.937N
ogN

deg(V') = |gp| deg(V) = deg(V). (3.20)

As in the statement of Proposition 3.3, let m = [kN"§,]. Choose
pv=md +m and T = [3982 log(n?50)].

We remark that
v+1<n*N"5. (3.21)

Let
8 1= §on2(39n? log(n?8y )y FDEHD-L

Let W be the Zariski closure of the set V(8~1) and let W/ = Upep[p] W. We remark
that 17 is defined over (Q because the small points of V' are invariant under the Galois
action. Then

LSS Wy <01 (3.22)

Furthermore
HW,T;v)y< H(V,T;v) and H(W';v) < H{V';v)
We are going to prove that the last inequality is strict. Assume on the contrary that
HW vy = H(V" ;). (3.23)
Apply Proposition 3.2 to ¥ and Proposition 3.3 to V. Then, by (3.20),

Aw.Tv) BT (00 loed
HW vy — H(Vv) — (v+£§*m) 0.937N

We remark that (T_]i+k) < T*. Moreover, by the choice v = md + m,

vd\/v+d—m\! 4 v+ J m d 1%%
( d )( d ) _nvm+j<(1+vm) _(1+3) =4

j=1

Thus,
_ THW.T;v) _ e(log N)T**
- HWY) T 0937N
By Proposition 3.1 (with ¥ replaced by W) there exists a prime p € # such that

< 2.91log N. (3.24)

1
671 = ﬁ((T + Dlogp — Allog(v + 1) + log N)—nlog(v + 1) —log N).
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By the choice of T, we have T + 1 = 39872 log(n280). By (3.24), (3.21) and (3.19),

Allog(v + 1)+ log N) + nlog(v + 1) + logN
= 2.91(log N)(log(n25o) +(n + 1)log N) + nlog(n?8o) + (n* + 1) log N
< 2.91(6.22n(n + 1) + 1)log(n?8y)log N + nlog(n?sy) + (n? 4+ 1)log N
< ¢ - 39n% log(n?8) log N

with

_ 2.91(6:22-1.5 +0.25) + 0.5/10.75 + (1 +0.25)/log 4 _

0.74
39

c

(use # > 2 and (3.18)). Let

N [ logr
= — —0.74]1 \
J® t (logN ) g

Then

L 3002 f(p) log(n%s)

Nv
We remark that f(¢) has a single stationary point on [0, + o] which is a local max-
imum. Since p € [N¥* N], we have f(p) = min{ f(N¥*), f(N)}. Moreover,
by (3.18),

8

FINY4Y = 10754374 —0.74)-10.75 > 1
and f(N) = (1 —-0.74)-10.75 > 1. Thus f(p) > 1. Using (3.21), we finally obtain

Nv HZNH+150

S < = §on2(39n2 log(n28, )t DEID-1 — ¢
TonT log(n2dy) — FonZloglniy) o7 (397 loe(n %))

This contradiction shows that the assumption (3.23) cannot hold. Thus we have:
H(W"v) < HV'; v).

Equivalently, there exists a homogeneous polynomial F of degree v which vanishes
on W' but not on V'. The varieties are defined over the rationals, so we can assume
F e (Q[x]. Since F does not vanish on V', there exists a prime number p € & such
that F does not vanish on [p]V. Let Z be the zero setof F(xP) =0. Then V ¢ Z
and V(1Y € W < Z. We have

deg(Z) < Ndeg F < Nv < n2N"H18y = §0n2(39n2 log(n?8y)) D&+

as required. Ol
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4, Distribution of the small points

A geometric reduction process, close to that of [Amo-Via], applied to each variety
involved, allows us to prove the main result of this article using Theorem 1.2,

Theorem 1.3. Let Vo € Vi be subvarieties of G2, defined over Q, of codimensions
ko and &y respectively. Assume that Vy is Q-irreducible. Let

0 = 5(1;)(935n% log(n26(Vy))) o F1TDEer DD,

Then,

- elther there exists a D-irreducible B union of torsion varieties such that Vy <
B C V) and SO(B) < 8,

- or there exists a hypersuiface Z defined over () of degree at most 8 such that
Vo % Z and Vo(ail) E i,

Proof. 'Theorem 1.3 is analogue to Theorem 2.2 of [Amo-Via]. The proof is similar.
Let us give the details.

We simply denote § = §(V;). By contradiction, we suppose that the conclusion
of Theorem 1.3 does not hold. Thus

Vp is not contained in any union B C 1 of proper torsion varieties with do(B) < 6
(4.25)
and

Each hypersurface Z defined over , of degree < 8, with V(8 !) € Z contains V.
(4.26)
Forr € {0,... ko — k1 + 1} we define

D, = §(935n° log(n2s)) kot DD,

Since r < kg — k1 + 1, we have D, < 8. Using an inductive process on r, we are
going to construct a chain of varieties

Xo2 - 2X 22X 412 2 Xy 41
defined over () which satisfy:

Claim.

1) W € X,

i) Each Q-irreducible component of X, containing Vi has codimension = r + k.
iii) 6(X;) < D,.
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Theorem 1.3 is proved if we show the claim for r = kg — k1 + 1. Indeed, by i)
there exists a (J-irreducible component W of X, _¢, 41 which contains V5. By ii)
codim W = kg + 1. This gives a contradiction.

We now define X, and prove our claim by induction on r.

* For r = 0, we simply choose Xy = 1.

* We assume that our claim holds for some r € {0,..., kg — k1 } and we prove
that it holds for r + 1, as well. Since Vy < X,, there exists at least one Q-
irreducible component of X, which contains V5. Let 1 << 5 < ¢ be integers and
let Wy,.... Wy, W1, ..., W, be the (}-irreducible components of X,. We enumer-
ate these components so that

Vo €W, if and only if j=1,...,s.
Assertion ii) of our claim for r implies that 4+ k; = codim(W;) < ko, for j —
1,...,s.
Let j € {1,...,s}. Since 6(X,) < D,, the variety W; is a (J-irreducible com-
ponent of an intersection of hypersurfaces defined over () of degree = D,. Thus
So(W;y < D, < 8. Moreover

WweW, X, CXo= M.
By assumption (4.25), W; is not a union of torsion varieties.

Let
8o = D, (5202 log(n? D, )) T FFY,

In view of Theorem 1.2, the set W;(851) is contained in a hypersurface Z; defined
over () which does not contain W; and such that deg Z; = 6. We show that
8o < D, .. Forthis we need an upper bound for log(n? D,). Using logx < /x for
x > 0, we obtain

D, = 5(935n° log(n28))” “* @D = 593585 . gy Kot D+

< §(935n58)nn+1)?

We have n2 < a"°/4 a(n + 1)? < (9/4)n% and 935 < n02935)/ 122 Thus n2D, <
(n28)°™ with

1 n 9 1(10g935 +6) .
g el oy S 8.
8 4 2\ log?
We deduce
6o = D, (5207 - 17.98n° log(n2s)) " T *o

< D,(935n° log(n?§)) " T *eTD

— Dr—l—l'
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Since 15 € W,
Vo(8ghy < W85 < Z;.

AsdegZ; = 8y = D,y = 0, relation (4.26) implies that V5 < Z;. Thus, for
J=1,...,swehave I, € Z; and

§
Vo € m Zj.
=1

Let
X=X NZynN---NZ.

Then VO C X_,»+1 < Xr'
Recall that deg Z; < 6y < D,1. Then
8(Xr41) < max{8(X,), D, 11} < max{D,, Dy 11} = D,41.
We decompose
Xrp=Wu oW/ uw ,u.. UW,

where Wj’ =W,nZ;n---N4.

Let j € {1,...,5}. Since W; £ Z;, every ()-irreducible component of Wj’ has
codimension > codim(W;) + 1> r + 1 + k1.

Let j € {s +1,...,t} Since Vy € W;, the variety V is not contained in any
()-irreducible component of W),

We conclude that X, satisfies our claim for » + 1. O

5. Proofs of Theorem 1.1 and of the corollaries

Theorem 1.1 becomes a corollary of Theorem 1.3:

Froof of Theorem 1.1. Let

8 = 8(V)(9350° log(nzg(l/)))(d-ﬁ-l)(n-i-l)z.

We have to show that V*(8~1) = 0. Let ¥, be one of the finitely many Q-irreducible

components of ¥V(61). Then 15(6#~1) = . Apply Theorem 1.3to Vyand V; = V.
Wehave kg <mandky = n —d. Thus

(ko —ki + D(ko + D(n + 1) < (d + D(n + 1)2

Since V(#7')is dense in V, the first assertion of Theorem 1.3 must hold. So 15(671)
is contained in a union of torsion varieties B © V. Varying 1, over all components of

V{871, we conclude that V(6~1) € B where B < V is aunion of torsion varieties.
Thus V*(6~1) = 0. O
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On the one hand, Theorem 1.1 tells us that the small points of V" are contained
in the union V¥ of torsion varieties included in V. On the other hand, the torsion is
dense in a torsion varieties and V¥ is a finite union of the maximal torsion varieties
of V. Thus, the closure of the small points must be V*. In [Amo-Via], Corollary 5.3,
we estimate the sum of the degrees of these maximal torsion varieties. This is the
line of

Proof of Corollary 1.4. Let V¥ = By U--- U B; where B; are the maximal torsion
varieties of V. By [Amo-Via], Corollary 5.3, §o(B;) < 6’ and

I3
ngdim(Bj) deg(Bj) < g'n
i=1

where 87 = 8. Since V* = '\ V¥ Theorem 1.1 shows that
Ve H<cV* =B U--UB,.
In addition L
V" = V(0) < V(8. O

Let V' € G be a Q-irreducible subvariety which is not contained in any union of
proper torsion varieties. As remarked inthe introduction, Theorem 1.1 implies a lower
bound for the essential minimum. The slightly better lower bound of Corollary 1.5
is obtained directly from Theorem 1.3.

Proof of Corollary 1.5. Choose a hypersurface Z defined over () containing V" of
minimal degree (V). The result follows choosing Vo = V, V| = Z, ko = k and
ki = 1 in Theorem 1.3. O

Finally, we prove the lower bound for the product of the heights of multiplicatively
independent algebraic numbers announced in the introduction in Corollary 1.6.

Proof of Corollary 1.6. We reorder @1, ...,y in such a way that A{a;) < - <
ha,). Let A; = [2h(2;)/ k()] and choose algebraic numbers B4...., 8, such

that ﬁfi = w;. We apply Carollary 1.5 to the O-dimensional variety V of degree
[D(B) : 03], consisting of the conjugates of # = (B1,..., Bn). We have

L) = h(BY = D A h(ey) < nhien).

By the bound (2.4) of Chardin, we deduce
w(V) < a[Q(B) : Q"
<n(DA;... A"
< 2a(h(ey). . WY P hioyy ' DY7
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In view of the upper bound for the essential minimum and in view of Corollary 1.5
we obtain

nhoy) = 1%°(V)
= @n) " k(o) - b)) () DY (93505 log(n2w(V))) "
or equivalently

. 2
R(or) .. h(an) = D™L2n2)™(9350% log(n2a(V))) ™ "1

To conclude the proof, we use an effective lower bound for the height due to P. Voutier.
Note that &1 is not aroot of unity. By [Vou], Corollary 2, A(a;) = 2D~ ! log(3D) 3.
Moreover we can clearly assume D > 2 and

h(er) .. B(op) <= D Ynlog(3D)) ",

Thus,
1
o(VY=<2n- D Y"(nlog(3D)) - S log(3D)?-DY" =n2D

and (using (2a2)1/70+D* 935 < g1/18 . 035 = 1050 for n = 2)

n2(rn+1)2 nZ(n+1)?

(20" (935n0° log(n (1)) < (2n%)"(9354° log D)

2 Z
< (1050%° log(3D))" "™

6. Appendix

The following appendix by M. Chardin and P. Philippon contains two results. The first
one is an extension of the lower bound for the Hilbert function proved in [Cha-Phi].
This result is crucial in the proof of Proposition 3.3. The second result in this appendix
deals with a filtration of invariants starting with @ and ending with 8q. Let V' C P7
be a K-irreducible variety of codimension &k defined by a homogeneous prime ideal
I € A = E[xo,....xn]. Let1l = r = k. Philippon (see [Phi], Corollary 6)
defines 6. (1) as the minimal degree § such that there exist homogeneous polynomials
J1..... f» € Aof degree § which form a regular sequence in [ Ay. Thus 8 (1) is the
minimal degree § such that there exists an intersection X of hypersurfaces defined
over K of degree < & containing V and of local codimension = r at V. The proof
of Corollary 2.3 shows that it is not restrictive to require also that all hypersurfaces
are defined over ©@. Thus §(1) = w(V) and 8, (I} = bo(V). In addition, one
can show that V' is an isolated component of an intersection of k& hypersurfaces of
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degree 61(1),...,d;(I). Thus, by Bézout’s theorem, deg(V) < §1(1)...6,.(1). In
the second part of the appendix, M. Chardin and P. Philippon prove that there exist
hypersurfaces Z,,..., Zp of degree dy, ..., dy suchthat VV is an isolated component
of Zy M-+ £y and

(kD 2gnkEe=1="1g,  d < deg(V) < dy ...dy.

Obviously, by definition §; < d,. In addition, since deg(V) = d1(J)...5,(]), we
deduce

(nFEFDI2gnk ==Ly (D) < deg(D) < 81(1). .. 6(1).  (6.27)

Even if these inequalities are not needed here, we believe that they will be useful.

Complément & [Cha-Phi]
Par M. Chardin et P. Philippon

6.1. Extension de la minoration de fonction de Hilbert. Dans |’énoncé suivant,
nous utilisons la notion de modules et schémas (m, b)-parfaits telle qu’introduite
dans [Cha-Phi]. Rappelons que dans cette propriété m est un entier et b est un idéal
homogéne de ’anneau de base (supposé gradué). En particulier, I’espace projectif
P? est 0-régulier et son anneau de coordonnées A = Kk[xg, ..., Xp] est (0, A)-régulier
(en tant que A-module).

Théoréme 6.1. Soient V,,...,V; des sous-schémas de P'*, équi-dimensionnels de
méme dimension D et de supports deux & deux distincts. Notons by,..., b, des
idéaux homogenes de Ianneau de coordonnées A = K[xg, ..., x,]. On suppose que
Vi est (my, b;)-parfait pouri = 1,...,5 et on note V un sous-schéma de dimension

D contermt dans Vi U --- UV, Alors on a
v+ D —m
g(7,v) = dea) )

D
désque v >m —my +-—+my; +5—1
Nota Bene — Posons dg(17) le plus petit entier tel que V soit composante d’une

intersectionde »— D formes de degré auplus 8. Onsaitquem; < (n—D)(6o(V;)—1)
et on a done dans 1’énoncé ci-dessus :

m < {(n—D)éo(V1)+ 4+ é5(Vs) —s5) +s5 — 1.

Démonstration. On procéde par récurrence sur I, on note A = K[xq,...,x,] et
Ii,..., 1 lesidéaux des V;. Pour I = 0 on sait que le A-module A/ [; est (m;, b;)-
parfait et donc m;-régulier d’ aprés [Cha-Phi], proposition 3. D’aprés le théoréme 2.4
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de [Con-Her] (appliqué avec M = A/(Iy M-I 1) et A/ I; quiestde dimension 1)
on sait que larégularité de I; /(I M- - M I;) est majorée par la somme de la régularité
de A/(I; N« N L_y) et de celle de I; (qui est égale a celle de A/1; plus 1). De
plus, larégularité de A/ (11 N --- M I;) est le maximum de celle de I; /(1 N--- N 1;)
et de celle de A/ [;, d’ot les inégalités

reg(A/(y M-+ N I;)) < max (reg(L; /{1y M-~ N I;);reg(A/ ;)
<reg(A/(I M-~ N L)y +reg(A/L;) + 1.

Comme la régularité de A/I; est majorée par m; on obtient par téléscopage que la
régularité de A/(1; M-+ N Iy) est majorde par my + -+ +my; + 5 — 1. L'idéal J
de V contient Iy M--- M I; et A/J a méme dimension D, la minoration cherchée
résulte alors de [Cha-Phi], proposition 4, dans ce cas.

Pour passer de D — 1 4 D on intersecte, comme dans loc. cit., V' par une forme
lindaire x assez générale de sorte que pour tout ¢, j € {1,...,8} on ait dim(}; 1
Vi N Z(x)) < D —1etdim(V; N Z(b; + xA4}) < D — 1. On note W; la partie de
dimension D—1 de V; NZ(x) et on vérifie que W; est (m;, b; b, )-parfait pourund; € A
convenable, De plus les W; sont deux a deux distincts, en posant W = Wi 1. LU W,
on adeg(W) = deg(V) et

F(V,v)—FH(V,v—1)y= KV NnZx),v) = H(W v)

L’hypothése de récurrence entraine done

RV —H(V.v—1)= deg(V)(” * ‘g B 11 B m)

puis la minoration voulue par intégration finie. a

6.2. Complément & ’interpolation : estimations du degré. Dans le théoréme 2
de [Cha-FPhi], on vérifie de plus :

(nr(f+1)/22ﬂf(r—1))_1d1 . 'dr < deg(X) = dl i .dr.

La majoration deg(X) =< di...d, est une conséquence du théorgme de Bézout.
Pour I’autre inégalité, on peut en fait Stablir les propriétés supplémentaires suivantes,
a annexer a celles (1);, (2); et (3); du théorgme 2 de [Cha-Phi]. Pouréi = 1,...,7
on pose ¢; = (ni¢T1/227GE=1)=1 ot cette propriété s’ énonce :
(4); pour toute composante ¥ de X; ona H (Y, d; — 1) = c;d, ... d; (d":f;i). Eten
particulier deg(X;) > deg(Y) = ¢;dy ... di = ¢; deg(X;).

La démonstration se fait dans la récurrence suri = 1,...,retpouri =rona
bien deg(X) = c;dy ... d, = ¢, deg(X) car X, = X. Lecasi = 1 résulte déja de
(2)1 (c1 = 1/n) etpour larécurrence I’ argument & ajouter est le suivant (1 < i < r):
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Comme X C Y on a, par (2); et (4);_1,

H(Y, dy —1) = H(X,d; — 1)

o di +n—1i
=c(hn,i) ldeg(Xil)di( - )

—1

di +n—i
>C(l’l,i)_1Ci1d1...di( B I).

n—i
Ce qui conclut car ¢; < ci_jc(r, i) 1, vu que c(n,i) = (nf!i)!Z(i*I)(Z”*i) <
pignG—1
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