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Small points on rational subvarieties of tori

Francesco Amoroso and Evelina Viada

Abstract. Let 7bea subvariety of a torus defined over the rational numbers. We study the

distribution ofpoints ofsmallWeil's height on V. We simplify the proofand we improve previous
results by the first author and S. David. We obtain a totally explicit version of a generalized
Dobrowolski result on the Lehmer problem.
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1. Introduction

In this article we study the distribution of the small points of proper subvarieties of
the torus G^, defined over Q. For n 1, the problem corresponds to finding lower
bounds for the Weil height of an algebraic number. Let a be a non-zero algebraic
number of degree D which is not a root of unity. Lehmer (see [Leh]) asked whether
there exists an absolute constant c > 0 such that h(a) > -jr. The best known result
in this direction is Dobrowolski's result ([Dob]): if D > 1,

h(a) >
D YloglogZ)

for some absolute constant c > 0. Dobrowolski's theorem was generalized to Q-
irreducible subvarieties V ç G^, in a series of articles by David and the first author.

They prove the Generalized Dobrowolski Bound stated below. Their proofs are long
and involved. Mainly, they need an intricate descent argument, hard to read by non
specialists. This descent has been used in several occasions by other authors. Our
first achievement in this paper is a simple and short proof of an explicit and improved
version of the Generalized Dobrowolski Bound. More precisely, we generalize this
statement describing the distribution of small points for different invariants. In addition

we improve some bounds in the applications.
We fix the usual embedding of G£ in P" given by x (xi,..., xn) i-> (1 : Xi :

••• : xn). For a set S ç G", we denote by S the Zariski closure of S in G" On P"



356 F. Amoroso and E. Viada CMH

we consider the Weil logarithmic absolute height, denoted by h(-). Given s > 0 we
denote by S(s) the set of a e S C\ Gm(Q) of height < s. A variety V ç G£ is the
intersection of G^ with a variety of P" defined over Q. Note that the varieties which

appear in this paper are not necessarily irreducible or equidimensional. However we
consider only proper subvarieties ofG^,, therefore we say subvariety ofG^, for proper
subvariety of G^,. We define the essential minimum fiess(V) of V as the infimum of
the set of s > 0 such that V(s) is Zariski-dense in V. We say that B C G^, is torsion if
it is a translate of a subtorus by a torsion point. The Kronecker theorem for points and
the Bogomolov conjecture (Zhang [Zha]) for varieties of positive dimension yield

/iess(F) > 0 if and only if V is not a union of torsion varieties. (1.1)

According to different geometric and arithmetic assumptions, we relate fiess(V) to
different invariants of V, proving essentially sharp effective versions of (1.1). Lehmer's
conjecture can be seen as a sharp effective version of (1.1) for points. The Generalized

Dobrowolski Bound is a quasi optimal effective version of (1.1) for varieties
defined over Q of arbitrar}' dimension. For varieties over arbitrary number fields
which are not union of translates of subtori we speak of Effective Bogomolov. This
case has been treated in our previous work [Amo-Via]. Note that there are intersections

between the two problems, namely for varieties over Q which are not translates.

Therefore an interesting new case treated in this work, is the one of translates defined

over Q and specially the case of O-dimensional varieties consisting of the conjugates
of a non-torsion point a <G G^(Q). Naturally the Galois group plays a key role in
this work.

Let us introduce relevant invariants of a proper projective subvariety V ç P".
The obstruction index co(V) is the minimum degree of a hypersurface Z containing
V. Define 8(V) as the minimal degree 8 such that F is, as a set, the intersection of
hypersurfaces of degree < 8. Finally, define <5o(IO as the minimal degree 8q such

that there exists an intersection X Zx fl • • • fl Zr of hypersurfaces Zy of degree
< <5o such that any Q-irreducible component of F is a Q-irreducible component of
X. In Corollary 2.3 we prove that if V is defined over Q, we can choose the above

hypersurfaces Z, Zi, Zr also defined over Q.
The following effective version of (1.1) is proved in [Amo-Dav] for dim V 0,

in [Amo-Dav] for codim V 1 and in [Amo-Dav] for varieties ofarbitrary dimension.

Generalized Dobrowolski Bound. Let V be a subvariety ofG^ defined over Q of
codimension k. Let us assume that V is not contained in any union ofproper torsion
varieties.

Then, there exist two positive constants c(n) and k(Jc) (k + l)(k + 1)! — k
such that

ßess(V) > 4^ Cog 3co(V))-K^ (1.2)
ù)(V)



Vol. 87 (2012) Small points on rational subvarieties of tori 357

To recover a slightly weaker version of Dobrowolski's theorem it is sufficient to
take V equal to the set of conjugates of the algebraic number a.

For a subvariety V of G^,, we denote by V* the complement in V of the union of
the torsion varieties B ç V. By (1.1) the minimum of the height on F*(Q) is > 0.
In [Amo-Dav] is proved that for a Q-irreducible V and a € V*

A(«)>^aog3Ä(K))-*00. (1.3)
8(V)

2
where c(n) > 0 is not computed and where K.(ri) fv nn is as above. Notice that this
lower bound implies (1.2), with a possible worse exponent on the remainder term. To

see that, apply (1.3) to a hypersurface Z ^ V defined over Q and of degree co(V).
For n 1 Dobrowolski's result remains the best known. In order to simplify the

exposition and the computation of the constants we prefer to assume n > 2. Our first
achievement is a simple and short proof of an explicit and improved version of (1.3):

Theorem 1.1. Let V ç G^, be a ^-irreducible variety ofdimension d. Then, for
any a e V*(Q)

h(a) > 8(V)~l (9?,5n5 login28(V)))~{d+l){n+l)2.

In short, the exponent K.(n) on the remainder term is improved by one exponential.

In addition the constant c(n) is computed. This could be useful in possible
applications. However, the most interesting aspect remains the simplicity of the new
method. We avoid the technical descent argument and the generalization ofPhilippon
zero's estimate used in [Amo-Dav]. This new method could find other applications,
as for instance in the context of the Relative Lehmer Problem, where methods similar
to the ones of David and the first author are used (see [Del]).

To be able to use a conclusive geometric induction similar to the one presented in
[Amo-Via] we first need to produce a new sharp lower bound for fiess(V) in terms of
<5o(IO for varieties which are not union of torsion varieties.

Theorem 1.2. Let V bea subvariety o/G^, ofcodimension k, defined and irreducible
over Q. Assume that V is not a union of torsion varieties. Let

Oo 80(V)(52n2log(n280(V))) («+!)(£+!)

Then there exists a hypersurface Z defined over Q ofdegree at most Oq which does

not contain V and such that

v{®öl) ^vnz.
This theorem is the arithmetic counterpart to [Amo-Via], Theorem 2.1. On one

side, V has to be defined over Q, assumption not necessary in [Amo-Via]. On the
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other side V can be a union of translates of torsion varieties by non-torsion points,
situation to avoid in [Amo-Via]. Despite some similarity, the methods used in other
works are not sufficient to prove this theorem. As in [Amo-Via], we first produce
an inequality involving some parameters, fiess(V) and the Hilbert functions of two
varieties related to V (Theorem 3.1). Some ingredients of the proof of Theorem 3.1

come from [Amo-Dav]. The main difference is the following. In the quoted paper,
using Siegel's lemma, the authors construct one auxiliary function vanishing on V and

then the}' extrapolate to show that the obstruction index of [p] V is small. Here we use

Siegel's lemma in its full power and we find a family of lineari}' independent auxiliary
functions vanishing on V. Then, we extrapolate at [p] V for each auxiliary function.
We don't use an interpolation determinant, as in [Amo-Via], because the problem
is not symmetric. Another important difference is that, to decode the diophantine
information in Theorem 3.1 it is not sufficient to use the estimates for the Hilbert
function due to M. Chardin and P. Philippon [Cha-Phi], like we do in [Amo-Via].
In the present situation we need a refinement of their results which is proved in the

appendix of this article by M. Chardin and P. Philippon. A further subtle point is
to control the behavior of 8q under the action of groups (Proposition 2.7). The final
geometric induction allows us to prove the main result of this article:

Theorem 1.3. Let Vq ç V\ be subvarieties ofG^, defined over Q, ofcodimensions

ko and ki respectively. Assume that Vq is ^-irreducible. Let

Q 8(Vl)(9?>5n5log(n28(Vl)))

Then,

(£o-*l+l)(£o+!)("+!)

- either there exists a ^-irreducible B union of torsion varieties such that Vq ç
B ç Fi and 80(B) < 0,

- or there exists a hypersurface Z defined over Q of degree at most 9 such that

Vq£Z and V0(ß-1) ç Z.

In Section 5, we show how to deduce Theorem 1.1. In addition we prove some
corollaries. Combining Theorem 1.1 with the estimate on the sum of the degrees
of the maximal torsion varieties of V ([Amo-Via], Corollary 5.3), we can give the

following complete description of the small points of V.

Corollary 1.4. Let V ç G^, be a (^-irreducible variety ofdimension d. Let

O 8(V)(935n5\og(n28(V)))(d+1)(n+1)2.

Then

V(6~1) Bx U-Ufif,
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where B\,... ,Bt are the maximal torsion varieties ofV. In addition, 8q(Bj) < 0

and
t

Y^0dim(BJ)deg(Bj)<0n.
/=i

A direct application of Theorem 1.3 allows us to show

Corollary 1.5. Let V ç G^, be a (^-irreducible subvariety of codimension k which
is not contained in any union ofproper torsion varieties. Then

fiess(V) > o)(V)-1(935n5log(n2o)(V)))~kik+1)in+1).

As mentioned, also Theorem 1.1 implies a similar but less sharp lower bound
for the essential minimum, where the exponent on the remainder term is n(n + l)2
instead of the better k(k + l)(n + 1).

An important application of Corollary 1.5 is a lower bound for the product of
the heights of multiplicatively independent algebraic numbers. For instance, this
kind of result is used by Bomb ieri, Masser and Zannier to show the finiteness of
the intersection of a transverse curve with the union of all subtori of codimension
two [Bom-Mas-Zan]. From Corollary 1.5 we deduce the following refined version
of [Amo-Dav], Theorem 1.6:

Corollary 1.6. Let ct\,... ,oinbe multiplicatively independent algebraic numbers in
a numberfield K ofdegree D [K : Q]. Then

h(ax)-..h(an) > D-1(l050n5log(3D))~n2(n+1)2.

The dependence on 8 (or co) of our results is essentially sharp. However, the

dependence in the dimension n of the ambient variety remains mysterious. One
could conjecture that for all Q-irreducible linear subvarieties V ç G^, and for all
a <E F*(Q) we had h(ct) > c for some positive absolute constant c (not depending
on n). This is false, as the following example shows. Let Vn ç G^ be the hypersurface

defined by the equation

Xi -\ h xn-i + xn 0.

We claim that, as n tends to oo,

min h(cL) -> 0.

Indeed, let n > 3. Consider for instance the point et G G^,(Q) whose coordinates

are the roots ai,..., an of the polynomial f(x) xn — 2x — 6. Observe that / is
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irreducible by Eisenstein's criterion. Moreover et <G Vn, because the coefficient of
xn~l in / is zero. We now show that a has small height. For a non-zero integer a,
let a (a,..., a) e G£. Since an 2 • a + 6 we obtain

nh(a) h(an) h(2 • a + 6) < h(2 • a) + h(6) + log2 < h(a) + log 24.

Thus

h(a) < -.n — 1

We claim that et <G V*. Assume on the contrary that ct is in a torsion variety contained
in Vn. From the description of [Sch], p. 163, of the torsion varieties contained in a

linear variety, we see that there exist i < j such that « ctt/ctj is a root of unity.
Note that «/ 1 because / has distinct roots. Thus

0 f(aj) - f(uaj) (1 - «>; - 2(1 - u)a}.

Let y (1 — w")/(l —u). Then y is an algebraic integer and ya"-1 2. Passing

to norms, we infer that ±6 Norm^ J ((Xj) divides a power of 2. This is a

contradiction. Thus a e V*(Q) and h(a) < ^.
2. Geometry

2.1. Algebraic interpolation. In the introduction, we have already mentioned the
definitions of co(V) and <5o(IO for a projective variety F ç P", Let us be more
precise and give some further details and useful relations.

Definition 2.1. Let V ç P" be a projective variety and let K be a subfield oj

i) The obstruction index cok(V) is the minimum degree ofa hypersurface defined
over K containing V.

ii) We define 8^,o(V) as the minimal degree 8 such that there exists an intersection
X ofhypersurfaces defined over K ofdegree < 8 such that every (^-irreducible
component ofV is a (^-irreducible component ofX.

iii) Suppose that V is defined over K. We define 8k(V) as the minimal degree 8 such

that V is, as a set, the intersection of hypersurfaces defined over K of degree
<8.

If K Q we shall omit the index Q.

Note that the definition of 8^,0 makes sense for every number field K, independently

of the field of definition L of V. Indeed, V Uo-eGaKÖ/it") ^(^O ^s defined

over K and the Q-irreducible components of V are components of V. On the
contrary, 8k can only be defined for extensions of the field ofdefinition of V. Indeed if V
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is the intersection of hypersurfaces over K then it is also defined over K. In addition,
if V is defined over K, then in the above definition ii), it is equivalent to require that

every ^-irreducible component of F is a .^-irreducible component of X.
Clearly, for L a field extension of K, cok > col 8k,o > 8l,o and 8k > <5l- We are

now going to show that these are equalities for extensions L of the field of definition
KofV.

Let G be a group acting on G^,. For any subset S of G^, we define

sg n s(s),
geG

G • S U g(S).
geG

In what follows we provide relations between the obstruction indices of F and

F in two special cases, namely for G the Galois group (Lemma 2.2 below) and for
G the kernel of the "multiplication by /" (Lemma 2.4).

Lemma 2.2. Let K be a numberfield and let Z be a hypersurface defined over some
extension L of K. Then there exist D < [L : K] and hypersurfaces Z\,..., Zry
defined over K and ofdegree < deg Z such that

zM^ z1n...nz2).

Proof Let F(x) <G L[x] be an equation defining Z. We fix a basis {e/} of L/K
and we write F(x) ^ ej Fj(x) with Fj(x) G K[x]. Up to order, we can suppose
Pj (x) 7^ Ofor j 1,... ,D and Fj (x) 0 for j > D. Define Z/ to be the zero

set of Fj(x), for j < D. Clearly ZG*<®IK) d zx n • • • n ZD. We now show the

reverse inclusion. Let a e zGalW/A)_ Le^ eacn cri,..., o"[^;jf] be an extension to
Q of each of the [L : K] embeddings of L in Q fixing K. Then, for every i, also

cr^1 (a) G zG?A^' '. Since the F,- are invariant under the action of any such Ot, we
obtain that for every i < [L : £]

0 cr^O-r») cr, (j>F;(ofV)))
cr, (^^(ot1^^))) j2°i(ej)FJ<«y

The matrix (<Jiej)ij is non singular. This implies that Fj(ct) 0 for all 1 < 7* <
[L : K]. This shows the inclusion ZGa1^/^ ç Zi n • - n ZD. D

Corollary 2.3. Let V be a variety defined over a number field K. Then 8k (V)
8(V), coK(V) co(V) and 8K,o(V) 80(V).
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Proof. We already mentioned that such invariants decrease by fields extensions. Then

we have only to show that 8g(V) < 8(V), cok(V) < co(V) and 8k,o(V) < 8q(V).
Let X ^ F be an intersection of hypersurfaces of degree < 8, for 8 <G N. By

Lemma 2.2 xGal^'^ is an intersection of hypersurfaces defined over K, of degree

< 8. Since V is defined over K, V V™^'® ç xGal(-^K\
Choosing 8 8(V) and X V we see that 8K(V) < 8(V). Choosing <5 co(V)

and X ^ V a hypersurface defined over Q of minimal degree 8 we see that cok(V) <
co(V). Choose at last 8 8q(V) andX ^ V suchthat every Q-irreducible component
of F is a Q-irreducible component of X. Let W be a Q-irreducible component of
V. Then W is a Q-irreducible component of X._Since V ç xGaì(®/K) g X, we

see that W is a Q-irreducible component of XGam/K), too. Thus 8K,o(V) < <50(V)-
D

We shall recall some important relations between the obstruction indices. If V is

equidimensional of codimension k, then, by a result of M. Chardin ([Cha]),

co(V)<ndeg(V)1/k. (2.4)

Moreover,
co(V) < 8q(V) < «5(F) < deg(F) < <50(F)*. (2.5)

The first three inequalities are immediate. The last one follows from [Phi], Corollary 5,

p. 357 (with m n, S Fn and 8 80(V)).

2.2. An upper bound for #o([/] ^0- Let V be an equidimensional variety and let
/ 7^ 0 be an integer. We need a bound for <5o([/]IO- We denote by [/] : G^, ->
G£, a \-> a1 (a[,..., aln) the "multiplication by /" and by ker[/] its kernel. The

following lemma is analogue to Lemma 2.2. Here we consider the action of ker[/],
whereas in Lemma 2.2 we considered the Galois action.

Lemma 2.4. Let Z C G^, be a hypersurface. Then, there exist D <ln and
hypersurfaces Z\,..., Zq ofdegree < deg Z such that ker[/] • Zj Zj and

zker[/] Zi n...nZz).

Proof Let F(x) G Q[x] be an equation for Z. Performing the euclidean divisions
by / on the exponents of each monomial, we can write

F(x)= J2xxFx(xl)
AeA

where x (x\,... ,xn) and A runs over the set A of integral multi-indices X

(X x, ¦ ¦ ¦, A„) with 0 < Xt <l. Let Zj be the hypersurfaces defined by the non-trivial
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Fx(xl). Clearly ker[/] • Zj Zj. Moreover Z^[l] d Zi fl ••• fl ZD. We now
show the reverse inclusion. Let a <G Z^"*. Then, for every £ <G ker[/],

0 F($«) Y,(Sa?Fx((Sa)1) £ SxaxFx(al).
AeA AeA

Let ^ varying over all elements of ker[/] and Xj varying over all elements of A.
Then we can write the following homogenous linear system

(SÌJ)tAaxJFxj(a%=*.

Since the matrix (£ tJ)i,j is non singular, (a J Fx: (a))j must be the zero vector. We
remark that no monomial vanishes on G^,. Then we have et <G Zi Pi • • • Pi Zry. This
shows that Zter[/] ç Zi n • • • n ZD. D

To estimate <5o, we need a generalization of Lemma 3.7 of [Amo-Via], which
holds for Q-irreducible varieties. Here the variety is not necessarily Q-irreducible.
In general, the lemma does not extend to all equidimensional varieties, however it
extends under some additional assumptions.

Lemma 2.5. Let V bea (^-irreducible subvariety ofG^ and let I be apositive integer.
Let K be thefield ofdefinition ofone of the (^-irreducible components ofV. Assume

that K Ci <Q(Çi) <Q, for a primitive l-th root ofunity £/. Then

«50(ker[/] • V) < ln80(V).

Proof. The first step is to prove the following remark. By definition of 8q(V), there
exists a variety X defined by rational equations of degree < 8o(V) such that F is a

Q-irreducible component of X. Let W\,..., Wt be the Q-irreducible components
of V.

Remark 2.6. Let £ e ker[/]. Assume that for some i the variety ÇWi ç X. Then

ÇWj ç X for any index j.
Proof. We remark that the Galois group permutes transitively Wi,..., Wt. Let Ki be
the field of definition of Wt. By assumption Kt n Q(£) Q. ThusJ^(^) '• &t]
[Q(£) : Q]- Hence, for any y l,...,t there exists r e Gal(Q/Q) such that

x(Wi) Wj and r(£) £. We infer that $Wj r(£ Wt) is included in x(X) X.
D

In what follows we say that a Q-irreducible variety W ç G^, is imbedded in a

variety X ç G^, if F is a subset of X but not an irreducible component of X. Let
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us denote W W\. Let S be the set of Ç G ker[/] such that £ W is imbedded in X.
Then, by the remark above, Fç^" X. We define

x' x n n^"lx-
£eS

Note that V ç X'. Furthermore, the varieties X and Ç~ X are intersections of
hypersurfaces of degree < 8q(V). Thus 8(X') < 8q(V).

We shall show that no translate £ Wj is imbedded in X'. Assume by contradiction
that £ Wj was imbedded in X' for some £ <G ker[/] and for some y'e{l /i}, We

will prove that IgS. Then W would be imbedded in X, which contradicts the fact
that W is a component of X. Since £ has finite order, to prove 1 <G S it is sufficient
to prove that Çn € 5, for all positive integers n. We proceed by induction. Since

X' ç X, ÇWj is imbedded in X and so Ç G 5. We now assume £" <G S for some
n > 1 and we prove that Çn+1 eS. Since X' ç Ç-nX,ÇWj is imbedded in Ç~nX.
Thus £"+1W,- is imbedded in X and Çn+1 e S.

We now define
Y ker[/]'Z'.

Clearly ker[/] • V c_T and 8(Y) < ln8(X') < ln80(V). Let £W$ (£ G ker[/],

j <G {1,...,?}) be a Q-irreducible component ofker[/] * V. Assume by contradiction
ÇWj imbedded in Y. Then ÇWj is imbedded in i\X' for some i\ <G ker[/]. Thus
y~1ÇWj is imbedded in X', which contradicts the construction of X1. D

At last we provide the necessary upper bound for <5o([/] V).

Proposition 2.7. Let V be a (^-irreducible subvariety o/G^, and let I be a positive
integer. Let K be thefield ofdefinition of one of the (^-irreducible component ofV.
Assume that K n Q(fr) Q. Then

&o([l]V)<ln-%(V).

Proof. By Lemma 2.5 there exist hypersurfaces Zi,... ,Zr of degree < ln8o(V)
such that every Q-irreducible component of ker [/] * V is a component of Zi fl • • • fl Zr.
By Lemma 2.4 we can assume ker[/] • Zj Zj. Thus

[i]v ç [Z]Zi n---n[/]zr
anddeg([/]Zj) /_1 deg(Zj). Wenowshowthateachcomponentof [/] V is isolated
in such an intersection. Suppose on the contrary that U is a Q-irreducible component
of F such that

[l]U eye [/]Zi n---n[/]Zr
for some Q-irreducible T. Then there exists a Q-irreducible component Y' of [/]_1T
such that

f/cy'ç (ker[/] • Zi) n • • • n (ker[/] • Zr) Zx n • • • n Zr.
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This contradicts the fact that each component of F is isolated in Zi fl • • • fl Zr. D

2.3. Exceptional primes. Let V ç G£ be a Q-irreducible variety and let p be

a finite set of primes. In what follows, we need a lower bound for the degree of
(J e [/?]F and an upper bound for <5o(Lp]F) for p <G p. This holds outside a set of
"bad" primes. One has to ensure that there are few bad primes. This is the object
of the next proposition. Part of the proof was already in [Amo-Dav], Section 2. We

prefer to reproduce the integral argument.

Proposition 2.8. Let V ç G^, be a (^-irreducible variety ofdimension d. Assume

that V is not a union of torsion varieties. Then there exists a set ofprime numbers

E(V) ofcardinality

\E(V)\<^-logdeg(V)
log 2

such thatfor all prime numbers p ^ E(V),

So

and, for allfinite subsets p ofprimes lying outside E(V),

te%(\J[p]v)>\p\deg(V). (2.7)

pep

Proof. We remark that the Galois group permutes transitively the Q-irreducible
components W Wi,..., Wk of V. We recall the definition of stabilizer:

Stab(W) {a e G£ such that a W W).

Define H Stah(W)/ Stah(W)° where StabfW^)0 is the connected component of
Stabfpy) through the neutral element. Then, H is a finite group of cardinality

\H\< deg(Stab W) < deg(W)d+1. (2.8)

We denote do dim Stab(W) < d. We remark that for any natural number /, it
holds that

| ker[/] n Stab(P7)| | ker[/] n Stab(P7)°| • | ker[/] D H\ ld°\ ker[/] HH\,

where we identify [/] with the "multiplication" by / in the quotient G^1/Stab(Pi/)0.
Furthermore, denote by K the field of definition of W. Then [K : Q] k.

Let Ei be the set of prime numbers p such that p divides \H\. Let E2 be the
set of primes p such that [p]W [p]Wf for some 1 < i < k. Let E3 be the set of
primes p such that K fl Q(£p) ^ Q, where as usual Çp is a primitive p-th root of
unity. We define

E(V) EiUE2U E3.
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Since E'3 ç E(V), Proposition 2.7 shows that the upper bound (2.6) holds.
We now prove (2.7). First we show that

p\\H\=> deg([p] Wt) > deg(Wi), for i 1,..., k. (2.9)

If p \ \H\, then | ker[/?] C\ H\ 1. By the degree formula for the image of the

multiplication by p (see for instance [Dav-Phi], Proposition 2.1 (i)),

deg([p]W) pd~do\ker[p] D H\~l deg(W) pd~d° deg(W) > deg(W).

This shows (2.9).
We now show that, for /1, /2 natural integers,

V 7^ union of torsion varieties and U =£¦ U^ ^ (2.10)
=* [hWi Ï \h\Wj fori,] l,...,k.

Assume on the contrary that [/1] W is a Galois conjugate to [/2] W. Since the multiplication

by natural numbers commute with the Galois action, the same holds replacing

/j by l[ for r G N, as well. We can suppose /1 < /2- Let h be the normalised height
for subvarieties of G£ (see for instance [Dav-Phi]). Then A([/i]P7) h([l2]W).
By the height formula for the image of the multiplication by an integer ([Dav-Phi],
Proposition 2.1 (i)), we obtain

/1 0+1|ker[/i] n H\~1h(W) h([h]W) h([l2]W)

ld~do+11 ker[/2] CMI\-lh(W).

Since V is not a union of torsion varieties, W is not torsion. Then h(W) > 0. Thus

I ker[/i] fl H\

Replacing /1 and /2 with /[ and /| and letting r -> +00 we get a contradiction.
Let p be a set of primes lying outside E(V) and assume that V is not a union of

torsion varieties. The statements (2.9) and (2.10) and the definition of E(V) show
that

k k

deg [J [p]v) deg y y [p]Wj) ££ deg (\p]Wj)
pep j=ipep j=ipep

k

>^^deg(^)=b|deg(F).
j=lpep
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To conclude the proof, we need to provide an upper bound for the cardinality of
E(V) Ex U £2 U £3. First we remark that by (2.8) the set Ex of primes p dividing
IHI has cardinality

logli? I d + 1
s

d + 1

< -r~T < -r-7logdeg(P7) —— log(deg(7)/*).
log 2 log 2 log 2

Below we detail the proof that the set E2 has cardinality

\E2\<-^-. (2.11)
log 2

We have still to estimate the cardinality of the set £3 of primes p such that K fl
Q(Çp)^Q. It holds that

1*1 < H (2.12)
log 2

Indeed, for / e N, define Kt K D Q(£/). Thus, ÄT//Q is Galois. We note that for
n, m € N coprirne, jSTb Pi Km Q and KnKm ç j£nm. By induction we easily see

that
k [K : Q] > [ Y\ Kp : q] Y\[KP:Q]> 2^1.

peE3 P^Es

This is equivalent to (2.12). We conclude that

d + 1 2I02&
\E(V)\ < |£i| + |£2| + |£3| < -r-rlog(deg(F)//:) + —4-

log 2

log(deg(F)) + —— log/j
log 2

- logdeg(F)
log 2

as required.
The upper bound for | E2 | is a variant of the corresponding lemma of Dobrowolski

([Dob], Lemma 3). For a natural integer / and for i <G {1,..., k}, let

I(l,i) {J, [l]Wî [l]Wj}.

Thus, for a fixed /, these sets have the same cardinality. Moreover, p G E2 if and

only if I(p,l)>2.
Let /1, /2 be coprirne integers. Then, by the definition of the sets I,

XdxhJ)^ U I(l2J). (2.13)

jel(h,i)

Indeed, if m G I(l2,j) for some 7 G J(/i,J)> we have [/2]^' [y^m and

[lx]Wi [h]Wj which implies [hhWi [hhWj [hh]Wm. This immediately

log 2

d + 1

log 2

d + 1



368 F. Amoroso and E. Viada CMH

gives the inclusion. Moreover, for j € 1(1\, i) the sets I(l2, j) are pairwise distinct.
Indeed, let jx,j2 e I(h,i) suchthat I(/2,7i) n I(l2,j2) ^ 0. Then [h]Wjl
[lx]Wj2 and [/2]^ [h]Wj2- Thus, there exist X\ G ker [/J and x2 e ker [/2] such

that Wj2 Xx Wj! x2Wj1. This implies that x^Xi e Stab(W^1). Since /1, l2 are
coprirne, by the Bézout identity, there exist integers u 1, u 2 such that U\l\-\-u2l2 1.

Thus

Xl xl~uih x\2h (x^xi)"2'2 e Stiu>(Wh).

Hence Wj2 X\Wjx Wjx, and 7*1 7*2. This proves that (2.13) is a disjoint
union. We infer

|iW2,0l> Yu l%,7)| |-T(/i,l)||-T(/2,l)|.

Iterating this process, we see that

k> l( Y[ /U)| > u l^>l)l>2|£2',
peE2 P^E2

which proves (2.11) and concludes the proof of the proposition. D

We remark that the inequalities (2.9) and (2.11) in the proof of the previous proposition

hold even for a Q-irreducible variety which is the union of torsion varieties.

3. Diophantine analysis

3.1. Coding the information. Leti C Q[x] be ahomogeneous radical ideal, where

x (x\,..., xn). For v G N we denote by H(Q[x]/I; v) the Hilbert function

dim[Q[x]//]v. Let T be a positive integer. We denote by 1^ ' the T-symbolic
power of I, i. e. the ideal of polynomials vanishing on the variety defined by I with
multiplicity at least T. Let F be a variety of G^,. Let I be the radical homogeneous
ideal in Q[x] defining the Zariski closure of V in P". By abuse of notation, we set

H(V;v) H(Q[x]/1;v) and H(V,T;v) #(Q[x]/7(r); v).

Proposition 3.1. Let v, T be positive integers and let p be a finite set ofprime
numbers. Let V be a subvariety ofG^ defined over Q. Define V ULp]^/or P
running over p. Then, for some p <G p,

ßess(7) > -^(riogp -I|p^(log(v + 1) + logp) -nlog(v + 1)).

Proof. Denote for simplicity H H(V, T;v) and H' H(V'\ v) and choose a

real s such that s > fiess(V). We remark that the lower bound for /less(F) of the

proposition is obviously negative if H > H'. Hence we assume H' > H.
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As usual in diophantine approximation, we first construct the auxiliary function.
We are going to show that there exists an homogeneous polynomial F <G Q[x]v
vanishing on F with multiplicity > T but not vanishing identically on V and such

that the Weil height of the vector of its coefficients satisfies

(H' - H)h(F) < H((T + n) log(v + 1) + vs). (3.14)

Consider the vector space E of homogeneous polynomials F <G Q[x]v vanishing on
V with multiplicity > T. Let

Then dim(£) =L-H. Note that L-H>L-H'>0. Thus dim(£) > 1. Then
there exists a basis Fi,..., Fl-h °f E such that

L-H
J2 KFj) < H((T + n)log(v + 1) + vs). (3.15)

/=i
This is a standard application of Bombieri and Vaaler's version of Siegel's lemma.
The proof can be found in [Amo-Dav], Theorem 4.1. We briefly give a sketch.
Theorem 8 of [Bom-Vaa] shows that there exists a basis {Fi,..., Fl-h) °f E such
that ]T\ ~l h(Fj is bounded by the logarithmic L2~height (defined choosing the L2"
norm at the infinite places) h2 (E). By the duality principle (see the proofofTheorem 9

of [Bom-Vaa]) h2(E) is equal to the L2~height of the vector space E1- of dimension
H. Given a (ai,... ,a„) e GJ(Q) and a multi-index X (Xi,..., Xn) e N"
we define a al * (Xnn. Given two multi-indices X, fl we write for the

product over 7* of („•()• Since V(e) is Zariski-dense in V, the space E is spanned

by the vectors

' W-* (a e V(s), \fi\<T) (3.16)
X

I1 J /|A|<v
X-of L2-height < (T + n)log(v + 1) + vs (use E|A|<v < (v + l)r+")- Since

the L2-height of a vector space is bounded by the sum of the L2-height of a basis

(by an application of Hadamard's inequality, [Bom-Vaa], equation (2.6)) we find that

hi(E) < H((T + n) log(v + 1) + ve). Then equation (3.15) is proved.
We can assume Fi,..., Fl-h <= Ì\x\ and h(Fx) < • • • < h(FLs)- We claim

that there exists 7*0 < L — H' + 1 such that Fj0 does not vanish on V. Indeed, if
all Fi,..., FL-H>+x vanish on V, then W < L - (L - H' + 1) H' - 1. Let
F Fj0. Then

L-H
J2 KFj) >(L-H-jo + l)h(F) > (H' - H)h(F).
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Using (3.15) we deduce that h(F) satisfy (3.14).
The extrapolation step is based on a generalization of Dobrowolski's main lemma

([Dob], lemme 1). We recall that F does not vanish on V and s > fiess(V). Then
there exists et <G V(s) such that F(ap) ^ 0 for some prime p <G p. Let v be a place
dividing p. By [Amo-Dav], Theorem 3.1,

\F(a?)\v<p-T\<*\r

where |a| max{l, \a\ \v,..., \ctn\v}. Moreover, for an arbitrary place v,

\F(a*)\ <i|a|r ifV|°°'
\L\F\v\a\y iff | oo.

Note that L < (v + 1)" and h(ct) < s. The product formula gives

0 < -Tlogp + nlog(v + 1) + h(F) + pvs.

Comparing with (3.14) we get

(H' - H)(T \ogp-nlog(v + 1) - pvs) < H((T + n)log(v + 1) + vs)

< H((T + n) log(v + 1) + pvs),

which easily implies our claim. D

3.2. Decoding the information. To decode the information of Proposition 3.1 we
need an upper bound for the Hilbert function. The proposition below follows from a

result of M. Chardin [Cha]. It is proved in Lemma 2.5 of [Amo-Dav].

Proposition 3.2. Let V ç Pn be an equidimensional variety of dimension d and
codimension k n — d. Let v, T be positive integers. Then

(T - 1 + k\ (v + d\ff(F^K u ){ d jdeg(F)-

We also need a sharp lower bound for the Hilbert function. This is a deep result of
M. Chardin and P. Philippon. Let K be a subfield of Q and let F be a £-irreducible
variety. They prove ([Cha-Phi], Corollary 3) that for an equidimensional V,

(v + d — m\ vH(V;v)>i
d Jdeg(F)

for v > m and m k(8o(V) — l).
We need a generalization of this result. Consider finitely many equidimensional

varieties Vj of the same dimension d. Let k n — d,

m — 1 + ^{k{6o<yj) - 1) + 1) <*£>(*}).
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Let us consider the equidimensional variety V \J Vj. In the appendix of this
article, M. Chardin and P. Philippon prove (see Subsection 6.1)

{v + d — m\ ,vH(V';v)>[
d Jdeg(K') (3.17)

for v > m.
Let p be a set ofprime numbers. We appi}' the previous result to V U»e»p \pW ¦

Using the upper bound (2.6) of Proposition 2.8 and (3.17) we get:

Proposition 3.3. Let V ç G^, be a (^-irreducible variety ofdimension d and
codimension k n — d which is not a union of torsion varieties. Let N be a positive
real number and let p be a set ofprime numbers with p < N lying outside the set

E(V) ofProposition 2.8. Define

V'= \J[p]V

m [kN"80(V)].

Then for any v > m we have

v (v + d — m\ ,v

H(V';v)>\^ d Jdeg(7').

We are now ready to prove the main result of this section, Theorem 1.2. Let us
recall the statement.

Theorem 1.2. Let V be a variety of G^, of codimension k, defined and irreducible
over Q. Assume that V is not a union of torsion varieties. Let

Oo <5o(F)(52n2log(n2«50(F))) («+!)(£+!)

Then there exists a hypersurface Z defined over Q ofdegree at most Oq which does

not contain V and such that

v(0q1) ç vnz.
Proof. For simplicity, denote 8q 8q(V). We prove a slightly more precise result.

Namely that

V{8zln-2(i9n2log(n28o)T{n+m+l)+l)

is contained in a hypersurface Z defined over Q, such that V ^ Z and

degZ < 80n2(39n2log(n280))(n+lXk+1).
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Since 39„2/((«+D(*+i) < 39n1/("+1) < 39 • 41/5 < 52 this statement implies the
statement of Theorem 1.2. Let

N (39n2log(n280))k+1.

We need a lower and an upper bound for log N. We have

logiV >21og(39-41og4)> 10.75 (3.18)

and (using logx < «Jx for x > 0, k + 1 < 1.5« and 39 < 25-29 < n5-29)

logN <(k + l)log (39n2 • y/rMo)

< 1.5nlog(n8-29(5o) < 6.22« log(n2<50).

We define p as the set of prime numbers p such that N3^4 < p < N and p $ E(V)
where E(V) is as in Proposition 2.8. Thus

\p\ > 7t(N)-7t(N3/4) - \E(V)\,

where, as usual, Jt(t) is the cardinality of the set ofprime numbers < t. By Theorem 1

of [Ros-Sch] we have, for t > 59,

t t t 3r
< tf(0 <

log? 2(log02 w-logr 2(log02'

By Proposition 2.8 and by the last inequality in (2.5),

r— d + 1 1

\E(V)\/VN < -—-logdeg(F)
log 2 & &v ' (39n2log(n2<50))(*+1)/2

nk log (5o 1

- Iog2-39»2log(n2<50) ~ 39 log 2

Thus \p\>^f, where

1 1 3 logr/(0 1

2 logr ^/4,3/4 2r1/4(3/4)2logr 39(log2)r1/2'

Since f(t) > 0.937 for logr > 10.75, we obtain,

0.937/Y
10 ' - logiV

As in Proposition 3.1, we set

V'= \J[p]V
pi
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We constructed p such that p fl E(V) 0. Then, by Proposition 2.8,

0.931N
deg(F') > \p | deg(F) > —— deg(F). (3.20)

logN

As in the statement of Proposition 3.3, let m [kNn8o\- Choose

v md + m and 71 [39n2 log(n2<5o)].

We remark that
v + 1 < n2Nn80. (3.21)

Let
0 := (50n2(39n2log(n2«50))("+1)(fc+1)-1.

Let W be the Zariski closure of the set V(0~x and let W' {Jpep [p] W. We remark
that W is defined over Q because the small points of V are invariant under the Galois
action. Then

ßess(W)<0~1. (3.22)

Furthermore

H(W,T;v)<H(V,T;v) and H(W';v) < H(V';v).

We are going to prove that the last inequality is strict. Assume on the contrary that

H(W'\v) H(V';v). (3.23)

Apply Proposition 3.2 to V and Proposition 3.3 to V. Then, by (3.20),

H(W,T;v) H(V,T;v) Ç'I^)^) logN
H(W';v) - H(V'\v) - (v+dfm) X0.931N'

We remark that ~k+ < Tk. Moreover, by the choice v md + m,

d J \ d J t_L v — m + 7 V v — m/ \ d

Thus,

ra^.rv) < gOogAQT^ <
iî(P7';v) - 0.937ÌV ~

By Proposition 3.1 (with V replaced by W) there exists a prime p £ p such that

0-1 > — ((T + l)log/> - A(log(v + 1) + logJV) -nlog(v + 1) -logJV).
pv
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By the choice of T, we have T + 1 > 39n2 log(n2<50). By (3.24), (3.21) and (3.19),

A(log(v + 1) + log AO + n log(v + 1) + logN

< 2.91(log AO(log(n2<50) + (n + l)logiV) + nlog(n2<50) + (n2 + l)log JV

< 2.91(6.22n(n + 1) + l)log(n2<50)logiV + nlog(n2<50) + (n2 + l)logiV
<c-39n2log(n2(5o)logiV

with

2.91(6.22 • 1.5 + 0.25) + 0.5/10.75 + (1 + 0.25)/log 4
c : — < 0.74

39

(usen > 2 and (3.18)). Let

Then

/^(S-<-i^
rl>3^2/001og(«2<50)

Nv
We remark that f(t) has a single stationary point on [0, +oo] which is a local
maximum. Since p e [N3/A, N], we have f(p) > min{f(N3/4),f(N)}. Moreover,
by (3.18),

f(N3/4) > el0J5/4(3/4 - 0.74) • 10.75 > 1

and f(N) > (1 -0.74). 10.75 > 1. Thus f(p) > 1. Using (3.21), we finally obtain

Nv n2/VB+1<5n
< )n2(39n2log(n2«50))("+1)(fc+1)-1 0.

39n2log(n280) ~ 39n2log(n280)

This contradiction shows that the assumption (3.23) cannot hold. Thus we have:

H(W';v)< H(V';v).

Equivalently, there exists a homogeneous polynomial F of degree v which vanishes

onW' but not onF'. The varieties are defined over the rationals, so we can assume
F G Q[x]. Since F does not vanish on V, there exists a prime number p G p such

that F does not vanish on [p]V. Let Z be the zero set of F(xp) 0 Then V <£ Z
and V(0~1) ç W ç Z. We have

deg(Z) < NdegF < Nv < n2Nn+180 80n2(39n2log(n280))(n+lXk+1)

as required. D
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4. Distribution of the small points

A geometric reduction process, close to that of [Amo-Via], applied to each variety
involved, allows us to prove the main result of this article using Theorem 1.2.

Theorem 1.3. Let Vq ç V\ be subvarieties ofG^, defined over Q, ofcodimensions
ko and ki respectively. Assume that Vq is (^-irreducible. Let

$ «5(Fi)(935n5log(n2(5(Fi)))

Then,

(£o-*l+l)(£o+!)("+!)

- either there exists a (^-irreducible B union of torsion varieties such that Vo Ç
B ç Vi and 80(B) < 0,

- or there exists a hypersurface Z defined over Q of degree at most 0 such that

V0£Z and V0(e~l) ç Z.

Proof. Theorem 1.3 is analogue to Theorem 2.2 of [Amo-Via]. The proof is similar.
Let us give the details.

We simply denote 8 8(V\). By contradiction, we suppose that the conclusion
of Theorem 1.3 does not hold. Thus

Vo is not contained in any union B ç Vi of proper torsion varieties with 8o(B) < 0
"

(4.25)
and

Each hypersurface Z defined over Q, of degree < 0, with Vq(0~1) ç Z contains Vq.

(4.26)
For r e {0,... ,ko — ki + 1} we define

Dr 8(935n5 log(n2<5))
r(k0+X)(n+X)

Since r < ko — k\ + 1, we have Dr < 0. Using an inductive process on r, we are

going to construct a chain of varieties

Xo 2 ••• 2 Xr 2 Xr+i 2 ••• 2 Xk0-ki+i

defined over Q which satisfy:

Claim.

i) Vq ç Xr.

ii) Each (^-irreducible component ofXr containing Vq has codimension > r +k\.
iii) 8(Xr) < Dr.
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Theorem 1.3 is proved if we show the claim for r ko — kx + 1. Indeed, by i)
there exists a Q-irreducible component W of XjCo_jCl+i which contains Vo- By ii)
codim W > ko + 1. This gives a contradiction.

We now define Xr and prove our claim by induction on r.
• For r 0, we simply choose Xo V\.

• We assume that our claim holds for some r £ {0,... ,ko — kx} and we prove
that it holds for r + 1, as well. Since Vq Q Xr, there exists at least one Q-
irreducible component of Xr which contains Vo- Let 1 < s < t be integers and

let W\,..., Ws, Ws+i,..., Wt be the Q-irreducible components of Xr. We enumerate

these components so that

Vo Ü= Wj if and only if j 1,... ,s.

Assertion ii) of our claim for r implies that r + k\ < codim(W^) < ko, for j
l,...,s.

Let 7* G {1,... ,s}. Since 8(Xr) < Dr, the variety Wj is a Q-irreducible
component of an intersection of hypersurfaces defined over Q of degree < Dr. Thus

8o(Wj)< Dr <0. Moreover

Vo ç Wj ç Xr ç Xo Vi.

By assumption (4.25), Wj is not a union of torsion varieties.
Let

Oo Dr{52n2log(n2Dr)){n+m°+l).
In view of Theorem 1.2, the set Wj(90~1) is contained in a hypersurface Zj defined

over Q which does not contain Wj and such that deg Zj < Oq- We show that
Oo < Dr-\-x • For this we need an upper bound for log(n2Dr)- Using logx < -Jx for
x > 0, we obtain

Dr 8(935n5 log(n25))r(*0+1)(n+1) < «5(935n5 • n<5y(*o+i)(«+i)

< 5(935n65)"(n+1)2.

We have n2 < n"3/4, n(n + l)2 < (9/4)n3 and 935 < n0og935)/iog2 ^^ n2Df <
(n28)cn3 with

1 9 l/^log935
e

8
+ 4-2li!ir+6l<17'

We deduce

h < Dr{52n2 17.98«3 log(n2«5))("+1)(fc°+1)

<Z)r(935n5log(n2<5)) (n+l)(Ä0+l)
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Since Vo ç Wj

Vo(0^)QWj(0^)<zZj.
As deg Zj < Oq < Dr-\-i < 0, relation (4.26) implies that Vq 9 Z/. Thus, for

7 1,..., s we have Vo Ç Zj and

£

1=1

Let
zr+i zr nZi n-nZj.

ThenFo ç Zr+i ç Xr.
Recall that deg Zy < #o < -Dr+i- Then

(5(Xr+i) < max{8(Xr), Dr+i} < max{Z)r, Z)r+i} Dr+i-

We decompose

Xr+i w{\j*-uw;\jws,+1 U---U w/,

where Wj Wj n Zi n • •• fl Z5.
Let 7* G {1,... ,5}. Since W^- ^ Z/, every Q-irreducible component of W- has

codimension > codim(W^) +l>r-r-l+^i.
Let j E {s -\- 1,... ,t}. Since Vq ^ Wj, the variety Fq is not contained in any

Q-irreducible component of W'.
We conclude that Xr+i satisfies our claim for r + 1. D

5. Proofs of Theorem 1.1 and of the corollaries

Theorem 1.1 becomes a corollary ofTheorem 1.3:

ProofofTheorem 1.1. Let

0 8(V)(935n5\og(n28(V))f+1)in+1)2.

We have to show that V*(0~l) 0. Let Vq be one of the finitely many Q-irreducible

components of7(0_1). Then 7O(0-1) 70. Apply Theorem 1.3 to V0 and VX V.
We have ko < n and &i n — d. Thus

(*o -*i + l)(*o + 1)(" + !)<(<* + l)(n + l)2.

Since V(0 1 is dense in Vo, the first assertion ofTheorem 1.3 must hold. So Vq(0 1)

is contained in a union of torsion varieties B ç ]/. Varying Vq over all components of

V(0~l), we conclude that V(0~l) ç B where B ç V is a union of torsion varieties.
Thus 7*(0_1) 0. D
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On the one hand, Theorem 1.1 tells us that the small points of V are contained
in the union Vu of torsion varieties included in V. On the other hand, the torsion is
dense in a torsion varieties and Vu is a finite union of the maximal torsion varieties
of V. Thus, the closure of the small points must be Vu. In [Amo-Via], Corollary 5.3,
we estimate the sum of the degrees of these maximal torsion varieties. This is the
line of

ProofofCorollary 1.4. Let Vu B\ U •• • U Bt where Bj are the maximal torsion
varieties of V. By [Amo-Via], Corollary 5.3, 80(Bj) < 0' and

t

JVdfaW deg(fi/) < 0'"

/=i
where 0' < 0. Since V* V\VU, Theorem 1.1 shows that

V(e~l) c Vu Bi U---UBt.

In addition
Vu VXÖ) ç V(0~l). D

Let V ç G^, be a Q-irreducible subvariety which is not contained in any union of
proper torsion varieties. As remarked in the introduction, Theorem 1.1 implies a lower
bound for the essential minimum. The slightly better lower bound of Corollary 1.5

is obtained directly from Theorem 1.3.

ProofofCorollary 1.5. Choose a hypersurface Z defined over Q containing V of
minimal degree co(V). The result follows choosing Vq V,V\ Z, ko k and

ki 1 in Theorem 1.3. D

Finally, we prove the lower bound for the product of the heights ofmultiplicatively
independent algebraic numbers announced in the introduction in Corollary 1.6.

ProofofCorollary 1.6. We reorder ot\,... ,an in such a way that h (ax) < ••• <
h(an). Let Ai [2h(ai)/h(ai)] and choose algebraic numbers ß\,...,ßn such

that ßt l (Xj. We apply Corollary 1.5 to the O-dimensional variety V of degree

Q], consisting of the conjugates of ß (ßi,..., ßn). We have

ßess(V) h(ß) <J2A-1h(al) < nh(ax).
i

By the bound (2.4) of Chardin, we deduce

co(V)<n[Q(ß):Q]^n
<n(DAx...An)l/n
< 2n(h(ai)... h(an))1/nh(alylDl/n.
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In view of the upper bound for the essential minimum and in view of Corollary 1.5

we obtain

nh(ax) > fiœs(V)

> (2n)~l(h(ax)... h(an))-l/nh(ax)D-l/n(935n5 \og(n2co(V)))~n(n+1)2

or equivalently

h(ax)... h(an) > D-1(2n2)-n(935n5log(n2co(V)))~"2(n+1)2.

To conclude the proof, we use an effective lower bound for the height due to P. Voutier.
Note that a i is not a root ofunity. By [Vou], Corollary 2,h(et\) >2D~l log(3Z))-3.
Moreover we can clearly assume D > 2 and

h(ax)... h(an) < D~l(n \og(3D))-*n.

Thus,

o)(V) < 2n • D~1/n(nlog(3D))-3 • -D \og(3D)3 ¦ Dl/n n~2D

and (using (2n2)1/n(n+1)2 • 935 < 81/18 • 935 < 1050 for n > 2)

(2n2)n(935n5log(n2(D(V))f{n+l)2 < (2n2)" (935«5logD)"2("+1)2

<(l050n5log(3Z)))"2("+1)2. D

6. Appendix

The following appendix by M. Chardin and P. Philippon contains two results. The first
one is an extension of the lower bound for the Hilbert function proved in [Cha-Phi].
This result is crucial in the proofofProposition 3.3. The second result in this appendix
deals with a filtration of invariants starting with co and ending with 8q. Let FcP"
be a K-irreducible variety of codimension k defined by a homogeneous prime ideal

I £ A K[xo,...,x„]. Let 1 < r < k. Philippon (see [Phi], Corollary 6)
defines 8r (I) as the minimal degree 8 such that there exist homogeneous polynomials

fi,..., f E A of degree 8 which form a regular sequence in IAj. Thus 8'r (I) is the
minimal degree 8 such that there exists an intersection X of hypersurfaces defined

over K of degree < 8 containing V and of local codimension > r at V. The proof
of Corollary 2.3 shows that it is not restrictive to require also that all hypersurfaces
are defined over Q. Thus 8[(I) co(V) and <%(/) 8o(V). In addition, one
can show that V is an isolated component of an intersection of k hypersurfaces of
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degree 8[(I),..., 8'k(I). Thus, by Bézout's theorem, deg(F) < 8[(I) 8'k(I). In
the second part of the appendix, M. Chardin and P. Philippon prove that there exist
hypersurfaces Z\,... ,Z^ of degree d\,..., d^ suchthat V is an isolated component
of Zi fl • • • fl Zk and

(nk(k + l)/22nk(k-X)yXdi ^ < deg(T/) < dx dk.

Obviously, by definition 8'r < dr. In addition, since deg(F) < 8[(I) 8', (I), we
deduce

(nM^+i)/22«M^-D)-i(5;(/),,, ^(/) < deg(/) < ,5;(/),,, ^(/) (6 27)

Even if these inequalities are not needed here, we believe that they will be useful.

Complément à [Cha-Phi]
Par M. Chardin et P. Philippon

6.1. Extension de la minoration de fonction de Hilbert. Dans l'énoncé suivant,
nous utilisons la notion de modules et schémas (m, B)-parfaits telle qu'introduite
dans [Cha-Phi]. Rappelons que dans cette propriété m est un entier et B est un idéal

homogène de l'anneau de base (supposé gradué). En particulier, l'espace projectif
P" est 0-régulier et son anneau de coordonnées A k[xo> • • • > %n] est (0, A)-régulier
(en tant que A -module).

Théorème 6.1. Soient V\,... ,VS des sous-schémas de P", équi-dimensionnels de
même dimension D et de supports deux à deux distincts. Notons Bi,..., hs des
idéaux homogènes de l'anneau de coordonnées A k[xo,..., xn]. On suppose que
Vi est (mi, hi)-parfait pour i 1,..., s et on note V un sous-schéma de dimension
D contenu dans Vi U • • • U 1^. Alors on a

(v + D — mM(V,v)>deg(V)i
D

dès que v > m := mi -\ + ms + s — 1.

Nota Bene - Posons <5o(IO le plus petit entier tel que V soit composante d'une
intersection de n—D formes de degré au plus 8q. Onsaitquemj < (n—D)(8q(Vì)—1)
et on a donc dans l'énoncé ci-dessus :

m<(n- D)(So(V!) + • • • + 80(VS) -s) + s-l.
Démonstration. On procède par récurrence sur D, on note A k[xo> • • • > xn] et

Ix, ¦ ¦ ¦, Is les idéaux des Vi. Pour D 0 on sait que le A-module Ajli est (mj, B;)-
parfait et donc m j-régulier d'après [Cha-Phi], proposition 3. D'après le théorème 2.4
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de [Con-Her] (appliqué avec M A/(IxC\---Ciîi-x)^tA/Ii qui est de dimension 1)

on sait que la régularité de li /(Ix P • • • Pi li) est majorée par la somme de la régularité
de Aj(l\ Pi •• • Pi /j_i) et de celle de /j (qui est égale à celle de A/li plus 1). De

plus, la régularité de A/(Ix P • • • P li) est le maximum de celle de h/(I\ P • • • P li)
et de celle de A/li, d'où les inégalités

reg(i4/(/i n--- n li)) < max(reg(/*/(/i n». n /f);reg(A//f))
< reg(A/(h n--- n /f_i) -I- reg(i4//f) + 1.

Comme la régularité de Ajli est majorée par mj on obtient par télescopage que la

régularité de A/(îx Ci ••• Pi Is) est majorée par mi + ••• + ms + s — 1. L'idéal J
de V contient I\ C\ ••• C\ Is et AjJ a même dimension D, la minoration cherchée
résulte alors de [Cha-Phi], proposition 4, dans ce cas.

Pour passer de D — 1 a D on intersecte, comme dans loc. cit., V par une forme
linéaire x assez générale de sorte que pour tout i, j <G {1,... ,5} on ait dim(Vj P

Vj P Z(x)) < D - 1 et dim(Vi P Z(B* + xA)) < D - 1. On note Wt la partie de

dimension D—l de Vi PZ(x)eton vérifie que Wf est (m^, è;B;)-parfaitpourun&j <E A
convenable. De plus les Wi sont deux à deux distincts, en posant W W\ U • • • U Ws

on a deg(W^) deg(F) et

M(V, v) - M(V, v - 1) M(V P Z(x), v) > M(W, v).

L'hypothèse de récurrence entraîne donc

'y + D — 1 — m"
\V,v)-M(V,v-l)>deg(V)[ D_i

puis la minoration voulue par intégration finie. D

6.2. Complément à l'interpolation : estimations du degré. Dans le théorème 2

de [Cha-Phi], on vérifie de plus :

,nr{r+X)l22nr{r-X)yldi ^ < deg(Z) <dx...dr.

La majoration deg(X) < d\ ..dr est une conséquence du théorème de Bézout.
Pour l'autre inégalité, on peut en fait établir les propriétés supplémentaires suivantes,
à annexer à celles (l)i, (2)j et (3); du théorème 2 de [Cha-Phi]. Pour i 1,..., r
on pose Ci (nl^l+1^22ni^l~1^)~1 et cette propriété s'énonce :

(4)i pour toute composante Y de Xt on a M (Y, dt - 1) > ctdi... dt (rff+_"rf). Et en

particulier deg(Xj) > deg(7) >Cidx-..di > ct deg(Xj).
La démonstration se fait dans la récurrence sur i 1,..., r et pour i r on a

bien deg(X) > crdx ¦ ¦ ¦ dr > cr deg(X) car Xr X. Le cas i 1 résulte déjà de

(2)i (cx 1/w) et pour la récurrence l'argument à ajouter est le suivant (1 < i < r):
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Comme X C Y on a, par (2)j et (4);_i,

Je (Y, di -l)>M(X,di -1)
>c(n,i)-Ueg(Xî_1)dî(dî+n7i

\ n — i

^ / -\-i (di+n-i>c(n,i) lci_1d1...di[\ n — i

Ce qui conclut car Ci < Ci_\c(n,i)~l, vu que c(n,i) („"L^^-1^2"-^ <
ni^n(i-X)
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