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Anticyclotomic Iwasawa’s Main Conjecture for Hilbert modular
forms

Matteo Longo

Abstract. Let F/Q be atotallyrealextensionand f an Hilbert modular cusp form of level rt, with
trivial central character and parallel weight 2, which is an eigenform for the action of the Hecke
algebra. Fix a prime g | n of F of residual characteristic p. Let K/F be a quadratic totally
imaginary extension and Ky,-- be the g-anticyclotomic Z ,-extension of K. The main result
of this paper, generalizing the analogous result [5] of Bertolini and Darmon, states that, under
suitable arithmetic assumptions and some technical restrictions, the characteristic power series
of the Pontryagin dual of the Selmer group attached to ( f, Kieo) divides the p-adic L-function
attached to ( f, Keo), thus proving one direction of the Anticyclotomic Main Conjecture for
Hilbert modular forms. Arithmetic applications are given.
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1. Introduction

Let F/(} be a totally real extension of degree d ;= [F : @] and n a square-free
integral ideal of the ring of integers @ of F. Let f € S2(n) be a Hilbert modular
cusp form for the g(m) level structure with trivial central character and parallel
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weight 2. Let Ty be the Hecke algebra generated over Z by the Hecke operators
acting on Sz(n). Assume that / is a normalized eigenform for the action of Ty and
denote by ¢r: Ty — @) the morphism corresponding to f. Let ag(f) = ¢r(Ty)
(respectively, aq(f) := ¢7(Uy)) be the eigenvalue of the Hecke operator at prime
ideals g | m (respectively, g | r). Define

Ky = Q(aq(f),q aprime ideal of COF)

to be the field generated (over () by the eigenvalues of the Hecke algebra acting on
J and denote by O its ring of integers. Since the character of f is trivial, Ky is
totally real by [44], Proposition 2.5.

Fix p > 5 arational prime and assume for simplicity that p does not ramify in
F/Q and K¢/Q. Fix an embedding p: @ — Q. Denote by 7 the prime ideal of
¢ ¢ corresponding to ¢, and denote by ¢, the completion of @ at 7.

Say that f is ordinary at a prime ideal p | p if there exists a root ¢, of the Hecke
pelynomial at p such that £,(e,} is aunit. In this paper we assume that f is ordinary
at all prime ideals p | p.

Suppose that there exists a prime ideal g2 | p such that g | 1. Suppose that either
f is a newform or it comes from a newform of level n/g which is ordinary at all
primes p dividing p via the procedure of p-stabilization. In the totally real case, see
Section 12.5.2 in [35] for this procedure; see also Nekovar [35] (Chapter 12), [36],
[37], Zhang [48], [49], [50], Cornut—Vatsal [9], [8], Howard [21] and Goren [16]
for references on recent developments and results on the arithmetic theory of Hilbert
modular forms.

Let K/ F be atotally imaginary quadratic extension. Assume that the diseriminant
of K/F and pn are prime to each other. Then K determines a factorization

n=gputu

where a prime ideal g divides ™ if and only if q is split in K/F while divides n—
if and only if it is inert in K/F. We also assume that the number of prime ideals
g C O dividing u~ has the same parity as d = [F : QQ]. Finally, if d is even, we
assume that 1~ = O p.

Remark 1.1. The condition d even = 1~ # (¢p is assumed to obtain the iso-
morphism (10). See Remark 7.15. For the case of 4 even and n~ = O, see the
discussions and the results of [29] and [30].

As a consequence of the assumption on the parity of the number of ideals dividing
1, the special value at 1 of the complex L-function Lg ( f, x,5)of f over K twisted
by x is non zero for infinitely many ramified ring class characters y of conductor g™
(see [8], Theorem 1.4).
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Using the notion of Gross points it is possible to associate to f a p-adic L-function
Lo f/K)relative to g and z. This is an element of the Iwasawa algebra

Ap = Opr[Gpes],

where
G oo = Gal(Kpeo / K) ~ Z®*%7]
is the Galois group of the anticyclotomic 7 ,-extension K, / K associated to . See
Section 2 for the definition of Kyeo and Section 4 for the construction of L - ( f/K).
The p-adic L function L, o f/K) is characterized by its interpolation properties of
the complex I -functions L g( f, x,5), where y is as above: see Section 4.4 for details.
On the other hand, there is a notion of Selmer group attached to f. Denote by

Przee: Gp = Gal(F/F) — GLy(Ofr)

the m-adic Galois representation attached to f and define prnn = prae (mod z™).
Denote by Ty, the Gp-module associated to the representation pf 0. Let

Vf,noo i Tf’noo ®(9f,:r Kf’n

(where Ky, 1= Frac(Oy ). Define finally Agpoo = Vigoo/Trpoo and Agpn =
Afgoo[m”] for all n = 1. The Selmer group

Selwoo (f/Kpoo) € H' (Koo, Afpoe)

is defined in Section 5 by imposing suitable local conditions on global cohomology
classes. Tts Pontryagin dual SelY..( f/Kgeo) is a finitely generated A, r-module.
Denote by

Chary, - (f/K) € Apn

the characteristic power series of Seleo ( f/ Kgpeo). This element is well-defined only
up to units, while the ideal (Charp,n(f/K)) of Ap, generated by Charp -(f/K)
depends only on SelY oo ( f/ Kpoo).

The Anticyclotomic Iwasawa Main Conjecture relates the ideals of Ay, » generated
by Lo x(f/K)and Charg »( f/K}); it can be stated as follows:

Conjecture 1.2 (Anticyclotomic Iwasawa’s Main Conjecture). The ideais of Ap
generated by Lo o ( f/K) and by Chary, »{ f/ K} are equal.

For any prime ideal g € (?r, choose
Gg, = Gal(Fy/Fy) € Gal(F / F)

a decomposition group and denote by [f, its inertia subgroup. To state the main
result, suppose that the following technical conditions are verified:
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Assumption L.3. (1) ps is surjective.

(2) The morphism ¢7 : Ty — O is surjective.

(3) Define my, to be kernel of the morphism Ty — Oy, /7 associated to f.
The completion Ty of Ty, at niy,,; is isomorphic to O, (we say that f is m-isolated
if this condition holds).

(4) Letg [ nand g + p be a prime ideal. The maximal /g, -invariant submodule
of Ag oo is free of rank one over Ky, /@f .

(5 If p = Sthen [F({5) : F] # 2, where {5 is a 5-th root of unity.

(6) The prime number p does not divide the class number Ag of K and the index
[Og 1 OF| of OF in O. Further, p does not ramify in F and K.

Remark 1.4. Some of the conditions in Assumption 1.3 could probably be relaxed.
In particular, (1) could be replaced by a less strong condition as in [38]. Condition
(2) also could be relaxed by using arguments in [39]. Condition (3) will be used in
Lemma 7.7 to control a certain Selmer group associated to the adjoint representation
of prn and to obtain the isomorphism (10). Condition (4) will be used in § 5.2 to
describe the local conditions at primes g | 1, ¢ + p appearing in the definition of
Selgoo( f/Kpec). Inthe case of a modular abelian variety A defined over F, whose
associated Hilbert modular formis f (in the sense of Definition 6.3), these conditions
will be compared in § 6.2 with the image of the local Kummer map at the primes
dividing = but not dividing p. Condition (5) is used in §7.3 to apply a result by
Fujiwara [15]. Finally, (6) could certainly be relaxed and is assumed mainly to get a
simpler description of the extension K- in Section 2 and, consequently, a simpler
construction of L, (f/K) in Section 4.

The main result, corresponding to Theorem 6.1, can be formulated under the
technical conditions in Assumption 1.3 as follows:

Theorem 1.5. Suppose that Ihara’s Lemma for Shimura curves over totally real
fields, as stated in Assumption 7.18, holds. Then the characteristic power series
Charg - ( f/K) divides the p-adic L-function Lo (f/K).

Under our arithmetic assumptions, the p-adic L-function does not vanish identi-
cally by Theorem 1.4 of [8]: see Section 4.4. This shows that (see Corollary 6.2):

Corollary 1.6. Assumptions as in Theorem 1.5. Then SelYee (f/ Kpoo) is pseudo-
isomorphic to a torsion A, o -module.

Remark 1.7. Unlike the conditions in Assumption 1.3, Thara’s Lemma in the state-
ment of Theorem 1.5 seems to be considerably harder to remove. This is the most
substantial obstruction to an unconditional result. It consists in a version of Thara’s
Lemma for Shimura curves over totally real fields. It will be used in the proof of
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Lemma 7.20 below. If F = (), the result we need is Theorem 2 in [12]. The re-
sults contained in [12] and successively refined in [13] are partially generalized to
the totally real case in [25]. However, [25] does not cover the full generalization of
[12], Theorem 2. In this paper we follow [15], which assumes the generalization of
Thara’s Lemma as an hypothesis in [15] (Hypothesis 5.9). Similar results for Hilbert
modular varieties hold thanks to [14]. For further discussions, see Remark 7.19.

The proof of the main result is a generalization of the methods in [5], where the
case of F = @ and Of, = Zp is considered. In Section 7 the main steps of the
proof are recalled and the necessary technical adaptations are performed. Among
the difficulties arising in the totally real context is that we work with an Iwasawa
algebra isomorphic to a power series ring in several (not just one) variables. In
particular, we need to generalize the divisibility criterion in [5] (Proposition 3.1) to
this more general setting. The needed generalization is provided by Proposition 7.4,
which might be viewed as an algebraic result of independent interest in the context of
Iwasawa theory. An other technical difficulty arises from the fact that we deal with
normalized newforms f with arbitrary (non necessarily integers) Fourier coefficients
and we need to discuss the local conditions defining Selmer groups in order to relate
them to the usual description of Selmer groups via classical Kummer map when f is
associated to an abelian variety (in the sense of Definition 6.3). See § 6.2 for details.

Remark 1.8. If the above condition on the number of primes dividing 1t~ is not
satisfied (excluding from this discussion the case [F : ()] even and n = @F for
simplicity), then SelY .. ( f/ Kpee ) is not pseudo-isomorphic to a torsion A, -module
and the growth of Selyeo ( f/ Koo} is forced by the presence of Heegner points coming
from a Shimura curve parametrization of the abelian variety A associated to f (see
Remark 6.4 for details on Ay and its parametrization by the Jacobian variety of a
suitable Shimura curve). For precise statements and results in this case, see [1] (over
(), [21] and [36] (over totally real number fields).

Remark 1.9. Using the techniques announced by Skinner—Urban, it should be possi-
ble to prove the opposite divisibility Ly »( f/K) | Charp »( f/K). Thus, combining
with Theorem 1.5, it may be possible to obtain a proof of Conjecture 1.2. An other
application of the methods of Skinner—Urban concerns the full p-adic L-function
(and not just its anticyclotomic part as in Conjecture 1.2). It should be possible to
prove that the p-adic L-function of the maximal Z p-extension of K divides the char-
acteristic ideal of the Pontryagin dual of the 7-Selmer module attached to f and this
extension. If this were the case, one could combine such a result with Theorem 1.5
to prove the main conjecture for the full p-adic L-function and therefore for the cy-
clotomic p-adic L-function. Such a result would generalise work of Kato over
to the case of totally real fields. (Kato’s construction of an Euler system does not
generalize.)
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Theorem 1.5 can be used to study the arithmetic of abelian varieties of GL2-type.
The simplest case is that of an elliptic curve. Let A be an elliptic curve defined over F',
of conductor 11, without complex multiplication, which is ordinary at each prime ideal
P | p. Suppose also that A is moduiar in the sense that there exists a Hilbert modular
form f for the I"g(m)-structure, of parallel weight 2 and trivial central character,
such that the £-adic representation of A is isomorphic to the £-adic representation
associated to f, where £ is a rational prime. In this case, ®y = Z, 7w = p and
Opn = Zp. Suppose finally that f satisfies all the above assumptions. Note in
particular that, since A does not have complex multiplication, there are only a finite
number of primes £ such that the Galois representation on the £-torsion points of A4 is
not surjective. Theorem 1.5 can be used to study the characteristic power series of the
Pontryagin dual Sel;foo (A/Kgeo) of the p-primary Selmer group Seljec(A/Kge0)
of A over Kgeo. Theorem 1.5 and the non-vanishing of L, (f/K) established in
Theorem 1.4 of [8] show that Sel;Oo {A/ Ko< ) is always pseudo-isomorphic to a
torsion Ay p-module. The first application, corresponding to Corellary 6.11, is the
following:

Corollary 1.10. Asswmptions as in Theorem 1.5. Moreover, suppose [Fg : ()p] =1
andlet A/ F be amodular elliptic curve as above. Then A(K ;o0 }is finitely generated.

For any A, ,-module M and any finite order character y: Ggeo — @, where
¢ is the ring of integers of a finite extension of (Jp, extend ¥ to a homomorphism,
denoted by the same symbol, y: A, , — @ and set MX .= M @, @, the tensor
product being taken over Ag p via y. Let Il pee (A/ K peo) be the p-primary part of
the Shafarevich—Tate group of A over Kge<. The second application, corresponding
to Corollary 6.9, is the following:

Corollary 1.11. Assumptions as in Theorem 1.5. Moreover, suppose [Fy, : Q] =1
andlet A/ F be amodular elliptic curve as above. If Lg (A, x,1) # 0, then A(K geo )X
and I peo (A [ Koo )X are finite.

Acknowledgements. The author thanks the referee for the careful reading of the
manuseript and for useful comments which led to some corrections and an improve-
ment of the exposition.

2. Anticyclotomic Z,-extensions

Let the assumptions and notations be fixed as in Section 1. In particular, recall that p
does not divide the class number of K and the index of @% in @%. For any integral
ideal ¢ € O, let

O = 0p + g
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be the order of conductor ¢ in K and define the ring class field IEC/K of K of conductor
¢ to be the Galois extension of K such that the Artin map induces an isomorphism:

Gal(K. /K) = Pic(0) =~ K*/OXK*.

Denote by | # | the norm on ideals of @ and set &, := #Pic(?¢), sothat kg = A
is the class number of K. By the Dedekind formula:

hle| Tlyye (1 (£) 1a17)
fige= (0% 0] ’

(1)

where g denotes a prime ideal of @ F and (%) = 1 (respectively, —1, 0) if g is split

(respectively, inert, ramified) in K/ F. The extension K em /K is unramified outside
the places dividing g. Thanks to the fact that p does not ramify in K and does not
divide hg[O% : O%], it follows from (1), that [I?pm : Kpm—l] = || for all integers
m = 2 and that p } [K, : K]. Define Koo 1= h_n;fpm.

m

Definition 2.1. The gp-anticyclotomic Zy-extension Kpeo /K is defined to be the
unique subfield Koo of Koo such that

Gpoo = Gal(Kpoo /K ~ 257#07),

The extension Koo/ F is Galois and non abelian. More precisely, the guotient
Gal( K/ F) acts by conjugation on the normal subgroup Gal(K ;< / K) by the formula
o tor = 0~ !, where 7 is the choice of a complex conjugation raising the non
trivial automorphism of Gal{K /F). For any integer m = 1, define the extension
Km /K by requiring that

Gom 1= Gal(Kgm/K) ~ (Z/p" L)Fer]

It follows from the above assumptions on p that Kgm is the maximal p-power sub-
extension of Km /K. Denote by A, . the Iwasawa algebra of G oo

Agp,n’ = (Qf,n[[G&DDQ]] = Liil@f,n[Gspm]
m

where the inverse limit is with respect to the canonical projection maps Gom —
Gpmfl .

Remark 2.2. There are other definitions of ring class fields of conductor ¢ in the
literature. Nekovar [36], Section 2.6 (see also Zhang [50]), defines the ring class field
of conductor ¢ to be the Galois extension K corresponding via class field theory to
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I/(\X/KX@CXF\X. On the other hand, [8] uses the definition given in this paper for
the ring class field K @1, denoted K[P?] therein. However, note that the quotient
I?X/Kx(afﬁx is isomorphic to Pic(?,)/Pic(@ ), so, since p | hg, the maximal
7, p-extension containedin | -, K;n is exactly the extension Ky in Definition 2.1.

3. CM points on quaternion algebras

This section is devoted to fixing the notation for CM-points on quaternion algebras.
Since we will need this notions both for totally definite quaternion algebras (in Sec-
tion 4) and for quaternion algebras which are split in exactly one archimedean place
(in Section 7.4), we will adopt a quite general view-point.

3.1. Optimal embeddings and CM-points. etk denote a global or local field and
D/k a quaternion algebra. Let O be an Eichler order of . Let &'/ k be a quadratic
extension and denote by r an order in k'. Say that ¥ is an optimal embedding of v
into @ if ¢r: k' < D is an injective homomorphism of k-algebras such that

v(r)=y&Hn o

Two optimal embeddings ¢, and v, of r into O are said to be equivalent if there
exists & € O such that ¥1(x) = a~ "Wa(x)a for all x € r. The conductor of an
optimal embedding ¥ is the conductor of the order #. For more details, see [47],
Chapitre 11, when k is a local field and [47], Chapitre 111, when & is a global field.

Suppose now that k is a global field and, for any valuation v of k, let ky, kI, 7y,
D, and O, denote the completions of k, k', r, D and O, respectively, at v. In the
following, by an abuse of notation, we will identify v with the integral prime ideal of
k corresponding to it. Let d denote the discriminant of £’/ %, ¢ the conductor of the
quadratic order r, s the discriminant of the quaternion algebra D and m the level of
the Eichler order @, and assume that m is square-free, ¢ is prime to n and d is prime
to cmn. Suppose that if v | 1 then v is inert in &". Suppose also that if v | m and
v } ¢ (so #y is maximal) then v is splitin "/ k. This conditions ensure that the set of
optimal embeddings of r into O is non-empty: see [47], page 94.

Following [17] and [3], define

X(k'y := DX\ D* x Hom(k', D)/ O*

where the actionof b £ DX and x € 0% onapair (g, ¥)is b(g, ¥)x 1= (bgx, byrb 1),
Say that a point (x,¥) € X (k) is a CM-point of conductor ¢ if ¥ is an optimal
embedding of r into @y = xQx~' M D. Write CM(c) for the set of CM-points of
conductor ¢ in X (k).
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Fix an embedding : ¥’ <> D which allows to view k’ as a subfield of D.
Following [8], the set CM(c) can also be described as follows. Define

Y{k') = ¢ (k' Y\D* /D%,

Say that a point x € ¥Y{(k") has conductor ¢ if k¥’ M Oy = r. The set CM{c) can
be identified with the set of points in Y (k') of conductor ¢. To see this, note that
there is a map from the set of points in Y(k’) of conductor ¢ to X(k") defined by
x +> (x,¥). This map is a bijection. Injectivity: Suppose (x1,%) = (X2, %)
Then there exists » € D* and x € O* such that x; = bx,x and o= byrbl,
Since (k') is a maximal commutative subfield of D, it follows that & € (k")
and so x; and x5 represent the same element in ¥ (k"W D*/O*. Surjectivity: Fix
(x,y¥) € X(k') of conductor ¢. By the Skolem-—Noethertheorem, there exists b € D*
such that ¥ (k') = b1 (k"b. It follows that & 1 (r)b = b (kb N xOx !,
so Pr(r) = Y(K) N bx 5(bx)_1. Hence, (bx, i) belongs to the image of the set of
points in CM of conductor ¢. Finally, note that (Ex, ) = (x, b~ ¥rb) = (x, ¥).
The Galois group

G(c) = Pic(r) = k' k">

acts on CM(c) by left translation: for every g € G(c) and (x,v{) € CM(c), the
action is given by x > (gx,v). Equivalently, if x € Y (k') has conductor ¢, the
Galois action is given by x — gx.

3.2. The trace formula. Fix representatives g; = 1,..., g5 of Dx\ﬁX i O* and
define O0; 1= g; (3g;1 M D, sothat 7 = (. Note that the number of CM-points of
X(k') is equal to the number of non-equivalent optimal embeddings of # into one of
the Eichler orders ;. Write Emb(r, O, ) for the set of equivalence classes of optimal
embeddings of 7 into O;.

For any place v of &k, let my be the number of non-equivalent local optimal
embeddings of r, into Oy. Then my is finite and m, = 1 for those v which do not
divide mn. The following trace formula holds ([47], Chapitre III, Théorgme 5.11
and page 94):

h
CM(e)| = 3 [Emb(r, 0} = hir) [ m0, @)
ji=1

vlmn
where A(r) is the class number of r.
3.3, Orientations and Gross points. An orientation at v of a local optimal embed-

ding ¥ : ky — Dy of ry into Oy is the choice of an equivalence class of optimal
embeddings. This can be made precise as follows.
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Ifv | rmandv } ¢, then my = 2. The choice of an orientation can be performed
as follows. For v | nm and v f ¢, define

Uy(r, O) := Hom(ry, Oy)/ O,

The choice of an arientation o0, at the primes v | am and v | ¢ is the choice of an
element in U7, (r, Q). Say that a point (x, ¥r) € CM(c) is oriented at a prime v | rm
and v | ¢ (with respect to the chosen orientation o,) if x“1vrx and ¢, define the
same element in Uy (r, O). For more details, see Section 2.1.1 in [48].

Letnow v | mand v | ¢, so r, is not maximal. TIn this case too, m, = 2 (see
[47], page 94). The choice of an orientation can be performed as follows. The set of
maximal orders (respectively, Eichler orders of level v) of GL,(k,,) can be identified
with the set of vertices 'V, (respectively, unoriented edges &) of the homogeneous
tree 7, of degree |v|. Let vy (respectively, ey) denote the vertex (respectively, the
edge) corresponding to the maximal order GL2(ry) (respectively, the Eichler order
To(v) € GLa(ry) of level v consisting of matrices which are upper triangular modulo
v). Say that a vertex v is even (respectively, odd) if its distance from vg is even
(respectively, odd) and define an orientation s,1: &y, — 'V, by requiring that for any
edge €, 5(€) = Veven and £(e) = v,4q, where € is the edge joining Veyen and veqq and
Veven and Uggq are even and add, respectively.

Let (x,¥) € CM(c). Then ¥ : k, — D, is an optimal embedding of r, into
Oy. Fix an isomorphism ¢, : D, — Ma(ky). Then Oy can be identified with an
edge ep, = (S(eox), t(eox)) is such a way that O, is the intersection of the two
maximal orders represented by s(ep,) and t{ep, ). Finally, let #' be the quadratic
order containing r of conductor ¢ /v, Say that (x, 1) is oriented (with respect to the
chosen orientations s, £) if the v-component ¥, of ¥ is an optimal embedding of #]
into the maximal order corresponding to s(eg, ). Note that, in this case, ¥ must be
an optimal embedding of 7, into the maximal order corresponding to f(ep, ).

Fix orientations o, € U,(r, Q) for v | mn and v } ¢ and orientations s,1: &, —
Vyforv | mand v | e. A Gross point of conductor ¢ is a CM-point (x, ¥} € CM(c)
which is oriented at all v | mn.

4. p-adic I -functions

4.1. Modular forms on definite quaternion algebras. Let B/ F be the quaternion
algebraof discriminant 1t which is ramified at all archimedean places. Fix an Eichler
order R < B of level pon™,

Let f € S;(n) be a Hilbert modular cuspform of parallel weight 2 and trivial
central character with respect to the I'g(n)-level structure. Let Ty be the Hecke
algebra acting faithfully on S2(n) (see Section 3.1 in [48] for precise definitions).
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Denote by SZB (sou™) the C-vector space of functions
BX\B*/R* — C.

There is an action of the Hecke algebra T}, on SzB {o1T) defined as usual via double
cosets. The Jacquet—Langlands correspondence implies that (up to scaling) there is a
unique medular form f2 SZB {g1™) having the same eigenvalues as f under the
action of the Hecke algebra. If the Hecke eigenvalues on a Hilbert modular form f
are contained in a ring @, them £ can be normalized to take values in ©.

4.2. CM points on definite quaternion algebras. Since all primes dividing the
discriminant of B are inert in &, there exists an embedding K — B, so that K can
be regarded as a subfield of B via this fixed embedding ¥. Following the notation in
Section 3, define the set of CM-points by R to be

CMg = U(K)*\B*/R*
and say that a point x € CM g has conductor ¢ if
W(K) N xRx~ ' = 0.

Denote by CM g(c) the set of CM points of conductor ¢. Following Section 3, the set
CM g(c) can also be described as the set of points in

XR(K) = B*\(B* x Hom(K, B))/R*

such that ¥ is an optimal embedding of @, into the Eichler order B M xfl\xx_l;
explicitly,
V(K) N xR x™! = U(0O,).

Since all prlmes d1v1d1ng n are splitin K, CM g (5™ ) is nonempty forallm = 1.
The group G m Kx/Kx@xm acts on CM g(5"™ ) by left translation, as described
in Section 3.

Fix a positive integer m. Choose orientations for the optimal embeddings of (?m
into R as in Section 3 for all primes ¢ dividing 1: this amounts to choose orientations
04 € Ug(Opm, R) for all primes g | n 1 and an orientation 5,7: &, — V,, at the
prime . Let Gr(g™) denote the set of Gross points of conductor ™ with respect
to these orientations and define

Gr(9™) = U=, Gr(p™).

If P = (x,¥) € Gr(p™), then the local component ¥, : K, — By of ¥ is an
optimal embedding of the completion @ m , of O,m at g into xRprl , where R, is
the completion of R at 2. Letep = (S (ep), t(ep)) € &g be the edge corresponding
to )«CR&J)C*1 as described in Section 3. Say that a sequence (P, ), of points in
Gr(p™), with Py, € Gr(g™), is compatible if i (ep,,) = s(ep,, ) for all integers
m>=1.
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Remark 4.1. If P = (x, ¥) € Gr(p™) with m = 1, then the pair (x, ¥) also defines
a CM-point of conductor ™ ! in Xg,(K), where Ry O R is an Eichler order of B
of level ™ chosen is such a way that Ry, corresponds to s(ep).

4.3. Anticyclotomic p-adic L functions. Let /% be the modular form on the
quaternion algebra B associated to f viathe Jacquet-Langlands correspondence and
define the following map:

_ - . - . B
0 BEYOBY/ R 2 BB R* T 0,

where g is the canonical projection. Choose points X, € CM (™) in such a way
that the sequence (X, ), is compatible. The orientation s,7: &, — V,, being fixed
as above, the action of Uy, on an edge e € &, can be described as Uy(e) = > €',
where the sumis overall edges ¢’ such that s(e’) = t(e). The choice of the compatible
sequence of Gross points made before shows then that for m > 2,

> 18 %m) = Up (1t{Xm—1))- 3)

gEGal(Izg‘)m /fpmfl)
Define the theta elements for m = 1:

Om = Y ;" n(8%n)g € Opr[Gpm].
geGm

Denote by vimy1m: (9f,r[G m+1] — Oz G pm] the homomorphisms induced by
the projection maps G e+l = G = . By Equation (3), the elements Hfm verify the
following relation: ~ ~

Vm-‘rl,m(gf:m) = gf,mfl-

Taking the inverse limit with respect to the projection maps vy, 1, vields an element

O = limOp € OrplGpool := lim Opr[Gonl.

m m

The group ring Oy, I[époo]] is endowed with a canonical involution x > x™* defined
to be the extension by Oy, -linearity of the involution o — oL of G oo Define

Lox(f/K) = 076} € OppGpl.

Since éf is well defined up to multiplication by an element of 659 the definition
of sz n(f/K) is independent on the choice of the Gross points Xp. Set AEp =
O |[Gpoo]| and denote by A : A{Q = — Ap x the projection induced by the inclusion
Koo C K&j
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Definition 4.2. Define the anticvelotomic g-adic L-function attached to f and K to
be the element

Loa(f/K) = AMLpn(f/K)) € Apr.

Furthermore, define 8¢, = )L(éf;n) and Oy 1= )L(éf'), so that L, »(f/K) = 0f 9}“
and 0y = lim Oy,
o

4.4. Interpolation properties. Let y: Gpoo — (2 be aramified finite order char-
acter, where @ is the ring of integers of a finite extension of (J,. Extend y to an
homomorphism, denoted by the same symbol, y: O, I[époo]] — €. Zhang, gener-
alizing [17], proves in Theorem 1.3.2 of [49] the following interpolation forrmula:

L(fix. D =C- [t

where
£0) = x(Lpx(f/K)) and C =284 2| FH1/11 £ B2

In the above formulas we use a fixed embedding @P — C to view £(y) as a complex
nurmber; furthermore, dg/  is the discriminant of K over ¥, the symbol |- || denotes
the L?-norm in SiB {g1") with respect to a suitable measure {defined in [49], Theo-
rem 1.3.2) on the idele ring B of B and, finally, fﬁ is the guasi newform associated
to f defined in [49], §1.1. Inparticular, C # 0 and we obtain (see also Theorem 6.4
in [46]):
£(y) ZOifand only if Lg(f, x,1) # 0.

The arithmetic assumptions we are working with imply that the sign of the functional
equation of Lg(f, x,1) is +1 and, by [8], Theorem 1.4, that Lg(f, x,1) # 0 for

infinitely many characters y as above. Hence L -(f/K) # 0. Since Gpee =
Gpeo X Ay and Ag is finite, it follows that L, - (f/K) # 0.

5. Selmer groups attached to Hilbert modular forms
5.1. Galois cohomology groups

5.1.1. Galoisrepresentations. Let Ty o bethe Gp = Gal(]i / F)-module, free of
rank 2 over (¢, associated to the representation pg oo 1 Gal(F/F) — GLa(Of1);
define K¢, = Frac(®s, ) and

Vf"n—oo = Tfsnco ®@f,n’ Kf!n—, Af,JTOQ = Vf,JTOO/TﬂJTOQ)

Tran = Trpoo /A" Tfpeo; Apgn = Afnoo[n”].
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As O p-modules, Agpeo ~ (Kf!n/(«qf,rr)z while both Ty n and Aygn are Oy /a"-
modules free of rank 2 and there is an isomorphism of G p-modules Tf,zn = Agqn.
Furthermore,

Afgoo Hj}lAﬁnn and Ty ™ HgTﬂnn
il n

with respect to the canonical maps.

5.1.2. Global cohomology groups. lLet v denote a positive integer or oo, Define
the following groups:

HY (Kpeo, Appv) = h_n;Hl(Kpm,Aﬂ,,v),

m

where the direct limit is with respect to the restriction maps, and

7l T 1
H (K&)oo, Tf'!nv) = hg H (K&jm P Tf!nv),
m
where the inverse limit is with respect to the corestriction maps.

5.1.3. Local cohomology groups. Foreachprimeq € Qp,let Kpm 4 := Kom@p
F, = @q’\a Kgm o where the sum is over the prime ideals ¢’ | g of the ring
of integers Ok m of Kpm and Kpm o is the completion of Kpm at ', For any
Gal(K/Kpm)-module M, define HY(Kpm o, M) = @\, H{(Kgm 4, M). Then
define as above for v a positive integer or oo,

%l

H' (Koo g, Apv) = lim H' (Kgm g, Afzv),

m

where the direct limit is with respect to the restriction maps, and

' (Kpeo g, Tpav) = lim H' (Kpm g, Tyv),

m

where the inverse limit is with respect to the corestriction maps.

5.2. Selmer groups. The definitions of Selyn(f/Kpe0) and Selyeo (f/Kpoo) re-
quire the introduction of the following finite/singular and ordinary structures. For
any prime ideal g of @z and any prime ideal g’ of @K@m above g, choose a decom-
position subgroup Gp,q C GK@m at g’ and let Img € Gu g denote the inertia
subgroup.
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5.2.1. Primes q { np. Let M denote Ay n or Tyyn. Fix g € O a prime ideal
such that g | np. The singular part of H'(Kpm 4, M) is

Glem A K om g
Hsling(K&?m,QaM):: @q.'qul(Im,q/,M) al © ,q/ & .q),

where the sumis over all prime ideals g" of @ om dividing g. The kernel of the residue
map dq: HW(Kgm g, M) — Hs}ng(Kpm!q,M) is the finite part of H'(Kgm 4, M)
and is denoted by H{ (Kym 4, M). Define

Hﬁln(K&DOO;G’ Af,fr”) = hé“ Hﬁln(K@m,a , Af,n")=

m

Hsling(K&?"o,a’ Afﬂ") = 11_1‘[;1 Hsling(Kl@m N Afﬂ”)’

i

where the direct limits are with respect to restriction maps, and

Hyy(Kpos g Tpan) = lim Hyy (K g, Tpn),

m

Hsling(K&?OOsCl’ Tfsﬂ'n) = h<_m Hsling(Kle At Tf!nn),
m

where the inverse limits are with respect to the corestriction maps. The cohomology
groups HﬁlIl (Kpeo g, Afzn)and ﬁﬁln(Kpoo,q . Ty nn) are the exact annihilators of each
other under the local Tate pairing (, )4 (for a proof, see [34], Theorem 2.6). If
q = g1g2 is split in K/ F, the Frobenius element at g; topologically generates a
finite index subgroup in G, . Hence there are only a finite number of prime ideals
g of Kgeo over g and for each of them, Koo o/ is the unramified Z p-extension of
K. It follows that any unramified class of HI(K&jm 4 Agan) becomes trivial after
restriction to H1(Kyr 4, Agqn) for r sufficiently large. Hence, if ¢ is split in K/ F,

HY (Kpoo 4, Apan) = Oand A}

sing

(Kpeo g, Tram) = 0,

where the second assertion follows from the non-degeneracy of the local Tate pairing.
If g is inert in K/ F, then it splits completely in Koo (this observation is due to
Iwasawa [23]). It follows that, if g is inert in K/ F,

ﬁsling(KPC’osq’ Tfsff") = Hsling(KQ! Tfﬂ") ® Mg
and
Hi (Kpoo g, Afan) ~ Hom(H (Kq, Tran) @ Apn, Kfn /Ofe)-

Remark 5.1. To explain the above definitions, let £ be a prime number, K/(J; a
finite extension and A/ K an abelian variety with good reduction. Let p =£ £ a prime
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and denote by Gx and Ig the absolute Galois group of K and its inertia subgroup,
respectively. Finally, let

k: A(KY — HYK, A[p"])
denote the Kummer map, where # is a non-negative integer. Then
Im(c) = H'(Gg/ Ik, Alp"]) = ker (H'(Gx, A[p"]) — H' (I, A[p"D5/%).
For a proof, see [34] (Chapter 1, Proposition 3.8) or Lemma 7 in [18].

5.2.2. Primes g | mand g } p. Fix aprime g + p which divides . By Assump-
tion 1.3,

I
A)(,f*jrn = A e Ko O,

The ordinary part of the group Hl(Kpm!q, Afnn) is defined to be the unramified
cohomology

Holrd(K@msQ’ Afsﬂ'") =4 (GKgam,q/IKpm.Q’ Aj({g'”)

Define
Holrd(K&?oo,O! Afzn) = h_n; Holrd(Kpm,q’ Apzn),
m

where the direct limit is with respect to the restriction maps. Note that if g | n* and
g + p,then, by an argument similar to that of Section 5.2.1, Holrd(Kpco,q yAfan) = 0.

Remark 5.2. To explain the above definitions, let £ be a prime number, K/Qp a
finite extension and A/K an abelian variety with purely toric reduction. Suppose
that there exists an extension £ /@ such that [E | @] = dim(A4) and an embedding
@p — End(A), where @ is the ring of integers of £. Let p #£ £ aprime and p a
prime ideal of @ g of residual characteristic p. Denote by G and Ix the absolute
Galois group of K and its inertia subgroup, respectively. Suppose that the inertia
invariants A[p"]/& of A[p"] are one-dimensional over the field @z /p. Finally, let

i AK) — H'(K, A[p"]))
denote the Kummer map, where # is a non-negative integer. Then
Im() = H'(Gg/1x. A[p")'%).

For a proof in the case n = 1, see Lemma 4, Lemma 6 and Section 3.3 in [18]. The
general case (1 > 1) can be obtained by a direct generalization of the arguments used
in the case n = 1.
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5.2.3. Primesp | p. Letp | p be a prime ideal. Let Ir, € GF, = Gal(Fy/ Fy)
denote the inertia subgroup. Since f is ordinary at p, there is an exact sequence of
{p,-modules

0— A}?{D@ 3 iy — A}f}rw 0 N

such that the submodule A}pr)[m and the quotient A(lr)rac are both isomorphic to

Kyn/ Oz as groups and [p, acts on A}p}rm via the cyclotomic character
€p: Gal(F/F) — Aut(ppee)

describing the action of Gal(F / F) on the group gpse of p-power roots of unity, and
acts trivially on Aj(,lj)rn. Let

gt H (Kgmp, AP) ) —> H'(Kgm y, Appee)

be the map of cohomology groups induced by the inclusion A(?,),oo C Ay geo. Define

the ordinary part HL (Kpm p, Afzec) of HY(Kpm p, Ag oo} to be the maximal
divisible subgroup of Im{A, ;). Then define

Hoy(K poop, Apmee) = lim Hyy(Kpm p, Afzoe),

m

where the direct limit is with respect to the restriction maps.

Remark 5.3. To justify the above definition, let A[p°°] be the maximal p-divisible
group of A(K), where A/K is an ordinary abelian variety defined over a finite ex-
tension K of (,. Let ¥ be the formal group over @ attached to the Néron model
for A over O and define C := F (m)[p®], where m is the maximal ideal of the al-
gebraic closure of K. Finally, define the map: A: HY(K,C) — HYK, A[p™])
induced by the inclusion C < A[p®]. Then the image of the Kummer map
kK A(KY® Qp/Z, — HYK, A[p™]) is equal to the maximal divisible subgroup
(Im()»))diV of Im(A). For proofs, see [7], Proposition 4.5. Moreover, if K,./K is a
deeply ramified extension (see [7], Section 2, for definitions), then the image of the
Kummer map A(Ky) @ Qp/Z, < H (Ko, A[p®]) coincides with the image of
At HY (Ko, C) - HY K, A[p®]) by [7], Proposition 4.3.

Note that for each prime p’ of K00 over p, the extension Koo p /Ky is deeply
ramified. The last lines of Remark 5.3 show that one could equivalently define
Holrd(K&)oo!p, Ay, zeo) to be the image of

Apoot H (Kgoo p, AF)

fim

) — HY (Kpoo p, A noo).
Define
H(p,m,n) = Hyi(Kpmp, Appoo) N H (Kpm g, Afzn).
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For any subgroup # < HWKpm ,, Afnn), use the isomorphism Agqzn =~ Trqn
to define a subgroup #* < H'(Kgmy, Tyqn) such that # ~ #* Then define
H} (Kgmp, Aszn) to be the maximal subgroup of H'(Kgm . Af,zn) containing
#(p,m,n)andsuchthat HL (Kpm p, A on)and HL((Kom o, Ay qn)* are the exact

ord
annihilators of each other under the local Tate pairing at p. Finally, set

Holrd(K&Joosp’ AfJf”) = h_n} Holrd(KPmsp! Aﬂrr”)!
m
where the direct limit is with respect to the restriction maps.
Remark 5.4. Let A[ p”]| be the p”-torsion of an abelian variety A/ K asin Remark 5.3.
The image of the Kummer map «: A(K)/p" — H'(K, A[p™]) contains the sub-
group # = Im(A)aiy N H (K, A[p"]), where A is the map defined in Remark 5.3,

Since Im(k ) is maximal isotropic for the local Tate pairing, then it coincides with the
maximal isotropic subgroup of H'(K, A[p”]) containing 7.

5.2.4. Selmer groups. Let My » denote Az n or Tyqn. For any prime g, let
resy: H ' (Kpeo, Myan) — H' (Kgeo g, Myn)

denote the restriction map. For a prime g € ¢ not dividing np, let 34 denote the
residue map

8@ : HI(K&DOOAQ ’ Mfsffn) — Hsling(K&?C’osq J Mfﬂf")

and, by an abuse of notation, denote also by d4 the map obtained by composing res,
with 8g. If s € HY(Kpeo, My qn ) satisfies dq(5) = 0, write vq(s) for the image of s
in Hﬁln(Kpoo , Mf’n—n )

Definition 5.5, The Selmer group Selpn( f/Kgec) attached to /', # and Koo is the
group of elements s € H' (Kpeo, Ason) satisfying

(1) for primes g } np: resy(s) € Hl (Kpoo g, Apnn);

(2) forprimes g | n~ and g | p: resy(s) € Hiy(Kpeo v, Apan);

(3) for primes q | 1+ and g + p: resg(s) = 0;

(4) for primes p | p: resy(s) € HEj(Kgeo p, Afan).
The Selmer group Selgeo( f/Kpec) is defined to be the direct limit

Seloe £/ Kipew) = limSeln £/ Kpee)

n

with respect to the inclusion maps.
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Let 3 € (r be a square free ideal prime to 1. The compactified Seimer
group H; (Kpeo, Trpn) attached to f,n and Koo is the groups of elements & <

g (Koo, Tynn) such that
(resq(c),resy(s)hy = 0

forall s € Selgn(f/Kpeo) and all g | =, where {, }4 is the local Tate pairing. The
global reciprocity law of class field theory implies that for any s € Selyn(f/Kpe)

and any k € ﬁ;(K{Qoa T pgn ),
> (04 (k). vg ()} = 0. 5)
gls

Inthe above equation, by an abuse of notation, the symbol d, denotes the map obtained
from 94 by passing to the inverse limit.

6. Iwasawa’s Main Conjecture
6.1. The main result. Let

Seloo( f/Kpeo) := Hom(Selgeo ( f/ Kpoo ), Kpn /O rn)

be the Pontryagin dual of Selzee( f/Kpeo). Since Sel)oo( f/ K pe) has a structure
of finitely generated A, »-module, there is an exact sequence:

0 — M — Selje(f/Kpee) — A;,n B Apr/(fi) — N —0, (6)

where f; # 0 and M and N are pseudo-null A, r-modules {for definitions of
pseudo-null Ay z-modules, as well as for the notion of pseudo-isomorphism of
Ap m-modules, we refer to Section 7.1). Define the characteristic power series

of Sel oo ( f/ Kpeo) to be:

Charg (f/K) = %Si:fié (i)fr =0

The main result which will by proved in Section 7 is the following:

Theorem 6.1. Suppose that the assumptions listed in the Introduction are satis-
fied. The characteristic power series Char, 2(f/K) of the Fontryagin dual
Sell oo f/ Kpoo) of Selgoe( [/ Kpoo) divides the p-adic L-function Ly (f/K).

Corollary 6.2. Suppose that the assumptions listed in the Introduction are satisfied.
Then Sel oo ( f/ K peo) is pseudo-isomorphic to a torsion A g x-module.
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Proof. By Theorem 1.4 of [8], Ly x(A/K) is not identically zero, and therefore
Charp - (f/K) # 0. O

The proof of this result is based on a generalization of the argument in [5]. In
Section 7 a sketch of the argument with the necessary adaptations to the totally real
case will be presented.

6.2. Applications to modular abelian varieties

6.2.1. Modular abelian varieties. l.ct A/F be an abelian variety. Denote by
End(A) its endomorphism ring and define

E := Endg(4) = End(4) ®z Q.

Say that 4 is of GL;-type if E is a field such that [E : (J] = dim(A) and End(A) is
the ring of integers @ g of E. For any ideal I € @, denote by A[{] the I-torsion in
A, by A[1°°] the {-primary subgroup of A and by 77(A) the [-adic Tate module of
A. Finally, let

pa1: Gal(F/F) — Aut(T;(A))

be the representation of Gal(F /F) on T (A).

Definition 6.3. Say that an abelian variety of GLa-type A/ F as above is modular if
there exists a cuspidal Hilbert modular form f of ["g(1t)-level for some idealn € Op,
parallel weight 2, trivial central character, which is an eigenform for the Hecke algebra
Ty, such that E ~ K¢ and the £-adic representation pgq ¢ of Gal(F / F) on the £-adic
Tate module Tg(A) of A is equivalent to the £-adic representation psy attached to f,
where £ is a prime number.

Remark 6.4. Since n~ == @r when d is even, Shimura’s construction generalized
to this context (see [48], Theorem B and Section 3) shows that for f as above there
is a modular abelian variety A/ F whose associated eigenform is f. Note that Def-
inition 6.3 applies also to the case of 1~ = @'p and 4 even, which however is not
considered in this paper. For results in this important case, see [29] and [30].

Assume that the abelian variety A/ F satisfies the following:

Assumption 6.5. (1) A/ F is a modular abelian variety in the sense of Definition 6.3.

(2) The modular form f associated to A by Definition 6.3 satisfies the assumptions
listed in the Introduction.

(3) A/ F has good reduction at all primes g } .
(4 A/ F has purely toric reduction at all primes g | mand g } p.
(5) A/ F has ordinary reduction at all prime ideals p | p.
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Remark 6.6. If A is ordinary at p | p, then the associated Hilbert modular form is
also ordinary at p (see [16], Chapter 3, Section 6.2).

Let A/ F satisfy Assumption 6.5 above. Define the Selmer groups:
Selpn(A/Kym) = ker (H' (Kpm, Alz"]y —> [ | HY(Kpm o, A(Kgm 4))),
q

where the product is over all prime ideals g of Kgm,

Selgn(4/Kpeo) := lim Selon(A/Kim)

m

where the direct limit is with respect to the restriction maps, and

Selos (4/Kypeo) = lim Selon (4/ Kpes)
n

where the direct limit is with respect to the maps induced by A[z"] € A[z"].

Lemma 6.7. There are isomorphisms
Selgn (f/KPOO) 5. Sel;,;n(A/KZQOO) and SGI;;OO(A/K&DOO) =~ Selges (f/K&jm)
In particular, the characteristic power series of their Pontryvagin duals are the same.

Proof. 'To show the first isomorphism it is necessary to compare the local conditions
used in the definition of Selyn ( f/ Koo ) with the image of the local Kummer map

kg A(Kpoo g) [ —H (Kp= g/, A[7"])

for all prime ideals g’ in the ring of integers of Keo. The equality of the local
conditions follows from Remark 5.1 for primes ¢’ + np, from Remark 5.2 for primes
g’ | n, g + pand from Remark 5.4 for primes p | p. The second isomorphism
follows by taking the direct limit over #. U

6.2.2. Arithmetic applications of the mainresult. T.et A/F satisfy Assumption 6.5
above. Define the g-adic L-function associated to A/K to be L, (A/K) =
Lo f/K). Then Theorem 6.1 and Corollary 6.2 can be restated as follows:

Theorem 6.8. The characteristic power series Charg » (A/ K) of the Pontryagin dual
SelY oo (A/ Kpeo) of the w-primary Selmer group Selges (A Koo ) of A over Koo di-
videsthe gr-adic L-function L x(A/ K) of A over K. Inparticular, Sel} oo (A/ K peo)
is pseudo-isomorphic to a torsion A g z-module.
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This result on the abelian variety A/F can be used to deduce the following
corollaries. Denote by Lx(A,s) and Lg(A, y.s) the complex L-function of 4
over K and its twist by finite order characters y: Ggee — €. For any charac-
ter y: Gpoo — @, where (@ is the valuation ring of a finite extension of @,
denote by the same symbol y: A, . — @ its extension. Choose an embedding
Q p» < © such that y can also be considered as a complex-valued character. For any
Ag p-module M, let M .= M @, Of,. Finally, let Il zeo (A/ Koo ) denote the
7 -primary Tate—Shafarevich group of A/ K e which is defined by the exactness of
the following sequence:

0— A(K&DOO) (524 (EJI/(QE,II) — SGIHDO(A/K&DDO) — H_[noo(A/Kpco) — O,

where E; and O , are the completions of £ = Endg(A4) and @ = End(4) at 7.

Corollary 6.9. Suppose that [Fg : Qp] = 1. If Lg(A4, x,1} 7 0, then A{Kge )X
and I zeo (A Koo )X are finite.

Proof. Inthis case the Iwasawa algebra Ap 5 1s isomorphic to a power series ring over
(¢ inone variable and all pseudo-null A, -modules are finite. By the interpolation
formula, ){(Lp(f/K)) # 0. By Theorem 6.8, ){(Charp,n(A, K)) = (. Hence
Selgoo{ A/ Koo )X is finite and the result follows. |

Corollary 6.10. Suppose [F,, : Q,] = 1 and the torsion subgroup A(K oo hars of
A(K o) is finite. Then A(K o) is finitely generated.

Proof. As in the proof of Corollary 6.9, note that all pseudo-null Ag p-modules
are finite. By Theorem 6.8, Sel)oo(A/Ko0) is a torsion Ay, z-module. The result
follows from the classification of torsion Ap r-modules because A(Kpeo Jiors is finite.

O

Corollary 6.11. Suppose [F, : Q,] = 1 and A an elliptic curve. Then A(K <) is
[finitely generated.

Proof. By definition, A does not have complex multiplication, hence by [32], Propo-
sition 6.12 (ii), A(Kpee hors is finite and Corollary 6.10 applies. U

Remark 6.12. The finiteness of A(K oo )iy for more general abelian varieties of
GL,-type is proved for example in [32], Proposition 6.12 (i), under the condition
that the Z p-extension is the cyclotomic one. This explains the finiteness assumption
added in Corollary 6.10.
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7. The proof

7.1. The divisibility criterion. The argument of the proof of Theorem 6.1 is based
on the generalization of Proposition 3.1 in [5], which will be obtained in the next
Proposition 7.4. For its proof, we need two preliminary results which, for lack
of precise references, are stated in the following as Lemma 7.1, Lemma 7.2 and
Lemma7.3.

Let A .= R[T1....,T,] be aring of formal power series in m > 1 variables,
where R is the ring of integers of a finite extension of (J, and p is a prime number.
Choose an uniformizer @ of R. Recall that the Noetherian integral domain A is
a UFD (see for example [42]), so every height one prime ideal of A is principal
(see for example [31], Theorem 20.1). A finitely generated A-module X is said to be
pseudo-null if its support Supp (X)) contains only prime ideals of height greater than
or equal to 2. Two A-modules X and Y are said to be pseudo-isomorphic if there
exist two pseudo-null A-modules A and B and an exact sequence of A-modules:

00— A4— X —Y —8—0

Let X be afinitely generated A-module. By Section 4.4, Théorémes 4, 5 in [6], X is
pseudo-isomorphic to a A-module of the form A" @;_; A/(g:), that is, there exists
an exact sequence of A-modules

0—A—X — A &i=1A/(g;) — B — 0, N

where r,s are non-negative integers, 4, B are pseudo-null A-modules and g; € A.
By definition the characteristic power series Char a (X)) attached to the A-module X
is Chara(X) = ]_[;:1 g; if r = 0 and 0 otherwise. The characteristic power series
Char p (X) is well-defined only up to units in A ; the characteristic ideal (CharA (X))
of A that it generates is then well defined.

Lemma 7.1. Let I, G be elements of A. Then F divides G if and only if for all
morphisms ¢ A — O, where O is the ring of integers of a finite extension of Q,,
@ (F) divides ¢(G).

Proof. One direction is obvious. For the other direction, we prove the following
equivalent statement: If F does not divide G, then there exists a homomorphism
@: A — O, where (@ is the ring of integers of a finite extension of {J,, such that
@(F) does not divide @(G). The proof is by induction.

The case m = 1 is an easy consequence of the Weierstrass preparation theorem,
80 we suppose the statement true for m — 1 and we prove it for m. For T = T
and W = (Ta,...,Tw), write F = 3 " qa,T" and G = ¥ 77 o b, T™ where
an by € R[W]forn=0,...,x.

If ag } P9, then, by the inductive hypothesis, there exists a homomorphism

¢: R[W] — ©
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for some @ as above such that ¢(ao) + @(&g). Extend ¢ to a morphism, denoted by
the same letter ¢ : A — @, by setting @(T) := 0. Then @(F ) does not divide @(G).
Hence, in the following suppose that ag | bg.

If ag | bg, since F does not divide G, there are elements ¢, € R[W], n =
0,....N—1and N = 1, such that b, = Z?:Oaicn_i forn = 0,...,.N -1
and ag } (bN — Z;V:l a,-CN,i). Hence, by the inductive hypothesis, we see that
there exists a morphism ¢: R[W] — @ for some @ as above such that ¢(ag) +
w(by 72?;1 a;cn_; ). Extend ¢ to a morphism, denoted by the same letter ¢: A —
@O[T], by setting @(T) := T. Hence, @(F) does not divide ¢(G) in @[T]. By the
inductive hypothesis, there exists ¢": @[T] — @' such that ¢’ (¢(F)) does not divide
¢'(¢(G)). Defining ¢” 1= ¢’ 0 @: A — @', yields ¢"(F) + ¢"(G). 0

Lemma 7.2, Let I = (x1,...,xz) withn = 2 be an ideal of A suchthat I £ P for
all prime ideals P of A of height one. Then I contains at least two elements without
common irreducible factors.

Froof. 'The proof is by induction on #. The case n = 2 is immediate, so we suppose
the result true for # — 1 and prove it for #. Denote by f the common greatest divisor
of the x; fori = 1,...,n — 1 and write x] := x;/f fori = 1,...,n — 1. Then
J := (x},...,x},_,)is not contained in any prime ideal of A of height one, so, by
the inductive hypothesis, there are two clements g € J and & € J without common
irreducible factors. Then fgand fharein ! and g, # do not have common irreducible
factors. Furthermore, any irreducible factor z of x, may divide g or & (but not both
of them) and does not divide f (if it does, then I < (z), which contradicts our
assumption). Write x,, = ks where an irreducible factor z of x,, divides k& if and only
if z divides gh. Then any irreducible factor of s is prime to gh. If s is invertible,
then x, and f(g + k) € I do not have irreducible common factors: any irreducible
factor of x5 does not divide f and divides exactly one between g and k. Suppose s
is not invertible and write s = ]_[5':1 S;”j , where s; are irreducible and m; are non
negative integers. If s; | g + »h for some integer n # 0, thens; + g + (m + n)h
for all integers m #£ 0, except possibly those # such that p | # in the case when
(5;) = (): indeed, if s; | g + (m + n)h, thens; | mh and, since s; | h,s; | m, and
this is possible only if 5; is a constant, hence (s;} = (=), so that p | m. It follows
that if zz } s, then 5 and g + mh do not have common irreducible factors for all
integers m except possibly a finite number of them, while if 7o | s, then s and g +mh
do not have common irreducible factors for infinitely many integers m. Choose an
integer m =~ 0 such that s and g + m# do not have common irreducible factors, with
the additional condition that p } m if @ | k. Note that there are infinitely many
integers m verifying these conditions, even if R = Z3: indeed, the condition p | m
isrequired only if = | k, but in this case @ } s and there are only a finite number of
integers m such that s and g + mh have common irreducible factors. We claim that
xpand f(g +mh) € I donot have common irreducible factors. Indeed, letz | x, be



Vol. 87 (2012) Antieyclotomic Iwasawa’s Main Conjecture for Hilbert modular forms 327

an irreducible factor, sothat z |k orz | s. If z | k then z | f and z divides exactly
oneof gand k. If z | h, then,sincez | g,z + g +mh. Ifz | g,thenz } mh: indeed,
Zz } h and, since m = 0, the only case when z | m is that of (z) = (=) and p | m,
but our additional condition on m stipulates that p } m when @ | k. Since z | g and
z } mh,thenz } g +mh. Hencein any caseif z | kthenz } f(g +mh). If z | s,
then z = s; for some j, hence z | g + mh and since 5;  f then s; + f{g + mh).
The claim follows, thus completing the proof. Ol

If X is afinitely generated A-module, denote by Fitt o (X ) (respectively, Anna (X))
its Fitting ideal (respectively, its annihilator ideal) over A.

Lemma 7.3. Let X be a finitely generated pseudo-null A-module. Then Fitta (X)
contains at least two elements with no common irreducible factors.

Proof. Recall that a prime ideal P of A belongs to the support Supp (X) of X in A
if and only if the annihilator Anna (X ) of X in A is contained in P (see for example
[31], page 26). Fix aprime ideal P of A of height 1. By the definition of apseudo-null
submodule, P & Supp,(X), so Anna(X) € P. Suppose that X is generated over
A by h elements. Then by [33], Appendix, 8 on page 325, Anna(X)* < Fittp(X),
hence, since P is a prime ideal, FittA (X) € P for all prime ideals P of height 1.
The result follows from Lemma 7.2. O

Proposition 7.4. Let X be a finitely generated A-module and £ € A. Suppose that
@(£) belongs to Fittg (X Qg4 @) for all homomorphisms @1 A — O, where @ is the
ring of integers of a finite extension of (Up. Then X belongs to (CharA (X))

Proof. If X is not A-torsion, then Fitt 5 (X) = 0. Since Fittp (X &, @) is equal to
@ (FittA (X)), it follows that ¢{£) = 0 for all ¢ as above and hence, by Lemma 7.1,
£ = 0. Assume in the following that X is a A-torsion module. Since B in the exact
sequence (7) is pseudo-null, by Lemma 7.3 there are at least two elements x; and x;
in Hitt s (#) without common irreducible factors. Tensoring the exact sequence (7)
with @ yields

¢ (3 Fitt (X © @) < (p(Charp (X))

fori = 1,2. By assumption, go(CharA (X)) divides @(x;£) for i = 1,2 and hence,
by Lemma 7.1, Char s (X)) divides x; £ for i = 1,2. Since x; and x5 do not have
common irreducible factors, Char o (X') divides £ and the result follows. Ol

7.2. Admissible primes. A prime ideal £ C @ is said to be n-admissible if
(1) £ does not divide np;
(2) £isinertin K/ F;
(3) m does not divide |£]* — 1;
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4) 7" divides |[£] + 1 +ae( f)or [£] +1 —ap(f).

Let £ be an n-admissible prime. Then
Hp o (K, Tpn) = Opn /7" and  Hy (Kg, Tpan) o Opp /7",
To show this, note that, since T,;» is unramified at £,
Hyoo(Kp, Tpn) = Homgy (Ix,, Tyn)-

Since £ } p, all homomorphisms above factor through the tame inertia subgroup.
The Frobenius Frobg(K) of K at £ (where, by an abuse of notation, £ denotes the
unique prime of K above £) acts on Ig, by [£|* and on Ty n it acts with eigenvalues
|£]? and 1 (which are distinct in Opn /™). Hence,

Hj (Ko, Tpan) ~ Op /7",
For the finite cohomology, since Tf,» is unramified at £,
Hi (K¢, Trgn) = Typn [ (Frobg(K) — 1).

Hence, as above, H/ (K, Tyan) o2 Op /", Since £ is inert in K, it splits com-
pletely in K. It follows that

ﬁs}ng(Kpmgg, Trnn) = Mg /7" Ap . and

s (8)

Hi (Koo 0, Tpmn) = Apn/n"Ap..
Proposition 7.5. Let s € H'(K, Ay,) be a nonzero element. Then there exist
infinitely many admissible primes £ such that dg(s) = 0 and vp(s) #£ 0.

Proof. 'This is a direct generalization of Theorem 3.2 in [5]. A similar argument will
be given in Proposition 7.13. O

7.3. Rigid pairs. Let p = pr, denote the representation of Gg — Gal(F/F) on
the k 1= Oy, /m-vector space Ar . The k-vector space adp :— Hom(Az,, Af,) is
endowed with an action of G by conjugation of endomorphisms. The Gg-module
adpis called the adjoint representation of p. Denote by ad” p the k-subspace of trace-
zero endomorphisms in ad o with the induced action of G . Define the following local
structures for the cohomology of ad®p:

Primes g t np: Define HJ (F;,ad’p) := H'(Gp, /IF,,ad’p) to be the unram-
ified cohomology.

Primes g | 1, g + p: As in the previous case, define

Hoy(Fy,ad®p) := HY(Gg,/IF,, (ad’p) o)
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to be the unramified cohomology.

Primes p | p: Let ad) p denote the subspace Hom(A(l) AP

r fn') of ad®p. Define

HLy(Fy,ad®p) = ker (HY(F,,ad%0) — H'(Ip,,ad’p/adV p)).

1-admissible primes £: If £ is a 1-admissible prime, denote by ad®? p the unique
one dimensional k-vectorsubspace of ad® p on which the absolute Frobenius Froby (F)
of F at £ acts with eigenvalue |£| (the existence of this subspace follows because the
Frobenius at £ acts on Ay, with eigenvalues 4-|£| and +1, so that the eigenvalues of
its action on ad®p are |£|, |£|~! and 1, while its uniqueness follows because |£]2 £ 1
in k). Define

Hyy(Fg,ad®p) = H'(Fy,ad®p)

and HL (F¢,ad%p) to be the kernel of the canonical map

HY(Fp,ad’p) — H ]

ord

(Fp,ad%p).

The group H'(F;, ad’p) is two dimensional over & and there is a decomposition in
one-dimensional k-vector spaces:

H'(Fy,adp) = H},(Fp,ad’p) @ Hyy(Fi,ad%p).

2

See for example Lemma 1 in Section 3 of [41] for details.

Let & be a square-free product of 1-admissible primes. Define the s-Selmer group
Sely (F, ad’p) attached to ad®p to be the k-vector space consisting of those classes
g € H'(F,ad%) such that

(1) for primes g | np: resy () € HL (Fy.ad%p);

(2) for primes £ | z: resp(§) € HL,(Fp,ad%p);

(3) for primes q | wand g | p: resy(§) € HL (F, ,ad%p);
4) for primes p | p: resp(§) € Hold(Fp,adop);

L

Denote by R the minimal nearly ordinary universal deformation ring attached
to p with determinant the cyclotomic character. See [15], Section 3.8, for detailed
definitions. Let mz, = ker (']I'n — k) and denote by Ty the completion of Ty at
My, Then R is isomorphic to Ty by Theorem 11.1in [15].

Remark 7.6. The condition [F({s) : F] # 2 when p = 5 in the Introduection is
required to apply [15].

Lemma 7.7. The modular form f is m-isolated if and only if Selg,(F,ad"p) is
trivial.
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Proof. f is m-isolated if and only if Ty =~ O, and this condition is equivalent to
the isomorphism R ~ @y ,. Now R ~ O, if and only if m/(a, m?) = 0, and this
condition is equivalent to Sely . (F, ad®p) = 0 by [15], Proposition 3.35. O

Assume from now on that f is m-isolated in the sense of Assumption 1.3,

If s is a (possibly empty) square free product of l-admissible primes, let
Sele (F, ad’p) be the group defined in the same way as Sely(F, ad%p) but with
no conditions imposed on the prime dividing 5. Let Seljs)(F, ad® p) denote the sub-
group of Sels(F, ad%p) consisting of classes which are trivial at the primes divid-
ing s. These notations can be combined: if £, 2,, 53 are pairwise coprime square-
free product of l-admissible primes, define the group Sely, (5,)[s4](F: ad%p) =
Sely, (F, ad®p) N Selsy (F, ad®0) M Selpg(F, ad®p).

Let ad®p* := Hom(ad®p, k) be the dual representation of ad®p. Then de-
fine the dual Selmer group of Sels(F, ad®p) to be the subgroup Sels(F, ad®p*) of
H(F,ad®p*) consisting of those elements t = H!(F, ad’p*) such that

(resq(s),resq(£))qg =0

for all s £ Sels(F,ad®p) and for all prime ideals g, where {, }q is the local Tate
pairing at g. Define as above the Selmer groups Selg(F, ad”p*), Sels) (F, ad®p™),
Seljg)(F,ad®p*) and Sely, (s,)[s4] (F, ad’p*).

The groups Sel(s) (F, ad®p) and Sel (F, ad%p*) are dual to each other, and the
same is true for Sels(F, ad®p) and Sels(F, ad®p*).

Lemma 7.8, Let £ be an admissible prime for f. Then the groups Selp (F, ad®p)
and Sel(p (F, ad®p*) are one dimensional over k.

Proof. 'The groups Selg, (F, ad’p) and Selp . (F, ad®p*) have the same cardinality
by Theorem 2.19 in [10]. Furthermore, Selg . (F, ad®p) = 0 by Lemma 7.7 because
[ is w-isolated. Hence Sely . (F, ad®p*) = 0. Since

#Selrp) (F,ad’p)/#Seljq(F,ad’p*) = #k

by Theorem2.19in [10], it follows that Selgpy (F, ad®p)is one dimensional over k. Re-
placing ad®p by ad® p* and repeating the same argument shows that Selipy (F, ad®p*)
is one dimensional too. |

Lemma7.9. Let £ be an admissible prime for f and suppose that Sely(F, ad%p) #£ 0.
Then Sely(F,ad%p) = k.

Proof. Thanks to the inclusion Sely(F,ad®p) < Selpy(F, ad®p), this is immediate
from Lemma 7.8. |
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Fix a pair of admissible primes £; = £2. Write
Ve, Selgey(F,ad’p) — Hp (Fe,,ad’p)

vg,: Selg,)(F,ad’p*) — Hg (Fy,,ad’p*)

for the restriction maps at £5.

Lemma 7.10. Suppose that Sely, (F, ad®p) #£ 0 and ve,, vé“z are both non trivial.
Then Sely, ¢,(F,ad’p) = 0.

Proof. By Lemma 7.8, choose generators & and £* of the one dimensional k-vector
spaces Selg)(F, ad®p) and Selg(F, ad®p*). Note that

Selg, (F,ad®p) C Selg,)(F,ad’p) ~k

and that Selp, (F,ad%p) # 0 by assumption. Therefore § & Sely, (F,ad%p) and
Sely, (F, ad®p) =~ k. Since Sely, (F, ad®p) and Sely, (F, ad®p*) have the same car-
dinality ([10], Theorem 2.19), §* € Sely, (F,ad’p*). By [10], Theorem 2.19,

#Sely, (1,)(F, ad’p) /#Selp, (o, (F, ad® p*) = #k. (9)

Further note that Selg, [¢,](F,ad”p*) < Selg, (F,ad’p*) =~ k, and therefore, either
Selp, e, (F.ad”p*) = O or Sely, [¢,](F, ad®p*) =~ k, generated by &*. In the second
case, £* € Selg,[¢,](F, ad®p*) implies that resg, (%) = Oin Hﬁln(ng,adOp*). The
assumplion UE“Z(S*) # 0 excludes this possibility, so Selg, [¢,](F.ad’p*) = 0. By
(D), Selg, 2, (F, ad®p) = k. The inclusion

Selg, (F,ad®p) < Sely, ¢,)(F,ad"p)

implies Selg, (2,) (F, ad®p) = Selg, (F, ad®p) and both of them are generated by £.
Finally, note that
Selg, ¢, (F,ad®p) < Sely, ¢,)(F,ad’p),

so, as above, either Selp, g, (F, ad®p) is trivial or is one dimensional. In the second
case, it is isomorphic to Selg, (z,)(F, ad”p) and hence also to Sely, (F, ad®p). So the
reduction of £ at £ should be both ordinary (it belongs to Selg, ¢, (F, ad” p)) and finite
(it belongs to Selg, ¢, (F, ad®p)), hence trivial. The assumption vy, (§) # 0 excludes
this possibility, so Selg, ¢, (F, ad®p) is trivial. |

Lemma 7.11. If Selg (F, ad®p) = 0, Selg, (F, ad®p) = 0 and Vg, is the trivial map,
then Sely, ¢, (F,ad%p) = 0.

Proof. Since Sely,(F,ad%p) = 0, again by Theorem 2.19 in[10], Selig,ye, (F, ad’p)
is one dimensional. By Lemma 7.8, choose a generator £ of Sel ) (F, ad®p). Since
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v, (§) = 0, the restriction to Fy, of this class must be ordinary, and so & belongs to
Selgg;ye, (F, ad®p). Hence, Selgye, (F, ad®p) is generated by & and

Selgeye, (F, adop) o Sel(fl)(F, adop)_
Note that if & € Selg, (¢,)(F, ad’p), then also & € Sely, (F,ad’p). By assumption
Sel;gl (F, adop) =0,

s0& & Selg () (F,ad®p). AsE € Sel ye, (F,ad®p) and & & Sely, 14,y (F,ad’p), one
finds that Selg, ¢, (F, ad®p) is trivial because it is the intersection of Selg, (e (F, ad®p)
and Selgg,ye, (F, ad®p). |

Definition 7.12. A pair (£;, £;) of admissible primes is said to be a rigid pair if
Selg, ¢, (F, ad®p) is trivial.

Choose s € HU(K, Afr), s # 0. Assume that s belongs to a specific eigenspace
for the complex conjugation 7, so that t(s) = s with § = +1. Fix an integer
n and define M = K(Agnn). Let M;/M be the extension cut out by s, so that
Gal(M;/M) =~ Agy vias. Set Gy = Gal(M /M ).

Since f is w-isolated, Sely ) (F, ad®p) and Selgey (F, ad®p*) are one dimensional
over k. Let & and £* be generators. The images & and £* of & and &* in

HY(M,ad%0) = Hom(Gs,ad%p) and  HY(M,ad’p*) = Hom(Gyy, ad%p*)

cut out extensions Mg and Mg« of M whose Galois groups are identified via é and {_?*
with ad®p and ad® p* respectively (that is, Gal(Me/M) ~ ad®p and Gal(Mg+ /M) ~
ad®p™).

Denote by Mj ¢ ¢+ the compositum of M, My and Mg+ Since the representations
Afr, ad®p and ad®p* are pairwise non isomorphic and absolutely irreducible, we
have

Gal(M, ¢ g+ /F) = (Apr > ad®p x ad®p*) x Gal(M/ F)

where the action of Gal(M/F') on the normal subgroup ( Az, ad®p, ad®p*) is given

by
(v,w,w e/ \ Ty = (6 To, Twl ', Tw*T " det(T)).

Proposition 7.13. Let £ be admissible such that Selg, (F,ad"p) # 0. Fix a non
trivial elements € HYW(K, Ay ). For any n there exists infinitely many n-admissible
primes £y such that 9g,(s) = 0, v, (5) # 0 and (€1, £2) is a rigid pair.

Proof. By Lemma 7.9, & € Selg, (F,ad"p), so that £* € Selp, (F,ad%p*) too. The
Galois group Gal(M, ¢ £+ /F') contains an element (v, w, w*, z, T') such that:



Vol. 87 (2012) Antieyclotomic Iwasawa’s Main Conjecture for Hilbert modular forms 333

(1) T acts on Agnn with eigenvalues § and A where A is an element of (O 7, /7™)*

of order prime to p and #£ +1;
(2) v belongs to the unique line in A¢, where T acts by §;
(3) w belongs to the unique line in ad®p fixed by T';
(@) w* belongs to the unique line in ad®p* fixed by T.

Cheose now £, f pn and unramified in M ¢ ¢+ such that the Frobenius element
Frobg, {M; ¢ ¢+ /F )} of Gal(M; ¢ ¢+ / F) at £; verifies the relation

Frobg, (M ¢+ /F) = (v, w,w*, 7, T).

We claim that £, has the desired properties. By the Chebotarev density theorem,
there are infinitely many such primes. Then £, has the desired properties. To show
that £, is n-admissible, note that the Frobenius element Froby, (K /F)} of Gal(K / F)
at €5 verifies the relation Frobg,(K/F) = 7, which implies that £ is inert in K.
The congruences a;,{(f}) = d + A (mod #”) and |£;| = A (mod 7") enjoyed by
the characteristic polynomial of Frobenius show ay, (f) = 6(|€2| + 1) (mod =%).
Finally, since A # =1, it follows that |£2| = +1 (mod #"). Hence #; is an n-
admissible prime. Moreover, £; has the properties stated in the theorem. First, note
that dg,(s) = 0. Indeed, if  is a prime ideal of M ¢ ¢+ dividing £5, then

resg, (s) € ker (H' (K, Afn) — H' (M g6+, Arn)) -

Since HI(MSQEQ;;-*J,AJQ,T) o HI(K“;I, Afz) 2 Hsling(ng, Agr), it follows that
dg,(s) = O (here Mg ¢+ ; is the completion of M ¢ ¢« at ). For the proof that
v, (s) # 0: Let [ be a prime ideal in M dividing £ and set ¢ := [M : F|. Denote by
Froby(Mj g ¢+ /M) a Frobenius element of Gal(M, ¢ ¢~ /M ) at [. Note that

Froby(M, g - /M) = (v, w,w*, 7, T)* = (cv,cw,cw*,1,1).

Let § be the image of s in Gal{M;/M). Since ¢ is even and prime to p by Property 1
of T,
S(Frobr (M e e+ /M) = 5(cv) = c3{v) # 0

and resg, (s) # 0. So, vg,(s) # 0. Since

E(Proby (M g6+ /M)) = E(cw) = cE(w) # 0,
E¥(Froby (M, g6+ /M)) = E*(cw*) = cE*(w) # 0,

Lemma 7.10 implies Sely, ¢, (F,ad%0%) = 0, s0 (£1,43) is arigid pair. O

Proposition 7.14. Let £1 be admissible such that Selp, (F, ad®p) = 0. Fix a non
trivial element s € HY(K, Ay ). For any n there exists infinitely many n-admissibie
primes £y such that 3g,(s) = 0, vg,(s) # 0 and either Sely,(F,ad%p) ~ k or
Selg, (F, ad®p) = 0 and (£1, £2) is a rigid pair.
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Proof. Choose a prime £ such that
Frobe, (M g ¢+ /F) = (v,0,0,7,T).

The same computations as in Proposition 7.13 show that £; is admissible and that
vg,(s) # 0. Note that é(w) = 0 and £*(w*) = 0. If Sely, (F, ad’p) = 0, by
Lemma7.11 Sely, ¢, (F, ad®p) is trivial, so (£1, £2) is arigid pair. If Selg, (F, ad® p) 7£
0, then it is one-dimensional by Lemma 7.9.

7.4. Congruences between modular forms and the Euler system

7.4.1. Raising the level in one prime. Fix an #-admissible prime £. Let T+ ,—,
be the Hecke algebra acting on the space of modular forms which are new at n™£. Tt
is known that there exists a morphism f;: Ty+ y—p — Opr /7" such that

(1) for primes q | nf: fp(Ty) = aq{f) (mod 7");
(2) for primes q | : fi(Uy) = aq(f) (mod &");
(3) fe(Up) = € (mod &™), where 7 divides |£] + 1 — eap( f).

This result follows from a generalization to the case n > 1 of [40]. For details, see
[30], Theorem 3.3.

7.4.2. The Euler system. Denoteby X () the Shimura curve (defined over F) whose
complex points are given by

XOC) = BNFT < BX/RY,

where #% := € — R, B/F is a quaternion algebra of discriminant n~£ which is
ramified in exactly one of the archimedean places and R C B is an FEichler order
of level put. Let J© be the Jacobian variety (defined over F) associated to X,
Denote by 7,(J (E)) the p-adicTate module of J @ and by & the group of connected
components of the fiber at £ of the Néron model of J® over @g. Denote by Ty,
the kernel of the map fp. By [30], which generalizes the result of [29] to the present
situation, there exists a Hecke equivariant isomorphism of Gal(F / F)-modules:

v: Tp(J Y Iy, 5 Ty, (10)
Remark 7.15. Itis not known if (10) is an isomorphism when the degree d of F over
() is even and 1~ = @'p. For simplicity, we do not consider this case in the present
work.

Following Section 3, a Heegner point P, of conductor % is a CM-point of
conductor g™

xB(K) = BX\Hom(K, B) x B~/ R*.
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Let o be the archimedean place where 8 is split and fix an isomorphism e of B8R, R
with M3 (R). Then B acts on #* by fractional linear transformations via o and the
set Hom(K, B) can be embedded in # * by sending ¥ ¢ Hom(K, B) to the fixed
point of W(K*) acting on K= whose imaginary part is positive. Hence, a CM-point
P e Xg)(K) of conductor " can be viewed as a point in X ©(C) and the theory
of complex multiplication shows that, in fact, P € X (B)(IE o). Furthermore, the
Galois action on CM-points of conductor g™ described in Section 3 translates into
the usual Galois action of éwm on X(E)(Ig&jm). For more details, see Chapter 9 of
[45].

Recall the choice of orientations made in Section 4.2 and fix an orientation as
explained in Section 3 at the prime £. Define the set of Gross points Gr® (&™)
in Xg) with respect to these orientations. Write B, = (x,,¥,,). Let ep, =
(S(epm), t(ep, )) € &, be the edge corresponding to X, R x,, " as described in Sec-
tion 3. Say that a sequence ( By )m>1 of points in Gr'® (), with P, € GriO(p™),
is compatible if { (ep,,) = s(ep,, ) for all integers m = 1. Choose a sequence of
compatible Heegner points ( Py )ms=1 with Py, & Gri® (™).

For the modular interpretation of Heegner points, which will not be recalled here,
we refer to Section 2 of [48].

Since Iy, is not Eisenstein, there is an isomorphism

TOKom)) 15, — Pic(X OWKpm)/ Iy,
Denote by P, the image of Py, in J“)(prm)/zfg. Define
Fl—u, Py
Since (Pm )m=1 is compatible, it is easily seen that the points P, are norm-compatible.
Their images under the Kummer map followed by the map induced by v
TOKom)) I, — H (Kpm, Tp(J D)/ Ip,) — H (Kgm, Tyn)

yield a sequence of cohomology classes, &, (£), which are compatible under core-
striction. Taking limit defines a class k(£) € ﬁl(f&joo , Ty zn). Define finally the
class

k(£) € HY (Koo, Trpn)

to be the corestriction of £(£) from Ko to Kgee.
Lemma 7.16. «(£) € I;’El (Kpeo, Tpan).

Proof. Tt is enough to observe, as in the beginning of Section 8 in [5], that ¥ (£) is
constructed from a sequence of global points of X @ soit belongs to the usual Selmer
group of J© relative to the Galois module TF(J(g))/Iflz. For completeness, let us

provide some details on this proof. From the definition of ﬁfl (Kgpoo, Tyan), we see
that it is enough to show that
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(1) resq{km(£)) < H&n(gpm,qf, Tfqn) for primes q' of Iipm which do not divide
npk;

(2) resq(Km(f)) € H(}d(fpm,q/, Tfn) for primes ' dividing ™ but not p;

T

(3) resy (km(£)) € H}

ord

(Epm p'» Lg.qn) for primes p’ of KN&,m which divide p.
For (1), Remark 5.1 shows that the image of the Kummer map

TO(R g g1) —> HY (R gm o, TO[p")

is unramified; the result follows then taking quotient by Ir,. For (3), note that
the Kummer map J© (fpm’pf) 4 P (Epm,pf, Ty ) factors through the maximal
ordinary abelian subvariety J @9 of J®. the result follows then by Remark 5.4,
again taking quotients by Iz,. For (2), the analogue of [5], Corollary 5.18 (see (22)
with the prime g’ replacing £5), shows that if the quotient ¢4/ Iz, of the group of
connected components ®; atqof J Opy 1, 7, is trivial, then res (K, (£) ) isunramified;
onthe other hand, the vanishing of @, /17, follows because f isramified at g. Indeed,
if &4/ 17, # 0,thenthereis an Oy, /m"-valued modular form of level n€/q which is
congruentto fp, and hence to f, modulo m®; so the mod & representation associated
to f should be unramified at g, which is not the case. [l

7.4.3. Raising the level in two primes. Choose distinct #-admissible primes £; and
£, such that " divides both £, +1 —eja,, (f) and €3] + 1 —ea:,(f), with €y,
€2 equal to 1. Let Ty, be the Hecke algebra acting on the Shimura curve XxX@,
Assume that f is m-isolated. The map arising from Kummer theory composed with
(10) yields a map

TR 2g,, — HNKey, Tp(T) 1, ) — BN (Kyy, Tpan)

whose image is equal to HJ (K, , Tyrn) because both TP(J("ZU) and Ty q» are un-
ramified at £5. For the same reason and the fact that £, + p, the map induced by
reduction modulo £

T (Kp,)/ 3, — J@?l)(IF‘,Z%)/;rfg1

is an isomorphism, where IFE% is the residue field of the ring of integers of Kg,. The

identification Hﬁln(ng A gn) ~ Of /7" and the inverse of the above map yield a
surjective map
TOE )/ If, — Opnfa”. (1)

Let 8¢, < X(El)(IFE%) be the set of supersingular points of X 1) in characteristic £,

and let Div(Sg,) and Divo(ng) be the set of formal divisors and the set of formal
degree zero divisors with Z-coefficients supported on 8¢,. Let the Hecke algebra
Ty, acton Div(Sg, ) and Divo($ ¢, ) via Albanese functoriality (it makes no difference
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if the Picard functoriality were chosen: see the discussion in [5], Section 9). Since
Ifel is not Eisenstein, there is an identification DiV(SJegz)/If‘21 ~ DivO(ng)/If,zl ;
so there is a map

v Div(Sg,) — Opn/m”.

Write T for the image of T' T, into Ty, /Iffl , so that for primes q | né; we

havefq = ag(f) (mod "), and for primes q | n we have Uq =aq(f) (med ™)
and Uy, = €1 (mod 7").

Lemma 7.17. For x € Div(8,,) the following relations hold:

(1) Forq t nly: y(Tyx) = Tyy(x).
@) Forg | wly: y(Uyx) = Uyy(x).
3) y(Tp,x) = T, y(x).

(4) y(Frobg, (F)(x)) = eay(x), where, as above, Frobg(F) is the absolute Frobe-
nivs of F at £.

Proof. 'The first two relations can be obtained from the identification between the
groups Hl (K, T¢qn) and Tf,,,n/(Frobi%z(F) — 1). The last two relations follow
from Eichler-Shimura. For more details, see Lemma 9.1 in [5]. O

Before going on with the raising the level result, we state an analogue of Thara’s
Lemma in the context of Shimura curves over totally real fields. First recall the
setting of [22]: Define G := SL(R}/{£1} and, for any prime q of F, G, =
{g € GLa2(Fy) : valg(det(g)) = 0 (mod 2)}/F), where valg is the normalized
valuation of Fy. Let ioo: B — G and iy B — Gy be the injections. Let
@ r[1/g] be the ring of g-integers of F and U < B any @ p[1/g]-order. Define

Iy = {y € U:Npyr(y) = 1}/{£1},

where Ng/p: B — F is the norm map. Let fu be the pull-back of the group
GLz(C‘)q)/@&( under the map iy: I'yy — Gy. Denote by Xy the Shimura curve
defined over a suitable abelian extension of F' whose complex points are

Xy (C) = ioo(Tu)\H,

where # is the upper complex plane. Suppose that T'y; is torsion-free. Denote by
Jy the Jacobian variety of Xq;. Let [F2n be the field with 3" elements, where g is
the residue characteristic of g and |q| = ¢" for a positive integer n. Let J3j(F on)
be the subgroup generated by the divisors supported on the supersingular points in
Ju (20 ). Then by [22], Section 3, (G), there is a canonical isomorphism

Ty (F2n)] IG(E on) =~ T3, (12)
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where, if G is a group, G™ is the abelianization of G.

Let I/ € B* be acompact open subgroup and define Xy — Spec(F"), where F'
is a suitable abelian extension of F, to be the Shimura curve whose complex points
are

t
Xy(C) = BB x #*/U ~ | | Xd(©), X{C)=T;\# (13)

i=1
where T3 € B are suitable arithmetic subgroups. Write J7 for the Jacobian va-
riety of Xy, Fix a prime g such that the g-component U, of U7 is isomorphic to

GLa(OF4) Foranyi =1,...,¢t, let ﬁ- denote the subgroup of norm-one elements
in I [1/g]/O@%[1/q]. Assume that

all the groups ﬁ- are torsion free. (14)

Let J; denote the Jacobian variety of X; and set [= ]_[Ezl L. If J ([ 42n ) denotes
the set of supersingular points in J(IF;2x ), then from (12)

Ju @ pon)/ TEE gon) == T (13)

By fixing an embedding of & into M, (F7, ), one obtains an action of f on the
Bruhat—Tits tree 7y of PGL2(F;). Let vy be the vertex of ¥ such that the stabilizer
I'U = of v;pin I‘t isthei image of I'; in I't Let ¢;,0 bethe edge originating from v; o and

such that the stabilizer F ei o 0f€;0in F is the image of the subgroup I'/ of I'; obtained
as in (13) but with I7 M Ug(q) replacing V. Here Uy(q) is defined by imposing that
its local components Up(q), satisfy the following conditions: Uy{q), is the standard
upper triangular subgroup Io(q) of GL2(Fy yand Un(q g = GL2(OF /) forg’ # q.
More explicitly,

i
Xunve) = | [ X/, with X] = T)\X.

Write v, for the target of ¢; o. The group 1"E acts on the tree 7 with the closed edge

attached to e; o as a fundamental region. Set TUO G ]_[571 Loy o F = ]_[fil Ty g

and 1" e ]_[:_1 th_o Hence, taking the product overall § = 1,...,¢ of the exact

sequence in Proposition 13, Section IT, 2.8 in [43] fori = 1, M = IFP, (e = f‘i
yields

- ~ - d -
0 — Hom(I",[F,) — Hom({I'y,,F,) & Hom(I'y; ,Fp) — Hom{(I',,[Fp).
Fori = 1,...,r there are natural injective maps as in [28], Section 1, Equation (3):

¥i: Ji(C) — Hom(T;,8) and ¢ J/(C) — Hom(T},S), (16)
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where 5 := {z € € : |z] = 1}. Hence in the above exact sequence the modules
appearing in the source and in the target of d correspond to the p-torsion of J; and
J/ respectively, where J! is the Jacobian variety of X,

Suppose now that 7 is contained in some Eichler order of B of level r and let g
be a modular form with coefficients in a finite field F, of weight 2, level K and trivial
central character, which is an eigenform for the quotient T of the Hecke algebra of
level v £ acting faithfully on Ji7 (recall that the discriminant of & is ™ £). Let g
be the kernel of the homomorphism T — F associated to g.

Assumption 7.18. Let U be an open compact subgroup of B* such that (14) is
verified. Ifthe residual Galois representation on GL2([F ) associated to g is irreducible
then Hom(I",IF)[m,] = 0.

Remark 7.19. The technical condition in Assumption 7.18 is essential in the proof of
Lemma7.20below. It consists in a version of Thara’s Lemma for Shimura curves over
totally real ficlds. Indeed, if £ = @, Assumption 7.18 holds thanks to Theorem 2
in [12] because under the above identifications the map d corresponds to the map o,
in that theorem. The result of Theorem 2 in [12] can be understood as an analogue
of Thara’s Lemma in the context of Shimura curves over (. The results contained in
[12] and successively refined in [13] are partially generalized to the totally real case
in [25]. However, [25] does not cover the full generalization of Theorem 2 in [12].
Tt might be possible that the techniques in [25] and [26] can be used to prove some
results in the direction of an analogue of Theorem 2 in [12]. In this paper we follow
[15], which assumes a suitable generalization to totally real fields of [hara’s Lemma
as an hypothesis, although Assumption 7.18 is stated in a different form with respect
to [15], Hypothesis 5.9. Similar results for Hilbert modular varieties hold: see [14].

As a consequence of Assumption 7.18 we see that fﬂb/mg = 0. Let now R be
the ring of integers of a finite extension of () and fix a maximal ideal v of R such
that R, /v ~ IF, where R, is the completion of R at v. Suppose that g is a modular
form with coefficients in R, /v™ for some integer s > 1 of weight 2, level U and
trivial central character, which is an eigenform for the Hecke algebra T'; let 1, denote
the kernel of the associated homomorphism T — R, /v™ and note that m, is the
maximal ideal containing I,. If the above conditions on g are satisfied, lf'ﬁ'b/m(gr =0
and hence, by Nakayama’s Lemma, fab/l'g = 0. By (15),

the canonical map J%?(FqZ}’t) — Jy(Fgon)/ Ig is surjective. (17

Suppose from now on that Assumption 7.18 is verified.

Lemma 7.20. The map y is surjective.
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Proof. Write X = X and J = J®) Let JSS(IFE%) be the set of supersingular
points in J(IFE%), where IFE% is the quadratic extension of the residue field IFp of O g

at £;. Since the map (11) is surjective, it is enough to show that
the canonical map JSS(IFE%) — J(Ff%)/ffgl is surjective. (18)
Recall that X is the Shimura curve defined over ¥ whose complex points are

X(C) = BN\B* x HE/R™,

Define X' to be the Shimura curve defined over F whose complex points are
X'(C) = B\B" x TR,

where R’ C R is defined by requiring that, for a fixed isomorphism

lp: R@ap Opp ~{(45) € GL2(OFp)c =0 mod g},

R' @, O, correspond to the elements which are congruent to ((1) ?) mod g2,
while R’ @@, Or,q = R Qo Orqif g # . Since R’ C R, there is a canonical
projectionmap ##: X’ — X and also, by Picard (respectively, Albanese) functoriality,
maps ¥*: J — J' (respectively, 4. J' — J), where J and J' are theJacobian
varieties of X and X' respectively. Write as above

X(C)=]]X(C) and X'(C)=[]X}T)

i=1 j=1

where X; = [\ # and X; (C) = 1";\3‘{’ for suitable arithmetic subgroups T and
I'%; here s and r are suitable integers such that 1 = s. The canonical projection
#: X' — X can be decomposed as 1 projections X;. — Xijp and if i(j1) = i(j2)
(that is, two projections have the same target), then I‘;l = I‘jfz. For details, see
Section 3 in [20]. Write finally J; and Jj.’ for the Jacobian varieties of X; and X;,
respectively.

The subgroups f‘j of norm one elements in 1"]’. [1/£5]1/Or[1/£5] are torsion free
(see for example [19], Lemma 7.1, after noticing that p is notramified inthe extension
K/Q). Nowview fp, asa mod m” eigenformon X’ and write I}el for its associated

ideal in the Hecke algebra Ty, acting faithfully on J'. Write m e, for the maximal
ideal containing I)’,E . Since g, corresponds to an irreducible representation, it
follows from (17) that

the canonical map J’SS(IFB%) — J’(E@)/I}gl is surjective. (19)

We need the generalization to this context of [28], which can be obtained as
follows. For any j = 1,....¢, let i(j) such that {(j(i)) = i, that is, ¥™ maps
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Ji¢y) into J{. An element x belongs to X; = ker (Ji)(T) — JJ,-'((C)) if and
only if the kernel of the map ¥;(;)(x) associated to x as in (16) contains Tj'-. Set
T := ker (J(C) — J'(C)). Using the fact that I} =T} ifi(j1) = i(j2), we get
an injection:
0— % — i, Hom(Fi/F}(i),S).

The order of the group Rx / R™ s prime to p, hence the same is true for the order
of (g1 R*g)/ (g LR g) forany g = B*. Since the groups [';/ T;(i) are contained
in(g! ﬁxg)/(gflﬁ’xg) for suitable elements g < B%, it follows the order of any
Ly T;(i) is prime to p, so the same is true for 2. Dualizing shows that the cokernel
of the map u,: J’(Ff%) — J(IFE%) has order prime to p. It follows that

the canonical map J’(IFE%) — J(FB%)/Ifel is surjective. (20)
Finally, combining (19) and (20) shows (18). O

Let B’/ F be the totally definite quaternion algebra of discriminant = £,£, and
R’ an Eichler order of B’ of level gou™. For any ring C, denote by Sff(pnﬂ C) the
C -module of functions:
B\BT IR s C.

This module is endowed with an action on the Hecke algebra Tye, ¢, -

Proposition 7.21. There exists g < SzB "(put, O £ /") such that:
(1) for prime ideals q } nili£y: T4{(g) = az(f)g (mod 7%);
(2) forprimeideals q | n: Uy(g) = ag(f)g (mod 7™);
(3) Up, g = €18 {(mod n”) and Uy, g = €28 (mod 7).

Furthermore, if (£1,4£2) is a rigid pair, then g can be lifted to a w-isolated form in
Sf’(gorﬁ) taking values in Oy .

FProof. Write Ty, (respectively, T4, ¢,) for the quotient of the Hecke algebra Ty,
(respectively, Tye,¢,) acting on cusp forms of weight 2, trivial central character,
Co(ridy) (respectively, [g(rif1£,)) level structure and new at 1t £;. Write

Jo,: Ty — Op /7"

for the modular form satisfying f¢;, = f (med 7"). This form has the properties that

To(fiy) = ay(f)foy (mod 7) for all g } 1y, Ug(fiy) = ag(f)fy (mod 7")
forall g | mand Up,( f¢,) = €1 f¢, (mod z%).

Let Ry € /R be an Eichler order of level gonn™ ¢, and denote by X @2.81) the
Shimura curve (over ') whose complex points are given by:

x &b (@) = BN\B* x HE/RT.
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Recall from above the set 5, < X(‘?l)(IFf%) of supersingular points of X%} in
characteristic £;. By [49], Section 5.4,

Sp, = B"\B™JR™, (21

It follows that the character group Xg, of X (€2:41) at £, is identified with the module
DiVO(S,'jZ). Furthermore, the action of Ty, ¢, on Xg, induced from the action on
Pic(X “2:£1)) by Picard functoriality is compatible with the standard Albanese action
of Ty, ¢, viacorrespondences in the set of supersingular points. Therefore, y can also
be viewed as a Oy, /m"-valued modular form on B’X\ﬁ’x/ﬁ’x. Denote by g this
modular form. Since y is surjective by Lemma 7.20, the image of g is not contained
in any proper subgroup of @, /7"

To show that g has the desired properties, write 7,* (with g  nf1£;) and Uf (with
q | mé1£3) for the Hecke operatorsin Ty, o, and Ty and Uy for the Hecke operators in
Te,. By Lemma 7.17, T g = aq(f)g (mod 7") and Ujfg = aq(f)g (mod 7").
By Lemma 7.2 of [25], U S x = Froby, (F)x for x € Sg,. Hence Lemma 7.17 yields
(U £)(x) = y(Frobe, (F)x) = €28(x).

For the final part of the statement: The modular form g vields a surjective mor-
phism ¢g: Tp, o, — Opr/m"; if (£1,4£5) is a rigid pair, then Ty, o, ~ @, and
therefore ¢, lifts to characteristic zero. Ol

7.5. Explicit reciprocity laws. The two following theorems explore the relations
between the classes x(£) constructed in Section 7.4 and the g-adic L-functions of
Section 4. Their proofs are similar to the proofs of the corresponding results [5],
Theorems 4.1 and 4.2. We will present a sketch of the arguments: for more details,
the reader is referred to [5]. See also Section 3.3 in [29] and Section 3.5 in [30],
where a result similar to that of Theorem 7.22 is proved.

Recall the maps dp and vy introduced in § 5.2. Thanks to the isomorphisms (8),
we find a decomposition

ﬁ(Kpoos;g, Tfﬁnn) = ﬁsling(Kpoogg, Tf’nn) 35} ﬁﬁln(Kpoo’g, Tfﬁnn).

In this decomposition the map 9 corresponds to the projection to the first factor,
while the map vy, a priori only defined on the kernel of 9, can be extended to a map

ve: H(Kpoo g, Tran) —> H: (Kgoo g, Trn)
(the projection to the second factor).
Theorem 7.22 (First Explicit Reciprocity Law). vp(xc(£)) = O and the equality
de(k(£)) = 87 (mod z™)

holds in ﬁsling(Kpoo’g Tpnan) = Apn/7" Ap x up to multiplication by elements in
(9)(

i and G&jm.
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Proof. Denote by ég the residue map

HY (Koo, Typn) — Hi(Kgeo g, Tran)

smg

(these cohomology groups are defined for H! (Kgoe, Trnn)and H

smg(K 0 f Tf,rz”)
by replacing Koo by K&)oo) In is enough to show that 83({P*}m) = Gf mod 7"
(note the abuse of notation for the image of { P}, in H! (K oo, Trpn)).

Recall the notations of Section 6.2: Let B/F be the quaternion algebra which is
ramified at all archimedean places and whose discriminant is Dise(8) = n~. Denote
by R € B an Eichler order of level o™,

Recall that End(#y,) ~ @p,m, where End(Py,) is defined in [48], Section 2.1.1.
The Heegner point Py, is described in Section 2.1.2 of [48] in terms of a certain
abelian variety A,, with additional structures. Let k& denote as in [48], Section 2.2,
the residue field of the maximal unramified extension of @x . Denote by A, the
reduced abelian variety over & and by End(P,,) the endomorphism ring of A, as
defined in [48], Section 2.3.3. Then, by [48], Section 2.3.3, End(ﬁm) @7 () ~ B.
Tensoring by () the map

End(P,,) — End(P,,)

induced by reduction of endomorphisms yields an embedding ¥: K < B.

Let #p .= €y — Fp be the £-adic upper half plane, where C; is the completion of
an algebraic closure of F¢. The Cy-points of the special fiber X éﬂ) at £ of the Shimura
curve X @ can be described by using the Cerednik—Drinfeld theorem:

XO(Cy) = BB x #e)/ R[1/4]%,

where R[1/£] is the Eichler O [1/£]-order of B of level o™ and O [1/£] isthe ring
of £-integers of F. Then the point £y, reduces to the point P, = (1, z) € XE(E)(K;@),
where z is one of the two fixed points of ¥ (K™) acting on #;. The integrality
property of P, follows because, since £ is inert in K/ F, then it splits completely in
Koo,

&)Let Ve and &, are, respectively, the set of geometrically irreducible components
and the set of singular points, respectively, of }?E(f). By [49], Lemma 5.4.4, the set
Wy can be identified with BX\B*/R*, where BX is the set of elements of B with
even order at . The reduction of P, in the special fiber Xf(f) of XE(E) belongs to a
single geometrically irreducible component: this is because, since £ is inert in K and
Opm @ Ly 1s maximal, Y (O om @ Z;) is contained in a unique maximal order, hence
the action of ¥(K*) on Vp U &, has a unique fixed point which is a vertex. Denote
by 7(Pp) the corresponding element in Bex\ﬁx/ﬁx.

Fix a prime £, of Ky eo dividing £ and set £, := £oc M Kpm. Note that the
different choices of £, are permuted by the multiplication by an element of époo,
and the same dependence holds for the definition of éf. Let ®g, . be the group of
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connected components of the fiber at £, of the Néron model of J® over @Epm'

There is a specialization map d,, : J(E)(Epm) — &y which fits into the following
commutative diagram:

JO(K om)/ Ip, ——= H (K ym, Tyn) (22)

-

q)‘fm/‘rfﬁ — Hsling(ig@msﬁm ’ Tfﬂn)

where the bottom horizontal arrow is an isomorphism. The Heegner point Py, satisfies,
by Section 2 of the Appendix in [4], the following relation:

St (Pm) = we(r{Pp)),
where wp: Z°[V] — &, is the map arising from the exact sequence
0— X — X — & —0

connecting ®; with the character group X of the maximal torus of the special fiber
of JE(E) and its 7 -dual XE/ Recall the identification of 'V with B;\ﬁx/ﬁx and note
that the last double coset space can be identified with two copies of B\ B*/R* by
sending a class [b] in B;\ﬁx/ﬁx to the class [#] in the first copy of B*\ B* /R* if
the gr-adic valuation of 4 is even and to the class of [b] of the second copy otherwise.
It follows that evaluation on Heegner points gives rise to an Hecke equivariant map:

B\B/R* — @, /1y, —> Hy (Kpm g, Tpan) = O /"

which, by multiplicity one, is equal to the modular form £ % up to multiplication by
an element in (O, /7™ ).

It follows from above that ég(Pm) = fB(ry(P,)) mod z” The result follows
now from the definition of P,y and &, because the action of Gee on Gr® (™) is
compatible with the action of Ggee on Gr{g™ )} and, by our choice of the orientation
at g0, the compatibility of the sequence { Py, } translates into the compatibility of Gross
points. U

Theorem 7.23 (Second Explicit Reciprocity Law). Ler £1 and £5 be two n-admissible
primes. Let g be as in Froposition 1.21. The equality

Uﬂz(’c(gl)) - 98

holds in ﬁﬁln(Kpoo’gz, Tran) o2 Ap o /7" Ay o up to multiplication by elements in
0}(:: and G geo.
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Proof. Consider the sequence { Py }m_of Heegner points. Fix (as in the proof of
the above theorem) a prime £2 oo of Koo above £3 and let €25, = £2,00 N Kpm.
Since £, is inert in K, the points Py, reduce modulo fz oo 10 supersingular points
P, < X(‘Zl)(IF,g2 ), where ', is the residue field of Kpm at £2- Identify Fy,
with IFE% for all m. Then P,, can be viewed as a point in 3¢,, and hence, by Equation
(21), P, can be identified with an element in B\ B™/R".

Reduction modulo £; 5, of endomorphism as in the proof of Theorem 7.22 yields
by extension of scalars an embedding ¢: K — B’, which is independent of m. The

(Galois action of Gpco on P, is compatible with the action of G&joo on P, via ¢.
Write

ég,m =a"” Z gloPy) o< Oﬂn/n"[é&,m],

oeGom
so that ég = Liilégsm e (Qf!,r/jr”[[éoo]l. The choice of £; o together with the
m
isomorphism H{ (Ky,, Ty.nn) = @y, /7" yields identifications:
HY(Rgm gy, Tan) = Opn /7" [G o],

Hyp (Ko< 5. Tpan) = Ofn /1[G s,
where these cohomology groups are defined as in Section 5.2.1. By the definition
of y, the image of P in Hﬁn(Kpm £ Tgn) corresponds to Bgm {mod 7™) and
so the image of the compatible sequence { P} corresponds to 9 Define the class
K(E ) to be the image of {P,5} in Hl(Klpoo Trqn). It follows that v, (K(£1)} €
Hﬁn(.i'(o‘D s Tf,,n) is equal to 9 (mod 7"). Since x(£)) is the corestriction of
K(£;) from K&jco to Koo, the result follows. |

Corollary 7.24. The equality
vg, (1(42)) = v, (k(£1))  (mod =)

holds in Ap /" Ao up to multiplication by elements in @}(n and Gpos
Proof. Since the definition of g is symmetric in £; and €3, this is obvious. O

7.6. The argument. The remaining part of the section is devoted to the proof of The-
orem 6.1. Keeping 4 fixed, denote Selzoo( f/ Kgeoo) (respectively, Selzn (f/ Kpeoo))
simply by Sely ., (respectively, Selg,,). By Proposition 7.4, it is enough to show that
@(67)? belongs to Fitt@(Sel}:oo R4 @) for all ¢ € Hom(A, @) where O is the ring of
integer of a finite extension of @@,. For this, by [33], Appendix, 10 on 325, is enough
to show that

go(@f)2 belongs to Fittg (Sel}/,n @y @) for all integers # = 1. (23)
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Fix ? and ¢ as above, Write v for an uniformizer of . Set

Iy \= ord,,(go(t?f)).

If @(87) = 0, then @(87)? belongs trivially to Fitt@(Sel}:n @y @) forallm > 1, s0
assume @(0f) # 0. If Sel}éoo @y @ is trivial, then its Fitting ideal is equal to ¢ and,
again, go(Qf)z belongs trivially to Fitte (Sel}in @ @) for all B = 1, so assume that
Fitte (Sel}/’n @y @) # 0. The theorem is proved now by induction on £¢.

7.6.1. Construction of x,(£). Let £be any (n + £ )-admissible prime and enlarge
i£}toa(n +1tr)-admissible set S: such a set consists of s distinct (# +7 )-admissible
primes such that the map

Selpnyi (K) — EP Hiy (Ko, Apontip)
{esS

is injective (Proposition 7.5 shows that such a set exists). Denote by  the square-free
product of the primes in S and let

K(£) e ﬁel(Kpoo,me) C H (Kges, Ty prtir)
be the cohomology class attached to £.
Proposition 7.25. The group B\’; (Kgpeo, Trnn) is free of rank s over Ag » /7",

Froof. 'This statement can be proved by a direct generalization of Theorem 3.2 in [2]
as suggested in Proposition 3.3 in [5]. [l

Let k4 (£) be the image of «{{) in
M= Hy(Kpoo, Ty nvey) @4 0.

Note that, by Proposition 7.25, M is free of rank s over Oz, /" "%, By Theo-
rem7.22,

t 1= ordy (1, (£)) < ordy (3¢ (K, (£))) = ordy (@(r)). (24)

Choose an element £,(£) € M such that vk, (£) = ky(£). This element is well
defined medulo the v¥-torsion subgroup of .M; to remove this ambiguity, denote by
k,(£) the image of Ky (£) in HY(Kpeo, Tpan) @p ©. The following properties of
k,(£) hold:

(1) ordy(ky,(£)) = O (because ord, (kg (£)) = ¢ < fr);
(2) 94(x,(£)) = Oforall g  £n~ (because k(£) € ﬁ;([(&,oo, Tf,n+tf))§
(3) velk, (£)) = 0 (by Theorem 7.22);
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4) o¢ (K; (£)) =ty —t (by Theorem 7.22 and formula (24));
(5) The element d¢(x,(£)) belongs to the kernel of the homomorphism:

Ng: Hipg(Kpoop, Tran) @ O — Sely, @, 0. (25)

To prove the last statement use the global reciprocity law of class field theory (5) as
follows (see more details in [5]), Lemma 4.6. Denote by I, the kernel of ¢. First
note that it is enough to show that mg(aglc; (£))s) = Ofor all s € Selgu[,]. Note
that, by the global reciprocity law of class field theory:

D (0g(Ry (£)),54)q =0

9|8

for all s € Selyp 4/ [fp]. On the other hand, v i, (£) = ky(£) has trivial residue at
all the primes g # £ (it is finite at those primes) so the element d, (Kx(£)) annihi-
lates v Hi (Koo g, Af;n_nJr:f)[Iw], which contains H (Kso g, Aszn)[,]). Hence,
if 5 belongs to Selg, [y, then the terms in the above sum corresponding to primes
g # £ are all zero. It follows that ag(;c; (£)) annihilates the image of Selg,[[,] in
Hﬁln(Koo’g, Aggn), so it belongs to the kernel of n;.

7.6.2. Case of ry = 0. This is the basis for the induction argument. First, recall the
following result.

Proposition 7.26. The natural map H' (K, Apx) — H' (Koo, Az )] induced
by restriction is an isomorphism.

Proof. 'Thisresult can be obtained as in Theorem 3.4 of [5] by analyzing the inflation-
restriction exact sequence

Kg‘)m

G
0 — H'(Gal(Kym/K), A, 87 ) — HY K, Afn) —> -

it

GK _m
> HY (Kypm, Agpn) @&/ E) s H2(Gal(Kpm / K), A 87

where G K is the absolute Galois group of Kpm, and the exact sequence

ASE s HY (K, Agy) —> HYK, A qn) —> HY(K, A qn) — H(K, Aﬁf)

f,:rr”_l
induced by 0 — Agyp — Agqn ki ¥ Aszn1 — 0 and noticing that, since pyy is
Fom _ 4Gx _

G
surjective, Af,:r" =ty = 0. For details, see [5], Theorem 3.4. U

Then we can state the basis of the inductive argument.

Proposition 7.27. Ifty — O then Sel}{n =0
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Proof. To prove this, note that, for all #-admissible primes £, Theorem 7.22 implies
that ﬁsling(Kpoo,g, Tyqn) @y O is generated by dg(ky (£)) (as @-module) and that the
map #g in (25) is trivial. Assume now that Sel}:n is not trivial. Then Nakayama’s
lemma implies that the group Sel}fn/m = (Sely,[m])Y is not trivial, where mt is the
maximal ideal of Ag 5.

Letnows € Sely, [m]be anontrivial element. Proposition7.26 allows to consider
s as an element of H (K, Af.z). Invoke Proposition 7.5 to choose an #-admissible
prime £ such that dg(s) = 0 and vg(s) £ 0. Then the non degeneracy of the local

Tate pairing implies that g is trivial, which is a contradiction. 1

7.6.3. The minimality property. As a corollary of Proposition 7.23, note that
the corestriction map ﬁ; (Kpoo, Tppn)/m — HY(K, Trn)is injective.  (26)

Let now Il be the set of primes of @ g such that:
(1) £is n + tr-admissible;

(2) The number ¢ = ordy (k,(£)) is minimal among the set of (1 + #7)-admissible
primes.

By Proposition 7.5, T1 #£ 4.
Proposition 7.28. ¢ < ;.

Proof. 'To prove this assertion, assume on the contrary thats = ¢, Since by definition
t < tr,thent = ty for all (n + fr)-admissible primes £. Use Proposition 7.26 to
choose a non trivial element in H'(K, Agz) M1 Selg,, (recall that by assurmption,
Sel}’!n R O # 0, so Selg,[m] # 0). By Proposition 7.5, cheose an (n + £r)-
admissible prime £ such that ve(s) # 0. Now by the Property 5 enjoyed by the
class x,,(£), it follows that ordy(deky, (£)) = 0, so that dgk, (£) is a generator of
HAsling(Koo’f, Trnn) Qg @. By Nakayama’s lemma again, the image of d; (K:P (£)) in
Hsling(Koo,g, Trnn)/m @, @ is not trivial. Use (26) to identify this last module with
HYK, Ty »)©0; thenit follows that the natural image of d; (e, (€))in H YK, Tra)@
@ is not trivial. By Property 5 enjoyed by the class lcq’u (£) again, it follows that
delky, (£)) is orthogonal to ve(s) with respect to the local Tate pairing, contradicting

the fact that d¢(ic;, (£)) and vy(s) are both supposed to be non trivial and the fact that the
Tate pairing is a perfect duality between one-dimensional  /v-vector spaces. 1

7.6.4. Rigid pairs with the minimality property. This step is devoted to the proof
that there exist primes £1, £, € IT such that (£, £,) is arigid pair. To prove this, start
by choosing any prime £, € IT and denote by s the image of i, (£1) in

(A} (Koo, Trmn)/m) @4 O/ (v),
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where mt is the maximal ideal of Ay, ». By (26), view s as a non-zero element in
HY(K,Tsz) @ @/(v). Note that d4(s) = 0 for all g + £;u. By Propositions 7.13
and 7.14, choose an (# + t)-admissible prime £, such that dz,(s) = 0, vg,(s) # 0
and either (£, £2) is arigid pair or Sely, (F, ad® p) is one-dimensional. The following
relation holds:

= ordy (Kp(£1)) < ordy (G (£2)) < ordy (vg, (kg (£2))). @7)

The first inequality follows from the minimality property of ¢ using that £; € II
and that £; is an {# + fy)-admissible prime. By the choice of £, and Corol-
lary 7.24, it follows that ord, (v, (k,(£2))) = ord,(vg,(k,(£1))). Now note that
ord, (ve, (ke (£1))) = ord, {xy(£1)) and that the strict inequality holds if and only if
Ve, (8} = 0, so, since vg,(s) # 0, ord, (ve, (ke (£2))) = ordy (ke (£1)). Combining
this with the inequalities in formula (27) shows that

i = ordy (Kgo (£1)) = ord, (K(o (£2)). (28)

It follows that £, < II. If (£,,£;) is not a rigid pair, then Selg, (F, ad®p) is one
dimensional (this is the case only if Sely, (F, ad®p) = 0). In this case, by Proposi-
tion 7.13, choose an (n + t7)-admissible prime £5 such that dg,(s) = 0, vg,(s) # 0
and (£2, £3) is a rigid pair. Repeat the argument above with £5 replacing £; and £3
replacing £ to show that £; € II. In any case then, either (£1, £3) or (£5,£1) is a
rigid pair and the claim at the beginning of follows.

7.6.5. The congruence argument. Choose by the result explained in Subsec-
tion 7.6.4 a rigid pair (£, £5) with £;, £, < II. Note that, by Theorem 7.23,

=1, = ord,(6,) (29)

(here g is the congruent modular form attached to (£, £5) by Proposition 7.21). There
is an exact sequence of A-modules:

f
0—>Self , — Sely, — Selt) , —0, (30)

where Selp, ¢,] © Sely, is defined by the condition that the restriction at the primes

£1 and £, must be trivial and Selgﬂ22 is the kernel of the surjection of duals. There is
an inclusion:

(Self ()Y € HY(Kpeo g, Afon) @ Hiy(Kpeo gy, Ayn).
The dual of Hﬁln(K'lpong1  Afgn) & Hﬁln(K&joo!gz, Af,zn), by the non-degeneracy of

the local Tate pairing, is Hsling(Kpoc’gl JAfan )& Hsling(Kpoc’gz , Az .pn), so the above
inclusion leads to a surjection:

Npt Hopng(Kpoo gy, Apan) @ Hio(Kpoo gy Afan) — Self , .

sing
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Recall that, since £; is n-admissible, ﬁsling(K&joo!fl,Af’n—n) ~ Apn/n”. Let njf

be the map induced by 7y after tensoring by @ via . Then the domain of njﬁ is
isomorphic to (¢ /@(z"))?. By Property 5 above enjoyed by the classes Ky (£1)
and «;,(£2), the kernel of nj’; contains (¢, £,(£1),0) and (0, d¢,k;,(£2)). The same
property combined with equations (28) and (29) yields
tfp —tg = Ordv(agl(l{; L1))) = ordv(agz(ic;(fz))).
It follows that
p2ltr—te) belongs to the Fitting ideal of Selglfz @y 0. (3D

Repeat now the argument with the modular form g: there is an exact sequence
2
0 — Sely ,, — Sely,, — Selfy, 4,1 —> 0,
and a surjection
UER Hliln(Kpo",f1 , Afzn) & Hﬁln(prsfl 2 Afan) — Selfﬂ?z'
Let ng be the map induced by 5, after tensoring by ! via ¢. By the global reciprocity
law of class field theory, the kernel of nf;, contains the elements

(Uﬂl (K:o(‘el))= UEQ(K(; (Zl))) — (qu (K:g(‘el))7 O):

(ve; (e, (£2)), ve, (16, (€2))) = (0, ve, (1, (£2))),
where the equalities follow from Property 3 above enjoyed by the classes K;J {£1) and
Kky(£2). Note that ordy (ve, &y, (£1)) = ordy(vg, &, (£2)) = 1, —t = 0. From this it
follows that the module Self1 & is trivial. As a consequence, there is an isomorphism

SelY , @ @ 5 Sely, 1 @ O. (32)

7.6.6. The inductive argument. Now assume that the theorem is true forall #/ < 77
and prove that it is true for 7. Recall thatt = £, < ty. Since (£1,4£,) is a rigid
pair, the modular form g satisfies the assumptions in the theorem, so, by the inductive
hypothesis,

¢(0y) belongs to the Fitting ideal of Selgsn ®p 0. (33)

Now use the theory of Fitting ideals:
p2tr 20 —tg) 208
e Hitty (Selfflg2 Ry ) - Fitt@(Sel;’" @y ) by (31) and (33)
= Fitt@(Selglﬂ2 R @) - Fitt@(SeIElefz] Qe @) by (32)
< Fittg(Sely, @y @) by (30).

Since by definition ord(#;) = t7, it follows that @(fy)? € Fitt@(Sel}‘:n @y (), thus
proving (23) and therefore Theorem 6. 1.



Vol. 87(2012)  Anticyclotomic Iwasawa’s Main Conjecture for Hilbert modular forms 351

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

M. Bertelini, Selmer group and Heegner points in anticyclotomic Z ,-extensions. Compo-
sitio Math. 99 (1995), no. 2, 153-182. Zb1 0862.11043 MR 1351834

M. Bertolini and H. Darmon, Derived heights and generalized Mazur-'Tate regulators. Duke
Math. J. 76 (1994), no. 1, 75-111. Zbl 0853.14013 MR 1301187

M. Bertolini and H. Darmon, Heegner points on Mumford-Tate curves. fnvent. Math. 126
(1996), no. 3, 413-456. Zbl 0882.11034 MR 1419003

M. Bertolini and H. Darmon, A rigid analytic Gross-Zagier formula and arithmetic appli-
cations. With an appendix by Bas Edixhoven. Ann. of Math. (2) 146 (1997),no. 1, 111-147.
7Zbl 1029.11027 MR 1469318

M. Bertolini and H. Darmon, Iwasawa’s main conjecture for elliptic curves over anti-
cyclotomic Z p-extensions. Ann. of Math. (2) 162 (2005), no. 1, 1-64. Zbl 1093.11037
MR 2178960

N. Bourbaki, Eléments de mathématique. Fasc. XXXI. Algébre commutative, Chapitre
7. Diviseurs, Actualités Scientifiques et Industrielles, No. 1314 Hermann, Paris 1965.
Zbl 0141.03501 MR 0260715

I. Coates and R. Greenberg, Kummer theory for abelian varieties over local fields. Invent.

Math. 124 (1996), no. 1-3, 129-174. Zbl 0858.11032 MR 1369413

C. Cornut and V. Vatsal, Nontriviality of Rankin-Selberg L-functions and CM points.
In L-functions and Galois representations (Durham, July 2004), London Math. Soc.
Lecture Note Ser. 320, Cambridge University Press, Cambridge 2007. Zbl 1153.11025
MR 2392354

C. Cornut and V. Vatsal, CM points and quaternion algebras. Doe. Marh. 10 (2005),
263-3090.7Zbl 1165.11321 MR 2148077

H. Darmon, F. Diamond, and R. Taylor, Fermat’s last theorem. In Current devel opments in
mathematics, 1995 (Cambridge, MA), International Press, Cambridge, MA, 1994, 1-154,
Zbl 0877.11035 MR 1474977

P. Deligne and I. P. Serre, Formes modulaires de poids 1. Ann. Sei. Ecole Norm. Sup. (4)
7 (1974), 507-530 (1975). Zbl 0321.10026 MR 0379379

F. Diamond and R. Taylor, Nonoptimal levels of mod / modular representations. Tnvent.
Marh. 115 (1994), no. 3, 435-462. Zbl 0847.11025 MR 1262939

F. Diamond and R. Taylor, Lifting modular mod £ representations. Duke Maih. J. 74 (1994),
253-269. Zbl 0809.11025 MR 1272977

M. Dimitrov, On Thara’s lemma for Hilbert modular varieties. Compos. Math. 145 (2009),
no. 3, 1114-1146. Zbl 05625824 MR 2551991

K. Fujiwara, Deformation rings and Hecke algebras in the totally real case. Preprint,
arXiv:math/0602606v2 [math.NT].

E. Goren, Lectures on Hilbert modular varieties and modular forms. CRM Monogr. Ser.
14, Amer. Math. Soc., Providence, RI, 2002. Zbl 0986.11037 MR 1863355

B. H. Gross, Heights and the special values of L-series. In Number theory (Montreal,
Que., 1985), CMS Conf. Proc. 7, Amer. Math. Soc., Providence, RI, 1987, 115-187.
Zb1 0623.10019 MR 0804322



352
[13]
(19

(20]

(21]

(22]

(23]

[24]

[25]

(28]

[27]

(28]

(29

(30]

(31]

[32]

[33]

[34]

[35]

[36]

M. Longo CMH

B. H. Gross and I. A, Parson, On the local divisibility of Heegner points. In Number theory,
analysis and geometry in memory of Serge Lang, Springer-Verlag, Berlin 2011, 215-242.

H. Hida, On p-adic Hecke algebras for GL» over totally real fields. Ann. of Math. (2) 128
(1988), no. 2, 295-384. Zbl 0658,10034 MR 0960949

H. Hida, On nearly ordinary Hecke algebras for GL(2) over totally real fields. In Algebraic
number theory, Adv. Stud. Pure Math. 17, Academic Press, Boston, MA, 1989, 139-169,
Zbl1 0742.11026 MR 1097614

B. Howard, [wasawa theory of Heegner points on abelian varieties of GL, type. Duke
Math. J. 124 (2004), no. 1, 1-45. Zbl 1068.11071 MR 2072210

Y. Ihara, Shimura curves over finite fields and their rational points. In Applications of curves
over finite fields (Seattle, WA, 1997), Contemp. Math. 245, Amer. Math. Soc., Providence,
RI, 1999, 15-23. Zbl 0984.11027 MR 1732224

K. Iwasawa, On the p-invariants of Z,-extensions. In Number theory, algebraic geometry
and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo 1973, 1-11.
Zbl 0281.12005 MR 0357371

H. Jacquet and R. P. Langlands, Automorphic forms on GL(2). Lecture Notes in Math.
114, Springer- Verlag, Berlin 1970. Zbl 0236.12010 MR 0401654

E. Jarvis, Level lowering for modular mod / representations over totally real fields. Math.
Ann. 313 (1999), no. 1, 141-160. Zbl 0978.11020 MR 1666809

B Jarvis, Mazur’s principle for totally real fields of odd degree, Compositio Math. 116
1999, no. 1, 39-79. Zbl 1053.11043 MR 1669444

K. Kato, [wasawa theory and generalizations. In International Congress of Mathemati-
cians, Vol. I, Bur. Math. Soc., Ziirich 2007, 335-357. Zbl 1183.11067 MR 2334196

S. Ling, Shimura subgroups of Jacobians of Shimura curves. Proc. Amer. Math. Sec. 118
(1993), no. 2, 385-390. Zbl 0795.14014 MR 1145947

M. Longo, On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over
totally real fields. Ann. Inst. Fourier (Grenoble) 56 (2006),no. 3,689-733.7b1 1152.11028
MR 2244227

M. Longo, Euler systems obtained from congruences between Hilbert medular forms.
Rend. Semin. Mai. Univ. Padova 118 (2007), 1-34. Zbl 05376044 MR 2378387

H. Matsumura, Commuitative ring theory. Cambridge Stud. Adv. Math. 8, Cambridge
University Press, Cambridge 1989. Zbl 0603.13001 MR 0879273

B. Mazur, Rational points of abelian varieties with values in towers of number fields.
Invent. Marh. 18 (1972), 183-266. Zbl 0245.14015 MR 0444670

B. Mazur and A. Wiles, Class fields of abelian extensions of Q. Invent. Math. 76 (1984),
no. 2, 179-330. Zbl 0545.12005 MR 0742853

I. Milne, Arithmetic duality theorems. Perspect. Math. 1, Academic Press, Boston, MA,
1986. 7Zbl1 0613.14019 MR 0881804

J. Nekovai, Selmer complexes. Asterisque No. 310, Soc. Math. Prance, Paris 2006.
Zbl 1211.11120 MR 2333680

J. Nekovaf, The Buler system method for CM points on Shimura curves, In L-functions
and Galois representations (Durham, July 2004), London Math. Soc. Lecture Note Ser.
320, Cambridge University Press, Cambridge 2007. Zbl 1152.11023 MR 2392363



Vol. 87 (2012)  Anticyclotomic Iwasawa’s Main Conjecture for Hilbert modular forms 353

[37]

[38]

(39

[40]

[41

[42]

[43]

[44]

[45]

[46]

[47]

[43]

(49

[50]

J. Nekovaf, Growth of Selmer groups of Hilbert modular forms over ring class fields. Ann.
Sei. Ecole Norm. Sup. (4) 41 (2008), No. 6, 1003-1022. Zbl 05543878 MR 2504111

J. Nekovaf, Level raising and Selmer groups for Hilbert modular forms of weight two.
Canad. J. Math., to appear; preprint http://people.math jussieu.fr/~nekovar/pu/level.pdf.

R. Pollack and T. Weston, On g-invariants of anticyclotomic p-adic I-functions of elliptic
curves. Compos. Math. 147 (2011), no. 5, 1353-1381. Zbl 05961171 MR 2834724

A. Rajaei, On the levels of mod ! Hilbert modular forms. J. Reine Angew. Math. 537 (2001),
33-65. Zbl 0982.11023 MR 1856257

R. Ramakrishna, Lifting Galois representations. rvent. Math. 138 (1999), no. 3, 537-562.
Zbl 0968.11024 MR 1710819

P. Samuel, Lectures on unique factorization domains. Notes by M. Pavman Murthy, Tata
Institute of Fundamental Research Lectures on Mathematics 30, Tata Institute of Funda-
mental Research, Bombay 1964. Zbl 0184.06601 MR 0214579

J.-P. Serre, Trees. Translated from the French original by John Stillwell, Corrected 2nd
printing of the 1980 English translation, Springer Monogr. Math., Springer-Verlag, Berlin
2003.7Zbl 1013.20001 MR 1954121

(5. Shimura, The special values of the zeta functions associated with Hilbert modular forms.
Duke Math. J. 45 (1978), no. 3, 637-679. Zbl 0394.10015 MR 0507462

G. Shimura, Introduction to the arithmetic theory of automorphic functions. Reprint of the
1971 original, Publ. Math. Soc. Japan 11, Kand Memorial Lectures 1, Princeton University
Press, Princeton, NI, 1994.7b1 0221.10026 MR 1291394

V. Vatsal, Special valie formilae for Rankin L-functions. Math. Sci. Res. Inst. Publ. 49,
Cambridge University Press, Cambridge 2004. Zbl 1077.11038 MR 2083212

M.-F. Vignéras, Arithmétique des algébres de quaternions. Lecture Notes in Math. §00,
Springer-Verlag, Berlin 1980. Zbl 0422.12008 MR 0580949

S. Zhang, Heights of Heegner points on Shimura curves. Ann. of Marh. (2) 1533 (2001),
no. 1, 27-147. Zb1 1036.11020 MR 1826411

S. Zhang, Gross-Zagier formula for GLy. Asian J. Math. 5 (2001), no. 2, 183-290.
Zbl 1111.11030 MR 1868935

S. Zhang, Bquidistribution of CM-points on quaternion Shimura varieties. Internatr. Math.
Res. Notices 2005 (2005), no. 59, 3657-3689. Zbl 1096.14016 MR 2200081

Received June 17, 2009

Matteo Longo, Dipartimento di Matematica Pura ed Applicata, Universita di Padova, Via
Trieste 63, 35121, [taly
E-mail: mlonge@math.unipd.it



	Anticyclotomic Iwasawa's main conjecture for Hilbert modular forms

