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Anticyclotomic Iwasawa's Main Conjecture for Hilbert modular
forms

Matteo Longo

Abstract. Let F/Q be a totally realextension and / anHilbertmodular cusp form ofleveln, with
trivial central character and parallel weight 2, which is an eigenform for the action of the Hecke

algebra. Fix a prime p | n of F of residual characteristic p. Let K/F be a quadratic totally
imaginary extension and Kpoo be the p-anticyclotomic T,p-extension of K. The main result
of this paper, generalizing the analogous result [5] of Bertolini and Darmon, states that, under
suitable arithmetic assumptions and some technical restrictions, the characteristic power series
of the Pontryagin dual of the Selmer group attached to (/, K^oo) divides the /?-adic L-function
attached to (/, Kç,°o), thus proving one direction of the Anticyclotomic Main Conjecture for
Hilbert modular forms. Arithmetic applications are given.
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1. Introduction

Let .F/Q be a totally real extension of degree d := [F : Q] and rt a square-free
integral ideal of the ring of integers (9f of F. Let / <G S2(n) be a Hilbert modular

cusp form for the To(tt) level structure with trivial central character and parallel
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weight 2. Let Tn be the Hecke algebra generated over Z by the Hecke operators
acting on S2(n). Assume that / is a normalized eigenform for the action of T^ and
denote by </>/ : Tn -> Q the morphism corresponding to /. Let a$(f) '¦= <f>f(Tq)

(respectively, a$(f) '¦= 4>f(Uq)) be the eigenvalue of the Hecke operator at prime
ideals q \ rt (respectively, q | rt). Define

Kf := Q(ûtï(/)>9- a prime ideal of (9f)
to be the field generated (over Q) by the eigenvalues of the Hecke algebra acting on

/ and denote by Of its ring of integers. Since the character of / is trivial, K/ is

totali}' real by [44], Proposition 2.5.

Fix p > 5 a rational prime and assume for simplicity that p does not ramify in
F/<Q> and Kf/<Q. Fix an embedding ip : Q °^ <Q>P. Denote by jt the prime ideal of
Of corresponding to ip and denote by Ofi7r the completion of Of at jt.

Sa}' that / is ordinary at a prime ideal p | p if there exists a root ap of the Hecke

polynomial at p such that ip(av) is a unit. In this paper we assume that / is ordinar}'
at all prime ideals p | p.

Suppose that there exists a prime ideal p \ p such that p | rt. Suppose that either

/ is a newform or it comes from a newform of level n/p which is ordinary at all
primes p dividing p via the procedure of p-stabilization. In the totally real case, see

Section 12.5.2 in [35] for this procedure; see also Nekovâr [35] (Chapter 12), [36],
[37], Zhang [48], [49], [50], Cornut-Vatsal [9], [8], Howard [21] and Goren [16]
for references on recent developments and results on the arithmetic theory of Hilbert
modular forms.

Let K/F be a totally imaginary quadratic extension. Assume that the discriminant
of K/F and pn are prime to each other. Then K determines a factorization

rt px&xC

where a prime ideal q divides rt+ if and only if q is split in K/F while divides rt-
if and only if it is inert in K/F. We also assume that the number of prime ideals

q ç Op dividing rt- has the same parity as d [F : Q]. Finally, if d is even, we
assume that rt- ^ Of.

Remark 1.1. The condition d even =^ rt- ^ Op is assumed to obtain the
isomorphism (10). See Remark 7.15. For the case of d even and rt- Of, see the
discussions and the results of [29] and [30].

As a consequence of the assumption on the parity of the number of ideals dividing
rt-, the special value at 1 of the complex L-function L^(f, X>s) °f / over K twisted
by / is non zero for infinitely many ramified ring class characters x of conductor pm
(see [8], Theorem 1.4).
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Using the notion ofGross points it is possible to associate to / a p-adic L-function
Lp,7t(f/K) relative to p and it. This is an element of the Iwasawa algebra

where

Gpoo := Ga\(Kpoo/K) ~ Z[fg>:Qp]

is the Galois group of the anticyclotomic Z^,-extension Kpoo/K associated to p. See

Section 2 for the definition of Kpoo and Section 4 for the construction ofLPt7r(f/K).
The /?-adic L function LPt7r(f/K) is characterized by its interpolation properties of
the complex L-functions L^(f, X>s)i where x is as above: see Section 4.4 for details.

On the other hand, there is a notion of Selmer group attached to /. Denote by

Pfnoo : GF := Ga\(F/F) —? Gh2(OftJt)

the jr-adic Galois representation attached to / and define pf^n := p/)jr°o (mod itn).
Denote by TfiJroo the Gf -module associated to the representation ß/)7r°°. Let

Vf,*00 '¦= Tfi7r°o ®efn Kfn

(where Kfi7r := Frac(Ofi7r)). Define finally Afi7roo := Vf^oo/Tf^oo and Afi7rn :=
Afi7roo[jtn] for all n > 1. The Selmer group

Seljroo(//.KSC)oo) c H (Kpoo,Afnoo)

is defined in Section 5 by imposing suitable local conditions on global cohomology
classes. Its Pontryagin dual Sei^.00(f/Kp<x>) is a finitely generated A^^-module.
Denote by

CharPtn(f/K) e APj7r

the characteristic power series of Sel^oo (f/Kpoo). This element is well-defined only
up to units, while the ideal (Ch.arPi7r(f/K)) of Ap>7r generated by CharPi7r(f/K)
depends only on Seï%œ(f/Kpoo).

The Anticyclotomic IwasawaMain Conjecture relates the ideals of APi7r generated

by LPJt(f/K) and Char£>)jr(/')'K); it can be stated as follows:

Conjecture 1.2 (Anticyclotomic Iwasawa's Main Conjecture). The ideals of Ap>7r

generated by LPJt(fjK) and by CharPt7r(f/K) are equal.

For any prime ideal q ç Of choose

GFq GalfiyL,) ç Ga\(F/F)

a decomposition group and denote by Ip^ its inertia subgroup. To state the main
result, suppose that the following technical conditions are verified:
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Assumption 1.3. (1) pfn is surjective.
(2) The morphism 0/ : Tn -> Of is surjective.
(3) Define ittf)7r to be kernel of the morphism Tn -> Of^jn associated to /.

The completion Ty of Tn at tny)7r is isomorphic to Oft7r (we say that / is it-isolated
if this condition holds).

(4) Let q | rt and q { p be a prime ideal. The maximal /j? -invariant submodule

of Afi7roo is free of rank one over Kf^/Of^.
(5) If p 5 then [F(Çs) : F] ^ 2, where £5 is a 5-th root of unity.
(6) The prime number p does not divide the class number hg of K and the index

[<!>| : OF] of (9£ in <9£. Further, /? does not ramify in F and Kf.

Remark 1.4. Some of the conditions in Assumption 1.3 could probably be relaxed.
In particular, (1) could be replaced by a less strong condition as in [38]. Condition
(2) also could be relaxed by using arguments in [39]. Condition (3) will be used in
Lemma 7.7 to control a certain Selmer group associated to the adjoint representation
of pfi7r and to obtain the isomorphism (10). Condition (4) will be used in § 5.2 to
describe the local conditions at primes q | rt, q \ p appearing in the definition of
Se\noo(f/Kpoo). In the case of a modular abelian variety A defined over F', whose
associated Hilbert modular form is / (in the sense ofDefinition 6.3), these conditions
will be compared in § 6.2 with the image of the local Kummer map at the primes
dividing rt but not dividing p. Condition (5) is used in §7.3 to apply a result by
Fujiwara [15]. Finally, (6) could certainly be relaxed and is assumed mainly to get a

simpler description of the extension Kpoo in Section 2 and, consequently, a simpler
construction of LPt7r(f/K) in Section 4.

The main result, corresponding to Theorem 6.1, can be formulated under the
technical conditions in Assumption 1.3 as follows:

Theorem 1.5. Suppose that Ihara's Lemma for Shimura curves over totally real
fields, as stated in Assumption 7.18, holds. Then the characteristic power series

CharPt7r(f/K) divides the p-adic L-function LPJt(fjK).

Under our arithmetic assumptions, the /?-adic L-function does not vanish identically

by Theorem 1.4 of [8]: see Section 4.4. This shows that (see Corollary 6.2):

Corollary 1.6. Assumptions as in Theorem 1.5. Then Seï£œ(f/Kpoo) ispseudo-
isomorphic to a torsion APi7r-module.

Remark 1.7. Unlike the conditions in Assumption 1.3, Ihara's Lemma in the statement

of Theorem 1.5 seems to be considerably harder to remove. This is the most
substantial obstruction to an unconditional result. It consists in a version of Ihara's
Lemma for Shimura curves over totally real fields. It will be used in the proof of
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Lemma 7.20 below. If F Q, the result we need is Theorem 2 in [12]. The
results contained in [12] and successively refined in [13] are partially generalized to
the totally real case in [25]. However, [25] does not cover the full generalization of
[12], Theorem 2. In this paper we follow [15], which assumes the generalization of
Ihara's Lemma as an hypothesis in [15] (Hypothesis 5.9). Similar results for Hilbert
modular varieties hold thanks to [14]. For further discussions, see Remark 7.19.

The proof of the main result is a generalization of the methods in [5], where the

case of F Q and Ofi7r 7LP is considered. In Section 7 the main steps of the

proof are recalled and the necessary technical adaptations are performed. Among
the difficulties arising in the totally real context is that we work with an Iwasawa

algebra isomorphic to a power series ring in several (not just one) variables. In
particular, we need to generalize the divisibility criterion in [5] (Proposition 3.1) to
this more general setting. The needed generalization is provided by Proposition 7.4,
which might be viewed as an algebraic result of independent interest in the context of
Iwasawa theory. An other technical difficulty arises from the fact that we deal with
normalized newforms / with arbitrary (non necessarily integers) Fourier coefficients
and we need to discuss the local conditions defining Selmer groups in order to relate
them to the usual description of Selmer groups via classical Kummer map when / is
associated to an abelian variety (in the sense of Definition 6.3). See § 6.2 for details.

Remark 1.8. If the above condition on the number of primes dividing rt- is not
satisfied (excluding from this discussion the case [F : Q] even and rt Of for
simplicity), then Sel^oo (f/Kpoo)is notpseudo-isomorphic to a torsion APi7r -module
and the growth ofSel^-oo (f/Kpoo is forced by the presence ofHeegner points coming
from a Shimura curve parametrization of the abelian variety Af associated to / (see

Remark 6.4 for details on Af and its parametrization by the Jacobian variety of a
suitable Shimura curve). For precise statements and results in this case, see [1] (over
Q), [21] and [36] (over totally real number fields).

Remark 1.9. Using the techniques announced by Skinner-Urban, it should be possible

to prove the opposite divisibility LPJt(f/K) \ CharPt7r(f/K). Thus, combining
with Theorem 1.5, it may be possible to obtain a proof of Conjecture 1.2. An other

application of the methods of Skinner-Urban concerns the full /?-adic L-function
(and not just its anticyclotomic part as in Conjecture 1.2). It should be possible to

prove that the /?-adic L-function of the maximal Z^-extension of K divides the
characteristic ideal of the Pontryagin dual of the jr-Selmer module attached to / and this
extension. If this were the case, one could combine such a result with Theorem 1.5

to prove the main conjecture for the full /?-adic L-function and therefore for the
cyclotomic /?-adic L-function. Such a result would generalise work of Kato over Q
to the case of totally real fields. (Kato's construction of an Euler system does not
generalize.)
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Theorem 1.5 can be used to study the arithmetic of abelian varieties of GL2-type.
The simplest case is that of an elliptic curve. Let A be an elliptic curve defined over F,
ofconductor rt, without complex multiplication, which is ordinary at each prime ideal

p | p. Suppose also that A is modular in the sense that there exists a Hilbert modular
form / for the ro(tt)-structure, of parallel weight 2 and trivial central character,
such that the ^-adic representation of A is isomorphic to the ^-adic representation
associated to /, where I is a rational prime. In this case, Of Z, it p and

Ofx Zp. Suppose finally that / satisfies all the above assumptions. Note in
particular that, since A does not have complex multiplication, there are only a finite
number of primes I such that the Galois representation on the ^-torsion points of A is

not surjective. Theorem 1.5 can be used to study the characteristic power series of the

Pontryagin dual <$,ei^icc,(AjKpoo) of the /^-primary Selmer group Se\poo(A/Kpoo)
of A over Kpoo. Theorem 1.5 and the non-vanishing of Lp(f/K) established in
Theorem 1.4 of [8] show that Seïtoo(A/Kpoo) is always pseudo-isomorphic to a

torsion Ap^-module. The first application, corresponding to Corollary 6.11, is the

following:

Corollary 1.10. Assumptions as in Theorem 1.5. Moreover, suppose [Fp : <QP] 1

and let A/F be a modular elliptic curve as above. Then A(Kpoo isfinitely generated.

For any A^^-module M and any finite order character X- Gp°° ~^ ®, where
O is the ring of integers of a finite extension of <QP, extend / to a homomorphism,
denoted by the same symbol, X- A-p,p ~^ ® and set Mx := M ®x O, the tensor

product being taken over APtP via X- Let \llpoo(A/Kpoo) be the /^-primary part of
the Shafarevich-Tate group of A over Kpoo. The second application, corresponding
to Corollary 6.9, is the following:

Corollary 1.11. Assumptions as in Theorem 1.5. Moreover, suppose [Fp : <Qp] 1

and let A/Fbeamodular elliptic curve as above. IfLjc (A, x > 1) 7^ 0, then A(Kpoo )x
andUlpco(A/Kpoo)x are finite.

Acknowledgements. The author thanks the referee for the careful reading of the

manuscript and for useful comments which led to some corrections and an improvement

of the exposition.

2. Anticyclotomic 7LP-extensions

Let the assumptions and notations be fixed as in Section 1. In particular, recall that p
does not divide the class number of K and the index of 0F in Og. For any integral
ideal c ç (9F,let

Oc := 0F + cOK
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be the order ofconductor c in K and define the ring classfield Kc/ K of AT of conductor
c to be the Galois extension of K such that the Artin map induces an isomorphism:

Ga\(Kc/K) ~ ?ic(Oc) ~ K*/0?K*.

Denote by | * | the norm on ideals of Of and set hc := #Pic((9c), so that hg := h^
is the class number of K. By the Dedekind formula:

»ricin,ic(i-(f)i<trQ
c " m~W] • (1)

where q denotes a prime ideal of Of and tt — 1 (respectively, —1,0) if q is split

(respectively, inert, ramified) in K/F. The extension Kpm jK is unramified outside
the places dividing p. Thanks to the fact that p does not ramify in K and does not
divide h.K[Og : Op], it follows from (1), that [Kpm : Kpm-i] \p\ for all integers

m > 2 and that p \ [Kp : K]. Define Kpoo := lim Kpm.
m

Definition 2.1. The p-anticyclotomic Zp-extension Kpoo/K is defined to be the

unique subfield Kpoo of Kpoo such that

Gpoo := Ga\(Kpoo/K) ~ ZpFfp:®p\

The extension Kpoo/F is Galois and non abelian. More precisely, the quotient
Ga\(K/F) acts by conjugation on the normal subgroup Ga\(Kpoo/K) by the formula

o i-> tot cr-1, where x is the choice of a complex conjugation raising the non
trivial automorphism of Ga\(K/F). For any integer m > 1, define the extension

Kpm/K by requiring that

Gpm := Ga\(Kpm/K) - (Z/pmZ)[F^'^].

It follows from the above assumptions on p that Kpm is the maximal /?-power sub-

extension of Kpm jK. Denote by APi7r the Iwasawa algebra of Gpco :

APi7r := OfnlGp°o\ \imOfn[Gpm]
m

where the inverse limit is with respect to the canonical projection maps Gpm ->
Gpm-1.

Remark 2.2. There are other definitions of ring class fields of conductor c in the
literature. Nekovâr [36], Section 2.6 (see also Zhang [50]), defines the ring classfield
ofconductor c to be the Galois extension K* corresponding via class field theory to



310 M. Longo CMH

K^/K^O^F*. On the other hand, [8] uses the definition given in this paper for
the ring class field Kpn, denoted K[Pn] therein. However, note that the quotient

K*/K*0*F* is isomorphic to Pìc(Oc)/Pìc(Of), so, since p \ hg, the maximal
Z^,-extension contained in U«=i K*n is exactly the extension Kpoo in Definition 2.1.

3. CM points on quaternion algebras

This section is devoted to fixing the notation for CM-points on quaternion algebras.
Since we will need this notions both for totally definite quaternion algebras (in Section

4) and for quaternion algebras which are split in exactly one archimedean place
(in Section 7.4), we will adopt a quite general view-point.

3.1. Optimal embeddings and CM-points. Let k denote a global or local field and

D/k a quaternion algebra. Let O be an Eichler order of D. Let k'/k be a quadratic
extension and denote by r an order in k'. Say that ty is an optimal embedding of r
into O if ty: k' <—> D is an injective homomorphism of fc-algebras such that

ty(r) ty(k') n O.

Two optimal embeddings ty\ and ty2 of r into O are said to be equivalent if there
exists a e Ox such that tyi(x) a~lty2(x)a for all x e r. The conductor of an

optimal embedding ty is the conductor of the order r. For more details, see [47],
Chapitre II, when k is a local field and [47], Chapitre III, when k is a global field.

Suppose now that k is a global field and, for any valuation v of k, let kv,k'v,rv,
Dv and Ov denote the completions of k,k', r, D and O, respectively, at v. In the

following, by an abuse of notation, we will identify v with the integral prime ideal of
k corresponding to it. Let d denote the discriminant of k'/k, c the conductor of the

quadratic order r, n the discriminant of the quaternion algebra D and m the level of
the Eichler order O, and assume that m is square-free, c is prime to n and d is prime
to cmn. Suppose that if v \ n then v is inert in k'. Suppose also that if v \ m and

v \ c (so rv is maximal) then v is split in k'/k. This conditions ensure that the set of
optimal embeddings of r into O is non-empty: see [47], page 94.

Following [17] and [3], define

X(k') := DX\DX x Hom(fc', D)/Ox

where the action ofb e Z)xandx <G Oxonapair(g, ty) is b(g, ty)x := (bgx,btyb~x).
Say that a point (x, ty) G X(k') is a CM-point of conductor c if ty is an optimal
embedding of r into Ox := xOx~l fi D. Write CM(c) for the set of CM-points of
conductor c in X(k').
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Fix an embedding ty: k' °^ D which allows to view k' as a subfield of D.
Following [8], the set CM(c?) can also be described as follows. Define

Y(k'):=ty(k')x\Dx/Ox.

Say that a point x € Y(k') has conductor c if k' C\ Ox r. The set CM(c) can
be identified with the set of points in Y(k') of conductor c. To see this, note that
there is a map from the set of points in Y(k') of conductor c to X(k') defined by
x i-> (x,ty). This map is a bijection. Injectivity: Suppose (x\, ty) (x2,ty).
Then there exists b e D* and x e Ox such that X\ bx2x and ty btyb~l.
Since ty(k') is a maximal commutative subfield of D, it follows that b <G ty(k')
and so Xi and x2 represent the same element in ty(k' )\Z)x/Ox. Surjectivity: Fix
(x,ty) <G X(fc') ofconductor«:. By the Skolem-Noether theorem, there exists b <G Z)x
suchthat ty(k') b~1ty(k')b. It follows that b~xty(r)b b~1ty(k')b n xOx~l,
so ty(r) ty(K) fl bxO(bx)~l. Hence, (bx,ty) belongs to the image of the set of
points in CM of conductor c. Finally, note that (bx, ty) (x, b~ltyb) (x, ty).

The Galois group

G(c) Pic(r) 9X/k'xrx

acts on CM(c?) by left translation: for every g e G(c) and (x,ty) e CM(c), the
action is given by x i-> (gx, ty). Equivalently, if x G Y(k') has conductor c, the
Galois action is given by x h-> gx.

3.2. The trace formula. Fix representatives g\ 1,..., gh of Z)x\Z)x/Ox and

define Oj : gjOgJ1 fi D, so that 0\ O. Note that the number of CM-points of
X(k') is equal to the number of non-equivalent optimal embeddings of r into one of
the Eichler orders Oj. Write Emb(r, Oj for the set ofequivalence classes of optimal
embeddings of r into Oj.

For any place v of k, let mv be the number of non-equivalent local optimal
embeddings of rv into Ov. Then my is finite and my 1 for those v which do not
divide mn. The following trace formula holds ([47], Chapitre III, Théorème 5.11

and page 94):

h

\CM(c)\ J2 |Emb(r, Oj)\ h(r) ]~[ mv, (2)

/=1 v\mn

where h(r) is the class number of r.

3.3. Orientations and Gross points. An orientation at v of a local optimal embedding

ty : kv —> Dv of rv into Ov is the choice of an equivalence class of optimal
embeddings. This can be made precise as follows.
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If v I nm and v \ c, then mv 2. The choice of an orientation can be performed
as follows. For v \ nm and v \ c, define

Uv(r,0):=ììom(rv,Ov)/0*.

The choice of an orientation ov at the primes v \ nm and v \ c is the choice of an
element in Uv(r, O). Say that a point (x,ty) <G CM(c?) is oriented at a prime v \ nm
and v \ c (with respect to the chosen orientation ov) if x~ltyx and Oj, define the

same element in Uv(r, O). For more details, see Section 2.1.1 in [48].
Let now v \ m and v \ c, so rv is not maximal. In this case too, mv 2 (see

[47], page 94). The choice of an orientation can be performed as follows. The set of
maximal orders (respectively, Eichler orders of level v) of GL2(kv) can be identified
with the set of vertices Vv (respectively, unoriented edges 8V) of the homogeneous
tree Tv of degree \v\. Let Vq (respectively, eo) denote the vertex (respectively, the

edge) corresponding to the maximal order GL2(rv) (respectively, the Eichler order

Fo(v) S= GL2(rv) of level v consisting of matrices which are upper triangular modulo
v). Say that a vertex v is even (respectively, odd) if its distance from Vq is even

(respectively, odd) and define an orientation s, t : 8V -> Vv by requiring that for any
edge e, s(e) vewen and t(e) v^, where e is the edge joining vewen and i>ocjd and

feven and l'oda are even and odd, respectively.
Let (x, ty) <G CM(c). Then ty: kv -> Dv is an optimal embedding of rv into

Ox- Fix an isomorphism ij, : Dv -> M2(fcv). Then O* can be identified with an

edge eox (5(eox),?(eox)) is such a way that Ox is the intersection of the two
maximal orders represented by s(eox) and t(eox)- Finally, let r' be the quadratic
order containing r of conductor cjv. Say that (x, ty) is oriented (with respect to the
chosen orientations s, t) if the u-component tyv of ^ is an optimal embedding of r'v

into the maximal order corresponding to s(eox)- Note that, in this case, ty must be

an optimal embedding of rv into the maximal order corresponding to t(eox)-
Fix orientations ov G Uv(r, O) for v \ mn and v \ c and orientations s, t : 8V ->

Vj, for v \ m and i> | c. A Gross point of conductor c is a CM-point (x,ty) e CM(c?)
which is oriented at all v I mn.

4. />-adic L-functions

4.1. Modular forms on definite quaternion algebras. Let B/F be the quaternion
algebra ofdiscriminant rt- which is ramified at all archimedean places. Fix an Eichler
order R ç B of level pn+.

Let / G 52(rt) be a Hilbert modular cuspform of parallel weight 2 and trivial
central character with respect to the ro(rt)-level structure. Let Tn be the Hecke

algebra acting faithfully on 52(rt) (see Section 3.1 in [48] for precise definitions).
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Denote by SB (pn+) the C-vector space of functions

BX\BX/RX —>-<C.

There is an action of the Hecke algebra Tn on ^(prt"1") defined as usual via double
cosets. The Jacquet-Langlands correspondence implies that (up to scaling) there is a

unique modular form fB£ 5-f (Pn+) having the same eigenvalues as / under the
action of the Hecke algebra. If the Hecke eigenvalues on a Hilbert modular form /
are contained in a ring O, them / can be normalized to take values in O.

4.2. CM points on definite quaternion algebras. Since all primes dividing the
discriminant of B are inert in K, there exists an embedding K <^->- B, so that K can
be regarded as a subfield of B via this fixed embedding \P. Following the notation in
Section 3, define the set of CM-points by R to be

CM* := V(K)X\BX/RX

and say that a point x <G CMp has conductor c if

*(£") n xRx'1 Oc.

Denote by CMp(c) the set of CM points of conductor c. Following Section 3, the set

CM^(c) can also be described as the set of points in

XR(K) := BX\(BX x Rom(K, B))/R*

such that \P is an optimal embedding of Oc into the Eichler order B fl xRxx~l;
explicitly,

\F(i£)nx£xx-1 =¥(<9C).

Since all primes dividing rt+ are split in K, CMr (pm is non empty for all m > 1.

The group Gpm c^ K^/K^O^m acts on CMn(pm) by left translation, as described
in Section 3.

Fix a positive integer m. Choose orientations for the optimal embeddings of Opm
into R as in Section 3 for all primes q dividing rt: this amounts to choose orientations

Oq <g Uq(Opm, R) for all primes q | rt+rt- and an orientation s, t : 8p -> Vp at the

prime p. Let Gr(pm) denote the set of Gross points of conductor pm with respect
to these orientations and define

Gr(p°°):=\X=lGr(pm).

If P (x, *) G Gr(pm), then the local component typ : Kp -> Bp of ^ is an

optimal embedding of the completion Opm>p of Opm at p into xRpx~l, where Rp is
the completion of R at p. Let ep (s(ep), ?(ep)) £ 8P be the edge corresponding
to xRpx~l as described in Section 3. Say that a sequence (Pm)m>i °f points in
Gr(£>°°), with Pm e Gr(pm), is compatible if t(epm) £(epTO+1) for all integers
m > 1.
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Remark 4.1. If P (x, ty) e Gr(pm) with m > 1, then the pair (x, ty) also defines

a CM-point of conductor pm~l in Xr0(K), where Ro D Ris an Eichler order of B
of level rt+ chosen is such a way that Ro,p corresponds to s(ep).

4.3. Anticyclotomic p-adic L functions. Let fB be the modular form on the

quaternion algebra B associated to / via the Jacquet-Langlands correspondence and

define the following map:

n: ty(K)x\Bx/Rx A BX\BX/RX ^ Of,

where //. is the canonical projection. Choose points xm € CMp(pm) in such a way
that the sequence (xm)m is compatible. The orientation s, t:8p^- Vp being fixed
as above, the action of Up on an edge e <G 8P can be described as Up(e) ^,e, e',
where the sum is over all edges e' such that s (e') t(e). The choice of the compatible

sequence of Gross points made before shows then that for m > 2,

J] ß(gXm) Ug,(fl(xm-i)). (3)

geGal(Kpm/Kpm-i)

Define the theta elements for m > 1 :

Ofm := J2 apm^(êXm)g e Ofn[Gpm].

geGpm

Denote by vm+x,m'- ^f,n[Gpm+i] -> Of>7i:[Gpm] the homomorphisms induced by
the projection maps Gpm+i -> Gpm. By Equation (3), the elements Qfm verify the

following relation:
Vm + l,m(@fm) Qfm-l-

Taking the inverse limit with respect to the projection maps vm+i>m yields an element

Of := lim Ofm e Of7rlGpoo} := iim Ofn[Gpm].

The group ring Of!7t [G^co] is endowed with a canonical involution x \-^ x* defined

to be the extension by Ofn -linearity of the involution cr i-> cr-1 of Gpoo. Define

LpAf/K) := 8f8} e <9/lJr[Gp«,].

Since of is well defined up to multiplication by an element of Gpoo, the definition
of Lpt7r(f/K) is independent on the choice of the Gross points xm. Set Apt7r :=
Ofx {GpcoJ and denote by X : APt7r -> APJt the projection induced by the inclusion
Kk)00 C Kk)00.
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Definition 4.2. Define the anticyclotomic p-adic L-function attached to / and K to
be the element

LpAf/K) :=X(LPt7t(f/K)) e APt7r.

Furthermore, define 0fn := X(0fn) and Of := X(0f), so that LPt7r(f/K) OfO?
and Of lim 0fn.

4.4. Interpolation properties. Let / '¦ Gpoo -> Ox be a ramified finite order
character, where O is the ring of integers of a finite extension of Q^,. Extend x to an

homomorphism, denoted by the same symbol, X- ^fnlGp00} —>• O. Zhang,
generalizing [17], proves in Theorem 1.3.2 of [49] the following interpolation formula:

L(f,x,l) C-\l(x)\2

where

*Gr) := xßpAf/K)) and C := 2*rf-^||/»||/||/*||)2.

In the above formulas we use a fixed embedding <QP °^ C to view l(x) as a complex
number; furthermore, dg/p is the discriminant of K over L\ the symbol 11 • 11 denotes
the L2-norm in SB(p^-+) with respect to a suitable measure (defined in [49], Theorem

1.3.2) on the idele ring B£ of B and, finally, /"is the quasi newform associated

to / defined in [49], § 1.1. In particular, C ^ 0 and we obtain (see also Theorem 6.4
in [46]):

1(X) Ï 0 if and only if LK(f, X, 1)^0.
The arithmetic assumptions we are working with imply that the sign of the functional
equation of Lg_(f, /, 1) is +1 and, by [8], Theorem 1.4, that Lg(f, x,l) 7^ 0 for
infinitely many characters x as above. Hence Lpt7r(f/K) ^ 0. Since Gpoo c^

Gpoo x Ap and A^ is finite, it follows that LPi7r(f/K) ^ 0.

5. Selmer groups attached to Hilbert modular forms

5.1. Galois cohomology groups

5.1.1. Galois representations. Let Tfnoo be the Gf Gal(i7/i7)-module, free of
rank 2 over Ofi7r, associated to the representation Pftn°° '¦ Ga\(F/F) -> GL2(Oftn);
define KfiJr := Frac((9/)jr) and

Vfn°° '¦= Tfi7roo ®efn Kfn; A/t„eo := Vfnco/Tfnc*>;

Tfnn := Tf^oo/^Tf^oo; Afnn A/^oo[jr"].
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As Ofn-modules, AftJr°° c^ (Kfn/Ofn)2 while both Tfnn and Afnn are Ofn/itn-
modules free of rank 2 and there is an isomorphism of Gf -modules Tfì7rn c± Afi7rn.
Furthermore,

Afn°° — lim Afnn and T/)00 ~ hm 7/jjr«
n «

with respect to the canonical maps.

5.1.2. Global cohomology groups. Let v denote a positive integer or oo. Define
the following groups:

Hl(Kpoo,Afnv) := \imHl(Kpm,Afnv),
m

where the direct limit is with respect to the restriction maps, and

Hx(Kpoo,TfnV) :=\mi Hx(Kpm,TfnV),
m

where the inverse limit is with respect to the corestriction maps.

5.1.3. Local cohomology groups. For each prime q ç Of,let KpmA := Kpm®p
Fq (Brt'in Kpm,q.' where the sum is over the prime ideals q' | q of the ring
of integers 0%^™ °f Kpm and KpmAi is the completion of Kpm at q'. For any

Gal(K/Kpm)-moduleM, define H1(KpmA,M) := ©^ Hl(KpmA>,M). Then
define as above for v a positive integer or oo,

Hx (Kpoo A, Afnv : lim H1 (Kpm A, Afi„v

where the direct limit is with respect to the restriction maps, and

H (KpooA, Tfnv) := lim H (KpmA,Tfnv),
m

where the inverse limit is with respect to the corestriction maps.

5.2. Selmer groups. The definitions of Sel7rn(f/Kpoo) and Sel7roo(f/Kpoo)
require the introduction of the following finite/singular and ordinary structures. For

any prime ideal q of Op and any prime ideal q' of 0& m above q, choose a
decomposition subgroup GmA' ç Gg m at q' and let ImA' ç GmA' denote the inertia
subgroup.
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5.2.1. Primes q \ np. Let M denote Afnn or Tfnn. Fix q ç Of a prime ideal
such that q \ np. The singularpart of Hl (KpmA, M) is

H\m(KpmA,M) := ©a,|a H\lmA,tM?*{*&t«'lK*m*'\

where the sum is over all prime ideals q' of0% m dividing q. The kernel of the residue

map dq: H1(KpmA,M) -> H<}ing(KpmA,M) is the finite part of H1(KpmA,M)
and is denoted by Hln(KpmA, M). Define

HL(KP°°A > ^f>* : !_m Hln(Kpm A Afnn),
m

Hsmg(KP00A>Af,xn) := Hl? Hsinz(KPm A » ^/,ff")»
m

where the direct limits are with respect to restriction maps, and

Hfm(Kp°°A>Tfnn) '¦= lim HM(Kpm A, 7/)jr«
m

HingiKp^A'Tf,*") ¦= l™HLg(KPmA>Tf,*n)>
m

where the inverse limits are with respect to the corestriction maps. The cohomology
groups Hln(KpooA, Afnn) and Hln(Kpoo A, Tfnn) are the exact annihilators of each

other under the local Tate pairing }<i (for a proof, see [34], Theorem 2.6). If
q qiq2 is split in K/F, the Frobenius element at qj topologically generates a

finite index subgroup in Gpoo. Hence there are only a finite number of prime ideals

q' of Kpoo over q and for each of them, KpooA/ is the unramified Z^-extension of
Kq. It follows that any unramified class of Hl (Kpm A, Afi7rn) becomes trivial after
restriction to H1 (Kpr A, Afnn) for r sufficiently large. Hence, if q is split in K/F,

Hl(KpooA,Afnn) 0 and Ê}m%(KpooA,Tfnn) 0,

where the second assertion follows from the non-degeneracy of the local Tate pairing.
If q is inert in K/F, then it splits completely in Kpoo (this observation is due to
Iwasawa [23]). It follows that, if q is inert in K/F,

HSmg(KP00A>Tf,Kn) — Hsing(K<l>Tf,Kn) ® APi7r

and

Hl(KpooA,Af7Tn) ~ Hom(i?s;ng(^, 7>)jr«) ® APj7r, Kfn/Ofn).

Remark 5.1. To explain the above definitions, let I be a prime number, K/<Q>£ a
finite extension and /4/^T an abelian variety with good reduction. Let p ^ la prime
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and denote by G% and Ik the absolute Galois group of K and its inertia subgroup,
respectively. Finally, let

k: A(K)^ Hl(K,A[pn])

denote the Kummer map, where n is a non-negative integer. Then

Im(K) Hl(GK/IK,A[pn]) ker(H\GK,A[pn]) —? Hl(IK, A[pn])Gk>Ik).

For a proof, see [34] (Chapter 1, Proposition 3.8) or Lemma 7 in [18].

5.2.2. Primes q | n and q \ p. Fix a prime q \ p which divides rt. By Assumption

1.3,

Afan := Afan — Kftitl®ftif

The ordinary part of the group Hl(KpmA, Afan) is defined to be the unramified
cohomology

Hlrt(KPmA'Afnn) '¦= R][(GKpmtJ'ÏK^rn^, Äfan)-

Define

Hovd(KP°°A> Afan) := Ins HŒd(KpmA, Afan),
m

where the direct limit is with respect to the restriction maps. Note that if q | tt+ and

q { p, then, by an argument similar to that of Section 5.2.1, H^ld Kp <==> A, Afnn) 0.

Remark 5.2. To explain the above definitions, let I be a prime number, K/<Q>£ a

finite extension and A/K an abelian variety with purely toric reduction. Suppose
that there exists an extension E/<Q such that [E : Q] dim(A) and an embedding
Oe °^ End (A), where Oe is the ring of integers of E. Let p ^ I a prime and p a

prime ideal of (9# of residual characteristic p. Denote by G% and 1% the absolute
Galois group of K and its inertia subgroup, respectively. Suppose that the inertia
invariants A[p"]/jä: of A[pn] are one-dimensional over the field Oe/V- Finally, let

k: A(K)^Hl(K,A[Vn])

denote the Kummer map, where n is a non-negative integer. Then

lm(K) Hl(GK/IK,A[Vn]lK).

For a proof in the case n 1, see Lemma 4, Lemma 6 and Section 3.3 in [18]. The

general case (n > 1) can be obtained by a direct generalization of the arguments used
in the case n 1.
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5.2.3. Primes p \ p. Let p | p be a prime ideal. Let Ifv ç Gfv := Gal(Fp/Fp)
denote the inertia subgroup. Since / is ordinary at p, there is an exact sequence of
Ipp -modules

0 —? Afn00 —? Afaoo —? A™,» —? 0 (4)

such that the submodule A\-k00 and the quotient Af^ are both isomorphic to

Kfa/Ofa as groups and Ipv acts on Af ^ via the cyclotomic character

€p : Gal(F/F) -> Aut(^oo)

describing the action of Ga\(F/ F) on the group fXpoo of />~power roots ofunity, and

acts trivially on A\n„. Let

Xp,m- H (Kpm!X>,Afn00) > H (Kpmtp, Afaoo)

be the map of cohomology groups induced by the inclusion Af ^ ç Afaoo. Define

the ordinary part H^ld(KpmtP, Afaoo) of Hl(Kpmp, Afaoo) to be the maximal
divisible subgroup of Im(APjm). Then define

Hoid(KP°°>P> Af,n°°) '¦= limfford(-Kp"*,p, Afaoo),
m

where the direct limit is with respect to the restriction maps.

Remark 5.3. To justify the above definition, let A[/?°°] be the maximal p-divisible
group of A(K), where A/K is an ordinary abelian variety defined over a finite
extension K of <Qp. Let 3* be the formal group over 0% attached to the Néron model
for A over Ok and define C := 3? (x\x)[p°°], where iti is the maximal ideal of the
algebraic closure of K. Finally, define the map: A: Hl(K,C) -> Hl(K,A[p°°])
induced by the inclusion C °^ i4[/?°°]. Then the image of the Kummer map
K : A(K) 0 Qp/Zp °^ HX(K, A[p°°]) is equal to the maximal divisible subgroup

(Im(A)) of Im(A). For proofs, see [7], Proposition 4.5. Moreover, if Kqq/K is a

deeply ramified extension (see [7], Section 2, for definitions), then the image of the
Kummer map A^qq) <g> Qp/Zp °^ H1^^, A[p°°]) coincides with the image of
A: Hl(Koo,C) -> H^KocA^00]) by [7], Proposition 4.3.

Note that for each prime p' of Kpoo over p, the extension Kpoop/Kp is deeply
ramified. The last lines of Remark 5.3 show that one could equivalently define

H^ld(KpooiV, Afaoo) to be the image of

Ap,oc>: H (KpooìV, Afn00)—> H (KpootP, Afaoo).

Define

M(p,m,n) := H^d(KpmtV,Afa*o) n Hx(Kpm!V,Afan).
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For any subgroup M. ç Hl(KpmìP, Afan), use the isomorphism Afan — Tfan
to define a subgroup M* ç Hl(KpmìP,Tfan) such that M c^ M*. Then define

Hcld(Kpmtp, Afan) to be the maximal subgroup of Hl(Kpmp, Afan) containing
3Î (p, m, n) and such that H\ld(Kpm p, Afan) and H^:d(Kpm p, /l_fj7rra )* are the exact
annihilators of each other under the local Tate pairing at p. Finally, set

Had (KP°° ,P ' Af,*n : 1™ -^ord (-^P"2 ,P > ^/,*«

where the direct limit is with respect to the restriction maps.

Remark 5.4. Let A [pn] be the pn -torsion of an abelian variety A/K as in Remark 5.3.

The image of the Kummer map k : A(K)jpn °^ HX(K, A[pn]) contains the

subgroup M : Im(A)div H Hl(K, A[pn\), where A is the map defined in Remark 5.3.
Since Im(/c") is maximal isotropic for the local Tate pairing, then it coincides with the
maximal isotropic subgroup of H 1(K, A[pn]) containing M.

5.2.4. Selmer groups. Let Mfan denote Afan or Tfan. For any prime q, let

res« : Hl (Kpoo, Mfan —? H1 (Kpoo A, Mfan

denote the restriction map. For a prime q ç Of not dividing np, let 3« denote the
residue map

3«: H\KpooA,Mfan) ^ H*ag(KpooA,Mfan)

and, by an abuse of notation, denote also by 3« the map obtained by composing res«
with 3«. If s <G H1(Kpoo,Mfan) satisfies 3« (s) 0, write v^(s) for the image of s

inHlü(Kpoo,Mfan).

Definition 5.5. The Selmer group Sel7rn(f/Kpoo) attached to f,n and Kpoo is the

group of elements s <E Hl(Kpoo, Afan) satisfying

(1) for primes q \ np: res^(s) e Hln(KpooA,Afan);

(2) for primes q | rt- and q \ p: res« (s) e H^d(KpootP, Afan);
(3) for primes q | rt+ and q \ p: res«(s) 0;

(4) for primes p | p: resp(s) e H^ïd(KpootP, Afan).

The Selmer group Sel7roo(f/Kpoo) is defined to be the direct limit

Sel7roo(f/Kpoo) := UmSel7rn(f/Kpoo)
n

with respect to the inclusion maps.
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Let s ç Of he a square free ideal prime to rt. The compactified Selmer

group H\ (Kpoo, Tfan attached to /, n and Kpoo is the groups of elements k <e

H1 (Kpoo, Tfan such that

(res« (k), res« (s))« 0

for all s <G Sel7rn(f/Kpoo) and all q \ s, where )« is the local Tate pairing. The

global reciprocity law of classfield theory implies that for any s <E Sel7rn(f/Kpco)
and any k e H\ (Kpoo, Tfnn

£<3«(k),ì;«(s)>« 0. (5)

In the above equation, by an abuse ofnotation, the symbol 3« denotes the map obtained
from 3« by passing to the inverse limit.

6. Iwasawa's Main Conjecture

6.1. The main result. Let

Se£oo(//*poo) := rlom($elnoo(f/Kpoo), Kfa/Ofa)

be the Pontryagin dual of Sel^-oo(/'j'Kpoo). Since Sel^oo(f/Kpoo) has a structure
of finitely generated A^,^-module, there is an exact sequence:

0 —? M —? Seï^oo(f/Kpoo) —? Arp;K ©J=1 Ap>n/(fi) —? N —? 0, (6)

where ft^O and M and JV are pseudo-null Ap^ -modules (for definitions of
pseudo-null APJt-modules, as well as for the notion of pseudo-isomorphism of
Apjl-modules, we refer to Section 7.1). Define the characteristic power series

ofSel^.0o(f/Kpoo) to be:

Chff,<//*):=jn;=i^tfr a

The main result which will by proved in Section 7 is the following:

Theorem 6.1. Suppose that the assumptions listed in the Introduction are satisfied.

The characteristic power series CharPt7r(f/K) of the Pontryagin dual
Sel^oo(//Kpoo) of Sel7roo(f/Kpoo) divides the p-adic L-function LPJt(f/K).

Corollary 6.2. Suppose that the assumptions listed in the Introduction are satisfied.
Then Sel^oo(//'Kpoo) ispseudo-isomorphic to a torsion APt7r-module.
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Proof. By Theorem 1.4 of [8], LPt7r(A/K) is not identically zero, and therefore

CharPj7r(//£:) ^ 0.
' "

D

The proof of this result is based on a generalization of the argument in [5]. In
Section 7 a sketch of the argument with the necessary adaptations to the totally real
case will be presented.

6.2. Applications to modular abelian varieties

6.2.1. Modular abelian varieties. Let A/F be an abelian variety. Denote by
End(A) its endomorphism ring and define

E := EndQ(A) End(A) ®z Q.

Say that A is of Gh2-type if E is a field such that [E : Q] dim(A) and End (A) is
the ring of integers Op of E. For any ideal / ç Oe-, denote by A[I] the /-torsion in
A, by i4[/°°] the /-primary subgroup of A and by Tj(A) the Z-adic Tate module of
A. Finally, let

PAj : Gal(F/F) —? Aut(7> (A))

be the representation of Gal(F/F) on Tj (A).

Definition 6.3. Say that an abelian variety of GL2-type A/F as above is modular if
there exists a cuspidal Hilbert modular form/ of ro(rt)-level for some ideal rt ç Of
parallel weight 2, trivial central character, which is an eigenform for the Hecke algebra
Tn, such that E c± Kf and the ^-adic representation p^t ofGa\(F/F) on the ^-adic
Tate module Ti(A) of A is equivalent to the ^-adic representation pf£ attached to /,
where I is a prime number.

Remark 6.4. Since rt- ^ Of when d is even, Shimura's construction generalized
to this context (see [48], Theorem B and Section 3) shows that for / as above there
is a modular abelian variety A/F whose associated eigenform is /. Note that
Definition 6.3 applies also to the case of rt- Op and d even, which however is not
considered in this paper. For results in this important case, see [29] and [30].

Assume that the abelian variety A/F satisfies the following:

Assumption 6.5. (1) A/F is a modular abelian variety in the sense of Definition 6.3.

(2) The modular form/ associated to A by Definition 6.3 satisfies the assumptions
listed in the Introduction.

(3) A/F has good reduction at all primes q I rt.

(4) A/F has purely toric reduction at all primes q | rt and q \ p.
(5) A/F has ordinary reduction at all prime ideals p | p.
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Remark 6.6. If A is ordinary at p | p, then the associated Hilbert modular form is
also ordinary at p (see [16], Chapter 3, Section 6.2).

Let A/F satisfy Assumption 6.5 above. Define the Selmer groups:

Selnn(A/Kpm) := ker (Hl(Kpm, A[itn]) —? \\ Hl(KpmA, A(KP~^A))),
a

where the product is over all prime ideals q of Kpm,

Se\nn(A/ Kpoo) := lirriSelnn(A/Kpm)
m

where the direct limit is with respect to the restriction maps, and

Selnoo(A/Kpoo) ;= \imSelnn(A/Kpoo)
n

where the direct limit is with respect to the maps induced by ì4[jt"] ç A[jt"+1].

Lemma 6.7. There are isomorphisms

Sel7rn(f/Kpoo) ~ Sel7rn(A/Kpoo) and Sel7roo(A/Kpoo) ~ Selnoo(f/Kpoo).

In particular, the characteristic power series oftheir Pontryagin duals are the same.

Proof. To show the first isomorphism it is necessary to compare the local conditions
used in the definition of Selnn (f/Kpoo) with the image of the local Kummer map

/cy : A(Kp*oA,)/iTn^Hl(KpooA/,A[jtn])

for all prime ideals q' in the ring of integers of Kpoo. The equality of the local
conditions follows from Remark 5.1 for primes q' \ np, from Remark 5.2 for primes
q.' I tt, q \ p and from Remark 5.4 for primes p | p. The second isomorphism
follows by taking the direct limit over n. D

6.2.2. Arithmetic applications of the main result. Let A/F satisfyAssumption 6.5
above. Define the p-adic L-function associated to A/K to be LPi7r(A/K) :=
Lp,n(flK). Then Theorem 6.1 and Corollary 6.2 can be restated as follows:

Theorem 6.8. The characteristicpower series Charp t7r (A/ K) ofthe Pontiyag in 1

Sel^oo (A/Kpoo) ofthe jt-primary Selmer group Sel^co (A/Kpoo) ofA over Kpoo
divides the p-adic L-function LPtK(A/K)ofA over K. Inparticular, Sel^oo A/Kpco
is pseudo-isomorphic to a torsion APt7t-module.
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This result on the abelian variety A/F can be used to deduce the following
corollaries. Denote by L%(A,s) and Lg(A, x>s) the complex L-function of A

over K and its twist by finite order characters X- Gp°° ~^ ^x- F°r any character

X'- Gpoo -> Ox, where O is the valuation ring of a finite extension of <QP,

denote by the same symbol X- APi7r -> O its extension. Choose an embedding
<QP °^ C such that x can also be considered as a complex-valued character. For any
AP)7r-module M, let Mx := M ®x Ofa. Finally, let \U.noo(A/Kpoo) denote the

jt-primary Tate-Shafarevich group of A/ Kpoo which is defined by the exactness of
the following sequence:

0 —? A(Kpoo) ® (En/0E,n) —? SeWoo(A/^oo) —? mn~(A/Kp»o) —> 0,

where En and (9^)W are the completions of E EndQ(A) and (9# End(A) at jt.

Corollary 6.9. Suppose that [Fp : Qp] 1. I/Lk(A,x, 1) ^ 0, then A(Kpoo)x
YllKoo(A/ Kpoo)x are finite.

Proof. In this case the Iwasawa algebra APt7r is isomorphic to a power series ring over

Ofa in one variable and all pseudo-null A^tj--modules are finite. By the interpolation
formula, x(Lp(f/K)) ^ 0. By Theorem 6.8, /(CharP)7r(,4, K)) ^ 0. Hence

Sel7i:oo(A/Kpoo)x is finite and the result follows. D

Corollary 6.10. Suppose [Fp : <Qp] 1 and the torsion subgroup A(Kpoo)t0IS of
A(Kpoo) isfinite. Then A(Kpoo) is finitely generated.

Proof. As in the proof of Corollary 6.9, note that all pseudo-null APJt-moduies

are finite. By Theorem 6.8, Sel^oo(A/Kpoo) is a torsion Apjl-module. The result
follows from the classification of torsion APJt -modules because A(Kpoo)t0£S is finite.

D

Corollary 6.11. Suppose [Fp : <Qp] 1 and A an elliptic curve. Then A(Kpoo) is
finitely

Proof. By definition, A does not have complex multiplication, hence by [32], Proposition

6.12 (ii), A(Kpoo)t0IS is finite and Corollary 6.10 applies. D

Remark 6.12. The finiteness of A(Kpoo)t(XS for more general abelian varieties of
GL2-type is proved for example in [32], Proposition 6.12 (i), under the condition
that the 7Lp-extension is the cyclotomic one. This explains the finiteness assumption
added in Corollary 6.10.
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7. The proof

7.1. The divisibility criterion. The argument of the proof ofTheorem 6.1 is based

on the generalization of Proposition 3.1 in [5], which will be obtained in the next
Proposition 7.4. For its proof, we need two preliminary results which, for lack
of precise references, are stated in the following as Lemma 7.1, Lemma 7.2 and

Lemma 7.3.
Let A := R{Ti,..., Tm]] be a ring of formal power series in m > 1 variables,

where R is the ring of integers of a finite extension of Q^, and p is a prime number.
Choose an uniformizer zu of R. Recall that the Noetherian integral domain A is

a UFD (see for example [42]), so every height one prime ideal of A is principal
(see for example [31], Theorem 20.1). A finitely generated A-module X is said to be

pseudo-null if its support SuppA(X) contains only prime ideals ofheight greater than

or equal to 2. Two A-modules X and Y are said to be pseudo-isomorphic if there
exist two pseudo-null A-modules A and B and an exact sequence of A-modules:

O^A^X^Y^B^O.
Let X be a finitely generated A-module. By Section 4.4, Théorèmes 4, 5 in [6], X is

pseudo-isomorphic to a A-module of the form Ar ©*=i A/(gt), that is, there exists

an exact sequence of A-modules

0^A^X^Ar®i l'A/fo) ^B —? 0, (7)

where r,s are non-negative integers, A, B are pseudo-null A-modules and ^ e A.
By definition the characteristic power series Chara (AT) attached to the A-module X
is Chara (X) := Y\i=i 8i if r 0 and 0 otherwise. The characteristic power series

Chara (X) is well-defined only up to units in A; the characteristic ideal (Chara (X)}
of A that it generates is then well defined.

Lemma 7.1. Let F, G be elements of A. Then F divides G if and only iffor all
morphisms cp: A -> O, where O is the ring of integers of a finite extension of <Q>p,

(p(F) divides (p(G).

Proof. One direction is obvious. For the other direction, we prove the following
equivalent statement: If F does not divide G, then there exists a homomorphism
<p : A —>• O, where O is the ring of integers of a finite extension of Q^,, such that
<p(F) does not divide <p(G). The proof is by induction.

The case m 1 is an easy consequence of the Weierstrass preparation theorem,
so we suppose the statement true for m — 1 and we prove it for m. For T := T\
andW := (T2,...,Tm), write F Y,7=oanTn and G £^0 b»Tn where

a„,b„ e RIW] for n 0,..., oo.

If ao \ bo, then, by the inductive hypothesis, there exists a homomorphism

<p: RIW] -^O
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for some O as above such that (p(ao) \ <p(bo)- Extend (p to a morphism, denoted by
the same letter (p : A -> O, by setting (p(T) := 0. Then <p(F) does not divide <p(G).
Hence, in the following suppose that #o I ^o-

If ao | bo, since i7 does not divide G, there are elements cn <G i?[W^]], n

0,..., N - 1 and N > 1, such that b„ XJ=0 flfCB-i for n 0 JV — 1

and t?o I (^at — 5Zf=i aicN-i)- Hence, by the inductive hypothesis, we see that
there exists a morphism <p : i<[P^l -> (9 for some (9 as above such that ^(#o) I
^(^at — 5Zi=i fli cJV-i )• Extend ^ to a morphism, denoted by the same letter (p : A —>

6>[r], by setting ^(T) := 7\ Hence, p(.F) does not divide p(G) in (9[T]. By the
inductive hypothesis, there exists <p' : O flTJ -> (9 ' such that <p' (<p(.F)) does not divide
(p'((p(G)). Defining <p" := <p' o <? : A -> (9', yields <(F) j <(G). D

Lemma 7.2. Let I (xi,... ,xn) with n >2be an ideal ofA such that I £ P for
all prime ideals P ofA ofheight one. Then I contains at least two elements without
common irreducibie factors.

Proof. The proof is by induction on n. The case n 2 is immediate, so we suppose
the result true for n — 1 and prove it for n. Denote by / the common greatest divisor
of the Xi for i 1,..., n — 1 and write x'. := xt/f for i 1,..., n — 1. Then

/ := (x[,..., -X„_i) is not contained in any prime ideal of A of height one, so, by
the inductive hypothesis, there are two elements g <G / and h G / without common
irreducible factors. Then fg and fh are in / and g, h do not have common irreducible
factors. Furthermore, any irreducible factor z of xn may divide g or h (but not both
of them) and does not divide / (if it does, then / ç (z), which contradicts our
assumption). Write xn ks where an irreducible factor z of xn divides k if and only
if z divides gh. Then any irreducible factor of s is prime to gh. If s is invertible,
then xn and f(g + h) G / do not have irreducible common factors: any irreducible
factor of xn does not divide / and divides exactly one between g and h. Suppose s
is not invertible and write s Y[/=i s,

J
» where Sj are irreducible and mj are non

negative integers. If Sj \ g + nh for some integer n ^ 0, then Sj \ g + (m + n)h
for all integers m ^ 0, except possibly those m such that p \ m in the case when

(sj) (zu): indeed, ifSj \ g + (m + n)h, then Sj | mh and, since Sj \ h,sj \ m, and

this is possible only if Sj is a constant, hence (sj) (zu), so that p \ m. It follows
that if nr I 5, then 5 and g + mh do not have common irreducible factors for all
integers m except possibly a finite number of them, while if zu \ s, then s and g +mh
do not have common irreducible factors for infinitely many integers m. Choose an

integer m ^ 0 such that s and g + mh do not have common irreducible factors, with
the additional condition that p \ m if zu \ k. Note that there are infinitely many
integers m verifying these conditions, even if R Z2: indeed, the condition p \ m
is required only if zu \ k, but in this case zu \ s and there are only a finite number of
integers m such that s and g + mh have common irreducible factors. We claim that

xn and f(g +mh) € / do not have common irreducible factors. Indeed, letz \ xn be
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an irreducible factor, so that z \ k or z \ s. If z \ k then z \ f and z divides exactly
one of g and h. Ifz \ h, then, since z \ g,z \ g + mh. \fz | g,then.z { mh: indeed,
z \ h and, since m ^ 0, the only case when z \ m is that of (z) (zu) and p \ m,
but our additional condition on m stipulates that p \ m when zu \ k. Since z \ g and

z \ mh, then z \ g + mh. Hence in any case if z \ k then z \ f(g + mh). If z \ s,
then z Sj for some j, hence z \ g + mh and since sj \ f then sj \ f(g + mh).
The claim follows, thus completing the proof. D

If X is a finitely generated A-module, denote by FittAC^O (respectively, AnnA(-^O)
its Fitting ideal (respectively, its annihilator ideal) over A.

Lemma 7.3. Let X be a finitely generated pseudo-null A-module. Then FittAC^O
contains at least two elements with no common irreducible factors.

Proof. Recall that a prime ideal P of A belongs to the support SuppA(X) of X in A
if and only if the annihilator AnnA(A^) of X in A is contained in P (see for example
[31], page 26). Fix a prime ideal P ofA ofheight 1. By the definition of apseudo-null
submodule, P ^ SuppA(X), so AnnA(-AT) ^ P. Suppose that X is generated over
A by h elements. Then by [33], Appendix, 8 on page 325, AmiA(^0A 9 FittAC^O,
hence, since P is a prime ideal, Fittj^(X) % P for all prime ideals P of height 1.

The result follows from Lemma 7.2. D

Proposition 7.4. Let X be a finitely generated A-module and X <G A. Suppose that
(p(X) belongs to Fitt(9(X 0^ 0)for all homomorphisms (p: A -> O, where O is the

ring of integers ofafinite extension of <QP. Then X belongs to (CharA(-^))-

Proof. If X is not A-torsion, then FittA(-^) 0. Since Fitt^X 0,p O) is equal to

^(FittAC^O), it follows that (p(X) 0 for all (p as above and hence, by Lemma 7.1,
X 0. Assume in the following that X is a A-torsion module. Since B in the exact

sequence (7) is pseudo-null, by Lemma 7.3 there are at least two elements X\ and x2
in Yittj^Sß) without common irreducible factors. Tensoring the exact sequence (7)
with O yields

<p(Xi)Yitte(X ®(p O) ç {<p(C\iarK(X)))

for i 1,2. By assumption, #5 (Chara (-^0) divides cp(XfX) fori 1,2 and hence,

by Lemma 7.1, CharAC^O divides XtX for i 1,2. Since Xi and x2 do not have

common irreducible factors, Chara (X) divides X and the result follows. D

7.2. Admissible primes. A prime ideal l ç Op is said to be n-odmissible if
(1) I does not divide np;
(2) I is inert in K/ F ;

(3) jt does not divide |^|2 — 1;
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(4) jTn divides \l\ + 1 + at(f) or \l\ + 1 -at(f).
Let I be an n-admissible prime. Then

H\m(Kt, Tfan) ~ <9/)jr/jr" and //^(JQ, 7>)jr«) ~ <9/)jr/V.

To show this, note that, since Tfan is unramified at I,

Hsmg(KÌ > Î/.JT" HomGjC€ (IKl, Tfan

Since l \ p, all homomorphisms above factor through the tame inertia subgroup.
The Frobenius Frob^fÄ") of K at I (where, by an abuse of notation, I denotes the

unique prime of K above I) acts on /jq by |^|2 and on Tfnn it acts with eigenvalues
|^|2 and 1 (which are distinct in Ofa/jTn). Hence,

H}lm(Kt,Tfan)~Ofa/jT\

For the finite cohomology, since Tfan is unramified at I,

Hl(Kt, Tttx«) ~ Tfan/(Frobt(K) - 1).

Hence, as above, H^a(Ki, Tfan) c^ Ofa/jTn. Since t is inert in K, it splits
completely in Kpoo. It follows that

^iag(KP°°,i'Tf^n) - APt7r/jTnAPt7r, and
-». (8)
Hfm(Kp°°Â>Tfan) Cr APt7t/jTnAPt7t.

Proposition 7.5. Let s <G Hl(K, Afa) be a non-zero element. Then there exist

infinitely many admissible primes I such that di(s) 0 and vi(s) ^ 0.

Proof. This is a direct generalization ofTheorem 3.2 in [5]. A similar argument will
be given in Proposition 7.13. D

7.3. Rigid pairs. Let p pfa denote the representation of Gf Gal(F/F) on
the k := Ofa/jr-\ector space Afa. The fc-vector space adp := Hom(Afa, Afa) is
endowed with an action of Gf by conjugation of endomorphisms. The Gf -module
adp is called the adjoint representation of p. Denote by ad°p the /osubspace of trace-

zero endomorphisms in adp with the induced action of Gp. Define the following local
structures for the cohomology of ad p:

Primes q \ np: Define //gn(F«, ad°p) := H1 (Gf^/If^ ad°p) to be the unramified

cohomology.
Primes q | rt, q \ pi As in the previous case, define

//id(F«,ad°p) := H^GpJlF-.iadOp)1**)
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to be the unramified cohomology.
Primes p | p: Let ad^p denote the subspace Hiom(A\.'n, A^f'n) of ad°p. Define

Hxold(Fp,ad0p) := ker (H1(Fp,ad°p) —? Hl(IFv,ad°p/ad^p)).

1-admissible primes 1: If I is a 1-admissible prime, denote by ad^ ' p the unique
one dimensional fc-vector subspace ofad°p on which the absolute Frobenius Frob^ (F)
of F at I acts with eigenvalue \l\ (the existence of this subspace follows because the
Frobenius at I acts on Afa with eigenvalues ± \i\ and ±1, so that the eigenvalues of
its action on ad°p are \£\, |^|_1 and 1, while its uniqueness follows because \t\2 ^ 1

in k). Define

Hl0J.Fl,ad0p):=Hl(Ft,ad^p)

and Hfta(Fi, ad°p) to be the kernel of the canonical map

H\Ft,aàQp)^HlLd(Ft,aàQp).

The group H1(Fi,ad°p) is two dimensional over k and there is a decomposition in
one-dimensional k-vector spaces:

H1(Fl,ad°p) Hl(Ft,aà°p) e /&(**/, ad0/».

See for example Lemma 1 in Section 3 of [41] for details.
Let s be a square-free product of 1-admissible primes. Define the %-Selmer group

SelgfF, ad p) attached to ad p to be the fc-vector space consisting of those classes

Ce H1(F,ad°p) suchthat

(1) for primes q \ np: res«(£) e //fi1n(L1«,ad°p);

(2) for primes I \ %: res/fê) e H^d(Fê, ad0p);

(3) for primes q | tt and q \ p: res«(£) e H^ld(F^,ad0p);

(4) for primes p | p: resp(£) e H^d(Fp,ad°p);

Denote by R the minimal nearly ordinary universal deformation ring attached

to p with determinant the cyclotomic character. See [15], Section 3.8, for detailed
definitions. Let mfa := ker (T^ -> k) and denote by Ty the completion of Tn at

nifa. Then R is isomorphic to Ty by Theorem 11.1 in [15].

Remark 7.6. The condition [F(Çs) : F] ^ 2 when p 5 in the Introduction is

required to apply [15].

Lemma 7.7. The modular form f is jt-isolated if and only if Sel&F(F, ad p) is
trivial.
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Proof, f is JT-isolated if and only if Ty c^ Ofa, and this condition is equivalent to
the isomorphism R c^ Ofa. Now R c^ Ofa if and only if ttt/(7T, ttt2) 0, and this
condition is equivalent to SelQF(F, ad°p) 0 by [15], Proposition 3.35. D

Assume from now on that / is jr-isolated in the sense of Assumption 1.3.

If s is a (possibly empty) square free product of 1-admissible primes, let
Sel(g)(jp, ad°p) be the group defined in the same way as Sele(F, ad°p) but with
no conditions imposed on the prime dividing s. Let Sel[s](i?, ad p) denote the

subgroup of Sel%(F, ad°p) consisting of classes which are trivial at the primes dividing

s. These notations can be combined: if Si, %2, S3 are pairwise coprirne square-
free product of 1-admissible primes, define the group SelSl(S2)[S3](/7, ad°p) :=
SelSl(F, ad°p) n Sel(&2)(F, ad°p) n Sel[g3](F, ad°p).

Let ad p* := Hom(ad p,k) be the dual representation of ad p. Then
define the dual Selmer group of Se\&(F, ad p) to be the subgroup Sels(jp, ad p*) of
Hl(F, ad°p*) consisting of those elements t G H1 (F, ad°p*) such that

(res« (5), res« (0)« 0

for all s <G Sele(F, ad°p) and for all prime ideals q, where )« is the local Tate

pairing at q. Define as above the Selmer groups Sels(jp, ad p*), Sel(s)(/7, ad p*),
SelM(F, ad°p*) and SelSl(S2)[S3](F, ad°p*).

The groups Sel(s)(/7, ad°p) and Sel[g](jp, ad°p*) are dual to each other, and the

same is true for Sele(F, ad p) and Sels(i?, ad p*).

Lemma 7.8. Let I be an admissible prime for f. Then the groups Sel(g)(F, ad p)
and Sel(£)(F, ad°p*) are one dimensional overk.

Proof. The groups SelgF(F, ad p) and SelgF(F, ad p*) have the same cardinality
by Theorem 2.19 in [10]. Furthermore, SelQF(F, ad°p) 0 by Lemma 7.7 because

/ is jr-isolated. Hence Sel&F(F, ad p*) 0. Since

#Sel(i)(F,ad0p)/#Sel[i](F,ad°p*) #k

by Theorem 2.19 in [ 10], it follows that Sel(f) (F, ad p) is one dimensional over k.
Replacing ad°p by ad°p* and repeating the same argument shows that Sel(^) (F, ad°p*)
is one dimensional too. D

Lemma 7.9. Let I be an admissibleprimeforf and suppose that Sel^ (F, ad°p) ^ 0.

ThenSeh(F, ad0p) ~ k.

Proof. Thanks to the inclusion Selg(F, ad p) ç Sel^(F, ad p), this is immediate
from Lemma 7.8. D
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Fix a pair of admissible primes li ^ l2. Write

vi2: Sel(il)(F,ad°p) -> //fi1n(^2,ad°p)

vl2: Sel(il)(F,ad°p*) -> H^(FÌ2,ad°p*)

for the restriction maps at l2.

Lemma 7.10. Suppose that Sel^L1, ad°p) ^ 0 twd vg2, v£ are both non trivial.
Then Selh£2(F, ad°p) 0.

Proof. By Lemma 7.8, choose generators £ and f* of the one dimensional it-vector

spaces Sel(^)(.F, ad°p) and Sel^1)(F, ad°p*). Note that

Sel^ (F, ad°p) ç Sel(^)(F, ad°p) ~ k

and that Sel^ (F, ad°p) ^ 0 by assumption. Therefore £ G Sel^ (F, ad°p) and

Sel^1(/7, ad p) c^ /:. Since Sel^1(/7, ad p) and Selg1(F, ad p*) have the same
cardinality ([10], Theorem 2.19), £* G Sel^(F, ad°p*). By [10], Theorem 2.19,

#Sel/l(/2)(F, ad0p)/#Sel^^2](F, ad°p*) #*. (9)

Further note that Sel^1[^2](/r, ad°p*) ç Sel^ (i7, ad°p*) c^ &, and therefore, either

Sel£1[£2](i?, ad p*) 0 or Sel^1[^2](/r, ad p*) c^ k, generated by £*. In the second

case, |* G Sel^l[^2](L,,ad°p*) implies thatres^2(£*) 0 in iYfi1n(i^2,ad0p*). The

assumption Vg (£*) ^ 0 excludes this possibility, so Sel^1[^2](/r, ad p*) 0. By

(9), Sel^1(^2)(/7, ad p) c^ k. The inclusion

Sel^(F,ad0p) ç Sel^2)(F,ad°p)

implies Sel^j (^2) (i7, ad°p) Sel^ (i7, ad°p) and both of them are generated by f.
Finally, note that

Sel^2(F,ad°p) ç Selil(Ì2)(F,ad°p),

so, as above, either Seli1i2(F, ad p) is trivial or is one dimensional. In the second

case, it is isomorphic to Sel£1(^2)(/r, ad°p) and hence also to Sel^ (F, ad°p). So the
reduction of £ at l2 should be both ordinary (it belongs to Sel^1^2(/7, ad°p)) and finite
(it belongs to Sel^1^2(/7, ad p)), hence trivial. The assumption V£2(%) ^ 0 excludes
this possibility, so Selixi2(F, ad°p) is trivial. D

Lemma 7.11. If Sel^1 (F, ad°p) 0, Seli2(F, ad°p) 0 and vg2 is the trivial map,
then §elixi2(F, ad°p) 0.

Proof. Since SeLj2(L\ ad°p) 0, again by Theorem 2.19 in[10], Sel^1^2(F, ad°p)
is one dimensional. By Lemma 7.8, choose a generator £ of Sel(^1)(/r, ad p). Since
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V£2(%) 0, the restriction to Fi2 of this class must be ordinary, and so % belongs to

Sel(^1)^2(/7, ad°p). Hence, Sel(^1)^2(/r, ad°p) is generated by £ and

Sel(il)Ì2(F, ad°p) ^ Sel(/l)(F, ad°p).

Note that if £ <G Selfj (f2) (F, ad p), then also £ <G Selg1(F, ad p). By assumption

Self! (F, ad°p) 0,

so^ ^Selfl(f2)(F,ad°p)- As£ e Sel(/l)/2(F,ad0/o)andC ^Selfl(f2)(F,ad°p),one
finds that Self jf2 (i7, ad p) is trivial because it is the intersection ofSelfj (f2) (F, ad p)
andSel(/l)/2(F,ad0/3).

"
D

Definition 7.12. A pair (li,l2) of admissible primes is said to be a rigid pair if
Self1f2(/7, ad p) is trivial.

Choose 5 <G Hl(K, Afa), s ^ 0. Assume that 5 belongs to a specific eigenspace
for the complex conjugation t, so that t(s) <5s with 8 ±1. Fix an integer
ft and define M := K(Afan). Let Ms/M be the extension cut out by s, so that

Gal(M,/M) ~ Afa via 5.' Set GM := Gal(M/M).
Since / is jt-isolated, Sel(f^ (F, ad°p) and Sel(f^ (F, ad°p*) are one dimensional

over k. Let £ and £* be generators. The images £ and £* of £ and £* in

Z/1 (M, ad°p) Hom(GM, ad°p) and H1 (M, ad°p*) Hom(GM, ad°p*)

cut out extensions Mç and M|* of M whose Galois groups are identified via £ and f *

with ad°p and ad°p* respectively (that is, Gal(Mç/M) cr ad°p and Gal(M|* /M) cr
ad°p*).

Denote by Ms££* the compositum of Ms, M^ and M^*. Since the representations

Afa, ad°p and ad°p* are pairwise non isomorphic and absolutely irreducible, we
have

Gsl(MStç£*/F) ~ (A/)7r x ad°p x ad°p*) x Gal(M/F)

where the action of Gal(M/F) on the normal subgroup (Afa,ad°p, ad°p*) is given
by

(v,w, w*)(zJ T) (Sj Tv, TwT-\Tvj*T-1 det(T)).

Proposition 7.13. Let li be admissible such that Self^/7, ad°p) ^ 0. Fix a non
trivial elements <E Hl(K, Afa). For any n there exists infinitely many n-admissible

primes l2 such that 3f2(^) 0, vi2(s) ^ 0 and (l\, l2) is a rigid pair.

Proof. By Lemma 7.9, % e Selil(F,ad°p), so that £* e Selh(F,ad°p*) too. The
Galois group Gal(Miî)|)|* /i7) contains an element (v, tu, tu*, t, T) such that:
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(1) T acts on Afan with eigenvalues 8 and A where A is an element of (Ofa/jrn)x
of order prime to p and ^ ± 1 ;

(2) v belongs to the unique line in Afa where T acts by 8;

(3) w belongs to the unique line in ad p fixed by T;
(4) w* belongs to the unique line in ad°p* fixed by T.

Choose now l2 \ pn and unramified in Ms££* such that the Frobenius element

Frobf2(MS££* /F) of Gal(Ms^^ /F) at l2 verifies the relation

Frobf2(M5)^*//7) (v,w,w*,t,T).

We claim that l2 has the desired properties. By the Chebotarev density theorem,
there are infinitely many such primes. Then l2 has the desired properties. To show
that l2 is n-admissible, note that the Frobenius element Frobf2(K/F) of Gal(K/F)
at l2 verifies the relation Frobf2(KjF) x, which implies that I is inert in K.
The congruences ai2(f) <5 + A (mod jt") and \i2\ <5A (mod jt") enjoyed by
the characteristic polynomial of Frobenius show ai2(f) <5(|^2| + 1) (mod JTn).

Finally, since A ^ ±1, it follows that \i2\ ^ ±1 (mod JTn). Hence l2 is an n-
admissible prime. Moreover, l2 has the properties stated in the theorem. First, note
that 3f2(s) 0. Indeed, if / is a prime ideal of Ms££* dividing l2, then

resÌ2(s) G ker (Hl(Kt2, Afa) —? Hl(MStU*tl,Afa))

Since Hl(MStU*tl, Afa) 2 Hl(K™,Afa) d H\ag(KÌ2, Afa), it follows that

3f2(s) 0 (here Ms££* j. is the completion of Ms££* at /). For the proof that

V£2(s) ^ 0: Let I be a prime ideal in M dividing I and set c := [M : F]. Denote by
FrobrXMj^i* /M) a Frobenius element of Gal(Ms££*/M) at I. Note that

Frobr (MS££*/M) (v,w,w*,t,T)c (cv,cw,cw*, 1,1).

Let s be the image of s in Gal(Ms/M). Since c is even and prime to p by Property 1

ofT,
s(Frobi(Ms££*/M)) s(cv) cs(v) ^ 0

andresf2(s) ^ 0. So, V£2(s) ^ 0. Since

ì(¥robi(MStU*/M)) ì(cw) cC(w) ^ 0,

r(Frobr(MJ)^*/M)) l*(cw*) cl*(w) 0,

Lemma 7.10 implies Self1f2(/7, ad°p*) 0, so (l\, l2) is a rigid pair. D

Proposition 7.14. Let li be admissible such that Self^/7, ad°p) 0. Fix a non
trivial elements <E Hl(K, Afa). For any n there exists infinitely many n-admissible

primes l2 such that di2(s) 0, V£2(s) ^ 0 and either Self2(/7,ad p) c^ k or
Self?(/7, ad p) 0 and (li,l2) is a rigidpair.
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Proof. Choose a prime l2 such that

Frobt2(MSt^*/F) (v,0,0, t,T).

The same computations as in Proposition 7.13 show that l2 is admissible and that

Vi2(s) ^ 0. Note that £(iw) 0 and %*(w*) 0. If SelÌ2(F, ad°p) 0, by
Lemma 7.11 Self1f2(/7, ad p) is trivial, so (l\, l2) is a rigid pair. IfSelf2(F, ad p) ^
0, then it is one-dimensional by Lemma 7.9. D

7.4. Congruences between modular forms and the Euler system

7.4.1. Raising the level in one prime. Fix an «-admissible prime I. Let Tn+ n-^
be the Hecke algebra acting on the space of modular forms which are new at n~l. It
is known that there exists a morphism fi : Tn+ n-g -> Ofa/jTn such that

(1) for primes q \ nl: fe(T^) ««(/) (mod jrn);
(2) for primes q | tt: ft(U<^) ««(/) (mod jt");
(3) fi(Ut) € (mod 7tn), where 7tn divides \l\ + 1 - €at(f).

This result follows from a generalization to the case n > 1 of [40]. For details, see

[30], Theorem 3.3.

7.4.2. The Euler system. Denote by X^ the Shimura curve (defined over F) whose

complex points are given by

X{l)(C) BX\M± x Bx/Âx,

where M := C — M, S//7 is a quaternion algebra of discriminant tt-^ which is
ramified in exactly one of the archimedean places and 31 ç S is an Eichler order
of level pn+. Let J^> be the Jacobian variety (defined over F) associated to X™'.
Denote by TP(J^>) the p-adie Tate module of J^> and by <l?f the group of connected

components of the fiber at I of the Néron model of J^> over 0%. Denote by lft
the kernel of the map fi. By [30], which generalizes the result of [29] to the present
situation, there exists a Hecke equivariant isomorphism of Gal(/7//7)-modules:

v:Tp(J^)/Ifz^Tfan. (10)

Remark 7.15. It is not known if (10) is an isomorphism when the degree d of F over
Q is even and tt- Of- For simplicity, we do not consider this case in the present
work.

Following Section 3, a Heegner point Pm of conductor pm is a CM-point of
conductor pm in

xf(K) := Sx\Hom(^, S) x Bx/Âx.
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Let a be the archimedean place where S is split and fix an isomorphism ioo of S ®a W

with M2(ffi). Then S acts on M by fractional linear transformations via loo and the
set Hiom(K, S) can be embedded in M^ by sending ^ <G Hom(K, S) to the fixed

point of ty(Kx) acting on M whose imaginary part is positive. Hence, a CM-point
P e Xjß(K) of conductor pm can be viewed as a point in X^\<C) and the theory

of complex multiplication shows that, in fact, P <G X^'(Kpm). Furthermore, the
Galois action on CM-points of conductor pm described in Section 3 translates into
the usual Galois action of Gp™ on X^'(Kpm). For more details, see Chapter 9 of
[45].

Recall the choice of orientations made in Section 4.2 and fix an orientation as

explained in Section 3 at the prime 1. Define the set of Gross points Gr^ (pm)
in Xjg with respect to these orientations. Write Pm (xm,^m). Let epm

(s(epm), t(epm)) <G 8P be the edge corresponding to xmMpx~l as described in Section

3. Say that a sequence (Pm)m>i of points in Gr^(p°°), with Pm e Gr^(pm),
is compatible if t(epm) s(epm+1) for all integers m > 1. Choose a sequence of

compatible Heegner points (Pm)m>i with Pm <G Gr*- (pm)-
For the modular interpretation of Heegner points, which will not be recalled here,

we refer to Section 2 of [48].
Since Ift is not Eisenstein, there is an isomorphism

jW(Kpm)/If£^Pic(XW)(Kpm)/Ifr
Denote by P£ the image of Pm in J^'(Kpm)/lft. Define

p* ¦= a~mP+

Since (Pm)m>i is compatible, it is easily seen that the points P£ are norm-compatible.
Their images under the Kummer map followed by the map induced by v

jW(Kpm)/Ih —? Hl(Kpm,Tp(jW)/Ifl) —? H\Kpm,Tfan)

yield a sequence of cohomology classes, km(l), which are compatible under
corestriction. Taking limit defines a class ic(l) <G H1(Kpoo, Tfan). Define finally the
class

K(l)eHl(Kpoo,Tfan)
to be the corestriction of ic(i) from Kpoo to Kpoo.

Lemma7.16. tc(l) e H\(Kpoo,Tfan).

Proof. It is enough to observe, as in the beginning of Section 8 in [5], that k(1) is
constructed from a sequence of global points ofX^ ', so itbelongs to the usual Selmer

group of J™> relative to the Galois module Tp(J^')jlfr For completeness, let us

provide some details on this proof. From the definition of Hg (Kpoo, Tfan), we see

that it is enough to show that
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(1) res^'(icm(£)) <G H\n(Kpm «/, Tfan) for primes q' of Kp™ which do not divide

npl;
(2) res^'(icm(£)) <G H^d(Kpm A>, Tfan) for primes q' dividing tt- but not p;
(3) resP'(icm(l)) <G H^:d(KpmìP/, Tfan) for primes p' of .K^»* which divide /?.

For (1), Remark 5.1 shows that the image of the Kummer map

jW(KpmA,) —? H\kpmA,t jV>[p"])

is unramified; the result follows then taking quotient by iy€. For (3), note that

the Kummer map J^'(Kpmy) -> Hl (Kp™tP>, Tfn) factors through the maximal
ordinary abelian subvariety /w>ord of J^>; the result follows then by Remark 5.4,
again taking quotients by Ift. For (2), the analogue of [5], Corollary 5.18 (see (22)
with the prime q' replacing lm), shows that if the quotient $«/'Ift of the group of
connected components $« at q of/ *•' by lft is trivial, then res« (icm (£)) is unramified;
on the other hand, the vanishing of $« jIft follows because/ is ramified at q. Indeed,
if O« /'Ift ^ 0, then there is an Ofa/jrn-valued modular form of level nljq which is

congruent to fi, and hence to /, modulo jt"; so the mod jt representation associated

to / should be unramified at q, which is not the case. D

7.4.3. Raising the level in two primes. Choose distinct n-admissible primes 11 and

l2 such that JTn divides both \l\\ + 1 — €\ag 1 (f) and \l2 | + 1 — €2ai2(f), with €\,
€2 equal to ±1. Let T^ be the Hecke algebra acting on the Shimura curve X^ x>.

Assume that / is jt-isolated. The map arising from Kummer theory composed with
(10) yields a map

J^\Ki2)/Ifh —? H\Ki2,Tp(J^)/Ifh) —? H\Kl2,Tfan)

whose image is equal to H^a(Ki2, Tfan) because both Tp(j( *¦') and Tfan are
unramified at l2. For the same reason and the fact that l2 \ p, the map induced by
reduction modulo l2

J^\Kl2)/Ifti -? J^(Ft2)/Iftl
is an isomorphism, where F^2 is the residue field of the ring of integers of Ki2. The

identification H^n(Ki2, Tfan) c^ Ofa/jTn and the inverse of the above map yield a

surjective map

J^\Fe2)/Ifh^Ofa/xc'\ (11)

Let $i2 ç X^ ^(F^) be the set of supersingular points of X^ *¦' in characteristic l2
and let Div(5f2) and Div°(5f2) be the set of formal divisors and the set of formal
degree zero divisors with Z-coefficients supported on $i2. Let the Hecke algebra
Tf x act on Div(5f2) and Div (5f2) via Albanese functoriality (it makes no difference
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if the Picard functoriality were chosen: see the discussion in [5], Section 9). Since

lft is not Eisenstein, there is an identification Div(5f2)/iy€ c^ Div°(Si2)/Ift
so there is a map

r.Viv(Si2)^Ofa/jTn.
Write T for the image of T <E Tf x

into Tfx /Ift so that for primes q \ nl\ we

have T« tf«(/) (mod tc"), and for primes q | tt we have l7« #«(/) (mod JTn)

and Uix €i (mod ?rB).

Lemma 7.17. Forx <G Div(5f2) the following relations hold:

(1) Forq | tt^i: y(T«x) f«y(x).
(2) Forq | it^i: y(Uqx) %y(x).
(3) y(Tf2x) Ti2y(x).
(4) y(Frobf2(.F)(x)) €2 y (x), where, as above, Frobf (F) is the absolute Frobe¬

nius ofF at I.

Proof. The first two relations can be obtained from the identification between the

groups Hln(Ki2, Tfan) and Tfan/(Frobg (F) — 1). The last two relations follow
from Eichler-Shimura. For more details, see Lemma 9.1 in [5]. D

Before going on with the raising the level result, we state an analogue of Ihara's
Lemma in the context of Shimura curves over totally real fields. First recall the

setting of [22]: Define G^ := SL2(M)/{±1} and, for any prime q of F, G« :=
{g G GL2(/7«) : val«(det(g)) 0 (mod 2)}/Fx, where val« is the normalized
valuation of i7«. Let ioc,: Bx -> Goo and **« : Bx -> G« be the injections. Let
Op [1/q] be the ring of q-integers of F and XI ç S any Of [1/q]-order. Define

Tu:={yeU:NB/F(y) l}/{±l},
where Np/p : B -> F is the norm map. Let Tu be the pull-back of the group
GL2(#«)/#« under the map 1« : Tu —> G«. Denote by X\i the Shimura curve
defined over a suitable abelian extension of F whose complex points are

Xu(C) *oo(fu)\X,

where M is the upper complex plane. Suppose that T\i is tors ion-free. Denote by
J%1 the Jacobian variety of X%i- Let F„2« be the field with q2n elements, where q is
the residue characteristic of q and |q| qn for a positive integer n. Let /||(F„2h)
be the subgroup generated by the divisors supported on the supersingular points in
Ju(ßq2n). Then by [22], Section 3, (G), there is a canonical isomorphism

Ju(Vq2n)/JZ(Fq2n) ~ T$, (12)
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where, if G is a group, Gab is the abelianization of G.
Let U ç Bx be a compact open subgroup and define Xjj -> Spec(F'), where F'

is a suitable abelian extension of F, to be the Shimura curve whose complex points
are

t

Xu(C) BX\BX x X±/U ~ JJZj(C), Xj(C) Tj\M (13)

f=i
where n ç 5X are suitable arithmetic subgroups. Write Jjj for the Jacobian
variety of Xjj- Fix a prime q such that the q-component ?7« of U is isomorphic to

GL2(OpA). For any i 1,..., t, let If denote the subgroup of norm-one elements
in Tj [1/q]/Op [1/q]- Assume that

all the groups Tt are torsion free. (14)

Let Ji denote the Jacobian variety ofXj and set T := Y\i=i ^f • If /ss(F„2h) denotes
the set of supersingular points in /(F„2h), then from (12)

JuWq2n)/Jg(Fq2n) ~ f*. (15)

By fixing an embedding of S into M2(Fi2), one obtains an action of If on the
Bruhat-Tits tree 7« of PGL2(F^). Let Vo be the vertex of 7^ such that the stabilizer

Tv. 0 of Vfso iri Tj is the image ofTf in Tf. Let et so be the edge originating from Vtto and

such that the stabilizer Te. 0 ofe^o in If is the image of the subgroup Ti of Tf obtained

as in (13) but with U fl Uo(q) replacing U. Here Uo(q) is defined by imposing that
its local components c70(q)« satisfy the following conditions: c70(q)« is the standard

upper triangular subgroup To (q) ofGL2(/7«) and i7o(q)«' GL2(0f ,$') for q' ^ q.
More explicitly,

t

Xunuob) UXl> with Z> r/\^-
i=l

Write Viti for the target of e^o- The group Tf acts on the tree 7« with the closed edge

attached to e^o as a fundamental region. Set Tvo := ]~[f=1 1% 0, TV1 := ]~[f=1 l\jf :
and reo := Y\i=i ^e/ 0- Hence, taking the product over all i 1,..., t of the exact

sequence in Proposition 13, Section II, 2.8 in [43] for i 1, M F^, G If
yields

0 —? Hom(f,Fp) —? Hom(fî)0,F/,) © Hom(fî)1 ,Fp) -^» Hom(feo,F/,).

For i 1,..., t there are natural injective maps as in [28], Section 1, Equation (3):

fi : Ji(C) —? Hom(rf, S) and f': /'(C) —? Hom(r' S), (16)
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where S := {z <G C : \z\ 1}. Hence in the above exact sequence the modules

appearing in the source and in the target of d correspond to the p-torsion of /f and

/.' respectively, where // is the Jacobian variety of Xi.
Suppose now that U is contained in some Eichler order of S of level r and let g

be a modular form with coefficients in a finite field F, of weight 2, level K and trivial
central character, which is an eigenform for the quotient T of the Hecke algebra of
level rtt-^ acting faithfully on Jjj (recall that the discriminant of S is n~i). Let rtt^
be the kernel of the homomorphism T -> F associated to g.

Assumption 7.18. Let U be an open compact subgroup of Bx such that (14) is
verified. Ifthe residual Galois representation on GL2(F) associated to g is irreducible
thenHom(f,Fp)[mJ 0.

Remark 7.19. The technical condition inAssumption 7.18 is essential in the proof of
Lemma 7.20 below. It consists in a version of Ihara's Lemma for Shimura curves over
totally real fields. Indeed, if F Q, Assumption 7.18 holds thanks to Theorem 2

in [12] because under the above identifications the map d corresponds to the map ap
in that theorem. The result of Theorem 2 in [12] can be understood as an analogue
of Ihara's Lemma in the context of Shimura curves over Q. The results contained in
[12] and successively refined in [13] are partiall}' generalized to the totally real case
in [25]. However, [25] does not cover the full generalization of Theorem 2 in [12].
It might be possible that the techniques in [25] and [26] can be used to prove some
results in the direction of an analogue of Theorem 2 in [12]. In this paper we follow
[15], which assumes a suitable generalization to totally real fields of Ihara's Lemma
as an hypothesis, although Assumption 7.18 is stated in a different form with respect
to [15], Hypothesis 5.9. Similar results for Hilbert modular varieties hold: see [14].

As a consequence ofAssumption 7.18 we see that Tab/mg 0. Let now jR be

the ring of integers of a finite extension of Q and fix a maximal ideal v of R such
that Rv/v c^ F, where Rv is the completion of R at v. Suppose that g is a modular
form with coefficients in Rv/vm for some integer m > 1 of weight 2, level U and

trivial central character, which is an eigenform for the Hecke algebra T ; let Ig denote

the kernel of the associated homomorphism T -> Rv/vm and note that ttt^ is the

maximal ideal containing lg. If the above conditions on g are satisfied, Tab/nxg 0

and hence, by Nakayama's Lemma, Tab/Ig 0. By (15),

the canonical map /||(F„2h) —> Ju(^q2n)/Ig is surjective. (17)

Suppose from now on that Assumption 7.18 is verified.

Lemma 7.20. The map y is surjective.
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Proof. Write X X^ and / J^\ Let /SS(F^2) be the set of supersingular

points in J(¥f.), where F^2 is the quadratic extension of the residue field Ff of Op
at l2. Since the map (11) is surjective, it is enough to show that

the canonical map/SS(F^2)—>J(¥£2)/Ifz is surjective. (18)

Recall that X is the Shimura curve defined over F whose complex points are

X(C) £x\£x x M±/Rx.

Define X' to be the Shimura curve defined over F whose complex points are

X'(C) £x\£x x M±/3l'x,

where 31' ç 31 is defined by requiring that, for a fixed isomorphism

ip ¦ 31 ®&F 0FtP ~ {(acbd e GL2(Op,p)\c 0 mod p],

31' ®@F OpiP correspond to the elements which are congruent to (of) m°d p,
while 31' ®oF Ofa 31 ®oF Ofa ifq^p. Since 31' ç 31, there is a canonical

projection map u : X' -> X and also, by Picard (respectively, Albanese) functoriality,
maps u*: J -> /' (respectively, w*: /' -> /), where / and /' are theJacobian
varieties of X and X' respectively. Write as above

s t

X(C) \JXi(C) and X'(C) ]J Zj(C)
i=i /=i

where Xt Tt\X and AT'(C) T'AM for suitable arithmetic subgroups Tf and

Ty, here s and t are suitable integers such that t > s. The canonical projection
m : X' —>¦ X can be decomposed as projections X'= -> -^f(y) and if «(/i) '(/2)
(that is, two projections have the same target), then T'. T'. For details, see

Section 3 in [20]. Write finally /j and /' for the Jacobian varieties of Xf and X'.,
respectively.

The subgroups T'. of norm one elements in T'j [1 /i2]/Op [1 /i2] are torsion free

(see for example [ 19], Lemma 7.1, after noticing that p is not ramified in the extension

K/<Q). Now view fix as a mod jtn eigenform on X' and write I', for its associated

ideal in the Hecke algebra Tf x acting faithfully on J'. Write ttty^ for the maximal
ideal containing I'* Since ttty^ corresponds to an irreducible representation, it
follows from (17) that

the canonical map J'SS(F£2) —> J'(F£2)/If is surjective. (19)

We need the generalization to this context of [28], which can be obtained as

follows. For any j 1,... ,t, let i(j) such that i(j(i)) i, that is, u* maps
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/f(y) into /'. An element x belongs to E, := ker(/f(y)(C) -> /'(C)) if and

only if the kernel of the map fi^(x) associated to x as in (16) contains T'. Set

S := ker (/(C) -> /'(C)). Using the fact that T^ T'J2 if i(jx) i(j2), we get
an injection:

0 —? E —? e;=1 Hom(rf /T'm, S).

The order of the group 3ixj 3VX is prime to p, hence the same is true for the order
of (g~l Âxg)/(g~1Â'xg) for any g e Bx. Since the groups Tf/ Ti,* are contained

in (g_13lxg)/(g~13l'xg) for suitable elements g e Éx, it follows the order of any
Tf/ T',... is prime to p, so the same is true for E. Dualizing shows that the cokernel

of the map «* : /'(F^) -> /(F^) has order prime to p. It follows that

the canonical map /'(F^2) —> Nßp)/Ifz is surjective. (20)

Finally, combining (19) and (20) shows (18). D

Let B'/F be the totally definite quaternion algebra of discriminant tt_^i^2 and

R' an Eichler order of B' of level pn+. For any ring C, denote by 5^ (pn+, C) the
C-module of functions:

B'*\B'*/R* —? C.

This module is endowed with an action on the Hecke algebra TIlf1f2.

Proposition 7.21. There exists g e S^ (£>rt+, Ofa/jTn) such that:

(1) forprime ideals q \ nl\l2: T«(g) tf«(/)g (mod jrn);

(2) forprime ideals q | tt: ?7«(g) tf«(/)g (mod jrB);

(3) t/^g €ig (mod jt") ara/ Ui2g €2g (mod jt").
Furthermore, if (l\, l2) is a rigid pair, then g can be lifted to a jt-isolated form in
S2 (pn+) taking values in Ofa.

Proof. Write T^ (respectively, Tf2)f1) for the quotient of the Hecke algebra Tn£1

(respectively, T^fxi2) acting on cusp forms of weight 2, trivial central character,

ro(rt^i) (respectively, rVXtt^i^)) level structure and new at rt-^. Write

fh : Ttl —? Ofa/jTn

for the modular form satisfying fi x / (mod jt"). This form has the properties that

W*i) H(f)ftx (mod jTn) for all q \ nli, U^f^) a^(f)ftl (mod jt")
for all q | tt and Ut2(ftx) €\fix (mod JTn).

Let 3ii ç 31 be an Eichler order of level pn+l2 and denote by X^2'^ the
Shimura curve (over F) whose complex points are given by:

X^2M(C) BX\BX x M±/Rx.
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Recall from above the set Sg2 ç X^ ^(F^) of supersingular points of X^ x> in
characteristic l2. By [49], Section 5.4,

SÌ2 ~ B'X\B'X/R'X. (21)

It follows that the character group Xf2 of X^ 2' l> at l2 is identified with the module
Div (Si2). Furthermore, the action of Tf2)f x on Xf2 induced from the action on
Pie(X^ 2' x>) by Picard functoriality is compatible with the standard Albanese action
ofTf2)f x via correspondences in the set of supersingular points. Therefore, y can also

be viewed as a Ofa/jTn-valued modular form on B'X\B'X/R'x. Denote by g this
modular form. Since y is surjective by Lemma 7.20, the image of g is not contained
in any proper subgroup of Ofa/jrn.

To show that g has the desired properties, write T* (with q \ nli l2) and U* (with
q | nl ii2) for the Hecke operators in Tf2)f x

and T« and U^ for the Hecke operators in

Ttl. By Lemma 7.17, T*g a<>(f)g (mod jt") and U*g a^(f)g (mod jt").
By Lemma 7.2 of [25], U£* x Frobf2(F)x for x <G 5f2. Hence Lemma 7.17 yields
(U£*2g)(x) y(Frobi2(F)x) €2g(x).

For the final part of the statement: The modular form g yields a surjective
morphism 4>g: Tf2)f1 -> Ofn/Ttn; if (li,l2) is a rigid pair, then Tf^ c^ (9y^ and

therefore <$>g lifts to characteristic zero. D

7.5. Explicit reciprocity laws. The two following theorems explore the relations
between the classes k(1) constructed in Section 7.4 and the p-adic L-functions of
Section 4. Their proofs are similar to the proofs of the corresponding results [5],
Theorems 4.1 and 4.2. We will present a sketch of the arguments: for more details,
the reader is referred to [5]. See also Section 5.3 in [29] and Section 3.5 in [30],
where a result similar to that of Theorem 7.22 is proved.

Recall the maps 3f and ff introduced in § 5.2. Thanks to the isomorphisms (8),
we find a decomposition

H(Kpoot£, Tfan) Hsing(Kpoot£, Tfan) ® Hün(Kpoot£, Tfan).

In this decomposition the map 3f corresponds to the projection to the first factor,
while the map ff, a priori only defined on the kernel of 3f, can be extended to a map

ff : H(Kpoot£,Tfan) —> Hün(Kpooti,Tfan)

(the projection to the second factor).

Theorem 7.22 (First Explicit Reciprocity Law), vg(ic(l)) 0 and the equality

di(ic(l)) 0f (mod Ttn)

holds in H^ (Kpooti, Tfan) c^ Ap>7r/jTn Ap>7r up to multiplication by elements in
Oxn and Gpoo.
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Proof. Denote by 3f the residue map

H (Kpoo Tfan) > Hsing(Kpootl, Tfan)

(these cohomology groups are defined for H1(Kpoo, Tfan and H^ (Kpoo ^, Tfan

by replacing Kpoo by Kpoo). In is enough to show that 3f ({P^}m) of mod JTn

(note the abuse of notation for the image of {P^im in H1(Kpoo, Tfan)).
Recall the notations of Section 6.2: Let B/F be the quaternion algebra which is

ramified at all archimedean places and whose discriminant is Disc(5) tt-. Denote

by R ç B an Eichler order of level pn+.
Recall that End(Pm) c^ Opm, where End(Pm) is defined in [48], Section 2.1.1.

The Heegner point Pm is described in Section 2.1.2 of [48] in terms of a certain
abelian variety Am with additional structures. Let k denote as in [48], Section 2.2,
the residue field of the maximal unramified extension of 0^,1- Denote by Am the
reduced abelian variety over k and by End(Pm) the endomorphism ring of Am as

defined in [48], Section 2.3.3. Then, by [48], Section 2.3.3, End(Pm) ®% Q ~ B.
Tensoring by Q the map

End(Pm) —? End(jy
induced by reduction of endomorphisms yields an embedding \jr : K <—> B.

Let Mi := <Ci— Fi be the ^-adic upper half plane, where Cf is the completion of
(£)

an algebraic closure of Fi. The Cf-points of the special fiber Xg at I of the Shimura

curve X^ > can be described by using the Cerednik-Drinfeld theorem:

Xf (Cf) ~ BX\(BX x Mi)/R[l/i]x,

where R[l/£] is the Eichler Of [l/l]-order of B of level pn+ and Of [l/l] is the ring
of ^-integers of F. Then the point Pm reduces to the point P'm (l,z) £ X) (Ki),
where z is one of the two fixed points of ijr(Kx) acting on Mi. The integrality
property of P^ follows because, since I is inert in K/F, then it splits completely in
Kpoo.

Let Vi and <§f are, respectively, the set of geometrically irreducible components
—(£)

and the set of singular points, respectively, of Xg By [49], Lemma 5.4.4, the set

VI can be identified with BX\BX/RX, where Bx is the set of elements of B with

even order at p. The reduction of P'm in the special fiber Xg of Xg belongs to a

single geometrically irreducible component: this is because, since I is inert in K and

Opm ® TLi is maximal, if(Op™ ® Zf is contained in a unique maximal order, hence
the action of ijr(Kx) on Vi U 8i has a unique fixed point which is a vertex. Denote

by r(Pm) the corresponding element in BX\BX/RX.
Fix a prime ^oo of Kpco dividing I and set lm : ^oo H Kpm. Note that the

different choices of ^oo are permuted by the multiplication by an element of Gpoo,
and the same dependence holds for the definition of Of. Let $im be the group of
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connected components of the fiber at lm of the Néron model of J^> over Og m.

There is a specialization map 8im : J^'(Kpm) -> <&im which fits into the following
commutative diagram:

jW(Kpm)/Ih >Hl(Kpm,Tfan) (22)

^lmlht 2~^ Hàngi^Xm.Tfan)

where the bottom horizontal arrow is an isomorphism. The Heegner point Pm satisfies,

by Section 2 of the Appendix in [4], the following relation:

hm(Pm) o>i(r(Pm)),

where ti>f : Z° [Vf] -> $f is the map arising from the exact sequence

0 —? Xf —? X/ —? $f —? 0

connecting <3>f with the character group Xf of the maximal torus of the special fiber

of Jg{l) and its Z-dual X/. Recall the identification of Vt with BX\BX/RX and note

that the last double coset space can be identified with two copies of BX\BX/Rx by
sending a class [b] in BX\BX/RX to the class [b] in the first copy of BX\BX/RX if
the p-adic valuation of b is even and to the class of [b] of the second copy otherwise.
It follows that evaluation on Heegner points gives rise to an Hecke equivariant map:

BX\BX/RX -? <S>iJIh -? Hàag(Kpm,im,Tfan) ~ Ofa/JT"

which, by multiplicity one, is equal to the modular form / up to multiplication by
an element in (Ofa/jrn)x.

It follows from above that di(Pm) fB(fi(Pm)) mod jt". The result follows
now from the definition of P£ and Of because the action of Gpoo on Gr^ (pm) is

compatible with the action of Gpoo on Gr(pm) and, by our choice of the orientation
at p, the compatibility of the sequence { Pm } translates into the compatibility of Gross

points. D

Theorem 7.23 (Second Explicit Reciprocity Law). Let I \ and l2 be two n-admissible

primes. Let g be as in Proposition 7.21. The equality

vi2(k(Ix)) 0g

holds in H^n(Kpooii2, Tfan) c^ Ap>7i:/jTn Ap>7i: up to multiplication by elements in
Oxn and Gpoo.
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Proof. Consider the sequence {Pm}m of Heegner points. Fix (as in the proof of
the above theorem) a prime ^2,00 of Kpoo above l2 and let l2tm := ^2,00 H Kpm.
Since l2 is inert in K, the points Pm reduce modulo l2 œ to supersingular points
Pm e Z^l)(Ff2 m), where Wt2jn is the residue field of Kpm at l2>m. Identify Wt2jn
with F^2 for all m. Then Pm can be viewed as a point in $i2, and hence, by Equation

(21), Pm can be identified with an element in BIX\B'X/R'X.
Reduction modulo l2ttn of endomorphism as in the proof ofTheorem 7.22 yields

by extension of scalars an embedding (p : K -> B'', which is independent of m. The
Galois action of Gpoo on Pm is compatible with the action of Gpoo on Pm via (p.

Write
a-m'g,m

aeG

J2 g(<yPm)-<y^Ofa/jTn[Gpm],

so that 0g limOg^n <G 0fa/jtnyjO(^\. The choice of ^2,00 together with the
m

isomorphism H^n(Ki2, Tfan) c^ Ofa/jTn yields identifications:

Hfin(KtPmJ2>Tf,xn) ®fn/xn[Gpm],

Hl(Kp*oX2,Tfan) Ofa/jT"lGpool
where these cohomology groups are defined as in Section 5.2.1. By the definition
of y, the image of P£ in Hln(Kpmti2, Tfan) corresponds to 0gtm (mod JTn) and

so the image of the compatible sequence {P^} corresponds to 0g. Define the class

ic(lx) to be the image of {P*} in H1(Kpoo,Tfan). It follows that vi2(îc(lx)) e

H^iKoQ^'Tfan) is equal to 0g (mod jt"). Since K.(lx) is the corestriction of

ic(l\) from Kpco to Kpoo, the result follows. D

Corollary 7.24. The equality

viMl2)) vi2(ic(lx)) (modjr")

holds in APt7r/jTnAPt7r up to multiplication by elements in Oxn and Gpoo.

Proof. Since the definition of g is symmetric in li and l2, this is obvious. D

7.6. The argument. The remaining part of the section is devoted to the proof of
Theorem 6.1. Keeping p fixed, denote Selnoo(fjKpoo) (respectively, Sel^n(f/Kpoo))
simply by Selyj00 (respectively, Sely„). By Proposition 7.4, it is enough to show that

(p(0f)2 belongs to Fitto(Sely^ ®<p O) for all <p e Hom(A, O) where O is the ring of
integer of a finite extension of <Qp. For this, by [33], Appendix, 10 on 325, is enough
to show that

(p(0f)2 belongs to Fitto(Sely„ ®<p ®) for a11 integers n > 1. (23)
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Fix O and (p as above. Write v for an uniformizer of O. Set

tf := ordv(<p(0f)).

If cp(0f) 0, then <p(0f)2 belongs trivially to Fitto (Sely„ ®<p ®) for ali n > 1, so

assume <p(0f) ^ 0. If SelY^ ®ç O is trivial, then its Fitting ideal is equal to O and,

again, (p(0f)2 belongs trivially to Fitto (SelYn ®cp O) for all n > 1, so assume that

Fitto (SelYn ®<p O) ^ 0. The theorem is proved now by induction on tf.

7.6.1. Construction of K9(t). Let I be any (n + tf )-admissible prime and enlarge
{1} to a (n + ?y )-admissib le set S : such a set consists of s distinct (n + tf )-admissible
primes such that the map

Selfn+tf(K) -? 0 /#„(*,, /4/y,+v)

is injective (Proposition 7.5 shows that such a set exists). Denote by s the square-free
product of the primes in S and let

k(1) e Hg (Kpoo, Tf^n+tf) Ç //g (-Kp~, Ty^n+tf

be the cohomology class attached to I.

Proposition 7.25. The group H^(Kpoo, Tfan) is free of rank s over APtKjjrn.

Proof. This statement can be proved by a direct generalization ofTheorem 3.2 in [2]
as suggested in Proposition 3.3 in [5]. D

Let K(p(l) be the image of k(1) in

M := HÌ(Kg,oo,TftJCn+tf)®<p O.

Note that, by Proposition 7.25, M is free of rank s over Ofa/jrn+tf. By Theorem

7.22,
t := ordv(*,(*)) < oidv(3/M*))) ordv(cp(Of)). (24)

Choose an element icv(l) <E M such that vtk(p(l) Kç(l). This element is well
defined modulo the vl-torsion subgroup of M; to remove this ambiguity, denote by
ic' (I) the image of ic^(l) in H^(Kpoo, Tfan) ®,p O. The following properties of
K'ç(l)hold:

(1) ordv (k'9(1)) 0 (because ordv (*>(£)) t <tf);
(2) 3«(k;00) 0 for all q \ tvr (because k(1) € H^(Kpoo,Tfn+tf));
(3) Vf«(^)) 0 (by Theorem 7.22);
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(4) d1(^(1)) tf - t (by Theorem7.22 and formula (24));

(5) The element 3f (k' (I)) belongs to the kernel of the homomorphism:

m : H\m(Kpooti, Tfan) ®„ O —? SeLY„ ®9 O. (25)

To prove the last statement use the global reciprocity law of class field theory (5) as

follows (see more details in [5]), Lemma 4.6. Denote by Iç the kernel of (p. First
note that it is enough to show that rji(diic' (l))(s) 0 for all s e Selfn[Iy]. Note
that, by the global reciprocity law of class field theory:

£>*(*,(*)).*»>« =0
«is

for all s € Selyn+f, [Ig,]. On the other hand, i//fy(.£) Kg,(l) has trivial residue at
all the primes q ^ I (it is finite at those primes) so the element d^(icg,(l)) annihilates

vlHln(KooA, Afjtn+tf )[Ig,], which contains H^K^^, Afan [/J Hence,

if s belongs to Sely„ jT^,], then the terms in the above sum corresponding to primes
q ^ I are all zero. It follows that 3f (k! (I)) annihilates the image of Selfn[Iç] in

Hq^Kqo^, Afan), so it belongs to the kernel of rji.

7.6.2. Case of tf 0. This is the basis for the induction argument. First, recall the

following result.

Proposition 7.26. The natural map Hl(K, Afa) -> H1(Kpoo, Afan)[m] induced
by restriction is an isomorphism.

Proof. This result can be obtained as in Theorem 3.4 of [5] by analyzing the inflation-
restriction exact sequence

0 —? H\Gal(Kpm/K),AGfKJm)^ Hl(K,Afan) —? •••

—? Hl(Kpm,Afanf^K^^ —? H2(Ga\(Kpm/K),AGfKJm)

where Ggm is the absolute Galois group of Kpm, and the exact sequence

Afan-i —? H\K, Afa) —? H\K, Afan) —? H\K, Afan) —? H2(K, A%)

Tt
induced by 0 —> Afa -> Afan -> Ay)7r«-i -> 0 and noticing that, since py)7r is

surjective, A, „ A,K 0. For details, see [5], Theorem3.4. D

Then we can state the basis of the inductive argument.

Proposition 7.27. Ift/ 0thenSe\Jn 0.
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Proof. To prove this, note that, for all n-admissible primes I, Theorem 7.22 implies
that H^ (Kpoosi, Tfan)®g, O is generated by di(iCg>(l)) (as (9-module) and that the

map 7}i in (25) is trivial. Assume now that SelY is not trivial. Then Nakayama's
lemma implies that the group SelY /ttt (Sely„[ttt])v is not trivial, where ttt is the
maximal ideal of APt7r.

Let nowÄ <G Sely„ [tu] be a non trivial element. Proposition 7.26 allows to consider

s as an element of Hl(K, Afa). Invoke Proposition 7.5 to choose an n-admissible
prime I such that 3f (s) 0 and Vf (s) ^ 0. Then the non degeneracy of the local
Tate pairing implies that rji is trivial, which is a contradiction. D

7.6.3. The minimality property. As a corollary of Proposition 7.25, note that

the corestriction map H& (Kpoo, Tfan)/m —> H (K, Tfa) is injective. (26)

Let now U be the set of primes of Op such that:

(1) I is n + tf -admissible;

(2) The number t ordv (Kg, (I)) is minimal among the set of (n + ?y)-admissible
primes.

By Proposition 7.5, Il ^ 0.

Proposition 7.28. t < tf.

Proof. To prove this assertion, assume on the contrary that t > tf. Since by definition
t < tf, then t tf for all (n + ?y)-admissible primes I. Use Proposition 7.26 to
choose a non trivial element in Hl(K, Afa) fl Sely„ (recall that by assumption,
SelY 0g, O ^ 0, so Sely„[ttt] ^ 0). By Proposition 7.5, choose an (n + tf)~
admissible prime I such that Vf (s) ^ 0. Now by the Property 5 enjoyed by the
class k' (1), it follows that ordv(dik' (I)) 0, so that 9f/c' (I) is a generator of

Hsmg(Koo,£> Tfan) 0^ O. By Nakayama's lemma again, the image of 3f (k! (I)) in

^sing(^-°°^' ^y>H)/m $>>g> ® is riot trivial. Use (26) to identify this last module with

Hx(K,Tfn)®0; then it follows that the natural image of3f (k'ç (I)) in H1 (K, Tfa)®
O is not trivial. By Property 5 enjoyed by the class k! (I) again, it follows that
3f (jc1 (1)) is orthogonal to Vf (s) with respect to the local Tate pairing, contradicting
the fact that 3f (k' (I)) and Vf (s) are both supposed to be non trivial and the fact that the
Tate pairing is a perfect duality between one-dimensional O jv -vector spaces. D

7.6.4. Rigid pairs with the minimality property. This step is devoted to the proof
that there exist primes l\,l2 £ U such that (l\, lq) is a rigid pair. To prove this, start

by choosing any prime li G U and denote by s the image of k' (Ix) in

(H^KocTfanym)^ 0/(v),
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where ttt is the maximal ideal of APt7r. By (26), view s as a non-zero element in
Hl(K, Tfa) <g> 0/(v). Note that 3«(s) 0 for all q \ lxn. By Propositions 7.13
and 7.14, choose an (n + ?y)-admissible prime l2 such that di2(s) 0, vi2(s) ^ 0
and either (li, l2) is a rigid pair or Self2(F, ad p) is one-dimensional. The following
relation holds:

t ordv(/t>(^)) < ordv(Kg,(l2)) < ordv(uf1(^(^2))). (27)

The first inequality follows from the minimality property of t using that l\ <E U
and that l2 is an (n + ?y)-admissible prime. By the choice of l2 and Corollary

7.24, it follows that ordv(ff1(/c1?)(^2))) ordv(vi2(Kg,(li))). Now note that

ordv(vi2(/Cg,(lx))) > ordvO^C^i)) and that the strict inequality holds if and only if
vi2(s) 0, so, since vi2(s) ^ 0, ordv(ff1(/c1?)(^2))) ordv(Kg,(lx))- Combining
this with the inequalities in formula (27) shows that

t ordv^tfi)) ordv(^(4)). (28)

It follows that l2 <G u. If (^1,^2) is riot a rigid pair, then Seli2(F, ad°p) is one
dimensional (this is the case only if Self1(i7, ad p) 0). In this case, by Proposition

7.13, choose an (n + ?y)~admissible prime Ij, such that di3(s) 0, vi3(s) ^ 0
and (l2,13) is a rigid pair. Repeat the argument above with l2 replacing li and I3
replacing l2 to show that Ij, <E U. In any case then, either (l\, l2) or (l2,1$) is a

rigid pair and the claim at the beginning of follows.

7.6.5. The congruence argument. Choose by the result explained in Subsection

7.6.4 a rigid pair (lx, l2) with lx, l2 e ü. Note that, by Theorem 7.23,

t=tg ordv(Og) (29)

(here g is the congruent modular form attached to (I \, l2) by Proposition 7.21). There
is an exact sequence of A-modules:

0 -? S<*2 ~> Sel/> -> SeÇl5f2] -> 0, (30)

where Sel[f x ti2x ç Sely„ is defined by the condition that the restriction at the primes
fl\ and l2 must be trivial and Sel^ g is the kernel of the surjection of duals. There is

an inclusion:

(Sel/^2)v ç Hla(Kpoo!h, Afan) e Hln(Kpooti2,Afan).

The dual of H^n(Kpooii1, Afan) © H^n(Kpoo>i2, Afan), by the non-degeneracy of
the local Tate pairing, is H^ino(Kpootil, Afan © H^ (Kpoo;i2, Afan so the above

inclusion leads to a surjection:

nf : H\(Kpootil, Afan) © H\(Kpooih, Afan) —? Self-
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Recall that, since l\ is n-admissible, H^ (Kpoo tix, Afan) c^ APtlz/jTn. Let rfi
be the map induced by rjf after tensoring by O via (p. Then the domain of if, is

isomorphic to (0/(p(jrn))2. By Property 5 above enjoyed by the classes icLißi)
and k' (l2), the kernel of r(i contains (d^K.' (lx),0) and (0, di2ic' (l2)). The same

property combined with equations (28) and (29) yields

tf -tg ordv(3f1(/c;^1))) ordv(di2(K'9(l2))).

It follows that

v2{tf-tg) belongs t0 the pitting ideal of Sel^ ®çO. (31)

Repeat now the argument with the modular form g : there is an exact sequence

l\li g>" òel[^i^2]0 —? Sell ,„ —? Seir „ —? SelX M —? 0,

and a surjection

% : Hln(Kpooih, Ay)jr«) © H^n(KpooA Afan) —> Self^2.

Let ?j^ be the map induced by rjg after tensoring by O via (p. By the global reciprocity
law of class field theor}', the kernel of r)g contains the elements

(Vl^lx^Vl^lx))) (Vl^lx))^),
KK^.^km (o,v/2(*;(*2))),

where the equalities follow from Property 3 above enjoyed by the classes k.' (Ix) and

^(li)- Note that ordv(uf2Ä:^(^i)) ord^Uf^^)) tg — t =0. From this it
follows that the module Self » is trivial. As a consequence, there is an isomorphism

SelJs„ ®g, O -^>Selgl/2] ^ (9. (32)

7.6.6. The inductive argument. Now assume that the theorem is true for all r' < tf
and prove that it is true for tf. Recall that t tg < tf. Since (l\, l2) is a rigid
pair, the modular form g satisfies the assumptions in the theorem, so, by the inductive
hypothesis,

(p(0g) belongs to the Fitting ideal of Sel£„ ®vO. (33)

Now use the theory of Fitting ideals:

v2tf v2(tf-tg)v2tg

e Fitt«s>(Sel£/2 ®g, O) • Fitto(Sel^„ ®9 O) by (31) and (33)

Fitto(Sel/^ ®<p ®) • Fitt0(Selj£l/2] ®g O) by (32)

ç Fitto(SeLY„ ®g, O) by (30).

Since by definition ord(0y) tf, it follows that <p(0f)2 e Fitto(Sely„ ®g, O), thus

proving (23) and therefore Theorem 6.1.
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