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Patching and local-global principles for homogeneous spaces over
function fields of p-adic curves

Jean-Louis Colliot-Thélene, Raman Parimala and Venapally Suresh

Abstract. Let [/ = K(X) be the function field of a smooth projective curve over a p-adic field
K. To each rank one discrete valuation of F one may associate the completion F,,. Given an
F-variety Y which is a homogeneous space of a connected reductive group G over F, one may
wonder whether the existence of Fy,-points on ¥ for each v is enough to ensure that ¥ has an
F-point. In this paper we prove such a result in two cases:

(i) ¥ is a smooth projective quadric and p is odd.

(i1) The group G is the extension of a reductive group over the ring of integers of K, and ¥
is a principal homogeneous space of G.

An essential use is made of recent patching results of Harbater, Hartmann and Krashen.
There is a connection to injectivity properties of the Rost invariant and a result of Kato.

Mathematics Subject Classification (2010). 11G99, 14(G99, 14G05, 11E72, 11E12, 20G35.
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1. Introduction

Let K be a p-adic field, by which we mean a finite extension of a field Q,. Let
A be its ring of integers. Let X /K be a smooth, projective, geometrically integral
curve. Let /' = K(X) be the function field of X. This is a field of cohomological
dimension 3. Let €2 denote the set of discrete valuations (of rank one) on the field F.
Given v € 2 we let F,, denote the completion of I at v.

We wonder whether in this context there 1s a local-global principle for the existence
of rational points on homogeneous spaces of connected linear algebraic groups over F.

Conjecture 1. Let F/ = K(X) be as above. Let ¥/ F be a projective homogeneous
space of a connected linear algebraic group. If ¥ has points in all completions F,,
then it has an F'-rational point.

Conjecture 2. Let F = K(X) be as above. Let G/F be a semisimple, simply
comnected group. If a class £ in the Galois cohomology set H'(F, G) has trivial
image ineach H ! (F,, G), then{ is trivial. In other words, if a principal homogeneous
space under & has points in all completions Fy,, then it has an F-rational point.
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It 1s unlikely that Conjecture 2 holds for an arbitrary connected reductive group
G, for instance for a torus. It definitely fails for G a finite constant group, see §6.

As we explain in Section 5 (Theorem 5.4), Conjecture 2 may be proved for most
quasisplit simply connected groups by using a combination of properties of the Rost
invariant and a result of Kato [20].

In their recent paper [15], Harbater, Hartmann and Krashen have developed the
patching technique of [14] to the point where they get local-global theorems for
homogeneous spaces. Their main local-global theorems refer to some other families
of overfields of F than the family { F,} we consider here. But they manage to apply
the technique to the extent that they give a radically new proof of the theorem by
Parimala and Suresh [31] that any quadratic form in at least 9 variables over K(X)
(K as above, nondyadic, X a curve over K) has a nontrivial zero.

Their techniques apply more generally to complete discrete valuation rings with
arbitrary residue field.

In the present paper, we use the method and theorems of Harbater, Hartmann and
Krashen to prove the following results.

1) For smooth quadrics of dimension at least 1, which are projective homogeneous
spaces under the associated special orthogonal group, under the assumption that the
characteristic of the residue field of K 1s not 2, we prove Conjecture 1. We actually
prove the more general result (Theorem 3.1):

Let A be a complete discrete valuation ring with fraction field K and residue field
k of characteristic different from 2. Let X be a smooth, projective, geometrically
integral curve over K. Let F = K(X) be the function field of X. Let q be a
nondegenerate quadratic form over F in at least 3 variables. If for each discrete
valuation of I, the form q is isotropic over the completion of I with respect to this
valuation, then g is isotropic over F.

2) We show (Theorem 4.8) that the statement of Conjecture 2 holds for any (fi-
brewise connected) reductive A-group G.
This relies on the following general result (Theorem 4.3):

Let A be a complete discrete valuation ring, K its field of fractions and k its
residue field. Let X /A be a projective, flat curve over Spec A. Assume that X is
connected and regular. Let F be the function field of X. Let Q be the set of all
discrete valuations on F. Let G/A be a (fibrewise connected) reductive group.
If there exists a connected linear algebraic group H/F such that the F-group
(G x4 F) xp H is an F-rational variety, then the restriction map with respect
to completions H'(F, G} — [[,eq H(Fy, G) has a trivial kernel.

As mentioned above, an independent argument, which builds upon injectivity
properties of the Rost invariant (which themselves rely on a case by case proof) and
upon a theorem of Kato, yields a proof of Conjecture 2 for quasisplit, absolutely
simple, simply connected groups over F with no Eg-factor.
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In the final Theorem 5.5, we revert the process: we use Theorem 4.8 together with
Bruhat—Tits theory to discuss the triviality of the kernel of the Rost invariant for split
simply connected groups over a function field in one variable over a p-adic field. The
result 1s classificationfree; in particular, it applies to Eg.

Throughout this paper, when we write “discrete valuationring”, we mean “discrete
valuation ring of rank one”, and when we write discrete valuation we mean valuation
with value group Z.

2. Why the z-invariant should behave well for function fields over the p-adics

The u-invariant of a field is the maximal dimension of anisotropic quadratic forms
over that field. Let us start with some reminders from the paper [21] by Kato and
Kuzumaki.

Let » > 1 be an integer. We say that a field F is a C? field if the following
condition holds:

For any finite field extension F' of F and any integers d > 1 andn > d”, for
any homogeneous form over F' of degree d in n variables, the g.c.d. of the degrees
of finite field extensions F" [ F' over which the form acquires a nontrivial zero is 1.

The condition amounts to requiring that the F’-hypersurface defined by the form
contain a zero-cycle of degree 1 over F’.

Assume char(F') = 0. For each prime /, let F; be the fixed field of a pro-/-Sylow
subgroup of the absolute Galois group of F. Any finite subextension of Fj/F is of
degree prime to /.

The field F is C,,0 if and only if each of the fields F; is C, in the usual sense (see
[21, Lemma 1]). A finite field extension of a C2-field is C?. The following easy
lemma does not appear in [21].

Lemma 2.1. Let F be a field of characteristic zero. If F is C? then a function field
E = F(X) in s variables over F is Croﬂ.
Proof. Let E’ be a finite field extension of E. After replacing F by a finite extension,
which by assumption is still C?, we may assume that £’ is the function field F(X)
of a geometrically integral F-variety X. The field F; is C;, hence by the classical
transitivity properties (Lang, Nagata), the field F; (X ), function field of X xp Fy,
is a C, y¢-field. Thus any form of degree d over F(X) in n > d”™* variables has
nontrivial solutions in F; (X), hence in a finite extension of F(X) of degree prime to
[. As this applies to each prime /, this concludes the proof. O

It is an open question whether p-adic fields have the C2-property. An equichar-
acteristic zero analogue of that statement is proven in [6].
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Proposition 2.2. Assume that p-adic fields have the C20 -property. Then over any
function field K(X) of transcendence degree r over a p-adic field K, any quadratic
form in strictly more than 2°*" variables has a nontrivial zero.

Proof. By the previous lemma, such a quadratic form has a nontrivial zero in an
extension of odd degree of the field K(X). By a theorem of Springer [23, VII,
Theorem 2.3] this implies that the quadratic form has a nontrivial zero in K(X).

0

3. A local-global principle for isotropy of quadratic forms

Theorem 3.1. Let A be a complete discrete valuation ring with fraction field K and
residue field k of characteristic different from 2. Let X be a smooth, projective,
geometrically integral curve over K. Let F = K(X) be the function field of X. Let g
be a nondegenerate quadratic form over F in at least 3 variables. If for each discrete
valuation of I, the form q is isotropic over the completion of I with respect to this
valuation, then q is isotropic over F.

Proof. Suppose we are given a diagonal quadratic form g = {a;,...,a,) over F =
K(X) which is isotropic over the field of fractions of the completion of any discrete
valuation ring of F.

Let us recall basic notation from [14] and [15].

Let ¢ denote a uniformizing parameter for A.

One may choose a regular proper model X/ /A of X/K such that there exists a
reduced divisor D with strict normal crossings which contains both the support of the
divisor of the ;s and the components of the special fibre of X/A. LetY = X x4 k
denote the special fibre.

For the generic point x; of an irreducible component ¥; of Y, there is an affine
Zariski neighbourhood W; of x; in X such that the restriction of ¥; to WW; is a principal
divisor.

Let Sp be a finite set of closed points of the special fibre containing all singular
points of D and all points which lie on some Y; but not in the corresponding W;.

Choose a finite A-morphism f: X — P j asin[14, Proposition 6.6]. Inparticular,
we have the following three properties. The set .Sy is contained in S, the inverse image
under f of the point at infinity of the special fibre ]P’,‘}. All the intersection points of
two components Y; are in S. Each component Y; contains at least one point of S.

Let U C Y run through the reduced, irreducible components of the complement
of S in Y. Each U is a regular affine irreducible curve over k. Let k[U] be the
ring of regular functions on this curve. This is a Dedekind domain. We thus have
U = Speck[U]. Let k(U ) denote the fraction field of k[U].
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Since X is separated over Spec 4, the intersection of the affine open set W; with
the affine open set f~1(A}) in X is an affine scheme Spec B C X. The ring B is
an integral, noetherian, regular ring of dimension 2. There exists s € B such that
U = Spec(B/s)and t = u.s” € B for some integer r > 1 and v a unit in B>,

Let C be the localisation of B with respect to the multiplicative system S of
elements of B which do not vanish at any point of U. We obviously have C C B.
Letus show C = Ry . Since every point of U 1s in Spec B, the local ring Ox; , of a
point x in U is the local ring By, the localisation of B at the point x. Thus Ry which
is the intersection of the rings Ox » as x varies in U is also the intersection of the
localisations of B at maximal ideals defining the points of U. If a is an element of
Ry, there exist finitely many points x; in U and open neighbourhoods V; of x; in U,
the V; covering U, and functions g; in B nonvanishing on V; such thata = f;/g;,
fi € B. Going modulo s, one concludes that there exist functions /; € B such that
g = Y _; hi.gi isone modulo s, hence does not vanishon U. Thena = (3, k;. fi}/ g,
hence a belongs to C.

Since Ry = C is a localisation of B, it is a regular, noetherian, regular ring. The
inclusion B C C induces an isomorphism B/s ~ C/s.

Let m be a maximal ideal in C'. Assume s ¢ m. Then m + C.s = C. Thus there
exists c € Candd e mwith1 =d + c.s. Thend = 1 — c.s does not vanish on U .
Write d = f/g with f,g € B and g invertible on U. Then f does not vanish on
U, hence d is invertible in C, which is a contradiction. Thus s and ¢ = u.s” belong
to each maximal ideal of C = Ry . By EGA 1V, 7.8.3, one concludes that the 7-adic
completion Ry, which is also the s-adic completion of Ry, is a regular domain ([15],
Notation 3.3).

By definition, F is the field of fractions of Ry . Wehave k[U] = Ry/s = i?\U/s.

For P € S, the completion ffp of the local ring Rp of X at P is a domain ([15],
Notation 3.3). By definition, the field Fp is the field of fractions of Rp.

For p = (U, P) a pair with P € S in the closure of an irreducible component
U of the complement of S in Y, one lets R, be the complete discrete valuation
ring which is the completion of the localisation of Rp at the height one prime ideal
corresponding to U. By definition, the field F}, is the field of fractions of R,,.

By [14, Proposition 6.3], the field I is the inverse limit of the finite inverse system
of fields { Fy, Fp, Fp}.

Let us show that ¢ 1s isotropic over each field Fy.

Each diagonal entry a; of the form ¢ is supported only along U in Spec Ry, thus
is of the form u.s/ where u is a unit in Ry. Hence the quadratic form g over F is
isomorphic to a quadratic form over F of the shape

(b1,...,bp,s.c1,...,8.C)

where b; and ¢; are units in Ry .
By hypothesis, g is isotropic over the field of fractions of the completed local ring
of X at the generic point of U. By a theorem of Springer [23, VI, Proposition 1.9 (2)],
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this implies that the image of at least one of the two forms ¢; = (by,...,b,) or
q» = {c1,-..,¢y) under the composite homomorphism Ry — k[U] — k(U) is
isotropic over k(U).

Since the residue characteristic 1s not 2, each of the forms ¢g; and g, defines a
smooth quadric over Ry . In particular each of them defines a smooth quadric over
k[U]. Since k[U] is a Dedekind domain, if such a projective quadric has a point over
k(U), it has a point over k[U]. Since the quadric is smooth over Ry, a k[U]-point
lifts to an ﬁU—pOint (compare the discussion after [15, Lemma 4.5]). Thus ¢ has a
nontrivial zero over Fr.

Let us show that ¢ 1s 1sotropic over each field Fp. Let P € S. The local ring Rp
of X at P is regular. Its maximal ideal is generated by two elements (x, y) with the
property that any «; is the product of a unit, a power of x and a power of y. Thus
over the fraction field I of Rp, the form g is isomorphic to a form

g1 L x.g2 L yqgs L xy.qs

where each g; is a nondegenerate diagonal quadratic form over Rp. Let R, be the
localization of Rp at the prime ideal (y). This is a discrete valuation ring with
fraction field F and with residue field £ the field of fractions of the discrete valuation
ring Rp/(y). By hypothesis, the form (g; | x.g2) 1 v.(g3 L xq4) is isotropic
over the field of fractions of the completion of R,. By Springer’s theorem [23, VI,
Proposition 1.9 (2)], this implies that over £ the reduction of either (g; L x.g2)
or (g3 | xq4q) is isotropic. Since x is a uniformizing parameter for Rp/(v), by
Springer’s theorem [23, VI, Proposition 1.9 (2)], this last statement implies that over
the residue field of Rp /(y), the reduction of one of the forms ¢y, g2, g3, g4 1S
isotropic. But then one of these forms is isotropic over Rp, hence over the field Fp
which is the fraction field of R P.

The quadric Z/F defined by the vanishing of g is a homogencous space of the
group SO(g) over F, which since g is of rank at least 3 is a connected group. By
Witt’s result, for any field L containing F, the group SO(g)(L) acts transitively on
Z(L). The F-variety underlying SO(g) is F-rational (Cayley parametrization). We
have Z(Fy) # ¥foreach U and Z(Fp) # @ foreach P € S. By [15, Theorem 3.7],
we get Z(F) # @. d

Remark 3.2. Note that in the proof the only discrete valuation rings which are used
are the local rings at a point of codimension 1 on a suitable regular proper model X
of X. See however Remark 3.6.

Remark 3.3. The theorem does not extend to forms in 2 variables. See Remark 4.4
and Section 6.

The following corollary is a variant of a theorem of Harbater, Hartmann and
Krashen [15, Theorem 4.10].
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Corollary 3.4. Let A be a complete discrete valuation ring with fraction field K and
residue field k of characteristic different from 2. Let r > 1 be an integer. Assuine
that any quadratic form in strictly more than 2r variables over any function field in
one variable over k is isotropic.

Then any quadratic form in strictly more than 4r variables over the function field
F = K(X) of a curve X/K is isotropic.

Proof. Let L be a finite field extension of K. This is a complete discrete value field
with residue field a finite extension [ of k. The hypothesis made on quadratic forms
over function fields in one variable over k, in particular quadratic forms over the
field [(z), and Springer’s theorem ([23, VI, Corollary 1.10]) applied to the field /{(¢))
imply that any quadratic form in strictly more than » variables over [ has a zero.
Another application of Springer’s theorem then implies that any quadratic form in
strictly more than 2r variables over L 1is isotropic.

Let g be a quadratic form in n variables over F with n > 4r. By Theorem 3.1
and Remark 3.2, to prove the corollary it suffices to show that g is isotropic over F
for every discrete valuation v with residue field either a function field in one variable
over k or a finite extension of K. By the hypothesis, the preceding paragraph and
Springer’s theorem, the quadratic form g is isotropic over such an F,. O

Corollary 3.4 in its turn is a generalization of the main result of [31]:

Corollary 3.5. If K is a nondyadic p-adic field, any quadratic form in at least 9
variables over a function field in one variable over K has a nontrivial zero.

Remark 3.6. In Theorem 3.1, it is not enough to consider the discrete valuation rings
corresponding to the codimension 1 points of a given regular proper model X /A.

Let p be an odd prime and @ a unit in Z, which is not a square. Rowen, Si-
vatski, Tignol [33, Corollary 5.3] (see also [19]) have shown that the tensor product
D = (a, p) ® (t,a(p — t)) of quaternion algebras over F = Q,(¢) is a division
algebra. The tensor product (a,b) ® (¢, d) of two quaternion algebras over a field
F (char I # 2)is a division algebra, i.e. has index 4, if and only if the associated
Albert form {—a,—b,ab,c,d, —cd) is anisotropic over F. Thus the quadratic form
qg = {—a,—p,ap,t,a(p —1t),—at(p — 1)) is a 6-dimensional anisotropic quadratic
form over F' = Q,(1).

Lat X = ]P’le be the projective line over Z,. The codimension one points v of
X are given by irreducible monic polynomials in Q,[f], by 1/ and by the height
one prime ideal of Z,[t] generated by p. Let F = Q,(¢), and let F,, denote the
completion of F at a discrete valuation v of F.

The residue field at a point v of codimension 1 of X is either a p-adic field orIF, (¢).
Any quadratic form in at least 5 variables over such a field is isotropic. At any prime v
of codimension 1 of X different from p, ¢, (p—t), 1/¢, the form g therefore has a zero
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over F,,. Atv = 1, one of the residue forms is {(—a,—p, ap, ap) which is isotropic
over the residue field Q,, since (—1,a,a) is. Atv = t — p, one of the residue forms
of g is (—a,—p,ap, p) and this form is clearly isotropic. At v = (1/¢), one of the
residue forms of g is (—a, —p, ap, a) which is clearly isotropic. Atv = p, one of the
residue forms over the field IF, () is (—a, t, —at, a) which again is clearly isotropic.
Thus the quadratic form ¢ is isotropic over each field F,, corresponding to a point of
codimension 1 on X.

Theorem 3.1 and the result of [33] show that there must exist another completion
F,,, corresponding to a codimension 1 point on another model of P} , at which the
form 1s anisotropic. )

Note that on ]P’lp, the divisor associated to the quadratic form does not have
normal crossings at the point defined by the ideal (p, ) C Z,[t] (compare the proof
of Theorem 3.1). It is thus natural to blow up the corresponding point. In practice,
one introduces a new variable x and one setsr = px. The quadratic form g now reads
(—a,—p,ap, px,ap(l—x), —ax(1—x)). Atthe prime ideal p of Z,[x], with residue
field F,, (x), the two residue forms are (—a, —ax (1 — x)) and (—1,a,x,a(l — x)).
Since x(x — 1) is not a square in F,(x), the first form is clearly anisotropic. As
for the second one, the two residue forms of (—1, a, x,a(l — x)) at the valuation of
F,(x) with uniformizing parameter 1/x are anisotropic over [F,,, because « is not a
square.

At any closed point of ]P’le different from the point defined by (p,1) C Z,|t]
the form ¢ admits a reduction of the shape {a,—a), hence it is isotropic over the
fraction field of the complete local ring at such a point. The Z,-homomorphism
Zplt] — Zp[x] sending ¢ to px sends the ideal (p,t) of Z,[t] to the ideal p of
Zp[x]. It induces an injective homomorphism of the corresponding complete local
rings, hence an embedding of their fraction fields. The above argument shows that
g 1s anisotropic over the bigger fraction field. It is thus anisotropic over the fraction
field of the completion of Z,[¢] at the maximal ideal (p, ).

Remark 3.7. The following question was raised by D. Harbater. Let A, K, X and
F = K(X) be as in Theorem 3.1. Suppose a projective homogeneous variety Z
over F under an F-rational connected linear algebraic group has points in the field
of fractions of the completions at closed points of all possible regular proper models
of X over A. Does Z admit a rational point over /7 The following example gives a
negative answer to this question, already with Z a quadric.

Let p be an odd prime, let X' /Z, be a smooth curve over Z,, of relative genus at
least 1. Let X/Q,, be its generic fibre and let Y /IF,, be its special fibre. There exist
two quaternion division algebras H; and H, over the function field I, (Y') whose
ramification loci on Y are disjoint. Let g, and g, be the reduced norms attached to
these two quaternion division algebras. Let g1, g2 be lifts of these quadratic forms
to the local ring R of the generic point of ¥ on X. Consider the quadratic form
g = q1 L p.g> over the function field F = Q,(X). This form is isotropic over the



Vol. 87 (2012) Patching and local-global principles 1019

fraction field of the local ring of any closed point P € X. Indeed at any such point
either the form ¢, or the form g» has good reduction.

On the other hand, the form ¢ is anisotropic over F since both g; and g, are
anisotropic over the p-adic completion of the local ring R, whose uniformizing pa-
rameler is p.

Since the genus of X is at least 1, by a well known result of Shafarevich [37]
and Lichtenbaum [24], the curve X /Z,, is an absolute minimal model of X over Z,,.
Thus if X'/Z, is another model, there is a birational Z,-morphism X’ — X. The
argument given above then shows that g is isotropic on the fraction field of the local
ring of any closed point of X’.

Remark 3.8. Let F be a function field in one variable over a p-adic field k.

For quadratic forms in 3 or 4 variables, there is a refined local-global princi-
ple for isotropy of quadratic forms: one only needs to take into account discrete
valuations which are trivial on K. The case of 3 variables is a consequence of a
theorem of Lichtenbaum [25], based on Tate’s duality theorem for abelian varieties
over a p-adic field: for X/ K a smooth projective geometrically connected curve X
over a p-adic field K, if an element of the Brauer group of X vanishes after eval-
uation at each closed point of X, then it is zero. The case of forms in 4 variables
follows from the case of 3 variables by passing over to the discriminant extension
of the 4-dimensional form. This should be compared with Theorem 3.1. As Re-
mark 3.6 shows, such a refined local-global principle does not hold for forms in 6
variables. It actually does not hold for forms in 5, 6, 7 or 8 variables, as the following
argument shows.

Let K be a p-adicfield. Suppose we are given a smooth complete intersection ¥ of
two quadrics given by a system of two quadratic forms f = g = 0in projective space
PZ such that Y(K) = @. By a theorem due independently to Amer (unpublished) and
to Brumer [3], the quadratic form f + rg inn + 1 variables over the field K(r) then
does not have a nontrivial zero. The hypothesis of smoothness of Y ensures that over
any completion F,, of F = K(r) at a place trivial on X, the form f + rg contains a
good reduction subform of rank at least n. Since K 18 p-adic, for n > 5, such a form
has a nontrivial zero. Hence for n > 5, that is from 6 variables onwards, the form
f +rgover F = K(r)has a nontrivial zero in each completion of F at a place trivial
on K. It remains to exhibit such systems of forms as above. By a classical compacity
argument, to prove the existence of such a smooth Y, it is enough to produce an
arbitrary complete intersection of two quadrics in Pg with no K-point. But that is
easy. Let f(x1,x2,x3,x4) be the norm form of the nontrivial quaternion algebra
over K. Then the system f(x1, x2, x3,x4) = 0, f(x5, xg, X7, xg) = 0 defines such
a complete intersection in P7, and one gets suitable systems in lower dimensional
projective space by letting some variables vanish. With f as above, m a suitable
integer, and /; and %, suitable diagonal quadratic forms, one can produce a smooth
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complete intersection without K-point of the shape:

f(x1,x2,x3,x4) + p"h1(x5, x6,x7,x8) =0,

and
P hy(x1, x5, X3, x4) + f(x5,x6,x7,x8) = O.
There also exist smooth intersections of two quadrics
f(x1,x2,x3, X4, x5) = g(X1, X2, X3, Xx4,%x5) =0

in Pg such that at any completion F, of F = K(r) at a place trivial on K the form
f + tg has an F,-point but has no F-point. Here is one example. Let p be a prime,
p=1mod4 Let K = Qp, u € Zy, a unit which is not a square and s > 2 an
integer. Then take

f_x1+ux2+px3+up23xi+p23 2 2

and
g =p" T Iat + p¥g +up®sd + xf + pai.
One immediately checks that this defines a smooth complete intersection Y in IP’ép.

The system f = g = 0hasno primitive solution modulo p?, hence ¥ has no rational
point over Q,. Let v be a place of F trivial on K. If f + rg has good reduction at
v, then its reduction has rank 5 over the residue field, hence is isotropic. The places
v at which f* + rg has bad reduction are 5 distinct rational points of Spec Q,[f]. At
cach of these completions, f + 7g has a good reduction subform whose reduction is
isotropic of rank 4 over Q.

4. A local-global principle for principal homogeneous spaces under certain
linear algebraic groups

Given a scheme X and a smooth X -group scheme G, we let H!(X, G) denote the
first Cech cohomology set for the étale topology on X.
The following lemma is known ([16, Lemma 4.1.3]).

Lemma 4.1. Let A be a discrete valuation ring, K its fraction field, A its comple-
tion and K the field of fractions of A Let G/A be a reductive group (with con-
nected fibres). Then the fibre product of H' (K, G) and H'Y(A, G) over HY(K.G)
is HI(A, G).

Proof. Let G C GL, 4 be a closed embedding of A-groups and let Z /A denote the
quotient GL., 4/G (see [8, Corollary 6.12]). For any local A-algebra B, by [13, I,
3.2.4 and 3.2.5] we have an exact sequence of pointed sets

GL.(B) — Z(B) — HY(B,G) — 1.
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More precisely, the natural map Z(B) — H (B, G) induces a bijection between the
quotient of Z(B) by the leftaction of GL, (B) and the set H!(B, G). That the natural
map H'(A,G) — H'(K, G) is injective is a theorem of Nisnevich [29]: there it
1s proven that the kernel is trivial for any reductive A-group G, a known twisting
argument (an étale cohomology variant of [35], §5.4, p. 47, or [22], 28.9, p. 367)
then implies that the map is injective. Let x € Z(K) be aliftof £ € H(K, G). If
the image of & in H (K, G) comes from H!(A, G), then there exists y € Z(A) and
p € GL,(K) such that p.x = y € Z(K). The set GL,(K) is dense in GL, (K),
the map GL, (K) — Z(K) is continuous, and Z{A) is open in Z (K). We may
thus find g € GL,(K) close enough to p that g.x lies in Z(A). Now g.x lies in
Z(K)N Z(A) = Z(A). O

Unramified classes. Given G/A as above, and £ € H'(K, G), one says that £x is
unramified at A if it lies in the image of H (A, G). By the above lemma, it then comes
from a well defined element £, € H'(A, G). By the same lemma, the condition is
equivalent to requiring that the image of £x in H1(K, G) comes from a well defined
element £7 € H' (A, G). Let k denote the residue class field of A and A. If a class
¢x € H'(K, G)isunramified, one may then consider its evaluation & € H!(k, Gy).
It is given by the image of &4, or of & 7, in H'(k, Gy).

Theoremd.2. Let A be a complete discrete valuation ring, K its field of fractions and
k its residue field. Let X,/ A be a projective, flat curve over Spec A. Assume that X
is connected and regular. Let F be the function field of X.. Let G/ A be a ( fibrewise
connected ) reductive group. Let Ep € HY(F, G) be a class which is unramified at
all codimension 1 points of X.

(i) There exists £ € HY (X, G) whose image in H'(F,G) is £f.

(11) If moreover the (reduced ) components of the special fibre are regular, and for
any such component Y the image &gyy in H'(k(Y), G) is trivial, then at any point
P of codimension 1 or 2 of X, with residue field «(P), the image Ep € H'(k(P), G)
is trivial.

(iii) If moreover there exists a connected linear algebraic group H/ F such that
the F-group (G x4 F) xp H is an F-rational variety, then§p = 1 € H'(F, G).

Proof. (1) By definition of an unramified class, for each point P of codimension 1 on
X there exists £p € H! (Ox,p, G) withimage & over the fraction field I of Ox p.
By Nisnevich’s theorem [29], the class £p is uniquely defined.

There then exists a Zariskiopenset V' C X which contains all points of dimension 1
of X and an element of H!(V, G) with image £ in H'(F, G) (see the proof of
Proposition 6.8 in [8]). Since X is regular and of dimension 2, [8, Theorem 6.13]
shows that one may take V' = X. We thus have a class £ € H'(X, G) with image
£r in H'(F,G). In other terms, we have a torsor E over X under the X-group
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scheme Gy = G x4 X, whose restriction over the generic point of X has class
Er € HY(F,G).

(ii) Let P be a closed point of the special fibre. Let k(P) denote the residue
field at . Let Y be a component of the special fibre which contains P. Since we
assumed the components to be regular, the local ring Oy, p is a discrete valuation
ring. The image of the class of £ in H! (Oy,p, G) is now trivial because its image in
HY(k(Y), G) is trivial (easy case of [29]). Hence the image of & in H'(k(P), G) is
trivial.

Now let P be a closed point of the generic fibre. Let B denote the integral closure
of A C K intheresidue field K(P). This is a complete discrete valuation ring. There
exists an A-morphism Spec B — X which extends the inclusion of P in X. The
image of the special point of Spec B is a point in the special fibre of X/ A4, hence it
lies on some component Y. By the above argument, the evaluation of £ at that point
is trivial. Thus the inverse image of & on Spec B is a G-torsor with trivial special
fibre. By Hensel’s lemma on the complete local ring B, this inverse image 1s trivial.
Hence &p is trivial at P, which is the generic point of Spec B.

(ii1) The hypothesis in (ii) ensures that for each component Y of the special fibre
there exists a dense open set Uy C Y such that the restriction of & to Uy is trivial.

We may assume that each Uy meets no component but Y. The complement of
the union of Uy ’s in the special fibre is a finite set S of points.

By Proposition 6.6 of [14], there exists a finite A-morphism f: X — P with
S c f~'(ock). One now replaces the family of Uy ’s by the family U of irreducible
components of f~!(A ,i). This replaces each Uy by a nonempty affine open set of
Uy and one replaces S by £~ !(oog).

By (ii), for each closed point P of the special fibre, for £ as in (1) we have
E(k(P)) # @. Since E/ X is smooth, this implies E(Rp) # 0, hence E(Fp) #
(notation as in Theorem 3.1 and as in [14]).

For each open set U = Uy, the restriction of £ over U is a trivial Gy -torsor.
Since E/X is smooth, this implies E{Ry) # @ hence E(Fy) # 9.

Since I x o I is a principal homogeneous space under the F-algebraic group
G x4 F, for any field extension L of F, the group G(L) acts transitively on E(L).
An application of [15, Theorem 3.7 and Corollary 3.8] now yields E(F) # 0, i.e.
E=1e H\(F,G). O

Theorem 4.3. Let A be a complete discrete valuation ring, K its field of fractions
and k its residue field. Let X | A be a projective, flat curve over Spec A. Assume that
X is connected and regular. Let F be the function field of X. Let Q be the set of all
discrete valuations on I

(i) Let G/ A be a ( fibrewise connected ) reductive group. If there exists a con-
nected linear algebraic group H/F such that the F-group (G x4 F) xp H is an
F-rational variety, then the restriction map with respect to completions H'(F, G) —
[Tyeq HY(Fy, G) has a trivial kernel.
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(i) The restriction map of Brauer groups Bt F — [],cq Bt Fy has a trivial
kernel.

Proof. Statement (i) immediately follows from the previous theorem. As for state-
ment (i1), it follows from (1) applied to the projective linear groups PGL,,. O

Remark 4.4. Using totally split unramified coverings of models of Tate curves over
a p-adic field (see [34]), one sees that Theorem 4.3 (1) does not in general hold for
nonconnected groups, for example for G = Z /2. A concrete example is given by the
elliptic curve E with affine equation y? = x (1 — x)(x — p) over the p-adic field Q,,
(p odd). The rational function 1 — x is not a square in the function field F = Q,(E),
but it becomes a square in each completion F/, of F7. This example is discussed in
the appendix to this paper (Section 6). This implies that the patching results of [15]
in general do not extend to nonconnected groups.

Lemmad.5. Let A be the ring of integers of a p-adic field K, let k be its residue field.
Let G/ A be a ( fibrewise connected) reductive group. Then there exists a connected
linear algebraic group H/ K such that the K-group (G x4 K) xg H is K-rational.

Proof. Let Z/A be the A-scheme of Borel subgroups of G. This is a proper and
smooth scheme over Spec A. The special fibre Gy = G x4 k is a connected reductive
group over the finite field k. Any such k-group is quasisplit ([35, Chapter III, §2.2,
Theorem 1]). Thus Z(k) # @, hence Z(A) # § by Hensel’s lemma. There thus
exists a Borel A-subgroup B C G. Let 7" C B be its maximal A-torus. Over K,
the K-group Gg = G x4 K contains the open set UT xg U™ xg (T x4 K),
where U C B is the unipotent radical of Bx and U~ is the unipotent radical of
the opposite K-Borel subgroup of By C Gg. Each of these unipotent radicals is
K-1somorphic to an affine space over K.

Let the k-torus Ty = T x4 k be split by a Galois field extension k’/ k. There
exists an exact sequence of k-tori split by K’/ k

l— Qp— Py— Ty — 1,

where Py is a quasitrivial k-torus and Qg is a flasque k-torus (Endo and Miyata,
Voskresenskii, cf. §1 and §5 in [7], §0 in [9]).

Because k is a finite field, the field extension k’ of k is cyclic. By a theorem
of Endo and Miyata (see [7, Proof of Corollary 3, p. 200]), for any flasque k-torus
Oy split by a cyclic extension &’ of k, there exists a k-torus @1 split by k&’ such that
Qo Xk Q1 is k-isomorphic to a quasitrivial k-torus. If we let K’/ K be the cyclic,
unramified extension corresponding to &’/ k, and we let A’/ A be the finite, connected,
¢tale Galois cover given by the integral closure of A C K in K’, the sequence of
characters associated to the above exact sequence enables us to produce a sequence
of A-tori splitby A"/ A,

l- Q0 —-P—->T—1,
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hence in particular a sequence of K-tori split by K’/ K
l—- Qg — Py — Tk — 1,

with Qg a direct factor of a quasitrivial K-torus and Pg a quasitrivial K-torus (for
basic facts on tori over arbitrary bases, including quasitrivial and flasque tori, see [9],
§0 and §1).

Because Q k is direct factor of a quasitrivial K-torus, Hilbert’s theorem 90 implies
that the projection Py — Tk has a rational section, hence Q g xg Tk is K-birational
to Pg, which is a K-rational variety. Now the product Gg xx Qg is K-birational
to UT xg U™ xg Py, whichis a K-rational variety. O

Theorem 4.6. Ler A be the ring of integers of a p-adic field K, let k be its residue
field. Let X/ A be a projective, flat curve over A. Assume that X is connected and
regular, and that the (reduced ) components of the special fibre are regular. Let F be
the function field of X. Let G/ A be a ( fibrewise connected ) reductive group.

If a class in H'(F, G) is unramified at points of codimension 1 on X, then it is
trivial.

Proof. By Theorem 4.2 (i), there exists £ € H(X, G) which restricts to the given
class in H!(F, G). By hypothesis, each component Y of the special fibre is a regular,
hence smooth, projective curve over the finite field £. Letus show that the hypothesis
of Theorem 4.2 (i1) is fulfilled. It is enough to show that for a smooth, projective,
connected curve Y/ k and Gy a connected reductive group the image of H (Y, Gy)
in H'(k(Y), Gg) is trivial. There exists a central extension of algebraic k-groups

1 -0 —GfxP— G — 1,

where G ¢ is a simply connected semisimple k-group, P is a quasitrivial k-torus and
Q is a flasque k-torus ([5, Proposition 3.1]). As recalled in the proof of Lemma 4.5,
because k is finite there exists a k-torus @ such that ¢ X Q1 is a quasitrivial
k-torus. The Brauer group H2(Y, G,,) of a smooth projective curve Y over a finite
fieldis zero. Since this holds over any finite extension of k, this implies H2 (Y, T) = 0
for any quasitrivial k-torus, hence for any k-torus T which is a direct factor of a
quasitrivial k-torus. Thus H?*(Y, Q) = 0.

In the commutative diagram of exact sequences of pointed étale cohomology sets

HYY,G¥ x P)——— HY\(Y,Gy) —— H2(Y, Q)
Hl(k(Y),G;Cc X Py —— HY(k(Y),Gy) — H*(k(Y), Q).

we have H1(k(Y), G) = 1 (Harder [17], [18]) and HY(k(Y), P) = 0 (Hilbert’s
theorem 90), and we have proved H2(Y, Q) = 0. Thus the image of H!(Y, G¢) in
H(k(Y), Gy) is trivial.
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The claimed result now follows from Lemma 4.5 and Theorem 4.2 (iii). O

Remark 4.7. Applying Theorem 4.6 to the projective linear groups PGL,, one re-
covers a proof of Grothendieck’s theorem that the Brauer group of a regular proper
model X /A is trivial. That in its turn is closely related to the statement that an el-
ement of the Brauer group of X which vanishes at each closed point of X is trivial
(Lichtenbaum [25]).

Theorem 4.8. Ler A be the ring of integers of a p-adic field K, let k be its residue
field. Let X/K be a smooth, projective, geometrically integral curve. Let F be
the function field of X. Let Q2 be the set of all discrete valuations on F. Let G/ A
be a (fibrewise connected) reductive group. The restriction map with respect to
completions HY(F, GY — [|,eq H(Fy, G) has a trivial kernel.

Proof. One knows that X/ K admits a model X /A as in Theorem 4.6. Suppose that
£ € H'(F, G)isinthekermel of the above restriction map. By Lemma 4.1, the class &
is unramified at points of codimension 1 on X,. We conclude by an application of
Theorem 4.6. O

Remark 4.9. For any integer n and the A-group G = PGL.,, in the above theorem
one may replace €2 by the set 2 g/g of discrete valuations on £ which are trivial on
K: this is just a reinterpretation of Lichtenbaum’s theorem [25]. That this is not so
for arbitrary G is shown by the following example.

Let p be an odd prime and K = Q,. Let v be a unit in Q, which is not a
square. Let X /K be the elliptic curve y? = x(x + 1)(x — p). Let F = K(X). For
ae€ F* let (a) € F*/F*2 = HY(F,Z/2). Since the divisor of x € F* on X is
divisible by 2, the cup-product & = (x) U (u) U (p) € H3(F,Z/2) is unramified
at places v of F trivial on K, hence is trivial in the completion F, at such a place.
The prime p defines a place on F, the residue field is the function field IF,, (¥'), where
Y is the curve defined by y? = x?(x + 1) over F,, which is birational to the curve
z2 = x + 1.The residue of « at that place is (zZ — 1) U (u) € H*(F,(Y), Z/2), and
this class is nonzero, since it has a nontrivial residue at z = 1.

This implies: for G the split group of type G, the restriction map

HY(F.Gy— || H'F,.G)

UEQF/K

has a nontrivial kernel.

Lichtenbaum’s theorem also implies that for any central simple algebra over D
over K, and G the F-group PGLp, the above map has a trivial kernel. The above
example shows that this is not so for the K-group G = SLp, where D is the quaternion
algebra (u, p) over K = Q,.
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Remark 4.10. Let A be the ring of integers of a p-adic field K. Let G/A be a
(connected) reductive group. Let FF = K(X) be the function field of a smooth geo-
melrically integral curve over K. Let X be aregular model of X over A. Assume that
the fibres of G — Spec A are simply connected (this 1s equivalent to the assumption
that the K-group G x4 K is simply connected). Then for £ € H'(F,G) and x a
point of codimension 1 on X, defining a valuation v on F with associated completion
F,, the conditions

(i) & is unramified at x (as in Theorem 4.6)

(i) £ has trivial image in H'(F,, G) (as in Theorem 4.3 (i) and Theorem 4.8)
are equivalent.

Indeed, for any point x of codimension 1 on a regular model X, with complete
local ring Ay and residue class field « (x), we have H(Ay, G) ~ H'(x(x).G)
(Hensel’s lemma) and H ! (k(x), G) = 1 whether x lies on the generic fibre of X /A
(Kneser, Bruhat-Tits) or x is a generic point of a component of the special fibre of
X /A (Harder [17], [18]).

5. Connection to Rost’s invariant and a theorem of Kato

For any simply connected, absolutely almost simple semisimple group G over a field
F of characteristic zero, we have Rost’s invariant (see [22, Chapter VII, Section 31]):

Rg: HY(F,G) — H*(F,Q/Z(2)).

In a number of cases, this map has a trivial kernel. Such is the case if G = SL(D)
for D/ F a central simple algebra of squarefree index (Merkurjev—Suslin). Such is
the case for quasisplit groups of type %Dy (]22, 40.16], |4, Theorem 6.14]) or of
type Es, E7 (Garibaldi [10, Theorem 0.1], see also [4, Theorem 6.1]). Such is the
case for the split group G2 ([36, Theorem 9]). Such is the case for the split group £
([36, §9.4]). It is not reasonable to hope for a positive answer for an arbitrary such
G, as examples with G = Spin(g) show.

For fields of cohomological dimension at most 2, the triviality of the kernel of
the Rost invariant R¢ is none other than Serre’s conjecture II for G, which in this
generality is still unknown for G of type Es.

Remark 5.1. For fields of cohomological dimension 3 and G arbitrary, R may have
a nontrivial kernel, as shown by the following example due to Merkurjev, and which
we publish with his kind permission. There exists a field k of characteristic O and of
cohomological dimension 2 over which there exist a central simple division algebra
A = H; ®; H, with H; and H, quaternion algebras ([27, Theorem 4]). Let I be
either k(r) or k((r)). Then F has cohomological dimension 3. The reduced norm
of A is a homogeneous form of degree 4 without a zero over k. Thus 12 € F is not
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a reduced norm of 4 ®y F. That is, the class of * in F*/Nid(4%) = H'(F, G),
with G = SL{(A), is nontrivial. Let [A] € H?*(k, u4) C Brk be the class of A.
By [22, p. 437] (for more details, see [26, p. 138]), the Rost invariant Rg sends
t?> € H'Y(F,Gp) to the cup-product 1> U [4] € H3(F,u$* c H3(F,Q/Z(2))
(herer? istakenin F*/ F** = H'(F, u4)). Since 2[A] = 0 € Br k, this cup-product
is zero.

When G is quasisplit, not of type Eg, the situation is much better. The following
proposition is certainly known to specialists.

Proposition 5.2. Ler F be a field of characteristic not 2 and of 2-cohomological
dimension at most 3. Let qo be a quadratic form over I which is isotropic and
of dimension at least 5. Let G = Spin(qp). Then the kernel of the Rost map
HY(F,G) — H*(F,Q/Z(2)) is trivial.

Proof. Let
1 — 12 — Spin(qo) — SO(go) — 1

be the central isogeny from the Spin group to the special orthogonal group. This
gives rise to an exact sequence of pointed Galois cohomology sets

SO(go)(F) 5 H'(F. ju3) > H'(F. Spin(q0)) > H'(F.S0(qo0)).

For £ € H'(F,Spin(qp)), the class j(£) corresponds to a quadratic form g; hav-
ing dimension dim(gy) = dim(g), discriminant disc(go) = disc(q1) and Clifford
invariant c(go) = c(g1). Then in the Witt group W(F) the class g; L —gqo is con-
tained in the third power 13(F) of the fundamental ideal and its Arason invariant
es(q1 L —qo) € H3(F, u2), which coincides with the Rost invariant of £ (22,
p. 437]), is zero. Now the hypothesis ¢d> (F) < 3 implies that H*(F, jt5) = 0,
I*(F) = 0 and that e3: [3(F) — H?(F, jt5) is an isomorphism ([28], [32], and
[1, Corollary 4, Theorem 2]). The two forms g and ¢, have the same dimension. By
Witt simplification they are isomorphic. Thus j(§) = 1, hence § = i(x) for some
ne HY(F, it5). As gy is isotropic, the connecting map o: SO(gg) — H(F, i) =
F*/F*2_ which is the spinor map, is onto. Thus & = 1 € H(F, Spin(qo)). O

Theorem 5.3. Let F be a field of characteristic zero and of cohomological dimension
at most 3. Let G/ F be an absolutely almost simple, simply connected, quasisplit
semisimple group. Assume that G is not of type Eg. Then the kernel of the Rost map
HY(F,G) — H*(F,Q/Z(2)) is trivial.

Proof. The cases ' A, and C, are trivial, since in these cases H!'(F,G) = 1 over
any field F. For quasisplit groups of type 34Dy, Ee, E7, G, and F, the kemel is
trivial over any field F of characteristic zero (see references above).
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Let G be of type ?A,, quasisplit, n > 2. There is a quadratic extension L/F
and an L/ F-hermitian form /% of dimension # 4 1 such that G = SU(%). Further
G quasisplit implies that G 1is isotropic ([2, 20.6 (ii), p. 225]), which in turn implies
that the hermitian form / is isotropic ([2, 23.8, p. 264]). Let V be the underlying
space of i. Then the map g: V — F given by g(v) = A(v, v) is a quadratic form
of dimension 2n 4 2 over I’ which is isotropic. Further there is a homomorphism
a: SU(h) — Spin(g) such that the composite map

HY(F,SU(h) — H'(F,Spin(q) — H*(F,Q/Z(2)),

is the Rost invariant for SU (%) where the first map is induced by o and has trivial
kernel, and the second one is the Rost invariant for Spin(g) ([22, 31.44, p. 438]). The
triviality of the kernel of the Rost invariant in this case follows from Proposition 5.2.

Let G be of type By.n > 2, or 1 D, or 2Dy, n > 3, which is quasisplit. Then
G is isomorphic to Spin(q ) for some quadratic form g over F of dimension at least
5; further, G quasisplit implies that G is isotropic, which in turn implies that the
quadratic form ¢ is isotropic ([2, 23.4, p. 256]). In this case the triviality of the kernel
of the Rost invariant follows from Proposition 5.2.

This completes the proof of the triviality of the kernel of the Rost invariant for all
quasisplit groups not of type Eg. O

By combining Theorem 5.3 and a theorem of Kato, one gets a proof of Conjecture 2
of the introduction for quasisplit groups without Eg-factors. Thatproofis independent
of the other sections of the present paper.

Theorem 5.4. Let K be a p-adic field. Let X/ K be a smooth, projective, geometri-
cally integral curve. Let F = K(X) be the function field of X. Let Q denote the set of
discrete valuations on the field I'. Given v € Q we let F), denote the completion of I
atv. Let G/ F be a quasisplit, simply connected, absolutely almost simple group with-
out Eg factor. Then the kernel of the diagonal map H'(F,G) — [[,cq H' (Fu.G)
is trivial.

Proof. The field F = K(X) is of cohomological dimension 3. The result immedi-
ately follows from the combination of Theorems 5.3 and a theorem of Kato [20]: For
X /K as in the statement of the theorem, the kernel of the diagonal restriction map

H(F,Q/Z(2)) - [ | H*(F,,Q/Z(2))
vefd

is trivial (here it is enough to consider the v’s associated to the codimension 1 points
on a regular proper model of X over the ring of integers of K). O

The hypotheses of the above theorem should be compared with those of Theo-
rem 4.8, whose proof builds upon the work of Harbater, Hartmann and Krashen.
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Using Theorem 4.8 together with Bruhat-Tits theory, we now show that Theo-
rem 5.3 also holds for groups of type Eg over F(X).

Theorem 5.5. Let A be the ring of integers of a p-adic field K. Let X / K be a smooth,
projective, geometrically integral curve. Let F = K(X) be the function field of X.
Let G be an absolutely almost simple, simply connected semisimple group over A. If

G is of type Eg, assume that the residue characteristic is different from 2, 3 and 5.
Then the kernel of the Rost map H'(F,G) — H*(F,Q/Z(2)) is trivial.

Proof. As explained in the proof of Lemma 4.5, the group G/A is automatically
quasisplit.

We may restrict the set of places under consideration to the set of points of codi-
mension 1 on a regular proper model X /A. Let O, be the ring of integers in F,,. The
residue field ¥ = &, at such a place is either a p-adic field or a function field in one
variable over a finite field.

Let I7)" be the maximal unramified extension of F,,. At a prime / different from
the residue characteristic, the /-cohomological dimension of F" is 1, at the residue
characteristic it 1s at most 2 (|35, Chapter 11, §4.3, Proposition 12, p. 95]).

From this we deduce H ! (F™, G) = 11if the residue characteristic is not a torsion
prime of G ; this would hold even if the connected group G was not simply connected,
as follows from Steinberg’s theorem, see [36, Theorem 4”].

In the general case, 1.e. when the residue characteristic is a torsion prime and the
quasisplit group G is simply connected and not of type Eg, we resort to the known
(case by case) theorem that for such a group over a field L of characteristic zero
and of cohomological dimension 2, we know H (L, G) = 1 (Merkurjev and Suslin,
Bayer-Fluckiger and Parimala, Gille, Chernousov, see [36] and [12]). Under our
hypotheses, we thus have H'(F™/F,,G) > H(F,,G).

By Theorem 4.8, to prove the theorem it is enough to show that for any v as above
the kernel of the map H'(F,, G) — H3*(F,,Q/Z(2)) is trivial.

Let§ € HY(F™/F,, G). Since G/A is a reductive A-group, Bruhat-Tits theory,
as developed in Gille’s paper [11, Theorem 3’, Theorem 4] shows that there exist
a parahoric subgroup P over O, and a class n € H(O,, P) with the following
properties.

The image of 7 under the natural map H'(O,, P) — HY(F™/F,,.G) is £.

The reductive quotient M/x of P x ¢, « is part of an exact sequence of reductive
groups over the field «:

l1-G,, > M - M — 1,

where M'/« is the product of a simply connected semisimple group and a torus which
18 a direct factor of a quasitrivial torus.
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Let us consider the composite map
HY(F}"/F,, G) — Ker[H*(F,, Q/Z(2)) — H(F}", Q/Z(2))]
— H?(k,Q/Z(1)) = Br(x),

where the map from H 3 to H? is the usual residue map for primes different from the
residue characteristic, and the Kato residue map in general. The image of & under
this composite map coincides with the image of n under the composite map

HY0,,P) > HYk, P x0, k) — H'(k, M) — H?(k, Gyy) = Br(k),

where the map H'(x, M) — H?(x,Gy,) is the boundary map from the above se-
quence.

Since « is either a p-adic field or a function field in one variable over a finite field,
Hl(k, M’y = 0. Hence the map H!(k, M) — Br(k) has trivial kernel.

If the image of £ € HY(F,,G) = HY(F™/F,,G)in H3(F,, Q/Z(2)) is zero,
we conclude that 7 = 1 hence that £ = 1. O

6. Appendix

In this appendix we present a down-to-earth computation for the phenomenon men-
tioned in Remarks 3.3 and 4.4. Let p be an odd prime. Let £ be the elliptic curve
over Q, defined by the affine equation

y? =x(1-x)(x — p). (A1)
Let F' = Q,(FE) be its function field. We clearly have
x+(1—-x)y=1 x—-Gx—-—p=p; I—-x)+x—-—p)=1-—p. (A2)

Let A C F be a proper discrete valuation ring, let v denote the valuation, A4, the
completion of A and F,, the fraction field of A,, i.e. the completion of F at v. Let
k be the residue field of A. Let 7 be uniformizing parameter for A. If v(p) = 0,
the field & is a finite extension of Q,. If v(p) # 0 then v induces on Q,, a proper
valuation and v{p) > 0. In both cases, 1 — p is a square in & hence is a unit which
is a square in A,.

Claim. The function 1—x isnot a square in F, but itis a square in each completion I,.

That (1 — x) is not a square is proved by considering the quadratic extension
F/Qp(x): the kernel of the restriction map on square classes is Z /2, spanned by the
class of x(1 — x){(x — p).

Assume v(1 —x) < 0. Then v(x) = v(1 —x) = v(x — p) hence (A1) gives that
each of these is even. Let x = u/7?" with u € A* and n > 0. From (Al) we get
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that —u3, hence —u is a square in A,. Now 1 —x = (72" — u)/7?" is a square in
K,. Assume v(l — x) > 0. Then v(x) = Oand v(x — p) = 0. From (A1) we get
1 —x = ux?" with v a unit and # > 0. Then from (A2) we get that x and x — p
are squares in A,. But then (Al) shows that 1 — x 1s a square in K,,. Now assume
v(l—x)=0. If v(x) > 0 or v(x — p) > 0, then (A2) implies that 1 — x is a square
in A,. We are reduced to the case where v(l — x) = v(x) = v(x — p) = 0. If
v(p) > 0, then x(x — p) is a square in A,,. From (A1) we deduce that 1 — x is a
square in A,,.

We are reduced to the case v(1 — x) = v(x) = v(x — p) = 0, hence v(y) = 0,
and v(p) = 0. That is, the valuation v corresponds to a closed point M on the
elliptic curve E over @, (the trivial valuation is excluded). The ring A is the local
ring of £ at that point. The point M lies on the affine curve y? = x(1 — x)(x — p).
Let k/Qp be the corresponding finite field extension. Thus & is the residue ficld
of A,. Let B be the ring of integers of k. The reductions of x and y modulo the
maximal ideal of A give rise to elements «¢,b € k with 5(1 — b)(b — p)} # 0 and
a?> = b(1 — b)(b — p) # 0. The element 1 — x is a square in A, if and only if
1 — b is a square in k. To show that this is indeed the case, we do exactly the same
computations in k, with respect to the valuation w of k, which satisfies w(p) > 0, as
we had done in F. The computation is identical, it stops at the analogue of the end
of the previous paragraph.
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