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On the Kazhdan–Lusztig order on cells and families

Meinolf Geck

To Nicolas Spaltenstein on the occasion of his 60th birthday

Abstract. We consider the set Irr.W / of complex) irreducible characters of a finite Coxeter
groupW The Kazhdan–Lusztig theory of cells gives rise toapartition of Irr.W / into “families”
and to a naturalpartial order6LR on these families. Followingan idea ofSpaltenstein,we show
that 6LR can be characterised and effectively computed) in terms of standard operations in
the character ring of W If, moreover, W is theWeyl group of an algebraic group G, then 6LR
can be interpreted, via the Springer correspondence, in terms of the closure relation among the

“special” unipotent classes of G.
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1. Introduction

Let Irr.W / be the set of complex) irreducible characters of a finite Coxeter group
W There is a natural partition Irr.W / D F F Irr.W j F / where F runs over the
two-sided cells of W in the sense of Kazhdan–Lusztig [23]. This partition is an
important ingredient in the fundamental work of Lusztig [26] on the characters of
reductive groups over finite fields. Using some standard operations in the character
ring of W truncated induction from parabolic subgroups, tensoring with the sign
character), Lusztig has defined another partition of Irr.W / into so-called “families”.
As shown in [26, Chap. 5] see also [31, Chap. 23]), these two partitions turn out to
be the same. The proof relies on deep results from algebraic geometry which provide
certain “positivity” properties of the Kazhdan–Lusztig basis [23] of the associated

Iwahori–Hecke algebra.

Now, the theory of Kazhdan–Lusztig cells gives rise not only to the partition
Irr.W / D FF Irr.W j F /, but also to a natural partial order 6LR on the pieces

in this partition. For example, if W is the symmetric group Sn, then Irr.W / is
parametrized by the partitions of n, all families are singleton sets, and 6LR corre-
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sponds to the dominance order on partitions; see [14] and the references there. This
is the prototype of a picture which applies to any finite W

The main purpose of this paper is to obtain a better understanding of the partial
order 6LR. This will be relevant in a number of applications; we just mention, for
example, that 6LR is a crucial ingredient in defining a “cellular structure” in the
sense of Graham–Lehrer [22]) of the associated Iwahori–Hecke algebra [15]. Our
first main result will show that 6LR can be characterised in a purely elementary
way in terms of standard operations in the character ring of W induction, truncated
induction, tensoring with sign), similar in spirit to Lusztig’s definition of families.
In particular, we obtain an efficient algorithm for computing the partial order, which
can be implemented in CHEVIE [17]. We conjecture that this remains valid in the
more general framework of Lusztig [25], [31] where “weights” may be attached to
the generators ofW We provide both theoretical and experimental evidence for this
conjecture.)

The main inspiration for this work is a paper by Spaltenstein [36]. By pushing the
ideas in [36] a little bit further, and combining them with the above characterisation
of 6LR, we obtain our second main result:

If W is the Weyl group of an algebraic group G, then the partial order 6LR on
the families of Irr.W / can be interpreted, via the Springer correspondence, in terms
of the closure relation among the “special” unipotent classes of G.

This paper is organised as follows. We recall the basic definitions on cells and

families in Section 2. Here, we work in the general framework of Iwahori–Hecke
algebras with unequal parameters, taking into account “weight functions” as in [25],
[31]. In Definition 2.10 and Conjecture 2.12, we propose our alternative description
of 6LR in the form of an equivalence). In Section 3, we prove at least one
implication in that conjectured equivalence in the general case of unequal parameters; see

Proposition 3.4. This is followed by the discussion of some examples in which the
reverse implication can be seen to hold by elementary methods. In Section 4, we
concentrate on the equal parameter case and complete the proof of Conjecture 2.12
in that case. This allows us to discuss in Section 5 the relation with unipotent classes

and the work of Spaltenstein [36].
It would be interesting to understand how our results in Section 5 are related

to work of Bezrukavnikov [4, Theorem 4]. In a completely different direction, by
work of Broué, Chlouveraki, Kim, Malle, Rouquier see [8]), there is also a notion of
“families” for the irreducible characters of finite complex reflection groups. It would
be interesting to see if it is possible to define a partial order on these families as well.
As Jean Michel has pointed out to me, one cannot simply adopt the definitions in

this paper.)
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2. Kazhdan–Lusztig cells and families

Let W be a finite Coxeter group, with generating set S and corresponding length
function l W W Z>0. Let be an abelian group written additively) and LW W

be a weight function, that is, we have L.ww0/ D L.w/ CL.w0/ whenever w; w0 2
W are such that l.ww0/ D l.w/ C l.w0/. Let F C be a splitting field for
W and A D F OE be the F -vector space with basis fvg j g 2 g. There is a

well-defined ring structure on A such that vgvg
0

D vgCg
0

for all g; g0 2 Let
H D HA.W; S; L/ be the corresponding generic Iwahori–Hecke algebra over A with
parameters fvs j s 2 Sg where vs WD vL.s/ for s 2 S. This is an associative algebra
which is free as an A-module, with basis fTw j w 2 W g. The multiplication is given
by the rule

TsTw D ´Tsw if l.sw/ > l.w/;
Tsw C vs v 1

s /Tw if l.sw/ < l.w/;

where s 2 S and w 2 W See [21], [25], [31] for further details.
We assume that there exists a total ordering 6 of which is compatible with the

group structure, that is, whenever g; g0; h 2 are such that g 6 g0, then g C h 6
g0Ch. This implies thatAis an integral domain; we denote byK itsfield of fractions.
Throughout this paper, we assume that

L.s/ > 0 for all s 2 S:

We define >0 D fg 2 j g > 0g and denote by ZOE >0 A the set of all integral
linear combinations of termsvg whereg > 0. The notationsZOE >0 ZOE 60 ZOE <0
have a similar meaning.

Example 2.1. Let D Z and 6 be the natural order. This is the setting of Lusztig

[31].) Then A is nothing but the ring of Laurent polynomials over F in the indeterminate

v. We have K D F.v/. If, furthermore, we have L.s/ D 1 for all s 2 S, then
we say that we are in the “equal parameter case”.

Returning to the general case, let fCw j w 2 W g be the Kazhdan–Lusztig basis

of H; see [23], [25], [31]. The element Cw is characterised by the property that
a) it is fixed by a certain ring involution of H and b) it is congruent to Tw modulo

Py2W
ZOE >0 Ty. This is the original convention used in [23], [25].) Let 6L, 6R,

6LR be the Kazhdan–Lusztig pre-order relations on W ; for any w 2 W we have

HCw X
ZOE Cy; CwH ZOE Cy; HCwH

y6Lw y6RwX y6LRwX
ZOE Cy:

Let L, R, LR be the associated equivalence relations on W Thus, given

x; y 2 W we have x L y if and only if x 6L y and y 6L x. Similarly for
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R and LR.) The corresponding equivalence classes are called “left cells”, “right
cells” and “two-sided cells”, respectively. Note that all these notions depend on the
weight function L and the total ordering of

Let C be a left cell and set OEC A WD IC=yIC where

IC D A-spanfCy j y 6L w for some w 2 Cg

yIC D A-spanfCy j y 6L w for some w 2 C, but y 62 Cg:

Since IC and yIC are left ideals in H, the quotient OEC A is a left H-module with a

canonical A-basis indexed by the elements of C. Extending scalars from A to F via
the F-algebra homomorphism 1 W A F sending all vg to 1 g 2 we obtain a

left F OEW -module OEC 1 WD F A OEC A. We have a direct sum decomposition of left
F OEW -modules

F OEW Š MC left cell in W

OEC 1:

Now let us denote by Irr.W / the set of irreducible representations ofW over F up to
isomorphism); recall that F is assumed to be a splitting field forW Let E 2 Irr.W /.
Since we have the above direct sum decomposition, there exists a left cell C such
that E is a constituent of OEC 1; furthermore, all such left cells are contained in the
same two-sided cell. This two-sided cell, therefore, only depends on E and will be
denoted by FE. Thus, we obtain a natural surjective map

Irr.W / fset of two-sided cells of W g; E7! FE:

See Lusztig [26, 5.15] for the equal parameter case; the same argument works in
general.) It will be useful to introduce the following notation. LetX; Y be any subsets

of W Then we write X 6LR Y if x 6LR y for all x 2 X and y 2 Y

Definition 2.2 Lusztig [26]). Let E;E0 2 Irr.W /. We write E 6LR E0 if FE 6LR
FE0 This defines a pre-order relation on Irr.W /. We write E LR E0 if E 6LR E0
and E0 6LR E or, equivalently, if FE D FE 0 Thus, we obtain a partition

Irr.W / D GF two-sided cell

Irr.W j F /;

where Irr.W j F / consists of all E 2 Irr.W / such that FE D F

Remark 2.3. Let w0 2 W be the longest element and " be the sign representation of
W If C is a left cell in W then so is Cw0 and we have

OECw0 1 Š OEC 1 ":
See Lusztig [26, Lemma 5.14] and [10, Cor. 2.8].) Furthermore, multiplication by

w0 reverses the relations 6L, 6R and 6LR; see [31, Cor. 11.7]. It follows that, for
all E;E0 2 Irr.W /, we have:



Vol. 87 2012) On the Kazhdan–Lusztig order on cells and families 909

a) FE " D FE w0.

b) E 6LR E0 if and only if E0 " 6LR E "
Thus, tensoring with " induces an order-reversing bijection on the sets Irr.W j F /.

In order to describe Lusztig’s alternative characterisation of the sets Irr.W j F /,
we need to introduce some further notation. Recall that K is the field of fractions of

A D F OE By extension of scalars, we obtain a K-algebra HK D K A H which
is known to be split semisimple; see [21, 9.3.5]. Furthermore, by Tits’ Deformation
Theorem, the irreducible representations of HK up to isomorphism) are in bijection
with the irreducible representations of W ; see [21, 8.1.7]. Given E 2 Irr.W /, we
denote by Ev the corresponding irreducible representation of HK. This is uniquely
characterised by the following condition:

1.trace.Tw; Ev// D trace.w; E/ for all w 2 W ;

where 1 W A F is as above. Note also that trace.Tw; Ev/ 2 A for all w 2 W

Definition 2.4 Lusztig). Given E 2 Irr.W /, we define

aE WD minfg 2 >0 j vgtrace.Tw; Ev/ 2 F OE >0 for all w 2 W g

Furthermore, we define numbers cw;E 2 F by

trace.Tw; Ev/ D cw;E v aE
C combination of terms vg where g > aE:

In theequal parameter case, these definitions were given by Lusztig[26, 5.1.21)].
The same definitions work in general; see also [10]). The following result shows that
the numbers cw;E can, in fact, be used to detect the two-sided cell FE.

Lemma 2.5 Lusztig). We have ¿ ¤ fw 2 W j cw;E ¤ 0g FE for all E 2
Irr.W /.

See Lusztig [26, Lemma 5.2] for the equal parameter case; the same arguments
also work in general. For more details in the general case, see [10, Prop. 4.7].)

Now let I S and consider the parabolic subgroup WI W generated by

I Then we have a corresponding parabolic subalgebra HI H. By extension of
scalars from A to K, we also have a subalgebra HK;I D K AHI HK. The above
definitions i.e., aE, cw;E, : : :) apply to the irreducible representations ofWI as well.
Denote by IndSI the induction of representations, either from WI to W or from HI
to H.

Lemma 2.6 Lusztig). Let M 2 Irr.WI/.
a) If E 2 Irr.W / is a constituent of IndSI M/, then aE > aM.
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b) There exists some E 2 Irr.W / which is a constituent of IndSI M/ and such that
aE D aM.

SeeLusztig [24] in the equal parameter case; the same argumentswork in general.
See [10, Lemma 3.5] for details.)

We nowrecallLusztig’s definitionof families. LetE 2 Irr.W / andM 2 Irr.WI /.
We write M L E if E is a constituent of IndSI M/ and aE D aM.

Definition2.7 Lusztig[26, 4.2]). The partition of Irr.W / into“families” is defined as

follows. WhenW D f1g, there isonly one family; it consists of theunit representation
of W Assume now that W ¤ f1g and that families have already been defined for all
proper parabolic subgroups of W Then E;E0 2 Irr.W / are said to be in the same

family for Irr.W / if there exists a sequence E D E0; E1; : : : ; Em D E0 in Irr.W /
such that, for each i 2 f1;2; : : : ;mg, the followingcondition is satisfied. Thereexists
a subset Ii ¤ S and M0i ; M00i 2 Irr.WIi /, where M0i M00i belong to the same family
of Irr.WIi /, such that either

M0i L Ei 1 and M00i L Ei

or

M0i L Ei 1 " and M00i L Ei ":

Note that it is clear from this definition that tensoring with the sign representation
permutes the families.

We can now state the following remarkable theorem. One of its applications is
that it facilitates the explicit determinationof the partition of Irr.W / inDefinition 2.2;
see Lusztig [26, Chap. 4].

Theorem 2.8 Barbasch–Vogan, Lusztig [26, 5.25]). Assume that W is a finite Weyl

group and that we are in the equal parameter case. Let E; E0 2 Irr.W /. Then

E LR E0 see Definition 2.2) if and only if E, E0 belong to the same family see

Definition 2.7).

Remark 2.9. The “if” part of the above result is proved by elementary methods; see

[26, Chap.5]. OurProposition 3.4 belowprovides a newproof for this “if” part, which
also works in the general multi-parameter case. The proof of the “only if” part in [26]
relies on deep results from the theoryof primitive ideals in enveloping algebras which
also explains the restriction toWeyl groups). An alternative approach is provided by

[31, 23.3] and [13] where it is shown that the above theorem holds for any finite W
and any weight function LW W assuming that Lusztig’s conjectures P1–P15
in [31, 14.2] are satisfied. This is known to be true for all finite Coxeter groups in
the equal parameter case see the comments on the proof of Theorem 4.1 below); it
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is also true for a number of situations involving unequal parameters. For a summary
of the present state of knowledge, see [16, §5] and the references there.

Our aim is to find an alternative description of the pre-order 6LR on Irr.W /, in
the spirit of Lusztig’s definition of families. The following definition is inspired by
Spaltenstein [36].

Definition2.10. We define arelation on Irr.W / inductively as follows. IfW D f1g,
then Irr.W / only consists of the unit representation and this is related to itself. Now
assume that W ¤ f1g and that has already been defined for all proper parabolic
subgroups of W Let E; E0 2 Irr.W /. Then we write E E0 if there is a sequence

E D E0;E1; : : : ;Em D E0 in Irr.W / such that, for each i 2 f1; 2; : : :; mg, the
following condition is satisfied. There exists a subset Ii ¤ S andM0i ; M00i 2 Irr.WIi /,
where M0i M00i within Irr.WIi /, such that either

Ei 1 is a constituent of IndSIi M0i/ and M00
i L Ei

or

Ei " is a constituent of IndSIi M0i/ and M00
i L Ei 1 ":

We note that, as in [26, 4.2], it is enough to require that, in the above definition,
we have jIij D jSj 1 for all i that is, each WIi is a maximal parabolic subgroup).

Remark 2.11. Let E;E0 2 Irr.W /. It is clear from the above definition that we have

the following implications:

a) If E, E0 belong to the same family then E E0 and E0 E.
b) If E E0, then we also have E0 " E "

The reverse implication in a) does not seem to follow easily from the definitions.
In Proposition 4.4, we will establish that reverse implication in the equal parameter
case; the general multi-parameter case requires further work and will be dealt with
in [19, Cor. 9.2].

By analogy with Theorem 2.8, we would now like to state the following:

Conjecture 2.12. Let E; E0 2 Irr.W /. Then E 6LR E0 see Definition 2.2) if and

only if E E0 see Definition 2.10).

In Section 3, we will prove the “if” part of the conjecture by a general argument
for any weight function LW W as above). In particular, as already announced

in Remark 2.9, this will provide a new, completely elementary proof of the “if” part
of Theorem 2.8. We also verify in some examples that the reverse implications hold.
In Section 4, we will prove the “only if” part of the conjecture by a general argument,
assuming that we are in the equal parameter case.
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3. Two-sided cells and induced representations

We keep the setting of the previous section, where W is a finite Coxeter group and

LW W is any weight function such that L.s/ > 0 for all s 2 S.
Given a subset I S, let WI be the corresponding parabolic subgroup of W and

XI be the set of distinguished left coset representatives of WI in W Thus, we have

a bijection XI WI W d;w/ 7! dw, where l.dw/ D l.d/Cl.w/; see §2.1 of

[21]. In the following discussion, we shall make frequent use of the main result of
[11], concerning the induction of cells from WI to W

Lemma 3.1. Let x 2 W and write x D dw where d 2 XI and w 2 WI Let

E 2 Irr.W / be a constituent of OEC 1 where C is the left cell of W which contains x;
in particular, x 2 FE. Then there exists some M 2 Irr.WI/ such that w 2 FM and

E is a constituent of IndSI M/.

Proof. Let C0 be the left cell in WI which contains w. Then, by [11, Theorem 1],
we have C XIC0; furthermore, by [13, Lemma 5.2], OEC 1 is a direct summand of
IndSI OEC0 1/. Hence, since E 2 Irr.W / is a constituent of OEC 1, there exists some

M 2 Irr.WI / such thatM is a constituent of OEC0 1 and E is a constituent of IndSI M/.
Since w 2 C0, we also have w 2 FM, as required.

Recall that, for any subsets X; Y of W we write X 6LR Y if x 6LR y for all
x 2 X and y 2 Y

Lemma 3.2. Let E 2 Irr.W / and M 2 Irr.WI / be such that E is a constituent of
IndSI M/. Then we have FE 6LR FM.

Proof. LetC0 be a left cell inWI suchthatM is a constituent of OEC0 1. As in theabove
proof, by [11, Theorem 1], we have a partition XIC0 D F

m
iD1 Ci where C1; : : : ; Cm

I OEC0 1/ Dare left cells of W Furthermore, by [13, Lemma 5.2], we have IndS

L
m
iD1OECi 1. Hence, since E is a constituent of IndSI M/, there exists some i such

that E is a constituent of OECi 1. Let C WD Ci Now note that l.xw/ D l.x/ C l.w/
for all x 2 XI and w 2 WI This length condition implies that xw 6L w for all
x 2 XI and w 2 WI ; see [31, Theorem 6.6]. Hence, we have w 6L w0 for all w 2 C
and w0 2 C0. Since C0 FM and C FE, this implies that FE 6LR FM, as

required.

A special case of the following result appeared in [14, Lemma 3.6].

Lemma 3.3. Let E 2 Irr.W / and M 2 Irr.WI / be such that M L E. Then we

have FM FE.
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Proof. The algebra H is symmetric, with trace form W H A given by T1/ D 1
and Tw/ D 0 for 1 ¤ w 2 W The sets fTw j w 2 W g and fTw 1 j w 2 W g form
a pair of dual bases. Hence we have the following orthogonality relations:

Xw2W

trace.Tw; Ev/ trace.Tw 1;E0v/ D ´ dim E/ cE if E Š E0;

0 otherwiseI

see [21, 8.1.8]. Here, 0 ¤ cE 2 A and, as observed by Lusztig, we have

cE D fE v 2aE
C combination of terms vg where g > 2aE;

where fE is a strictly positive real number; see [10, 3.3]. The same definitions apply,
of course, to the parabolic subalgebra HI Now consider the element

eM WD Xw2WI

trace.Tw; Mv/ Tw 1 2 HK;I :

We shall evaluate trace.eM;Ev/ in two ways. On the one hand, given E0 2 Irr.W /,
let us denote by d.E0; M/ the multiplicity of E0 as a constituent of IndSI M/. By
Frobenius reciprocity and the compatibility with specialisations in [21, 9.1.9], this
implies that

trace.h; Ev/ D XM 0

2Irr.WI/
d.E; M0/ trace.h; M0v/ for all h 2 HK;I:

Using the orthogonality relations for the irreducible representations of HK;I, we
conclude that

trace.eM; Ev/ D XM 0

2Irr.WI /
d.E;M0/ trace.eM; M0v/

D XM 0

2Irr.WI /
d.E;M0/

Xw2WI

trace.Tw;Mv/ trace.Tw 1;M0v/

D d.E; M/ dimM/ cM:

Consequently, we have

v2aM trace.eM; Ev/ D d.E; M/ dimM/ fM C “higher terms”;

where “higher terms” means an F -linear combination of terms vg where g 2 >0.

On the other hand, recalling Definition 2.4 and taking into account our assumption

aM D aE, we obtain

v2aM trace.eM; Ev/ D Xw2WI

vaM trace.Tw; Mv/ vaE trace.Tw 1;Ev/

D Xw2WI

cw;M cw 1;E C “higher terms”:
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Comparing the two expressions, we deduce that

Xw2WI

cw;M cw 1;E D d.E; M/ dimM/ fM:

Nowthe right hand side of isnon-zero since d.E; M/ ¤ 0 byassumption. Hence,
there exists some w 2 WI such that cw;M ¤ 0 and cw 1;E ¤ 0. By [21, Cor. 8.2.6],
we have trace.Tw;Ev/ D trace.Tw 1;Ev/. So we also have cw;E D cw 1;E ¤ 0.
By Lemma 2.5, this implies w 2 FM \FE and, hence, FM FE.

Proposition 3.4. Let E; E0 2 Irr.W /. If E E0, then E 6LR E0. In particular, if
E, E0 belong to the same family, then E LR E0.

Proof. If W D f1g, there is nothing to prove. Now assume that W ¤ f1g and that

the assertion has already been proved for all proper parabolic subgroups of W. It
is now sufficient to consider an elementary step in Definition 2.10. That is, we can
assume that there is a subset I ¤ S andM0;M00 2 Irr.WI /, whereM0 M00 within
Irr.WI /, such that one of the following two conditions holds.

I) E is a constituent of IndSI M0/ and M00 L E0.

II) E0 " is a constituent of IndSI M0/ and M00 L E "
If I) holds, then FE 6LR FM 0 and FM 00 FE 0 by Lemmas 3.2 and 3.3. Since
M0 M00, we already know that M0 6LR M00 and, hence, FM 0 6LR FM 00 with
respect to WI But then we also have FM0 6LR FM 00 with respect to W and, hence,

FE 6LR FE 0 as required.
On the other hand, if II) holds, then a completely similar argument shows that

FE0 " 6LR FE " But, by Remark 2.3, we have FE " D FEw0 and FE 0 " D
FE0w0. Furthermore, multiplication with w0 reverses the relation 6LR. Hence, we
have FE 6LR FE 0 as required.

Finally, if E, E0 belong to the same family, then Remark 2.11 immediately shows
that E E0, E0 E and, hence, E LR E0.

Example 3.5. Let W; S/ be of type H4. Here, we are automatically in the equal
parameter case. There are 34 irreducible representations in Irr.W / and they are
partitioned into 13 families; see Alvis–Lusztig [2]. Using CHEVIE [17], one easily
determines the relation It turns out that we obtain a “linear” order such that, for
all E;E0 2 Irr.W /, we have:

a) E E0 is and only if aE 0 6 aE.

b) E, E0 belong to the same family if and only if aE D aE0

On the other hand, Alvis [1] has determined the two-sided cells of W ; there are

precisely 13 of them. Hence, by Proposition 3.4, we have E LR E0 if and only if
E, E0 belong to the same family. Furthermore, since already induces a linear order
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on families, it follows that E E0 if and only if E 6LR E0. Thus, Conjecture 2.12
holds in this case.

Similar remarks apply to W;S/ of type H3 and I2.m/ with equal or unequal
parameters in the latter case): In all these cases, one easily checks that is a linear
order satisfying a), b) and, hence, Conjecture 2.12 holds. See the summary of the
relevant results on cells and families in [13, §7].)

Example 3.6. Let W; S/ be of type F4, with generators and diagram given by

F4
s1 s2 s3 s4

Let D Z and L be a weight function which is specified by two positive integers

a WD L.s1/ D L.s2/ > 0 and b WD L.s3/ D L.s4/ > 0. Taking into account the
symmetry of the diagram, one may assume that a 6 b. There are 25 irreducible
representations in Irr.W /. The relation 6LR on Irr.W / has been determined in all
cases in [12]. It turns out that there are only four essentially different cases: b D a,
b D 2a, 2a > b > a or b > 2a; see Table 1 in [12, p. 362].

It is verified in [12] thatE LR E0 if and only ifE, E0 belong to the same family.
Using CHEVIE [17], one easily determines the relation By inspection, one finds
that Conjecture 2.12 holds in all cases. One also finds that:

a) If E E0 then aE 0 6 aE.
b) If E E0 and aE D aE 0 then E, E0 belong to the same family.

This example provides strong evidence for the validity of Conjecture 2.12 in the
general case of unequal parameters.

Example 3.7. Let W; S/ be of type Bn, with generators and diagram given by

Bn
t s1 s2 sn 1

We have Irr.W / D fE j 2 ƒg where ƒ is the set of all pairs of partitions of
total size n. For example, the unit, sign and reflection representation are labelled by

n/;¿/ ¿;.1n// and n 1/; .1//, respectively; see[21, §5.5]. Let D Z. Then a

weight function L is specified by two integers b WD L.t/> 0 and a D L.si / > 0 for
1 6 i 6 n 1. For a conjectural description of the partial order 6LR on two-sided
cells, see [3, Remark 1.2].

Here is a specific example in the case of unequal parameters, where we assume

that b > n 1/a > 0. This is the “asymptotic” case originally studied by Bonnafé
and Iancu [6], [5]. By Proposition 3.4 and [18, Prop. 5.4], we have

E E H) E 6LR E H) E
where E denotes the dominance order on pairs of partitions. In order to prove the
reverse implications, it will be enough to show that E E E Thus, we
are reduced to a purely combinatorial problem. This, and a full description of for
all choices of the parameters a, b, will be discussed in [19].
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4. The equal parameter case

Throughout this section, we assume that D Z and L.s/ D 1 for all s 2 S. Our
aim is to show that, in this setting, Conjecture 2.12 holds. For this purpose, we have
to rely on some deep properties of the relations 6L, 6R, 6LR which are stated

in Theorem 4.1 below. These in turn are established by using certain “positivity”
properties of the Kazhdan–Lusztig basis of H which are only available in the equal
parameter case; see Lusztig [31, Chap. 16] and the references there as far as finite
Weyl groups are concerned) and DuCloux [9] as far as types H3, H4, I2.m/ are

concerned).

Theorem 4.1. In the equal parameter case, the following hold.

a) Lusztig [31]) If E; E0 2 Irr.W / are such that E 6LR E0, then aE 0 6 aE. In
particular, if E LR E0, then aE D aE 0

b) Lusztig [31]) If E; E0 2 Irr.W / are such that E 6LR E0 and aE 0 D aE, then

E LR E0.

c) Lusztig–Xi [34]) Let x; y 2 W be such that x 6LR y. Then there exists some

z 2 W such that x 6L z and z R y.

Comments on the proof. Using the “positivity” properties mentioned above, Lusztig
shows in [31, Chap. 16] that the conjectural properties P1–P15 in [31, 14.2] hold
for H. Then a) and b) are a combination of P4, P11 and [31, Prop. 20.6]. The
statement in c) is due to Lusztig–Xi [34, §3]. Note that, in [34], this result is stated

for affineWeyl groups; but the same proof works when W is finite. Indeed, besides

general properties of the relations 6L, 6R, 6LR, the ingredients needed in the proof
are listed in [34, 2.2, 2.3, 2.5]. Now, the references for these properties cover also
the case of finite Coxeter groups; the above-mentioned “positivity” properties are

required here, too. An additional reference for [34, 2.2 h)] which is attributed to
Springer, unpublished) is provided by [38, 1.3].

Remark 4.2. By Lusztig’s conjectures in [31, 14.2], one can expect that a) and b)
remain valid in the general case of unequal parameters. The proof of c) seems to
require more than just using the conjectural properties P1–P15 in [31, 14.2]. It is not
clear at least not to me) if one can expect c) to hold in the general case of unequal
parameters.

As a first application of Theorem 4.1 a), we obtain the following converse to
Lemma 3.3.

Lemma 4.3. Let I S. Let E 2 Irr.W / and M 2 Irr.WI/ be such that FM FE
and E is a constituent of IndSI M/. Then M L E.
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Proof. By Lemma 2.6 b), there exists some E0 2 Irr.W / which is a constituent of
IndSI M/ and such that aE0 D aM. By Lemma 3.3, we have FM FE 0 Thus, we
have FM FE \ FE 0 and so FE D FE 0 Using Theorem 4.1 a), we conclude that

aE D aE 0 D aM, as required.

Next recall from Remark 2.11 that, if E; E0 2 Irr.W / belong to the same family,
then E E0 and E0 E. Now we can also prove the reverse implication.

Proposition 4.4. Let E; E0 2 Irr.W / be such that E E0. Then aE0 6 aE.
Furthermore, if E E0 and E0 E, then aE D aE 0 and E, E0 belong to the same

family of Irr.W /.

Proof. By Proposition 3.4, we have E 6LR E0. So Theorem 4.1 a) implies that

aE 0 6 aE. Now assume that E E0 and E0 E. Then, clearly, aE D aE0

We now show by an inductive argument that, if E E0 and aE D aE 0 then E,
E0 belong to the same family. If W D f1g, there is nothing to prove. Now assume
that W ¤ f1g and that the assertion has already been proved for all proper parabolic
subgroups of W As in the proof of Proposition 3.4, it is sufficient to consider an
elementary step in Definition 2.10. That is, we can assume that there is a subset

I ¤ S and M0; M00 2 Irr.WI /, where M0 M00 within Irr.WI /, such that one of
the following two conditions holds.

I) E is a constituent of IndSI M0/ and M00 L E0.

II) E0 " is a constituent of IndSI M0/ and M00 L E "
First of all, since M0 M00, we already know that aM 00 6 aM 0

Now, if I) holds, then aE > aM 0 > aM 00 D aE 0 Since aE D aE 0 we conclude
that aM 0 D aM 00 Hence, by induction, M0; M00 belong to the samefamily of Irr.WI /.
Furthermore, since aE D aM0, we have M0 L E. Thus, the first set of conditions
in Definition 2.7 is satisfied and so E, E0 belong to the same family of Irr.W /.

On the other hand, if II) holds, then aE 0 " > aM 0 > aM 00 D aE " Assume,

if possible, that aE 0 " > aE " Then E " 6 LR E0 " by Theorem 4.1 a).

Consequently, we also have E 6 LR E0 by Remark 2.3. Since E 6LR E0 and aE D
aE 0 this contradicts Theorem 4.1 b). Hence, we must have aE 0 " D aE " Now
we can argue as above and conclude that the second set of conditions in Definition 2.7
is satisfied. Hence, E, E0 belong to the same family of Irr.W /.

Note that the above proof only requires a) and b) in Theorem 4.1.)

Remark 4.5. In [19, Cor. 9.1] we will show that Proposition 4.4 remains valid in
the general multi-parameter case. The proof relies on a case-by-case argument and a

detailed study of the relation in type Bn.
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Besides the above-mentioned “positivity” properties, another distinguished feature

of the equal parameter case is the existence of “special” irreducible representations.

As discussed in [12, Example 4.11], one cannot expect the existence of
representations with similar properties in the general case of unequal parameters.)
Given E 2 Irr.W /, let bE be the smallest i > 0 such that E is a constituent of the

i-th symmetric power of the natural reflection representation of W It is an empirical
observation that we always have aE 6 bE; following Lusztig [24], we say that E is
“special” if aE D bE. Let

W / WD fE 2 Irr.W / j E specialg:

Theorem4.6 Lusztig [26, 4.14]). Each familyof Irr.W / seeDefinition2.7) contains
a unique E 2 W /.

See also [21, §6.5]where non-crystallographic Coxeter groups are included from
the outset in the discussion.)

Theorem 4.7 Lusztig [26, 5.25]). LetCbea left cell and letE 2 W /. If C FE,
then E occurs with multiplicity 1 in OEC 1.

Alternative proofs are provided by [28], [13]; these references also cover the
cases where W is of type H3, H4 or I2.m/.)

Remark 4.8. Let I ¤ S and let WI / denote the set of all M 2 Irr.WI / which are

special with respect to WI LetM 2 WI /. Then it is known see [24]) that there
is a unique E 2 W / such that aE D aM and IndS M/ equals E plus a sum ofI
irreducible representations E0 2 Irr.W / such that aE 0 > aE; in particular, we have

M L E. Let us write E D jS M/ in this case.I
We define B.W / to be the set of all jS

I M/ where I ¤ S andM 2 WI /. With
this definition, we can now state the following result of Spaltenstein which will be a

further key ingredient in our argument.

Lemma 4.9 Cf. Spaltenstein [36]). Let E 2 W / be such that E 62
B.W /. Then

aE " < aE.

Proof. By standard reduction arguments, it is enough to prove this in the case where

W; S/ is irreducible. IfW is of typeH3, H4 or I2.m/, the assertion is easily checked

by an explicit computation and CHEVIE [17]. One could also check the assertion
for finite Weyl groups in this way, using the explicit knowledge of W / and of the
invariants aE from [24]. However, a related verification has already been done by
Spaltenstein [36, §5]. Thus, all we need to do is to see how the setting in [36, §5]
translates to our setting here.
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So now assume that W is a finiteWeyl group. Let G be a simple algebraic group
over C or over xFp where p is a large prime) withWeyl groupW Using the Springer

correspondence see [37], [27]), we can naturally associate with every E 2 Irr.W / a

pair consisting ofa unipotentclass ofG, which we denote byOE, and aG-equivariant
irreducible local system on OE. By [26, 13.1.1], we have

dimBu D aE for E 2 W /;

where Bu denotes the variety of Borel subgroups containing an element u 2 OE.
Now Spaltenstein [36, §5] has shown that, if E 2 W / and E 62

B.W /,
then OE is strictly contained in the Zariski closure of O xE where xE is the unique
special representation of W in the same family as E " In particular, we have

dimBNu < dimBu where u 2 OE and
Nu 2 O xE Hence, we also have a xE < aE.

Finally, by Proposition 3.4 and Theorem 4.1 a), we have a xE D aE "

Given a two-sided cell F in W we denote by a.F / the common value of aE
where E 2 Irr.W / is such that FE D F ; see Theorem 4.1 a). With this convention,
we cannowstate the followingversion ofLemma4.9which does not refer to “special”
representations in Irr.W /. One may conjecture that this remains true in the general
case of unequal parameters.)

Corollary 4.10. Let F be a two-sided cell in W such that F \ WI D ¿ for all
proper subsets I ¤ S. Then a.F w0/ < a.F /.

Proof. By Proposition 3.4 and Theorem 4.6, there exists some E 2 W / such that

FE D F Assume, if possible, that there exists some I ¤ S and M 2 WI/ such
that E D jS M/. In particular, this would mean that E is a constituent of IndS M/I I
and aM D aE. Hence, by Lemma 3.3, we would have FM FE D F and so

F \WI ¤ ¿ a contradiction. Thus, we have E 62 B.W /. Now Lemma 4.9 implies
that aE " < aE.

By Remark 2.3, we have FE " D FEw0. Hence, we have aE D a.FE/ and

aE " D a.FEw0/. This yields a.F w0/ < a.F /, as required.

Theorem 4.11. Recall our standing assumption that we are in the equal parameter
case. Then Conjecture 2.12 holds.

Proof. The “if” part is already proved in Proposition 3.4. To prove the “only if”
part, we use an inductive argument. If W D f1g, there is nothing to prove. Now
assume that W ¤ f1g and that the “only if” part has already been proved for all
proper parabolic subgroups W Let E;E0 2 Irr.W / be such that E 6LR E0. We

must show that E E0. Since E 6LR E0, we have FE 6LR FE 0 We claim that
one of the following two conditions is satisfied:

I) FE 0 \ WI ¤ ¿ for some I ¤ S.
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II) FEw0 \ WI ¤ ¿ for some I ¤ S.

To prove this, we use an argument due to Spaltenstein [36]. Assume, if possible,
that FE 0 \ WI D ¿ and FEw0 \ WI D ¿ for all I ¤ S. By Corollary 4.10,
this implies that a.FE0w0/ < a.FE 0/ and a.FE/ < a.FEw0/. Furthermore, since

FE 6LR FE0, we have a.FE0/ 6 a.FE/ by Theorem 4.1 a). Thus, we conclude
that a.FE0w0/ < a.FEw0/. On the other hand, since FE 6LR FE 0 we also have

FE0w0 6LR FEw0 see Remark 2.3). So, Theorem 4.1 a) implies that a.FEw0/ 6
a.FE0w0/, and we have reached a contradiction. Thus, I) or II) holds, as claimed.

Now let us first assume that I) holds. Let E0 be the unique special representation
in the same family as E and E00 be the unique special representation in the same

family as E0; see Theorem 4.6. Then E E0 and E00 E0 by Remark 2.11 a).

Hence, it will be enough to show that E0 E00 Note that, by Proposition 3.4, we
have FE D FE0 and FE 0 D FE 0

0
Let y 2 FE0 \ WI Then we claim that there exists some x 2 FE such that

x 6L y. This is seen as follows. Recall from Remark 2.3 that multiplication
by the longest element w0 2 W reverses the relations 6L, 6R and 6LR. Now
take any element x0 2 FE. Since FE 6LR FE0, we have x0 6LR y. Then

yw0 6LR x0w0 and so, by Theorem 4.1 c), there exists some z 2 W such that

yw0 6L z and z R x0w0. In particular, z 2 FEw0 and so x WD zw0 2 FE. Since

yw0 6L z D xw0, we now deduce that x 6L y, as required.

Let us write x D dw where d 2 XI and w 2 WI as in Lemma 3.1. Thus,

x D dw 6L y where y 2 WI Then, by relation in [11, §4], we have w 6LR;I y
where the subscript I indicates that this relation is with respect to WI

Let C be the left cell inW which contains x. Then E0 is a constituent of OEC 1; see

Theorem 4.7. By Lemma 3.1, there exists someM 2 Irr.WI / such that w 2 FM and

E0 is a constituent of IndSI M/. Similarly, letC0 be the left cell inW whichcontains y;
now E00 is a constituent of OEC0 1. Again, there exists some M0 2 Irr.WI/ such that

y 2 FM 0 andE00 I M0/. Furthermore, sincey 2 FM 0\FE 0isa constituent of IndS
0

we

must have FM 0 FE0

0
So we can now conclude that M0 L E00 ; see Lemma 4.3.

Sincew 6LR;I y, we have FM 6LR;I FM 0 and soM 6LR;I M0. Byour inductive
hypothesis, we deduce thatM M0 within Irr.WI /. Thus, the first set of conditions
in Definition 2.10 is satisfied. Hence, we have E0 E00 and so E E0. This
completes the proof in the case where I) holds.

Finally, assume that II) holds. Then we can argue as follows. By Remark 2.3,

we have FE " D FEw0 and FE0 " D FE0w0. In particular, II) is equivalent to

FE " \ WI ¤ ¿ Furthermore, since FE 6LR FE 0, we have FE 0 " 6LR FE "
We can now apply the same argument as above and conclude that E0 " E "
Then Remark 2.11 b) shows that we also have E E0, as required.
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5. Unipotent classes and two-sided cells

We continue to assume that we are in the equal parameter case. In addition, we now
assume thatW is theWeyl group of a connected reductive algebraic group G over C
or over xFp where p is a large prime). By the Springer correspondence see [37], [27]),
we can naturally associate with every E 2 Irr.W / a pair consisting of a unipotent
class of G, which we denote by OE, and a G-equivariant irreducible local system on
OE. Thus, we obtain a map

Irr.W / fset of unipotent classes in Gg; E7! OE:

The local system on OE will not play a role for our purposes here.)

Definition 5.1 Lusztig). A unipotent class O of G is called “special” if O D OE
where E 2 W /. The map E 7! OE gives a bijection between W / and the set

of special unipotent classes in G.

Remark 5.2. Let F be a two-sided cell inW and consider the collection of unipotent
classes

C.F / WD fOE j E 2 Irr.W / such that FE D F g:
By Theorems 2.8 and 4.6, there exists a unique E0 2 W / such that FE0 D F ; in
particular, OE0 2 C.F /. Then it is known that

O OxE0 for all O 2 C.F /I
see [20, Prop. 2.2]. Here, and below, Xx denotes the Zariski closure in G for any
subset X G.) Thus, the special unipotent class OE0 can be characterized as the
unique unipotent class in C.F / which is maximal with respect to the Zariski closure
relation.

Let UG be the unipotent variety of G. Let O be a special unipotent class. The
corresponding “special piece” inUG is definedtobe theset ofall elements inOx which
are not contained inOx0 whereO0 is any special unipotent class such thatOx0 ¤ Ox. By
Spaltenstein [35] and Lusztig [30], the special pieces form a partition of UG. Note
that every special piece is a union of a special unipotent class which is open dense

in the special piece) and of a certain number possibly zero) of non-special unipotent
classes.

We can now associate with every two-sided cell in W a special piece in UG, as

follows. Let F be a two-sided cell in W As already noted above, there exists a

unique E0 2 W / such that FE0 D F Let OE0 be the corresponding special
unipotent class and OF be the unique special piece in UG containing OE0 Thus,
we obtain a canonical bijection see also Lusztig [30, Theorem 0.2]):

fset of two-sided cells of W g
1-1

fset of special pieces in UGg; F 7! OF :
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As remarked in [32, §14], this map is part of Lusztig’s bijection [29] between the
set of two-sided cells in an associated affineWeyl group and the set of all unipotent
classes of G.

Corollary 5.6 below gives an interpretation of the order relation 6LR on the
twosided cells of W in terms of the closure relation among the special pieces in UG.
This will heavily rely on Theorem 4.11 and on the following result.

Theorem 5.3 Spaltenstein [35], [36]). Let E; E0 2 W /. Then we have

E s E0 OE OxE 0 O xE 0 OxEx :

Here, we have used the following notation. Given E 2 W /, we denote by

xE 2 W / the unique special representation in the same family as E " Thus,
we obtain an involution E 7! xE on W /.) Furthermore, the relation s on W /
is defined inductively as follows. If W D f1g, then W / only consists of the unit
representation and this is related to itself. Now assume thatW ¤ f1g and that s has

already been defined for all proper parabolic subgroups of W Let E; E0 2 W /.
Then we write E s E0 if there exists a subset I ¤ S and M0; M00 2 WI/, where
M0 s M00 within WI/, such that either

I M0/ and M00 L E0E is a constituent of IndS

or

I M0/ and M00 L xE:xE0 is a constituent of IndS

Note the formal similarity in the definitions of s and the relation considered in
Section 2. More precisely, we have:

Lemma 5.4. Let E;E0 2 W / be such that E s E0. Then we also have E E0.

Proof. We proceed by an inductive argument. If W D f1g, there is a nothing to
prove. Now assume that W D f1g and that the assertion has already been proved for
all proper parabolic subgroups of W By the definition of s, there exists a subset

I ¤ S and M0; M00 2 WI/, where M0 s M00 within WI /, such that one of the
following conditions is satisfied:

I) E is a constituent of IndSI M0/ and M00 L E0.

II) xE0 is a constituent of IndSI M0/ and M00 L xE.
By our inductive hypothesis, we already know that M0 M00 within Irr.WI /.
Consequently, if I) holds, then the first set of conditions in Definition 2.10 is satisfied
and so E E0. Now assume that II) holds. Then we obtain that xE0 xE. By the
definition of Ex, Ex0 and Remark 2.11 a), we have Ex E " E0 " Ex0 and so

E0 " E " Hence, Remark 2.11 b) implies that E E0, as required.
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Lemma 5.5. Let P G be a parabolic subgroup of G, with unipotent radical UP
and Levi complement L such that L has Weyl group WI W where I S. Let

E 2 Irr.W / and OE be the corresponding unipotent class in G; let M 2 Irr.WI/
and OM be the corresponding unipotent class in L.

a) Assume that E is a constituent of IndSI M/. Then OE \UPOM ¤ ¿
b) Assume that E is special andM L E. ThenM is special and UPOM OxE.

Proof. a) Springer’s restriction formula [37, Theorem 4.4] see also Lusztig [27,
Theorem 8.3]) expresses the multiplicity of E as a constituent of IndSI M/ in
geometric terms, using the variety

Xu;u0.P / WD fx 2 G j x 1ux 2 u0UPg; where u 2 OE and u0 2 OM:

In particular, the assumption thatE is a constituent of IndSI M/ implies thatXu;u0.P/
must be non-empty. Thus, we have OE \ UPOM ¤ ¿ as required.

b) We check that OE is induced from OM in the sense of Lusztig–Spaltenstein

[33]. To begin with, since E is special, the unipotent class OE has property B)
in [33, §3]; see the remark at the end of [24, §2], or [21, Theorem 6.5.13 c)]. On
the other hand, since M L E, the representation M must also be special. This
follows, for example, from [21, §5.2 and §6.5].) In particular, property B) holds for
OM, too. Then [33, Theorem 3.5] shows that OE is induced from OM, that is, OE is
the unique unipotent class in G such that OE \ UPOM is dense in UPOM. Hence,

UPOM must be contained in the closure of OE, as desired.

We can now state the promised geometric interpretation of 6LR.

Corollary 5.6. Let F F 0 be two-sided cells in W Then we have F 6LR F 0 if and
only if OF xOF 0

Proof. First assume that F 6LR F 0. The following argument for proving OF
xOF 0 is inspired by the discussion in [36, §2]. If W D f1g, there is nothing to prove.
Now assume that W ¤ f1g and that the assertion has already been proved for all
proper parabolic subgroups of W As in the proof of Theorem 4.11, one of the
following two conditions must be satisfied:

I) F 0 \ WI ¤ ¿ for some I ¤ S.

II) F w0 \ WI ¤ ¿ for some I ¤ S.

Assume first that I) holds. Let E; E0 2 W / be such that F D FE and F 0

D FE 0

Then we must show that OE OxE 0 As in the proof of Theorem 4.11, since E, E0
are special and E 6LR E0, there exist M; M0 2 Irr.WI/, whereM 6LR;I M0 with
respect to WI such that E is a constituent of IndSI M/ and M0 L E0. Now let

P G be aparabolic subgroup ofG,with unipotent radicalUP andLevicomplement
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L such that L has Weyl group WI Applying Lemma 5.5, we conclude that M0 is
special and that we have the following relations among the associated unipotent
classes:

OE \UPOM ¤ ¿ and UPOM 0 OxE0 :

LetM0 2 WI/ be the unique special representation in the same family asM with
respect to WI Then M0 LR;I M see Proposition 3.4) and so M0 6LR;I M0.
Hence, applying our inductive hypothesis, we can conclude that OM0 OxM 0 within
L). Furthermore, since M; M0 belong to the same family, we have OM OxM0 ; see

Remark 5.2. Thus, we have reached the conclusion that OM OxM 0 This certainly
implies that UPOM is contained in the closure of UPOM 0 Combining this with
it follows that OE OxE 0 as required.

Now assume that II) holds. Then the same argument shows that O xE 0 OxEx;
note that, by Proposition 3.4 and Remark 2.3, we have F xE0 D FE0 " D FE0w0 for
every E0 2 W /. But, by the second equivalence in Theorem 5.3, we then also
have that OE OxE 0 as required.

Conversely, assume that OF xOF 0 Let again E; E0 2 W / be such that

F D FE and F 0 D FE 0 Then the assumption certainly implies that OE OxE 0

So the first equivalence in Theorem 5.3 shows that E s E0. By Lemma 5.4 and
Proposition 3.4, this implies E E0 and E 6LR E0, as required.

Remark 5.7. The closure relation among the special unipotent classes in G, and the
order-reversing bijection OE 7! O xE E 2 W /), are explicitly known; see Carter

[7, §13.2], Spaltenstein [35]. Hence, by the above result, we also have an explicit
description of the partial order 6LR on the families of Irr.W /.

On the other hand, the advantage of Theorem 4.11 is that it provides a purely
elementary description of 6LR in terms of the relation independently of the
theory of algebraic groups. Moreover, the equivalence between 6LR and applies
to more general situations where no geometric interpretation is available; see the
examples in Section 3.

Note added in proof. After the submission of this paper, I learned that a version of
Corollary 5.6 already appeared as Proposition 2.23 in an article by Barbasch and
Vogan, Ann. of Math. 121 1985), 41–110. However, the details of the proof of the

“if” part are omitted there, and the proof of the “only if” part is different from the
one given here. In our proof of Corollary 5.6, the results of Spaltenstein [36] play an
essential role in establishing the equivalence.
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