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Complete minimal surfaces and harmonic functions

Antonio Alarcén Isabel Fernandez™* and Francisco J. Lopez™**

Abstract. We prove that for any open Riemann surface & and any non-constant harmonic
function A: N — R, there exists a complete conformal minimal immersion X : & — R3
whose third coordinate function coincides with A.

As a consequence, complete minimal surfaces with arbitrary conformal structure and whose
(Gauss map misses two points are constructed.

Mathematics Subject Classification (2010). 49Q05; 30F15, 53C42, 32H02.

Keywords. Complete minimal surfaces, harmonic functions on Riemann surfaces, Gauss map,
holomorphic immersions.

1. Introduction

Conformal minimal immersions of Riemann surfaces in R? are harmonic maps. This
basic fact has strongly influenced the global theory of minimal surfaces, supplying
this field with powerful tools coming from classical complex analysis and Riemann
surfaces theory.

If X = (X1,X5,X3): N — R? is conformal and minimal, the holomorphic
l-forms ¢; := 3X;, j = 1,2,3, satisfy the equation ¢? + ¢2 + ¢2 = 0. As
a consequence, any conformal minimal immersion is uniquely determined (up to
translations) by any two of its harmonic coordinate functions. On the other hand,
it is reasonable to think that the family of conformal minimal immersions with a
prescribed coordinate function 1s in general vast. However, the construction of this
kind of surfaces turns out to be more complicated than expected under completeness
assumptions. A pioneering result in this direction can be found in [AF], where a
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satisfactory answer in the simply connected case is given. The aim of this paper is to
extend this result to the more general setting of arbitrary open Riemann surfaces.
Our main theorem asserts that:

Theorem 1. Let N be an open Riemann surface, let h: N — R be a non-constant
harmonic function and let p: (N, Z) — R3 be a group morphism such that the
third coordinate of p{(y) coincides with Im fy oh, forally € H1(N, 7).

Then there exists a complete conformal minimal immersion

X = (X1, X2, X3): N - R?

with X3 = h and flux map px = p.

Recall that the flux map of a conformal minimal immersion X : & — R3 is given
by px(y) = Imfy dX, forall y € (N, Z).

As a consequence of Theorem I, we obtain some interesting results concerning the
Gauss map of minimal surfaces, the Calabi—Yau problem, holomorphic null curves
in C? and maximal surfaces in the Lorentz—Minkowski space R3.

The study of the Gauss map is one of the fundamental problems in the theory of
minimal surfaces. Fujimoto [Fu] showed that the number of exceptional values of
the Gaussian image of a complete non-flat minimal surface is at most four, improving
some classical results by Osserman [Os1] and Xavier [Xa]. Since Sherk’s minimal
surfaces omit four points, then Fujimoto’s theorem is sharp. However, the number
of exceptional values strongly depends on the underlying conformal structure. For
instance, by Picard’s theorem there are no conformal non-flat minimal immersions
of the complex plane in R® whose Gauss map omits three points. So it is natural
to wonder whether any open Riemann surface admits a complete conformal mini-
mal immersion with Gauss map omitting two points. We answer affirmatively this
question, proving considerably more:

Theorem I Let N be an open Riemann surfuce, and let p: H1(N,Z) — R> be a
group morphism.

Then there exists a complete conformal minimal immersion X : N — R3 whose
Gauss map omits two antipodal points and px = p.

Calabi—Yau conjectures deal with the existence problem of complete minimal
surfaces with bounded coordinate functions. There is large literature on this topic,
see [JX], [Na], [CM], [FMM] for a good setting. From Theorem I follows that a
(necessary and) sufficient condition for an open Riemann surface to admit a complete
conformal non-flat minimal immersion into an open slab of R is to carry non-constant
bounded harmonic functions (see Corollary 4.3).

Likewise, by Theorem I, if 4 is an open Riemann surface and ' : & — C anon-
constant holomorphic function, there exists a complete null holomorphic immersion
(Fy, F», F3): N — C? (and so a complete holomorphic immersion (Fy, F3): N —
C?) with F3 = f. The family of open Riemann surfaces admitting non-constant
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bounded holomorphic functions is particularly interesting from several points of view.
This space contains examples of arbitrary open topological type, and as above any
such surface admits a complete null holomorphic immersion in C? x D (and so a
complete holomorphic immersion in C x D). We have compiled these ideas in the
following result (for the construction of proper complete null curves in C2? x I and
proper complete holomorphic curves in C x D see Corollary 4.4):

Corollary II1. Let M be an open orientable surface. Then there exists a complete
minimal surface homeomorphic to M all whose associate surfaces are well defined
and contained in a slab of R3.

Complete minimal surfaces properly immersed in an open slab of R? of arbitrary
topological type can be found in [FMM] (see also [JX], [RT], [Lol], [Lo2], [MM],
[ATFM] for a good setting). The problem of constructing bounded complete null
holomorphic curves in C 3 has been solved in [AL2].

Finally, Theorem I provides weakly complete conformal maximal immersions in
the Lorentz—Minkowski 3-spacetime R with singularities and prescribed spacelike
or timelike coordinate functions (the notion of weakly complete maximal surface
with singularities was defined in [UY]). See Corollary 4.6 for more details.

In a forthcoming paper [ALZ2], the authors will extend these results to the nonori-
entable setting.

2. Preliminaries

For a topological surface M, we will denote as d(M ) the one dimensional topological
manifold determined by the boundary points of M. Given S C M, S° and S will
denote the interior and the closure of S in M, respectively. A Riemann surface M is
said to be open if it is non-compact and d(M ) = @.

Remark 2.1. In the sequel N will denote a fixed but arbitrary open Riemann surface,
W C N an open connected subset of finite topology, and S C W a compact set.

For a proper subset M of N we will denote by Q¢ (M ) as the space of holomorphic
1-forms on an open neighborhood of S in N, whereas Q5 (M) will denote the space
of complex 1-forms 6 of type (1, 0} that are continuous on M and holomorphic on
M?°. Asusual, a 1-form 8 on M is said to be of type (1, 0} if for any conformal chart
(U,z)in N, 8|y~ny = h(z)dz for some functionh: U N M — C.

Definition 2.2 (Admissible set). A compact subset S C W is said to be admissible
in W if and only if:
¢ W — S has no bounded components in W (by definition, a connected component
V of W — S is said to be bounded in W if V N W is compact, where V' is the
closure of V' in N),
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« My := S° consists of a finite collection of pairwise disjoint compact regions in
W with €° boundary,

» Cg := S — Mg consists of a finite collection of pairwise disjoint analytical
Jordan arcs (recall that a compact Jordan arc in A is said to be analytical if it is
contained in an open analytical Jordan arc in A), and

» any componenta of Cg withanendpoint P € Mg admits an analytical extension
B in W such that the unique component of  — « with endpoint P lies in M.

Observe that if S is admissible in A then it is admissible in W as well, but the
contrary is in general false.

With the previous notation, a function f: S — C defined on an admissible set S
in W is said to be simooth if f|m admits a smooth extension fy to an open domain
V. C W containing Mg, and for any component ¢« of Cs and any open analytical
Jordan arc § in W containing «, f admits an smooth extension fz to B satisfying
that fglvng = folvng.

Likewise, a 1-form 8 € Q7 (S) is said to be smooth if, for any closed conformal
disk (U, z) on W such that S N U is admissible in W, 8/d z is smooth in the previous
sense.

Given a smooth function f: S — C holomorphic on S°, we set df € Q§(S) as
the smooth 1-form given by df |me = d{(f M) and df |anv = (f o) (x)dz|anv,
where (U, z = x +iy) is a conformal chart on W such thate NU = z7 1R Nz(U)).
Obviously, df |«(t) = (f o a)(t)dt for any component « of Cg, where ¢ is any
smooth parameter along a. A smooth 1-form 6 € 7 (S) is said to be exact if 0 = df
for some smooth f: S — € holomorphic on S°, or equivalently if | 4 6 = 0 for all
y e (S, Z).

The following lemma and its corollaries will be required to approximate minimal
immersions by immersions defined on larger domains (possibly with higher topology).

Lemma 2.3 (JAL], Approximation Lemma). Let S be an admissible compact set
in W, and ® = (¢;)j=1,2,3 a smooth triple in Q3(S)*, such that 3} _, ¢? = 0,

Z;=1 |¢; |* never vanishes on S, and ®|p, € Qo(Ms)>.
Then it is possible to uniformly approximate ® on S by a sequence {®, =
(¢j,n)j=1,2,3}n€N in QO(W)S satisfying
: 3
(1) Zj=1 ¢]2,n = O:
(i1) Z;Zl \pj.|? never vanishes on W and

(i) &, — Pisexacton S, foralln € N.

Recall that a 1-form 6 € Q5(S) is said to be uniformly approximated on S by
1-forms in Qu(W), if there exists {6, tneny C Qo(W) such that {%}%N — 0
uniformly on S N U, for any conformal closed disc (U, dz) on W.
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Corollary 2.4 (JAL], Corollary 4.8). The sequence {®, = (¢jn)j=1,.2,3}neN in the
above lemma can be obtained such that ¢3, = ¢3 for all n € N, provided that ¢3
extends holomorphically to W and never vanishes on Cg.

Corollary 2.5. The sequence {®,, = (¢p;n)j=1,2,3}neN obtained in Lemma 2.3 can
be chosen such that ¢3_, never vanishes on W, for alln € N, provided that ¢z never
vanishes on S.

Remark 2.6. Although Corollary 2.5 is not explicitly stated in [AL], it can be deduced
from the proof of the Approximation Lemma in [AL]. Indeed, the 1-form ¢z, is
defined as ¢3, = e/n Y., where f, is a holomorphic function on W, and v, €
Qo (W) never vanishes on W provided that ¢3 does in S, n € N,

2.1. Minimal surfaces. As remarked in Section 1, the coordinates functions of a
conformal minimal immersion X = (X1, X2, X3): W — R? are harmonic. If we
denote d as the global complex operator given by d|y = %dz for any conformal
chart (U, z) on W, then the corresponding 1-forms ¢; = dX;, j = 1,2,3, are
holomorphic on W. Moreover, X and its pull-back metric are given by

X = Re/(¢1,¢2,¢3), (2.1)
and
3
dsg = ) |l (2.2)
k=1

respectively. As a consequence, the triple ® = (¢, 2, p3) satisfies the following
properties:

(i) ¢ have no real periods, k = 1,2, 3,
(i) Yo, #2 =0,

(iii) ¢, k = 1,2, 3, have no common zeroes.

Conversely, given a vectorial holomorphic 1-form ® = (¢, ¢2, ¢3) on W satistying
(i) to (iii), then (2.1) determines a conformal minimal immersion X : W — R3.

The triple ® is said to be the Weierstrass representation of X. A remarkable
fact is that the stercographic projection of the Gauss map of X is the (meromorphic)
function g = ¢1‘f§ 5 In particular, the poles and zeros of g coincide with the zeros
of ¢3 with the same order (see [Os2]).

The flux of X along a closed curve y in W is defined as px (y) = fy w(s)ds,
where s is the arclength parameter of ¥ and p (s} is the conormal vector of X at y(s)
(i.e., the unique vector such that {dX(y’(s)), i(s)} is an orthonormal positive basis
of the tangent plane of X at y(s)). It is easy to check that px (y) = Im [ y 0X and

that the flux map py : #1(M,Z) — R? is a group morphism.
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As we will deal with admissible sets, a suitable notion for minimal immersions on
admissible sets will be required. This is the aim of the following definitions.

Let S be a admissible subsetin W and X : S — R? a smooth map such that X | ¢
is regular, (i.e., X |y is a regular curve for all @« C Cg). By a smooth normal field
along Cs respect to X we mean a field z : Cs — R3 such that, for any analytical arc
o C Cg, @ o is smooth, unitary and orthogonal to (X o ), 7 extends smoothly to
any open analytical arc f in W containing ¢, and @ is tangent to X on § N S. The
normal field =o is said to be orientable respect to X 1if for any component & C Cg
with endpoints Py, P> € d(Mg), and for any arclength parameter s along X |y, the
basis B; = {(X|a) (5i), w(si)} of the tangent plane of X|up, at P;, i = 1,2, are
both positive or negative, where s; is the value of s for which «(s;) = P;,7 = 1, 2.

Definition 2.7. Given a proper subset M C N, we denote by M (M) the space
of maps X: M — R? extending as a conformal minimal immersion to an open
neighborhood of M in N. On the other hand, for an admissible set S in W we call
M*(S) as the space of marked immersions X := (X, @), where

(1) X: S — R?3is a smooth map,

(2) X|ms € M(Ms),

(3) X|¢y 1s regular, and

(4) = is an orientable smooth normal field along Cg respect to X.

We will endow M (M) (resp. M*(S)) with the € topology of the uniform con-
vergence on compact subsets of M (resp. uniform convergence of maps and normal
fields on S).

The notions of Weierstrass data and flux map can be also extended to immersions
in M*(S). Indeed, given X5 € M*(S), let X4 = (qgj)jzl,z,g be the complex
vectorial 1-form on S given by 0X 4 1= 9(X|a ), and for any component « of Cg,
Xy = dX((s)) + i w(s), where s is the arclength parameter of X|, such that
1dX (o' (s9)), w(sg)} is positive provided that o (sg) € d(My).

The triple ® := 03X, will be called the generalized Weierstrass data of X 4. It is
clear that & € Q¥(S)? and is smooth. Notice also that Y7 _, ¢? =0, g
never vanishes on S and Real(qSJ) is an exact real 1-formon S, j = 1,2, 3, hence
we also have X(P) = X(Q) + Real fQP (qu)j=1,2,3, P, Q € S. In particular, since
X|pms € M(Mg) then (¢;);=1,23 := (g5j|MS)j:1’2,3 are the Weierstrass data of
Xps.

The group homomorphism

PXe: H(S,Z) = R>, px,. () =Im[ 0X g,
s
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is said to be the generalized flux map of Xo. Obviously, px,.. = py|sw (s.z)
provided that X = Y |s and @y is the conormal field of ¥ € M (W) along any curve
in Cg.

3. The completeness lemma

Given a compact subset M C N and amap X = (X, X5, X3): M — R3, we
denote [| X || := maxp {(37_, ij)l/z} as the maximum norm of X on M.

The following lemma concentrates most of the technical computations required
in the proof of the main result of this paper.

Lemma 3.1. Let U, V be two compact regions in N suchthatU C V°and V° —-U
has no bounded components in V°. Consider a non-constant harmonic function
h:V — R, an immersion X = (X1, X>,X3) € M(U) and a group morphism
p: H1(V,Z) — R such that X5 = h|y, px = plse, w.z) and the third coordinate
of p(y) is Imfy oh, forall y € J1(V, 7).

Then, for any Py € U and € > 0, there exists Y = (Y1,Y2,Y3) € M(V)
satisfying the following:
1) [|¥Y — X|| <eonU,
(i) Y3 = A,
(i) py = p and
(iv) disty (Py, d(V)) > 1/e.

Here disty denotes the distance on V' in the intrinsic metric of the immersion Y .

Proof. We will prove this lemma by induction on (minus) the Euler characteristic of
Ve —U (recall that, since we are assuming that V'° — U has no bounded components
in VV°, then y(V°—U) < 0). The induction process is enclosed in the following two
claims.

Claim 3.2. The lemma holds if y(V° —U) = 0.

Proof. The argument we use now is analogous to the one employed in Lemma 1 of
[AF]. Write V°—-U = Ule A, where A; are pairwise disjoint open annuli. Oneach
component 4; we define the following labyrinth of compact sets. Letz;: 4, — C
be a conformal parametrization, and consider a compactregion C; C A; such that C;
contains no zeros of dh, z; (C; ) is a compact annulus of radii r; and R, where r; <
R;, and z;(C;) contains the homology of z;(A4;). Write ¢3 = X3 = f;(z;)dz;,
with | ;| > 0 on C;. Let p be a positive constant with

pw<min{|f;(P)||PeC), j=1,....k}.
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Fix a natural number N (to be specified later) such that 2/N < min{R; —r; | j

1,....kY. Forany n € {1,...,2N?}, consider the compact set in C;:
1 1
JCj,n =3P € Aj | Sp + m = |Zj(p)| < Sy_1— m’
! 1
N2 <arg((—1)"z;(p)) <2m — ﬁ}

where s, := R; —n/N?. Then, define

2N? k
Ki =) Kjn and X =[]X;.
n=1 j=1

Define ® € Qo(U U X)? by

ol =X, olx = (5(57 M) o5 5(57 + M) 5. 93).
where M > 2N* is a constant.
By Corollary 2.4 applied to S = U U K, ¢, and an open tubular neighborhood of
V, we can infer the existence of ¥ € Q¢ (V)3 giving rise to a well-defined conformal
minimal immersion ¥ = (Y1, Y», ¥Y3) € M(V) fulfilling (i), (ii) and (iii), and whose
metric ds3 satisfies

1/ 1 &
dst > Z(ﬁ + M) p2ldz;|* > N3pu2|dz)> onXK,, j=1,....k. (3.1)

To finish the claim it remains to check (iv). Taking into account that dslz, >
|p3|? > p?|dz;|? on C;, and (3.1), it is not hard to check that there exists a positive
constant p; depending neither on p nor N such that

lengthds% (@) >pj-pu-N

for any « curve in C; joining the two components of d(C;). Thus, we can choose N
large enough such that p; - u - N > 1/e forany j = 1,...,k. In particular, (iv) is
achieved. O

Claim 3.3. Let n > 0. Assume that the lemma holds if —y(V° — U) < n. Then it
also holds for —y(V° —U) = n.

Proof. Since —y(V° —U) > 0, there exists § € #H1(V, Z) — #1(U, Z) intersecting
V°—U® in a Jordan arc y with endpoints Py, P, € d(U) and otherwise disjoint from
d(U), and such that S := U U y is an admissible set in an open tubular neighborhood
W of V in &. Moreover, we take 7 such that o/ never vanishes on y.
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Take Fpy € M*(S), F = (Fy, I3, F3), satistying F|ly = X, F3 = h|g, the third
coordinate of F is dh|s, and pfr,_ (V) = p(P).

By Corollary 2.4 applied to the (generalized) Weierstrass data of Fpr, S and W,
we obtain a compact tubular neighborhood W/ of S in V°and Z = (Z4,Z,, Z3) €
M(W')suchthat | Z — X|| <e/2onU, pz = plge,ow z). and Z3 = h|w. Since
—x(V°—=W’) < n, the induction hypothesis applied to Z and €/2 gives the existence
of an immersion Y satisfying the conclusion of the lemma. O

The proof is done. [

4. Main results

In this section we prove the results stated in the introduction and obtain some corol-
laries.

Theorem 4.1. Let h: N — R be a non-constant harmonic function and let
p: H1(N,Z) — R3 be a group morphism such that the third coordinate of p(y)
coincides with Tm fy oh, forall y € J(N,Z).

Then there exists a complete conformal minimal immersion

X =X, X2, X3): N =R
with X3 = h and px = p.

Proof. Consider an exhaustive sequence { V,},eny C N of compact regions such that
V1 1s simply connected, V,—1 C V., and V,” — V,,_{ has no bounded components in
A ]

Let Y7 € M(V7)be the conformal minimal immersion with Weierstrass data given
by ¢3 = (3h)|y, and g = ¢3/dz, where z is a conformal parameter on V.

Fix a point Py € V°, and apply recursively Lemma 3.1 to obtain a sequence
Y tneN, Ya € M(V,) satisfying that:

a) ||Yy — Yu_1|| < 1/n% on V,_q,

b) disty, (Py. 3(V,)) > n?,

¢) py, = Plae,v,.2), and

d) the third coordinate function of Y, coincides with /|y, ,

for all n € N. Here disty, denotes the distance on V, in the intrinsic metric of the
immersion Y,. Since N = |,y Vi, property a) gives that {Y,},en converges
to a harmonic limit map X = (X, X». X3): & — R? uniformly on compact sets
(Harnack’s theorem). Moreover, from Hurwitz’ theorem and the fact that dY,, never
vanishes we infer that either X degenerates on a point or has no branch points.
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From d) follows X3 = A which is non-constant and so the first possibility can not
occur. On the other hand, properties b) and ¢) give that X is complete and py = p,
respectively. O

Any open Riemann surface carries regular harmonic functions, that is to say,
harmonic functions with never vanishing differential. As a consequence, any open
Riemann surface admits a conformal complete minimal immersion in R? whose
Gauss map misses two antipodal values. For completeness we include a detailed
proof of all these facts based in Corollary 2.5.

Theorem 4.2. Let p: #(N,Z) — R> be a group morphism.
Then there exists a complete conformal minimal immersion X : N — R? such
that its meromorphic Gauss map has neither zeros nor poles and px = p.

Proof. Take {V,}neny C N an exhaustive sequence of compact regions such that
Vy is simply connected, V,, C V.7, ;. V7., — Vy has no bounded components and
a(Vyoi, — Va) = —1. Let F € M(V7) be a conformal minimal immersion with
Weierstrass data W = (Y1, Y2, ¥3) such that 13 never vanishes on 17,

Fix € > 0. The key step in the proof is the construction of a sequence { ¥, }neN,

Y, € M(V,) with Weierstrass data ©, = {(¢j,n);=1,2,3} satisfying that:

b) py, = playv,,z) and
C) ¢3., Never vanishes on Vy,

foralln > 2.

Indeed, choose ¥Y; = F and assume that we have constructed Y7, ..., Y,. Then
the immersion Y, 4, is defined as follows. let y € Hy(Vyy1,7Z) — H1(Vy, 7.)
intersecting V, 41—V, inaJordan arc y withendpoints Py, P, € d(V,) and otherwise
disjoint from d(1,), and such that S := V,, U y is an admissible set in an open
tubular neighborhood W of V,,+1 in . Then extend Y, to a marked immersion
Zy € M*(S) satistying that pz_ = p|w,(s,z) and the third coordinate of 0Z
never vanishes on y. Applying Corollary 2.5 to the generalized Weierstrass data
of Z4, S and W, and integrating the resulting 1-forms we get Y,4+1 € M(Vy41)
satisfying the desired conditions.

By a), Harnack’s theorem and Hurwitz’ theorem, the sequence { ¥, }neN converges
uniformly on compact sets to a conformal minimal immersion Y : & — R3, provided
that € is small enough, Label ® = (¢, 2, ¢3) as its Weierstrass data. Tt is clear that
p = py, letus check now that ¢3 never vanishes. Indeed, assume ¢3 has a zero at a
point in V,,, for ny € N. Since ¢3 , never vanishes in V,, for all n > ny, then ¢3
vanishes identically on V,, (Hurwitz’ theorem) and so in N. However, from a) we
infer that |Y — Y| < €Y .22, 1/n? = ex?/6 and so the third coordinate of Y is
non-constant provided that € is small enough, a contradiction.
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Seth: N = Rbyh(P)=Re flf; ¢3, where Py is an arbitrary fixed point in M.
Applying Theorem 4.1 to & and p we obtain a complete conformal minimal immersion
X = (X1, X2, X3): N — R?such that py = p and X3 = h. As 0X3 = ¢3 never
vanishes on A then the meromorphic Gauss map of X has neither zeros nor poles,
concluding the proof. O

Open Riemann surfaces carrying non-constant bounded harmonic functions are
hyperbolic, but the reciprocal is false in general. However, in the case of finite topol-
ogy both statements are equivalent. Even more, if A is biholomorphic to a compact
Riemann surface minus a finite collection of at least two pairwise disjoint closed
discs, then there exists proper harmonic maps /i: N — (0, 1). As a consequence,

Corollary 4.3. Any of the following statements holds:

(a) N carries a non-constant bounded harmonic function if and only if there exists
a conformal complete non-flat minimal immersion of N in a horizontal slab

of R
(b) If N is hyperbolic and of finite topology, then there exists a conformal complete
non-flat minimal immersion of N in a horizontal slab of R>.

(¢) If N is biholomorphic to a compact Riemann surface minus a finite collection
of at least two pairwise disjoint closed discs, then N admits a proper conformal
complete non-flat minimal immersion in an open horizontal slab of R>.

In addition, in any case the first two coordinates of the flux map can be prescribed.

If /1 is the real part of a non-constant holomorphic functionand p = 0, Theorem 4.1
also gives that:

Corollary 4.4. Any of the following statements holds:

(d) The following assertions are equivalent:

* N carries a non-constant bounded holomorphic function.
o There exists a full* complete null immersion of N in C? x D.

» There exists a full complete holomorphic immersion of N in C x D.

(e) If N is hyperbolic and of finite topology, then there exists a full complete null
immersion of N in C? x D and a full complete holomorphic immersion of N
in C x D.

(0) If N admits a proper holomorphic function into the unit disk, then N admits a
full proper complete minimal immersion in C? x D and a full proper complete
holomorphic immersion in C x D, where D is any simply connected planar
domain (the case D = C is proved in |AL]).

*A complex curve in C” is said to be full if it is not contained in a linear complex subspace.
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Remark 4.5. The family of Riemann surfaces involved initem (d) (and so initem (a))
contains examples with any open orientable topological type.

The family of Riemann surfaces concerning item (f) is also very vast. For instance,
it includes all the finitely sheeted ramified coverings of the unit disc.

Although the first statement of the above remark is well known, for completeness
we sketch a proof based on Scheinberg approximation results [Sc]. Let & be an open
Riemann surface, and consider two compact regions M, V' C N suchthat M C V°,
x(V° — M) = —1 and V° — M has no bounded components in VV°, Take also
e > 0 and a non-constant holomorphic function f: M — . Consider a Jordan
arc y C V° — M with endpoints in d(M ) and otherwise disjoint from d(M ) such
that y(VV° — (M U y)) = 0and V° — (M U y) has no bounded components in V°.
For simplicity write S = M U y. Construct a continuous function f S — D with
fla = £, and use Scheinberg approximation theorem to find a compact tubular
neighborhood M of S in V° and a holomorphic function f M — D such that
y(Ve—M) =0and |/ — f|| < € on M. Applying recursively this argument,
we can find sequences {V}, },en of compact regions in AN and holomorphic functions
{ fu: Va — D}jen, such that:

s Vu C V. 1 XV — Va) = =1, V>, — V, has no bounded components in
Vo and N := |, ey Vi is homeomorphic to &, and

o || fur1—=Sull < 27" lon V, forall n, where e = maxy, | fi|—miny, | fi| > 0.

The sequence { f,tnen converges uniformly on compact subsets of N to a non-
constant bounded holomorphic function u: N — C. The proof is done.

We finish by proving a Lorentzian version of Theorem 4.1 for weakly com-
plete maximal surfaces in the Lorentz—Minkowski 3-spacetime R3 with signature
(—, +. +). Recall that a conformal maximal immersion X : M — R3 with singular-
ities is said to be weakly complete if the metric Z;:l |¢; |2 is complete on M, where
® = (¢, ¢, ¢3) are the Weierstrass data of X (see [UY]).

Corollary 4.6. Let h: N — R be a non-constant harmonic function.
Then there exist weakly complete conformal maximal immersions

Y = (Y1,Y2.Y3): N — R;
and Z = (21,22,23): N%R? with Yy = h = Z,.

Proof Let X = (X1, X5, X3): N — R? be the immersion in Theorem 4.1 associ-
ated to A and the group morphism p: #,(N.Z) — R3, p(y) = (0,0, Tm [, dh) for
ally € J1(N, Z). Labeling X * as the conjugate harmonic functionof X, j = 1,2,
then Y = (X3, X5, X{): N > R} and Z = (X}, X3, X2): N — R satisfy the
conclusion of the corollary. O
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