
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 87 (2012)

Artikel: Equivariant classes of matrix matroid varieties

Autor: Fehér, László M. / Némethi, András / Rimányi, Richárd

DOI: https://doi.org/10.5169/seals-323264

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-323264
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Comment. Math. Helv. 87 2012), 861–889
DOI 10.4171/CMH/271

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Equivariant classes of matrix matroid varieties

László M. Fehér, András Némethi and Richárd Rimányi

Dedicated to the memory of T. Brylawski 1944–2007)

Abstract. To each subset I of f1; : ::; kg associate an integer r.I/. Denote by X the collection
of those n k matrices for which the rank of a union of columns corresponding to a subset

I is r.I/, for all I We study the equivariant cohomology class represented by the Zariski
closure Y D Xx. This class is an invariant of the underlying matroid structure. Its calculation
incorporates challenges similar to the calculation of the ideal of Y namely, the determination of
the geometric theorems for the matroid. This class also gives information on the degenerations
and hierarchy of matroids. New developments in the theory of Thom polynomials of contact
singularities namely, a recently found stability property) help us to calculate these classes and
present their basic properties. We also show that the coefficients of this class are solutions
to problems in enumerative geometry, which are natural generalization of the linear Gromov–
Witten invariants of projective spaces.

Mathematics Subject Classification 2010). 55N91, 52B40, 14N15.
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1. Introduction

1.1. Matroid representation varieties. To each subset I of f1; : : : ; kg associate

an integer r.I/. Denote by X the collection of those n k matrices for which the
rank of a union of columns corresponding to a subset I is r.I/, for all I Our main
object of study in this paper is the Zariski closure Y of this set. This is a version of
matroid representation varieties. Other versions e.g. contained in Grassmannians,
instead of the affine space of matrices) are also known, and they are closely related to
ours. A dual point of view is considering the hyperplanes determined by the column
vectors of the matrices. From this point of view Y is the parameter space of certain
hyperplane arrangements.

The first author was supported by theAlfréd Rényi Institute of Mathematics, and OTKA grants 46365 and

72537, as well as the János Bolyai Scholarship. The second author was supported by OTKAgrant K67928. The
third author was supported by the Marie Curie Fellowship PIEF-GA-2009-235437.
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Matroid representation varieties are universal objects in algebraic geometry in the
sense that any complication of varieties can be modeled on them. The precise statement

of this universality theorem is called Mnëv’s theorem, see [Mnë88], [RG95],
or a recent account in [Vak06]. Hence one does not hope that any reasonable question

on these varieties has an easy answer. One manifestation of this phenomenon
is the determination of the ideal of these varieties. In Section 3 below we will
explain with examples how the generators of the ideal encode projective geometry
theorems.

The problem we will consider about matroid varieties is an enumerative geometry

problem, a generalization of the linear Gromov–Witten invariants of projective
spaces. Suppose a matroid variety is given, as above. Consider k generic linear
subspaces Vi in Cn. The question is, how many n k matrices exist that belong
to our matroid variety such that the i’th column vector is in Vi For example, after
projectivizing, we can ask the following question: given 8 generic straight lines and
a generic point in the projective plane, how many Pappus configurations exist with 8
points of the Pappus configuration belonging to the 8 lines, and the 9’th point coinciding

with the given point. The precise definitions, and the answer are given below. In
the special case, when the matroid variety is the variety of rank 2 matrices of size

n k, this enumerative question is equivalent to the determination of k-point linear
Gromov–Witten invariants in projective spaces. For general matroid varieties, however,

no classical geometric or Gromov–Witten-type methods are known to compute
the generalized Gromov–Witten invariants.

The nature of the matroid Gromov–Witten invariants in P2 can be visualized
by pictures. Some interactive presentations, created with the Interactive Geometry
Software Cinderella [RGK] can be found at www.unc.edu/~rimanyi/matroid_show.

We will show in Theorem 5.3 that our matroid versions of linear Gromov–Witten
invariants can be computed through the equivariant classes OEY These are
cohomology classes that the varieties Y represent in the GL.n/ GL.1/k-equivariant
cohomology ring of the vector space of n k matrices.

1.2. Equivariant classes represented by invariant varieties of a representation.
Let the group G act on the complex vector space V and let Y V be an invariant
variety of complex codimension c. Then Y represents a cohomology class OEY 2
H2cG V / in equivariant cohomology. There are various definitions and names for this
class, e.g. equivariant Poincaré dual, Thom polynomial, multidegree. We will call it
the equivariant class of Y SinceH

G V / is naturally isomorphic to the ringH BG/
ofG-characteristic classes, the equivariant class OEY is simply aG-characteristic class

of degree 2c.
The equivariant class of the variety Y encodes a lot of geometric information on

Y ; let us just allude to the effectiveness of Schubert calculus the Giambelli formula
is such an equivariant class) or the generalization involving classes of quiver loci.
Other applications include the enumerative geometry results coming from Thom
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polynomials of singularities, see e.g. [Kle76] for a classic review or [MR07] for a

recent addition.
Let us remark that the equivariant class of a matroid representation variety can be

interpreted as a class of a quiver locus for the “star quiver” based on a star shaped

graph). However, the equivariant properties of quiver representations are only well
understood for quivers of Dynkin type ADE, see [BF99], [FR02], [KMS06], [KS06],
[Buc08] and references therein. It would be interesting to compare our results with
quiver coefficients defined in [Buc08] for non-Dynkin quivers.

The usual tools to calculate equivariant classes represented by invariant subvarieties

involve equivariant resolution, equivariant degeneration, or equivariant
localization techniques. These techniques require the understanding of the ideal or the
singularities of the variety in question. For matroid varieties we lack this essential

information.
Another main approach to calculate equivariant classes, effective for equivariant

classes ofcontact singularities aswell, is an interpolation methoddescribed in[FR04].
Below we will study an improvement of this interpolation method. In essence, we
will describe certain constraints that a particular OEY must satisfy. Some of these

constraints originate from the topological arguments of [FR04], some others from
the enumerative interpretation of some coefficients.

Finally, a key advance of this paper, a third set of constraints, follow from the
analogue of a stabilization property recently proved for contact singularities [FR07].
This property stems from understanding how an equivariant class changes at

nontransversal intersection. In turn, one obtains a bound on the number of factors in each

term of such and equivariant class.

Overwhelming experience shows that these three sets of constraints are sufficient
to determine the equivariant classes OEY providing several enumerative applications.
However, at the moment, we have no theorem claiming that for a particular matroid
a certain set of constraints is sufficient.

In Section 7 we show a certain stabilization property connecting the equivariant
classes of matroid varieties in different dimensions n. As a corollary we prove a

vanishing theorem on certain coefficients. In Section 8 we outline the method of
calculating these invariants.

A particularly interesting question, subject to future study, is whether the matroid
Gromov–Witten invariants can be organized as structure constants of an algebraic
object with some kind of associativity property – mimicking the construction of the
big) quantum cohomology ring.

Acknowledgement The authors would like to express their gratitude to T. Brylawski,
S. Fomin, A. Hraskó, and B. Sturmfels for helpful discussions and remarks; and to
D. Adalsteinson for letting us use his computer cluster for our calculations.
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2. Matrix matroid varieties

We will denote the set of natural numbers f0; 1; : : :g by N, and the set f1; 2;: : : ; kg
by OEk For a set X let 2X denote its power set, i.e. the set of subsets of X. We will
identify the vector spaces Cn/k and Cn k by the rule

v1; : : : ;vk/ $ v1 : : : vk 1)

Elements in Cn/k will be referred to as ordered) vector configurations in Cn. For
a matrix M 2 Cn k and subsets U OEn V OEk let MUV denote the submatrix

consisting of the i; j /-entries of M for i 2 U, j 2 V Let MV D M
OEn

V

The vector configuration C D v1; v2; : : :; vk/ 2 Cn/k defines the rank function
rC W

2OEk N,
rC.V / D dim spanfvi gi2V :

Definition 2.1. For a configuration C we define

XC D fM 2 Cn k
W rank.MV / D rC.V / for all V OEk g:

The Zariski closure XC Cn k will be called the matrix matroid variety associated

with C, and will be denoted by YC.

If we identify n k matrices with k-tuples of n-vectors as in 1), then XC consists

of those configurations whose rank function is the same as that of C. For example, C
itself belongs to XC. The matrix matroid variety YC consists of those configurations
that are limits degenerations) of elements in XC.

Observe that XC and YC do not change if we re-scale, i.e. multiply, any vector

vi in C by any non-zero complex number. Hence XC and YC are determined by the
list of points Pi WD OEvi 2 Pn 1 for vi 6D 0, and the list of those vi which are 0. By
abusing language, such a list will also called a configuration.

Example 2.2. Let n D 2, k D 6, and consider the following configuration:

P1 D P2 D P3 D .0 W 1/ 2 P1 ; P4 D P5 D .1 W 1/ 2 P1 ; v6 D 0:

This configuration is illustrated in Figure 1. Matrices in XC are those 2 6 matrices
whose

first three columns are proportional non-zero vectors,

the fourth and fifth columns are proportional non-zero vectors,

the first and the fourth columns are non-proportional,
the sixth column is the zero vector.
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P1; P2; P3 P4; P5

;
P6

Figure 1

It is true that YC consists of matrices satisfying the “closed” conditions above, but
not necessarily the “open” ones. That is, YC consists of matrices whose first three
columns areproportional, fourth and fifth columnsare proportional, and sixth column
is 0. However, the easy procedure of dropping the open conditions will not specify

YC in general.

Example 2.3. Matrix Schubert varieties. Consider a complete flag of linear spaces

L0 L1 Ln 1 Ln

in Cn. Let ` D l0; l1; : : : ; ln/ 2 NnC1 with
P

li D k. Choose li generic points

v i/;: : : ; v i/ in Li The matrix matroid variety corresponding to the configuration1 li

C` D v.0/
1 ; : : : ;v.0/

l0 ; v .1/
1 ; : :: ; v.1/

l1 ; : :: ; v n/
1 ; : : :; v n/

ln

is studied in the papers [Ful92], [FR03, Section 5], [KM05], and is called the matrix
Schubert variety corresponding to Grassmannian permutation.

For the problems to be considered later in this paper, matrix Schubert varieties

will be the simple case. Products of matrix Schubert varieties will also be considered
simple. Note that Example 2.2 is such a product of matrix Schubert varieties after
identifying Cn k1 Cn k2 with Cn k1Ck2/), namely,

YC D YC.0;3;0/ YC.1;2;0/ D YC.0;3;0/ YC.0;2;0/ YC.1;0;0/: 2)

Examples of matrix matroid varieties which are not products of matrix Schubert
varieties will be given below.

Remark 2.4. Other candidate names for matrix matroid varieties would be “matroid
variety” or “matroid representation variety”. We chose the name “matrix matroid
variety”, because of the analogy with matrix Schubert varieties.

3. The ideal of matrix matroid varieties

The rankof a matrix is r if its rC1/ rC1/minors vanish, and at least oner r minor
does not vanish. Hence the algebraic description of XC Cn k is a collection of
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equations several minors vanish), together with a collection of conditions expressing
that certain polynomials some other minors) do not vanish together cf. the open and
closed conditions of Example 2.2):

XC D fM D mi;j/ 2 Cn k
W pu.mi;j / D 0 for u D 1;2; :: : I for v D 1;2; : : : ;

q v/
1 mi;j /; : : : ;q v/

wv mi;j/ do not vanish togetherg:

It follows that

YC fM D mi;j/ 2 Cn k
W pu.mi;j/ D 0 for u D 1; 2; : : : g: 3)

Although it is tempting to think that we have equality in formula 3), in general, this
is not the case. First we give an intuitive reason for this.

3.1. Motivation: the Menelaus configuration. Consider the Menelaus configuration

CM of Figure 2, with n D 3, k D 6.

P1
P2

P3

P4
P5

P6

Figure 2. The Menelaus configuration CM, and the Ceva configuration CC.

The equations pu of formula 3) are the four 3 3 minors of the 3 6 matrix
mi;j / corresponding to the following triples of column-indices: 126, 135, 234, 456.

The right hand side of formula 3) hence contains all 3 6 matrices for which these

four minors vanish. We claim that there is a matrix for which these minors vanish,
but it is not in YCM i.e. it is not a limit of matrices from XCM Indeed, consider
an affine chart of P 2, a line l in it, and the configuration C0 of six generic points on

l If this configuration were in the closure of XCM then there would be a family of
configurations belonging to XCM all in the affine chart, converging to C0. For all
these configurations Menelaus’ theorem [Men00] holds, which we recall now.

Theorem 3.1 Complex affine version of Menelaus’s theorem). Consider the
configuration CM of points in C2. Choose an identification of the P1P3P5 line with
C. Observe that the complex number P5 P1/=.P3 P5/ does not depend on the
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choice; denote this ratio by P1P5=P5P3. Then using similar notations for the other
straight lines) we have

P1P5

P5P3

P3P4

P4P2

P2P6

P6P1 D 1: 4)

Our reasoning is finished by observing that for C0 the Menelaus identity 4) does

not hold; this proves that for CM the two sides of Formula 3) are not equal.

One may wonder if there is a complex projective version of Menelaus’s theorem,
which would eliminate the need for the affine chart in the geometric proof above. The
answer is given in the next section.

What we learned from the Menelaus example is that

the “naive” equations pu are not enough to cut out YC even set-theoretically
from Cn k;

the extra equations needed besides the naive ones) encode the not-so-obvious
geometric theorems of the configuration.

3.2. The ideal of XC, examples. Let IC denote the ideal of the variety YC, i.e. the
homogeneous ideal of polynomials vanishing on YC.

Example 3.2. In Schubert calculus the following statement is well known [Ful92]:
For the matrix Schubert variety C` of Example 2.3 the “naive” equations generate

IC`:

IC` D det Mfi1;:::;isg
fj1;:::;jsg D 0

for i1 < < is; j1 < < js; js l0 C Cls 1; s D 1;: : : ; n.

Now consider the Menelaus configuration of Section 3.1, and consider the variety
corresponding to the naive equations

Ynaive D fM 2 C3 6
W detM126 D 0; detM135 D 0;detM234 D 0; detM456 D 0g:

Computer algebra packages [GPS01] can be used to find that this variety is the union
of two irreducible varieties

Ynaive D YCM [ fM 2 C3 6
W

rank.M/ 2g: 5)

Thisdecomposition sheds light on the intuitive reasoning ofSection 3.1. Asa byproduct,

the computer algebra package finds generators of the ideal ICM It turns out that

ICM can be minimally generated by polynomials of degrees

3; 3; 3; 3; 5; 5; 5; 6; : : : ; 6:

„ ƒ‚ …
12
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The four degree 3 polynomials can be chosen to be the four naive equations. As a

consequence, thecollection of the other equations canbe considered as the extra,
nontrivial complex projective identities holding for Menelaus configurations. We might
as well call this set of polynomials the “complex projective Menelaus’ theorem”.

For completeness let us show how to generate degree 6 and degree 5 polynomials
in ICM knowing only the usual version of Menelaus’ theorem Theorem 3.1). In
the projective plane x;y; z/ we can choose the y coordinate to be at infinity. In
the remaining affine plane we can identify ratios of complex numbers by appropriate
projections. Hence, for example, from 4) we can obtain

x5=y5 x1=y1

x3=y3 x5=y5

z4=y4 z3=y3

z2=y2 z4=y4

z6=y6 z2=y2
z1=y1 z6=y6 D 1: 6)

Rearranging this equality we obtain a degree 6 polynomial. Making other choices
we may obtain several other degree 6 polynomials. Getting degree 5 ones is more
delicate. Consider the degree 6 polynomial obtained from 6), and the ones obtained
from the next three similar equalities

z5=y5 z1=y1

z3=y3 z5=y5

z4=y4 z3=y3

z2=y2 z4=y4

x6=y6 x2=y2
x1=y1 x6=y6 D 1;

x1=y1 x2=y2

x2=y2 x6=y6

z6=y6 z4=y4

z4=y4 z5=y5

z5=y5 z3=y3
z3=y3 z1=y1 D 1;

z1=y1 z2=y2

z2=y2 z6=y6

z6=y6 z4=y4

z4=y4 z5=y5

x5=y5 x3=y3
x3=y3 x1=y1 D 1:

It turns out that the sum of these four degree 6 polynomials is y4 times

x5y1z3z6y2 C x5y1z3z2y6 C x3y5z2z1y6 x5y3z2z1y6

C z1y5z3x6y2 z1y5z3x2y6 z3y5z2x6y1 C z5y3z2x6y1z5y3

C x2y1z6z3y5 x2y1z6 x6y2z5z1y3 C x2y6z5z1y3

z1y2z6x3y5 C z1y2z6x5y3 C z6y2z5x3y1 z2y6z5x3y1:

7)

This latter is one of the degree 5 generators of ICM The other two can be obtained
by similar calculations, or appropriate changes of variables in 7).

For an arbitrary configuration C determining IC seems to be a hopelessly difficult
problem. Onemight startwith the idealgenerated by the naive equations, and try toget
rid of the “fake” components just like the determinantal variety in 5)) by primary
decomposition or by dividing or saturating) with ideals of extra components. In
practice, none of these strategies is feasible in reasonable time for configurations
even a little more complicated than the Menelaus configuration.

Below, in Section 4 we will study another invariant of matrix matroid varieties,
namely, their equivariant classes, which will be much better computable than IC, and

which can answer various questions about these varieties without determining their
ideals.
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3.3. The codimension of matrix matroid varieties. A consequence of the
universality theorem mentioned in the Introduction, is that matrix matroid varieties in
general can have multiple components, possibly of different dimensions. Let us

mention that it seems a difficult problem to show an example for this phenomenon.
Nevertheless, we do not expect any easy general procedure which would give the
co)dimension of a matrix matroid variety corresponding to a given matroid. In practice,

however, one may often determine the codimension by imagining the matroid
builded up step by step, and keeping track of the degrees of freedom. Consider, for
example, the Menelaus configuration of Figure 2. The points P1, P2, P4, P5 are
projectively free. Adding P3 however means a restriction: it can not be anywhere in the
plane, it has to be in the intersection of P1P5 and P2P4. This is a 2-codimensional
restriction. Similarly, adding the point P6 is another 2 codimensional restriction.
Hence the codimension of YCM is 2 C 2 D 4. Now consider the Pappus configuration

in Figure 3. The subset P1, P2, P4, P5 is free. The points P3 and P6 are on
the straight lines P1P2 and P4P5 respectively. Hence each represents a codimension

1 restriction. These 6 points determine the remaining 3, which hence represent

2-codimensional restrictions each. Therefore the codimension of this matrix matroid
variety is 1 C 1 C 2 C 2 C 2 D 8.

P1
P2

P3

P7
P8

P9

P4
P5

P6

Figure 3. The Pappus configuration CP

4. Equivariant classes of matrix matroid varieties.

We will work in the complex algebraic category; cohomology will be meant with
integer coefficients; and GL.n/ will denote the general linear group GL.n; C/.
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4.1. Equivariant classes in general. If Y is a complex codimension c subvariety
in a compact complex manifold M, then Y represents a cohomology class OEY in
H2c.M/. The following equivariant version of this notion is more delicate to define;
see e.g. [Kaz97], [EG98], [FR04], [MS04, 8.5], [Ful07].

Let the group G act on the complex vector space V and let Y V be an

G

invariant variety of complex codimension c. Then Y represents a cohomology class
OEY 2 H2c V / in equivariant cohomology. Since H V / is naturally isomorphic toG
the ring H BG/ of G-characteristic classes, the equivariant class OEY is simply a

G-characteristic class of degree 2c.

4.2. Equivariant classes of matrix matroid varieties. Let D.k/ be the group of
diagonal matrices of size k. Consider the action of Gn;k D GL.n/ D.k/ on the

vector space Cn k of n k matrices by

A; B/ M D AMB 1; A2 GL.n/; B 2 D.k/; M 2 Cn k :

Viewing elements of Cn k as vector configurations as in 1), the action of A;B/ 2
Gn;k reparametrizes Cn the action of A) and rescales the vectors one by one the
action of B). Therefore, the spaces XC and hence the varieties YC are Gn;k-invariant.

In the rest of the paper the main concept of interest will be the equivariant class

OEYC 2 HGn;k Cn k/ D H BGn;k/ D ZOEc1; : : : ; cn; d1; : :: ; dk ; 8)

where ci are the Chern classes of GL.n/, and di are the first Chern classes of the

GL.1/ components of Dk D GL.1/k. We have degci D 2i, degdi D 2.

4.3. Examples. In Sections 5–9 we will show how to calculate the classes OEYC and
discuss their geometric meaning. Before that, however, we show some examples.

Example 4.1. Consider the configuration C of Example 2.2. We have

OEYC D d1d2 C d1d3 C d2d3 c1.d1 C d2 C d3/ C c 2
1 c2

c1 d4 d5/.d2
6 c1d6 C c2/:

Let us now consider matrix Schubert varieties C` of Example 2.3. That is, we
have ` D l0; : : : ; ln/,

P
li D k. We may assume without loss of generality that

there is an r such that l1; : : : ; lr are all non-zero, while lrC1 D D ln D 0. Indeed,
observe for example that YC2;0;2 D YC2;1;1 by changing the complete flag.) Define

i D ´P
i 1

jD0 lj C 1; i r
nC1 i D i i; for i D 1; : : : ; n:

k C i r i>r;
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Let i/j be degree j polynomials in the ring 8), defined by

1 C
i/

2 t2
C D Qj< i

1 t C
i/ .1 C dj t/

1 C c1t C Ccntn
:

Theorem 4.2. Using the notation above, the matrix Schubert variety C` Cn k

has complex codimension j j D P
i and we have

OEYC` D 1/j j det nC1 i/
iCj i i;jD1;:::;n

: 9)

Proof. This is, in fact, not a new theorem. Observe, that YC` is not only invariant
under the action of GL.n/ D.k/, but under the same action of GL.n/ B.k/,
where B.k/ is the Borel group of upper triangular k k matrices associated with
the complete flag. The varieties YC` are, in fact, the orbit closures of this extended
action. The equivariant classes of these orbit closures are calculated in Theorem 5.1
of [FR03] to be the double Schur polynomials of 9), see also [KM05]. Since the
inclusion D.k/ B.k/ is a homotopy equivalence, the Gn;k-equivariant classes are
the same as the GL.n/ B.k/-equivariant classes. This observation also shows that

expression 9) is symmetric in the di variables.

Equivariant classes of products of varieties multiply in the obvious sense. For
instance, the result of Example 4.1 can be recovered from the factorization 2) and
the application of Theorem 4.2 to the three factors. Namely, we have

OEYC0;3;0 D
det0@

Q
3
iD1.1Cdi t/

1Cc1tCc2t2 j2 Q
3
iD1.1Cdi t/

1Cc1tCc2t2 j3

0 Q
0
iD1.1Cdi t/

1Cc1tCc2t2 j0
1A

D d1d2 C d1d3 C d2d3 c1.d1 C d2 C d3/ C c2
1 c2:

Here, and later, f t/ji means the i’th coefficient of the Taylor series f t/ in the
formal variable t Similarly,

OEYC0;2;0 D d4 C d5 c1/; OEYC.1;0;0/ D d2
6 c1d6 C c2;

after appropriate shifting of indices.
It is rather difficult to present equivariant classes of matrixmatroid varieties which

are not products of matrix Schubert varieties. For example the class OEYCM for the
Menelaus configuration of Section 3.1 is a degree 8 polynomial with 173 terms in c-d-

monomials). To indicate how it looks we show this polynomial after we substitute
0 for all the di variables: OEYC D OEYC diD08i Observe that the OEYC class is the

GL.n/ equivariant class represented by YC. We have

OEYCM D 3c21c2 2c1c3 c22 D 3 .211/ C 2 .22/ C 3 .31/:
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Here the Schur polynomials corresponding to a partition 1 2

r/ are defined by D det.c iCj i/i;jD1;:::;r The significance of the Schur
basis is presented in Sections 6, 7. The expression in Theorem 4.2 can also be
interpreted as a Schur polynomial. Here is a list of similar specializations of OEYC for
the Ceva, Pappus, and Desargues configurations.

OEYCC D 6 .2211/ C 4 .222/ C 3 .3111/ C 8 .321/ C .33/;

OEYCP D 11 .221111/C16 .22211/C8 .2222/ C12 .311111/ C28 .32111/ C
28 .3221/ C 17 .3311/ C 15 .332/;

OEYCD D 15 .222111/C20 .22221/C20 .321111/C50 .32211/C30 .3222/C
30 .33111/ C 45 .3321/ C 10 .333/.

The coefficients of these classes in terms of Schur polynomials are all
nonnegative. We will prove this property for general matroids in Theorem 6.6.

The equivariant classes are rather meaningless formulas unless we find geometric
applications. We finish this section with a rather simple application; more delicate
geometric meaning will be discussed in Sections 5 and 6.

G

4.4. The degree of P.YC/. Suppose the group G acts on the vector space V and Y
is an invariant cone. Then the degree of the projective variety P.Y / can be recovered
from the equivariant class OEY 2 H V / by the following procedure.

Let T n be a maximal torus of G with corresponding Chern roots i. If w1; : : :;
wn; w are integers with the property that for any z 2 C, jzj D 1 we have

zw1; : : : ;zwn/ v D zwv; zw1; : :: ; zwn/ 2 T n; v 2 V;

then

deg P.Y / D OEY i D
wi
w /:

Onthe righthandsidewehave theequivariant class, with thenumberwi=w substituted
into the Chernroot correspondingto the i’th factor ofT n. This theorem easily follows
from the study of the change of equivariant classes when the torus action is pulled
back to another torus action; see e.g. [MS04, Exercise 8.14, 8.15], [FNR05, 6.4].

For matrix matroid varieties we have two natural choices for the substitution.
Either we substitute

ci D
n
i

; di D 0; or ci D 0; di D 1:

Observe that the first substitutions can be carried out for the specialized classes above

di D 0 for all i hence the following theorem can be checked from the classes

presented above.
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Theorem 4.3. For the Menelaus, Ceva, Pappus, and Desargues configurations see

Figures 2, 3, 4) we have

deg P.YCM / D 66; deg P.YCC / D 297;

deg P.YCP / D 2943; degP.YCD/ D 4680:

Remark 4.4. The degree of P.YCM / can also be recovered from the decomposition

in 5). Indeed, in this decomposition all three varieties are 4 codimensional;
Ynaive has degree 34 because of Bézout’s theorem; the determinantal variety fM 2
C3 6

j rankM 2g has degree 6
4

see [Ful84, 14.4.14]). Hence deg YCM D
81 15 D 66. The same argument shows that

OEYCM D c1 d1 d2 d6/.c1 d1 d3 d5/.c1 d2 d3 d4/

c1 d4 d5 d6/ Q
6
jD1.1 C djt/

1 C c1t C c2t2 C c3t3 j4:

For the othervarieties in the theoremweknownootherway ofdetermining the degree,

but to calculate the equivariant class as in Section 8, then carry out the described
substitution.

Figure 4. The Desargues configuration CD.

5. Matroid versions of linear Gromov–Witten invariants

In the rest of the paper, for simplicity, we will assume that C is a configuration of k
non-zero vectors in Cn, and that YC is pure dimensional.
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For non-negative integers q1; : : : ; qk with
P

qi D codimC.YC Cn k/ we
define

N.CIq1; : :: ; qk/ D #f.OEv1 ; : : : ; OEvk / 2 P Cn/k
W v1; : : :; vk/ 2 YC; vi 2 Vig;

where V1; : : : ; Vk is a generic collection of linear spaces with dim Vi D qi C 1.

More generally, instead of generic linear spaces Vi we could have considered
varieties of different dimensions and degree. These generalized enumerative problems
can be reduced to the linear version above.

Example 5.1. Consider the configuration C in Figure 5 a).

P3

P5 P4

P1 P6 P2

P V1

a) b)

P V3

P V4

P V2

P V5

P V6

c)

Figure 5. a) C; b) the enumerative problem; c) the solution is 2.

The number N.CI 1; 1; 1; 0; 0; 0/ is the number of solutions to the following problem:

given 3 points and 3 straight lines generically) on the plane P 2 Figure 5 b)).
How many triangles exist, whose vertices are on the straight lines, and whose sides
pass through the given points? The solution is 2 Figure 5 c)) due to the following
well-known argument: Choosing a point X on P V1 we can project it through P V6
to P V2, then project further through P V4 to P V3, then further through P V5 back to
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P V1, obtaining a point X0. The map X 7! X0 is a projective transformation of the
projective line P V1, whose number of fixed points is the question. Since projective
transformations have the form x 7! ax C b/=.cx C d/ in affine coordinate), the
number of fixed points is 2. The construction of the fixed points using a compass
and straightedge is the famous Steiner construction, see e.g. [PT01, Addendum 3,
p. 167].)

Example 5.2. Consider the number N.CMI 1; 1; 1; 1; 0; 0/ for the Menelaus configuration

of Figure2. One may try to followtheargument ofExample 5.1: choose a point
X on P V1, projecting it through P V6 to P V2, then further project through the
intersection of P V4 and the line P V5; P V6 to P V3, then even further through the point

P V5, back to P V1, obtaining X0. The transformation X 7! X0 is a projective
transformationofP V1,hence it has2 fixed points, suggesting thatN.CMI1;1;1;1;0;0/ D
2. However, this is wrong, the correct number is N.CMI 1; 1; 1;1;0;0/ D 1. One
of the two fixed points of the transformation X 7! X0 is on the “other” component
of Ynaive in 5), not on YCM Geometrically, one of the fixed points of the
transformation corresponds to all the points lying on the line of P V5 and P V6, which
configuration does not belong to YCM There are configurations e.g. the Ceva
configuration) for which some “extra” components in Ynaive nYC have bigger dimensions
then YC. For these, arguments similar to that in Example 5.1 suggest the incorrect

N.CIq1; : : : ; qk/ D1.
If the ideal IC is known, determining the numbers N.CIq1;: : : ; qk/ reduces to

algebraic calculations, which are, at least theoretically, doable. However, as we
mentioned, the ideal IC is not known in general. The equivariant class defined in
Section 4.2 provides an answer.

Theorem 5.3. The coefficient of dq1
1 dq2

2 : : : dqk
k in OEYC is

1/codim CN.CI q1; q2; : : : ; qk/:

This follows from a more or less standard intersection theoretic argument, which
we show in detail in the next section.

Example 5.4. The matrix matroid variety corresponding to the configuration of
Example 5.1 is a product of matrix Schubert varieties. Hence, its equivariant class is
computed by Theorem 4.2 to be

c1 d1 d3 d5/.c1 d2 d3 d4/.c1 d1 d2 d6/:

The coefficient of d1d2d3 is 2, reproducing the result of Example 5.1.

Example 5.5. Special cases of N.CIq/’s are solutions to certain so-called Schubert

problems. We illustrate this with the prototype of Schubert problems: how
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many straight lines intersect 4 generic lines in P 3? In our language the answer is

N.C.0;1;3;0;0/ I 1; 1; 1; 1/. According to Theorems 5.3 and 4.2 we have

N.C.0;1;3;0;0/ I1;1;1;1/ D coefficient of d1d2d3d4

in

det
d1d2 C Cd4d5 d1d2d3 C Cd3d4d5

d1 C Cd4 d1d2 C Cd3d4
;

which is clearly 4
2

4
1 D 2.

Remark 5.6. Certain N.CI q/ invariants are 0 for obvious reasons. For example, if
P1,P2, andP3 are onone line in the configurationC, thenN.CI 0;0;0;q4; : : : ; qk/ D
0. Indeed, P1, P2, and P3, being on one line, can not be three generic points.
Similarly, if there is a subset I D fi1; : : : ; isg OEk such that

P
qij C 1/ >

rC.fi1; : :: ; isg/, then obviously N.CI q/ D 0. It is easy to see that the existence of
such an I is the only reason for vanishing N.CIq/.

The method in Section 8 to calculate OEYC for the configurations CM Menelaus),

CC Ceva), CP Pappus), and CD Desargues) just like any other configuration we
tried) works, leading to the knowledge of all the Gromov–Witten invariants of these

configurations. Below we present some information on these invariants.

Menelaus. All non-zero coefficients of the pure d monomials of OEYCM are 1 – for
example the one studied in Example 5.2.

Ceva. The same holds for the Ceva configuration: the range of invariants is f0; 1g.

Pappus. The range of the N.CP I q/ invariants is f0; 1; 2; 3; 4;5g. Here are some

sample results.

N.CP I 1; 1; 1; 1; 1; 1; 1; 0/ D 5, that is, the number of Pappus configurations on
the plane whose i’th vertex is on a pre-described generic line li for i D 1; : : : ;8,
and whose 9’th point is a pre-described generic point, is 5. We know no other
way of finding this number.

N.CP I 2; 0; 0; 1; 1; 1; 1; 1; 1/ D 4. The argument in Example 5.1would suggest

the wrong answer 5.

N.CP I 1; 1; 0; 2; 1; 1; 0; 0; 2/ D N.CP I 1; 1; 1; 1; 1; 0; 0; 1; 2/ D 3.

Desargues. Again, the range of the invariants N.CDI q/ is f0; 1g.

It would be interesting to find a geometric interpretation of the property of a

configuration, which is equivalent to the condition that the range of N.CIq/ is f0; 1g.
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6. Proof of Theorem 5.3

We are going to present a proof of Theorem 5.3 which also proves positivity and

enumerative properties of other coefficients.
Let C be a configuration of k vectors in Cn, such that YC is a codimension l

subvariety of Hom.Ck ; Cn/.
Let n be the universal tautological bundle over the Grassmannian Grn C1

universal subbundle) which we will approximate with the finite Grassmannian Grn CN

for a large N n; k. Below we will refer to certain numbers as ‘large’; by this we
mean that those numbers tend to infinity as N 1. The cohomology of the finite
Grassmannian is a factor of the cohomology H Grn C1/ D ZOEc1; :: : ;cn by an
ideal with large degree generators. In our notations we will ignore this ideal, and

identify the two cohomology rings.
Let W Grn CN Grn CN be the necessarily non-holomorphic) classifying

map of the dual vector bundle n and consider the induced diagram

y†C Hom. k
1 ; n / Hom. k

1 ; n/ †C

Grn CN P N 1/k
id

Grn CN PN 1/k.

Here is the map induced by id, and †C is the collection of the copies of YC in
each fiber of the bundleHom. k

1 ; n/. That is, by definition, the cohomologyclass
represented

1 ; n// D H Grn CN PN 1/k/by †C in the cohomology H Hom. k

is the equivariant class OEYC We set y†C D 1.†C/.
The homomorphism

id/ W
ZOEc1; : : : ; cn;d1; : : : ;dk ZOEc1; : : : ; cn; d1; : : : ; dk

induced by the map id maps ci to 1/ici and di to di Hence we have that

1 ; n / D id/ OE†C Hom. k
OE y†C Hom. k

1 ; n/ D OEYC jci7!. 1/ici :

1 ; n / has a large dimensional space ofObserve that the bundle D Hom. k

sections. Indeed, let i W CN CN / be linear maps for i D 1; : : : ; k. Then the
map

s
W Ln CN ; l1

k CN/ 7!1 ;: : : ; l1
k

XiD1
L i li 10)

is a section of ; where L W L CN
li W li CN are the canonical inclusions,

and L W CN/ L is the adjoint map.
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We want to show that for an appropriate choice of D 1; : : : ; k/ the section
s of is transversal to y†C. We will use the following straightforward generalization
of the classical Bertini theorem.

Proposition 6.1. Let E X be a smooth vector bundle, B a vector space and

' W B E/ is a linear family of smooth sections. Suppose that E is generated by
the sections '.b/;b 2 B, i.e. ˆ b; x/ WD '.b/.x/ W B X E is surjective, and Y
is a smooth submanifold of the total space E. Then there is a b 2 B such that '.b/
is transversal to Y

For the proof we will use two lemmas.

Lemma 6.2 ([GG73], II.4.6). Let B, X, Y be smooth manifolds, ˆW B X Y
smooth and transversal to the submanifold W Y The map ˆ encodes a family of
maps ˆb.x/ D ˆ b;x/W X Y for b 2 B. Then

fb 2 B W ˆb t W g

is dense in B.

Lemma 6.3. Let E X be a smooth vector bundle, B a vector space, and ' W B
E/ a linear family of smooth sections. Suppose that E is generated by the sections

'.b/; b 2 B, i.e.

ˆ b; x/ WD '.b/.x/ W B X E

is surjective. Then dˆj.b;x/ W T.b;x/.B X/ Tˆ b;x/E is surjective for all b; x/ 2
B X.

Proof of Lemma 6.3. The statement is local, so we can assume that E D Cr X.
Thenˆ b;x/ D h.b;x/; x/ for some smooth map hW B X Cr which is linear
in the b variable. Then ˆ is surjective if and only if for all x 2 X the linear map

h. ; x/ W B Cr is surjective. On the other hand

0 Idˆ D
@bh @xh

and @bj.b;x/h v/ D h.v;x/ because of the linearity of h in b. Therefore the
surjectivity of h. ; x/ implies that the matrix @bh has full rank, and hence it also
implies the surjectivity of dˆ
Proof of Proposition 6.1. We apply Lemma 6.2. and 6.3. Since ˆ transversal to all
points, it is transversal to all submanifolds.

Proposition 6.1 immediately implies the following algebraic version.
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Proposition 6.4. Let E X be an algebraic vector bundle, B a vector space, and

' W B E/ a linear family of algebraic sections. Suppose that E is generated by
the sections '.b/;b 2 B, i.e. ˆ b; x/ WD '.b/.x/ W B X E is surjective, and Y
is a subvariety of the total space E. Then there is an open subset U of B such that
for all b 2 U the section '.b/ is transversal to Y

Transversality to a variety means that '.b/ is transversal to all strata of Y for
a complex stratification of Y If a map f of smooth varieties is transversal to a

subvariety Y in this sense then f OEY / D OEf 1.Y / just as if Y were smooth.
We mention that if in Proposition 6.4 we take B D H0.E/, then we get that for

a vector bundle generated by global sections we always have an open subset of the
sections which is transversal to any given subvariety of the total space.

Proposition 6.5. The family of sections s defined in 10)) generates the bundle

Proof. FixLn CN and l1 CN and let / D L l for 2 Hom.CN; CN/ /
It is enough to show that

W
Hom.CN ; CN / / Hom.l; L / is surjective, which

is clear since / is an n 1 submatrix of in an appropriate coordinate system.

Hence we may choose an s transversal to y†C. We have that VC D s 1 y†C/ is
a codimension l subvariety of Grn CN PN 1/k, which represents OEYC jci7!. 1/ici
in the cohomology of Grn CN PN 1/k.

Now fix a complete flag in CN and consider the products of Schubert varieties

S ;q D S Sq1 Sqk/ Grn CN PN 1/k:

Here is a partition with number of parts n), and Si P N 1 is a linear space of
codimension i with q D q1; : : : ; qk/. The cohomology classes represented by the

S ;q’s form an additive basis of the cohomology group, and by the Giambelli formula
of Schubert calculus we know that

OES ;q D c1; c2; c3; c4; : : : ; 1/ncn/
k

YiD1

di/qi :

Recall also that this basis is self dual in the sense that
R

OES ;q OES ;w D 0 unless

D 0, the complement of in the n N n/ rectangle, and w D q0, i.e.,

q Cw D N;: : : ; N / in which case, the integral is 1).
By appropriate choice of the section s we may also assume that VC is transversal

to the Schubert varieties S ;q. Let j jCP
qi D dim.Grn CN PN 1/k/ l Then

we have that

#.VC \ S ;q/ D Z OEV OES ;q ;
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which is then the coefficient of OES 0;q0 when OEVC is written as a linear combination
of OES ;w ’s. By rephrasing we obtain the following theorem.

Theorem 6.6. The coefficient of c1; c2; : : : ; cn/
Qi di/qi in OEYC when the

latter is written as a linear combination of classes

c1; c2; : : :; cn/
k

YiD1

di/wi ;

is the intersection number #.VC \ S 0 ;q0 /. Hence all coefficients in this linear
combination are non-negative.

Let us now consider the special case of being the empty partition, and

P
qi D l

We obtain that the coefficient of 1/l
Q

i d qi
i in OEYC is the intersection number

#.V \ point H1 : : : Hk//;

where Hi are generic linear subspaces in PN of total codimension l Identifying the
point in Grn CN with Cn this intersection number is the same as the definition of

N.CIq/. This proves Theorem 5.3.

Theorem 5.3 shows the geometric interpretation of the pure d coefficients of OEYC

but the other extreme, the pure c coefficients are also noteworthy. By the definition
of GL.n/-equivariant cohomology we have

Theorem 6.7. Suppose
W E B is a rank n vector bundle with Chern classes

c1;: : : ; cn. Assume that has k sections satisfying a certain transversality property.
Then the cohomology class in B represented by the subvariety

fb 2 Bjs1.b/; : : : ; sk.b/ form a configuration belonging to YC 1 b/g

is equal to OEYC

The transversality property can be easily phrased. Over the real numbers it is a

generic property of k-tuples of sections. Thus one obtains a result on the parity of
the cohomology class represented by) the points over which k generic sections of a

real projective space bundle form a given configuration C.

Remark 6.8. Certain facts suggest some kind of relations between the c and the d
variables of OEYC One of these facts is that either one can be used to calculate the
degree of YC – hence they can not be independent. More generally, it can be shown
that OEYC can be written as a polynomial of the weights i dj of the representation
in Section 4.2. Another fact is that for matrix Schubert varieties the pure c part
determines the whole OEYC up to permutation of indexes). Since the pure c part of
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OEYC can be presented in a more compact way in general, it would be interesting to see

the relation in general. However, we may not expect that the pure c part determines
the pure d part for any C. For example, let C1 be the configuration of 7 points on
the projective plane with the collinearities 123, 145, and 167 and otherwise general).
Let C2 be with the collinearities 123, 345, 567 and otherwise general). The pure c
part of the equivariant classes of both of these are c31 The pure d parts are essentially
different see Theorem 4.2).

7. Stabilization

The interior structure of natural infinite sequences of equivariant cohomology classes

of geometrically relevant varieties has remarkable connections with the theory of
symmetric functions [Nak99], and iterated residue identities for hyperplane arrangements

[BS06], [FR08]. Inthissection we make the firststep towards exploring similar
relations for the classes OEYC by showing the property analogous with the so-called
d-stability property of Thom polynomials of contact singularities, cf. [FR08, Section

7.3]. A byproduct – important in Section 8 – is Theorem 7.4 on the vanishing of
certain coefficients of OEYC

Let C be a configuration of k vectors in Cs, spanning Cs, and let codim.YC

Cs k/ D l. For n s let the configuration C#n be obtained from C through the
natural embedding of Cs into Cn. Hence C#n is a configuration of k points in Cn,

spanning an s dimensional subspace. It is easy to check that

codim.YC#n Cn k/ D l C k s/.n s/:

Our goal is to compare the classes

OEYC 2 ZOEc1; : : : ; cs;d1; : : : ; dk and OEYC#n 2 ZOEc1; :: : ;cn; d1;: : : ; dk : 11)

Clearly YC#n \ Cs k
D YC. If this intersection was transversal, or if YC#n was

equal to YC, then the relation between the two equivariant classes would follow from
standard notions of equivariant cohomology. None of these is the case; the relation
between the two polynomials does not follow from straightforward applications of
equivariant cohomology notions. The relation between the two classes must involve
nontrivial algebra, since it involves nontrivial geometry – consider for example the
case when C is the collection of 4 generic vectors in C2. In this case OEYC D 1
while OEYC#4 has a term 2d1d2d3d4, whose coefficient is the solution of the Schubert
problem of Example 5.5.

Below we will work with the Chern roots i of GL.m/ m D s or n), instead of
the Chern classes ci That is, we identify H BGL.m// D ZOEc1; : : : ; cm with the
symmetric polynomials of 1; :: : ; m; where the i’th elementary symmetric
polynomial is ci In our notation, hence, YC may be a polynomial in ci’s and di’s, or a
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polynomial in i ’s and di ’s necessarily symmetric in the i ’s. If S is an s-element
subset of OEn then OEYC S/ will denote the value of OEYC if we substitute the variables

i i 2 S for 1; : : : ; s.

Theorem 7.1. Let OEn

s
denote the set of s-element subsets of OEn For such a subset

S, let xS denote the complement of S in OEn Then we have

OEYC#n D X
S2.

OEn

s /

OEYC S/
Qi2 xS

Q
k
jD1. i dj/

Qi2xS Qj2S. i j/
: 12)

Proof. Let "k denote the trivial bundle of rank k, and let s be the tautological bundle
or rank s) over Grs Cn. The embedding of bundles s "n induces the embedding

of bundles i W Hom."k; s/ Hom."k; "n/. The maximal torus U.1/n U.1/k of
Gn;k acts on the following diagram

YC. / Hom."k; s/ i Hom."k; "n/

1

2
Hom.Ck;Cn/ YC#n

Grs Cn ;

where 1 are 2 the projections of Hom."k; "n/ D Grs Cn Hom.Ck; Cn/, and

YC. / is the collection of the YC-points in each fiber of The composition 2 Bi is a

birational map from YC. / to YC#n. Therefore we can apply the fibered version of the
Atiyah–Bott localization theorem, Theorem 3.8) in [BS06] see also Proposition 5.1
of [FR08]), and we obtain the theorem.

Another relation between the classes 11) stems from the following theorem.

Theorem 7.2. Let n > s, and OEYC#n D P
inpi 1; : : : ; n 1;d1; : : : ;dk/. Then

1) pi D 0 for i > k s, and

2) pk s D kC OEYC#.n 1/ for an integer kC.

Proof. Apply Theorem 2.1 of [FR07].

To explore the algebraic consequences of Theorem 7.2 we define lowering and
raising operators on constant width polynomials.

Definition 7.3. The width of a monomial in ZOEc1; : : : ; cn is the number of factors
in it. The width of a polynomial is the width of its widest term. Let Pnw be the
vector space of width w polynomials in ZOEc1; : : : ; cn The lowering operator
Lnw W PnC1w Pnw is defined to be the linear extension of

Ln
w ci1ci2 : : :ciw D ci1 1ci2 1 : : :ciw 1;
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and Lnw.cI / D 0 if the width of cI is less than w c0 is defined to be 1). Lnw decreases

the degreebyw. The raising operator increasing the degree byw)Rnw w PnC1W Pn w
is defined by

p DX
a c1; : : : ; cn/ 7 X a 1C1;:::; wC1/.c1; :: : ;cnC1/;

where
P

a is the unique expression of p as a linear combination of Schur
polynomials corresponding to partitions with w parts.

For instance we have

L23.c1c2c3 C 5c23/ D c1c2;

and

R23.c1c2/ D R23. 210.c1; c2// D 321.c1; c2; c3/ D c1c2c3 c23:

We have the one-sided inverse property Lnw BRnw D id, but not the other way around.

Theorem 7.4. Let C beaconfiguration of k vectors inCn, spanning an s dimensional
subspace.

The width of OEYC is at most k s.

If OEYC is written in the Schur basis then all occurring have at most k s

parts.

Proof. If OEYC had a term of width i > k s, then Lni OEYC / would not be 0,
contradicting to Theorem 7.2 1) cf. [FR07, Corollary 2.5]). This proves the first
statement. The second is a combinatorial rephrasing of the first one.

Theorem 7.5. Let n;k s, and let us use the notations of Theorem 7.1. Let be a
partition with at most k s parts. Then we have

Rn 1
k s B B RsC1 k s c1;: : : ; cs// D X

S2.
OEn

k s B R s

s /

S/
Qi2x

k
S i

Qi2 xS
Qj2S. i j /

: 13)

Proof. Thepolynomial c1; : : : ; cs/ is the equivariantclass OEYC of anappropriate
matrix Schubert variety, according to Theorem 4.2. Then Theorem 7.1 gives that the
right hand side is the GL.n/ equivariant class of another matrix Schubert variety.
Checking the indexes, and applying Theorem 4.2 again we obtain the left hand side.

Itwould be interesting to find a combinatorialproof of this theorem, possibly along
the line of the multivariate Lagrange interpolation formula for symmetric functions
[CL96].

Finally, we have the description of the relation between the pure c parts of the
equivariant classes 11).
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Theorem 7.6. Let C be a configuration of k vectors in Cs, spanning Cs. Let n s,
and let C

#n be obtained from C by the natural embedding Cs Cn. Then OEYC#n

has width at most k s, and

k s B B RsC1OEYC#n D Rn 1
k s OEYC :k s B Rs

Proof. According to Theorem 7.4 we can express OEYC as a linear combination of
polynomials with each having at most k s parts. Let us apply the operation

k
p 7! P

p
Q

i2xS i to this expression. Theorem 7.5 gives our result.S
Q Q

j2S.i2xS i j /

In particular the constant kC above is 1. Furthermore, the pure c part of OEYC

determines OEYC#n by adding a k s/ n s/ rectangle to each in its Schur
expansion. The analogousphenomenon for equivariantclassesof contact singularities is
called the“finiteness ofThom series”, see [FR08]. However, finitenessofThomseries
seemsmore theexception than the ruleforcontactsingularities. The only known finite
Thom series correspond to a trivial case the algebras ZOEx1; :: : ;xn x1; : : : ;xn/2),
the Giambelli–Thom–Porteous formula.

Denoting the Menelaus configuration considered in a subspace of Cn n 3) by
C#n

M we obtain that

OEYC#n
M D 3 n 1;n 2;n 2 C 2 n 1;n 1;n 3 C 3 n;n 2;n 3:

Remark 7.7. The only property of the representation of Section 4.2 used in this
section was that this representation is a quiver representation. Hence the suitable
rephrasing of the localization, width, and vanishing results above are valid for all
quiver representations.

8. The calculation of equivariant classes of matrix matroid varieties

The standard straightforward methods to calculate equivariant classes of invariant
subvarieties – such as the method of resolution or Gröbner) degeneration – assume
more knowledge on the ideal of the variety than we have about the ideal of matrix
matroid varieties.

What we can do is list certain properties of the class OEYC and hope that a

computer search will prove that there is only one element of the polynomial ring
ZOEc1; : : : ; cn; d1; : : : ; dk that satisfies all these properties. The main such property
– which we will call interpolation property – is motivated by methods used in the
theory of Thom polynomials of singularities.

8.1. Interpolation. For a configuration D 2 Cn k let GD denote its stabilizer
subgroup in Gn;k. The embedding GD Gn;k induces a map between classifying
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spaces BGD BGn;k, and, in turn, a homomorphism between rings of characteristic

classes D W H BGn;k/ H BGD/.

Theorem 8.1 ([FR04], Theorem 3.2). If D 62 YC then D.OEYC / D 0.

Theorem 8.1 is a homogeneous interpolating condition on OEYC To obtain a
nontrivial condition, however, we need to find a configuration D, outside of YC, with
reasonably large symmetry group. Let us illustrate the usage of this theorem with an
example.

Example 8.2. The calculation of OEYCM Consider the following configuration

D1j2j6: v1, v2, and v6 are three generic vectors in C3, while v3 D v4 D v5 D
0 2 C3. Clearly D1j2j6 is not in the closure of XCM since for all configurations

in XCM the vectors v1; v2, and v6 are coplanar. Therefore D1j2j6 OEYCM / D
0. The stabilizer subgroup of D1j2j6 is U.1/6 with the embedding into G3;6 via
diag. ; ; /;diag. ; ; i; ; ; //. Hence – by abusing language and identifying

general elements of a U.1/ with the first Chern class of U.1/ – the map

D1j2j6 W
ZOEc1; c1; c3; d1; : : :; d6 ZOE ; ; ;i; ; maps

c1 7! C C ; c2 7! C C ; c3 7! ;

d1 7! ; d2 7! ; d3 7! i; d4 7! ; d5 7! ; d6 7! :

The vanishing of OEYCM at this map is a non-trivial interpolation property of OEYCM

In fact, one finds that the degree 4 part of the intersection of the kernels of the D1j2j6

D1j3j5 D2j3j4 and D4j5j6 is2-dimensional. This is not surprising in the light of the
decomposition 5).) Now letD124j356 be the following configuration: v1 D v2 D v4
and v3 D v5 D v6 are two different nonzero vectors in C3. This configuration is not
in the closure of XCM because of Menelaus’ theorem. Indeed, the left hand side of
4) is 1 for any configuration in XCM but it is1for D124j356. As a consequence,

OEYCM must vanish at the map D124j356 W
ZOEc1; c1; c3; d1; : : : ; d6 ZOE ; ;

c1 7! C C ; c2 7! C C ; c3 7! ;

d1 7! ; d2 7! ; d3 7! ; d4 7! ; d5 7! ; d6 7! :

It turns out that in ZOEc1;c1; c3; d1; : : : ; d6 there is only a 1-dimensional set of
degree 4 polynomials vanishing at the five maps D1j2j6 D1j3j5 D2j3j4 D4j5j6 and

D124j356 Normalization is achieved, for example, by observing that the coefficient
of d23d26 in OEYCM has to be 1, due to Theorem 5.3.

Observe that the application of Theorem 8.1 to calculate OEYC resonates to the
method of determining the ideal of YC discussed at the end of Section 3.2. That is,

we first deal with the trivial conditions following from the closed conditions on XC,
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then need to work with some extra equations besides these naive ones. What makes
the equivariant cohomology calculation easier is that here we do not have to have a

full understanding of all the fake components, or all the extra geometry theorems of
the configuration. It is enough to find someof these, use these to findan interpolations
constraint. And it is clear when we can stop: as soon as we find enough interpolation
constraints to cut down the dimension of the solution set to 1, we can be sure we
found OEYC

8.2. Calculation in practice. The three main conditions we may use to calculate
the equivariant class OEYC are

the interpolation conditions, Theorem 8.1;

the enumerative conditions, Theorem 5.3;

the width condition, Theorem 7.4.

The first one depends on the choice of the test configuration D. The second one

depends on the choice of the numbers q. For certain choices of D and q these

conditions are far from being straightforward, because we do not know whether D
belongs to YC, or the number N.CI q/. For some other choices, however, simple
arguments answer these questions, and hence we have explicit constraints of OEYC

See, for example, the calculation of OEYCM above.
It is quite possible that the interpolation conditions themselves are enough to

determine the equivariant class OEYC up to a scalar. For some other representations
the analogous statement is a theorem, e.g. [FR04, Theorem 3.5]. However the proof
there depends on a condition of the representation called Euler condition in [FR04,
Definition 3.3], closely related to the “equivariantly perfect” condition of [AB83,
Section 1.]). This condition does not hold for the representation of Section 4.2.

What works in practice, is the combination of the three constraints. For all the
configurations the authors considered many more than the ones presented in this
paper) there is only one polynomial of degree codim YC in ZOEc1; : : : ; cn; d1; : : : ; dk
satisfying the simple straightforward constraints obtained from interpolation and
enumeration, together with the width condition. We conjecture this holds for all
configurations.

9. Hierarchy

The interpolation method highlights the importance of the hierarchy of the sets YC.

In fact, the effective usage of the interpolation method to calculate OEYC assumes that
we have another configuration D such that D 62 YC. To indicate the non-triviality
of this problem we challenge the reader with the problem of deciding whether the
configuration D134j256 is contained in YCC for notations see Figure 2 and Example

8.2).
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The hierarchy of the sets XC is not “normal”, in the sense that there are examples

of configurations C and D such that certain points of XD are in the closure of XC,
some others are not. A small example is C D CM, D D6 points on one line. Hence,
we restrict our attention to the case when D is an orbit of the action in Section 4.2.

In this case Theorem 8.1 yields the following: if D.OEYC / 6D 0 then YD YC.
The vanishing of D.OEYC / has no chance of determining the adjacency of YC and

YD if the stabilizer groupGD is trivial i.e. it is thekernelof the representation, U.1/).
However, when GD is larger, we have found no counterexample to the following
conjecture.

Conjecture 9.1. Let C and D be configurations of k points in Cn. Suppose that
projectivizations of the non-zero vectors in D form a projectively independent set

hence of cardinality n). Then

YD YC D.OEYC / 6D 0:

Together with the effective algorithm of Section 8.2 computing OEYC this conjecture

would serve as a computable criterion of hierarchy, cf. [FP07].
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