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Jacobi forms over complex quadratic fields via the cubic
Casimir operators

Kathrin Bringmann, Charles H. Conley and Olav K. Richter

We dedicate this article to Harold Stark on the occasion of his 70th birthday

Abstract. We prove that the center of the algebra of differential operators invariant under the
action of the Jacobi group over a complex quadratic field is generated by two cubic Casimir
operators, which we compute explicitly. In the spirit of Borel, we consider Jacobi forms over
complex quadratic fields that are also eigenfunctions of theseCasimir operators, a new approach
in the complex case. Theta functions and Eisenstein series provide standard examples. In
addition, we introduce an analog of Kohnen’s plus space for modular forms of half-integral
weight over K D Q.i /, and provide a lift from it to the space of Jacobi forms over K D Q.i/.

Mathematics Subject Classification 2010). Primary 11F50; Secondary 43A85.

Keywords. Complex quadratic fields: Jacobi forms, Kohnen’s plus space, invariant differential
operators.

1. Introduction

In 1985, Eichler and Zagier [7] systematically developed a theory of holomorphic)
Jacobi forms. That theory has since grownenormously, establishingdeep connections
to different types of automorphic forms for example, see Skoruppa and Zagier [23]
and Skoruppa [21]) and many other areas of mathematics and physics, such as the
theory of Heegner points see Gross, Kohnen, and Zagier [10]), the theory of elliptic
genera seeZagier [24]), string theory for example, seeCardy [5]), and more recently,
mock theta functions see Zwegers [26]).

The classical Jacobi forms in [7] are holomorphic functions. More generally,
the Maass–Jacobi forms over the rationals in Berndt and Schmidt [1] and Pitale
[17] are eigenfunctions of differential operators invariant under the action of the
real Jacobi group. Automorphic forms over complex quadratic fields are clearly not

The first author was partially supported by NSF grant DMS-0757907. Parts of this paper werewritten while
the first author was in residence at the Max Planck Institute for Mathematics in Bonn and the third author was in
residence at the RWTH Aachen and also at the Max Planck Institute in Bonn. Both authors are grateful for the
hospitality. The third author thanks Aloys Krieg in particular for providing a stimulating research environment.
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holomorphic functions, and so one needs an analyticity condition to take the place of
the Cauchy–Riemann differentialequations. Skogman [20] and Richter and Skogman

[18] use Jacobi theta functions to construct prototypes of Jacobi forms over complex
quadratic fields and arbitrary number fields, respectively, but they do not discuss any
analyticity condition for Jacobi forms. In [4] we give such a condition and suggest a

definitionof Jacobi forms over complex quadratic fields. More precisely, we consider
Jacobi forms over complex quadratic fields that are also eigenfunctions of a second
order differential operator invariant under the action of the complex Jacobi group.
In addition, we present explicit examples showing that the space of such forms is
nonempty. Nevertheless, the definition in [4] has drawbacks. For one thing, all
examples of such Jacobi forms constructed there have eigenvalue zero. In addition,
it seems that the approach in [4] does not give any connections to other types of
automorphic forms. This is somewhat unsatisfactory, since a theory of Jacobi forms
should yield a fruitful interplay between different types of automorphic forms.

In this paper we suggest a new approach to Jacobi forms that is in the spirit
of Borel’s notion of an automorphic form for a reductive group [2]. The center

of the universal enveloping algebra of the complex Jacobi group is generated by
two conjugate linear elements and two conjugate cubic elements, which we call
the Casimir elements. The linear elements act on Jacobi forms by scalars, and the
operators by which the Casimir elements act generate the center of the algebra of
invariant differential operators. We consider see Definition 2) Jacobi forms over
complex quadratic fields that are eigenfunctions of the cubic Casimir operators. The
Eisenstein series in [4] and special cases of the theta functions in [20] and [18] are
concrete examples, and in contrast to [4], the space of Jacobi forms here yields a

truly continuous spectrum. Furthermore, we introduce an analog of Kohnen’s plus
space for modular forms of half-integral weight over K D Q.i/. We proceed as in
Kohnen [14] to construct a lift from said analog to the space of Jacobi forms over

K D Q.i /, which gives rise to new examples of Jacobi forms over K D Q.i/.
Our work may be viewed as the first step toward a rigorous theory of Jacobi forms
over complex quadratic fields. It will be interesting to see if such Jacobi forms find
important applications in the same way that classical Jacobi forms do.

This paper is organized as follows. We begin Section 2 with the definition of the
Jacobi group of any subdomain of C, and the jk;m-slash action of the complex Jacobi
group. We then state the main result of Section 6, the description of the center of the
algebra of jk;m-invariant operators, and use it to define Jacobi forms over complex
quadratic fields.

Section 3 is the heart of the number theoretic part of the paper. It begins with
the determination of the transformation laws of Jacobi theta functions. These theta
functions are important tools in the proof of the main result of the section, which
constructs new examples of Jacobi forms over K D Q.i/ by lifting modular forms
of half-integral weight in the analog over K D Q.i/ of Kohnen’s plus space) via a

theta decomposition.
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Sections 4-6 comprise the Lie theoretic partof the paper. In Section 4 we compute
the generators and relations of the algebra of invariant differential operators on any
homogeneousG-vector bundle in terms ofG’s universal enveloping algebra, G being
an arbitrary Lie group. The case that the stabilizer subgroup is connected and acts

reductively on g was treated by Helgason [11], and in fact this case is sufficient for
Sections 5 and 6. We have included Section 4 for completeness and in order to give
a slight generalization of Helgason’s results.

The jk;m-slashaction of the real Jacobigroupwas introduced in [7],andgenerators
for its algebra of invariant differential operators were computed in [1]. In Section 5
we apply [11] to compute the relations in this algebra. We find that its center is the
image of the center of the universal enveloping algebra of the Jacobi group, and is
generated by a single cubic operator. This operator was used in [1] page 82) to define
Maass–Jacobi forms over the rationals, and such forms were studied in [17].

In Section 6 we apply [11] to the jk;m-slash action of the complex Jacobi group.
Here the center of the algebra of jk;m-invariant operators is a polynomial algebra on
two cubic operators, and it is again the image of the center of the universal enveloping
algebra.

2. Jacobi forms and the Jacobi group

2.1. The Jacobi group. We follow the notation of [1], [4], and [7]. For any subdomain

D of C, the centerless Jacobi group of D is

xGJ D/ WD SL2.D/ Ë D2:

We write elements of D2 as row vectors X and define the group law of xGJ D/ via
the right action of SL2.D/: M;X/.M0; X0/ WD MM0; XM0 C X0/.

Let D2 Q D be the Heisenberg group of D, with group law

X; / X0; 0/ WD X C X0; det X
X 0 C C 0/:

The Jacobi group of D is GJ D/ WD SL2.D/ Ë D2 Q D/, with group law

M;X; M0; X0; 0

WD MM0; XM0 C X0;det XM 0

X 0 C C 0 :

Note that ZJ D/ WD fIg f0g D is the center of GJ D/, and the projection

M; X; / 7! M; X/ defines an isomorphism from GJ D/=ZJ D/ to xGJ D/. It
will be useful to define subgroups KJ D/ of GJ D/ and KxJ D/ of GxJ D/ by

KJ D/ WD SU2 \SL2.D/ f0g D; KxJ D/ WD SU2 \ SL2.D/ f0g:
Write Q for the ring of quaternions andHQ for the quaternionic upper half space:

Q WD
°
u C vk j u; v 2 C; k2 D 1; ak D kNa for all a 2 C ;

HQ WD fx C yk 2 Q j x 2 C; y 2 RCg:
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We denote elements ofHQ by D xCyk and elements ofQ by z D uCvk. Define

Nz WD Nu vk; Qz WD uC Nvk; N.z/ WD z Nz D juj
2

C jvj
2

the usual quaternion norm). Also, set

ku C vkkC WD u C iv; ku C vkkxC WD Nu C i Nv; TROEz WD kzkC C kzkxC :

The following lemma is elementary; a conceptual proof may be found in [4]. For
the rest of Section 2, set

i ; XWD ; /: 1)M WD

Lemma 2.1. There is a transitive action of SL2.C/ on HQ defined by

M B WD C / C i/ 1
D C i/ 1

C /;

under which the stabilizer of k is SU2.
There is a transitive action of GJ C/ on HQ Q defined by

M; X; / B ;z/ WD M B ; C i/ 1
C C z/ ; 2)

under which the stabilizer of k; 0/ is KJ C/. Division by ZJ C/ yields a transitive
action of xGJ C/ on HQ Q, such that the stabilizer of k; 0/ is KxJ C/.

We now define the jk;m-slash action of GJ C/ on C1.HQ Q/. Define a

function aW GJ C/ HQ Q/ C by

a M; X; /; ; z/ WD C C2 zC QzC C / Ci/
1

zC C /:

3)
For k 2 C, l 2 N, and m 2 Cl define k;mW GJ C/ HQ Q/ C by

k;m M; X; /; ; z/ WD N k
C i/ exp

°
2 iTR tma M; X; /; ; z/ m :

Proposition 2.2. For all k 2 C and m 2 Cl the following equation defines a slash

action jk;m of GJ C/ on functions f W HQ Q C:

f jk;m.M;X; / ; z/ WD k;m M;X; /; ;z/ f M;X; / B ; z/ : 4)

Multiplication by y k0

is an intertwining map from jk;m to jkCk 0;m:

y k0f kCk
0;m M; X; / D y k0 f k;m M; X; /:
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This proposition amounts to the fact that k;m is a cocycle with respect to the

action of GJ C/ on HQ Q, such that
kCk

0 ;m= k;m is the coboundary @y k0

; see

Section 4.2. It is proven in Section 5.3 of [4].
We nowstate the main results of the Lie-theoretic part of the paper: thedescription

of the center of the algebra of differential operators onHQ Q invariant with respect
to the action jk;m of GJ C/, and the description of the action of the center of the
universal enveloping algebra ofGJ C/under jk;m. The two are the same and motivate
the definition of Jacobi forms given in Section 2.2.

We will see in Section 6 that if we regard GJ C/ as a complex group, then the
center of its universal enveloping algebra is a polynomial ring on two generators, one
linear and one cubic. It follows that if we forget its complex structure and regard it
as a real group, the center of its universal enveloping algebra is a polynomial ring
on four generators, two conjugate linear elements and two conjugate cubic elements.
Under the real action jk;m, the cubic elements act by third order differential operators
which we denote by Ck;m and the linear elements act by scalars. Thus Ck;m generate

the jk;m-action of the universal enveloping algebra of GJ C/.
We will define CC

k;m in terms of the following operators:

ZC
k;m WD 2 i tmm;

eC
k;m WD

@u;

ECk;m WD @x;

HCk;m WD .2x@x C y@y C u@u C v@v C k/;

f C
k;m WD x@u C y@ Nv/ C 4 i tm.mu C i xmv/;

F Ck;m WD xHCk;m x2
@x C y2

@
Nx/ C y.u@

Nv
v@

Nu/

C 2 i t mu C i xmv/.mu C i xmv/:

5)

In order to define Ck;m write B for any of Z, e, E, H, f F and let

Bk;m WD BCk;im : 6)

Remark. It is useful to note that Bk;m
and hence also Ck;m may be obtained from

BCk;m and CCk;m by replacing x, u, v, k, and m by their conjugates.

Definition 1. The Casmir operators of the action jk;m are

fk;m/2Ek;m Fk;m ek;m/2 Hk;m C 2/fk;mek;mCk;m WD
i

C Hk;m C 1/.Hk;m C 2/Zk;m C 4Fk;mEk;mZk;m :

7)
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Theorem 2.3. The third order differential operators Ck;m on HQ Q are invariant

with respect to the action jk;m of GJ C/. They generate a polynomial algebra in
two variables which is both the center of the algebra of all jk;m-invariant differential
operators and the image of the center of the universal enveloping algebra of GJ C/
under jk;m.

The operators Ck;m
are the conjugates of C0;m by y k:

Ck;m y kf ; z/ D y kC0;mf ;z/:

We now discuss the following slash action of SL2.C/ on HQ:

f jkM / WD N k
C i/f M B /

see 1)). It is easy to check directly that this is an action for all k 2 C, and that
multiplication by y k0

is an intertwining map from jk to jkCk0 This also follows
from Proposition 2.2 and the observation that jk is the restriction of jk;0 to an action
of SL2.C/ on functions constant in z.

Define a second order operator k on HQ by

k WD y2.4@x@
Nx C @2y/ C .2k 1/y@y:

Note that 0 is the usual Laplace–Beltrami operator, which is well known to generate

the algebra of j0-invariant differential operators, and k C k2 2k is its conjugate
by y k:

k y kf D y k 0.f / k2 2k/f : 8)

It follows that k generates the algebra of jk-invariant operators.
Clearly restriction to functions constant in z defines an algebra map from jk;0-

invariant operators to jk-invariant operators. Since ek;0
and fk;0

annihilate functions

constant in z and Zk;0 D 0, this algebra map sends Ck;0
to 0. We remark that it sends

the operators Dk;0
and Dzk;0 in 4) of [4] to k and 0, respectively. Let us take this

opportunity to correct an error in Proposition 5.7 of [4]: the first displayed equation
should read Dk;m D IDO k;m Q 4/ k2 C 2k.)

2.2. Jacobi forms. Fixa complexquadratic fieldK with discriminantdK. Algebraic
and complex conjugation are identical on K and are denoted by 7! x Let dK be
the different of K and let OK be the ring of integers of K. The discrete Jacobi group

J K/ over K is the centerless Jacobi group of OK:

J K/ WD xGJ OK/ D SL2.OK/ Ë O2K:

Proposition 2.4. The restriction to GJ OK/ of the action jk;m defined in Proposition

2.2 factors through to an action of the quotient J K/ if and only if tmm 2 d 1
K

In particular, this holds for K D Q.i/ if and only if 2 tmm 2 ZOEi
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Writing z for z C C / the resulting action of J K/ is given by

f hk;m i ; ; /i ; z/ WD f h i ; ; /iB ; z/

N. C i/ k exp
°
2 i TR tm zz C i/ 1 z C C 2 z m :

9)

Proof. This proposition is a sharpening of Lemma 5.6 of [4]. Equation 4) defines an
action of J K/ if and only if k;m is 1 onZJ OK/, which in turn occursifandonly if
the factor exp

°
2 iTROE tmm of k;m arising from the summand in 3) is 1 for all

2 OK. In this case 4) reduces to 9) because the summand in 3) also contributes

nothing. Since TROE tmmOK Z if and only if tmm 2 d 1
D d

1=2OK, the resultK K
follows.

The definition of a non-holomorphic) automorphic form requires an analyticity
condition to take the place of the Cauchy–Riemann differential equations for
holomorphic functions. On reductive groups one usually uses the action of the center

of the universal enveloping algebra to give such a condition see Borel [2]). The
Jacobi group is not reductive, but nevertheless, in light of Theorem 2.3, the following
definition of Jacobi forms fits into this framework. Moreover, it suggests a fruitful
theory.

Definition 2. Let k be in N, and let m be an element of Cl such that tmm 2 d 1
K as

in Proposition 2.4. A real-analytic function f W HQ Q C is a Jacobi form over

K of weight k, index vector m, and eigenvalues C; 2 C if

i) f jk;mA ;z/ D f ; z/ for all A 2 J K/,

ii) CC
k;m f D Cf and Ck;m f D f

iii) f is of moderate growth.

We denote the vector space of such Jacobi forms by Jk;m; C ; In addition, we say
that 2 Jk;m; C ; is a cusp form if

; z/ D O expf byg expf2 jvj
2

yg as y 1for some b > 0; 10)

which is analogous to the characterization of the Jacobi cusp forms in Skoruppa [22].

Explicit examples are given by the Eisenstein series in [4]. For example, if
m 2 Rl tmm 2 N, and s 2 C such that Re.s/ > 4, then the Eisenstein series

with k D 0 and s s 1 in [4])2

Em;s. ; z/ WD X
A2 J1 K/n J K/

ys
0;m A ; z/ 2 J0;m; C ; 11)
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with C D 2 tmm.s 1/.s 2/, D 2 t
xmxm.s 1/.s 2/, and where J1 K/ D

°
1
0 1 ; .0;n/ j ;n 2 OK Furthermore, for weights k D 1=2 and k D 1,

the theta functions in [20] and [18] yield concrete examples of Jacobi forms on a

subgroup of J K/. It would be interesting to classify all theta functions which
satisfy Definition 2.

Remark. At the end of the proof of Theorem 3.2 we explicitly state the moderate
growth of Jacobi theta functions and of Jacobi forms that appear as lifts of modular
forms of half-integral weight. Unfortunately, we cannot give such a growth condition
for the Eisenstein series in 11), since we have not been able to completely determine
its Fourier expansion see also Section 3.2 of [4]).

3. Lifting of modular forms to Jacobi forms

In this section we provide new examples of Jacobi forms over K D Q.i/ by lifting
modular forms of half-integral weight over K D Q.i /. Our construction is of the
same flavor as the method of Kohnen [14] see also Section 4 of Pitale [17]). It
is likely that our results can be extended to other complex quadratic fields, but for
simplicity we restrict to the case that K D Q.i/, OK D ZOEi is the ring of integers
of K, and dK D 2ZOEi is the different of K.

3.1. Jacobi theta functions. Let 2 R, where R is a complete system of
representatives for the set of cosets 1

2
ZOEi ZOEi The theta function

;z/ WD X2ZOEi

exp
°

i TROE.! C / C / C 2.! C /z

is a crucial building block in our construction of Jacobi forms in Section 3.3. First
we determine the transformation law of under translation and inversion.

Theorem 3.1. For every 2 ZOEi we have

C ;z/ D exp
°

i TR 2 ; z/ : 12)

Moreover, we have

1; 1z

D
1

2N. /1=2 exp
°

i TR Qz

1 z X2R

expf2 i TR OE

g ; z/ :
13)

Proof. Equation 12) follows immediately from the definition of We apply Eichler’s

“embedding trick” to prove 13). Consider the following Jacobi theta function
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of higher degree:

‚M.Z; W / WD XL2Z2

exp
°
2 i t L C M/Z.L C M/ C 2 t L C M/W ; 14)

with M 2 R, where R is a complete system of representatives for the set of cosets
1
2Z2=Z2, and where Z and W are variables in H2 Siegel upper half plane of degree

2) and C2, respectively. Recall that

‚M. Z 1; Z 1W /
1

D 2
det iZ/

1
2 expf2 i tWZ 1W g XN2R

expf 4 i t
NMg‚N Z;W /;

15)

where det iZ/
1
2 is positive if Z D iY for positive definite Y 2 R.2;2/ see [6] for

a simple proof of 15) that does not require Poisson summation).
Now we will regard ; z/ as a special case of‚M.Z; W /. Set WD

1 i
1 i

If D x C yk 2 HQ, z 2 Q, and 2 R, then Z WD
1
2

t x iy
iy Nx 2 H2,

W WD
1
2

t jjzjjC
jjz jjxC 2 C2, and M WD

1
N D

Re
Im 2 R. Furthermore, if

runs through ZOEi then L WD
1

N D
Re!
Im! runs through Z2 and we find that

;z/ D‚M.Z; W /: 16)

As in [19] see also [4]),

;z/ 7!
1; 1z 2 HQ Q

corresponds to

Z; W / 7! U Z 1 U; UZ 1W 2 H2 C2 ;

0 1 In particular,where U WD
1 0

1; 1z D ‚M U Z 1 U; UZ 1W D ‚UM Z 1;Z 1 W :
17)

Finally, we have

N /1=2
D det. iZ/1=2;

TR Qz

1
z D 2 t W Z 1 W;

exp f2 i TR OE

g D exp f 2 i TR OE

g D exp
°

4 i tN.UM/ ;

Im 2 R, so 13) follows from 15) and 17).with N WD
Re
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3.2. Modular forms of half-integral weight. Elstrodt, Grunewald, and Mennicke

[8] give a good overview of automorphic functions over complex quadratic fields K.
We extend their notion of an automorphic form and we consider modular forms of
half-integral weight over K D Q.i/, and in particular, we introduce an analog of
Kohnen’s [14] plus space. Kojima [15] also discusses modular forms of half-integral
weight over complex quadratic fields, but our point of view is quite different.

Set WD SL2.ZOEi / and 0 N/ WD
° 2 j 2 NZOEi The theta function

/ WD X2ZOEi

exp
°

i TROE! 18)

is a modular form of weight 1=2 on 0 .4/. More precisely, if M D i 2 0 .4/,
then

M B / D j.M; / / 19)

where j.M; / WD M/N. C i/1=2 is the theta-multiplier. Here M/ is an
eighth root of unity, which can be determined explicitly in some important special
cases see Section 4 of [19]): If N.i/ D p is an odd rational prime, then

i D
Re. Ni /

p 20)

is the Legendre symbol.

Remark. The results in [19] show that .2 / satisfies 19) for all i 2 0 .8/.
If, in addition, N.i/ D p is a rational prime, then

i D
2Re. Ni /

p ; 21)

which then easily implies 20).

We would like to address a small error in our paper [4], resulting from a mistake
in [13]. We apply Proposition 4.6 of [13] to simplify 20), but unfortunately that

proposition in [13] is not quite correct as stated. Also note a typographical error:
The obvious factor of 2 in the theta multiplier of 0.2 ; z/ using the notation of
Section 3.1) was left off in 14) of [4] see 20) and 21) above).

Definition 3. A real-analytic function hW HQ C is a modular form on 0.4/ of
weight k 1

2 k 2 N) and eigenvalue 2 C if
i) h M B / D j.M; /2k 1h. / for all M 2 0.4/,

ii) 1 h D h,k 2

iii) h is of polynomial growth at the cusps of 0.4/.
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2; .4/ the vector space of such modular forms of half-integralWe denote by Mk 1

weight.

If h 2 Mk 1
2 ; .4/, then h. C / D h. / for all 2 ZOEi and hence h has a

Fourier expansion of the form

h. / D X2ZOEi

ay.!/exp
°

i TROE!x : 22)

LetMC
k 1

2; .4/ denote the subspace ofMk 1
2 ; .4/, whose elements have Fourier

expansions of the form

h. / D X2ZOEi
0; 1;2i mod 4/

ay.!/ exp
°

i TROE!x :

Then MC
k 1

2; .4/ is an analog of Kohnen’s [14] plus space, and in contrast to [14]

and [17] the plus space condition here does not depend on k.

Remark. The coefficients ay.!/ in 22) can be described explicitly. Choose s 2 C
such that D s2 k 3

2
2

Using ii) and iii) of Definition 3 and the properties of
the usual Bessel function Ks, one can show as in [8] pages 105–106) that the right
hand side of 22) can be written as

c.y/ C y
3
2 k

X2ZOEi nf0g

a.!/Ks.2 j!jy/exp
°

i TROE!x ; 23)

where the coefficients a.!/ 2 C are independent of y and

c.y/ WD a0y
3
2 kCs C b0y

3
2 k s

C c0i.s/y
3
2 k log.y/;

with a0; b0; c0 2 C, and i.s/ WD ´0 if s 6D 0;

1 if s D 0:

3.3. The lift. We are now in a position to state the main result of this Section, which
gives a lift from MC

k 1
2 ; .4/ to Jk; 1p2 ;ƒ;ƒ with ƒ WD C k2 k C 1.

Theorem 3.2. Let h D P
ay.!/ exp

°
i TROE!x 2 MC

k 1
2;

.4/ and write

h. / D X2f0; 1;2ig

h /.4 /

D X2R

h .4 /
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with

h / / WD X2ZOEi

ay
4 .4! C /exp ² i

4
TROE.4! C /x ³

and

2 WD h 1/; h ih0 WD h.0/; h1
2 WD h.1/; and h1Ci

2
WD h.2i/:

Then for 2 R we have

h C / D exp
°

i TR 2 h / 24)

for every 2 ZOEi and also

h 1
D

1
2N. /k 1=2

X2R

exp f2 i TR OE

g h /: 25)

We have

; z/ WD X2R

h / ; z/ 2 Jk; 1p
2

;ƒ;ƒ 26)

with ƒ WD C k2 k C 1.

Proof. Equation 24) follows directly from the definition of the h
We turn to the proof of 25). It is not hard to see that we can write

h / / D
1

16 Xn mod 4/

exp ² i
4

TROEn ³ h C n
4

: 27)

To determine the behavior of this function under inversion, we split the sum over n
into two groups:

S1 WD
°

n1 C in2 I n1 n2 mod 2/; n1; n2 mod 4/ ;

S2 WD
°

n1 C in2 I n1 1 C n2 mod 2/; n1;n2 mod 4/ :

Clearly

h / .4 / 1
D g ;1. / C g ;2. /;

where

g ;1. / WD
1
16 Xn2S1

exp ²
i

4
TROEn ³ h

1

4
4 / 1

C n ;

g ;2. / WD
1
16 Xn2S2

exp ²
i

4
TROEn ³ h

1
4

4 / 1
C n :
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We first consider g ;1. / Write

g ;1
1

4 D
1

16 Xn2S1

exp ²
i

4
TROEn ³h

1

4 C n/

D
1

16 X2ZOEi
0; 1;2i mod 4/

ay
4 .!/ exp ²

i
4

TR OEx! ³ Xn2S1

exp ²
i

4
TR OEn.! / ³:

28)

The sum over n on the right hand side of 28) equals

X ²
iexp TR OE2n / ³4 C Xn mod 2/ n mod 2/

exp²
i

4
TR OE.2n C 1 i/ / ³

D 1 C exp ²
i

4
TR OE.1 i/.! / ³ Xn mod 2/

exp ² i
4

TR OE2n / ³;

29)

where the sum over n on the right hand side of 29) vanishes unless mod 2/.
If mod 2/, then the plus space condition forces the first factor on the right
hand side of 29) to be 0 unless mod 4/. Hence

g ;1
1

4 D
1

2
h / /;

and thus
1

2
h / .4 / 1

D g ;2. /: 30)

We next consider g ;2. / Clearly

S2 D f1;3;i; 3i;1 C 2i;i C 2; 2 C 3i; 3 C 2ig:

Observing that h is invariant under translations, one can check that

g ;2. / D
1

16 Xn2S2

exp²
i

4
TR OEn ³h Mn B

Nn

4
;

where the matrices Mn are defined as follows:

4 1 ; M3 D
3 1M1 D 1 0
4 1 ; Mi D i 0

4 i ;

4 i ; M1C2i D 1C2i 1M3i D
3i 1

4 1 2i ; MiC2 D 2Ci 1
4 2 i ;

M2C3i D 2C3i 3
4 2 3i ; M3C2i D 3C2i 3

4 3 2i :
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If Mn D
a b
c d

is from the list above, then the transformation law of h implies that

h.Mn B / D nN.c C d/k
1
2h. /

with

n WD ´1 if n 2 ¹1; 3; i;3i; 1 C 2i; 3 C 2iº;
1 if n 2 ¹i C 2; 2 C 3i º:

Writing D 1 C i 2 and n D n1 C in2, we find that

g ;2. / D
Nk 1

2 .4 /
16

exp ²
2 i

4
1³ h

1
C exp²

2 i
4 4

1³ h C
1
4

C exp ²
2 i

4 2³ h C
i
4 C exp ²

2 i
4 2³ h

i
4

C exp ²
2 i

4
1 C 2 2/³ h C

2i 1

4

exp ²
2 i

4
2 1 C 2/³ h C

i 2

4

exp ²
2 i

4
2 1 2/³ h C

3i 2

4

C exp ²
2 i

4
1 C 2 2/³ h C

2i C 1
4

D
Nk 1

2 .4 /
X

2 i
exp ²16 4

n2f0; 1;2ig

1 n1/³ C exp ²
2 i
4

1 C n1/³

C exp ²
2 i

4 2 n2/³C exp ²
2 i

4
2 C n2/³

C exp ²
2 i

4
1 C 2 2 n1 2n2/³

exp ²
2 i

4
2 1 C 2 2n1 n2/³

exp ²
2 i

4
2 1 2 2n1 C n2/³

C exp ²
2 i

4
1 C 2 2 C n1 2n2/³ h n/.4 /;

where the last equation follows after inserting the Fourier expansion of h. /
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Specifically,

g0;2. / D
Nk 1

2 .4 /
4

h.0/.4 / C h.1/.4 / C h 1/.4 / C h.2i/.4 / ;

g1;2. / D
Nk 1

2 .4 /
4

h.0/.4 / h.1/.4 / C h 1/.4 / h.2i/.4 / ;

g 1;2. / D
Nk 1

2 .4 /
4

h.0/.4 / C h.1/.4 / h 1/.4 / h.2i/.4 / ;

g2i;2. / D
Nk

1
2 .4 /
4

h.0/.4 / h.1/.4 / h 1/.4 / C h.2i/.4 / ;

and using 30) together with the substitution
4

gives 25).
Now we will show that defined by 26) satisfies

jk; 1p
2

A ; z/ D ; z/ 31)

for all A 2 J K/. For A D
1 0
0 1 ; ; / this follows directly from the

definition of Equations 12), 13), 24), and 25) imply that 31) holds for A D1
0 1 ; .0; 0/ and A D

0 1
1 0 ; .0; 0/ Recall that the matrices 1

0 1 for all

2 ZOEi and 0 1
1 0 generate SL2.ZOEi / Hence 31) holds for all A 2 J K/.

Note that k 1
2

h D h implies that k 1
2

h D h A lengthy but straightforward

computation using Mathematica) reveals that

C
k; 1p2

h D y k C
0; 1p 4h C y kC

1

2
ykh D

3 2 0 yk 1
2 h

8)

D
3h4 C k 1

2 2
2

h / C k 1 h

D C k2 k C 1/h :

Finally, is also of moderate growth. More precisely,

exp ² 2 jvj2
y ³ exp¹ i TROE.! C / C / C 2.! C /z º D expf 2 yag

with

y

2

a WD j! C j jvj C
2

y C /v C Re C /v 0:

So ;z/ D O expf2 jvj2=yg as y 1and ; z/ D O yN expf2 jvj2=yg
for someN > 0 as y 1. We conclude that 2 Jk; 1p2

;ƒ;ƒ with ƒ D C k2

k C 1.
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Remarks. 1)A half-integral weight cusp form over K D Q.i/ has a Fourier expansion

as in 23) with constant coefficient c.y/ D 0. Therefore if h 2 MC
k 1

2 ;
.4/ is a

cusp form, then h is of exponential decay in y and one finds that in 26) satisfies
the Jacobi cusp form condition 10). Hence the lift in 26) preserves cuspidality.

2) The Jacobi theta functions of higher degree ‚M.Z; W / in 14) are linearly
independent as functions of W for fixed Z see Lemma 3.1 of Ziegler [25]). Equation

2 ; i
2 ; 1Ci

2
are linearly16) implies that the functions z ; z/ D 0; 1

independent for every 2 HQ, and thus the lift in 26) is injective.
3) Itwould be interesting to explore a Hecke theory forJacobi forms overcomplex

quadratic fields, which would allow one to investigate if the lift in 26) sends Hecke
eigenforms to Hecke eigenforms.

4) The real-analytic Jacobi forms in [17] can essentially all be obtained from
half-integral weight Maass forms see the Remark after Theorem 4.6 in [17]). We

thank Ralf Schmidt for pointing out that an analogous statement should also hold in
our setting here.

We end this section with an explicit example of Theorem 3.2. We have 2
MC1

2;0.4/. We find that / D i i/ D P 2R h .4 / with h / WD i i; 0/.

Note that i i D x C yk 2 HQ, h / D h i i/ for D 0 and D 1Ci
2

and

h1
2 / D h i

2
i i/. Then h satisfies 24) and 25) with k D 1 and 1

2
h D 0.

Hence

X2R
i i; 0/ ; z/ 2 J1; 1p

2;3
4 ; 3

4
: 32)

4. Algebras of invariant differential operators

We now turn to the Lie-theoretic part of the paper, the purpose of which is to prove
Theorem 2.3. Fix throughout this section a real Lie group G, a closed subgroup K,
and a representation of K on a complex vector space V The G-vector bundle
G K V over G=K is the set of equivalence classes OEg;v WD

°
gk 1; k/v/ 2

G V W k 2 K with G-action g0OEg; v WD
OEg0g; v and projection OEg; v 7! gK.

We will write C1sec.G K V / for the space of smooth sections of this bundle, and

for the canonical action of G on it:

g/.s/ xK/ WD gs.g 1xK/:

Definition 4. Let D.G K V / be the algebra of G-invariant differential operators on

G K V

In this section we give a Lie algebraic description ofD.G KV /. This generalizes
a result of Helgason [11] giving such a description in the case thatK is connected and
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the inclusion k g is K-split. The generalization is not major, but to our knowledge
it has not appeared previously. In fact, Helgason’s result suffices for the purposes of
the present paper, but the general result is of independent interest.

Given any real LiegroupH, let h0 be its real Lie algebra, and let h be the complexification

h0 R C of h0. Given any representation ofH on a complex vector space

1nD0

W write W H/ and W h/ for the H- and h-invariant vectors in W respectively.
When is clear from the context, we write simplyW H andW h. Write n.W / for the
nth symmetric power of W also an H-module, and W / for the symmetric algebra

L
n.W /. Let degree

W W / W / be the endomorphism which acts on
n.W / by n.

LetU.h/ be theuniversalenvelopingalgebra ofh,with degreefiltrationUr h/. Let
Z.h/ denote its center, which is of course U.h/h. The transpose antiautomorphism

‚ 7! ‚T of U.h/ is X1 Xn/T WD 1/nXn X1. It preserves Z.h/.
Let SymW h/ U.h/ be the symmetrizer map, a filtration-preserving

Hequivalence carrying X1 Xn to 1
nŠ P 2Sn

X .1/ X n/. Note that Sym. /T
D

1/degree. / Sym. / Also, Sym restricts to a linear bijection from h/h to Z.h/.
We will always use and ad for the left, right, and adjoint actions, respectively,

in any context. Thus we have these three actions of H on C1.H/, and of h and
therefore also of U.h/ on both C1.H/ and U.h/. In addition, we have the action ad
of H on U.h/. All of these actions are compatible in the usual sense, and the adjoint
action on U.h/ preserves its degree filtration. It is useful to note that for f 2 C1.H/
and ‚ 2 U.h/,

‚/f e/ D ‚T /f e/: 33)

Similarly, if ; W / is any representation of H, we denote by and ad the
corresponding left, right, and adjoint actions of H, h, and U.h/ on End.W /.

Returning to the representation ; V / of K G on V let us define

E WD U.g/ End.V /;

WD E
°
Y 1 C 1 Y / W Y 2 k ;

A WD
°
P 2 E

W P ;

D WD E
ad ad / K/

D A
ad ad / K=Ke/:

34)

Some explanation is necessary. First, E is an associative algebra possessing three
natural K-actions, namely and ad ad Second, is the left
ideal / k/.E / of E Third, A is a subalgebra of E within which is a

two-sided ideal, soA is an associative algebra. Fourth, ad ad preserves both

A and and acts by algebra automorphisms. Therefore there is a quotient action
ad ad of K on E which preserves A and acts on it by automorphisms.
Thus D is an associative algebra. All four spaces inherit a filtration from U.g/.
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Check that A is the pull-back of the ad ad / k/-invariants of E i.e.,

A is E /k. In particular, the identity component Ke of K acts trivially
on A so we may regard ad ad as an action of the discrete group K=Ke
on it. This gives the second form of D Note that if K is connected, then D D
E /k

D A
For future reference, observe that for P 2 E and ‚ 2 U.k/,

P ‚ 1 P 1 ‚T / modulo : 35)

The main result of this section isthatD.G KV / andD are isomorphic algebras.

In order to give the isomorphism explicitly we need a few remarks. Observe that the
actions 1 of G and of K on C1.G/ V commute. Hence 1 is

a G-action on C1.G/ V
/ K/, the space of K-invariant V -valued smooth

functions on G. In concrete terms, the invariance condition is k/f gk/ D f g/
for all g 2 G and k 2 K.

Henceforth we will use the following well-known G-identification:

C1sec.G K V / C1.G/ V / K/
I

a function f on the right corresponds to the section sf gK/ WD OEg;f g/
Let us write for the defining action of the associative algebra End.V / on V and

for the outer tensor product action of E on C1.G/ V built from and

Note that the restriction of to annihilates C1sec.G K V /, so factors
through to a map

W E Hom C1sec.G K V /; C1.G/ V :

Theorem 4.1. The restriction of to D is an algebra isomorphism from D
to D.G K V / which carries the U.g/-filtration on D to the order filtration.

Proof. Given P 2 E write xP for its image in E First, we claim that if
xP 2 D then xP/ maps C1sec.G K V / into itself. This is a consequence of

the following fact: for any‚ 2 U.g/, T 2 End.V /, and k 2 K,

/ k/ B /.‚ T / D / ad ad / k/.‚ T / B / k/:

Clearly bijects E to the space of left G-invariant differential operators on
the G-bundle G V over G. It follows that carries D to D.G K V /. Since

is an algebra homomorphism, jD is one also.

It remains to prove that bijects D to D.G K V /. In order to prove
injectivity, let m be any subspace of g complementary to k. It follows from the
Poincaré–Birkhoff–Witt theorem that the subspace Sym m/ End.V / of E is
complementary to An argument using coordinates near e shows that if P is a
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non-zero element of Sym m/ End.V /, then xP/ is non-zero. This proves

that is injective on E
To prove surjectivity, suppose that D is any element of D.G K V /. Let us

write evale for the map which carries any function on G to its value at e, and De for
evale BD. Clearly D is determined by De, so it will suffice to find xP 2 D such that

xP/e D De. Note that De is K-invariant in the natural sense.

Again using coordinates at e, extend De to a V -valued differential operator i on

C1.G/ V supported at e. By the first sentence of the second paragraph of the
proof, there is an element P of E such that / P/e D i, and in particular,

xP/e D De. Now use the third paragraph of the proof to verify that xP 7!
xP/e is a K-injection from E to the space of differential operators on

G K V supported at eK. Together with the K-invariance of De, this yields xP 2
E /ad ad K/.

Finally, check that A is the pull-back to E of E /ad ad k/. Therefore

D is in fact E /ad ad K/. The filtration-preserving statement is clear.

It is interesting to observe thatD is closely related to the step algebra defined by
Mickelsson [16]. Indeed, for G a complex reductive group, H a connected complex
reductive subgroup of G, K the unipotent radical of a Borel subgroup of H, and V
trivial, D is precisely the step algebra of the pair G; H/.

4.1. Centers. Assume in this section that K is connected. Regarding U.g/ as the
subalgebra U.g/ 1 of E its center Z.g/ is clearly also the center of E In
particular, Z.g/ is contained in EK and so the canonical map ‚ 7! ‚ C is a

homomorphism from Z.g/ to the center Z.D / of the algebra D In general this
homomorphism is neither surjective nor injective; for example, there are exactly four
noncompact irreducible symmetric spaces for which it is not surjective [12]. In the
case of the scalar slash actions of the real and complex Jacobi groups, we shall see

that it is surjective but not injective.
Let us note that one can use 33) to prove that for any ‚ 2 Z.g/, the left action

‚/ of‚ on C1sec.G K V / is precisely /.‚T
C / For the details, check

that both are invariant differential operators and that they are equal at Ne.)

4.2. Cocycles and slash actions. In this section we make the connection between
G-bundles and slash actions. Given x 2 G, denote the coset xK by

Nx. For any vector
space V a V -valued 1-cocycle of G on G=K is a smooth function

W G G=K/
GL.V / satisfying the cocycle equation

gh; Nx/ D h; Nx/ g; h Nx/:

The slash action j of G on C1.G=K/ V associated to is the right action

f j OEg Nx/ WD g; Nx/f g Nx/:



844 K. Bringmann, C. H. Conley and O. K. Richter CMH

The corresponding left action is g/.f / WD f j OEg
1 We write D G=K/ for

the algebra of differential operators on C1.G=K/ V invariant under j
Define W K GL.V / by k/ WD k; Ne/ 1. By the cocycle equation, it is

a representation of K, and so we have the G-bundle G K V Let us note a misprint
in Lemma 4.6 of [4]: k/ should be defined to be k; eK/ 1.

Now check that
Nx; v/ WD OEx; x; Ne/v is a well-defined smooth map from

G=K/ V to G K V with inverse 1OEx; v D Nx; x; Ne/ 1v/. Use the same

symbol for the bijection from C1.G=K/ V to C1sec.G K V / defined by

f /.x/ WD x; Ne/f x/N recall that we regard C1sec.G K V / as a subspace of
C1.G/ V We leave the proof of the following lemma to the reader.

Lemma 4.2. The map W G=K/ V G K V is a topological trivialization
of G K V The map

W C1.G=K/ V C1sec.G K V / is an equivalence
from the action of G to the canonical action This equivalence is an order 0
differential operator, and so it induces an order-preserving algebra isomorphism T
from D G=K/ to D.G K V /, defined by T D/ WD B D B

1

DefineR to be the filtration-preserving algebra isomorphism T 1
B. / from

D to D G=K/. Givenf in C1.G=K/ V and an element P of E whose image

xP modulo is in D unwinding the definitions yields

R xP/f Nx/ D x; Ne/
1 / P /

yDx°
y 7! y; Ne/f Ny/ : 36)

For completeness we briefly discuss cohomology. Fix vector spaces V and V 0 of
the same dimension, and let and 0 be V - and V 0-valued 1-cocycles of G on G=K,
respectively. They are said to be cohomologous if there exists a smooth function b
from G=K to the set of invertible maps from V to V 0, the coboundary, such that

0.g; Nx/ D b.Nx/ g; Nx/b.g Nx/ 1:

In this case, one checks that f 7! bf intertwines the G-actions j and j 0

Lemma 4.3. Two cocycles and 0 are cohomologous if and only if and 0

are equivalent representations of K. If G=K is simply connected, then given any
representation of K there exists a cocycle such that D

Proof. If b W G=K Hom.V; V 0/ is a coboundary from to 0, then b. Ne/ is an
equivalence from to 0 Conversely, if B W V V 0 is an equivalence from
to 0 one checks that b. Nx/ WD

0.x; Ne/ 1B x; Ne/ is a well-defined coboundary.

If G=K is simply connected, then
W K GL.V / extends to a smooth map

AW G GL.V / such that A.gk/ D A.g/ k/ for all g 2 G and k 2 K, and

g; Nx/ WD A.x/A.gx/ 1 is a well-defined cocycle with D
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4.3. The reductive case. Throughout this section we assume that there exists a

K-splitting k °m of g. In this case we have the K-injection

Sym 1W m/ End.V / E :

The image of this map is a K-invariant complement of in E This leads to the

following proposition, which is proven in [11]. It corresponds to Corollary 4.3 of

[4].

Proposition 4.4. Suppose that k°m is a K-splitting of g. Then under the K-action
ad ad K is a two-sided ideal in the algebra EK andD is naturally isomorphic
to EK K Moreover, the following map is a filtration-preserving linear bijection
but in general not an algebra isomorphism except at the graded level):

i W m/ End.V / K D ; i / WD Sym 1/. / C :

Suppose that is a scalar cocycle. In 21) of [4] we gave a linear bijection IDO
from m/K to D G=K/:

IDO /f Nx/ WD
1 x; Ne/ Sym. /

yNDeN°
yN 7! x; yN/f xyN/ : 37)

Lemma 4.5. In the setting of 37), IDO / D 1/degree. /R Sym. /
Proof. Both sidesare invariantdifferential operators,so it suffices toprove themequal
at Ne. Here End.V / D C, so is just Check that for f 2 C1.G=K/ V

IDO /f Ne/ D Sym. /
yNDeN°

yN 7! f yN/ ;

R Sym. / f Ne/ D Sym. /
yDe°

y 7! y; eN/f yN/ :

Consider the two right sides. Replacing Sym. / by an element g of G in the first

gives g 1; eN/f g 1/, and doing so in the second gives g; eN/f gN/. The lemma
now follows from the same reasoning that gives 33).

In light of Lemma 4.5, we may extend 37) to define a filtration-preserving linear
isomorphism for arbitrary cocycles as follows:

IDO
W m/ End.V / K D G=K/;

IDO / WD 1/degree. /R B i /:
38)

It is an algebra isomorphism at the graded level.
Suppose that W K C is a scalar cocycle and is a V -valued cocycle. Then
is a second V -valuedcocycleand the two actions ad and ad ofK on End.V /

are identical, so IDO and IDO have the same domain. In this case, 36) gives the
following lemma.
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Lemma 4.6. In the above setting, IDO / and IDO / have the same symbol

for all in m/ End.V / K

5. Invariant operators in the real case

The real Jacobi group GJ R/ WD SL2.R/ Ë R2 Q R/ is obtained by taking D to be

R in Section 2.1. Recall its center ZJ R/ and subgroup KJ R/:

ZJ R/ D fIg f0g R; KJ R/ WD SO2 ZJ R/:

Let H denote the complex upper half plane. The formulas in Lemma 2.1 define
a transitive action of GJ R/ on H C such that stabilizer of i;0/ is KJ R/. For

k 2 Z and m 2 C, there is a well-known right action j
R
k;m of GJ R/ on C1.H C/

[7]. Let us denote the algebra of j
R
k;m-invariant differential operators by DRk;m In this

section we apply Section 4 to obtain generators and relations for DRk;m This requires
only Helgason’s results [11], as Proposition 4.4 applies.

The algebra DRk;m is not directly related to the number theoretic part of this paper,
but we have two reasons for including it. First, many of the results we obtain en route
are useful in the complex case. Second, although generators and relations for the
graded commutative symbol algebra of DRk;m were obtained in [1], to our knowledge

the relations in DRk;m itself have not yet appeared. We will use them to prove that the

k;m
is precisely the action of Z gJ R/ under j

Rcenter of DR k;m
and that it is generated

by a single cubic operator, the action of the “cubic Casimir element” of GJ R/. This
element is called C on page 38 of [1], and its action is called Ck;m in [17].

Let us remark that j
R
k;m

differs from the complex right action jk;m defined in
Section 2.1 not only in that k must be integral, but also in that varying k does not
produce equivalent actions. Indeed, in the complex case the family f j0;m W m 2 Cg
classifies all scalar right actions such that the action of the center of the group is
bounded, while in the real case fjRk;m W k 2 Z; m 2 Rg does so; see Lemma 4.3.

We will not need the explicit formula for jRk;m ; only the associated characters of

K. However, we give it for reference. Define aR
W

GJ R/ H C/ C by

aR M;X; /; ;z/ WD C C 2 z C
2 z C C /2

C i/ 1

k;mW GJ R/ H C/ C bysee 3)). For k 2 Z and m 2 C, define R

R
k;m M; X; /; ; z/ WD C i/ k exp

°
2 imaR M;X; /; ;z/ :

As in the complex case see Proposition 2.2), R
k;m is a cocycle of the action ofGJ R/

on H C [7]. The associated slash action of GJ R/ on C1.H C/ is

f jk;m.M;X; / ; z/ WD
R
k;m M; X; /; ; z/ f M;X; / B ;z/ :
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5.1. The real Jacobi Lie algebra. Recall from Section 4 that the Lie algebra gJ R/
ofGJ R/ isdefined to be the complexification of the real Lie algebra gJ0 R/. In order
to proceed it is necessary to reproduce some data from Section 5.2 of [4]:

gJ R/ D °
M; X; / W M 2 sl2C; X 2 C2 ; 2 C ; 39)

with Lie bracket

M; X; /; M0; X0; 0/ D OEM; M0 ; XM0 X0M; 2 det X
X 0 : 40)

1 0 and h.z/ D z 2.ez z 1//, the exponential map is

exp.M; X; / D eM ; X eM I

Setting J D
0 1

M ; Xh.M/JX t : 41)

The standard basis fH;E;F; Z; e; f g of gJ R/ is defined by

0 1
; EWD

0 1H WD
1 0

1 0
;

0 0
; FWD

0 0

Z WD 0; .0; 0/; 1 ; eWD 0; .0; 1/; 0 ; f WD 0; .1; 0/; 0 :

42)

The standard basis is not compatible with KJ R/, so we define the “tilde” basis:

Hz WD i.F E/; Ez WD
1
2 H C i.F C E/ ; Fz WD

1
2 H i.F C E/ ;

zZ WD
1

2 f C ie/; fQ WD
1

2 iZ; Qe WD
1

2 f ie/:
43)

Observe thatwhile thestandard basis is both a real basis of gJ0 R/ and a complex basis

of gJ R/, the tilde basis is only the latter. The brackets in the tilde basis are identical
to those in the standard basis: in other words, B/ D Bz for B 2 fH; E; F; Z; e; f g
defines an automorphism of gJ R/. In fact, writing for expf i=4g and T for the

order 6 element p
1 of SU2, is conjugation by T; 0; 0/ followed by the
2 3 1

SL2-automorphism of the Heisenberg algebra which multiplies e and f by p2 and

Z by i=2.
There is a unique KJ R/-splitting kJ R/°mJ R/ of gJ R/:

kJ R/ D SpanC
°

Hz; Zz ; mJ R/ WD
SpanC

°
Ez; Fz; eQ; fQ :

We will need the following easy lemma. A proof may be found in [1].

Lemma 5.1. The commutative algebra mJ R/
KJ R/ has basis fEziEFziF eQiefQif W

2iE C ie D 2iF C if g. It is generated by FzEz, fQeQ, FzeQ2, and fQ2 Ez. The relation
ideal for these generators is generated by FzEz/.fQeQ/

2
D FzeQ2/.fQ2 Ez/.
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There is a “Cartan automorphism” of gJ R/, defined as follows: it negates H,
exchanges E and F fixes Z, and sends e to f to e. Note that it is of order 4. The
tilde Cartan automorphism Q

WD B B
1 will be a useful tool.

Definition 5. Let C be the following element of U gJ R/ :

C WD f 2E Fe2 H C 2/fe C H C 1/.H C 2/Z C 4FEZ:

Proposition 5.2. Z gJ R/ is thepolynomial algebraCOEZ; C WehaveCT D C,
C/ D C, and C/ D i

2C.

Proof. In this proof we write g for gJ R/. Since SymW g/g Z.g/ is a linear
bijection, we must compute g/g. First we compute g/sl2C.

Uptoequivalence, sl2C hasa unique irreduciblenC1-dimensional representation

Ln for all n 0. The following formulas are classical:

n L1/ Š Ln; n L2/ Š L2n ° L2n 4° ° L2Res2.n/;

Ln Lm Š LnCm ° LnCm 2 ° ° Ljn mj;

44)

where Š denotes sl2C-equivalence and Res2 denotes the residue modulo 2.
Under its subalgebra sl2C, g is equivalent to L0 ° L1 ° L2: the copy of L0 is

CZ, the copy of L1 is Spanfe; f g, and the copy of L2 is sl2C itself. By 44), both
2.L2/ and L2 2.L1/ contain sl2C-invariants, unique up to a scalar. They are

P2 WD 4FE C H2; P3 WD f 2E Fe2 Hfe: 45)

A consideration of L0-, L1-, and L2-degrees shows that the sl2C-invariants Z,
P2, and P3 in the commutative algebra g/ are algebraically independent. Now

L1 ° L2/ D Li;j i.L1/ j L2/, and by 44), the i; j/th summand on the
right has no invariants unless 2j i D 4n for some n 2 N, when it has up to a scalar

one. Since Pn2 P j 2n
3 is such an invariant, we find that L1°L2/sl2C

D COEP2; P3
This leads easily to the fact that g/sl2C is the polynomial algebra COEZ; P2; P3

Since sl2C and e generate g, g/g is the set of ad.e/-invariants in COEZ; P2; P3
Direct computation shows thatad.e/.P3/ D Z ad.e/.P2/ 6D 0. Since fZ; P2; P3C
P2Zg is an algebraic basis of COEZ; P2;P3 we find that g/g is COEZ; P3 C P2Z
To finish, verify Sym.P3 C P2Z/ D C Z, P2/ D P2/ D P2, and P3/ D

2i P3/ D P3.

5.2. The algebra DRk;m By definition, DR
k;m

GJ R/=KJ R/ We maintain
k;m

is D R

k;m for the left action corresponding to jRthis pattern of abbreviation: write R
k;m

R
k;m for the character R

k;m
of KJ R/ associated to it by Section 4.2, and ERk;m

R
k;m andDRk;m for the corresponding spaces defined by 34). Similarly, we have the



Vol. 87 2012) Jacobi forms over complex quadratic fields 849

filtration-preserving algebra isomorphism RRk;mW DRk;m DRk;m from 36), and the
linear bijections from Section 4.3:

iRk;m W mJ R/
kJ R/ DRk;m; IDORk;m D RR k;m B 1/degree:k;m B iR

Here ER k;m
maps Hz to

k;m
is simply U gJ R/ and the reader may check that R

k and zZ to m, so R
k;m

is the left ideal generated by Hz k and Zz C m.
We nowdefine several elements i R; k; m/ we usually writesimply i ofDRk;m:

k;m fQeQ/; i WD iRiz WD iR k;m fQ2
Ez/; ie WD iRk;m FzEz/; if WD iR

k;m FzeQ
2/;

ib WD if C ie; ic WD if ie 4 mi kiz:

Note that the automorphism Q of gJ R/ induces an algebra isomorphism Qk;m from
DRk;m to DRk;m This isomorphism is

iz 7! iz; i 7! i ; if 7! ie; ie 7! if; ib 7! ib; ic 7! ic:

k;m
has basis fi

iTheorem 5.3. The algebra DR i ib
b iiz

z i ic
c W i ; iz; ic 2 N; ib D 0; 1g.

Its center is COEic In it, C C
R
k;m D 2i ic m.k2 C

2
3/ It has relations

OEiz; i D ib,

OEiz; ib D 2i2z C 4 mic C 16 2m2i C 4 mkiz C
10
3

2m2;

OEi ; ib D 4i iz 2ib kic 4 mki k2iz C
2
3 mk;

i2
b D ic C 4 mi C kiz/2

C 4i i2
z C 4ibiz

C
20
3 mic C

116
3

2m2i 4
3 mkiz C

64
9

2m2:

Proof. The first sentence was proven in [1], and it follows from Lemma 5.1 and the
fact that iRk;m is an algebra isomorphism at the graded level. For the relations, we

compute in DRk;m
as prescribed by [11]: using the relations of U gJ R/ move all

Hz’s andZz’s to the right and then replace them with k and m, respectively. Deduce
the following equations in DR :k;m

fQeQ D iz m; eQfQ D iz C m;

FzEz D i 1k;2 EzFz D i C
1k;2

3 m; fQEzfQ D if C
2fQ2

Ez D if C iz 1
3 m; EzfQ

2
D if iz 1

3 m;

3 m; eQFzeQ D ie 2
FzeQ

2
D ie iz C

1
3 m; Qe

2Fz D ie C iz C
1
3 m:
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In fact, it is only necessary to verify half of these equations; the other half
then follow by applying Qk;m and negating k. Using them, we compute OEiz; i D
OEfQeQ; FzEz D fQ2 Ez C FzeQ2 D ib. Similar computations again using Qk;m to halve
the work) yield

OEiz; if D i2
z C 4 mif C

5
3

2m2; OEiz z 4 mie C
5; ie D i2 3

2m2;

which proves the OEiz; ib relation. Next, prove the OEi ; ib relation by verifying

OEi ; if D 2i iz ib kif C
1
3 mk; OEi ; ie D 2i iz ib Ckie C

1
3 mk:

For the i2b relation,setL D i2b icC4 mi Ckiz/2. CheckL D 2.if ieCieif /.
Use if D fQEzfQ 2

3 m and ie D eQFzeQ C
2
3 m to obtain

3 m.fQEzfQ eQFzeQ/
16L D 2.fQEzfQeQFzeQ CeQFzeQfQEzfQ/ C

8
9

2m2:

Now set S D fQEzfQeQFzeQ. Commute eQFz to get S D fQEzfQ/.fQeQ/ C fQEzFzfQeQ2.

Commute fQEz in the second summand and the eQfQ where appropriate to arrive at

S D ib.iz m/ C i C
1
2k/.iz m/.iz 3 m/ 2 m.ie 2

3 m/:

Note that eQFzeQfQEzfQ is Qk;m.fQEzfQeQFzeQ/ with k negated. Using these facts to simplify
L gives the relation.

The formula for the image of C follows easily from our collection of equations,
and it shows that ic is indeed central. In order to prove that it generates Z.DRk;m/,
suppose first that is an element of DR

k;m of order n which commutes with iz. In

light of the basis of DRk;m it has a unique expression as

Pi ii ai C ibbi /, where ai
and bi are in COEiz; ic

Note that the symbols of the relations in Theorem 5.3 are independent of k and

m, as forced by Lemma 4.6. Writing for equality at the symbol level,

; ib 2i2OEiz; i ib; OEiz ; ib 4i iz; i2
z; OEi b i2

c C 4i i2
z :

Since symbols commute, this leads to the following equation at the n C 1/-symbol
level:

0 D OEiz;

Xi ii i C 1/i2
cbiC1 C 2.2i C 1/i2zbi C i C 1/ibaiC1 :

Again using the basis of DRk;m this yields a0, and so induction on n shows that

the commutant of iz is COEiz; ic A similar computation shows that the commutant
of i in COEiz; ic is COEic completing the proof.
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5.3. Remarks. On page 38 of [1] an operator C is introduced; we shall call it
CBS. It is a Casimir operator in the sense that it acts by scalars on those irreducible
representations of GJ R/ on which Z acts by a non-zero scalar. It is used in [1] to
define Maass–Jacobi forms of GJ R/, and the investigation of such forms carried
out in [17] inspired the present article. Here we relate CBS to our Casimir element

C. We shall state several results without proof: they can all be verified by means of
straightforward calculation.

The following construction is attributed by [1] to [3]. Write nJ R/ for the nilpotent

Heisenberg subalgebra SpanfZ;e;f g of gJ R/. Let U gJ R/ OEZ 1 be the

extension of U gJ R/ by the fraction field C.Z/. Working in this algebra, define

H n
WD ef C fe/=4Z D fe Z/=2Z; En

WD e2 4Z; F n
WD f 2 4Z:

Lemma 5.4. The map A 7! An for A 2 fH; E;Fg defines a Lie algebra injection
from sl2 to U gJ R/ OEZ 1 It commutes with and the adjoint action of gJ R/.

For A 2 sl2, set A0 WD A A/. Write sl02 for SpanfH0; E0; F 0g.

Lemma 5.5. The map A 7! A0 is a Lie algebra injection from sl2 to U gJ R/ Its
image sl02 commutes with nJ R/, and so we have the algebra decomposition

U gJ R/ OEZ
1

D U sl02 COEZ U nJ R/ OEZ
1 :

The Casimir element of sl2 is Csl2 WD Sym.P2/ D H2 C2H C4FE see 45)).
It is fixed by and the transpose T and it is classical that Z.sl2/ D COECsl2 The
Casimir elements of sl2/ and sl02 are

Cn
sl2 WD H n/2

C 2Hn
C 4F nEn ; C0

sl2 WD H0/2 C 2H0 C 4F 0E0:

By Lemmas 5.4 and 5.5, both are fixed by and T and C0
sl2

is central in

U gJ R/ OEZ 1 Therefore by Proposition 5.2, C0
sl2 2 C.Z/OEC More precisely:

Lemma 5.6. Cn 4 and C0
sl2 D CZ 1 3

sl2 D
3

4

Let us now connect our notation to that of [1], which is also used in [17]. The
map from our standard basis of gJ R/ to the one given on page 8 of [1] is

H 7! H; E 7! F; F 7! G; Z 7! R; e 7! Q; f 7! P:

The map from our tilde basis to the one given on page 12 of [1] is

Hz 7! Z; Ez 7! XC; Fz 7! X ; Zz 7!
1
2Z0; eQ 7! YC; fQ 7! Y :

Their Z is not the same as ours, and their Z0 is equal to their iR.)
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k;m In particular, we both have R
k;m zZ/ D m they sometimesTheir jk;m is our j

R

write for 2 m). Their heat operators D see pages 33–38 of [1]) are
elements of sl02 specialized at this value of zZ for m 6D 0):

DC WD E0/j zZD m; D WD F0/jzZD m; 1 WD H0/jzZD m:

The operator CBS is 1
2

C0
sl2 j zZD m i.e., C

4i m
3
8

The operator Ck;m defined

in [17] is R
2

C0sl2k;m
1 /. By Theorem 5.3 and Lemma 5.6, it generates the center of

DR Note that both operators are in the image of Z gJ R/ OEZ 1
k;m

6. Invariant operators in the complex case

Recall from Section 2.1 the complex Jacobi group GJ C/ and its actions jk;m on

C1.HQ Q/ given by the cocycles k;m. AlthoughGJ C/ is holomorphic, HQ Q
is not, and so as discussed in [4] we must forget the complex structure of GJ C/ and
regard it as a real group. As such, its real Lie algebra gJ0 C/ is precisely the complexified

Lie algebra gJ R/ of the real Jacobi group GJ R/ given in 39), with bracket
and exponential map given by 40) and 41). This Lie algebra is 12 dimensional over

R, with standard real basis fB; iB W B D H; E; F;Z; e; f g see 42)).
From Lemma 2.1, GJ C/ acts transitively onHQ Q, and the stabilizer of k; 0/

is KJ C/ D SU2 C. Its real Lie algebra is

k J
0 C/ D SpanR°

iH; F E; iF C iE; Z; iZ :

There is more than one KJ C/-invariant splitting of gJ0 C/. We shall use the
following KJ C/-invariant complement of kJ0 C/:

mJ
0 C/ D SpanR

°
H; iF iE; F CE; e; ie; f; if :

6.1. Real representations of complex groups. At this point we must discuss
complexifications. We will need two copies Ci and Cj of C, with copies i and j ofp 1,
respectively. All proofs in this section will omitted.

Suppose that U0 is a vector space over Ci Regarded as a real vector space, its
complexification is U WD U0 RCj a module over the commutative ring Ci RCj
Define elements WD .1 ji/=2 of this ring, and note

2
D ; C D 0; C C D 1; i D j :

Lemma 6.1. In the above setting, define U WD U0/. Then U are Cj -subspaces
of U, and U D UC°U Regarding U0 as complex overCi and U as complex over

Cj the maps W U0 U are complex-linear and conjugate-linear isomorphisms,
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respectively. If U0 is an algebra, then U is too, U are ideals, and
W U0 U

are algebra isomorphisms.
If a real formofU0 is specified, the associated i-conjugation u 7! Nu onU0 extends

to the Cj -linear endomorphism of U defined by u/ 7! Nu/.

Lemma 6.2. Suppose that A and B are vector spaces over Ci and that B0 is a real
form of B. If L0W A B0 is an R-linear map, then there exists a unique Ci -linear
map LW A B such that L0 D Re.L/.

For the rest of this section, fix a complex Lie algebra g0 over Ci and let g WD

g0 R Cj be its complexification. Since g is the direct sum of its ideals gC and g

U.g/ D U.gC/ Cj U.g /; Z.g/ D Z.gC/ Cj Z.g / 46)

as algebras, and extend to complex-linear and conjugate-linear isomorphisms
from U.g0/ over Ci) to U.g / over Cj

Let V be a Ci-space of real form V0, and suppose that W g0 EndCi V / is an

R-linear representation. Then there are R-linear maps Re. / and Im. / from g0 to
EndR.V0/ such that D Re. /Ci Im. / and we have the conjugate representation

N WD Re. / i Im. / another R-linear representation of g0 in EndCi V /.
Now apply Lemma 6.2 to 1

2
Re. / and 1

2
Im. / with g0 for A and EndR.V0/ for

B0. This yieldsCi-linear mapsR I W g0 EndCi V / such that D 2 Re.R /C
i Re.I / Let Rx and IN be their conjugates with respect to V0. Note that R N D R
and IN D I

Extend to a complex-linear representation of g over Cj) on V over Ci

Lemma 6.3. B C is R CiI and B is Rx CiIN which is N B C. They are

Ci-linear and Ci conjugate-linear representations of g0 on V respectively.

6.2. The algebra Dm. In this section we will prove Theorem 2.3. Since gJ0 C/ is
a Ci-Lie algebra, we take its complexification to be gJ0 C/ R Cj Similarly, let
kJ C/ and mJ C/ be the Cj-complexifications of kJ0 C/ and mJ0 C/ note that the
latter are not Ci-spaces).

Recall from Proposition 2.2 that conjugation by y k is anequivalence from j0;m to

jk;m. Therefore it is also an isomorphism from the algebra of j0;m-invariant operators
to that of jk;m-invariant operators, and so from now on it suffices to consider only the
case k D 0.

Let use the pattern of abbreviation established in Section 5.2, without the
superscriptRor the subscript k. ThusDm is the algebra of j0;m-invariant differentialoperators,

and m is the left action corresponding to j0;m. We have also the spaces Em, m,

and Dm from 34), the filtration-preserving algebra isomorphism Rm W Dm Dm
from 36), and the linear bijections from Section 4.3:

im W mJ C/
kJ C/ Dm; IDOm D Rm B im B 1/degree: 47)
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Proof of Theorem 2.3. Henceforth we usually write g, k, and m for gJ C/, kJ C/,
andmJ C/,and for 2 U.g/ we set WD / First we provethatCm WD C0;m
are invariant and generate a polynomial algebra which is the image of Z.g/ under

m. Combine Proposition 5.2 and 46) to obtain:

Proposition 6.4. Z gJ C/ is the polynomial algebra COEZC; Z ; CC;C

As a representation of g0, m isR-linear and acts byCi-linear endomorphisms on

C1.HQ Q/, which has a natural real form: the real-valued functions. Thus we are

in the setting of Lemma 6.3. The values of m on fB; iB W B D H; E; F; Z; e; f g
are given on page 153 of [4], except for the formula m.sZ/ D 4 i Re. tmms/.
They are given in a form which makes it straightforward to deduce theCi -linear maps

R m
and I m of Lemma 6.3, giving the following lemma.

Lemma 6.5. For B 2 fH;E;F; Z; e; f g, m.BC/ D BC
0;m see 5)). The conjugate

representation N m is im, and so m.B / D im.BC/ D B0;m see 6)).

Considering m as a complex-linear representation of g, it is now clear that

m.Z / are scalars and m.C / D iCm In light of Section 4.1, Cm generate

m Z.g/ To prove that they are algebraically independent, verify that their
symbols are given by

iCCm y2 @
N
x@2

v C @y@u@
Nv C yv @u@

Nu C @v@
Nv

@u; Cm CCm:u
@x@2N

Suppose that they satisfy a degree d relation. The symbol of this relation is of

iD0 ci CCm/d i Cm/i the degree 3d symbol of which is zero. Applyingthe form
P

d

it to xj Nxd j u2.d j/ Nu2j and evaluating at k; 0/ shows that ci D 0 for all i so the
relation is trivial.

It remains to prove that Cm generate the center Z.Dm/ of Dm. Since Rm W Dm
Dm is an algebra isomorphism, it suffices to prove that the natural images C C m
of C inDm generate Z.Dm/. We will need a basis ofDm, which we will obtain by
constructing a basis of m/k and applying 47). Verify that

k D SpanCj °HC H ; EC F ; FC E ; Z ;

m D SpanCj °
HC C H ; EC C F ; FC C E ; e ; f :

As a k-module, m splits as m2 °mC °m where

m2 WD Span
°HC C H ; EC C F ; FC C E ; m WD Span

°
e ; f :

Recall from Section 5.1 the standard basis fH; E; Fg of sl2, and its action on the
module L1 D Spanfe; f g. It is easy to see that HC H EC F and FC E
are a standard basis of the copy of sl2 in k, and that

HC H 7! HC C H ; EC F 7! EC C F ; FC E 7! FC C E
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defines a k-equivalence from k to m2. Also,

e 7! eC; f 7! fCI e 7! f ; f 7! e

define equivalences from the sl2-action on L1 to the k-actions on m
A little work with 44) and 45) gives the following lemma. Keeping in mind that

in g, X and iX are independent over Cj define the following elements of m/:

Q WD 4.FC C E / EC C F / C HC C H /2

D F C E/2 C iF iE/2
C H2;

Qz WD 4 fCf C eCe D f 2
C if /2

C e2
C ie/2 ;

0 WD 4 2.FC C E /eCf C 2.EC C F /fCe /
C HC C H / fCf eCe / ;

C WD 8 EC C F /f 2

C FC C E /e2C HC C H /fCeC ;

WD 8 FC C E /f 2
EC C F /e

2
HC C H /f e :

Lemma 6.6. 2.m/k

D SpanfQ ; Qzg, and 3.m/k D Spanf 0; C; g.

This lemma matches Lemma 5.2 of [4]; the invariants Q Qz, C0, CC, and

C given there are our Q Qz, 0, j C, and j respectively. Note that the i-
conjugation defined by the usual real form of g0 fixesQ Qz, and 0 and exchanges

C and
In Theorem 5.3 of [4] we proved that these five invariants generate m/k and

have a relation ideal generated by a single relation. However, only a sketch of the
argument was given; here we shall give a complete proof.

i0Proposition 6.7. The set fQ
i

0 Qiz
z

iC
C

i
W i ; iz; ip; im 2 N; i0 D 0;1g is a

basis of m/k, and
2
0 C C Q Q2

z D 0: 48)

Proof. To prove 48), write i;j;k.m/ for the k-submodule i m2/ j mC/ k.m /
of m/. By 44), 2;2;2.m/ is k-equivalent to L4 ° L0/ L2 L2, which has
a 2-dimensional space of invariants. Hence 2

0 C
and Q Q2z must be related.

Keeping track of only certain terms for example the coefficients of e4 or of H2)
gives 48) quickly.

Write B for our proposed basis. In light of 48), proving that m/k equals
SpanB is equivalent to proving that our five invariants generate it.

Write Hk, Ek, and Fk for the basis elements HC H EC F and FC E
of the copy of sl2 in k, and Hm, Em, and Fm for the basis elements HC C H
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EC C F and FC C E of m2. Suppose that P is an invariant of degree r in Em.
Assume by induction that invariants of lower Em-degree are in SpanB. We may
assume further that P is homogeneous of degree r C s in m2, so the coefficient of
Erm iD0

Hs iin P is
P

s
m Fimpi for unique pi 2 COEe ; f

Considering ad.Ek/P D 0, one finds that pi D 0 for i < s. Then considering
ad.Fk/P D 0 leads to ad.Fk/ps D 0. Thus modulo terms of lower Em-degree,

P ErmFsmps, where ps is a k-lowest weight vector of mC° m /
Using 44), it is not hard to prove that

mC °m / D COEQz

Ma;b2N

L.mC° m ; a; b/; 49)

where L.mC ° m ; a; b/ is the k-copy of LaCb of highest weight vector
eaCf b

and lowest weight vector f a
C

eb By 49), ps 2 SpanCOEQz ff a
C

eb
W a C b D r sg.

Therefore wecan lowerP’sEm-degree bysubtracting an element of SpanB, proving
SpanB D m/k.

To prove that the elements of B are independent, use 44) again to prove that

m2/ D COEQ

Mc22N

L.m2; c/; 50)

where L.m2; c/ is the k-copy of Lc of highest weight vector Ec=2
m and lowest weight

vector F c=2
m this is Kostant’s harmonic factorization for sl2). For a C b even, let

P.a; b/ be the unique invariant in L.m2; a C b/ L.mC ° m ; a; b/. By 49)
and 50), the P.a; b/ are independent over COEQ ; Qz Examining the proof of
SpanB D m/k and using 48), one finds that fP.a C b/ W a C b 2Ng and

f
i0
0

iC
C

i
W i0Cip Cim N; i0 D 0;1g have the same span over COEQ ; Qz and

the same cardinality. The result follows.

We now prove that C C m generate Z.Dm/. Define elements i C; m/ we
usually write simply i of Dm as follows:

iz WD im.Qz/; i WD im.Q /; i0 WD im. 0/; iC WD im. C/; i WD im. /:

By Proposition 6.7, fi
i i i0i iz

0 z iiCC ii W i ; iz; ip; im 2 N; i0 D 0; 1g is a basis ofDm.
Using the following lemma, a calculation at the symbol level exactly analogous to
the one at the end of Section 5.2 gives the result.

Lemma 6.8. Up to symbols in Dm,

i 16C ; i2
0 i i2

z iCi ; OEiz ; i0 2i2; i 4i0; OEiz z:

Proof. Let us review computation in Dm. Let m be the character of KJ C/
associated to j0;m by Section 4.2. In fact, m is the character associated to jk;m for all k,
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and it sends ZC to 2 i tmm, Z to 2 i t
xmxm, andHk, Ek, and Fk to zero, but we

shall not need this.) Here Em D U.g/ D Sym m/ U.k/. Consider a pure product

D Sym. m/ k in this space. By 35), it is congruent to Sym. m/ m. T
k /.

In particular, if k has non-zero constant term then and m have the same

degree and symbol modulo m.
Since are cubic in m, the symbols of i modulo m are independent of m

and may be computed by setting all terms in from k to zero, i.e., setting Z 0,

HC H EC F and FC E Checking Definition 5 gives the first
congruence. The second is immediate from 48) and the fact that im is an algebra
isomorphism up to symbol.

For the last two congruences, note that for any ‚ and ‚0 in U.g/, the symbol
of OE‚;‚0 depends only on the symbols of ‚ and ‚0. It follows that we need only
compute the symbols of OEQz; Q and OEQz; 0 treatingQz, Q and 0 as elements

of Em= m. Commutators of elements of m which lie in k give zero modulo symbol,
so we only keep commutators of Hm, Em, and Fm with e and f Therefore up to
symbol, OEQz; Q must be of degree .1; 1; 1/ and OEQz; 0 must be of degree .0; 2; 2/.
It only remains to compute the constants of proportionality, for which one need only
keep track of one term.

6.3. Remarks. We leave the reader with some open problems. First, the irreducible
representations ofKJ C/ D SU2 R2 are parametrized by n;m; m0/ 2 N C C,
where n C 1 is the dimension. As we mentioned in [4], a study of the invariant
differential operators of the associated vector-valued slash actions would be a natural
extension of both our work and that of Friedberg [9]. Equation 36) would be useful.

Second, the characters of the algebras Dm and DRk;m
may be of interest, as these

algebras must act by scalars on any slash-irreducible subrepresentation of the space

of functions on which they act. These characters are of course simply the characters

of the abelianizations Dm=OEDm; Dm and DRk;m
OEDR

k;m; DRk;m and it appears to be
reasonably easy to compute all of them.

Finally, regarding Dm as a deformation of D0 yields an unobstructed 2-class

in the Hochschild cohomology of Dm. Similarly, DR
k;m

gives two 2-classes in the

cohomology of DR0;0 It could be amusing to compute these cohomology spaces

and decide whether or not the 2-classes are trivial. Theorem 5.3 would be useful
in the real case; one would need its complex analog for the complex case. The
computations might be reduced by using the Ci-linear automorphisms and of g0
defined in Section 5.1. They both preserve k0 andm0, and so they extend toCj -linear
automorphisms of g which commute with and preserve k and m.
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