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Smooth non)rigidity of cusp-decomposable manifolds

T. Tam Nguyen Phan

Abstract. We define cusp-decomposable manifolds and prove smooth rigidity within this class

of manifolds. These manifolds generally do not admit a nonpositively curved metric but can be

decomposed into pieces that are diffeomorphic to finite-volume, locally symmetric, negatively
curved manifolds with cusps. Weprove that the group ofouter automorphisms of the fundamental
group of such manifolds contains a free abelian normal subgroup whose elements are induced
by diffeomorphisms that are analogous to Dehn twists in surface topology. For the case where
the decomposition is finite, the group of outer automorphisms of the fundamental group is an

extension of a finitely generated free abelian group by a finite group. We also prove that the
outer automorphism group can be realized by a group of diffeomorphisms of the manifold.

Mathematics Subject Classification 2010). 57N99.
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1. Introduction

Let M be a smooth manifold. We denote by Diff.M/ the group of self-diffeomorphisms

of M and by Diff0.M/ the group of self-diffeomorphisms of M that are

homotopic to the identity map. Hence, Diff.M/= Diff0.M/ is the group of
selfdiffeomorphisms of M up to homotopy. Let Out. 1.M// be the group of outer
automorphisms of 1.M/. The action of a diffeomorphism on 1.M/ induces a

natural homomorphism

W Diff.M/= Diff0.M/ Out. 1.M//: 1)

If M is aspherical, then is always an injection.
It is known for a number of classes of manifolds that is an isomorphism. These

include closed surfaces, by the Dehn–Nielsen–Baer Theorem; infra-nil manifolds, by
Auslander [2]; and finite-volume, complete, irreducible, locally symmetric, nonpositively

curved manifold of dimension greater than 2, by Mostow rigidity. If we relax
the smoothness condition and require only continuity, i.e. replace diffeomorphisms
by homeomorphisms, this also holds for closed, nonpositively curved manifolds of
dimension greater than 4, by Farrell and Jones [5], and for solvmanifolds, by work
of Mostow [9].
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The purpose of this paper is to prove that the homomorphism is an isomorphism

for a class of manifolds that we call cusp-decomposable. These are manifolds
that are obtained by taking finite-volume, complete, locally symmetric, negatively
curved manifolds with deleted cusps and gluing them together along their cuspidal
boundaries via affine diffeomorphisms. See Section 2 for a precise definition of
cusp-decomposable manifolds). For example, the double of a finite-volume,
complete, locally symmetric, cusped, negatively curved manifold is cusp-decomposable.
Any finite cover of such a manifold is also a cusp-decomposable manifold.

Cusp-decomposable manifolds do not admit locally homogeneous Riemannian
metrics [10]. IfM is cusp-decomposable andall the pieces in the cusp decomposition
of M are hyperbolic manifolds, then M admits a nonpositively curved Riemannian
metric [1]. However, if the pieces in the cusp decomposition of M are complex,
quarternionic or octonionic hyperbolic, then M does not generally admit any
nonpositively curved metric [10]. Hence, the above rigidity results do not apply to this
class of manifolds

The first main result in this paper is the following.

Theorem 1. Let M and N be cusp-decomposable manifolds of dimension greater
than 2. Then any isomorphism of fundamental groups 1.M/ Š 1.N / is realized
by a diffeomorphism from M to N. Therefore, there is an isomorphism

W
Out. 1.M// Diff.M/= Diff0.M/:

Ontaneda [11] proved the above statement for the case of the double of a cusped

hyperbolic manifold. His proof uses the fact that such a manifold admits a nonpositively

curved metric and facts from CAT.0/ geometry. The proof we give does not
use CAT.0/ geometry and thus covers the case of cusp-decomposable manifolds that

do not admit a nonpositively curved metric, such as the case where the pieces in the
cusp decomposition of M is complex or quarternionic or octonionic) hyperbolic.

Remark. The requirement that gluing maps are affine diffeomorphisms is necessary
for Theorem 1 to be true. If the gluing maps are allowed to be any diffeomorphism,
then the theorem is false. In [1], Aravinda and Carrell prove that there exist gluing
maps for the double of a hyperbolic cusped manifold that is homotopic to the identity
map but the resulting space is not diffeomorphic to that obtained by the identity map.

The equation 1) does not always split. Morita [8] proved that ifM is a surface of
genusgreater than17, the groupOut. 1.M// does not lift to Diff.M/. However, for a

cusp-decomposable manifoldM of dimension greater than 2, the group Out. 1.M//
can be realized by a group of diffeomorphisms of M. Let

W Diff.M/ Diff.M/= Diff0.M/
be the natural projection.
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Theorem 2. Let M be a cusp-decomposable manifold of dimension greater than 2.
There exists a homomorphism

W Out. 1.M// Diff.M/
such that B D Hence, if Out. 1.M// is finite, then it can be realized as a
group of isometries of M with respect to some Riemannian metric on M.

By Mostow rigidity, if M is a finite-volume, complete, irreducible, locally
symmetric, negatively curved manifold of dimension greater than 2, then Out. 1.M// is
finite. In contrast, cusp-decomposable manifolds can exhibit a kind of non-rigidity.
It follows from the proof of Theorem 1 that ifM is a cusp-decomposable manifold of
dimension greater than 2, the group Out. 1.M// can contain a free abelian normal
subgroup T M/. The infinite order) elements in T M/ can be realized by
diffeomorphisms that are analogous to Dehn twists in surface topology. In the case where

M is of finite type, Out. 1.M// is an extension of a finitely generated, torsion free,
abelian group T M/ by a finite group A.M/. See Section 6 for the definition of
T M/ and A.M/).

Theorem 3. Out. 1.M// is an extension of T M/ by A.M/, i.e. the following
sequence is exact:

1 T M/ Out. 1.M// A.M/ 1:

The group Out. 1.M// is infinite if and only if the fundamental group of one of the
cusps in the cusp decomposition of M has nontrivial center. If M is of finite type,
then T M/ is finitely generated and A.M/ is finite.

In the case where Out. 1.M// is infinite, Out. 1.M// cannot be realized by
isometries of M for any metric on M see [10]), in contrast with the case of the
Mostow rigidity. As we will see, this happens to a lot of cusp-decomposable
manifolds, such as the double of a one-cusp hyperbolic manifold whose cusp is
diffeomorphic to the product of a torus and R.

Acknowledgements. I would like to thank my advisor, Benson Farb, for suggesting
this problem and for his guidance. I would like to thank Thomas Church and Matthew
Day for helpful conversations. I would also like to thank Thomas Church, Spencer

Dowdall and Benson Farb for commenting on earlier versions of this paper.

2. Cusp-decomposable manifolds: background and definition

Let Y bea connected, noncompact, finite-volume, complete, locally symmetric,
negatively curved manifoldof dimension n 3. By theclassification ofsimply connected,
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complete, symmetricspaces ofR-rank 1, the universal cover zY of Y is isometricKHn,

whereKcanbe the real numbersR, the complex numbersC, the quaternionsQor the
octonionsO in which case n D 2). By the thick-thin decomposition and a finiteness
theorem for finite-volume, complete manifolds with pinched sectional curvature see

[3]), Y has finitely many ends or cusps. Each cusp is diffeomorphic to OE0;1/ S for
some compact n 1/-dim manifold S. The fundamental group of each cusp, or each

cusp subgroup, corresponds to a maximal subgroup of 1.Y / of parabolic isometries

fixing a point on the boundary at infinity of zY The parametrization OE0;1/ S of a

cusp can be taken so that each cross section a S is the quotient of a horosphere in
zY by the corresponding cusp subgroup.

By the Margulis lemma, cusp subgroups are virtually nilpotent. This also follows
from the fact that the groupof parabolic isometriesof zY fixinga pointon theboundary
at infinity has a subgroup that is a 2-step nilpotent Lie group that acts freely and

transitively on the horosphere ([7]). In fact, S with the induced Riemannian metric
from Y is a compact infra-nilmanifold, that is, a compact quotient of nilpotent Lie
group H with left invariant metric by a torsion-free necessarily cocompact) lattice
of the group of isometries of H.

If we delete the b; 1/ S part of each cusp OE0; 1/ S of Y the resulting
space is a compact manifold with boundary. We choose b large enough so that the
boundary components b S of different cusps do not intersect. We require the
boundary components of Y lift to a horosphere in zY We call manifolds obtained this
way bounded-cusp manifolds with horoboundary.

We say that a manifoldM is cusp-decomposable if it is obtained by taking finitely
many bounded-cusp manifolds Yi with horoboundary and glue them along pairs of
boundary components via affine diffeomorphisms. Each pair of boundary components

that are glued together can belong to the same Yi The set of the spaces Yi with
a gluing is called a the) cusp-decomposition of the manifolds. Each Yi is a piece in
the cusp decomposition of M. A cusp-decomposable manifold M is of finite type if
there are finitely many pieces in the cusp decomposition of M.

We givesomemore examples of cusp-decomposablemanifoldsapart from those in
the Introduction. IfY isa bounded-cuspmanifold with twodiffeomorphichoroboundary

components b S and b0 S0, then we can glue the two boundary components
togetherby anaffine diffeomorphism, which exists by the version of Bieberbach’s
theorem for infra-nilmanifolds see [2]). The resulting manifold is cusp-decomposable,
and so is any finite cover of it.

The cusp decomposition of M is analogous to the JSJ decomposition of 3-
manifolds. That is, there exists a collection ofembedded, codimension 1, incompressible,

infra-nil submanifolds ofM such that if we cutM along these submanifolds, the
resulting space is a disjoint union of connected manifolds, each of which is
diffeomorphic to a finite-volume, noncompact, complete, locally symmetric manifold of
negative curvature. There is also a 2-dimensional analog of the cusp decomposition
with the pair of pants decomposition of a surface.
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Figure 1. A cusp-decomposable manifold and the corresponding underlying graph of the graph
of groups structure of the fundamental group.

3. Fundamental groups of cusp-decomposable manifolds

Let M be a cusp-decomposable manifold of dimension n > 2 and let fYi gi2I be
the pieces in the cusp decomposition of M. The cusp decomposition of M gives

1.M/ the structure of the fundamental group of a graph of groups GM see [13] and

[12] for Bass–Serre theory). The vertex groups of GM are the fundamental groups
of the pieces Yi in the cusp-decomposition of M. The edge groups of GM are the
fundamental groups of the cusps of each piece, i.e. boundary components of each Yi
The injective homomorphism from an edge group to a vertex group is the inclusion
of the corresponding boundary component into Yi As we saw in the introduction,
the edge groups are virtually nilpotent.

The following lemmas are facts about the fundamental group of a cusp-
decomposable manifolds that we will use to prove Theorem 1.

Lemma 4. Let M be a cusp-decomposable manifold of dimension n > 2. If H is a

virtually nilpotent subgroup of 1.M/ that is not virtuallyZ, thenH is contained in a
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conjugate of a vertex group of the graph of groups defined by the cusp decomposition
of M.

Before proving Lemma 4, we state a result in Bass–Serre theory ([13]) which we
will use in the proof.

Theorem 5 Serre). Let G be a finitely generated nilpotent group acting on a tree T
without inversion. Then eitherG hasa fixedpoint or there is an axisLthat ispreserved

byG, on whichG actsby translationby meansofa nontrivialhomomorphismG Z.

We will also describe a few properties of covering spaces of cusp-decomposable
manifolds and say how their universal covers relate to their Bass–Serre tree. Let My

be a covering space ofM with covering map pW My M. SinceM is obtained from
gluing Yi ’s along their boundaries, each component of p 1.Yi/ in My is a covering
space of Yi for each i Similarly, a component of p 1.@Yi/ inMy is a covering space

of @Yi for each i Thus, My is the union of connected covering spaces of Yi glued
along their boundaries.

By the above description of covering spaces of M, the universal cover Mz of M
is the union of universal covers of neutered spaces Yi which are complete simply
connected locally symmetric negatively curved manifoldswith a collection of disjoint
horoballs removed) glued to each other along their horosphere boundaries. Each

of the neutered spaces is a connected component of p 1.Yi/ for some Yi in the
cusp decomposition on M. The underlying graph in the graph of groups defined by
this decomposition of Mz is the Bass–Serre tree of the graph of groups GM. Two
horospheres that belong to the same neutered space are called adjacent.

Proof of Lemma 4. Let K be a finite index nilpotent subgroup of H. By Theorem 5,
the group K acts on the Bass–Serre tree T of 1.M/ with the structure of the graph
of groups GM) either with a fixed point or preserving an axis L. We claim that the
latter case cannot occur. SupposeK preserves an axisL. Then the action ofK factors
through a homomorphism ' W K Z, so Ker ' fixes the axis L. Now, we claim
that any element g 2 1.M/ that preserves a path in T has to be the identity. Since

g fixes an edge, it belongs to a conjugate of an edge group. Also, g corresponds

to a parabolic isometry of a neutered space in the universal cover Mz Hence, if g
is nontrivial, it will act on the Bass–Serre tree of 1.M/ by moving all the edges

at one vertex that is fixed) except one edge. So g must be the identity element.
Thus, Ker ' D 1 and K Š Z, which contradicts the fact that H is not virtually Z.
Therefore, K fixes a vertex a in T since the action is without inversion. Thus, K is
contained in the stabilizer of a, which is a conjugate of a vertex group Gv for some

vertex v in the Bass–Serre tree of 1.M/.
Now we show that H is contained in the same conjugate of Gv as K. For each

h 2 H that is not the identity element, there exists a positive integer m such that
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hm 2 K, and thus hm fixes v. Since h and hm commute, h preserves the fixed point
set of hm, which, given the way 1.M/ acts on T is either fag or an edge containing

fag. In both cases, this means that h fixes a since H acts on T without inversions.
Hence, H is contained in the stabilizer of a as well.

Lemma 6. If C is a cusp subgroup of a noncompact finite-volume locally symmetric
negatively curved manifold Y of dimension greater than 2, then C has a subgroup
that is isomorphic to Z2.

Proof. Let L be a finite-index nilpotent subgroup of C. Then the center Z.L/ of L
is nontrivial and thus infinite since L is torsion-free. If Z.L/ contains a subgroup
isomorphic to Z2, then we are done. If not, then Z.L/ Š Z. Observe that L is
not virtually Z since L is the fundamental group of a closed aspherical manifold
of dimension at least 2. Hence, L=Z.L/ is infinite. Let a 2 Z.L/ and let b 2 L
such that b represents an infinite order element of L=Z.L/. Then the subgroup of C
generated by a and b is isomorphic to Z2.

In order to prove Theorem 1 we need to analyze isomorphisms between the
fundamental groups of twocusp-decomposable manifolds. It turns out thatan isomorphism
preserves the graph of groups structure of these fundamental groups, as we will see

in the next two lemmas.

Lemma 7. Let M and N be two cusp-decomposable manifolds of dimension n > 2
and let W 1.M/ 1.N / be an isomorphism. If Ge is an edge group in the graph
of groups decomposition of 1.M/, i.e. a cusp subgroup of 1.M/, then Ge/ is
conjugate to an edge group of 1.N /.

Proof. By Lemma 4, the group Ge/ is a subgroup of a conjugate of a vertex group
G0v 0 of 1.N /. Let L be a finite-index nilpotent subgroup of Ge/. By Lemma 6,
the group Ge/ has a subgroup K that is isomorphic to Z2 This implies that K
consists of only parabolic isometries and thus, is a subgroup of a cusp/edge subgroup

G0e of0 G0v0 So the fixed set of each nontrivial element of K acting on the Bass–Serre
tree of 1.N / is an edge.

Also, the proof of Lemma 6 shows that K can be picked to contain a nontrivial
element c in the center of L. Since the fixed set of c is an edge, each nontrivial
element in L fixes the same edge. So L is contained in G0e Now, for every nontrivial0

element g 2 Ge/, there exists a positive integer m such that gm 2 L because L is
a finite index in Ge/. Since g and gm commute, the fixed set of g is the same as

that of gm. Hence, g 2 G0e so Ge/ is contained in G0e0 0

Lemma 8. Let M and N be two cusp-decomposable manifolds of dimension n > 2
and let

W 1.M/ 1.N / be an isomorphism. If Gv is a vertex group in the graph
of groups decomposition of 1.M/, then Gv/ is conjugate to a vertex group of

1.N /.
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Proof of Lemma 8. ByLemma7, maps the cusp subgroups of 1.M/ to conjugates
of cusp subgroups of 1.N /, and each cusp subgroup is the image of a conjugate
of a cusp subgroup. Since M and N are aspherical with isomorphic fundamental
groups, there exists a homotopy equivalence f W M N such that f D The lift
fQW Mz Nz is a quasi-isometry since M and N are compact and f is continuous.

Fix basepoints x0 2 M and y0 2 N, and pick lifts xQ0 2 Mz and yQ0 2 Mz

respectively. Without loss of generality, we can assume that fQ.xQ0/ D yQ0. Now, each

horosphere in M or N) is the universal of a horoboundary component which is a

compact n 1/-dim manifold) of a piece in the cusp decomposition of M or N).
Since maps cusp subgroups to conjugates of cusp subgroups and since fQ is a -
equivariant quasi-isometry, the image of a horosphere under fQ is a bounded distance

from a horosphere or a quasi-horosphere), i.e. it is contained in a d-neighborhood of
a horosphere. Hence, fQ map the horosphere containing xQ0 to the quasi-horosphere
containing yQ0. Also, since has an inverse, every horosphere in N is the image of a

quasi-horosphere in M.
We want to prove that any two adjacent horospheres are mapped to two adjacent

horospheres. Let Ha, Hb be adjacent horospheres. Suppose that fQ.Ha/ and fQ.Hb/
are not adjacent quasi-horospheres, i.e. any path starting at a point in fQ.Ha/ and

ending at some point in fQ.Hb/ crosses a quasi-horosphere f Hc/ for some
horosphere Hc.

Since the Mzi is negatively curved, the distance function to a horoball is strictly
convex. Hence, for anyK > 0, we can pick a point p 2 Ha and a point q 2 Hb that
have distance at least K from Hc. Let be a path connecting p and q such that the
distance between is at least K. Since f is a quasi-isometry, the distance between

f / and f Hc/ is positive if K is large enough, i.e. f / is a path connecting

f Ha/ and f Hb/ that does not cross f Hc/. But this is a contradiction to the
assumption that f Ha/ and f Hb/ are separated by f Hc/. So f does not map
adjacent horospheres to non-adjacent horospheres.

Since f has an quasi-isometric inverse, f maps non-adjacent quasi-horospheres
to non-adjacent quasi-horospheres. This implies that f maps each vertex group to a

conjugate of a vertex group, which is what we want to prove.

4. Isometries of 2-step infra-nilmanifolds

Each boundary component of the pieces in the cusp decomposition of a cusp-
decomposable manifold is acompact infra-nilmanifold whoseuniversalcover isahorosphere
in KHn, which is isometric to a 2-step) nilpotent Lie group H with a left invariant
metric. As we will see in the proof of Theorem 1, we need to use this fact and the
following theorem about isometries of such manifolds.
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Theorem 9. Let S be a compact infra-nilmanifold whose universal cover is a 2-step

nilpotent Lie group H with a left invariant metric. If f W H H is an 1.S/-
equivariant isometry that is 1.S/-equivariantly homotopic to the identity map of
H, then f is 1.S/-equivariantly isotopic to the identity map.

Proof. We write S D H= for some torsion free lattice in Isom.H/. There is
an explicit description of isometries of H by the following theorem [6]. For a Lie
group G with Lie algebra g, we denote Aut.G/ respectively, Aut.g/) the group
of automorphisms of G respectively, g). Then Aut.g/ is naturally isomorphic to
Aut.G/ if G is simply connected. Given a left invariant Riemannian metric g on G,
we denote Stab.e/ the stabilizer of the identity element e 2 G in Isom.G;g/. We

denote O.g/ the group of orthogonal linear transformations of g with respect to the
metric g on g.

Theorem 10 Gordon, Wilson). If G is a simply connected upper triangular unimodular

Riemannian Lie group, then

Stab.e/ D Aut.g/\O.g/;

Moreover, G is normal in Isom.G/, that is

Isom.G/ D G Ì Aut.g/ \ O.g//:

Since H is a 2-step) nilpotent Lie group, H satisfies the assumption in Theorem

10. We denote the Lie algebra of H by h. We are going to use logarithmic
coordinates on H and express isometries of H in terms of these coordinates. Since
the exponential map is a global diffeomorphism from h to H, each element in H is
exp.u/ for a unique u 2 h. Using logarithmic coordinates means that we will write
u for exp.u/. Let “ ” denotes the group operation of H. We denote by “C” the
vector space addition operation on h. By the Baker–Campbell–Hausdorff formula,
for u; v 2 H,

u v D u C v C
1

2
OEu;v ;

which means

exp.u/ exp.v/ D exp.u C v C
1
2

OEu; v /

in logarithmic coordinates.
We pick an orthonormal basis fx1;x2; :: : ; xk; y1; y2; : : : ; ylg of the Lie algebra

h in which fy1; y2; : : :; ylg is an orthonormal basis of Y WD OEh; h Obviously,
any automorphism of h fixes Y Let X be the subspace of H that is spanned by

fx1; x2; : : : ; xkg.
By Theorem 10, an isometry f of H has the form f x/ D '.x/ b, where

' 2 Aut.h/ \ O.g/, b 2 H. Such an element ' in Aut.g/ \ O.g/ preserves the
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subspaces X and Y that is ' has the form

0 B ;' D
A 0

where A is some k k orthogonal matrix and B is some l l orthogonal matrix.
Note that not every matrix of the above form gives an isometry of H.

Since S is an infra-nil manifold, by the version of Bieberbach’s theorems for
infra-nil manifolds see [2]), has a finite index subgroup 0 that is a lattice in H.
Since f is - equivariantly homotopic to the identity, we have

f B D B f
0 B v b for v 2 H. Let X and Y arefor all 2 Write f as f v/ D
A 0

projections onto X and Y respectively. Note that X.OEu; v / D 0 for all u; v 2 H.
Thus, for 2 0 and v 2 h, we have

1 1f B v/ D A. X.v C C OEv; //2 C B. Y v C C OEv; // C b
2

C
1

2
OEA. X.v C C

1
2

OEv; // C B. Y v C C
1
2

OEv; //;b

D A. X.v C // C B. Y v C C
1

2
OEv; // C b C

1

2
OEA. X.v C //;b

and

B f v/ D A. X.v// C B. Y v// C b C
1
2

OEA. X.v// C B. Y v//; b C

C
1

2
OEA. X.v/ C B. Y v// C b C

1

2
OEA. X.v// C B. Y v//; b ;

D A. X.v// C B. Y v// C b C
1
2

OEA. X.v//; b

C C
1

2
OEA. X.v// C b; ;

The simplified form of the above two expressions is due to the fact that H is 2-step
nilpotent, so the bracket with an element in Y is 0.

Since f B D B f and setting v D 0, we have

A. X. // C B. Y // C
1

2
OEA. X. //; b D C

1
2

OEb; :

Now apply X to both sides of the equation, we get

A. X. // D X. /:
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Since S is compact by Theorem 5.1.6 of [4], 0 contains a vector space basis of h.
Thus, the above equation implies that A is the identity matrix. Using this fact, we get

B. Y // C
1

2
OE X. /; b D Y / C

1

2
OEb; :

So

B. Y // D Y / C OEb; :

Since takes values in a lattice of Y it follows that B is the identity matrix and b is
central inH. Hence, f is a translation by b. Now we take the straight line homotopy
between f and the identity map. It is not hard to show by writing the homotopy out
in the logarithmic coordinates that it is -equivariant. One simply checks that for
t 2 OE0; 1

tf / B D B tf /
This follows easily given the fact that f is a translation by b so tf is a translation
by tb) and the equation holds for t D 1. Also, for each t 2 OE0; 1 the map tf is
injective. Therefore, f is -equivariantly isotopic to the identity map.

The following corollary follows from the proof of Theorem 9. We will need to
use it in the proof of a theorem in Section 6.

Corollary 11. Let S be as in Theorem 9. If f W S S is an isometry of order

p < 1 and fQ denotes the lift of f to the universal cover Sz, then fQp is the map
defined by multiplication of an element in the center 1.S/.

5. Rigidity of cusp-decomposable manifolds

Proof of Theorem 1. Let
W 1.M/ 1.N/ be an isomorphism. We are going

to construct a diffeomorphism from M to N by firstly defining diffeomorphisms on
each piece in the cusp decomposition of M and then gluing them together in such a

way that the resulting diffeomorphism induces the isomorphism
LetMi and Nj respectively), for i in some index set I for j in some index set J

respectively), be the pieces in the cusp decomposition ofM andN respectively). By
Lemma 8, the map defines a bijection

W I J such that 1.Mi // D 1.N i//
up to conjugation. By the Mostow Rigidity Theorem for finite-volume, complete,
locally symmetric, negatively curved manifolds, the restriction of on each vertex
group of 1.M/ up to conjugation is induced by an isometry fi from Mi to N i/.

At this point one may want to glue the isometries fi together and claim that it is
the desired diffeomorphism fromM to N. However, there are two problems. One is
that the gluing of fi at each pair of boundaries of Mi’s that are glued together might
not be compatible with the gluing of Nj The other problem is that ifMi andMj are
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adjacent pieces, it may happen that fi and fj define different isomorphisms by a

conjugate) on the fundamental group of the boundary shared by Mi and Mj See

Lemma 12 below for such an example of
Hence, we need to do some modifications to fi’s near the boundary ofMi before

gluing them together. We observe that the restriction of fi and fj to each pair of
boundary components of Mi and Mj that are identified, say S, in the cusp
decomposition of M induces the same map from 1.S/ to 1.S// up to conjugation.
Since S is aspherical, it follows that fi and fj are homotopic. Then by Theorem 9,
we can modify the maps fi and fj by an isotopy of S on a tubular neighborhood of
the corresponding boundary component of Mi and Mj that is compatible with the
gluing of N and the action of on fundamental groups. Let f W M N be the
diffeomorphisms obtained by gluing the modified fi Then f D

6. Out. 1.M//: twists and turns

IfM is finite-volume, complete, locally symmetric and negatively curved, then by the
Mostow Rigidity Theorem, Out. 1.M// Š Isom.M;gloc/, where gloc is the locally
symmetric metric on M. This implies that Out. 1.M// is finite since Isom.M/ is
finite. One might expect that if M is cusp-decomposable, given the above theorem,
Out. 1.M// will also be finite. However, this is not true.

For example, letM be the double of a cusped locally symmetricnegatively curved
manifold. LetM1 andM2 be the two pieces in the cusp decomposition ofM and let

Gi D 1.Mi/. Then 1.M/ D G1 C G2. Pick an element c0 ¤ 1 in the center of
C. Let W 1.M/ 1.M/ be induced by

g/ D ´g if g 2 G1;

c0gc 1
0 if g 2 G2:

It is clear that extends to an automorphism ofG1 C G2 since is an automorphism
when restricted to G1 and G2 and agrees on the intersection of G1 and G2.

Lemma 12. Let M and be as above. Then is an infinite order element of
Out. 1.M//.

Proof. For all k 2 N, k is the identity onG1 and conjugation by ck0 onG2. Suppose
k is an inner automorphism of G1 C G2 for some k 2 N. Then there exists

g 2 G1 C G2 such that Conj.g/ B is the identity on G1 C G2. This implies that
for g1 2 G1, we have g k.g1/g 1

D g1. So gg1g 1
D g1 since k is the identity

on G1. Thus, g is in the centralizer of G1 in G1 C G2.
We claim that g is in the centralizer of G1. Consider the action of G1 C G2

on the Bass–Serre tree T of G1 C G2. The fixed set of G1 is a vertex v. Since
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g commutes with every element of G1, the fixed set of G1 must be preserved by g.
Hence, g belongs to the stabilizer of v, which is G1. Therefore, g is in the centralizer
of G1 and thus g D 1. This implies that is the identity homomorphism, which is a

contradiction since acts nontrivially on G2. Hence, is represents an infinite order
element in Out. 1.M//.

The automorphism above is induced by gluing the identity diffeomorphism
on M1 and a diffeomorphism on M2 that “twists” the boundary of M2 around the
loop c0 as in the proof of Theorem 1. This is analogous to a Dehn twist in surface

topology. For each loop c in the center of C, we define a twist around a loop c to be
a diffeomorphism constructed as above. By Lemma 12, twists induce infinite order
elements of Out. 1.M//.

Similarly, for each element in the center of a cusp subgroup of a cusp-decomposable

manifoldM, we define a corresponding twist like above. The induced map of a

twist on 1.M/ has the same form as that is, up to conjugation, it is the identity on
one vertex subgroup and conjugation by an element in the center of the edge subgroup
on the other vertex subgroup.

Let T M/ be the subgroup of Out. 1.M// that is generated by twists. It is not
hard to see that any two twists commute since either they are twists around loops in
disjoint cusps or the loops they twist around commute since they are both in the center

of the same cusp subgroup. Hence, T M/ is a torsion-free abelian group. Indeed,
T M/ is isomorphic to the direct sum of the centers of the cusp subgroups of M.
We observe that T M/ is a normal subgroup of Out. 1.M//. We can actually write
Out. 1.M// as a group extension of T M/ by a group of isometries of a manifold.

Let M be the disjoint union of all the complete locally symmetric spaces
corresponding to the pieces Mi in the cusp decomposition of M, i.e. they are the spaces

before we delete their cusps. By Theorem 8, an element of Out. 1.M// has to
descend to an isomorphism between vertex groups up to conjugation, which, by the
Mostow Rigidity Theorem, is induced by an isometry with respect to the complete,
locally symmetric metric on each of the pieces. The descending map is a homomorphism

from Out. 1.M// to Isom.M/. We call this induced map

W Out. 1.M// Isom.M/:

Let A.M/ be the image of Out. 1.M// under We call the elements of A.M/
turns. ThenA.M/ is the subgroup of Isom.M/ of isometries ofMwhose restriction
to the boundaries of each pair of cusps that are identified in the cusp decomposition
of M are homotopic with respect to the gluing.

An isometry of M permute the pieces Mi’s in the cusp decomposition of M.
Thus, for the case where M is of finite type and the cusp decomposition of M has k
pieces, there is a homomorphism ' from Isom.M/ to the group of permutations of k
letters. Let P be the image of '. The kernel of ' contains precisely those isometries
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ofM that preserve each of the pieces in fMig. Hence, Isom.M/ has the structure of
an extension of groups as follow.

1

k

MiD1

Isom.Mi/ Isom.M/ P 1:

It follows that Isom.M/ is finite since it has a finite index subgroup that is isomorphic
to the direct sum of the isometry groups of the components of M, which are finite.
Thus, A.M/ is finite if M is of finite type. Now we prove Theorem 3.

Proof of Theorem 3. It suffices to prove that T M/ D Ker By definition, the
action of a twist on the fundamental group of each of the pieces in the cusp
decomposition of M is the identity map up to conjugation by an element in the center of
a cusp subgroup. By Mostow rigidity, the image of a twist under is the identity
isometry. Thus, T M/ Ker

Now if 2 Ker then the isometry that induces on M is the identity map.

Hence, for each i the restriction of on 1.Mi/ is the identity map in Out. 1.Mi//.
Let i be the restriction of to 1.Mi/. If Mi and Mj are adjacent pieces that are
glued together along S, then the restriction of i to 1.S/ is equal to that of j This
implies that i and j differ by a conjugation of an element in 1.S/. Therefore,
is a product of twists. So Ker T M/.

Geometrically, Theorem 3 says that an element Out. 1.M// is a composition of
twists and turns. A diffeomorphism that corresponds to an element in Out. 1.M//
can be obtained by firstly decomposing M to its pieces Mi then applying the turns

/ on each Mi and then gluing these turns together with the right twists. Infinite
order elements of Out. 1.M// are those that have a power equal to a twist. The
following theorem says that in some way finite order elements of Out. 1.M// are

more rigid.

Theorem 13. Let M and M be as above and 2 Out. 1.M//. If is nontrivial
and has finite order and if the induced isometry on M, i.e., / is the identity on
some component ofM, then is the identity element.

Proof. If / is the identity map on every component of M, then by Theorem 3,
is a twist and thus has infinite order. Hence, acts nontrivially on some component
of M. Hence, we can find two adjacent components M1 and M2 of M such that
acts by the identity on M1 and nontrivially on M2. However, the restriction of the
action of on a pair of boundary components ofM1 andM2 that are glued together,
say S, are homotopic and thus isotopic). By Corollary 11, a power of is a twist
around a loop in S. But this implies that is infinite order in Out. 1.M//, which is
a contradiction.
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Proof of Theorem 2. We construct a homomorphism W Out. 1.M// Diff.M/
such that B D In this proof, instead of consider M, we consider a manifold
N that is diffeomorphic to M that is obtained as follows. Take all the pieces Mi’s
in the cusp decomposition of M. We can assume that the pieces Mi are such that
such that the number of isometry classes of the horoboundary components of Mi is
minimal. This is equivalent to saying that if ' 2 Out. 1.M//, then for each piece

Mi the restriction of ' to 1.Mi / to '. 1.Mi// corresponds to an isometry of Mi
to M'.i/ where '.i/ denotes the index of the piece whose fundamental group is the
image under ' of a conjugate of 1.Mi /). Now to each boundary component @jMi
we glue Sij D @jMi OE0; 1 along @jMi 0 by the identity map. Then N is obtained
by gluing corresponding @jMi 1’s together via the gluing maps given by the cusp
decomposition of M. Clearly, M and N are diffeomorphic; and N is obtained by
gluing the pieces ofM together with tubes that are diffeomorphic to @jMi OE 1;1 ’s.

Now we define the homomorphism Let ' 2 Out. 1.M//. We define '/
to be the diffeomorphism f of N such that f maps each Mi isometrically to M'.i/.
Any twists or turns will happen in the tube connecting the boundary components of
the pieces as follows. The manifold N is obtained by gluing the pieces ofM together

with the tubes that are diffeomorphic to @jMi OE 1; 1 ’s, each cross section of which
has an affinestructure inherited from that of the two boundary components @jMi 1
and @jMi 1 of the tube. This affine structure is induced by the affine structure of
the boundary components of the pieces they get glued to. By the proof of Theorem 9,
the restriction of f to @jMi 1/ and that to @jMi 1 differ by an element in
the center of H, the universal cover of @jMi We define f to be the straight line
homotopy as in the proof of Theorem 9) on @jMi OE 1; 1

We claim that is a homomorphism. This is because for each ' 2 Out. 1.M//,
the map '/ is the unique diffeomorphism that induces ' and that acts isometrically
on eachMi and the restriction of which is the straight line homotopy between the map
on the two ends of each tube. The composition of such two maps is a map of the same

type. By uniqueness, we see that B D Hence, we have proved Out. 1.M//
lifts to Diff.M/.

If Out. 1.M// is finite, by the above, it is realized by a group of diffeomorphisms

F of M. Pick any Riemannian metric g0 on M and average this metric by F to get
a metric g. Then F is a group is a group of isometries of M.
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