Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 87 (2012)

Artikel: New results on noncompact harmonic manifolds
Autor: Knieper, Gerhard

DOl: https://doi.org/10.5169/seals-323258

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.10.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-323258
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helv. 87 (2012), 669-703 Commentarii Mathematici Helvetici
DOI 10.4171/CMH/265 © Swiss Mathematical Society

New results on noncompact harmonic manifolds

Gerhard Knieper

Abstract. The Lichnerowicz conjecture asserts that all harmonic manifolds are either flat or
locally symmetric spaces of rank 1. This conjecture has been proved by Z. I. Szabé [Sz]
for harmonic manifolds with compact universal cover. E. Damek and F. Ricci [DR] provided
examples showing thatin the noncompact case the conjecture is wrong. However, suchmanifolds
do not admit a compact quotient.

In this paper we study, using a notion of rank, the asymptotic geometry and the geodesic
flow on simply connected nonflat and noncompact harmonic manifolds denoted by X .

In the first part of the paper we show that the following assertions are equivalent. The volume
growth is purely exponential, the rank of X is one, the geodesic flow is Anosov with respect to
the Sasaki metric, X is Gromov hyperbolic. We also provide a characterization of manifolds of
constant negative curvature by their minimal volume growth among those harmonic manifolds
with fixed mean curvature of the horospheres.

In the second part of the paper we show that the geodesic flow is Anosov if X is a nonflat
harmonic manifold with no focal points. In the course of the proof we obtain that certain partially
hyperbolic flows on arbitrary Riemannian manifolds without focal points are Anosov, which is
of interest beyond harmonic manifolds.

Combining the results of this paper with the rigidity theorem’s of [BCG], [BFL], and [FL],
we confirm the Lichnerowicz conjecture for all compact harmonic manifolds without focal points
or with Gromov hyperbolic fundamental groups.

Mathematics Subject Classification (2010). Primary 37C40; Secondary 53C12, 37C10.

Keywords. Harmonic manifolds, geodesic flows, Lichnerowicz conjecture.

1. Introduction

A complete Riemannian manifold X is called harmonic if the harmonic functions
satisfy the mean value property, that is, the average on any sphere coincides with
its value in the center. Equivalently, for any p € X the volume density 6,(g) =
v det g;;(¢) in normal coordinates, centered at any point p € X, is a radial function.
In particular, if ¢: [0, 00) — X is a normal geodesic with ¢(0} = p, the function
f(r) := B,(c(t)) is independent of c. It is easy to see that all rank 1 symmetric
spaces and Euclidean spaces (model spaces) are harmonic. In 1944, A. Lichnerowicz
conjectured that conversely every complete harmonic manifold is a model space. He
confirmed the conjecture up to dimension 4 [Li]. It was not before the beginning
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of the 1990s that general results where obtained. In 1990 Z.1. Szabé [Sz] proved
the Lichnerowicz conjecture for compact simply connected spaces. However, not
much later, in 1992, E. Damek and F. Ricci [DR] showed that in the noncompact
case the conjecture is wrong. They provided examples of homogeneous harmonic
spaces which are not symmetric. Nevertheless, in 1995 G. Besson, G. Courtois
and S. Gallot [BCG] confirmed the conjecture for manifolds of negative curvature
admitting a compact quotient. The proof consisted in a combination of deep rigidity
results from hyperbolic dynamics and used besides [BCG] the work of Y. Benoist,
P. Foulon and F. Labourie (|BFL] and P. Foulon and F. Labourie [FL]).

In 2002, A. Ranjan and H. Shah showed [RSh2] that noncompact, simply con-
nected harmonic manifolds of polynomial volume growth are flat. Using a result
by Y. Nikolayevski [Ni] showing that the density function f is an exponential poly-
nomial, subexponential volume growth of noncompact simply connected harmonic
manifolds implies flatness as well. In 2006, J. Heber [He] proved that among the
homogeneous harmonic spaces only the model spaces and the Damek—Ricci spaces
occur. Therefore, it remains to study nonhomogeneous harmonic manifolds of expo-
nential volume growth. In particular, these are spaces without conjugate points and
horospheres of constant mean curvature 2 > 0,

The starting point of this paper was a question raised by N. Peyerimhoff whether
noncompact simply connected harmonic manifolds, whose horospheres have positive
mean curvature 2 > 0 have purely exponential volume growth, i.e., the quotient of
the density function f(¢) and " stays for large ¢ between two positive constants.

It turned out that the answer to this question is intimately related to the notion of
rank, which s a straight forward generalization of the well-known rank of manifolds of
nonpositive curvature [BBE]. In particular, the volume growth is purely exponential
if and only if the rank is 1. Moreover, we show that noncompact harmonic manifolds
are of rank 1 if and only if the geodesic flow is Anosov. Therefore, having a compact
quotient, the rigidity theorems mentioned above force harmonic spaces of rank 1 as
in the case of negative curvature to be locally symmetric.

We believe that all nonflat harmonic manifolds are of rank 1. This would imply
the Lichnerowicz conjecture for all compact manifolds which is one of the ultimate
goals in the future investigations. We confirm the rank 1 condition for instance for
all harmonic manifolds without focal points which include spaces of nonpositive
curvature. It is very likely that all noncompact harmonic manifolds have no focal
points. All known examples of noncompact harmonic manifolds have nonpositive
curvature. In [RSh1] it was shown that a sufficient condition for no focal points
1s provided under the assumption that besides the trace also the determinant of the
second fundamental form of the geodesic spheres is a function of the radius.

The paper is organized as follows. In Section 2 we introduce the techniques of
Jacobi tensors. In particular, we show that manifolds of constant negative curvature
have minimal volume growth among those harmonic manifolds with fixed mean
curvature of the horospheres.
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In Section 3 we introduce the notion of rank for manifolds without conjugate
points. We show that for harmonic spaces the following three properties are equiva-
lent: X has rank 1, the geodesic flow on X is Anosov, the volume growth is purely
exponential.

In Section 4 we show that for noncompact simply connected harmonic spaces,
Gromov hyperbolicity is equivalent to the three properties studied in Section 3. Hence,
compact harmonic spaces with Gromov hyperbolic fundamental groups are locally
symmetric.

In Section 5 we study harmonic manifolds X of bounded asymptote and show that
the rank is constant. In particular, they include all manifolds without focal points,
i.e., manifolds for which geodesic spheres are convex. Using a classical topological
result of N. E. Steenrod and J. H. C. Whitehead on vector fields of spheres [SW],
we show that in odd dimensions the rank is one. If additionally X admits a compact
quotient, X has to have constant negative curvature.

In Section 6 we study geodesic flows on arbitrary manifolds without focal points
and constant rank. Under the assumption of bounded sectional curvature together
with a certain transversality condition, we prove first that the geodesic flow is partially
hyperbolic. Using a geometric argument we finally show that the flow is Anosov. By
adding to this the results of chapter 5, we obtain that for all harmonic manifolds
without focal points the geodesic flow is Anosov as well.

In the appendix we collect for the convenience of the reader properties of Jacobi
tensors which are important in this paper.

2. Volume growth in harmonic manifolds

In this paper X be will denote a complete, noncompact, simply connected harmonic
manifold. This implies that X is a manifold without conjugate points and thus,
by a theorem of Cartan-Hadamard, the exponential map exp,: T, X — X is a
diffeomorphism. Moreover, X is an Einstein manifold and thus analytic (see [Be]).

We briefly recall the calculus of Jacobi tensors (see e.g. [Es], [Gre], [Kn2] and
[Kn] for more details). Let ¢: I — X be a unit speed geodesic and let N(c) denote
the normal bundle of ¢ given by a disjoint union

Ni(e) = {w € ToX | (w, (1)) = O},
A (1, 1)-tensor along ¢ is a differentiable section

Y:R — End N(c) = U End(N, (¢)),

tel

1.e., for all orthogonal parallel vector fields x, along ¢ the covariant derivative of
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t — Y(1)x, exists. The derivative Y’ (¢r) € End(N,(c)) is defined by

Y00 = 2 (0.

Y is called parallel if Y'(z) = O for all z. If Y is parallel we have Y (¢)x, = (Y (0)x),
and, therefore, (¥ (¢t)x;, y;) is constant for all parallel vector fields x;, y; along ¢ . In
particular, Y 1s parallel if and only if ¥ is a constant matrix with respect to parallel
frame field in the normal bundle of ¢. Therefore, parallel (1, 1)-tensors are also called
constant.

The curvature tensor R induces a symmetric (1, 1)-tensor along ¢ given by

R(t)w := R(w, c(t))c(r).
A (1, 1)-tensor Y along ¢ is called a Jacobi tensor if it solves the Jacobi equation
Y7 (@) + R(t)Y(r) = 0.
If ¥, Z are two Jacobi tensors along ¢ the derivative of the Wronskian
W, Z)t) =Y™* () Z({)—-Y*()Z' (1)

is zero and thus, W(Y, Z) defines a parallel (1, 1)-tensor. A Jacobi tensor Y along a
geodesic ¢: I — X is called Lagrange tensor if W(Y,Y) = 0. The importance of
Lagrange tensors comes from the following proposition.

Proposition 2.1. let Y: I — End N(c) be a Lagrange tensor along a geodesic
c: 1 — X which is nonsingular for all t € I. Then for ty € I and any other Jacobi
tensor Z along c, there exist constant tensors Cy and C, such that

Z(1) = Y(t)(j(Y*Y)_l(S)dS Cy + Cz)

o

forallt € I.

Remark. The definition of the integral and a proof of this proposition is given in the
appendix.

Let SX denote the unit tangent bundle of X with fibres S, X, p € X, and, for
every v € SX, let ¢y: R — X denote the unique geodesic satisfying ¢, (0) = v.
Define A, to be the Jacobi tensor along ¢, with 4,(0) = 0 and A}(0) = id. Then
the volume of a geodesic sphere S{p, r} of radius r about p is given by

vol S(p,r) = [ det Ay (r)d6, (v).
SpX
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where d,(v) is the volume element of S, X induced by the Riemannian metric. By
definition X is harmonic if and only if the volume density f(z) = det A, (¢) does not
depend on v. Therefore,

VO] S(p7 r) = a)l’l—lf(r)7
where o, is the volume of the sphere in the Fuclidean space R”. Since

(det Ay (r))
det Ay, (r)

is the mean curvature of the geodesic sphere of radius » > 0 about 7 (v) in ¢y, (r), X
is harmonic if and only if the mean curvature of all spheres is a function depending
only on the radius.

Of fundamental importance are the stable and unstable Jacobi tensors. For a
general complete simply connected manifold without conjugate points X they are
defined as follows. For v € SX and r > 0 denote by S, and U, - the Jacobi tensors
along ¢, such that

Sv,r (0) — Uv’r(o) — ld aIld S‘U’r(r) — O, U‘U’r (—I”) — O.

= (A, (N A ()™

Let
Sy = lim §,, and U, = lim U,,

r—>00 r—>00

be the stable and unstable Jacobi tensors. For each # > 0 we have
W(SU,F7 Sv,r)(o) = Sqf;ﬂ:r (0) — S:;,r(o) = W(Sv,ra Sv,r)(r) =0
and

W(Uv,m Uv,r)(o) = Ué* (O) - Uﬁ,r(O) = W(Uv,ra Uv,r)(_r) =0,

.

which implies that the Jacobi tensors S, , and U, , are Lagrangian and the endomor-
phisms S, .(0) and U, ,(0) are symmetric. By passing to the limit, the stable and
unstable Jacobi tensors S, and U, are Lagrangian and the endomorphisms S, (0) and
U, (0) are symmeiric as well. Note, that ir U} .(0) = tr(A;r,v(r)A;lrv(r)) and if
X is a complete noncompact harmonic manifold tr Uy ,(0) = Cf,((rr)) is converging to
tr U/(0) =: h > 0, where h is the mean curvature of the horospheres. Hence,

1 1S !
=00 r F—00 f(r)

Definition 2.2. A noncompact simply connected harmonic manifold with /2 > 0 is
called of purely exponential volume growth if there are constants 0 < a < b such
that

ae" < f(r) < be

forall r > 1.
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Remark. The notion of purely exponential volume growth has been introduced in
[Kn1]. In particular, in [Knl] it was proved that simply connected manifolds of

nonpositive curvature and geometric rank 1 have purely exponential volume growth
provided they admit a compact quotient.

Lemma 2.3. Let X be a complete simply connected manifold without conjugate
points. Let ¢,: R — X be a geodesic with ¢,(0) = v € SX and s,r > 0. Then we
have

UL, 0)— 5, ()" = f U U™ )
0
and S
(UL(0) — S, ()" = [ U Uy~ )
0
Similarly, for 0 < s < r we have

(81,0 = $3,,00 7" = [(57,50.)7
0
and S
(5,0 = 51,00 = [(875)7
0
Furthermore, the function

$ 1
% —1 =
det (!(Uv Uy) (u)du) N det(Ué(O) - Sl,),s(o))

is strictly monotonically increasing.

Proof. Let s, r be positive real numbers. For all s > —r the endomorphism U, ,(s)
is nonsingular and Lagrangian. Using Proposition 2.1, for all # > —r we obtain

Sp.s(t) = Uy, (1) f (U Up) ™ ) du Cp
4

for a constant (1, 1)-tensor C, ;. Evaluating and differentiating this identity at r = 0
yields

id = S,,5(0) = /(U;,r Uv,r)_l(u) du Cy
0



Vol. 87 (2012) New results on noncompact harmonic manifolds 675

and

Y
5!, (0) = UL, (0) f (U2 Uy @) dt Crs — Cg
0

= U] ,(0) = Cr s

which proves the first equation. Taking on both sides the limit ¥ — oo yields the
second equation.
Now consider 0 < s < r. Again using Proposition 2.1, for all # < r we obtain

Sp.s(1) = Sy (1) f (Sy . Sv.r )" (u) du Dy
4

for a constant (1, 1)-tensor D, ;. As above evaluating and differentiating this identity
at r = 0 yields the second assertion. Since

0 < ((Uy(0) = 8,4, 0))x, x} < ((Uy(0) = S, (0))x, x)

V.52 v,8]

1

for s; < 55 and x € v—, we obtain the last claim. O

Proposition 2.4. Let X be a noncompact, simply connected harmonic manifold and
h = 0. Then X is flat.

Proof. From [Ni] follows that X has polynomial volume growth. But this implies
the flatness of X as was shown in [RSh2]. O

Corollary 2.5. Let X be a noncompact, simply connected harmonic manifold such
that h > 0. Then the function F: [0, o¢) — [0, o0) given by

AN 1
et det(U}(0) — S}, (0))

F(t) =

is strictly monotonically increasing. Moreover,

{oo if det(U}(0) — S,(0)) = 0,

mwre=sey I detU(0) — 55(0)) > 0.

lim F(t) =

{—>00

In particular, det(U)(0)—S7,(0)) and det(U) (0)—S,, ,(0)) are independent of v € SX

and the estimate

ehr

det(U}(0) — 5, ,(0)

)ff(t)

holds forallt > 1.
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Proof. Let A, be the Jacobi tensor along the geodesic ¢, : R — X with¢,(0) = v €
SX such that A, (0) = 0 and A} (0) = id. Then Proposition 2.1 implies

@@zmmﬁwmwwm.
0

Since by Lemma 7.3 we have
(logdet U,) (1) = e Uy (U (1) = e Uy, (0) = b,

we obtain

f)  detAy(r) ( ey N1
T G det ([(UU Uy) (u)du)
0

1
- det(U[(0) - S;,,(0))
In particular, det(U; (0) — S, ,(0)) as well as det(U; (0) — S},(0)) are independent

of v € SX. The stated estimate follows from the fact that det(U;(0) — S, ,(0)) is
monotonically decreasing in 7. O

Using the result above we obtain that manifolds of constant negative curvature
have minimal volume growth among those harmonic manifolds with fixed mean
curvature of the horospheres. More precisely:

Corollary 2.6. Let X be an n-dimensional, noncompact, simply connected harmonic
manifold with mean curvature of the horospheres equal to h > 0. Then

0 n—1\"""!
tlggo eht N 2h

and equality holds if and only if X has constant negative sectional curvature.

Proof. Note, that for a given symmetric matrix B on R* with positive eigenvalues,
we have (det B)'/* < T2 where equality holds if and only if B = Aid. Applying
this to B = (U](0) — S},(0)), we obtain from the theorem above that

fim 78 ("_ 1),1_1’

t—o0 eht T\ 2h

where equality holds if and only if (U;(0) — S} (0)) = nz—_hl id. Let us assume that
equality holds. Consider U(v) = U/(0) and S(v) = S,(0) then they are both
solutions of the Riccati equation (see e.g. [Gre]), i.e.

d
ZU(¢t(U)) + U%(¢" (1) + Ry(1) = 0
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and i
ES(W(U)) + §%(¢' () + Ry(1) = 0,

where ¢* : SX — SX denotes the geodesic flow on the unit tangent bundle SX and
R, () is the Jacobi operator induced by the curvature tensor R, i.e., R,(f)(x) =
R(x, 9" (v))¢ (v) for x € ¢*(v)*. Subtracting the two Riccati equations, we obtain

0= 5| UGN L) S@w)+ U - 520) = V) - 52
and hence
2 2
U?(v) = ( 2h id—l—S(v)) = (i) id—i-iS(U)—i-S(U)z.
n—1 n—1 n—1
Since S?(v) = U?*(v), this implies
Sw) =— f 0 id

and, therefore, using the Riccati equation again we obtain

2
R,(0) = —S(v)? = — ( 4 ) id,

n—1

for all v € SX. Hence, the sectional curvature is constant. O

3. The rank of a harmonic manifold

The notion of rank has been introduced for general spaces of nonpositive curvature
by Ballmann, Brin and Eberlein [BBE] and is one of the central concepts in rigidity
theory. This notion can be easily generalized to manifolds without conjugate points.

Definition 3.1. Let M be a manifold without conjugate points. The rank of v € SM
is defined by
rank(v) = dim £(v) + 1,

where £(v) = ker(U](0) — S;(0)). The rank of M is defined to be
rank (M) = min{rank(v) | v € SM}.

Remark. In the case of nonpositive curvature (or more generally no focal points as
shown in Section 6) the rank (v) equals the dimension of parallel Jacobi fields along
the geodesic ¢,,. However, in general such a relation does not hold. See [Bu] for an
explicit example and [KnZ2] for general results on manifolds without conjugate points.
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From Corollary 2.5 we immediately obtain:

Corollary 3.2. Let X be a noncompact simply connected harmonic manifold. Then
X has purely exponential volume growth if an only if the rank of X is one.

The following lemma is well known.

Lemma 3.3. Let M be a manifold without conjugate points whose sectional curvature
is bounded from below by —pB? for some 8 > 0. Then

{Up(0)x, x)| < Bix.x) and [(S,(0)x,x)| < f{x.x)
forallv e SM and x € v+,
Proof. For a proof see for instance [Kn]. 0J

We also will need the following result of J. Bolton [Bo] which provides a suf-
ficient condition for a manifold without conjugate points that their geodesic flow 1s
Anosov. In the compact case this result has been obtained by P. Eberlein [Eb]. In the
noncompact case one has to specify a metric in order to define the Anosov condition.
A natural metric is the Sasaki metric. Using the isomorphism

(dmy, Cy): TyTM — Ty M X Ty M § — (dmy(8), Cy(8)) = (61.52),

where m: TM — M is the canonical projection and Cy,: T, TM — T, M is the
connection map, one defines the Sasaki metric via

(E.m) = (1. m) + (E2.7m2).

Then the geodesic flow ¢’ : SM — SM is Anosov with respect to the Sasaki metric
it there exists a splitting

T,.SM = E°(v) ® E¥(v) & E°(v)
and constants @ > 1 and » > 0 such that for all £ € E*(v),
_ 1 B
| D¢ WIEN < allélle™, =0, and | D¢ @)l = —[Ee™, ¢ <0,
and for all £ € E%(v),
1
D¢’ (v)E| = E||é||e”’, t>0, and | D¢'(v)E|| < a|Elle®, 1 <o0.

Theorem 3.4. Let M be a manifold without conjugate points and sectional curvature
bounded from below. Then the geodesic flow ¢ : SM — SM is Anosov if and only
if there exists a constant p > O such that

(U, (0) = $,(0)x, x) = p(x.x)

forall x € v,
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We recall that W. Klingenberg [K1] and R. Maiié [Ma] (in a more general setting)
proved that Riemannian metrics on compact manifolds do not have conjugate points
if their geodesic flow is Anosov.

Theorem 3.5. Let X be a noncompact simply connected harmonic manifold. Then
the geodesic flow ¢* : SX — SX is Anosov if and only if rank(X) = 1.

Proof. Assume thatrank(X) = 1. Since by Corollary 2.5 the determinant of (U, (0)—
S7(0)) is independent of v € SX, we have rank(v) = 1 for all v € SX. By
Proposition 6.57 in [Be] the sectional curvature of a harmonic manifold is bounded.
Therefore, LLemma 3.3 implies that the eigenvalues of the nonnegative endomorphism
(U] (0) — S, (0)) are uniformly bounded from above. Since det(U)(0) — S, (0)) =
const > 0 the smallest eigenvalue of (U} (0) — S/,(0)) is bounded from below. Hence,
we conclude from Theorem 3.4 that the geodesic flow is Anosov. The inverse assertion
is a trivial consequence of Theorem 3.4, O

The Anosov condition on harmonic manifolds admitting a compact quotient be-
comes particulary interesting if we combine it with the rigidity of [BCG] together
with [BFL] and [FL].

Theorem 3.6. Let (M, g) be a compact Riemannian manifold such that the geodesic
flow is Anosov. Assume that the mean curvature of the horospheres is constant. Then
(M, g) is isometric to a locally symmetric space (My, go) of negative curvature.

Proof. TFrom the work of P. Foulon and F. Labourie [FL] follows that the stable and
unstable distribution E*¥ and EY of an Anosov geodesic flow are C*° provided the
mean curvature of the horospheres is constant. The results of Y. Benoist, P. Foulon
and F. Labourie imply that the geodesic flow on the unit tangent bundle of (M, g)
is smoothly conjugate to the geodesic flow on the unit tangent bundle of a locally
symmetric space (M), go) of negative curvature, Furthermore, M, M| are homotopy
equivalent and the topological entropy as well as the volume of both manifolds (M, g)
and (M, go) coincide. Since by a result of A. Freiré and R. Mafié¢ [FM] the volume
entropy and the topological entropy for metrics without conjugate points coincide,
the work of G. Besson, G. Courtois and S. Gallot implies that (M, g) and (Mg, go)
are 1sometric. ]

We immediately obtain:

Corollary 3.7. Let X be a noncompact simply connected harmonic manifold with
rank(X) = 1. If X admits a compact quotient, then X is a symmetric space of
negative curvature.
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4. Gromov hyperbolic harmonic manifolds

In this section we will show that for noncompact harmonic manifolds purely expo-
nential volume growth is equivalent to Gromov hyperbolicity.

Definition 4.1. Tet (X, d) be a metric space. A curve ¢: I — X defined on an
interval I C R is called a geodesic, if ¢ is an isometry, i.e., d(c(t),c(s)) = |t — 5|
for 1,5 € I. A geodesic metric space (X, d) is a metric space, where each pair of
points can be joint by a geodesic.

Remark. Note that in Riemannian geometry geodesics are local isometries. Geo-
desics in the sense of metric spaces correspond to minimal geodesics in Riemannian
geometry.

There are several equivalent definitions of Gromov hyperbolicity. The most com-
mon definition is the following.

Definition 4.2. Let 6 be a non negative number. A geodesic metric space is called
d-hyperbolic if all geodesic triangles are §-thin, i.e., each side of a geodesic triangle
is contained in the §-neighborhood of the two other sides. A geodesic metric space
is called Gromov hyperbolic if it is §-hyperbolic for some § > 0.

We want to show that Gromov hyperbolic harmonic manifolds have purely expo-
nential volume growth. For that we will need the following elementary lemmata.

Lemma 4.3. Let X be a simply connected manifold without conjugate points and
c1,¢2: R — X be geodesics with ¢1(0) = ¢2(0) and d(c1(£L),c2(FE)) < 1 for
{> % Then

d(ci(t),c2(s)) =26 —1 foralls,t > {.

Proof. Consider t,s > £ and assume s < ¢. Then
£+t =d(ci(—£),c1(r))
< d(ci(—L), c2(D)) + d(ca(f), c2(s)) + dlca(s). c1(r))
<1+s5—L+ d(cals), ci(r))

and, therefore,
20 — 1 < d(ca(s), cr(2)).

If s > ¢, then
£+ s = d(ca(—1£), ca(s))
< d(ca(=£), c1(0)) + d{(c1(d), c1(1)) + d(c1(t), c1(s))
< 1+r—L+dci(t),ca(s))

and the assertion follows in this case as well. O
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Lemma 4.4. Let X be a simply connected 5-hyperbolic manifold without conjugate
points, p € X and c: [0,a] — X a geodesic. Let cq: [0,a1] — X be the geodesic
Joining p and c(0) and c2: [0,a2] — X be the geodesic joining p and c(a). Then
there exist t1 € [0,aq], 12 € [0, az] and ty € [0, a] such that

d(c1(t1), e(to)) = d(ca(t2), c(to)) < 6.
Proof. Consider the continuous function f: [0,a] — R given by

F(0) = d(c(r), e1[0,a1]) — d(c(t). 210, az)).

Therefore, f(0) < 0 and f(a) > 0 which implies the existence of ¢y € [0, a] with

0= f(to) = d(c(to), 1[0, a1]) — d(c(to), e2[0. az)).
Since by assumption geodesic triangles are §-thin, we have
d(c(to), €1[0, a1]) U 1[0, a2]) < 4,
and we obtain

d(C(Io), Cl[O,Cll]) = d(C([o), 62[0,612]) <

which implies the assertion of the lemma. O

Corollary 4.5. Let X be a simply connected 5-hyperbolic manifold without con-
jugate points. Let ¢1,¢co: R — X be geodesics with ¢1(0) = ¢2(0) = p and
d(c1(££),ca(FE)) < 1, where £ := § + 1. For ay,as > £ consider the geodesic
c: [0,a] — X joining ci1{(ay) and ca(ay). Then there exists ty € [0, a] such that

d(p,c(ty)) <26+ 1.

Proof. By Lemma 4.4 there exist t; € ¢1[0,a4], 12 € ¢3[0, a;] and ¢y € ¢[0, a] such
that

d(c1(t1), c(to)) = d(ca(t2), c(to)) =6
and, therefore, d(c1(t1), c2(t2)) < 26 = 24 — 2. Thenmin(ry, #2) <+ 1 = £ since
otherwise Lemma 4.3 would imply that d(cy(t1), ca(t2)) = 2£ — 1 which obviously
is a contradiction. Assume 0 < f; < 4§ + 1, we obtain

d(p,clto)) =d(p,ci(t)) +d(c1(t1),clto)) =25 + 1
which yields the assertion. O

Let X be a simply connected manifold without conjugate points and v € S, X .
Consider for r = 0 the function b, ,{(q) = d(q,cu(t)) —t. Then for all ¢ € X the
limit

bv(Q) = lim bv,t(Q)
t—>00
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exists and defines the Busemann function b, associated to the geodesic ¢,. The
levels of the Busemann functions are the horospheres. It is easy to see that b, is a
C! function |Es] with || gradb,|| = 1 and one can even prove [Kn] that they are
of class C 11, i.e., the grad b, is Lipschitz. This implies that the integral curves of
grad b, are geodesics and |b, (¢} — by (p)| < d(p, q). Inthe case of simply connected
noncompact harmonic manifold one can show [RSh3] that Busemann functions are
analytic. Note, that Ab,, = h, where £ is the mean curvature of the horospheres.

Corollary 4.6. Let X be a simply connected §-hyperbolic manifold without conjugate
points. Consider forv € S, X, £ =5 + 1 and r > 0 the spherical cone in X given
by

Ape(r) = {ew(®) |0 <1 <r,w € Sp X, d(ey(£4), (L)) < 1}

Then, for p = 48 + 2 the set Ay ¢(r) is contained in

Hyp(r) = {cy(t) | =p/2 <t <, ¢4 isan integral curve of

grad b_,with ¢4(0) = g € =10y N B(p, p)}

Proof. For ¢y, (t) € Ay.¢(r) there is a unique integral curve ¢ R — X of grad b,
such that ¢, (0) = g € h=1(0) and c,(a) = ¢, (1) for some a € R. Let ¢, 4 be the
sequence of geodesics with ¢, s(a) = ¢4 (a) and ¢y s(bs) = c—y(s) for by < a. Since

d(c—y(FL), cw (L)) = d(cy(EL), cp (L)) < 1,

Corollary 4.5 implies the existence of x, € ¢4 s{(|hs, a]) such that d{x,, p) <26+ 1.

Note, that ¢, = slggo cq.s- Hence, there also exists fp < a such that d(c,(tp), p) <

28 4 1. Since b_,(cy4(t)) = t we obtain

t0] = |b—v(cq(t0))] = |b—v(cq{t0)) — b—v(p)| < d(eq(t0), p) <26+ 1
and
a| = |b—y(cg(aD| = |b—ylcw(t)) —b_y(p)| < d{cy(t), p) <.
Therefore,
d{p,q) = d(p,cg(0)) < d(p,cylto)) + d(cy(to), cg(0)) < 438 + 2,
and-20—1<rp<a<t<r. a

Now we can prove the following important proposition.

Proposition 4.7. Let X be a simply connected noncompact harmonic manifold and
assume that X is 8-hyperbolic for some § > 0. Then X has purely exponential volume
growth.
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Proof. Consider for{ =46+ 1l and v € S, X the set
App(r) i={cw(t) |0t <1, we SpX, dley(£L), cw(EL)) < 1}

Then

Vol A1) = [ s 1y (Coo)
0

where
Cpi:={we S, X |dlcy(£b), e (£)) < 1}

and p, denotes the measure on the sphere S, X induced by Riemannian metric.
Corollary 4.6 implies that for p = 44 4 2 the set A, ¢(r) is contained in
Hy p(r) :={cy(t) | —p/2 <t <1, ¢4 is an integral curve of
gradb_, with ¢4(0) = ¢ € b=1(0) N B(p. p)}.
Furthermore,
.
Vol(Hyp() = [ Pdsvola(by ! ©) 1 B(p. )

-p/2
hr

< 67 volo (b1 (0) N B(p, p)),

where voly denotes the induced volume on the horosphere b 1(0). Therefore,

ehr
; volo(by, ' (0) N B(p. p))

[ F(5)ds 1p(Cog) <
0

and the ratio .
[ f(s)ds
0

ehr

is bounded above by a constant. Therefore, by 1."Hospital the ratio

f(r)

ehr

is bounded from above as well and Corollary 2.5 implies that X has purely exponential
volume growth. O

Now we are able to prove the following main result on simply connected non-
compact harmonic manifolds stated in the introduction.
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Theorem 4.8. Let X be a simply connected and noncompact harmonic manifold.
Then the following assertions are equivalent:

(1) X is Gromov hyperbolic.
(i1) X has purely exponential volume growth.
(ii1) X has rank one.

(iv) X has an Anosov geodesic flow with respect to the Sasaki metric.

Proof. By the previous proposition (1) implies (ii). The equivalence of (i1), (ii1) was
proved in Corollary 3.2 and the equivalence of (ii1) and (iv) has been obtained in
Theorem 3.5.

Assume now that the geodesic flow ¢*: SX — SX is Anosov with respect to
the Sasaki metric. For v € SX consider the Jacobi tensor with A,(0) = 0 and
A’ (0) = id. Then the Anosov condition implies (see [Bo])

[Aw@)x ]l = flx[le®.

Consider two distinct geodesic rays ¢1: [0,00) — X and ¢3: [0,00) — X with
¢1(0) = ¢2(0) = ¢ and define

dl(c1(2),c2(®)) ;== inf{L(y) | y: [a.b] — X \ B(g.t) a piecewise
smooth curve joining ¢ (¢) and ¢z (1)}.

Then 4
t t
lim inf ; (c1(1), ca(1)) s
t—o00 {
This implies, using Proposition 1.26 in Chapter III of [BH] that X is Gromov hyper-
bolic. O

The following theorem was known in the case of negative curvature.

Theorem 4.9. Let M be a compact harmonic manifold with noncompact universal
cover and with Gromov hyperbolic fundamental group. Then M isalocally symmetric
space of negative sectional curvature.

Proof. We first recall that Gromov hyperbolicity is preserved under quasi-isometries
(see for instance [BH]). Since for compact manifolds the fundamental group with
respect to the word-metric 1s quasi-isometric to its universal cover, the universal cover
is Gromov hyperbolic as well. Hence, by the previous theorem the geodesic flow is
Anosov and, therefore, Theorem 3.6 implies that M is a locally symmetric space of
negative curvature. O

Remark. Inparticular, compact manifolds which admit a metric of negative curvature
cannot carry any harmonic metric besides locally symmetric metrics.



Vol. 87 (2012) New results on noncompact harmonic manifolds 685

We strongly believe that noncompact harmonic, nonflat manifolds with 7 > 0 and
higher rank do not exist. The main purpose of the next section is to prove this under
the assumption of no focal points.

5. Harmonic manifolds with bounded asymptote

In this section, we show now that for a harmonic manifold of bounded asymptote the
rank is constant, i.e., independent of the geodesic. In odd dimensions this implies by
a result of Steenrod and Whitehead [SW] that the rank is one.

Definition 5.1. Let M be a manifold without conjugate points and & > 1. A geodesic
cy: R — M is called a-stable if

1
1So @)l < erflx]land Uy (0)xc ]| = —lx]

for all r > 0 and parallel vector fields x; with xp = x € vL. We call a geodesic
stable if it is «-stable for some constant o > 1.

M is called of bounded asymptote if there is a uniform constant « > 1 for which
all geodesics are «-stable.

Remark. The notion of bounded asymptote has been introduced by J.-H. Eschenburg
[Es]. In particular, if M has nonpositive curvature or, more generally, no focal points,
each geodesic is 1-stable.

Proposition 5.2. Let M be an n-dimensional manifold without conjugate points.

Suppose there exists an «(v)-stable geodesic ¢, withrank(v) = k + 1 > 2. Then for

all x € ker(U,(0) — S/(0))

1 o’ (v)
¢

m(x,x) < {(U,(0) = S, ,(0))x,x) <

(x,x).
Let

A ) < < Ae(0,0) S g1 (0.1) < -0 S A (v, 1)
be the eigenvalues of U, (0) — S, ,(0) and

Bi(w):i=Ap1(v,t). .. A1 (v, 1),

then B,(v) is monotonically decreasing and converging to the product of the positive
eigenvalues B(v) of U} (0) — S/ (0). Furthermore,

p)

a2k (v) = det(Ué(O) o Sz/;,t(o))fk = 052k(v),81(v)-
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Proof. Leta(v) > 1 and ¢, is an ¢(v)-stable geodesic. Since Lemma 2.3 implies
; —1
5 o 31
W30 =L, = ( [ ;v wan)
0

we have for each unit vector x € v,
1

(U,0) = S, (0)x, x) =

!

max { [{(U3 V) 00 v | 1) = 1}

1

ﬁwmrwmﬂ'
0

Using
Hf ;U™ du) = [ 107U Wl = [ 107 @) P
0 A J
and 1
Ut =
100l = S e T =T = 4@
we obtain
@) = (U (0) — S, (0))x, x).

On the other hand, Lemma 2.3 implies
H —i
(5200 = 53,00 = 535 )
0

as well. Using the estimate (7.2), we obtain for all unit vectors x € v that

: —1
(/(S{fSU)_l(u)du)
0
; i : 1
< ( / ||<S:‘Sv>(u>||—1du) . ( / ||Sv(u>||—2du)
0 0
t 1 ! B a?(v)
< (/7052(1))61“) =—
0

((5,(0) = 5, (0))x.x) <
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Therefore,
o (v)
{(S,(0) — S, (0)x, x) < pa
Putting both inequalities together, for all x € ker(U/(0) — S/ (0)) with ||x|| = 1 we
obtain

< (U0) - 55, O)r.x) = T2,

aZ(v)t
which implies the first assertion. Let0Q < Aq{(v,1) <--- < A,_1{(v, 1) the eigenvalues
of (Uy(0)=S, ,(0))andk = dim(ker(U,(0)—S;(0)). Thenusing the above estimates
and the minimax characterization of eigenvalues we conclude that

a*(v)
W <Ai(v,1) < -

for 1 < i < k. The remaining eigenvalues Axyq(v,t) < -+ < A,—1{(v,1) of
(U, (0) — S, ,(0)) are monotonically decreasing in ¢ and converging to the positive
eigenvalues of (U, (0) — S/ (0)). Hence,

B) o () (v)
a2k o)k < det(U,(0) — S;,,(0)) < & (5.1)
where f,(v) = A1 (v, 1)...Ap—1 (v, 1) and B(v) = Ay (v)...A—1(v) is the
product of the positive eigenvalues. O

Corollary 5.3. Let X be a nonflat, noncompact and simply connected harmonic
manifold having a stable geodesic c,. Then there is a constant b > 1 such that

1 AQ)

— < < h
5 =

oht prank(v)—1 —
forallt > 1.

Proof. Using Corollary 2.5, we have

ht
= det(U/(0) — S/ ,(0)).
f(t) e( 1;( ) U,t( ))
If £ = rank(v) — 1 the estimate follows from Proposition 5.2. O

Corollary 5.4. Let X be a noncompact simply connected harmonic manifold. Then
rank(v) is constant on the set of initial conditions v € SM corresponding to stable
geodesics. For a fixed y > 1 consider the set

Gy :={v e SM | ¢y is an a(v)-stable geodesic with a(v) < y}.
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Then, there exists a constant p > 0 such that

((Uy(0) = S,(0))x,x) = p{x,x)
for all x € ker(U](0) — S,(0)*+ C vt andv € G,.
Proof. Since the function det(Uy(0) — S, ,(0)) is independent of v € SX, Proposi-

tion 5.2 implies that rank(v) is constant for all v corresponding to stable geodesics.
Now let vp be a fixed and v an arbitrary vector in G,. Then the estimate (5.1) implies

B(vo)

a2 (vy)

< det(U} (0) — S}, ()" = det(U,(0) — S, , (0))*

< a@)*B,(v) < y*B.(v)
for all ¥ > 0 and, therefore,

B(vo)

O[Zk (UO) = VZkiB(U)a

where B(v) = ]_[f;,i 11 Ai(v) is the product of the positive eigenvalues of (U} (0) —
S7(0)). Since the curvature of M is bounded the eigenvalues of (U, (0) — S, (0))
are bounded by Lemma 3.3 from above. Since S(v) is bounded from below, where
the bound only depends on y, @(vg) and B(vo), the same is true for all the positive
eigenvalues of (U (0) — S/ (0)). O]

Theorem 5.5. Let X be anonflat, noncompact and simply connected harmonic mani-
fold of odd dimension. Suppose there exists p € X such that all geodesics ¢, with
initial conditions v € S, X are stable. Then X has rank 1.

Proof. Since the rank(v) is constant for each v € S,X consider the subspace of
vl =~ T,S,X, given by £(v) = ker(U}(0) — S/ (0)). Since the rank is constant it
defines a continuous distribution. If the dimension of X is odd, the dimension of the
sphere S, X is even. By a result of Steenrod and Whitehead [SW] the distribution
must be trivial, i.e., dim £(v) is zero or has dimension » — 1. In the latter case
U (0) = S/(0) and, therefore, e = detU,(r) = det S,(r) = e . But then
h = 0and X is flat. Hence, dim £(v) is zero and rank(X) = 1. O

6. Harmonic manifolds without focal points

In this section, we will show that a nonflat simply connected harmonic manifold X
without focal points has rank 1. For odd dimensions the prove has been given in the
previous section. Note that X has no focal points if the second fundamental form of
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horospheres 1s positive semi-definite or if for all v € SX the Busemann functions
b, are convex. In terms of the stable and unstable Jacobi tensors S, and U, this
is equivalent to U} (0) > 0 and therefore S;,(0) = —U’,(0) < Oforallv € SX.
Most of the properties of manifolds of nonpositive curvature are shared by manifolds
without focal points. For instance geodesic spheres are convex since horospheres are
convex. Furthermore, the flat strip theorem is true, which asserts that two geodesics
c1 and ¢, bound a flat strip if d(c1(r), c2(t)) < b forsome b = Oand all 1 € R, This
means that there exists an isometric, totally geodesic imbedding F: [0,a] xR — X
such that c1(r) = F(0,t) and ¢2(¢r) = F(a,t) (see [Es] for a proof). In particular,
c1 and ¢, are parallel, i.e., d(cq(1), ca(t)) = a.

Lemma 6.1. Let X be a manifold without focal points. Then the following holds:
£(v) = ker(U/(0)) Nker(S!(0)) C vt

= {x € v1 | x; is a parallel Jucobi field along c,}.

Furthermore x;,Sy(t)x:, Up(1)x; € £H(¢*v) forall x € £+ (v) = {x evl | x L
L(v)}.
Proof. Since X has no focal points, we have

{((S,(0)x, x) <0 < ((Uy(0)x, x)
for all x € v*. Due to the fact that S/,(0) and U/ (0) are symmetric endomorphisms,
x € ker (U] (0) — S/ (0)) implies x € ker(U,(0) N ker (S (0)).

Assume that x € £(v). Then Lemma 7.3 implies U, (¢1)x; € L£(¢$*v) and we
obtain

U ()x,) = Up(t)x, = Up(OU, (U (0)x, = Uy, (0 Uy (1)x, = 0.

Hence U, (f)x, is parallel along c,. In particular, U,,(0) = id yields U, (t)x; = x;.
Now consider x € v such that its parallel translation defines a Jacobi field. Then
for each s # 0 Jy(t) = £=Lx; defines a Jacobi field with J;(0) = x and Jy(s) = 0.
Therefore,
Upx, = lim Js(t) = x, = lim Jg(t) = Sypx;.
S—>00 §—>—00

Assume that x € £1(v). Then for all y € £(v), we have {y,.x;) = (x,y) and
v, € £(¢'v) implies x, € £ (¢* (v)).
To prove the last assertion consider x € £+ (v). Thenforall y € £(v), we obtain

(Up (x5, ye) = Uy ()xs, ye) = (Ué(t)Uv_l(t)Uv(t)x,,yt)
- (Uq;tv(O)Uv(t)x;,yt) = (L2 Jocy, Uq;tv(o)yt) = 0.

Hence, (U, (t)x;, v;) = {x,y) = 0 and, therefore, U, ()x, € £+(¢'(v)). In the
same way one proves: Sy, (1)x; € L1 (¢ (v)). a
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Lemma 6.2. Let X be a simply connected manifold without focal points such that
dim £(v) is positive and independent of v. Then, for each compact set K C SX
there exists T > O such that

;E(U) = {x € UJ_ | R(xt,cv(t),cv(t)) = 0’[ S [_Tv T]}
forall v € K. In particular, £(v) and £-(v) depend smoothly onv € SX.

Proof. According to Lemma 6.1 we have that x € £(v) if and only if its parallel
translation x; is a Jacobi field along ¢,,. Therefore, each x € £(v) is contained in

Lr):={x € vt | R(x;, éu())n(t) = 0,1 € [-T.T]}

forall 7 > 0. Let K C SX be compact. If 7" with the required property would
not exist, we could choose a convergent sequence v, € K and a sequence 7, with

T, — ocsuchthatforv = lim v, = v
n—0o0

dim £7,(v,) > dim £(v,) = dim £(v)
which would imply
dim{x € v | R(x;, (1), ¢ (1)) = 0,1 € R} > dim £(v).

On the other hand, each x € v+ with R(x,,¢,(£),¢é,(f)) = 0 for all t € R defines
a parallel Jacobi field along ¢, and, hence, is contained in £(v) which leads to a
contradiction. Hence, locally £(v) = Lr(v) for sufficiently large 7. In particular,
£7(v) and £+ (v) depend smoothly on v € SX. O

Proposition 6.3. Let X be a nonflat manifold without focal points and bounded
sectional curvature. Assume that the eigenvalues of (U} (0) — S,(0)) restricted to
£1(v) C vt are bounded from below by a positive constant independent of v. Then
there are constants a > 1 and a > 0 independent of v such that

_ 1
1Su()x:]| < ae™ || x|l and ||Sy(—t)x—| = geatIIXII
as well as

1 _
1T () x| = ;ewllﬂl and ||Uy(—1)x—|| = ae™||x|

forall x e cfJ'(v) and t > 0. Furthermore, fort > 0,

| Ay (x| = t||x] forall x € £(v)
and there exists a constant a’ such that
| Ay (x| = a’e®||x]|| forall x € £+ (v)

forallt > 1.
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Proof. Consider the equation

; ~1
ST U0y (0) — Sy 0y 00) S22 = ( / <S;fsv>—1(u)du)

—0C

proved in Lemma 7.3 of the appendix. Using Lemma 6.1 the left and, therefore, also
the right hand side define a strictly positive symmetric endomorphism on £+ (¢?v).
Since the eigenvalues of (U/(0) — S!(0)) restricted to £+(v) C v1 are bounded
from below by a positive constant p, Lemma 7.3 of the appendix implies

. —1
o< (( / (S;“Svrl(u)du) S0, S,:l(z)x>

‘Ii(qifv)

—0o0

( j (;S’;".S’v)_1 (u)du)_l
‘£¢(¢rv)

—00

=

|5 @)

for all x € £1(¢"v) with ||x|| = 1. Furthermore, we have

H( [ (strsv)-l(u)du)_1
‘il(@‘)’v)

—00

1

min{ [ (S35~ (v, yuddu | v € £5@). [y = 1}

Therefore,

t

pmin{ [ 537 G S omddu | v € £ @), 1) = 1)}

—00

< IS ).
Defining
p(u) = min {[|S;7H @)y |? |y € L") Iy = 1}
= min {||S; " @)y|* | ¥ € £5@"v). Iy] = 1}.

we obtain
{ A

o / p()du < p [ p)du < p(t)

0 —00
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and, hence,
pF (1) < F'(1)

for F(t) := fot @(u}du. This implies F(¢) > F(1)e”" for all r > 1 and, therefore,
@(t) = F'(t) = pF(t) > pF(1)e”" forall ¢ > 1. Since the sectional curvature of
X is bounded, ¢(¢) is on [0, 1] bounded away from 0. Hence, there exist a constant
a > 1 such that

_ 1
1S, )y = ;e“‘nyn (6.1)

foro = £andall y € £H(¢'v) and r > 0. Since S,(1): £ (p'v) — L (@'v) is
an isomorphism, we obtain for all x € £1(¢*v) and ¢ > 0

1Sy (£)x]| < ae™"||x].
Note, that for each v € R, we have
Spun (D)xe = Sult + u)(S; (w)x):.

where x, is the parallel translation of x € £1(¢*(v)) along cgu,(¢). Hence, for
t = —u < (0 we obtain with (6.1)

1S (—)x—y | = [[(S, @)x) || = [1(S, " ()x) || = ée"”‘IIXII-

In particular, for w = ¢*v and v > O the estimate

| Sw (—u)x—y||

A%

—e™|x]|
a

holds for all x € £1(w). Since U,(t) = S_,(—1) the second estimate of the
proposition follows.
To prove the remaining assertions we recall that

Ap(D)x, = Uy (1) / (U U,) ™" (s)x5ds.
0

If x € £(v) wehave (UFU,) ™" (s)x; = x; and, therefore, A, (1)x, = Uy (1)(1x;) =
[Xt.
If x € £1(v) we have [, (U} Uv)_1 (s)xsds € £(¢*v). Therefore,

[Ay (D)x, || = ae®

/ Uy Uv)_1 (s)xgds
0
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Since Lemma 2.3 implies
¢
((UL(0) - S}, 0) " x), = [ (U V) (5)xds
0

and since for ¢ > 1 there exists a constant » > 0 such that ((U;(0) — S, ,(0))x, x) <
b{x,x) for all x € v the last estimate follows. O

Theorem 6.4. Let X be a nonflat manifold without focal points and bounded sectional
curvature. Assume that the rank of X is constant, i.e., the dimension of

dim £(v) = dim{x € v* | v € ker(U(0)) Nker(S!(0)) = rank(v) — 1

is independent of v. Furthermore assume, that there exists a constant p > 0 such
that

{(U5(0) — S;(0))x, x) = plx, x)

forall x € £+ (v). Then the rank is equal to one and the geodesic flow is Anosov.
As a consequence we obtain:

Theorem 6.5. Let X be a simply connected nonflat harmonic manifold without focal
points. Then X is of rank one. Moreover, the geodesic flow is Anosov and X is
Gromov hyperbolic.

Proof. Since X is harmonic and has no focal points Corollary 5.4 implies that the
conditions of Theorem 6.4 are fulfilled. ]

It remains to prove 6.4.
We first show that the geodesic flow is partially hyperbolic. Consider the distri-
butions

EP(w) ={(x+ Av,0) | x € £(v), A € R},
E‘(w) ={(x +Av,y) | x, vy € £(v), A € R},
E*(v) = {x,5,(0)x) | x € £ (v)},
E*(v) = {x, Uy (0)x) | x € £H(v)}.
We call E? the parallel, E€ the central, E* the stable and E* the unstable distribu-

tion. Obviously E?(v) € E€(v). Furthermore, the central, stable and the unstable
distributions are transversal and

dim E°(v) = 2rank(X) — 1, dim E¥(v) = dim E¥(v) = n —rank X.
Therefore, the sum of the dimension is equal to 2n — 1 and, hence,

T,SX = E(v) ® E*(v) ® E"(v).
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Lemma 6.6. Under the assumption of Theorem 0.4, the geodesic flow is partially
hyperbolic with respect to the Sasaki metric. More precisely, there are constants
o >0, and b, c > 1 such that for all & € E*(v), we have

. 1 _.
IDg" (&l < blIElle™, r =0, and | D' (W)€ = 56l “, =0
Furthermore for all § € E¥(v) we have
1
D" (v)§]| = EHEHQW, t >0, and ||D¢'()§|| < b|E]le™. ¢ <O.
Forall§ € E¢(v) andt € R we obtain

IDP" (& < cl&ll(e] + D).

Proof. For & = (x, S} (0)x) € E°(v) we obtain

D" (& = [|(Su(t)xe, Sy()xo)|| = \/IISU(I)MII2 + IS5 ()x) |17

- 1S,(0)x0) |1
= 1Sy () | \/ L4

Moreover, Lemma 3.3 implies

IS, @OxIN _ or s, (071 = 1541, O =< A

18w (F)xe ]l —

and Proposition 6.3 yields

IDg* WEIl < ae™ x| V1 + B2 <ae™|E]V1+ B2

The remaining assertions are obtained in a similar way. O
As we will see, all the distributions are integrable. Define
P(v)={w e SX | d(cy(t), cy(t)) is constant}

to be the subset of SX consisting of vectors tangent to the parallel geodesics of ¢,
and denote by F(v) := (P (v)) its projection on X,

Proposition 6.7. Assume that X fulfills the assumption of Theorem 6.4. Then the dis-
tributions E¥ and E¢ are integrable and provide flow invariant and smooth foliations.
The integral manifolds of E¥ are given by P(v). The projection F(v) := nw(P(v))
of each leave is a k-flat. The integral manifolds of E€ are given by the unit tangent
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bundles SF (v) of the k-flats. The distributions E* and E¥ are integrable as well and
the leaves are the stable and unstable manifolds given by

W (v) = {w e SX | d(cy(t), e (1)) < ae " d(m (), m(w)), t > 0}
and
WH(v) = {w € SX | d{cy(t), (1)) < ae d(m(v), m(w)).t < 0}

for constants c,a > 0.

Proof. The integrability of E¥ follows as in Lemma 2.2 in [BBE], which was given
under the assumption of nonpositive curvature and compact quotient, but not necessar-
ily constant rank. By LLemma 6.2 the distribution £7 (v) = {(x + Av,0) | x € £(v)}
is smooth. Choose a smooth curve p: [0,a] — SX with p(0) = v tangent to E?,
ie. %p(s) = (x(s) + A(s)p(s),0) € EP(p(s)), and, therefore, x(s) € L(y(s)).
Consider for each ¢ € R the curve y;: I — SX with y,(s) = cp)(¢). Hence,

d

%)/t (s) = o(s) (1),

where J 5y (¢) is the parallel Jacobi field with J ) (0) = x(s) 4+ A(s)p(s). Conse-
quently, the length of y, (/) is constant, the distance d(cy (1), ¢,(5)(?) is bounded and
the geodesic ¢ 5 (¢) is parallel to ¢,,. If £ and 7 are two smooth vector fields tangent
to E7 the commutator [€, n] is tangent to E7 as well, To prove this consider the flows
@¢ and ;. Then for s

F*) =0, 0" 0 gy 0 (v)

is parallel to v and, hence,

Tl e = o) € EP ).
Sls=0
Therefore, each leaf of E? though v is a k-dimensional submanifold of SX, given
by P(v). Now the flat strip theorem (see [Es]) implies that the projections F(v) :=
(P (v)) are k-flats, i.¢., totally geodesic flat spaces isometric to the Euclidean space
R¥. Therefore, the unit tangent bundle of a k-flat is flow invariant and as one easily
checks tangent to the central distribution E€.

Since ¢’ defines a partially hyperbolic flow the stable and unstable distributions
E¥ and E* are integrable and tangent to W* and W¥, O

Let X be a simply connected manifold without conjugate points. Let B(q,1) be
the open ball of radius ¢ about ¢. For ¢1,¢2 € X \ B(g,t) we call

dl(qi.q2) == inf{L(y) | y: [a.b] — X \ B(q.t) piecewise
smooth curve joining ¢; and g»}.
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The following lemima is important for the proof of Theorem 6.4. We remark that
it does not hold for symmetric of higher rank.

Lemma 6.8. Let X be a simply connected manifold without focal points which fulfills
the assumption of Theorem 6.4 and assume that its rank is at least 2. Givenv € Sy X,
then for each w € Sy X the following assertions are equivalent:

(a) we S, F(v),

1
(b) Lm —d(cy(r), cu(r)) < o0,
t—>00 |
_—
(¢) there exists p > 0 such that tlim ?dtq_p(cv (1), cp(t)) < oc.
—00

Proof. We can assume that X is not flat. Assume w € S, F(v). Consider a shortest
curve x: [0,a] — S, F(v) such that x(0) = v, x(a) = w and ||x'(s)|| = 1. In
particular, x'(s) € £(x(s)). Then y,(s) = exp,(rx(s)) connects c,(r) and ¢, (f)
and the image is in the complement of B{(g, ). Furthermore, y,(s) = J(¢) is the
Jacobi field along the geodesic ¢,y with J(0) = 0 and J'(0) = x'(s). Hence,
J(t) = Ax)()(x'(5))r, where A, (y) is the Jacobi tensor along ¢, (5) with A, (5)(0)
= 0 and A/ ,(0) = id. Since x'(s) € L(x(s)} and ||x'{s)|| = 1 Proposition 6.3
implies
176 = [ Awie O (el = 1.

Hence, L(y;) = ta and, therefore, (a) implies (b).

Since for all p = Oand g1, 92 € X \ B(g. 1) wehave d]_(g1.q2) < d](q1.92),
assertion (c¢) follows from (b).

Now assume that (c)holdsand w ¢ S, F(v). Lety: [0, 1] = X beasmoothcurve
such that y(0) = ¢, (¢), y(1) = ¢y (t) and d(y(s),q) = f(s) = t — p. Consider the
curve x: [0, 1] — S X such that y(s) = exp,(f(s)x(s)) and the geodesic variation

@(s,u) = exp,(ux(s)), where0 <u < f(s).

Then 5
&@(Ss u) = Jx(s)(u)

is the perpendicular Jacobi field along ¢, (s)(1) with initial conditions J,5(0) = 0
and J;(s) (0) = x'(s). Since

d

0 J
ol YO = 5|l fleoN + g plso) f(s0)

= f(s0)
- x(so)(f(SO)) ak C.'x(so)(f(SO))f/(SO)

§=30

the estimate 5

e L0

= [ x50y (S (s0))]
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holds. As above we have Jy (5 (1) = Ay () (u)(x'(s))y. Decompose x'(s) = y(s) +
z(s), where y(s) € £(x(s) and z(s) € L£1(x(s). Since w ¢ S, F(v) there is a
constant » > 0 such fol |lz(s)||ds > b. Using Proposition 6.3, we obtain

1 1
L) = [ F©lds = ae e [ |z)lds = e
0 0

for all + > 0O in contradiction to (c). O

Proof of Theorem 6.4. Assume that the rank of X is at least 2. Consider v € S, X
and v/ € W?(v) where v* # v and 7 (v") = ¢. This implies that d(cy(¢), cy (1))
converges to 0 as ¢ tends to co. For each w € S, F(v) define w’ = — grad by, {(g).
Since X has no focal points d(cy (1), cp(t)) < d(p,q). In particular, for p =
d(p,q) we obtain

1 |

;df(cwf(t),cv/(t)) £ ;(dtp_p(cwf(t),cw (1)) + di_y(cw (1), cu(?))

+df(co(1), e (1))
is bounded for ¢+ > 0. Using Lemma 6.8 this implies w’" € S, F(v’). Furthermore,
0" = <, (w', V) = <p(w,v) =: 6,

where 6, 6" € [—m, 7]. To see this we note that ¢, and ¢, respectively ¢,y and ¢,
are lying in the Euclidean spaces F(v) resp. F(v’). Therefore, we have

d(cy (), cw(@)) = 2tsin (&) and  d(ew (1), cur (1)) = 2 sin (£)
and the triangle inequality implies

2t[sin (&) —sin (&) | = |d(cy (1), e () — d(ep (1), cur (1))]
=< |d{ey (1), ey (1)) + dlcw (), e (1)) < A

for some constant A > 0 and for all # > 0. Hence # = 8. In particular, for w = —v
we obtain

W = (o) = ~()
since
< ((=v), V) = < (—v,v) = 7.

Consequently
d(cy(—t), co(—1)) = d(c—@)(1), c—p(1)) = d(c(—vy (1), c—u (1)) < d(p.q)

forall ¢ > 0. Since d(cy (1), ¢y (1)) converges to O for 1 — oo wehave v = v” which
1s in contradiction to the assumption. Hence the rank of X must be one.
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7. Appendix
In this appendix we collect properties of (1, 1)-tensors which are used in this paper.

Definition 7.1. Let B: I — End N(c) be a (1, 1}-tensor along a geodesic c: I —
M. Then for 1o, 1 € I we define j;; B(s)ds: I — End N{c) via

<fB(S)dS xt,yt> = f(B(S)xs,ys)ds,

to o
where x,, y; are orthogonal parallel vector fields along c.
Remark. If B: I — End N(c) is a symmetric, positive definite (1, 1)-tensor along

a geodesic ¢: I — M, then [ ;0 B(s)ds: I — End N(c) is symmetric and positive
definite as well. Furthermore, the following estimates hold:

| [ 5os| < 1860 7.1)
t =1 A
H( / B(S)ds) 3= f |B(s)~ Y|~ ds. (7.2)

Proposition 7.2. Let M be a Riemannian manifold. Let Y : I — End N{c) be a
Lagrange tensor along a geodesic c: 1 — M which is nonsingular for all t € 1.
Then for ty € I and any other Jacobi tensor Z along c, there exist constant tensors
C1 and C, such that

Z(t) = Y(x)(/(y*y)—l(s)ds Cy + C2)

forallt € [.

Proof. Since Y is nonsingular there exists a (1, 1)-tensor B along C such that
Z(t) = Y(t)B(t).
Differentiating this equation twice yields
Z"(t) =Y"()B(t) + 2Y'(t)B'(t) + Y(r) B"(1).
Since Y and Z are Jacobi tensors, we obtain

Z'"ty=—=R(NOZ({) = —ROY()B(t) and Y'(t) = —R@@)Y (1)
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and, therefore,
2Y'()B'(t) + Y(£)B"(t) = 0.

Since Y is nonsingular B’ is a solution of the differential equation
2Y Y)Y (HG@) + G'(r) = 0. (7.3)
Since Y is a Lagrange tensor we have
W(Y.Y)=Y*()Y({)—Y*@©)Y'(r) = 0.

Therefore, G(r) := (Y*Y)~!(r) is a solution of (7.3) as the following computation
shows:

G'0) = (V™) O = - OEYY O
=y or O (Y OYo + Yoy o)y oy o
= 2V ()Y OV OY (O WY ()
= 2Y M )Y (1)G(1).

Hence, an arbitrary solution of (7.3) is of the form G(t) = (Y*Y)~!(r)C, where
C is a constant tensor along ¢. Therefore, B'(r) = (Y*Y)~!(¢)C,; and integration
yields

B(r) = f (Y*¥) "' (s)ds C, + C3

for constant tensors Cq, C5 along c. O

The following properties of the stable and unstable Jacobi tensors U, and Sy
defined in Section 2 are frequently used in this paper.

Lemma 7.3. Let M be a manifold without conjugate points. Then for all v € SM
we have

Spuy(t) = Syt +u)S; M w) and Ugupn(t) = Up(t +)U ),  (7.4)

Sprn© = Sy (S, (0) and Ups,y(0) = Uy U (). (7.5)

Upey (0) = iy (0) = U ()(U10) = S5,(00) S, (1)

x—1 ’ ’ —1 (7.6)
=S5y (DU, (0) = S, (0N, (2).

Furthermore,

; -1
Ujr (170 — S, ©0) = S;‘—l(t)( [ (S;‘Sv)—l(u)du) STH). (1.7)
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Furthermore, for all x € £(v) we have S,(t)x; = Uy(t)x; € L(¢p'v). Moreover,
Se@®)y = U,(t)y € L(@'v) forall y € L(¢'v).

Proof. Let S, (t) the Jacobi tensor along the geodesic ¢, (¢) with S, -(0) = id and
Sy.r(r) = 0. Then

Sevar (1) = Surgult +u)S5 4, (1),

since both sides define for fixed » and r Jacobi tensors, which agree at ¢+ = 0 and
t = r. Taking the limit r — oo yields the first assertion of (7.4). The second follows
with a similar argument. Differentiating this relations yields (7.5).

To prove (7.6) consider the Wronskian W (U, S,){(z) given by

WUy, S)(1) = UF (1)Sy (1) = U (1)S} (1) = W(Uy, $u)(0) = By,

where
B, = U,(0) — S,(0).
This yields
Uy U0 = S, ()S, 1) = Uy~ () By S, ().
Since

Uy OUH(0) = Upy,y @) and - S;(1)S, (1) = S}, (0)

are symmetric (see Section 2), we obtain the first identity and taking the adjoint we
obtain the second one.

To prove (7.7) consider 0 < r,s and t € (—o0, 5). As we have shown in Section 2
the Jacobi tensor Sy, 5 (¢ ) is Lagrangian, we obtain using Proposition 7.2 the existence
of a constant tensor K , such that

I
Uy (1) = Sy (0) f (57, Sus) " (W)duK, ,.

Evaluating and differentiating this identity at 7 = 0 we obtain the equation

Uy (1) = Sus (1) / (52 S.0) " @)du (UL, (0) — 5., (O)).

Furthermore, for all # < s the limit

{

4
lim [ (S¥,Sys) ' (u)du = [ (SF Sp.s)  u)du
=00 ? s
—00

—r
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exists and is invertible. Hence,

2 —q
( [ (S:ZSSU,S)_l(u)du) Su.s(t) T U () = UJ(0) — S7 ,(0). (7.8)

—00

Passing to the limit s — oo, we obtain

! ~i
( / (Ss‘svrl(mdu) S, (1 Un(1) = UL(0) — S4(0).

—00

Inserting (7.8) into the second identity of (7.6), we obtain

g —1
Uy @ =Sy @ = 570 [ (5750 i) 5510,

Finally, consider x € £(v), i.e., U/ (0)x = S](0)x. Then, U,(¢t)x; = S,(t)x; and
U/(t)x, = S/ (t)x,. This implies

Usi O Un(0)x; = UJ(OUT (YU (0)x: = Sp(0)xs = S} ) (0) Sy (1)x;

and, therefore, U, (t)x, = S,(t)x, € L£(¢p*(v)). O
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