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Friable values of binary forms

Antal Balog, Valentin Blomer, Cécile Dartyge and Gérald Tenenbaum

10 the memory of our friend and colleague George Greaves

Abstract. Let F € Z[X, Y] be an integral binary form of degree g = 2, and let

Vr(x,y) =card{l <a,b < x: P (F(a.b)) < v}

where as usual Pt (n) denotes the largest prime factor of x. It is proved that Wz (x, y) = x?

for y = x872%¢ in general, and y = x1//ote if g = 3. Better results are obtained if F' is
reducible.

Mathematics Subject Classification (2010). 11E76, 11N25, 11N36, 11Y05.
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1. Introduction

For an integer n let as usual P+ (n) and P~ (n) denote respectively the largest and
smallest prime factor of |n| with the conventions Pt (£1) = 1, P (1) = oo,
P*(0) = 0.! Given a real number y > 1, an integer » is called y-friable (or
sometimes y-smooth) if P*(n) < y. Friable numbers have proved to be very
useful in many branches of number theory, both theoretically (e.g. in connection with
Waring’s problem) and practically (e.g. for factoring algorithms). See [Gr] for a
recent overview.

When the friability parameter y exceeds a power of x, friable numbers occur with
positive density among integers less than or equal to x. Indeed, for any fixed ¢ > 0,
we have, as x tends to infinity,

Wix,x®):=card{l <a <x:PY(a) <x*} ~o(l/e)x

where g 1s the Dickman function. Itis, however, very often a hard problem to establish
that a given sequence contains a positive proportion of friable numbers, even if we
content ourselves with a relatively modest friability parameter y.

For the purpose of this paper, the value of P 1 (0) is irrelevant, since for a binary form F there are at most
<« x pairs (a, b) € [1, x]? such that F (a, b) = 0. The above definition is chosen to simplify the presentation.
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In this article, we consider integral binary forms F € Z[X, Y], and define
Ur(x,y):=card{l <a,b<x:PT(F(a,b)) <yl

Without loss of generality we can assume that F is “squarefree”, that is, its irreducible
factors are distinct. We are interested in determining values of y as small as possible
such that we can still guarantee a bound of the type

Wr(x,y) = x2 (1.1)

If F is a linear form, one can trivially choose y = x°, and this is best possible. If
F = X2 4 Y? Moree [Mo] (see also [BW], [TW1], [HTW]) showed that (1.1) holds
again with y = x*. Actually the main result of [TW1] evaluates friable sums of fairly
general multiplicative functions and furnishes corresponding asymptotic formulae in
a much larger (x, y)-domain, certainly including exp((logx)®) < y < x. Itis
not hard to see that this result generalizes to arbitrary irreducible binary quadratic
forms, noting that the representation function is a linear combination of multiplicative
functions attached to certain ring class characters of the underlying quadratic number
field. For higher degree, little has been known so far. We shall prove the following
general theorem.

Theorem 1. Let F = F(X,Y) be a binary form with integer coefficients, degree
t = 2 and no repeated irreducible factor. Let g be the largest degree of an irreducible
factor of F and let k (resp. £) denote the number of distinct irreducible factors of F
having degree g (resp. g — 1). Given any positive real number ¢, the estimate

Up(x,y) =pe x>

holds for all large x provided y = x®F T¢ where the exponent o is defined by
g—2/k ifk =2,
ap = g—1-1/+1) ifk=1land(g,1) # (2,3),
2/3 if (g, k,t) =(2,1,3).

As is well known, irreducibility over Q is the same as irreducibility over Z. Thus,
distinct factors of F are understood as distinct up to a scalar. Irreducible binary forms
correspond to the case (k,£) = (1,0). The theorem provides for these polynomials
the exponent o = g — 2. In the opposite direction, the theorem provides nontrivial
results for simultancous friable values of an arbitrary number of, say, binary lincar
forms. It also reproves the exponent «p = O for a reducible or irreducible quadratic
form F.

We obtain a better range for y when F is a cubic form. This is due to the fact
that, when deg(F) = ¢ < 3, the level of distribution of the sequence {F{a, b)} for
1 < a,b < x, given by Proposition 2 below, exceeds x//2.
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Theorem 2. Let F € Z[X, Y| be an integral binary cubic form. Let

1/s/e if F is irreducible;
0 if F is reducible.

Then

Wp(x,y) =pe x°

provided y = x*FT¢,

Wehave 1/./e = 0.606. . .,50 x1/v¢ = (x3)0-202- Aga comparison, Theorem 1
yieldsor = 1ifthe cubic form F isirreducibleandop = 2/3 or 1/3if F isreducible
(depending on whether F' decomposes into a quadratic and a linear form, or into three
linear forms).

It is certainly also an interesting question how small y can be chosen if we drop
the requirement to get a positive proportion of y-friable values. Here we only make
the simple observation that W (x, x*) > x holds for any € and any F': just consider
the values F(a, ca) for x*-friable integers a and a suitable constant ¢ € Z such that
F(a, ca) is not constantly zero.

That friable values of binary forms play a central role in the number field sieve
may provide further motivation for our results. Indeed, suppose we want to factorize
a large integer N. Let f € Z[X] be an integral polynomial of degree d and m such
that N = f(m). Let F be the corresponding homogenized binary form F(a,b) =
b? f(a/b). Animportant step of the number field sieve is to find sufficiently many
pairs (a, b) such that F(a, b){(a — bm) is friable. Therefore the study of the function
W (x, ) yields information on the complexity of the factoring algorithm and will
influence the choice of various parameters of the algorithm. The interested reader will
find a detailed presentation of the number field sieve in the monograph of Crandall
and Pomerance ([CP], Chapter 6).

The first key ingredient in the proof of both theorems is a result on the distri-
bution of the values F(a,b) among arithmetic progressions, see Section 2. Work
of G. Greaves [G2] (see also [Dan]) shows that — at least for an irreducible form —
the level of distribution of the set {F(a,b) : 1 < a,b < x}is x27¢. The proof of
Theorem 1 then follows along the lines of [DMT], although the details are somewhat
more involved in the present case. For cubic forms, we have a little more elbow room,
and we count solutions to F(a, ) = uvw where the integers u, v, w have restricted
sizes and have their prime factors in certain prescribed intervals. In the reducible
case, we need a generalization of a large sieve type inequality for roots of quadratic
congruences due to Fouvry and Iwaniec [FI]. This may be useful in other situations,
too, and we state and prove it in Section 3.

Acknowledgements. The first two authors would like to thank for the invitation and
excellent working conditions at the Université Nancy 1, where this paper was worked
oul.
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2. Preliminaries

2.1. Generalities. Throughout the paper we shall (without loss of generality) always
assume that all binary forms are primitive, that is, the greatest common divisor of
their coefficients is 1. Given a binary form F(X,Y), a real number x = 1 and a
positive integer d, we define

Agx; Fy:=card{l <a,b <x: F(a,b) =0 (modd)}.
We consider the approximation

)/F(d) 2

Aa(x; F) = T + ra(x), (2.1)

where
yr(d):=card{0 < u,v <d: F(u,v) =0 (modd)}

is a multiplicative function and r4 (x) is an error term, When F (X, Y') is irreducible
and not linear, Greaves [G1], [G2]? proved that the error term is small on average
overd: forx = 1,z = 1 and any & > 0 we have ([G2], 2.4.4)

> lra(x)] Ko r (2 + x)z. (2.2)
d<z

A similar form of this relation 1s proved by S. Daniel (Lemma 3.3 of [Dan]): if
t :=deg F, we have

S| ¥ m@ue

d<z [1#IsM (a,b)ea
) F(d,b‘)lEO (mod d) (2.3)

KeF MA/z{log(22)}" + z{log(22)}* 7,
where v, := 7(1 + 2¢)*t1, % is any compact subset of R?, vol % designates its

volume and |0%| the length of its boundary.
Let us temporarily assume that F is irreducible and set

or(n):=card{l <a<n: F(a,1) =0 (modn)}.
We then have (see [(G2], 2.2.2, 2.2.5)

ve(p) = (p—Der(p) +1. yr(p®) =plp—Der(p>)+p>. (24

if p does not divide the leading coefficient of F(X, 1); in particular, in this case
yr(p) # 0, yr(p?) # 0. For t = 3 and all primes p, the following general bounds
hold

yr(p") < p"tP =, 2.5)

2 Note that these works employ a different normalization for the nultiplicative function appearing in the main
term of (2.1).
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This follows by combining (7.2)—(7.4) of [Dan] on noting that Daniel’s function o(d)
is our function yr (d). We also recall that yg(p) is p on average: indeed, we have,
[G2], 2.3.1,

Z )/F(pp)# =logé+0(1) ¢E=1). (2.6)
p<é

More precisely, it is a classical result going back (at least) to Dedekind (see e.g. [Dan],
pp- 126-7, or [T1], (3.35)) that

) )% @7

ns+1
n=l

where ¢ is an Euler product, absolutely convergent in s > 1 — 1/7, K := Q)
for some root ¥ of F(X, 1) and {k is the Dedekind zeta function of the field KK.

2.2. A summatory function linked to polynomial congruences. In the proof of
Theorem 2, in the case when [ cubic and irreducible, we need an asymptotic formula
for the sum of yr(n)/n over integers without small prime factors. (This is needed
for the evaluation of the ¥ and w-sums in (4.6) below.) We formulate the result in a
somewhat more general context. Its full strength will not be needed for our present
purposes, but it may be useful for further reference in similar situations.

Let K /() be now an algebraic number field and { be the corresponding Dedekind
zeta functuon. We let ¢ and @ denote respectively the Dickman function and the
Buchstab function, see [T2], p. 366, 399. For & > 0, we introduce the domain

(H,) x 23, exp{(loglog x)5/3+8} £ 2 x.
We also define, for z = 2,
E 2y = exp{(log 2)3/5_8}, Zg 1= exp {(log 2)3/2_3}.
For x = z = 2, we write systematically ¥ := (log x)/ log z and define
H(u) 1= exp{u/(1 + logu)?}.

We denote by £(s) the Riemann zeta function and introduce the partial Euler product

(o) =]0-p7)"" @5 >0

psz

Proposition 1. Ler f be a multiplicative function with associated Dirichlet series
F(8) 1= Y p»1 f(n)n™* absolutely convergent for Rs > 1. Assume that

F(s) = k()% (s)
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where 4 is given by an Euler product that is absolutely convergent in a suitable
half-plane Rs = 1 — 3 with § > 0. Then there exists an absolute constant ¢ > 0 such
that, for any given ¢ > 0 and uniformly in the domain H,, we have

i
Y ) = (xol) - Z)é'(iz) v 0((;2(:)2{1&’(15)_0 N zs—l}).

ASX
P (n)>z

Proof. Let % (s; z) designate the subseries of .% (s) restricted to z-friable integers .
Let ¢ denote the Laplace transform of the Dickman function g, viz.

o(u) ::/0 e ow)ydu (s eC).

From formula (3.35) of [T1], we see that Lemma 4.1 of [HTW] may be applied to
5, providing the estimate

Fs;z) = F(s)(s — 1)(10gz)@((s — 1)10gz){1 + O(L 1(2))} (2.8)

wheneverz = 2, fs > 1—1/(log z)>/°+¢, |Js| < Lo(z). We obtain the stated result
by reproducing step by step the computations of the proofs of Theorem I111.6.7 and
Corollary T1.6.7.5 of [T2], pp. 408-417, simply replacing the function &(s)/{(s, z)
by F#(s}/.% (s; z), which satisfies the same asymptotic formula, given by (2.8), in
the same range H,. This is proved, in particular, by appealing to the fact that {k (s)
has a Vinogradov-type zero-free region analogous to that of {(s). We note that the
necessary analogue of formula (111.6.72) of [T2], which follows from a simple form
of the approximate functional equation for £ (s), is provided by Lemma 4.4 of [HTW].

2.3. The level of distribution of the sequence {F(a, b))}, pen. In this section we
adapt Greaves’ method to obtain a variant of (2.2) related to binary forms that need
not be irreducible. We consider m distinct irreducible binary forms I, ..., F,, and
write F = (Fy,..., Fp). Foralld = (dy,....dyn) € N" and x = 1, we write

F(a,b) =0 (modd)
to mean that F;(a,b) = 0 (mod d;) for 1 < j < m, and define
Ax; F,d):=card{l <a,b <x: F(a,b) =0 (modd)}.
Our generalization is stated as follows.

Proposition 2. let e > O and 0 < s < m. Assume further that F1,..., Fy are
linear forms and that Fsy1, ..., Fy are forms of degree = 2. Then, uniformly for
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Di=1,....D, =1, x =1, we have
> Z P Am)|AGe Fod) =22 ]
di<Dy dm< 1<j<m (2.9)
< (xDy + DSZDS + D)D*,
with
Am:= || 4. Dy:==1+ > D;. Dy:= || ;. D:= ][] D
1<j<m 1<j<s S<jEm 1<jsm

When F has no linear factor, we have s = 0, and our definition of Dy ensures
that Dy # 0 even in this case. The upper bound in (2.9) is then (x 4+ D)D?.

We confined ourselves to proving a simple result which is sufficient for the proof
of Theorem 1. With a little more work, the condition that the d; are squarefree and
pairwise coprime could be relaxed.

Proof of Proposition 2. We detect congruences via exponential sums. We have

A(x;F,d):ALZ Z Z Z e(g(u—a)A—l—mh(v—b)).

M o<gh<Apy  0Su,v<Ap,  1<ab<x
F(u,v)=0 (modd)

The main contribution arises from g = A = 0. Since (d;,d;) = 1foralli # j,
this yields a term x? [, ¢ <, {¥F; (d;)/d}}. To estimate the remaining terms, we
consider separately those pairs (g, #) such that g = 0 or & = 0. Writing

U+ hv
SWighy:= Y e(gT),

O<u,v<Am,
F(u,»)=0 (modd)

we have ( )
Ax:F.d)=x" ] VF 7L L Ri(d) + Ra(d), (2.10)
l1sjsm ]
with
. X ). I B —ha
Ri(d):= a7 > (SW:0.h)+Sd:h.0) Y e 5
1<h<Am Isa<x
X |S(d;0,h)+ S({d;h,0)]
i~ 2 T mmGA—h
1<h<Am
X |S(d;0, k)| + |S(d:h,0)
<= ) p :

" <h<Am/2
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—ga—hb
Rz(d)::Ai2 S Sy Y e(g“A—)

m 1<g h<Ay;, 1<a,b<x
1S(d; g, )|+ |S(d;—g,h)|
< Y i .

1<g.h<Ay /2

We proceed to bound the exponential sums S(d, g, h). Put A, = A, /d;.
Since (d1, A},) = 1, the Chinese remainder theorem implies that each pair {u, v} with
1 < u,v < A, hasarepresentationin the formu = w1 Al +usdy, v = v1A], +v2d;
with O < uqp, vy < dp and 0 < up, v2 < A},. Since the forms F; are homogeneous,
the congruence conditions become

F}'(uzdl,vzdl) =0 (HlOde) lf] 7& 1,

Fi(u,v) =0 dd;) <
(. v) W) {Fl(u1A;n,v1A;n)EO(m0dd1) itj =1,

F}(uz,vz) =0 (Il’l()ddj) lf] 7& I,
Fl(ul,vl) = O(moddl) lfj = 1.

Thus we obtain

5 _ gu+hv gu2+hv2
S{d;g.h) = Z e( dq ) Z e( . )

O<u,v<d; 0<uo,v3 <A},

F1(u,v)=0 (mod dy) F;(u2,02)=0 (mod A},,)
gu + hv
-1 X (™M)= T s@en,
I<jsm  0<u,v<d; 4 1<j<m

F;(u,v)=0 (modd;)
2.11)

say. When d; = p is a prime and deg(F;) = 2, Greaves (see [G1] or [G2]) proved
that

Sj (i 1) < (Fi(=h.g). p). (2.12)
This inequality is also satisfied when deg(F;) = 1, ie. F; is of type F;i(X.Y) =
o; X + ;Y with (¢, ;) = 1. Indeed, if (¢, p) = 1, we have

Si(pig.h) = > e (M) :

Osu,v<p P
u=—a; ;v (mod p)

where @; is defined modulo p by the equation «;@; = 1 (mod p). Thus

Si(pigh) =Y G(M)_{P if —azh + B¢ = 0 (mod p),
AP 8. h) = -

0sv<p P 0 otherwise

(2.13)
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and (2.12) is still satisfied (with implicit constant 1) in this case. If p | «; and
therefore p { B;, then F;(u,v) = 0 (mod p) if and only if v = 0, s0

p ifpleg,

) (2.14)
0 otherwise.

Si(p:g.h) = {

Thus (2.12) holds unconditionally. Successive applications of the Chinese remainder
theorem (using the fact that the d; are squarefree) and (2.12) yield

w(d;
S (dysg )y =[] Sj(prg. ) < € (Fi(—h. ). d)).

pld;

where C; > 0 depends only of F;. Thus, there exists C = C(F) > 0 such that

S(d.g.hy < B T (F(-h.g).d;). (2.15)

1<sj<sm

Moreover, we bear in mind that when F; is linear we also have from the Chinese
remainder theorem, (2.13) and (2.14), that

d; if Fi(—h,g) =0 (modd;),

) (2.16)
0  otherwise.

Sild;; g, h) ={

We are now in a position to estimate the contributions to (2.9) of the error terms
R;(d) in (2.10). Let 0 < &; < &. The case of R,(d) is typical. We observe that
when deg F; = 2, we always have F;(—/h, g) # 0in (2.15). Indeed (0, 0) is the only
solution in Z? of the equation F;(a,b) = O because F; is irreducible and non-linear.
(See [Dar], p. 51, for a proof of this assertion.) We also remark (in the case s # 0)
that if (g, h) satisfy F;(—h,g) = Oforsome 1 < i < s then Fj(—h, g) # 0 for all
1 < j <ssuchthat j # 1.

We handle separately the contribution of those pairs (g, /) such that F; (—=h, g) =0
forsome 1 € j < s. We write

Ro(d) = To(d)+ ) T;(d) @.17)

l<j<s

where in 7y (d ) the summation comprises all 1 < g, h < A, suchthat F{—h,g) #0
andin7;(d)with1 < j < s, the summationis givenby the conditions 1 < g,h < A,
and]G(—h,g)::O.
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We first consider the contribution of Ty (d ) to the left-hand side of (2.9). We have

Do D w(A)Tod)

dlSDl dmst

<« Z Z ALY gih [T 1 hg).d))

Dy dms 1=5g.hsA, /2 1<j<m
F(=h,g)#0

« D% ]_[ > |(F(=h.g).d;)|-

ISg,hsD/Z 1<J<deSD

Now we note that for all integers D = 1, N = 1, we have

WA= Y e)< Y @)D/t < DT(N), (2.18)

d<D d<D t|(N,d) ¢(IN.t<D
where 7(N') denotes the number of divisors of N. Inserting this in the above bound
yields
D D AR Tod)
di<Dq dmn<Dm
1 (2.19)
1+e¢ N 1+e&
« DM - ]_[ t(|F;(—h.g)|) < D™,
1<g.h<sD/2 1<j<m
Next, we estimate the contributions to (2.9) of the quantities 7, (d ) for 1 < j < s.
Since in these summations we have F;(—h, g) = —a;jh + B;g = 0, we may replace

the variable /i by gf,/a;. Note that we must have «; # 0 since ghfl; # 0. We
define A 1= [ ], <<, di. By (2.16) we have

Do Y w(An)’Tid)

<3 3 Az > 2 T (Fhogndo.

di <Dy dpm <Dy 1<g<Am/2,a5lg s<r<m
di|Fi(—gB;/a;.g) (j#i<s)
Let 5 €ley, g], where ¢ is given in Proposition 2 and &; was defined after (2.16).
First, we use (2.18) to estimate the d;-partial sums for s < j < m much in the same
way as we did for the terms Ty(d). We obtain

Z Z (D) Ty (d)

Dl dm

& ﬁsD’f2 Yoo Y WA > =3

2
d1<Dq ds <Dy 15gSA555,aj|g g
di|Fi(—gBj/aj,g) (j#i<s)
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Forl <i <s,i # j, the congruence F; (—gf;/a;,g) = 0 (mod d;) is equivalent
to
2 ( d; )
— =0 |mod ;
o; (di,a;Bi — @i B))
Since the d; are mutually coprime we have
di } . As
(di,a; Bi —aif;) Kd;

Icm {
JHEI<s

where K = K(d) satisfies
K| ] (@B — By

1§i§s
i#j

and is therefore bounded uniformly with respect to d . Thus there exists Ko(d) € N,
Ko(d) <« 1, such that, whenever g satisfies the conditions d; | F;(—gp;/a;, g) for
1<i<s,0i# j,thenAg/{Ko(d)d;} | g. Writing g = Asg’/{Ko(d)d;}, we infer
that

S Y AR Td)

disDy dm<Dm

& 2 J
L DD 3" Y p(Ay) >  Aug?
disDy  ds<Ds 1A g’ /{Ko(d)d; y< A Dy
<« DD, D"
(2.20)

The contribution to (2.9) of the terms R;(d) may be handled similarly. We
appeal to (2.11), (2.15) and (2.16). If there are no defective factors I;(X,Y) = £X
or F;(X,Y) = £V, then we have F;(—h,0) # 0 and F;(0,h) # Oforall & # 0
and all 1 < j < m. With computations parallel to those employed to estimate the
contribution to (2.9) of the terms 7, (d ), we obtain

Z Z w(Am)?|R1(d)| < xD*.

dlle dmst

If, for instance, we have F1(X,Y) = X then S1(d;; g,0) = dy forall g and d. We
obtain 3

xd Co\em 1
A > A [T [(Fi(=h,0).d)|-

1<Sh<Ap /2 2<j<m

Ri(d) K

Arguing as for the estimation of the terms 7;(d ) (j # 0), we obtain

Z Z [(Am)?*| R (d)| < DD x.

di1 <D dm<Dm
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Similarly, if F1(X.Y) = X, F>(X,Y) = Y, we have

D0 o >0 u(AR)*|Ry(d)| < D*(Dy + Da)x,
dlSDl de.Dm

and so in any case

Do o Y u(An)’|Ri(d)] < DfDyx. (2.21)

Combining (2.19), (2.20) (summed over 1 < j < s) and (2.21) completes the proof
of Proposition 2.

3. Proof of Theorem 1
If G(X,Y) is an irreducible factor of F with degree < aF, then we have
PT(Gla,b)) € x = o(y)

for all 1 < a,b < x. Thus, irreducible factors of F having small degree may be
discarded. Let m be the integer defined by

L ifk =2,
)i+ itk =1.

Then m is the number of distinct itreducible factors of I having degree = ap. If
m = k, we write the factorization of F in the form:

FX.Y)=G(X.Y) [] Fx.v)%,

1<j<k

where I, ..., Fy are the distinct (up to scalars) irreducible factors of degree g of I
and all irreducible factors of G have degree at most g — 1, If m > k (ie. k = 1,
£ =1, m = £ + 1), then we write the factorization of F as

FX.Y)=HX.Y) [] R,

Isism

where I, ..., Fp are the distinct irreducible factors of F of degree g — 1 and [, is
the (only) irreducible factor of F' of degree g.
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The arguments of the various proofs in [DMT] were based on properties of arith-
metic functions related to the number of divisors of polynomial values in prescribed
intervals. Here we adapt the ideas, and retain the main notations, of [DMT]. For
m-dimensional vectors w = (wy,...,wy) and z = (z21,...,2m,), the quantity
Hp(x;w,z) is defined as the number of integer pairs (a,b) € [1,x]* such that
forall j € [1, k], the number Fj (a, b) has at least one divisor d; withw; < d; < z;.

We note at the outset that it ¥ = 2, then there exists a constant K, dependmg only
on F, such that

Wr(x,y) = Hr (x:w,2) (3.1)

whenever
Kxg/y<wj SZJ' Sy (13] Sk) (32)

Indeed, if (a, b) is counted by Hp (x;w, z), then F;(a,b) = d;d; with Kx#/y <
dj <y foreach j, whence |d]| < |Fj(a,b)|y/(Kx#) < y,andso P*(F(a,b)) <y

In the case k = 1, there exists K > 0, depending only on F, such that (3.1) holds
provided

Kxg_l/y<wj <z; €y Isj<d), Kx¥/y<wup<znm<y (G3)
Let § €]0, 1/(1 4+ m?)[. Using Proposition 2, we shall show that
Hp(x;w,z) > x? (3.4)
for

x@=0O/k=U-18 ifk > 2 and 1

zj = 4 xU=0/m=G-18 jff — 1and 1
L1+0=8)/m

< j <k,
<j <L, w ::Zj/x5 (1< <m).
itk =1and j =m,

We note that, with the above choice of parameters, the intervals Jw;, z;] are disjoint.

Let us first assume deg(F) = 4. When k = 2, conditions (3.2) are fulfilled for
y = x*F*¢ with oF as in Theorem 1, if § is sufficiently small in terms of & and k.
The required lower bound hence follows from (3.1). Whenk = 1, g = 3, we arrive at
the same conclusion by noting that (3.3) holds for small enough é. Inthe case k = 1,
g = 2, we have £ = 2. Therefore m = 3, and so the first set of conditions in (3.3)
holds for small enough §. However, the inequality z,, < y is not necessarily satisfied
and we adapt the definition of Hr (x; w, z) by requiring that the divisor d,, is itself
friable. We postpone this case as well as the discussion of the cases deg(F) = 2,3
to the end of the proof.
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Let us first assume (g, k) # (2, 1) (and deg(F) = 4), and prove (3.4) in this case.
Let w, z be as above. We observe that

<;j<m log(Kx8)\™
prnym [] X 1< (B aan)

log w;
1<j<m p;|F;(a,b) ewj
w;<p;<z; (35)

2 m
< me
1 —6(1 + m?)
for 1l <a,b < x. Hence

Hp(x;w,z)» Y Brlah)= > - > > 1.

1<a,b<x W1 <p1¥z] Wm<pm<Zm 1<a,b<x
pjlFjla,b) (1< <m)

(3.6)

Our choice of z guarantees that zy ---z,, < x27 for sufficiently small n > 0.

Moreover, the primes pi,. .., py in (3.6) are distinct since Jw;, z;| N Jwp, 23] = @
if j # h. By Proposition 2 it follows that

vE; (pj) g
Hp(x;w,z) > x? l_[ Z z 21 + 0(x? ’7/2). (3.7)
ISjsmw;<pj<zj pj

By (2.6) and partial summation we have for all 1 € j < m,

Ap; logz; 1
S mO (o) o
P log w; log w;

Wj<p;RZ;

Inserting (3.8) in (3.7) confirms (3.4) and completes the proof of Theorem 1 in the
case (g, k) # (2,1).

To handle the case (g,k) = (2, 1) (still assuming deg(F) = 4), we replace the
weights Br(a, b) by

B;;(a,b)::( 3 1)]‘[ 3o (3.9)

S <PmStm 1<j5<8 pj|Fj(a,b)
Um <qm SUm W) <p;<z;j
Pmdm| Fm(a,b)

where p;, g4, denote primes and

] 8

. ot s
78 HA=8)/Cm) o — X T wy t= U

If By (a,b) # 0O, then the divisor dy, = pmgm of Fyn(a,b) is y-friable and hence
F,,(a, b) is also y-friable. The other steps are as in the previous case. We have

Ur(x,y) > Z Bp(a.b) > Z Z Z 1.

1<a,bsx w<p1<z] Sm<Pm<im 1<a.b<x
Um <qgm SUm pilFjlab)(1<j<l)
Pmam|Fm(a,b)
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Applying Proposition 2 and using the fact that yr,, is multiplicative to separate the
summations over p,, and g,,, we obtain the lower bound W (x, y) > x? as before.
This ends the proof of Theorem 1 in the case deg(F) = 4.

It remains to handle the cases deg(F) = 2,3. Then, in (3.9), the divisors
d; = pjq; €]w;,z;] may not be y-friable, and we modify the weights accord-
ingly. Since the corresponding results will be improved in Theorem 2 for cubic forms
and are essentially known for quadratic forms, we only provide a brief description.

(a) F isacubic form. If F is irreducible, we replace the weights B (a, b) defined
in (3.5) by
Bp(a.by:= > L

p1p2|F(a.b)
ool 1 iy g
e G

The proof may then be completed by computations very similar to those described in
the case (g, k) = (2,1),deg(F) = 4. It F = F1F, where F; is, for j = 1,2, an
irreducible binary form of degree j, we choose

Brp(a,b):= Z 1 Z 1,

pilfi(a,b)  paga|Falab)
where the primes pi1, p2, g2 are subject to the conditions

(1/3)-8 /3 (2/3)-8

< py < %43, 2/3 (2/3)-28

(2/3)—6

<p2sXx <gs <X

When F' = Fy F, F3 is a product of three linear factors we select

Bp(a,b):= [] > L

1=5j<=3p;iq;lF;(ab)

subject to the conditions x(1/3=U=1/28 . < y(1/3I=0U=D3 apq x1/3=78 <

(b) F is a quadratic form. When ¥ is irreducible we take

Br(a,b) := > 1« 22/,

(228 o gy 28
P (d)<y, P~ (d)>x"
d|F{ab)

where & and 5 are sufficiently small parameters and x is sufficiently large. The lower

bound )
3 e >

d?
B8 B8

Pt(d)<y, P~ (d)>x"
d|F (a,b)
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1s then derived from the inequality

yr(d) yr(p;)
y ma.p oy #m
x2_28<dsx2_8 ISJSJxJ??<pJ5x(J+1)n J

P (d)<y, P~ (d)>x"
d|F(a,b)

where J is chosen in such a way that
2-28<3J(J+ Dy 2J(J+3)p<2-4.

This is indeed possible provided 8 and 7/8 are small enough, for instance n = §2. It
then only remains to apply (3.8) to the sums over p;. The last case, i.e. I = I\ [
1s a product of two linear forms, 1s essentially trivial, as explained in the proof of
Theorem 2, and we skip the details here.

4. Cubic forms - the irreducible case

4.1. The combinatorial setup. Let F be a primitive irreducible cubic form. By
[G2], p. 37, the form F cannot have a fixed divisor other than 1 and 2,i.e. yr (p) < p?
if p > 2. Ifyp(2) = 22, then F*(X,Y) := 1F(X,2Y) is an integral primitive
irreducible form without fixed prime divisor, and Theorem 2 for F* implies the
result for F'. Thus we can assume henceforth

vr(p) < p* 4.1)

for all p. Let .%, be the set of primes dividing the discriminant’ or the leading
coefficients of F, and let . denote the union of .#y and the set of those primes
satisfying o7 (p) = 0. Then .7} is a finite set depending only on F, and by Hensel’s
lemma we have

or(p?) # por(p) (4.2)

for all p ¢ .. For this and the following sections we use the notation

@z::npv @;::Hp’ ‘@gzznp

Pz Pz Pz

j a4 PE-70

We study y-friable values of F{a, b) by considering factorizations | F(a, b)| = uvw,
where © and v vary in prescribed ranges (so eventually w as well), and P (uvvw) < y,
(uw, ;) =1,2 <z £ y £ x. We choose

z = x",

3 The discriminant of F is in fact the discriminant of the polynomial F (X, 1).
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a small power of x. Then any F{a, b) has at most a bounded number of such factor-
izations. We are free to impose further conditions on v to make computations more
comfortable. For example, we can provide (uw,v) = 1 by requiring P (v) < z
and ease the application of multiplicativity by asking that v is square-free. For the
application of the sieve, we shall also need to exclude a few bad primes from v, hence
we require v | 227. In other words, u and w are free of prime factors below z or
above y, while v is composed of some primes below z but not in .. We will use
three different levels of small parameters and put

e>8:=e2>n:1=¢>0.

For parameters U, V' to be fixed later, we have

card{l <a.b < x:PT(F(a,h)) <y} > S := > 1.
1<a,b<x
|F (a,b)|=uvw
U/x®<u<U, V/ixt<vsV
P+(uw)5y

(uw, #z)=1,v|#;

This last sum counts all five-tuples (a, b, u, v, w) satisfying the long list of conditions.
The condition P (w) < y is controlled by counting all w first and subtracting the
contribution of those having P (w) > y; when doing this second stage we can drop
the condition P ¥ (u) < y as we only need a lower bound. In other words

Sz Y > >

Ux " f<uslU yx—Sb<opgy 1<a,b<x
P+(u)<y v| @t F(a,b)=0 (moduv)
(4,7, )= (F(a,b)/(uv),#;)=1
43
-r X >y o -
1<a,b<
P+(W)>y & |@Z<V B b=t fmodamm)
(w,#z)= (Fa,b)/(vw),#:)=1

U/x®<|F(a,b)|/vw)<sU
First realize that the innermost sum in the second term is obviously empty if

w > W= x3TE28 1 (y ),

On the other hand, for any given W), the contribution of those terms with w < W
can be bounded by (2.3): they contribute at most

<> Y > 1

wsWo vV |F{a,b)|<vwlU
(v, w)=1 F(g,h)=0 (modvw)

« ¥ 3L OnUPR o n iy, + @ v v )
wsWo vV

KUVW? 4 X1V Wy + UV (VW)*/e).
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By choosing the parameters, we have to provide that the above bound is < x277,
as well as we need that UV < x2728 VW < x272% (1o leave room for a sieving).
The best choice 1s

W =U :=x*et% U, .= U/x%,
Voi=x177% V= V)b, (4.4)
WO ::x1+5 — W/x£+38.
With these bounds we can drop the uncomfortable conditions on the size of | F(a, b)|
in the second term in (4.3). Next the conditions (w, 22;} = 1 in the first term and
(u, #2;) = 1 in the second term can be controlled with a fundamental lemma type
sieve. For a general formulation of a sieve method, see [HR]. There are sieving
weights A+, supported on d < D = x%. d|2; such that ) 4, A+ Z the character-
istic function of (n, £2,) = 1. Using these weights in the appropriate place we arrive

)P IED DI D

Up<uslU Vo<v<sV d<D 1<a,b<sx

Pty vl d|Z: F(a,b)=0 (moduvd)

(u,22:)=1

Y Y OTH R rsow
Wo<w<sW Vo<vsV d<D 1<a,b<x
P>y vlz¥ d|F: F(a,h)=0 (mod vwd)
(w,,@z)ZI

At this stage, we derive from (2.2) the following relation

ASvE (uvd)x?
DD D D
2
Ug<ugU Vo<vsV d<D (uvd)
Praysy vlor dlZ:

(uayz)=1

4.5
)Lji'yF(vwd)xz o )
- ¥y p RIS 0w
Wo<w<W Vo<vsV d<D
Prw)>y vl#; dlF:
(w,7z)=1
We plainly have (uw, vd) = 1. Hence we have to compute
-y y
2 s
Vo<v<V d<D Lt}
vl@r d|Z;
and (4.5) becomes
S=T Y VFg”)—xZW 3 VF(;U)+0(x2—"). (4.6)
U w
Up<usU Wo<w<sW
Ptansy Pt(wy>y

(”392’2)=1 (w,ﬁz)zl
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Remark. Although a big chunk of computation is still ahead, we have at this point a
flash of the final result. Suppose that y = x. Since z = x”7 = D?, we expect that,
for suitable constants ¢ > 0, (&), we have

Z )/F() ~ k(g) > 0.

10
E8 Vo<v<sV
v|#F

T~ T

Indeed, it is expected that an interval, the endpoints of which being two fixed, distinct
powers of z, captures a positive proportion of the friable sum

Z ngv) = logz
v

v| %

Bearing in mind that yr (g)/q is 1 on average, we similarly expect that, with a suitable
constant » > 0, we have

log U\ log(U/ U, b 1
Z yF(Zu) ~ b(l — log( o8 )) 0g(U/ 0) — (1 —log )
Veocy ¥ log y log z € 0

Ptansy
(u,@2)=1

and, much in the same way,

log W\log(W/Wo) b 1
3 VF(;U)Nblog(log )og(l / Wo) ~ Do o
Wo cm< w 0gy 0gz g
Ptaw)=y
(w,#z)=1

Finally these expectations lead to

blc(s)x

1
S = {1 —2log 5 + 0(1)}
This exceeds a positive constant times x? precisely when # > 1/4/e.

4.2. Estimation of the main term. We return to (4.6). For any fixed v| 22} we note
that yr(v) # O by (2.4) and (4.2), and we define

yr(p) it
() = yr(pv) ] p ’
ST pyr(v) yr(p?) it |
pyr(p) '

By (4.1), (2.4) and (2.5) we conclude (see also [G2], 2.2.11) that, uniformly in v,

gv(p) = O(1), guv(p) < p.
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This last inequality needs the condition v | 277, asitisnottrueforor(p) =0, p | v,
for example.

Next we check that the function g,(d) := yr{(vd)/(dyr(v)) is multiplicative.
This follows from the well-known general fact that, for any multiplicative function
Jf and any fixed integer m such that f(m) # 0, the function f,,(n) = f(mn)/f(m)
is multiplicative. Indeed, writing y, for the p-adic valuation of m, we have

f(pV'HU«p)
f (n) plv |||n f (pu,p) (n = )

We can now apply a fundamental lemma type sieve estimate for 7+. What we
need is implicit in Theorem 7.1 of [HR]. We get

() Aggv(d)
T — Z VI;”JZU Z dd

Vo<vsV d<D
v|92’; d| 7
_ VFS)) {1 + O(e—(logD)/logz)} l_[ (1 . gv(p))
v P
Vo<v<V psz
v|#F
_ —1/e _yr(p) vr(v)
_{l—l—O(e )}]_[(1 " >
p<z Vo<vslV
v|Z¥
where, for shorter reference we have written
2 2
5 pe—=ve(p9)/yr(p)
yr (@) = yrv) . 4.7)
£ [ P2 —yr(p)

plv

This is still a multiplicative function. Note that by (2.4) we have y,(p) = 0 if
or(p) = 0, but p does not divide the leading coefficient of F(X, 1). Thus, we can
include those primes into the v-sum, and only need to exclude the primes in .y, that

is T — {1 n 0(6—1/5)} I1 (1 B )’F(P)) 3 yl’igv)-

2
p<Ez p Vo<vsV
v] 0

By (2.7), the product is < A/logz where A is a positive constant. Moreover, by
Theorem 3.2 of [TW?2], the v-sum is

(1—&—68)/83 *
{1+ oy [ ear T (1+ £ D)) tkote) + oD} logz,

1—&—78) /&3
( ) |70

say.
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Put k() := Aky(e). Substituting into (4.6), we atrive at

S = {1 + 0(6_1/8)}x21c(8)( Z yr() Z VF(w)) + o™

2 2
Ug<u<sU u Wo<wsW w
Ptansy P (w)>y
(u,2,)=1 (w,27;)=1
el 2 yr () yr () -
B{I—I—O(e )}x K(S)( Z ” 2 Z 3 + O(x="1),
Upg=u<U Wo<w<W
(u,27)=1 Pt)s>y
(w,#;)=1

4.8)

as the interval | Uy, U] is contained in the interval | Wy, W]. We evaluate the sums over
u and w by Proposition 1. By (2.5) and (2.7), the arithmetic function n — yr(n)/n
satisfies the hypotheses of Proposition 1. We recall the choices (4.4) of the relevant
parameters as well as D = x%, z = x” = D?. From Proposition 1, we obtain

Y O oy

n
n<§
(nsgzz)zl

logz’

whenever D < & < U, while an elementary argument using (2.6) furnishes

n
Z vE (1) & 1 3 1
<t n 0gz
(n,#:)=1

for all £ = 1. By partial summation, we infer that

log(U/ U
Z VF(ZU) _ {1—1—0(6_1/8)} Ogl( / 0)’
Up<u<slU u 08z
(u,7;)=1

and

Z VF(w) Z vr(p) Z yr(w)

p? w?
Wo<w<sW y<psW Wo/p<wsW/p
Pt w)=y (w,#;)=1
(w:@z)=1

log(W/ W,
— Z )/F(p) {1 +O( _1/8)} Ogiog/z 0)

log W) log(W/ W)
log y log z

y<psW p

= {1+ O(s)}log(
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Suppose that y = x”. Substituting the last two displays into (4.8), we arrive at

S = {1+ 0(e /%) x%k(e) (M o (IOgW)log(W/Wo))

logz logy log z
+ ox*™)
_ {1+0(6_1/8)}{8_2(8+35)10g(1+el9+ 45)}rc8(;a) 24 o2
{1—210gﬁ L0 )} KE) 2 4 o(x2m)

This completes the proof of Theorem 2 in case the form is irreducible.

5. Cubic forms - the reducible case

There are two possibilities for a reducible cubic form F: either /' = Fy I, where [
is linear and F5 is quadratic, or F' = F) F;, F3 for three linear forms Fy, F>, F3.

5.1. Three linear forms. Let us start with the second case, and let us assume that
two of the three linear forms

Fi(a,b) =a,a+ Bib, o;, B €Z, 1<1i <3,

say F1 and F», are linearly independent over Q. Let A = (Z; g; ) e GL»(Q), and

set A := det A # 0. If we write r = Fi(a,b),s = Fa(a,b), then () = A(}),
and therefore

1 2
Fs(a,b) = oir + Bis,  where (o, B5) := (a3, B3)A ! € (KZ) _
Thus
S :i=card{(r,s) : A | r,A|s, A7 () e [1,x]% P (rs(ahr + B5s)) < v}

is a lower bound for the number of 1 < a,b < x such that F{a, b) is y-friable. Fix
e > 0 and assume y = x*. Notice that [c1x, cax] X [e3x, cqx] € A([1,x]?) for
suitable (positive or negative) constants ¢y # ¢2, ¢3 # ¢4, and let
of 1= {dyr i r €eix,cax],A | r, PT(r) <y}
and
— (Bis s € leax,cax], Al s, PH(s) < y).
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Then | 27| - | 2| 3> x? and &7, % C [—csx, csx] for some constant ¢s > 0. By a
result of La Breteche ([Br], Théoréme 2, which holds in the same way and with the
same proof for o7, 2 C Z, not only for o7, % C N), we obtain

S>> card{(a,.h) e o x B:PT(a+b) <y} > || | B > x>

If all three linear forms are linearly dependent, La Breteche’s theorem gives the same
result immediately. It is clear that the same result holds for a reducible quadratic
form.

5.2. A linear and a quadratic form. Let us now turn to the harder case ¥ = F1 F>
where

Fi(a,b) = ara + B1b, Fa(a,b) = aza® + Paab + y2b2,

where a1, as, 1, B2, ¥2 € Z and F3 is irreducible of discriminant A = ﬂ% —4arys
which is not a perfect square. In particular, oy # 0. Since not both ¢ and 1 are 0,
we can assume that o # 0. Let 4 = (% A1), and change variables (§) := A ().
Then

a?Fy(a,b) = ar® + Brs + ys* =: F(r,s)

where ¢ = o 75 O,ﬂ = Ollﬂz £ 2;810(2,)/ = ﬂ%az = ﬂlﬂz(){l —+ )/20(%, and the
discriminant of F is A := o2 A. By the same argument as above,

card {(r,s) cr = Bis(moday), A7 (5) e [1,x]%, PT(r F(r,5)) < y}

is a lower bound for the number of 1 < a,b < x such that F(a, b} is y-friable. Again
as above, this is

> card{(r, s) € [c1x, c2x] x [c3x, cax] : PT(r F(r,5)) < y}

for suitable constants ¢1 < ¢3, ¢3 < ¢4, and by changing the sign of the middle term
of F if necessary, we can assume that ¢y, ..., ¢4 > 0. Let f be a smooth nonnegative
function supportedon 7 := [c3x, c4x] suchthatsup; | f V) (#)] <; x~/ forall j € N
and f; f(t)dt = cox for some ¢p > 0. Let 0 < & < 1/10 and put D := x27¢/2

y 1= x%, z ;= x*/19°_ Then we can bound the previous display from below by

> ) > > S (5.1)

x /20 Dd <D CIXSISCX (1 6)=0 (mod d)
(d,75)=1 PrH<z

P (d)<y

since there is only a bounded number of ways to write F(r,s) = dd’ with d as
required in the summation condition, and all pairs (r, s) of this form yield a y-friable
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value of F(r,s). We transform the innermost sum by splitting s into residue classes
modulo d and applying Poisson summation. In this way we obtain

1 hs\ ~( h
T sw= X 2xeg)i(E)
F{r,s)=0 (modd) _ s(mod d) heZ

F(r,s)=0 (mod d)

where

f(z) _/ ft)e(—zt)dr < (5.2)

1+ | |x)4
for any A = O (after [A] 4+ 1 partial integrations), and F(0) = cox. Let

Yir(d):= ) e(%). (5.3)

s (mod d)
d|F (r,s)

The term 2 = 0 will contribute the main term

1
M = cox Z E Z )/O,r(d) (5.4)
D/x8/20$dsD c1x<r<eax
(d,7;)=1 Ptz
PT(d)=y

to (5.1), while we treat the remaining part,

=Y Y 2 Y we@/(5)

h#0 x_S/ZODSdSD C1XSr<esx
(d,#z)=1 Ptz
PHd)=sy

as an error term. First we observe that by choosing A large enough in (5.2), we can
truncate the -sum at H := Dx®/9~1 = x17¢/3 with a negligible error, say < 1/x.
Next we open the Fourier transform and perform the change of variables v := hr/H,
obtaining

ESZ[_

“H(F) X yh,r(cn\ ar+0(>)

D/x8/29<d <D 0<|h|<H clxsr<enx
Ptin<z
H Hr
- > ol 2 + (5 )
€4x
D/x?/20<d<D YV Htl/(eax)<|h|<H |z|/(c3x)
th>0
1
> yaeld)|dr+0 (—) .
cl1xXEr<enx X

PHir=z
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To estimate the inner sum, we use the following large sieve inequality which is a
slight generalization of Lemma 3 in [FI].

Proposition 3. Let F(X,Y) = aX? + BXY + yY? € Z[X,Y] be an arbitrary
(positive definite or indefinite, not necessarily primitive) quadratic form whose dis-
criminant A = B? — 4oy is not a perfect square. Define yy, . (d) as in (5.3) with F
replaced by F. For any sequence &, , of complex numbers, positive real numbers D,
H, R, and any & > 0, we have

> ‘ Y Y e ryhr(d)‘ <s.r DV2(D + HR)I/Z(Z &, | )1/2(DHR)5.

d<D h<Hr<R

We postpone the proof of this estimate to the next section and proceed with
bounding the error term (5.5). This is

1/2 /20 .48 1/2 .3/2
HDl/Z(Hx)l/Z /C4x (&) df(DHR)S << xs X HR X
_ Ht
Cq X

&/20

<
=5

on choosing § = £/240. This is plainly acceptable.

Let us now turn to the main term A defined in (5.4). We first observe that our
summation conditions imply (r,d) = 1, so that v, (d) =: g(d) is independent of
r. It therefore remains to show that

d
3 %) > ¢(e) > 0 (5.6)
D/x®/20<d<D
(d,72)=1
Pty

for some constant ¢(¢). For a prime p | 2eA we have g(p) = 1 + (Alp) € {0,2}
which depends only on p modulo A. Let Z denote a sum over primes satisfying
g(p) = 2. For such primes, we have g(p”) = 2 for all integers v = 1. Tet

40— 11 30
Zocppim () <=, 7= [0, x%], k= |——20|eN.
80 20 \20— 1056 ) ~ 40 e

Note that x*¢/40 < x278/2 = D and x%e0 > x27116/20 — px=8/20 Thys the left
hand side of (5.6) can be bounded below by

( Z* l)k = c(g).

PES P

This completes the proof of the theorem.
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5.3. A large sieve inequality. We prove Proposition 3. The basic device is a well-
spacing property of the fractions v/d (mod 1), where d ~ D and v runs through the
solutions of F(v, 1) = 0 (mod d); we follow closely the argument of [FI], where the
case F(r,s) = r? + s? is treated. The underlying idea goes back to Hooley [Ho],
see also [To]. In the sequel, all implicit and explicit constants depend at most upon
F, and the word “bounded” is understood as “bounded only in terms of /7.

Let us fix a positive integer . Completing the square, we find a one-to-one
correspondence between the two sets*

ftv(modd): F(v,1) =0 (modd)}
and
{(v,k) e (Z/dZ)x 7 : Qav + B)* — dadk = A},

and the latter set can be identified with the set of (not necessarily primitive) integral
quadratic forms

{aX?> +bXY +dY?:b*—4ad = A, a =0 (mod a),

b (mod 20d), b = B (mod 2c)}, (5.7

via

a=uok and b =2av+ 8. (5.8)
The group SL»(Z) acts on the set of all integral binary quadratic forms F (A) of
discriminant A: if ¢ = (7 3) € SLy(Z) and Q(X.Y) = aX? + bXY + c¥Y? €
F(A), then 07(X,Y) = O((X,Y) 0) =a® X2+ b XY + ¢°Y? with

a’® = Q(r,s), b° =2art +bru+bst +2csu, ¢ = Q(t,u).

It is known that SLy(Z) ~ F(A) = {01, ..., O} is finite. For each representative
Q; = a; X2+ b; XY + ¢;Y?, say, let .#;(d) be the set of matrices o = (4 5) €
SL2(Z) such that @F contributes to (5.7). Clearly we must have Q; (7, u) = d. The
set 9(Q;) 1= {o € SL2(Z) : QF = Q;} of automorphisms of Q; acts on .7;(d),
and matrices in the same O (@ ;)-orbit contribute the same quadratic form to (5.7).
Thus we see that by (5.8) a typical fraction v/d is of the form

v b;r - p _ 2a;rt +b;(ru 4+ st) + 2¢i5u — B

d 2ad 20 (t,u) ’ (32)

with 1 < j <&, (3;) € 7;(d). We claim that for each ¢ = (7 ;) € .7j(d) there
is a representative modulo @(Q;) such that 1,u <« +/d. Indeed, if A < 0, then

4 For the second set, we have identified (non-canonically) the pairs (v, k) € [0, d[XZ such that
(av + B)* — dadk = A
with the pairs (v, k) € (Z/d Z) x Z satisfying this equation.
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(3 %) € #(d) implies (2a;t + bju)> — Au? = 4a;d, and the claim is obvious.
If A > 0, we can assume that Q; is a primitive form (otherwise divide everything
by the ged of the coefficients). Then it is known [La] that O(Q;) is generated by

—I =("1_;)and oy := (@_fj,?)/ % @Jr_;jf);?) /2) corresponding to the fundamental

solution of Pell’s equation £2 — An? = 4. For a point P := (xo, yo) € R2 on the
hyperbola Q;(x,y) = d, the segment [P, P - 0¢] is a fundamental domain for the
action of O (@ ;) on the pairs (r, u) with (7 ;) € .#;(d), and hence we can assume
that (r,u) is on that segment. Choosing P such that xg, yo < ~/d, we obtain the
claim also in the indefinite case.

If |¢t]| > |u|, we can write (5.9) as (using ru — st = 1)
v 1 bit+2ciu+pr  r 0(1)

d ot 20tQ;(t,u) at

y (5.10)

where® r = # (mod |7|), and we can assume r < || < ~/d. Analogously, if
|u| > |t|, we obtain the expression
v s ajit+2bjut+pr s 0(1)
d ou 20uQ;(t,u)  au d

for (5.9) where s = 7 (mod |u|), and we can assume 5 < |u| < +/d. We partition
now the (multi-)set

{g (mod 1): F(v.1) =0 (modd).D < d < 2,0}

into 2h classes €;, 1 < i < 2h, according to the representative Q;, 1 < j < h, in
(5.9) and according to |r| > |u| or |u| > |f|, and we consider one of these classes
€; with, say, |t| > |u|. If (1) € SLa(Z) is any matrix, there are at most two
choices for (;, ) with |¢| > |u|. Hence we can partition €; into a bounded number of
subclasses C; x, £ < 1, such that the fractions v/d € €, x correspond to matrices
(%3 with different values of r/(xf) (mod 1). We consider one such subclass and
order the fractions v/d € €, &, viewed as elements of [0, 1[, in ascending order:

L
dy ~dy
Since i i
ry ra
O0#|———| = > —, (5.11)
ol aly oI55 D
for two matrices (’;11 I) , ’g i) corresponding to two members in €; , there is a

constant L. € N large enough in terms of the implicit constants in (5.10) and (5.11)

such that
VI +¢ Vg

drr¢ dy

‘>>1
D

> Here we note that # = 0 can only happen when ¢ = 1, and we interpret 0 := 0 (mod 1).
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for all £ € N. Once again we partition €; x into a bounded number of subclasses
such that any two fractions v/d,v’/d’ in a given subclass satisfy

1
i R

Applying the classical large sieve inequality (see e.g. [S]) for each subclass separately

we conclude
Y Y (Tee() <@ m Y les
n<N

D<d<2D F(»,1)=0(d) n<N

v

for any sequence ¢,. Now we are exactly in the situation of Lemma 2 m [FI], and
verbatim as in [FI], pp. 252-254, we derive the proposition.
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